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Abstarct

The purpose of this thesis 1S providing ansexample of constructing our protein database and
developing the combinatorial data.mining.approach’to construct our protein knowledge
base. In this thesis, the combinaterial approach (SUM-K) found the basic building blocks
of protein structure and defined:the structure alphabet=(SA). The structure alphabet can
represent the structural information. of protein-and transform the original sequences into
sequences of structure alphabet with-near-neighborhood assignments. The transformed
sequences can be measured the similarity of protein structures with 1D alignment tools and
fast found high structural similarity one. We took the proteins of SCOP database and do
the serial experiment. The results have shown that our combinatorial approach (SUM-K)
can define the more proper structure alphabet system than the others. Finally, the
transformed sequences of proteins have been saved into our protein knowledge base.
Besides, the web-based analytical interface have been set up and provided users to analyze
the proteins they interest 1n.
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INTRODUCTION
A. MOTIVATION:

As time goes by, many protein databases have been set up, and informatics
technology has well developed. We can take more advantages of informatics
technology for proteomic research. Among many recent important issues on
porteomics is prediction of functionality and structures of proteins. Although there is
much valuable information about proteins, the information has yet to be intergrated
well for realizing protein properties. Proteomic tools cannot use various types of
information effectively to analyze proteins, and users cannot interpret the analysis

results easily.

Integrating different proteomic tools is crucial. It is especially important
to provide biologists with user-friendly visualization tools and evaluation methods
when dealing with an enormous amount of data stored in various databases. Thus, one
primary objective of the thesis is to develop an integrated visualization and analysis

tool for proteomic studies.

Various genome sequencing projects have been producing numerous
linear amino acid sequences; however, complete undérstanding of the biological roles
played by these proteins requires knowleédge of their structures and functions [1].
Despite that experimental structure determination methods provide reasonable
structure information regarding subsets of proteins, computational methods are still
required to provide valuable information for a large fraction of proteins whose
statures may not be experimentally determined. Even though the primary sequence
implies the whole information guiding the protein folding, yet the performance of
predicting the 3D-structure directly from the sequence is still limited. The complexity
and the number of physicochemical, kinetic and dynamic parameters involved in
protein folding prohibit an efficient 3D-structure prediction without first knowing .
the 3D-structures of closely related proteins [2]. Some ab initio methods do not
directly use 3D-structures, but their applications are often limited to small proteins
[3].

The search for structural similarity among proteins can provide
valuable insights into their functional mechanisms and their functional relationships.
Though the protein 1D sequence contains the information of protein folding, the
performance of predicting the 3Dstructure directly from the sequence is still limited.
As the increase of available protein structures, we can now conduct more precise and

thorough studies of protein structures. Among many is the design of protein structural



alphabet that can characterize protein local structures.

Additionally, All the predictions are highly dependent on the definitions
of periodic structures, but unfortunately the structure description is incomplete. As the
increase of available protein structures, it allows more precise and thorough studies of
protein structures. Various more complex structural alphabets have been developed by
taking into account the heterogeneity of backbone protein structures through sets of
small protein fragments frequently observed in different protein structure databases
[2][9]. The alphabet size can vary from several to around 100. However, the proper
alphabet size could improve the precision of protein structural prediction and the most
critical problem is how should we determine the size of structural alphabets that we
don’t exactly know. This problem is also the common critical problem for any
clustering algorithms and there are many approach to determine the size of clusters. In
my thesis, we propose a combinatorial approach (SUM-K) to identifying structural
alphabet that can characterize protein local structures. Instead of applying
cross-validation [14] or shrinking procedures [16] to refine the clusters directly, we
use self-organizing maps as a visualization' tool to determine the size of structural
alphabet. Given the alphabet size; ' we later apply the k-means algorithm [17] to group
protein fragments into clusters that correspond to a structural alphabet. The analysis
of structural similarities between proteins not only provides significant insight into
functional mechanisms and bielogical felationships, but also offers the basis for
protein fold classification. An expressive structural alphabet can allow us to quantify
the similarities among proteins encoded in appropriate letters. It also enables us to
work with a primary representation of 3D structures, simply using standard 1D amino
acid sequence alignment methods. To demonstrate the performance of our new
method, we tested it on the all-a proteins in SCOP. The experimental results show that
using our structural alphabet rather than the standard amino acid letters can
outperform BLAST in finding the best hit for a protein query. This suggests that our
structural alphabet can successfully reflect protein structural characteristics, which are
implied in protein fragments. Besides, in order to make a consistent and fair
comparison, we also compared our alphabet with others that are also developed by the
SOM, but in a different design methodology [9][19]. Our structural alphabet shows

competitive performance in protein matching.

B. Purpose and goal

The purpose of this thesis is demonstrating an example of designing a

data-mining tool and establishing a protein knowledge base from protein database.



The combinatorial approach, named SUM-K has been designed in this thesis. Besides,
the structural alphabet system has been set up with SUM-K and all-alpha family of
SCOP database. Beside, We do serial experiment of verification and the results proved
that our alphabet system can reflect more structural information than other alphabet

system.



CHAPTER 2: RELATED WORK

There are many protein databases, like CATH, Pfam, and SCOP databases.
They provide various kinds of information for proteomic study. In these databases,
Protein was classified into different groups according to their property. PDB is most

famous databases, which provide completely protein information for, research

purpose.

The number of protein structures and sequences, which have been
determined, grow rapidly. However, the number of protein structure isn’t large enough
statistically to build the model for prediction and the structural information can
represent the functionality of protein. The efficient methodology of prediction from
protein sequences and structures become important issues. The determination of the
similarity of protein provides valuable information about the structural, functional and
sequential information of proteins. This information can lead to the further
characterize the functionality and structure® of the protein. Though the number of
protein isn’t large enough statistically and, we.can’t discover the statistical significant
relationship of the global structure and sequence, we can study the relationship of
local structure and sequence. The structural alphabet is one type of local structures
and sequences study. Each structural alphabetteépresents the local structure of proteins.

The number of building blocks is large enough in statistics.

Early analysis of protein structures has shown the importance of
repetitive secondary structures, i.e. a-helix and B-sheet. With variable coils, they
constituted a basic standard 3-letter alphabet, and this has led to early secondary
structure prediction algorithms, e.g. GOR [4], and more recent ones that apply neural
networks and homology sequences [5-8] with prediction accuracy approaching 80%.
Unger et al. [10] and Schuchhardt et al. [11] used k-means method and
self-organizing maps respectively to identify the most common folds, but the large
number of clusters (about 100) is not appropriate for prediction. Rooman et al. found
16 recurrent folding motifs, ranging from 4 to 7 residues and categorized into four
classes corresponding to a-helix, B-strand, turn and coil [12]. By applying
autoassociative neural networks, Fetrow et al. defined six clusters representing
supersecondary structures that subsume the classic secondary structures [13]. Bystroff
and Baker produced similar short folds of different lengths and grouped them into 13
clusters for prediction [14]. Taking into account the Markovian dependence,

Camproux et al. developed an HMM approach to lean the geometry of the structural



alphabet letters and the local rules for assembly process [15].

Structural Prediction
Function Prediction

/ Structural Prediction

Structural
DataBase
Structural Motif
clusterin Database

Structural description

Discover or compaye

Patterns ‘

Fig 1. Framework of studying structure

The framework of studying protein structural was shown as Figl. The
structural description is determined through data mining algorithms and the original
sequences will be transformed to those of structural description. The regular pattern or
signature will discovered through alignment tools and we could study the relationship
of the regular structural pattern and the original sequences. Then, The model of
sequence and structures is build by algorithms of prediction. With building model of

prediction, we can predict the protein structures from sequences.



CHAPTER 3: METHODS AND MATERIALS

A. Overview

1. Source files( protein)

v 4

2.Local Data Bases

6. Solving Problems with mining
v 4 tool

3. Data Preprocessing and warehousing P

v 1

5. Feature Selection

v 1

4. Feature extraction <
|

knowledge

Fig.2 the overview of our proteomic.knowledge base research

The Fig.2 show the whole data mining process of constructing the knowledge
base. In this thesis, the proteini information was gathered from Protein Data Bank
(PDB) and saved them into local databases:"With data preprocessing methods, I
preceded the protein structural information and translated them into our features, like
phi, psi, and omega. Besides, the properties of amino acids were collected in our
database and joint with our protein database. After preparing these data, we designed
the data mining tool to mining the databases with feature selection strategy to
construct the protein knowledge.

After preparing protein structural database, we began to design the
data-mining tool and setup our own knowledge base of proteomic research. The Fig.3
shows the overview of our methods for constructing the knowledge base. Some
proteomic researches use the same framework to find the description of protein to
setup their own knowledge base.

In my thesis, I demonstrated the one data mining tools and its purpose was
help researchers to discover the well-represented description of protein structure,
sequence, and functionality which can simplify the protein structural and represent the
protein structure as different blocks instead of using the three elements, (helices, loop,

and sheet) to describe the protein structure. We can compare the description and find



the conserved pattern of transformed-sequences from different proteins structure.
More detailed methodology will be shown in the section B to C.

Feature selection Mining extract
Algorithms
Description of
Structural P
features
DataBase
ining
comparison
. Basic building
Prediction
. blocks
Docking
Comparison
save
Basic building
Blocks Database

Fig.3 The detailed framework of our data mining flow

After showing the flow of our constructing our knowledge base, we begin to

discuss detailed methodology in the following sections.

B. Data Preprocessing

Firstly, we got the raw data from the Protein Data Bank, which is the well-known
database. We downloaded them on our local site and parsed them into our own
database. The files of Protein Data Bank have its own format (see PDB guide 2.1).
According to the guide of protein data bank format, I build the EER model for this

Protein Data Bank. I roughly select some title from the protein data bank.

I used the PERL program to process these data and saved them into the
MYSQL database server. Additionally, the Fig. 3. shows the EER model of our

proteomic database. After constructing such the database, we also use some data



mining technique to extend these EER model.

Fig.4 the EER model of our local proteomic database.
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In our local database, we also provided some basic query(see Fig. 4.), the
web site has provided the keyword query, sequential PDB ID query and PDB ID
query for searching the interesting protein. The interface of our database also provided
some visualization service (see Fig. 5.) are provide by CHIME plug-in tools. The
interfaces also provided some scripts icon to help user realize the property of protein
structure. Additionally, it also provided downloading service that you can download
the .atom file or the .pdb file from our web site.

Moreover, we integrated the Database, Knowledge Base, and mining
tools for my research purpose. The integrating the Knowledge Base, mining tools and
Database will demonstrate in the Chapter 5.

After preparing the database, we calculated the dihedral angle from the
atomic coordinates of protein structure and also collected the spatial information and
property of 20 Amino Acids. We started designing other tools and setting up our own
databases and knowledge base with these protein information.



Fig. 4 the interface of our proteomic database.
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Fig. 5 the visualizing interface-of our proteomic database.
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With this web-based platform, we can study and practice the large protein database
management. Also, we can also provide the protein structure researchers a web based
platform.

C. Proposed combinatorial approach : SUM-K



a. Framework of SUM-K
We begin to designing the powerful mining tool to discovering the

knowledge from our database and constructing our own Knowledge Base to help

researchers realizing the database.

The workflow of SUM-K system are shown on Fig. 1.

a.Backbone Transformation into
Dihedral Angles

A 4

b.Protein Fragment Vectors Extraction
as Input to SOM, i.e.

[l//h? s ¢i7| s l//ifl ’ ¢i > (//i s ¢i+l s (//i+l s ¢i+7 ]

A 4

¢.Train SOM on Protein Fragment
Vectors

A 4

d.Visualizing trained SOM with
U-Matrix in Grey Levels

e.Build Minimum Spanning Tree from
U-matrix

\ 4

f.Partition Minimum Spanning Tree
into Disconnected Subtrees

A 4

g.Use number of subtrees as K and
Run K-mean Algorithm on Input

A 4

h.Define Structural Alphabet based on
K-means Clusters

A 4

i. Transform Proteins into Structural
Alphabet

Fig. 6.
We designed the SUM-K (SOM, U-matrix, MST, and K-means algorithm)

10



approach based on the Self Organizing Maps and its own visualization methods to
discovering the whole new description of protein structure. We can do some
value-added visualization on existing database, like SCOP database, and finding the

building blocks through the non-redundant proteins with SUM-K.

a. Backbone Transformation into Dihedral Angles

Fig. 7 the backbone transformation into Dihedral Angles.
The calculation of dihedral angles is shown as. follows: (shown as Fig. 7)

1) The @ angle is the angle between the plane determined by N, Ca, and C of the i
th Amino Acids and the one determined-by; N of i+1 th Amino Acids, Ca, and N
of i th Amino Acids.

2) The ¥ angle is the angle between‘the plane determined by C, Ca, and N of the i
th Amino Acids and the one determined by C of i+1 th Amino Acids, Ca, and N
of i th Amino Acids.

There are 2 dihedral angles between 2 amino acids. The SOM algorithm clusters
the amino acids of the protein according to these three features. In this Thesis, we
used the phi and psi angle as our training feature for setting up protein structural
alphabet systems and determined the building blocks with SUMK algorithm.

b. Protein Fragment Vectors Extraction as Input to SOM.
With the fixed window size of five residues, we slid the window along each all-a

protein in SCOP, advancing one position in the sequence for each fragment, and

collected a set of overlapped 5-residue fragments. As the relation between two

successive carbons, C, and C, , located at the ith and (i+1)th positions, can be

11



defined by the dihedral angles y; of C, and ¢is1 of C, , a fragment of L residues

can then be defined as a vector of 2(L-1) elements. Thus, in our study, each protein

fragment, associated with a-carbons C, , C,, C , C,~and C, , is

iy i

represented by a vector of eight dihedral angles, 1e.
W0 @ W@V Pt Wi »Pisy |- fOr sliding window size =5. (Shown as following
figure.) Based on this representation, we totally gathered 1,143,072 fragment vectors

from the all-alpha family in SCOP database. The features are shown as Fig 9.

FULLY EXTENDED POLYFEPTIDE CHAIN

Fig 8. Showing the dihedral angles we got from the protein structural fragment
(window:size = 5)

c.Train SOM on Protein Fragment Vectors

Our tool was based on the Kohonen’s self-organizing maps and use the
som-tool-pak 3.1 for our research purpose. The kohonen’s self-organizing map was
the unsupervised clustering and it can setup 2D map for representing the relationship
of each clusters.

The SOM algorithms are shown as follow:

1. Normalize the input data and setup the 2D map with N * M size.

2. Randomly initializing the values of each node on the map.

3. Enter the first training step, (learning steps). The learning rate in this step is
higher than that in the second learning step and the purpose of this step is let
each unit of the map memorizing the feature of input vector. Through these

steps, each output node will be updated by the neighborhood function.

12



Output node

The detailed calculation is shown below:

N-1
Di =2 (X(®~M; (1)’ (1
i=0
We will calculate the Euclidean distance between each input vector and the

output map unit and get the nearest map unit C as winner unit.

Arg (Min(D,)) = C 2)

The input vector the best match node with learning rate will update the winner
unit and the neighborhood of winner node will be update by the neighborhood
function (shown as formula (3)). After 1000 times later, SOM will converge.
The neighborhood function decline through the times and the region of update
will be declined also and framework of SOM is shown as Fig 10.

M; (t+1) = M;(t) + 75 (O x (X ()7 M; (1)) === 3)

Where 77, = a(t) x exp(-| R =R /2¢ > ®) ——(4)

The purpose of first training step.maximizes the distance among the centers of
cluster
4. The purpose of the next training state is tuning and minimizes the distance of

input vectors and the center of cluster.

End of the algorithms through the first and second training state.

Fig 10. the overview of the SOM clustering algorithms.

13



There are 7 parameters was considered to affect the SOM recognize results.,
They are map size, first learning rate, second learning rate, first training steps,
second training steps, update topology, and update function.

According to the SOM algorithms, It shows that SOM usually consists
of a regular 2D grid of so-called map units, each of which is described by a reference
vector M= [Mj1, Miz, Mia,..., Mig], where d is the input vector dimension, e.g., d =8, in
our case of fragment vectors. The map units are usually arranged in a rectangular or
hexagonal configuration. The number of units affects the generalization capabilities of
the SOM, and thus is often specified by the researcher/user. It can vary from a few
dozen to several thousands. An SOM is a mapping from the ensemble of input data
vectors (Xi=[Xi1, Xi2, Xi3,- .., Xid] € Rd) to a 2D array of map units. During training, data
points near each other in input space are mapped onto nearby map units to preserve

the topology of the input space [19][20]. The SOM is trained iteratively.

d. Visualizing trained SOM with U-Matrix in Grey Levels

I-Matrix with hexable npdate fonction

Fig 11. The calculation of U-matrix (take 4X4 SOM map for example)

The Unified Matrix (U-matrix) usually used in SOM visualizing researches, and
it can reflect the clustering result of SOM. U-matrix is one type of distance matrix that
can show the difference between two map units on the SOM maps. Fig 11. is shown
the example of calculation the U-matrix on the 4 X 4 SOM maps with hex able
topology type. Take the point A (2,2) for example, there are six neighbor map units
near the point A was (1,1), (1,2), (2,1), (2,3), (3,1),and (3,2). Each node on the SOM
map has six neighbor nodes except the marginal map units and we connected the
target point with its neighbor points to constructing connected components for
Minimal Spanning Tree. Finally, we constructed the U-matrix which each map units

connected with their neighbor map units (shown as Fig 11.) and each connection has

14



its distances between two nodes. Then, the connected components was produced from
U-matrix. (See Fig 12.)

O-Matrix with hexable update function

1,1 1,2

Figure 12. The connected map units of U-matrix
In order to showing the clustering results, we also normalized the distance of each
two neighbor map units into 256 gray levels. The results were shown below and there

are apparently six clusters on the SOM maps:

e preferred to recognize the number
eyes and so we decided to use the MST

> number of clusters.

of clusters with computer instead ‘of human

algorithms with certain gray level de

Figure 13. the U-matrix visualization with the 0-255 gray level

f. Partition Minimum Spanning Tree into Disconnected Sub trees

After the above steps, the connected units of SOM maps generated. We used

15



them as input of Kruskal’s MST algorithm. The MST algorithms will generate the
shortest path of connected units of SOM maps. The results were shown as the

following Figure.

L s, /T
%T

Figure 14. Formation of'Minimal Spanning Tree.

The Fig 14. is shown the completely MST tree of SOM map units. However,
the number of clusters should be generated. We defined the threshold value of gray
level, which is 47 and cutting the MST tieeinto several sub trees. After cutting the
MST trees, the result of the following can be generated (see Fig 15.). Still, there are
still some small sub trees, which are not big enough to form a cluster on the SOM
map.

Figure 15. Partition the MST tree into sub trees with gray level 47

16



To deleting these clusters, the sub trees which size are smaller than (map size)
~1/4 would be excluded and the final MST pruning results was generated (see Fig 16).
The following figure was filtered MST pruning results.

Fig 16. Cleaning the MST_tree with. Tree size < (map size) ~1/4

With the FIND SET Algorithm, the parent of each sub trees and the number of sub
trees can be recognized. Then, The number of sub trees means the number of clusters
on the SOM map and the number of ¢lustet-is-generated from this step. With the
ability of visualization on the SOM with U-matrix and MST (SUM), the number of
clusters preparing for K-means was produced. (See Fig 17)

Fig 17. Determine the number of clusters on SOM map

17



g. Use number of sub trees as K and Run K-mean Algorithm on Input Vectors

Then, the map size expanded from 10X10 to 260 X 260 with SUM till the most
frequent number of clusters appeared. The frequent number of cluster is K. We finally
take this K as the K parameter of the K-means algorithm. After recognizing the
frequent number of cluster, we run the K-means Algorithms with K on input vectors.
Because the different random seeds number on the k-means lead different center of
clusters, we started to maximize the center of clusters and minimize distance of the
input vector and the center of clusters and found the best cluster center as our final

clusters center.
h. Define Structural Alphabet based on K-means Clusters

We will assign an alphabet to each k-means centers with finding the best
cluster center. Then, we reassigned the input vector to the closest centers and give
them a alphabet. The formula is shown at h1.

Arg (Min(D,)) = C ~--------- S — hi

Where Di = Euclidean distance between.each center of cluster and input
vectors.

Through these steps, we can transform raw-amino acids sequence to structural
alphabet.

i. Transform Proteins into Structural Alphabet

SIVTKSIVNADAEARYLSPGELDRIKSFVSSGEKRLRIAQILTDNRERIV
aaaaaaaaaaaqqgppphhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
60 70 80 90 100
--------- R el EECEEEE R B PP EE PR
KQAGDQLFQKRPDVVSPGGNAYGQEMTATCLRDLDYYLRLITYGIVAGDV
aaaaaaaaqqaaaqgkghkgwkhhaaaaaaaaaaaaaaaaaaaaaaqgkh
110 120 130 140 150
--------- R el EECEEEE R B PP EE PR
TPIEEIGIVGVREMYKSLGTPIDAVAAGVSAMKNVASS ILSAEDAAEAGA
aaaaaaqgkhaaaaaaaggkhhaaaaaaaaaaaaaaaggkhhaaaaaaaa

160
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YFDYVAGALA

daadaaaaaq

Fig 18.transformation the protein raw sequence into our own structural
alphabets

After reassigning each amino acids to the center of k-means clusters, the
transformed sequences for each protein domain from all-alpha family of SCOP
databases was produced. With these sequences we could do the comparative study of
different alphabet system with protein structures alignment through 1D structural
alphabet sequences.
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CHAPTER 4: RESULTS AND DISCUSSION

We started to verify the validity of our structural alphabets and tested the
parameters of SOM algorithms. Besides, we made discussion of the structural

alphabets results and demonstrated the results of structural alphabets.

A. Experiments Results and Analysis

In order to finding the optimal combination of each parameters on Self
Organizing Maps, we designed the experiment condition for testing the parameters of

SOM’s parameters.

a. Test the parameters of SOM algorithm

We designed 25 combinations of 6 parameters (Table A.) and tested the SOM
from map size 10X10 to 100X100. The complete experiment results are shown at
Appendix A.

We used the about 230 proteins astraining. data sets and tested our experiments.

Experiment id  Update type 1% learning rate 2% learning rate= 1% steps 2™ steps Update funct.

1 hexa 0.09 0.01 5000 15000 bubble
2 hexa 0.09 0.01 5000 15000 gaussian
3 hexa 0.09 0.01 5000 25000 bubble
4 hexa 0.09 0.01 5000 25000 gaussian
5 hexa 0.08 0.01 5000 15000 bubble
6 hexa 0.08 0.01 5000 15000 gaussian
7 hexa 0.08 0.01 2000 25000 gaussian
8 hexa 0.08 0.01 2000 25000 bubble
9 hexa 0.06 0.005 2000 15000 gaussian
10 hexa 0.06 0.005 2000 15000 bubble
11 hexa 0.06 0.005 2000 25000 bubble
12 hexa 0.06 0.005 2000 25000 gaussian
13 hexa 0.05 0.005 2000 15000 gaussian
14 hexa 0.05 0.005 2000 15000 bubble
15 hexa 0.05 0.005 3000 45000 bubble
16 hexa 0.05 0.005 3000 45000 gaussian
17 hexa 0.07 0.005 5000 15000 gaussian
18 hexa 0.07 0.005 5000 15000 bubble
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Experiment id  Update type 1*learning rate 2™ learning rate 1% steps 2™ steps Update funct.

19 hexa 0.07 0.005 2000 15000 bubble
20 hexa 0.07 0.005 5000 25000 gaussian
21 hexa 0.075 0.005 5000 15000 gaussian
22 hexa 0.08 0.005 5000 15000 bubble
23 hexa 0.075 0.005 5000 25000 gaussian
24 hexa 0.075 0.005 5000 25000 bubble
25 hexa 0.05 0.02 1000 10000 bubble

Table A. Test the parameters of SOM algorithms and the 1°** radius of update =10
and the 2" radius of update = 3

a.l. Condition 1 and 2: comparing the different update function.

Condition 1, map size = 50 X 50

e o i WG R v B s o e v rwr——

T em——

-

o

Fa d
Condition 1, map size = 100 X 100 |Condition 2, map size = 100 X 100

Fig 19. The U-matrix result of condition 1 and 2
The gaussian update function can’t get exactly boundary that we can’t use the

21



MST algorithm to recognize the number of clusters. Instead of gaussain update
function, the bubble update function can get the very clearly boundary between two
clusters.(see Fig ).

a.2. Condition 1 and 3 ; condition 2 and 4 : comparing the 2" learning steps

Condition 3, map size =50 X 50

R D O SR e e e S0 . p ———

Condition 1, map size = 100 X

D e T i ]

Condition 2, map size = 50 X 50 Condition 4, map size =50 X 50
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Condition 2, map size = 100 X 100

Condition 4, map size = 100 X 100

Fig 20. The U-matrix result of condition 2 & 4; 1 & 3
The more 2™ learning steps cause the bigger size of cluster, and the results are

shown as Fig 20. The clusters in Condition 4 are more aggregated than those in

Condition 2. It can be concluded that the 2™ learning steps strongly minimize the

distance between the input vector and each cluster centers. (See Fig 20.)

a.3. Condition 18 and 19: comparing the 2™ learning steps

Condition 18, map size =10 X 10

Condition 19

map size =10 X 10

- [ers

i :

a N lesas g

g wpme A
.

PR 5

Condition 18, map size =50 X 50

Condition 19, map size =50 X 50
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Condition 18, map size = 100 X 100

Condition 19, map size = 100 X 100

Fig 21. The U-matrix results of condition 18 & 19

Fig 21. is shown that the more 1 learning steps lead the map unit learning more

clustering centers. These centers are very closely to other neighbor nodes. In the other

words, running more first learning steps makes more map units learn specific center

of cluster and the boundary of each cluster centers become clearer.
a.4. Condition 10 and 19: comparing the 1% learning steps

i B e < e B e 6]

Condition 10, map size =10 X 10

e e N N N L, e

.....

£. .'.'.:.

Condition 10, map size =50 X 50

Condition 19, map size =50 X 50
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e

Condition 10, map size = 100 X 100 Condition 19, map size = 100 X 100

Fig 22. The U-matrix results of condition 10 and 19
The lower 1* learning rate cause the more exactly boundary. We observed that
Learning rate in Condition 10 is lower than Learning and boundary of maps in
Condition 10 is more clearly than Condition 19. (See Fig 22.)
Based on the above phenomenon, it means that 1¥ learning rate affect the number
of clusters you will determine. Therefore, The more 1% learning rate cause each node
could learn strongly in each step of SOM training. Then, the map becomes unstable

and fuzzier in higher1® learning rate. 13

25



a.5. Condition 22 and 5: comparing the 2" learning rate

Condition 22, map size =10 X 10

R ———

_ |Condition 5, map size = 50 X 50

S0 BB SO00 VWEEE s Cwe (B Bom 0007 e s spepeemns

Condition 22, map size =100 X 100  |Condition 5, map size = 100 X 100

Fig 23. The U-matrix results of condition 22 & 5

The boundary of cluster in Condition 22 is clearer than Condition 5. (See
Fig 23.). We supposed that the lower 2™ learning rate cause each map units learning
slowly and the distance between the input vector and the cluster center can’t be
minimized effectively. In order to improving the boundary of cluster to become more

clearly, the more 2™ learning steps or higher learning rate is proposed.
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a. 6 Condition 15: comparing the effect while map size changed.

Map size: 10 X 10

T T ———

Map size: 30 X 30

Map size: 60 X 60

Map size: 100 X 100
Fig 24. The U-matrix result of different map size in condition 25
Fig 24. is shown the different map sizes: 10X10, 30X30, 60X60, and 100X100.
While increasing the map size, the boundary of clusters is clearer. It is just because
the cluster could find a position and distinguish from the other clusters.

Because the condition 25 is much better than the others, we begun to use the

condition 25 to do our experiment and construct our own structural alphabets with
SUM-K.
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a.7 verify each white region contains only one clusters with k-means.

In order to represent a white region is only one cluster, we use the K means

algorithm to do such verification.

Condition 5 map size = 100X100 K — means where k =5
Fig 25. The U-matrix result of condition2 & 4;1 & 3

Take Condition 5 as an example, thereare five clusters on the map and we use
the k-means algorithm to verify:them. Thé five clusters exactly match the white block

and it can prove that there are five clusters‘on training data sets.

We can conclude from this experimental section that the clustering number can
be generated from the SOM and U-matrix algorithms, each white block could
represent a distinguish cluster. With this observation, we can implement the MST
algorithms and generate the sub trees with threshold of lower gray level. Then, we
selected the threshold of gray level and took this number as the number of clusters to
finding the center of clusters. The SUM, which contains SOM, U-matrix, and MST

was proposed to analyze the number of clusters.

b. Expansion test of SOM maps and get the number of clusters.

We started the SUM-K approach. Firstly, We trained the SOM map with the
all-alpha family data, and did the experiment of expanding the map size of SOM from
10 nodes times 10 nodes to 240 nodes times 240 nodes. While the training steps
finished, we fixed the threshold on gray level = 47 and pruned the connection of MST.
The number of clusters determined by MST was unstable while the map size under
the 80 nodes times 80 nodes (see Fig 26 and point 2). Besides, There is an extremely
different point is 30 X 30 (see Fig 26 and point 1). It shows that there are about 16
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clusters on the map. Then, the next point (60 X 60) declined to 6 clusters. The
different of number of clusters was 10. The chart was revealed that under the 80X80
size of SOM map and the number of clusters performed unstable and we can’t
recognize the number of clusters through these points. However, while the map size is
bigger than 80 X 80, it shows the number of cluster become more stable and they
fixed between 10 and 12. Then, the number of clusters can be generated from SOM
and it was 11. With observing the result of the expanding the SOM map we
determined the number of clusters from the SOM

. 20 ——» 1

3

k 10

£ p=

= 2
O | | | | | | | | | | | | | | | | | | | |
Q N\ Q N\ Q
N S N S N

N S S
N N YV
map size

Fig 26. map size.versus number of clusters

Besides, in order to determining the number of clusters, we drew the graph of
frequency versus the number of clusters.(see Fig 27.). The peak is 11, too. We use the

k =11 for k-means algorithms

Peak (cluster =11)
.4

frenquency

O = D W A~ O
~e—_|
—

1 6 11 16 21

number of cluster

Fig 27. number of cluster versus frequency
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C. using the negative data set for test.

35000
30000 [
25000
20000
15000
10000 |
5000 |

0

Q Q
N ©
& &

number of cluster

map size

Fig 28. map size versus number of clusters (negative data sets)

In order to proving our numbet' of clusters couldn’t be recognized exactly
by data sets produced randomly, ' we produced thé negative data sets that generated
from the original data sets. We added the‘original input vectors randomly between 30
and -30 and generated the negative data set. Though it’s not reasonable to produce
these data, the purpose of this-experimentiSTto proving that the negative data set

couldn’t generate the certain number of cluster by our SUM-K approach.

The result of experiment has shown that while map size is smaller than
60X60 the number of cluster is 1. It means the SOM couldn’t recognize the clusters
and gather all data sets into one clusters. However, while map size is bigger than
60X60, the number of clusters will increase highly and become unstable than the
original data sets produced. It just because that the map size is big enough to cover all
the data sets, the SOM map units can catch one input vectors and these vectors may
be recognize as one cluster. Therefore, our SUM-K is valid and reasonable through

this experiment.
d. With-in cluster and between clusters analysis
After we verified our number of clusters is valid and reasonable, we ran k
means algorithm and found the best center by minimize the distance of within clusters

and maximize the distance of between clusters. We repeated the k-means cluster 250
times and find the best result of clusters center. (See Table B.)
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The table is the best result of centers and we use these centers as our cluster

center. Then, we showed the mean and standard deviation of within clusters and

between clusters. We assigned the number of clusters to alphabets from A to K and

within-cluster

center-to-center

K 43.15+50.13

transformed from the original sequences to the sequences of structural alphabet.

0

mean:sd A B c D E F G H J K

A 186.10+68.07 0 282.3 205.27 216.75 226.93 236.72 399.53 246.5 325.94 197.44 245.81
%) B 192.84+74.97 0 284.59 203.41 202.8 275.08 414.99 169.3 321.03 208.28 264.69
Y
>
s C  173.58%77.59 0 250.31 2516 197.76 383.86 243.02 333.41 188  226.52
]
» D 193.67+69.19 0 23431 252.05 388.9 261.9 323.81 183.77 233.33
[<5]
E E 1504147153 0 302.93 511.04 284.51 343.02 282.19 358.48
[S]
5 F o 143.62+90.84 0 346.14 220.63 346.98 161.11 177.48
(@]
W G 220.52+87.79 0 343.07 276.03 341.22 278.5
2 H 155.02+77.8 0 335.84 136.63 164.87
©
m _ 196.75+97.2 0 358.58 360.95
3 J 88.77+5333 0 86.711
c
£
E
m
[<5]
g
T
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B. Comparing the different SAs and homologous finding tool -FASTA and
BLAST

Transformation of raw sequence to SUMK

structural alphabet system

Print the sequence data in the txt file.

Randomly select the query protein from the

4
»
»

protein structures (seauence identity < 30%o)

run homologous search with BLAST and BLOSUM 62
(for Amino Acids sequences) FASTA and IDENTITY (for Repeat 1000 times

de Brevern, SUMK, and 2 level SOM)

Choose the highest-one of subject-protein-and do

Y

RMSD, hierarchical matching with-query protein

Fig 29. The overall flow of comparative study of different alphabets system

We clustered the raw data with K- means which k parameter of k-means is 11
and gave the 11 alphabets to representing each cluster of k-means. Proteins of the
all-alpha family from SCOP database were clustered according to the features. We
assigned the protein sequences in our own structural alphabet and saved them in our
own database. We used the FASTA algorithm with Identity matrix in our own
structural alphabet systems to prove that our structural alphabet is meaningful and can
distinguish the protein family from SCOP database. Besides, FASTA algorithms and
Identity matrix can determine the similarity of two sequences and it also gave the
most similar subject sequence to the query sequence from our own database.

Running the comparative experiment, Mode Carlo method was used to
verifying our own alphabet is practical. We randomly selected one protein as the
query protein and randomly select 1000 other proteins as the subject proteins from
all-alpha family in SCOP database. In this step, we used the FASTA and Identity
matrix we proposed before to calculate the similarity between query and subject

sequences. Then, we selected the top one and calculated the hits of SCOP database

32



hieratical relationship. There are four types of hits in our experiment. The first type is
hit the most top level-class, the second type is hit the second level -- fold, the third
type is hit the third level —super family, and the fourth type is hit the bottom level —
family of SCOP database. For example, the top one of subject proteins is a.1.1.1 and
the query one is a.1.1.2, the type of hit is super family. The best type of hit is the
fourth type. It’s just because this type completely match the hieratical relationship of
SCOP database. This experiment repeated 500 times, and each time we selected the
top one and determined the type of hits that our own alphabet catches. The overall

flow of experiment was shown as Fig 25.

As for the other structural alphabet system, we tested alphabets of the Amino
Acids, de Brevern, and the 2-level SOM with the same procedure. Thus, the Amino
Acids do the homologous search with the BLAST and BLOSUM 62 matrix while the

other three alphabets do the similarity search with the FASTA and Identity matrix.

a. SCOP hierarchical matching

freguency at different level

Method class fold .+ super family family
BLAST 71 4 5 20
SMK 55 11 5 29
de Brevern 58 4 11 27
2-level SOM 73 6 14 7

Table C. hierarchical matching results.

The de Brevern work has defined the structural alphabet system, we transformed
the proteins of all-alpha family from SCOP database into their own alphabet and run
the experiment of verification described in the section B. we started to compare the
different of these two alphabet systems. There are 16 structural alphabets under HPM
methods and we saved the transformed sequences in our databases. Also, we saved

sequences of 2-level SOM and Amino Acids

The results revealed (See Table C.) that our SUM-K’s alphabets with FASTA
and IDENTITY matrix can catch more SCOP family hierarchical than the others
while the identity of sequence lower than 30 percents. Then, the performance of
2-level SOM approach couldn’t catch the SCOP hierarchical well.

The BLAST and BLOSUM 62 matrix can catch the SCOP hierarchical better
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than 2-level SOM alphabets. The de Brevern universal structural alphabet with
FASTA and IDENTITY search perform better than BLAST homologous search with
Amino Acids sequences. However, the overview of SCOP hierarchical can’t match
well, there are still many mismatch in our experiments. It may be the SCOP databases
may contain the other information like functional and sequential information besides
the structural information. Therefore, we used the RMSD measurement to recognize
the ability of structural presentation of our structural alphabet and other three

alphabets.

b. RMSD analysis of different Structural Alphabets

Mean sd
method (RMSD) (RMSD)
BLAST 8.953744 4.764597

SMK 7.290972 3.934283
de Brevern 8.076746 4.819178
2-level SOM 10:38624 5.217078

Table D.:hierarchical matching results.

We used the RMSD measurement to. comparing the similarity of the best
subject and the query protein structures. According to this tables, our structural
alphabet can represent the protein structure well than the other structural alphabets
and the deviation of RMSD was smaller than the other three alphabets. In this
experiment, we can conclude that our structural alphabet is better than the other three
alphabets and we have found the protein building blocks of all-alpha family through

this experiment.

C. Visualization of SUM-K results

After serial verification experiments, we can declare we have found better

structural alphabet than the other structural alphabet system.

We also used the Rasmol to showing the structural building blocks and the
Swiss PDB to do super position with 30 protein fragments in the same clusters. These
results represented the characteristics of protein fragments and were shown as Table
EandF.
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Table E. Visualize the wire frame of each clusters (super position)

35



Table F. Visualizing the backbone of each clusters.
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CHAPTER 5: APPLICATION

A. Valued-Add on the Protein Data Base and Service on the Web

We provide the service of protein database and our mining tool on the web.
(see Fig 30.)
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Fig 30. Main page,ofour SUM-K web service

You can query the protein database from our own site and we also provide some

visualization tools. The followmg tables are' the serv1ce we provide and demonstrate

the interface for mining the proteln databases ‘
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Fig 32.Query protein from local database
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Fig 33.visualization

Fig 34.Data mining mode
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Fig 35. Configuration of the SUMK parameters |Fig 36. The clustering result and get the

information of structural alphabet

Al
o
ab-a3a00

ERC I h
FA 5 Gapese Fea &

=] Theesbid gleredi{ T 2] lsbciing | 30N | w0

b o gt G2 - - 7
] 580 % e B I | 5 ({0l EOTHETASH TR |

Fig 37.Use the rasmol from result of "Fj_g 38.Demonstrate the SOM clustering result of
SUMK - e " T S

Fig 39. Demonstrate the SOM k means verification result

You could enter the normal query page (see Fig 31) for searching the basic protein
description and get the structure information from the web based platform. After
querying a protein, you could click the hyperlink of PDB ID to see the visualization of
protein structure. (Fig 32, Fig 33).

Additionally, our web site provides the mining process (SUM-K approach) for
user to study the protein structural information. (Fig 34.) You could input your

proteins in specific format to query the protein you want to do data mining analysis.
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After you choose the proteins you want to training, you’ll enter the page that contains
configuration of SUMK approach for protein. (Fig 35.). After you input the

parameters, the server will start to run analysis of the protein data.

Then, you will get the unique serial number that you can enter protein structural
analysis platform and do four kinds of analyses. They are:
1. Show all results of SUM-K
2. Show the SOM and k-means results of SUM-K
3. Show the SOM and MST clustering result of SUM-K
4. Labeling the structure with SUM-K result

You can get the complete information of SUM-K from the first service (Fig 36).
Both the information of protein sequences and the labeling information of Rasmol
scripts you’ll get from the web site. While you got this information, you can enter the

fourth service and label the structure according to our structural alphabet. (Fig 37).

In order to see the verification of yout' clustering results, you can use the second
service to read information of k-means .clustering.results and cluster verification of
SOM maps. (Fig 38)

Besides, you can see the result of numberof clusters and decide the number of gray
level threshold through the third sérvice. It can help you to decide the flexibility of
cutting the MST trees and get better result.’(Fig 39)
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CHAPTER 6: FUTURE WORKS

With SUM-K, we have set up our structural alphabet representation system
from the all-alpha family in SCOP database. We also proved that our alphabet system
is meaningful through the serial experiments. The SUM-K approach can catch the
proper size of structural alphabets. We will run SUM-K approach with non-redundant
protein chains and find the universal structural alphabets. Besides, we will learn the
profile of structural alphabets and amino acid sequences with Bayesian or HMM
model and build the model for structural prediction. We will maintain the protein data

base and do the structural research with our universal structural alphabet.
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