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摘要 

 

 

 

本篇論文最主要的是提供一個範例,這個範例是建構我們自己特有的蛋白質資料

庫,並且發展我們自己一套資料採礦的方法去建構出我們自己特有的蛋白質知識

庫.在本篇論文裡,我們利用我們發展的一套組合式方法(SUM-K)去找出蛋白質的

基本結構並將其轉換成一套足以代表蛋白質結構特性的字母系統.利用這樣具有

結構特性的字母系統,我們可以下去進行結構相似度分析,並且搭配利用 1D 排比

的工具,如此可以快速的比對出結構相似度高的蛋白質.我們也針對 SCOP 蛋白

質資料做了一系列的實驗,實驗驗證了我們字母系統優於其他字母統且我們所提

出的方法(SUM-K)不但可行而且可以找到最能代表蛋白質結構的結構字母轉換系

統.我們也將轉好的字母系統存到了知識庫中,另外我們也提供了網路介面給使

用者來分析自己有興趣的蛋白質. 
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Abstarct 
 

 
The purpose of this thesis is providing an example of constructing our protein database and 

developing the combinatorial data mining approach to construct our protein knowledge 

base. In this thesis, the combinatorial approach (SUM-K) found the basic building blocks 

of protein structure and defined the structure alphabet (SA). The structure alphabet can 

represent the structural information of protein and transform the original sequences into 

sequences of structure alphabet with near-neighborhood assignments. The transformed 

sequences can be measured the similarity of protein structures with 1D alignment tools and 

fast found high structural similarity one. We took the proteins of SCOP database and do 

the serial experiment. The results have shown that our combinatorial approach (SUM-K) 

can define the more proper structure alphabet system than the others. Finally, the 

transformed sequences of proteins have been saved into our protein knowledge base. 

Besides, the web-based analytical interface have been set up and provided users to analyze 

the proteins they interest in. 
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INTRODUCTION 
A. MOTIVATION: 
 

As time goes by, many protein databases have been set up, and informatics 
technology has well developed. We can take more advantages of informatics 
technology for proteomic research. Among many recent important issues on 
porteomics is prediction of functionality and structures of proteins. Although there is 
much valuable information about proteins, the information has yet to be intergrated 
well for realizing protein properties. Proteomic tools cannot use various types of 
information effectively to analyze proteins, and users cannot interpret the analysis 
results easily. 
 

Integrating different proteomic tools is crucial. It is especially important 
to provide biologists with user-friendly visualization tools and evaluation methods 
when dealing with an enormous amount of data stored in various databases. Thus, one 
primary objective of the thesis is to develop an integrated visualization and analysis 
tool for proteomic studies. 
 

Various genome sequencing projects have been producing numerous 
linear amino acid sequences; however, complete understanding of the biological roles 
played by these proteins requires knowledge of their structures and functions [1]. 
Despite that experimental structure determination methods provide reasonable 
structure information regarding subsets of proteins, computational methods are still 
required to provide valuable information for a large fraction of proteins whose 
statures may not be experimentally determined. Even though the primary sequence 
implies the whole information guiding the protein folding, yet the performance of 
predicting the 3D-structure directly from the sequence is still limited. The complexity 
and the number of physicochemical, kinetic and dynamic parameters involved in 
protein folding prohibit an efficient 3D-structure prediction without first knowing . 
the 3D-structures of closely related proteins [2]. Some ab initio methods do not 
directly use 3D-structures, but their applications are often limited to small proteins 
[3]. 

        The search for structural similarity among proteins can provide 
valuable insights into their functional mechanisms and their functional relationships. 
Though the protein 1D sequence contains the information of protein folding, the 
performance of predicting the 3Dstructure directly from the sequence is still limited. 
As the increase of available protein structures, we can now conduct more precise and 
thorough studies of protein structures. Among many is the design of protein structural 
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alphabet that can characterize protein local structures. 
 

Additionally, All the predictions are highly dependent on the definitions 
of periodic structures, but unfortunately the structure description is incomplete. As the 
increase of available protein structures, it allows more precise and thorough studies of 
protein structures. Various more complex structural alphabets have been developed by 
taking into account the heterogeneity of backbone protein structures through sets of 
small protein fragments frequently observed in different protein structure databases 
[2][9]. The alphabet size can vary from several to around 100. However, the proper 
alphabet size could improve the precision of protein structural prediction and the most 
critical problem is how should we determine the size of structural alphabets that we 
don’t exactly know. This problem is also the common critical problem for any 
clustering algorithms and there are many approach to determine the size of clusters. In 
my thesis, we propose a combinatorial approach (SUM-K) to identifying structural 
alphabet that can characterize protein local structures. Instead of applying 
cross-validation [14] or shrinking procedures [16] to refine the clusters directly, we 
use self-organizing maps as a visualization tool to determine the size of structural 
alphabet. Given the alphabet size, we later apply the k-means algorithm [17] to group 
protein fragments into clusters that correspond to a structural alphabet. The analysis 
of structural similarities between proteins not only provides significant insight into 
functional mechanisms and biological relationships, but also offers the basis for 
protein fold classification. An expressive structural alphabet can allow us to quantify 
the similarities among proteins encoded in appropriate letters. It also enables us to 
work with a primary representation of 3D structures, simply using standard 1D amino 
acid sequence alignment methods. To demonstrate the performance of our new 
method, we tested it on the all-α proteins in SCOP. The experimental results show that 
using our structural alphabet rather than the standard amino acid letters can 
outperform BLAST in finding the best hit for a protein query. This suggests that our 
structural alphabet can successfully reflect protein structural characteristics, which are 
implied in protein fragments. Besides, in order to make a consistent and fair 
comparison, we also compared our alphabet with others that are also developed by the 
SOM, but in a different design methodology [9][19]. Our structural alphabet shows 
competitive performance in protein matching. 
 
B.  Purpose and goal 
 
           The purpose of this thesis is demonstrating an example of designing a 
data-mining tool and establishing a protein knowledge base from protein database. 
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The combinatorial approach, named SUM-K has been designed in this thesis. Besides, 
the structural alphabet system has been set up with SUM-K and all-alpha family of 
SCOP database. Beside, We do serial experiment of verification and the results proved 
that our alphabet system can reflect more structural information than other alphabet 
system. 
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CHAPTER 2: RELATED WORK 
 
 

There are many protein databases, like CATH, Pfam, and SCOP databases. 
They provide various kinds of information for proteomic study. In these databases, 
Protein was classified into different groups according to their property. PDB is most 
famous databases, which provide completely protein information for, research 
purpose. 
 

The number of protein structures and sequences, which have been 
determined, grow rapidly. However, the number of protein structure isn’t large enough 
statistically to build the model for prediction and the structural information can 
represent the functionality of protein. The efficient methodology of prediction from 
protein sequences and structures become important issues. The determination of the 
similarity of protein provides valuable information about the structural, functional and 
sequential information of proteins. This information can lead to the further 
characterize the functionality and structure of the protein. Though the number of 
protein isn’t large enough statistically and we can’t discover the statistical significant 
relationship of the global structure and sequence, we can study the relationship of 
local structure and sequence. The structural alphabet is one type of local structures 
and sequences study. Each structural alphabet represents the local structure of proteins. 
The number of building blocks is large enough in statistics. 
 

 Early analysis of protein structures has shown the importance of 
repetitive secondary structures, i.e. α-helix and β-sheet. With variable coils, they 
constituted a basic standard 3-letter alphabet, and this has led to early secondary 
structure prediction algorithms, e.g. GOR [4], and more recent ones that apply neural 
networks and homology sequences [5-8] with prediction accuracy approaching 80%. 
Unger et al. [10] and Schuchhardt et al. [11] used k-means method and 
self-organizing maps respectively to identify the most common folds, but the large 
number of clusters (about 100) is not appropriate for prediction. Rooman et al. found 
16 recurrent folding motifs, ranging from 4 to 7 residues and categorized into four 
classes corresponding to α-helix, β-strand, turn and coil [12]. By applying 
autoassociative neural networks, Fetrow et al. defined six clusters representing 
supersecondary structures that subsume the classic secondary structures [13]. Bystroff 
and Baker produced similar short folds of different lengths and grouped them into 13 
clusters for prediction [14]. Taking into account the Markovian dependence, 
Camproux et al. developed an HMM approach to lean the geometry of the structural 
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alphabet letters and the local rules for assembly process [15]. 
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Fig 1. Framework of studying structure  

          The framework of studying protein structural was shown as Fig1. The 
tructural description is determined through data mining algorithms and the original 
equences will be transformed to those of structural description. The regular pattern or 
ignature will discovered through alignment tools and we could study the relationship 
f the regular structural pattern and the original sequences. Then, The model of 
equence and structures is build by algorithms of prediction. With building model of 
rediction, we can predict the protein structures from sequences.  
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CHAPTER 3: METHODS AND MATERIALS 
 
   A.  Overview 

1. Source files( protein)  

2.Local Data Bases 

 
Fig.2 the overview of our proteomic knowledge base research 
 

  The Fig.2 show the whole data mining process of constructing the knowledge 
base. In this thesis, the protein information was gathered from Protein Data Bank 
(PDB) and saved them into local databases. With data preprocessing methods, I 
preceded the protein structural information and translated them into our features, like 
phi, psi, and omega. Besides, the properties of amino acids were collected in our 
database and joint with our protein database. After preparing these data, we designed 
the data mining tool to mining the databases with feature selection strategy to 
construct the protein knowledge. 
 
      After preparing protein structural database, we began to design the 
data-mining tool and setup our own knowledge base of proteomic research. The Fig.3 
shows the overview of our methods for constructing the knowledge base. Some 
proteomic researches use the same framework to find the description of protein to 
setup their own knowledge base. 
 
      In my thesis, I demonstrated the one data mining tools and its purpose was 
help researchers to discover the well-represented description of protein structure, 
sequence, and functionality which can simplify the protein structural and represent the 
protein structure as different blocks instead of using the three elements, (helices, loop, 
and sheet) to describe the protein structure. We can compare the description and find 

3. Data Preprocessing and warehousing

6. Solving Problems with mining 
tool 

5. Feature Selection 

4. Feature extraction

knowledge 
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the conserved pattern of transformed-sequences from different proteins structure. 
More detailed methodology will be shown in the section B to C. 
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ig.3 The detailed framework of our data mining flow 
    
   After showing the flow of our constructing our knowledge base, we begin to 
iscuss detailed methodology in the following sections. 

.  Data Preprocessing 

   Firstly, we got the raw data from the Protein Data Bank, which is the well-known 
atabase. We downloaded them on our local site and parsed them into our own 
atabase. The files of Protein Data Bank have its own format (see PDB guide 2.1). 
ccording to the guide of protein data bank format, I build the EER model for this 
rotein Data Bank. I roughly select some title from the protein data bank. 

    I used the PERL program to process these data and saved them into the 
YSQL database server. Additionally, the Fig. 3. shows the EER model of our 

roteomic database. After constructing such the database, we also use some data 
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mining technique to extend these EER model. 
 
Fig.4 the EER model of our local proteomic database. 

 
         In our local database, we also provided some basic query(see Fig. 4.), the 
web site has provided the keyword query, sequential PDB ID query and PDB ID 
query for searching the interesting protein. The interface of our database also provided 
some visualization service (see Fig. 5.) are provide by CHIME plug-in tools. The 
interfaces also provided some scripts icon to help user realize the property of protein 
structure. Additionally, it also provided downloading service that you can download 
the .atom file or the .pdb file from our web site. 
 

Moreover, we integrated the Database, Knowledge Base, and mining 
tools for my research purpose. The integrating the Knowledge Base, mining tools and 
Database will demonstrate in the Chapter 5. 
 
          After preparing the database, we calculated the dihedral angle from the 
atomic coordinates of protein structure and also collected the spatial information and 
property of 20 Amino Acids. We started designing other tools and setting up our own 
databases and knowledge base with these protein information. 
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Fig. 4 the interface of our proteomic database. 
 

 
 
Fig. 5 the visualizing interface of our proteomic database. 

 

 
  With this web-based platform, we can study and practice the large protein database 
management. Also, we can also provide the protein structure researchers a web based 
platform. 
C.  Proposed combinatorial approach : SUM-K 
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a. Framework of SUM-K 
         We begin to designing the powerful mining tool to discovering the 
knowledge from our database and constructing our own Knowledge Base to help 
researchers realizing the database.  
 
The workflow of SUM-K system are shown on Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. 

b.Protein Fragment Vectors Extraction 
as Input to SOM, i.e. 

].,,,,,,,[ 211112 +++−−− iiiiiiii φψφψφψφψ  

c.Train SOM on Protein Fragment 
Vectors 

d.Visualizing trained SOM with 
U-Matrix in Grey Levels 

e.Build Minimum Spanning Tree from 
U-matrix 

g.Use number of subtrees as K and 
Run K-mean Algorithm on Input 

V

i.Transform Proteins into Structural 
Alphabet 

h.Define Structural Alphabet based on 
K-means Clusters 

f.Partition Minimum Spanning Tree 
into Disconnected Subtrees  

a.Backbone Transformation into 
Dihedral Angles

We designed the SUM-K (SOM, U-matrix, MST, and K-means algorithm) 
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approach based on the Self Organizing Maps and its own visualization methods to 
discovering the whole new description of protein structure. We can do some 
value-added visualization on existing database, like SCOP database, and finding the 
building blocks through the non-redundant proteins with SUM-K. 
 
a. Backbone Transformation into Dihedral Angles 
 

 
 

Fig. 7 the backbone transformation into Dihedral Angles. 
 

The calculation of dihedral angles is shown as follows: (shown as Fig. 7) 
 

1) The Φ angle is the angle between the plane determined by N, Cα, and C of the i 
th Amino Acids and the one determined by N of i+1 th Amino Acids, Cα, and N 
of i th Amino Acids. 

2) The Ψ angle is the angle between the plane determined by C, Cα, and N of the i 
th Amino Acids and the one determined by C of i+1 th Amino Acids, Cα, and N 
of i th Amino Acids. 
 
There are 2 dihedral angles between 2 amino acids. The SOM algorithm clusters 

the amino acids of the protein according to these three features. In this Thesis, we 
used the phi and psi angle as our training feature for setting up protein structural 
alphabet systems and determined the building blocks with SUMK algorithm. 
 
b. Protein Fragment Vectors Extraction as Input to SOM. 
 

With the fixed window size of five residues, we slid the window along each all-α 
protein in SCOP, advancing one position in the sequence for each fragment, and 
collected a set of overlapped 5-residue fragments. As the relation between two 

successive carbons,  and , located at the ith and (i+1)th positions, can be 
i 1+i

Cα Cα
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defined by the dihedral angles ψi of  and φ
i

Cα i+1 of , a fragment of L residues 

can then be defined as a vector of 2(L-1) elements. Thus, in our study, each protein 

fragment, associated with α-carbons , , ,  and , is 

represented by a vector of eight dihedral angles, i.e. 

1+i
Cα

2−i
Cα 1−i

Cα i
Cα 1+i

Cα 2+i
Cα

].,,,,,,,[ 211112 +++−−− iiiiiiii φψφψφψφψ  for sliding window size =5. (Shown as following 
figure.) Based on this representation, we totally gathered 1,143,072 fragment vectors 
from the all-alpha family in SCOP database. The features are shown as Fig 9. 
 

 

Fig 8. Showing the dihedral angles we got from the protein structural fragment 
(window size = 5) 

 
c.Train SOM on Protein Fragment Vectors 
   

Our tool was based on the Kohonen’s self-organizing maps and use the 
som-tool-pak 3.1 for our research purpose. The kohonen’s self-organizing map was 
the unsupervised clustering and it can setup 2D map for representing the relationship 
of each clusters. 
 
The SOM algorithms are shown as follow: 

1. Normalize the input data and setup the 2D map with N * M size. 

2. Randomly initializing the values of each node on the map. 

3. Enter the first training step, (learning steps). The learning rate in this step is 

higher than that in the second learning step and the purpose of this step is let 

each unit of the map memorizing the feature of input vector. Through these 

steps, each output node will be updated by the neighborhood function.  
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The detailed calculation is shown below: 

∑
−

=

−=
1

0

2))()((
N

i
ii tMtXD --------------------------------(1) 

We will calculate the Euclidean distance between each input vector and the 

output map unit and get the nearest map unit C as winner unit.  

CDMinArg i =))(( -------------------------------------(2) 

The input vector the best match node with learning rate will update the winner 

unit and the neighborhood of winner node will be update by the neighborhood 

function (shown as formula (3)). After 1000 times later, SOM will converge. 

The neighborhood function decline through the times and the region of update 

will be declined also and framework of SOM is shown as Fig 10. 

 ))()(()( )()1( tMtXttMtM iciii −×+=+ η -----------(3) 

Where ))(2/exp()( 22 tRRt cici σαη −−×= ------(4) 

The purpose of first training step maximizes the distance among the centers of 

cluster  

    4.  The purpose of the next training state is tuning and minimizes the distance of 

input vectors and the center of cluster. 

    5.  End of the algorithms through the first and second training state. 
 

Fig 10. the overview of the SOM clustering algorithms. 
 

 

 

 
 
 
 
 
 

 

Output node 
))()(()( )()1( tMtXttMtM iciii −×+=+ η  

Input vector (protein structural fragments)    
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There are 7 parameters was considered to affect the SOM recognize results., 
They are map size, first learning rate, second learning rate, first training steps, 
second training steps, update topology, and update function.  

 According to the SOM algorithms, It shows that SOM usually consists 
of a regular 2D grid of so-called map units, each of which is described by a reference 
vector mi = [mi1, mi2, mi3,…, mid], where d is the input vector dimension, e.g., d = 8, in 
our case of fragment vectors. The map units are usually arranged in a rectangular or 
hexagonal configuration. The number of units affects the generalization capabilities of 
the SOM, and thus is often specified by the researcher/user. It can vary from a few 
dozen to several thousands. An SOM is a mapping from the ensemble of input data 
vectors (Xi=[xi1, xi2, xi3,…, xid] ∈ Rd) to a 2D array of map units. During training, data 
points near each other in input space are mapped onto nearby map units to preserve 
the topology of the input space [19][20]. The SOM is trained iteratively. 
 
d. Visualizing trained SOM with U-Matrix in Grey Levels 
 

 
Fig 11. The calculation of U-matrix (take 4X4 SOM map for example) 

 
     The Unified Matrix (U-matrix) usually used in SOM visualizing researches, and 
it can reflect the clustering result of SOM. U-matrix is one type of distance matrix that 
can show the difference between two map units on the SOM maps. Fig 11. is shown 
the example of calculation the U-matrix on the 4 X 4 SOM maps with hex able 
topology type. Take the point A (2,2) for example, there are six neighbor map units 
near the point A was (1,1), (1,2), (2,1), (2,3), (3,1),and (3,2). Each node on the SOM 
map has six neighbor nodes except the marginal map units and we connected the 
target point with its neighbor points to constructing connected components for 
Minimal Spanning Tree. Finally, we constructed the U-matrix which each map units 
connected with their neighbor map units (shown as Fig 11.) and each connection has 
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its distances between two nodes. Then, the connected components was produced from 
U-matrix. (See Fig 12.) 
 

 
Figure 12. The connected map units of U-matrix 

  In order to showing the clustering results, we also normalized the distance of each 
two neighbor map units into 256 gray levels. The results were shown below and there 
are apparently six clusters on the SOM maps. We preferred to recognize the number 
of clusters with computer instead of human eyes and so we decided to use the MST 
algorithms with certain gray level determining the number of clusters. 
 

 
Figure 13. the U-matrix visualization with the 0-255 gray level 

 
 
f. Partition Minimum Spanning Tree into Disconnected Sub trees 
        
       After the above steps, the connected units of SOM maps generated. We used 
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them as input of Kruskal’s MST algorithm. The MST algorithms will generate the 
shortest path of connected units of SOM maps. The results were shown as the 
following Figure. 
 
 

 
Figure 14. Formation of Minimal Spanning Tree. 

       
  The Fig 14. is shown the completely MST tree of SOM map units. However, 

the number of clusters should be generated. We defined the threshold value of gray 
level, which is 47 and cutting the MST tree into several sub trees. After cutting the 
MST trees, the result of the following can be generated (see Fig 15.). Still, there are 
still some small sub trees, which are not big enough to form a cluster on the SOM 
map. 
 
 

 
Figure 15. Partition the MST tree into sub trees with gray level 47 
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     To deleting these clusters, the sub trees which size are smaller than (map size) 
^1/4 would be excluded and the final MST pruning results was generated (see Fig 16). 
The following figure was filtered MST pruning results. 
 

 
        Fig 16. Cleaning the MST tree with Tree size < (map size) ^1/4 
 
With the FIND SET Algorithm, the parent of each sub trees and the number of sub 
trees can be recognized. Then, The number of sub trees means the number of clusters 
on the SOM map and the number of cluster is generated from this step. With the 
ability of visualization on the SOM with U-matrix and MST (SUM), the number of 
clusters preparing for K-means was produced. (See Fig 17) 
 

Fig 17. De
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g. Use number of sub trees as K and Run K-mean Algorithm on Input Vectors 
 

Then, the map size expanded from 10X10 to 260 X 260 with SUM till the most 
frequent number of clusters appeared. The frequent number of cluster is K. We finally 
take this K as the K parameter of the K-means algorithm. After recognizing the 
frequent number of cluster, we run the K-means Algorithms with K on input vectors. 
Because the different random seeds number on the k-means lead different center of 
clusters, we started to maximize the center of clusters and minimize distance of the 
input vector and the center of clusters and found the best cluster center as our final 
clusters center. 
 
h. Define Structural Alphabet based on K-means Clusters 
 
       We will assign an alphabet to each k-means centers with finding the best 
cluster center. Then, we reassigned the input vector to the closest centers and give 
them a alphabet. The formula is shown at h1. 
 

CDMinArg i =))(( -------------------------------------------------------------------------h1 
       Where Di = Euclidean distance between each center of cluster and input 
vectors. 
 

Through these steps, we can transform raw amino acids sequence to structural 
alphabet. 
 
i. Transform Proteins into Structural Alphabet 
 

10         20         30         40         50 

---------|---------|---------|---------|---------| 

SIVTKSIVNADAEARYLSPGELDRIKSFVSSGEKRLRIAQILTDNRERIV 

aaaaaaaaaaaqqqppphhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

60         70         80         90         100 

---------|---------|---------|---------|---------| 

KQAGDQLFQKRPDVVSPGGNAYGQEMTATCLRDLDYYLRLITYGIVAGDV 

aaaaaaaaqqaaaqqkqhkqwkhhaaaaaaaaaaaaaaaaaaaaaaqqkh 

110         120         130         140         150 

---------|---------|---------|---------|---------| 

TPIEEIGIVGVREMYKSLGTPIDAVAAGVSAMKNVASSILSAEDAAEAGA 

aaaaaaqqkhaaaaaaaqqkhhaaaaaaaaaaaaaaaqqkhhaaaaaaaa 

160 
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---------| 

YFDYVAGALA 

aaaaaaaaaq 
 

Fig 18.transformation the protein raw sequence into our own structural 
alphabets 

 
      After reassigning each amino acids to the center of k-means clusters, the 
transformed sequences for each protein domain from all-alpha family of SCOP 
databases was produced. With these sequences we could do the comparative study of 
different alphabet system with protein structures alignment through 1D structural 
alphabet sequences. 
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CHAPTER 4: RESULTS AND DISCUSSION 
 
    We started to verify the validity of our structural alphabets and tested the 
parameters of SOM algorithms. Besides, we made discussion of the structural 
alphabets results and demonstrated the results of structural alphabets. 
 
A. Experiments Results and Analysis 
 

In order to finding the optimal combination of each parameters on Self 
Organizing Maps, we designed the experiment condition for testing the parameters of 
SOM’s parameters. 
 
a. Test the parameters of SOM algorithm 

We designed 25 combinations of 6 parameters (Table A.) and tested the SOM 
from map size 10X10 to 100X100. The complete experiment results are shown at 
Appendix A. 

We used the about 230 proteins as training data sets and tested our experiments. 
 
 

Experiment id Update type 1st learning rate 2nd learning rate  1st steps 2nd steps Update funct. 

1 hexa 0.09 0.01 5000 15000 bubble 

2 hexa 0.09 0.01 5000 15000 gaussian 

3 hexa 0.09 0.01 5000 25000 bubble 

4 hexa 0.09 0.01 5000 25000 gaussian 

5 hexa 0.08 0.01 5000 15000 bubble 

6 hexa 0.08 0.01 5000 15000 gaussian 

7 hexa 0.08 0.01 2000 25000 gaussian 

8 hexa 0.08 0.01 2000 25000 bubble 

9 hexa 0.06 0.005 2000 15000 gaussian 

10 hexa 0.06 0.005 2000 15000 bubble 

11 hexa 0.06 0.005 2000 25000 bubble 

12 hexa 0.06 0.005 2000 25000 gaussian 

13 hexa 0.05 0.005 2000 15000 gaussian 

14 hexa 0.05 0.005 2000 15000 bubble 

15 hexa 0.05 0.005 3000 45000 bubble 

16 hexa 0.05 0.005 3000 45000 gaussian 

17 hexa 0.07 0.005 5000 15000 gaussian 

18 hexa 0.07 0.005 5000 15000 bubble 
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Experiment id Update type 1st learning rate 2nd learning rate  1st steps 2nd steps Update funct. 

19 hexa 0.07 0.005 2000 15000 bubble 

20 hexa 0.07 0.005 5000 25000 gaussian 

21 hexa 0.075 0.005 5000 15000 gaussian 

22 hexa 0.08 0.005 5000 15000 bubble 

23 hexa 0.075 0.005 5000 25000 gaussian 

24 hexa 0.075 0.005 5000 25000 bubble 

25 hexa 0.05 0.02 1000 10000 bubble 

Table A. Test the parameters of SOM algorithms and the 1st radius of update =10 
and the 2nd radius of update = 3 

 
a.1.  Condition 1 and 2: comparing the different update function. 
 

 
Condition 1, map size = 10 X 10 Condition 2, map size = 10 X 10 

 
Condition 1, map size = 50 X 50 Condition 2, map size = 50 X 50 

 
Condition 1, map size = 100 X 100 Condition 2, map size = 100 X 100 

         Fig 19. The U-matrix result of condition 1 and 2 
The gaussian update function can’t get exactly boundary that we can’t use the 

 21



MST algorithm to recognize the number of clusters. Instead of gaussain update 
function, the bubble update function can get the very clearly boundary between two 
clusters.(see Fig ). 
 
a.2.  Condition 1 and 3 ; condition 2 and 4 : comparing the 2nd learning steps 
 

  
Condition 1, map size = 50 X 50 Condition 3, map size = 50 X 50 

  
Condition 1, map size = 100 X 100 Condition 3, map size = 100 X 100 

  
Condition 2, map size = 50 X 50 Condition 4, map size = 50 X 50 
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Condition 2, map size = 100 X 100 Condition 4, map size = 100 X 100 
Fig 20. The U-matrix result of condition 2 & 4; 1 & 3 

 The more 2nd learning steps cause the bigger size of cluster, and the results are 
shown as Fig 20. The clusters in Condition 4 are more aggregated than those in 
Condition 2. It can be concluded that the 2nd learning steps strongly minimize the 
distance between the input vector and each cluster centers. (See Fig 20.) 
 
a.3.  Condition 18 and 19: comparing the 2nd learning steps 

  

Condition 18, map size = 10 X 10 Condition 19, map size = 10 X 10 

  
Condition 18, map size = 50 X 50 Condition 19, map size = 50 X 50 
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Condition 18, map size = 100 X 100 Condition 19, map size = 100 X 100 

Fig 21. The U-matrix results of condition 18 & 19 
Fig 21. is shown that the more 1st learning steps lead the map unit learning more 

clustering centers. These centers are very closely to other neighbor nodes. In the other 
words, running more first learning steps makes more map units learn specific center 
of cluster and the boundary of each cluster centers become clearer. 
   a.4.  Condition 10 and 19: comparing the 1st learning steps 
 

 

Condition 10, map size = 10 X 10 Condition 19, map size = 10 X 10 

  
Condition 10, map size = 50 X 50 Condition 19, map size = 50 X 50 
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Condition 10, map size = 100 X 100 Condition 19, map size = 100 X 100 

Fig 22. The U-matrix results of condition 10 and 19 
The lower 1st learning rate cause the more exactly boundary. We observed that 

Learning rate in Condition 10 is lower than Learning and boundary of maps in 
Condition 10 is more clearly than Condition 19. (See Fig 22.) 

Based on the above phenomenon, it means that 1st learning rate affect the number 
of clusters you will determine. Therefore, The more 1st learning rate cause each node 
could learn strongly in each step of SOM training. Then, the map becomes unstable 
and fuzzier in higher1st learning rate. 
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a.5.  Condition 22 and 5: comparing the 2nd learning rate 
 

  
Condition 22, map size = 10 X 10 Condition 5, map size = 10 X 10 

  
Condition 22, map size = 50 X 50 Condition 5, map size = 50 X 50 

 
Condition 22, map size = 100 X 100 Condition 5, map size = 100 X 100 

Fig 23. The U-matrix results of condition 22 & 5 
 

The boundary of cluster in Condition 22 is clearer than Condition 5. (See 
Fig 23.). We supposed that the lower 2nd learning rate cause each map units learning 
slowly and the distance between the input vector and the cluster center can’t be 
minimized effectively. In order to improving the boundary of cluster to become more 
clearly, the more 2nd learning steps or higher learning rate is proposed. 
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a. 6 Condition 15: comparing the effect while map size changed. 
 

 
Map size: 10 X 10  

 
Map size: 30 X 30 

 
Map size: 60 X 60 

 
Map size: 100 X 100 

Fig 24. The U-matrix result of different map size in condition 25 
    Fig 24. is shown the different map sizes: 10X10, 30X30, 60X60, and 100X100. 
While increasing the map size, the boundary of clusters is clearer. It is just because 
the cluster could find a position and distinguish from the other clusters. 
 
    Because the condition 25 is much better than the others, we begun to use the 
condition 25 to do our experiment and construct our own structural alphabets with 
SUM-K. 
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a.7 verify each white region contains only one clusters with k-means. 
 
      In order to represent a white region is only one cluster, we use the K means 
algorithm to do such verification. 
 

  

Condition 5 map size = 100X100  K – means where k = 5 

2 5 
4 

1
3 

3
1 

24 
5

Fig 25. The U-matrix result of condition 2 & 4 ; 1 & 3 
     

Take Condition 5 as an example, there are five clusters on the map and we use 
the k-means algorithm to verify them. The five clusters exactly match the white block 
and it can prove that there are five clusters on training data sets. 
 
      We can conclude from this experimental section that the clustering number can 
be generated from the SOM and U-matrix algorithms, each white block could 
represent a distinguish cluster. With this observation, we can implement the MST 
algorithms and generate the sub trees with threshold of lower gray level. Then, we 
selected the threshold of gray level and took this number as the number of clusters to 
finding the center of clusters. The SUM, which contains SOM, U-matrix, and MST 
was proposed to analyze the number of clusters. 
 
b. Expansion test of SOM maps and get the number of clusters. 
 
    We started the SUM-K approach. Firstly, We trained the SOM map with the 
all-alpha family data, and did the experiment of expanding the map size of SOM from 
10 nodes times 10 nodes to 240 nodes times 240 nodes. While the training steps 
finished, we fixed the threshold on gray level = 47 and pruned the connection of MST. 
The number of clusters determined by MST was unstable while the map size under 
the 80 nodes times 80 nodes (see Fig 26 and point 2). Besides, There is an extremely 
different point is 30 X 30 (see Fig 26 and point 1). It shows that there are about 16 

 28



clusters on the map. Then, the next point (60 X 60) declined to 6 clusters. The 
different of number of clusters was 10. The chart was revealed that under the 80X80 
size of SOM map and the number of clusters performed unstable and we can’t 
recognize the number of clusters through these points. However, while the map size is 
bigger than 80 X 80, it shows the number of cluster become more stable and they 
fixed between 10 and 12. Then, the number of clusters can be generated from SOM 
and it was 11. With observing the result of the expanding the SOM map we 
determined the number of clusters from the SOM 
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Fig 26. map size versus number of clusters 
 

   Besides, in order to determining the number of clusters, we drew the graph of 
frequency versus the number of clusters.(see Fig 27.). The peak is 11, too. We use the 
k = 11 for k-means algorithms 
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Fig 27. number of cluster versus frequency 
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    c. using the negative data set for test. 
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Fig 28. map size versus number of clusters (negative data sets) 

 
In order to proving our number of clusters couldn’t be recognized exactly 

by data sets produced randomly, we produced the negative data sets that generated 
from the original data sets. We added the original input vectors randomly between 30 
and -30 and generated the negative data set. Though it’s not reasonable to produce 
these data, the purpose of this experiment is to proving that the negative data set 
couldn’t generate the certain number of cluster by our SUM-K approach. 
 

The result of experiment has shown that while map size is smaller than 
60X60 the number of cluster is 1. It means the SOM couldn’t recognize the clusters 
and gather all data sets into one clusters. However, while map size is bigger than 
60X60, the number of clusters will increase highly and become unstable than the 
original data sets produced. It just because that the map size is big enough to cover all 
the data sets, the SOM map units can catch one input vectors and these vectors may 
be recognize as one cluster. Therefore, our SUM-K is valid and reasonable through 
this experiment. 
 
    d. With-in cluster and between clusters analysis 
 
      After we verified our number of clusters is valid and reasonable, we ran k 
means algorithm and found the best center by minimize the distance of within clusters 
and maximize the distance of between clusters. We repeated the k-means cluster 250 
times and find the best result of clusters center. (See Table B.) 
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      The table is the best result of centers and we use these centers as our cluster 
center. Then, we showed the mean and standard deviation of within clusters and 
between clusters. We assigned the number of clusters to alphabets from A to K and 
transformed from the original sequences to the sequences of structural alphabet. 
 
Table B. within clusters and without clusters analysis. 
 

K
 

J I H
 

G
 

F
 

E
 

D
 

C
 

B
 

A
   

43.15±50.13
 

88.77±53.33
 

196.75±97.2
 

155.02±77.8
 

220.52±87.79 
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0 250.31 

203.41 
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0 234.31 
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B.  Comparing the different SAs and homologous finding tool –FASTA and 
BLAST 

 
 
 
  Transformation of raw sequence to SUMK 

structural alphabet system 
 

Print the sequence data in the txt file.  
 

Choose the highest one of subject protein and do 

RMSD, hierarchical matching with query protein 

run homologous search with BLAST and BLOSUM 62 

(for Amino Acids sequences) FASTA and IDENTITY (for 

de Brevern, SUMK, and 2 level SOM) 

Randomly select the query protein from the 

protein structures (sequence identity < 30%)

 
 
 
 

 
 
 
 
 
 
 

Fig 29. The overall flow of comparative study of different alp
 

We clustered the raw data with K- means which k paramete
and gave the 11 alphabets to representing each cluster of k-mean
all-alpha family from SCOP database were clustered according to
assigned the protein sequences in our own structural alphabet and 
own database. We used the FASTA algorithm with Identity m
structural alphabet systems to prove that our structural alphabet is m
distinguish the protein family from SCOP database. Besides, FAST
Identity matrix can determine the similarity of two sequences an
most similar subject sequence to the query sequence from our own d

Running the comparative experiment, Mode Carlo met
verifying our own alphabet is practical. We randomly selected o
query protein and randomly select 1000 other proteins as the sub
all-alpha family in SCOP database. In this step, we used the FA
matrix we proposed before to calculate the similarity between 
sequences. Then, we selected the top one and calculated the hits 
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hieratical relationship. There are four types of hits in our experiment. The first type is 
hit the most top level-class, the second type is hit the second level -- fold, the third 
type is hit the third level –super family, and the fourth type is hit the bottom level – 
family of SCOP database. For example, the top one of subject proteins is a.1.1.1 and 
the query one is a.1.1.2, the type of hit is super family. The best type of hit is the 
fourth type. It’s just because this type completely match the hieratical relationship of 
SCOP database. This experiment repeated 500 times, and each time we selected the 
top one and determined the type of hits that our own alphabet catches. The overall 
flow of experiment was shown as Fig 25. 
 
     As for the other structural alphabet system, we tested alphabets of the Amino 
Acids, de Brevern, and the 2-level SOM with the same procedure. Thus, the Amino 
Acids do the homologous search with the BLAST and BLOSUM 62 matrix while the 
other three alphabets do the similarity search with the FASTA and Identity matrix. 
 
a. SCOP hierarchical matching 
 

 frequency at different level 

Method class fold super family family 

BLAST 71 4 5 20 

SMK 55 11 5 29 

de Brevern 58 4 11 27 

2-level SOM 73 6 14 7 

Table C. hierarchical matching results. 
 

The de Brevern work has defined the structural alphabet system, we transformed 
the proteins of all-alpha family from SCOP database into their own alphabet and run 
the experiment of verification described in the section B. we started to compare the 
different of these two alphabet systems. There are 16 structural alphabets under HPM 
methods and we saved the transformed sequences in our databases. Also, we saved  
sequences of 2-level SOM and Amino Acids 
 
    The results revealed (See Table C.) that our SUM-K’s alphabets with FASTA 
and IDENTITY matrix can catch more SCOP family hierarchical than the others 
while the identity of sequence lower than 30 percents. Then, the performance of 
2-level SOM approach couldn’t catch the SCOP hierarchical well. 

The BLAST and BLOSUM 62 matrix can catch the SCOP hierarchical better 
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than 2-level SOM alphabets. The de Brevern universal structural alphabet with 
FASTA and IDENTITY search perform better than BLAST homologous search with 
Amino Acids sequences. However, the overview of SCOP hierarchical can’t match 
well, there are still many mismatch in our experiments. It may be the SCOP databases 
may contain the other information like functional and sequential information besides 
the structural information. Therefore, we used the RMSD measurement to recognize 
the ability of structural presentation of our structural alphabet and other three 
alphabets. 
 
b. RMSD analysis of different Structural Alphabets 
 

 
method 

 

Mean 
(RMSD) 

sd 
(RMSD) 

BLAST 8.953744 4.764597 

SMK 7.290972 3.934283 

de Brevern 8.076746 4.819178 

2-level SOM 10.38624 5.217078 
Table D. hierarchical matching results. 

 
          We used the RMSD measurement to comparing the similarity of the best 
subject and the query protein structures. According to this tables, our structural 
alphabet can represent the protein structure well than the other structural alphabets 
and the deviation of RMSD was smaller than the other three alphabets. In this 
experiment, we can conclude that our structural alphabet is better than the other three 
alphabets and we have found the protein building blocks of all-alpha family through 
this experiment. 
 
C.  Visualization of SUM-K results 
 
     After serial verification experiments, we can declare we have found better 
structural alphabet than the other structural alphabet system. 
 
     We also used the Rasmol to showing the structural building blocks and the 
Swiss PDB to do super position with 30 protein fragments in the same clusters. These 
results represented the characteristics of protein fragments and were shown as Table 
E and F. 
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Table E. Visualize the wire frame of each clusters (super position) 
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Table F. Visualizing the backbone of each clusters. 
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CHAPTER 5: APPLICATION 

A. Valued-Add on the Protein Data Base and Service on the Web 
 
     We provide the service of protein database and our mining tool on the web.  
(see Fig 30.) 

 
Fig 30. Main page of our SUM-K web service 

   You can query the protein database from our own site and we also provide some 
visualization tools. The following tables are the service we provide and demonstrate 
the interface for mining the protein databases.  

  

Fig 31.Main page of protein DB and KB Fig 32.Query protein from local database 

  
Fig 33.visualization Fig 34.Data mining mode 
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Fig 35. Configuration of the SUMK parameters Fig 36. The clustering result and get the 

information of structural alphabet 

  
Fig 37.Use the rasmol from result of 
SUMK 

Fig 38.Demonstrate the SOM clustering result of 

SUMK 

 
Fig 39. Demonstrate the SOM k means verification result 

 
   You could enter the normal query page (see Fig 31) for searching the basic protein 
description and get the structure information from the web based platform. After 
querying a protein, you could click the hyperlink of PDB ID to see the visualization of 
protein structure. (Fig 32, Fig 33). 
 
   Additionally, our web site provides the mining process (SUM-K approach) for 
user to study the protein structural information. (Fig 34.) You could input your 
proteins in specific format to query the protein you want to do data mining analysis. 
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After you choose the proteins you want to training, you’ll enter the page that contains 
configuration of SUMK approach for protein. (Fig 35.). After you input the 
parameters, the server will start to run analysis of the protein data. 
 
    Then, you will get the unique serial number that you can enter protein structural 
analysis platform and do four kinds of analyses. They are: 
     1.  Show all results of SUM-K 
     2.  Show the SOM and k-means results of SUM-K 
     3.  Show the SOM and MST clustering result of SUM-K 
     4.  Labeling the structure with SUM-K result 
 
  You can get the complete information of SUM-K from the first service (Fig 36). 
Both the information of protein sequences and the labeling information of Rasmol 
scripts you’ll get from the web site. While you got this information, you can enter the 
fourth service and label the structure according to our structural alphabet. (Fig 37). 
 
  In order to see the verification of your clustering results, you can use the second 
service to read information of k-means clustering results and cluster verification of 
SOM maps. (Fig 38) 
 
  Besides, you can see the result of number of clusters and decide the number of gray 
level threshold through the third service. It can help you to decide the flexibility of 
cutting the MST trees and get better result. (Fig 39) 
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CHAPTER 6: FUTURE WORKS 
 

With SUM-K, we have set up our structural alphabet representation system 
from the all-alpha family in SCOP database. We also proved that our alphabet system 
is meaningful through the serial experiments. The SUM-K approach can catch the 
proper size of structural alphabets. We will run SUM-K approach with non-redundant 
protein chains and find the universal structural alphabets. Besides, we will learn the 
profile of structural alphabets and amino acid sequences with Bayesian or HMM 
model and build the model for structural prediction. We will maintain the protein data 
base and do the structural research with our universal structural alphabet. 
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