12» r /

F g BN B R WA, @
ok

P

An Efficient Tile-Based'Router with Routing Graph
Reduction

p 2 ;Z EARE B 7

EREFEW EL

iz S Je o pMoE A



FORF T BNERER Y SERE
An Efficient Tile-Based Router with Routing Graph Reduction

T A A i Student : Wen-Bin Chen
R L€ IR Advisor : Dr. Yih-Lang Li
Al R R A
Lo, o2
A Thesis

Submitted to Institute of Computer Science and Engineering
College;of Computer Science
National.Chiao TungUniversity
in partial Fulfillment of the Requirements
for the Degree of

Master

in

Computer and Science
Oct 2005

Hsinchu, Taiwan, Republic of China

PEARY e gL



F ook et B U & 7 AR

£2 0 BEFHE D ERS B

3
|4
pas
(=
S
~ml
-l

SIPLE SRR T AT FR ST
i 5

BOUBHERED R K LR TR GG Aok G A RRER
B B Th o R i 1 PR AT 1 e RS o e & BEUPR ERE T o 2
PRGN EARR BB R BN { P o AT AR R SRR RE o L 0 B
e P APAEEE RS PSR AR T - B R BN R E - ¥ b AP
MBI C 2 FEED S RN PERAZZ P o 5 - I - B Y OB ERE
BPEAGTGER S P ERTROL G R T 2BRIT o 2 2 RCE S =

FEE mIR SR R R AT A b AR R EREBH 2R % A A
APAS S B GRS R Y S A A AR T S R R (kR ¢ 7

FI 1 SRR D R ST o R - B R AT RS RGP 5
BEePdR AR o g TR f?? R Eh s g FoaRg @@ﬁ% TEDERSE FHREFH
o A S SRR S € SRS B A i 4 i e S AL

B R RS



An Efficient Tile-Based Router with Routing Graph Reduction

Student: Wen-Bin Chen Advisor : Dr. Yih-Lang Li

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

As technology advances into the nanometer era, the interconnect optimization for the
delay and noise issues is the dominant factor to the modern IC design. These optimizations
impose the wire sizing and spacing to the interconnections .Gridless router is more applicable
to handle the various design rules than grid router. Therefore, we develop an efficient
tile-based router for the full chip routing in‘this thesis. This work integrates the routing graph
reduction into the two-stage routing flow. The first stage is a general global router, which
estimates the routing resource to-decide a-rough path for the detailed router. According to the
result of global routing, the tile-based router, the second stage, completes the full chip routing
net by net. Routing graph reduction involves the removal of redundant tiles and alignment of
neighboring tiles to reduce the fragment of the tile plane and accelerate the routing speed of
tile-based router. We also propose a segment tree to help the rip-up and reroute procedure
work more flexibly and efficiently. Segment tree maintains the Steiner tree of multi-terminal
net segment by segment so that the rip-up and reroute procedure just rip-up and reroute the
violated segment instead of the entire net. Experiment results show the expeditious routing

speed and better routing solution than multilevel framework.



Acknowledgements

I am deeply grateful to my advisor, Dr. Yih-Lang Li for his continuous guidance, support,
and ardent discussion throughout this research. His valuable suggestions help me to complete
the thesis. Also | express my sincere appreciation to all classmates in my laboratory for their

encouragement and help.

This thesis is dedicated to my parents and my families for their patience, love,

encouragement, and long expectation.



Contents

ADSIFACE (IN CRINESE) ...ttt b e be e e e sbeeneeaneens
ADSLIACt (IN ENGHISN) .. nre e

ACKNOWIEAGEMENTS. ...ttt sttt s bt e et st e e b eneas

LISE OF FIQUIES ..ttt et e e beeaeesa e teeteeneesneesneaneenneas
LISE OF TaDIES. ...ttt ettt e esbe et st e beeae s

L INEFOAUCTION ettt ettt e e e e e e e e ettt e e e e e e e ee e ereeeeeeeaaan

1.1 GriAlESS ROULET.....eciiiiieiiieie et siee sttt sttt e s e steenaesneesteenseaneenneas
1.2 Routing Graph REAUCHION. .......ccceiiiiiiic e

2 Preliminaries. ...t e e

2.1  Tile-Based ROULET......... . ceeeciuresiresiintan s antbeesseesseeesseesseesseesseessessseesssesseessessseenns
2.2 ROULING Dabase. .. ... .coe o i e i e o e e e e e

3 ROULING FIOW. ... it ettt
3.1 General-Puropose Routing with Routing Graph Reduction............cccccceevvenieenene.
3.2 RIP-UP AN REIOULE ....u ittt

4 SBOMENT TR .. ettt ettt eshe e ebe e ek et et e e sae e e beeann e et e e enn e
4.1 Data SIIUCKTUIE. .. ... ettt nnne e
4.2 TrEE OPBIALION. .. ..ttt it ittt e et e e e e et e e e e e

4.2.1 NOTE INSEITION.....eitiiiiiiieiieie bbb bbb s

4.2.2 NOUE DEIBLION. ... e e e e
4.2.3 P-N00E FOUING ... euin ittt e e e e et e e e e e e e e

5 EXPerimental RESUILS.........coiiiiiicie ettt sbe e

B CONCIUSIONS. ..o et e e e e e e e ettt e e e e e e e e et eeeeeeeeee e eeeaeeeeeaaaas

BIBHOGIapNY .. ..o e

.5

11
13
17



List of Figures

1.1
1.2
1.3
2.1
2.2
2.3
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1

ROULING MOEIS. ... 3
TilE-DASEA GrAPN.....cciveeie et nre s 4
ROULING Graph FEAUCTION. ........oiiiiiee e 6
(000 ) (0T =D ] o] =TSPTSRO 8
THlE PrOPAGATION. ... ettt bbb 9
QUALIEE EXAMPIE.....ciieee et et raere s 10
The FIOWCHhart OF FOULING ....cc.oiviiiiiieiee s 12
The space tile density eXamPpPle.........cooiiiiiiiiece e 14
Recycling the redundant tile. ... 16
The rip-up and reroute algorithm. ... 18
AN EXAMPIE OF S-TrBE......oiiii e B me ettt bbb 20
NOAE INSEItION CASE(L)...ve.veeestiie e memmsrns s e s aEeae e reesreeseesseesseessesseesseessesseesseesseansesseessenns 22
NOUE INSEITION CASE(2) ... skt sres berrssunsaiirass hnshacdmneceseesessessessessesseeseessessessessessessesseessennas 23
An incomplete NEt and S-TrEE.......ooociiiiiiiee et hit et e e sre e sraenas 24
NOJE INSEITION CASE(3) .. ribiie e s e e idhi it ettt ettt 25
[N oTo L=l L= Loy T g ors =T () T SR USPR 27
The net of Node deletion CASE(2)........oviiiiiiiiiiiieee s 29
The splitting process of node deletion CaSE(2)........ccvevveiieieereiieie e 30
The result of CIFCUIT S5378... ... e e e e e e e e 35



List of Tables

2.1
5.1
5.2
5.3
5.4

ODjJeCt aSSIGNMENT FUIE........oiiiiiieiee e 10
The DENChMArK CIFCUITS........oiviiiiiiicce e e 32
ROULING reSUILS COMPAITSON. .. .cuiiiieiieiie ittt b et sre e e 33
Apply Redundant Tiles Removal...........ccooviiiiiiii i e e e 34

The operation time spent on S-tree and qUAd-tIEE..........oovveeiieriiie e 34

VI



Chapter 1

Introduction

The current IC design trend is toward integrating system on a chip (SoC). Such a
SoC solution is highly complicated and time-consuming. Time-to-market pressure
forces IC design houses have to reuse intellectual properties (IP) to fabricate a new
chip. But these IPs may be designed with the different width and spacing individually.
Therefore, the interconnection of the variable wire width and variable spacing
between these IPs becomes the critical issue of the design. However, the traditional
grid router is not suitable for routing the complex SoC design. Because the different
design rules evolve the greatly: dense grids-that would induce the large amount of
memory space and searching time,as shown"in Figure 1-1 (b). The advantage of
gridless router is that it deals with the wire width and spacing rules and makes routing

in the SoC design more efficient.



1.1 Gridless Router

There are two approaches of gridless routers [5-15]. One uses the connection
graph-based algorithms [5]. This approach according to the design rules expands the
boundaries of each obstacle with a specific size then reaches out these extended lines
until touching the expanded boundaries of other obstacles or borders of the routing
region. The intersecting points form the nodes of the routing graph, as shown in
Figure 1-1(c). However this connection graph is hard to build and update for
incremental routing all nets. Cong et al [6-8] proposed an implicit connection graph in
which every node is the intersecting point of all extended boundaries of the obstacles.
Actually, searching path at some nodes 'might:cause the design rule violation; hence
they using a fast query data structure to get the available node of routing graph, Figure
1-1(d) displays a routing graph of this.model. Obviously, the number of generated
nodes is more than Zheng[5] in spite. of Cong als@showed the efficiency of the graph
creation and the optimality of the routing path. The question is when a great number
of nodes arisen from the large design, the connection graph models bring about the

inefficient path search.



a b

C d

Figure 1-1: Routing models. (a) Two terminals and obstacles; (b) grid model;
(c) connection graph model; (d) implicit connection graph model.



Another approach is the tile-based model [9-15], which represents the routing
region based on the corner-stitching data structure [16]. Corner-Stitching represents
the obstacles existed in the routing region as block tiles while the free areas are related
to space tiles. Every tile contains four corner pointers to stitch four adjacent tiles and
keep the property of maximum horizontal (vertical) strip. Base on this structure, it
provides some fast and localized operations, such as neighbor searching and region
querying, which will benefit searching a path in the routing graph. Figure 1-2 (a)
depicts a tile pane with the maximum horizontal strips. Every space tile in the tile
plane corresponds to a node in the routing graph, and every edge between two nodes
indicates the adjacent relation of tiles, Figure 1-2 (b) represents the corresponding
routing graph of Figurel-2 (a). Therefore, searching path in the tile-based routing
graph is also to find a tile-to-tile .path between the space tiles and without violating
any design rules. In [15], Xing always finds the optimal path in the tile-based routing

graph by using a piecewise linear cost.funetion-to guide the path search.

S S
by o -—-————- X,
-~ T
-~ o
.r"r =
-
-~ -
forg T
~
»--.1_\“-“\.L ".'__.
-
=T
‘__‘..d‘ "
@ 'y :},'—‘.
T e ; T
~—
=7
(a) (b)

Figure 1-2. (a) A tile plane with maximum horizontal strip;
(b) the corresponding routing graph.



1.2 Routing Graph Reduction

For several hundred millions gates design, a great quantity of routing paths will
come into existence when the routing process begins. The existed paths increase not
only the fragmentation of the plane but also the complexity of the path search. Li [23]
introduced two methods of the routing graph reduction (RGR) to reduce the
fragmentation and accelerate the routing speed. One is the removal of redundant tiles;
another is the alignment of the neighboring tiles.

Redundant tiles removal, which removes one-conjunct tiles and 0-conjunct tiles
in the tile planes by using the operation of tile enumeration. While alignment of
neighboring tiles shrinks the ragged boundaries and merges shrunk tiles to reduce the
fragmentation. Figure 1-3 (a) shows an_ original tile plane. In Figure 1-3 (a), Ty is a
one-conjunct tile while T, is a 0-conjunct tile. Figur€ 1-3 (b) displays the final result
of routing graph reduction. T and T,'are aligned merged with neighbor tiles.

The purpose of this thesis is to"integrate RGR algorithm into the two-stage
routing flow and improve the routing speed. Additionally, we propose a novel data
structure to handle the rip-up and reroute more flexibly and efficiently. The rest of this
thesis is organized as follows. Chapter 2 briefly reviews the point-to-pointer routing
engine and the routing database. Chapter 3 describes the two-stage routing flow and
how to apply RGR algorithm. Chapter 4 presents the segment tree structure. The

experimental results are shown in Chapter 5. Finally, Chapter 6 draws the conclusions.



(@)

T NN
EE I NN - — N\
HEE B
(b)
Redundant - Block Tile |:| Space Tile Via Region

Tile

Figure 1-2. (a) The original tile plane; (b) final result.



Chapter 2
Preliminaries

2.1 Tile-Based Router

Since Ousterhoust [16] proposed the corner stitching for representing and
manipulating rectilinear layout, there have many studies on the tile-based router [9-15]
to find the tile-to-tile path. In [14] introduced the concept of contour, where the
tile-based router search the centerline path within the contour planes which is
constructed by extending the alreadyexisted shapes in the tile plane with size ws +
wy/2 — 1/2, where ws is the spacing rule for the net'to be routed to the related layer, w,
is the wire width. The contour planes could guarantee that any path routed on the
space tiles would not induce the design violations. For example, in Figure 2-1 the two
yellow blocks are the contour induced from P1 and P2. If the space between two
blocks allows a centerline path passed. After extending the centerline path with the
wire width, the new path would separate away from P1 and P2 with the wire spacing.

Figure 2-1(c) shows an example for represent the contour plane of Figure 2-1(b).



P1

T Contour: wit w2 -1/2

wire width I M% centerline path

wire spacing i (b)
P2

(a) (©)
Figure 2-1. A contour example. (a) The contour size; (b) metal layer; (c) the related
contour plane of (b).

Tile-based router for full chip routing consists of three stages — path entry
initialization, tile propagation and path construction. Path entry initialization places
the zero cost entry segments into the tileSthat abut the source blockages. For example,
in Figure 2-2(a), the entry segments pl, p2 and p3 are placed in the T1, T2 and T3,
respectively. In the tile propagation stage, the entry segment with the pre-defined cost
is propagated to the neighboring space tile in the current layer or the adjacent layer
that allows a via to connect the space tiles in the different layer. A path entry segment
will be created in the next tile if the propagation from the current tile could generate
the minimal-cost path to it. The backward pointer of entry segment points to the
previous tile that propagates to it. The entry segment p3 in Fig. 2-2(a) is propagated to
tile T4 then induced an entry segment p4 whose backward pointer points to p3. If the
target is found, the list of free tiles is derived from the backward pointer. Finally, the
path constructor produces the minimum-corner path in the list of free tiles. Figure

2-2(b) indicates the new path over the tile list T3, T4, T, Tgand To.



(@) (b)

Figure 2-2. (a) The tile propagation example; (b) path construction.

2.2 Routing Database

During our routing process, both segment tree and rip-up overlapped tiles need
an efficient data structure that ncan".b‘rolvi;‘j.eli'a -,fast region query operation. The
operation of region query is a'.,r"equest!"tbf.'"fifri‘d alll}lobjects that intersected with a
specified query area. There Wefg_z many. ;”tud_ig%on thIS topic [17-20]. In our router, we
adopt the method of Weyten ana"Pa;W [2(?]. Théy proposed a quad-list quad tree
(QLQT) structure to store geometrical data. In QLQT, every node represents a
quadrant region in the plane. Each quadrant may be subdivided into four sub-quads
when total number of objects it contained more than a threshold value. If the
rectangular object intersects with a leaf node, a pointer of the rectangular object will
be stored in the one of quad-list of the leaf node. The rules used to assign pointer to
list are shown in Table 2-1. According to the result of checking rules, the pointer is
assigned to where it should be stored. Figure 2-3 is an example shown how the objects
are stored in the list of the leaf nodes. In Figure 2-3(a) rectangle 2 and 3 don't cross
any boundary of qO; therefore, they are stored in the list-O of q0. Rectangle 6 crosses

the lower boundary of q1; hence, the pointer of rectangle 6 will be saved in the list-2



of g1 and the list-1 of g2. Now, consider the case of rectangle 5. Because it intersects

with four quadrants, so we will keep the pointer of rectangle 5 in each quadrant.

Table 2-1. Object assignment rule.

object’s lower boundary object’s left boundary list type
crosses leaf’s lower crosses leaf’s left boundary
boundary.
False False 0
False True 1
True False 2
True True 3
root
quad0 quad1 A
3
4 e
| T RRRR
‘ o1 2 1 2 K ‘l 2 30123
; | ! Vil
1 5 |
*j A internal node
] O leaf node
auads quadz I:l pointer of object

(@)

(b)

Figure 2-3: An example shows how the objects are stored in the list of the leaf

nodes.

-10 -



Chapter 3

Routing Flow

Figure 3-1(a) presents the routing flow of out tile-based router. In the
preprocessing stage, the minimum spanning tree (MST) algorithm is applied to
decompose every multi-terminal nets n; into a set of two-terminal nets {ni;, ni, ...,
Nim}. The routing order of all the two-terminal nets is also determined in this stage.
The routing order is in an increasing order of the Manhattan distance of each
two-terminal net. Global routing follows the net preprocessing to obtain a global path
for each two-terminal net. The routing region is first partitioned into several global
cells, and global router searches for a global path of minimum length for each net
under the global cell congestion..constrain. Although each multi-terminal net is
partitioned into several two-terminal ‘nets-using-minimum spanning tree algorithm, the
global routing path of a net is*.@ Steiner-tree by performing a point-to-path
(path-to-path) global routing if one (both) of the terminals of current point-to-point
routing has (have) been included in a complete global routing path.

To collaborate with global routing, the kernel of the tile-based router is not
merely a point-to-point router. Extended routings, such as point-to-component (P2C)
and component-to-component (C2C) routings are supported in the routing kernel.
Segment-tree (S-tree) also provides fast component fetching operation for the
preprocessing tasks of P2C and C2C routings. Section 4 will formally present S-tree.
When a net routing is completed, the found routing path is added to the
corner-stitching tile planes and the S-tree of that net. After performing some net

routings, the tile fragmentation of the corner-stitching tile planes are examined and the

-11 -



routing graph reduction (RGR) method will be applied to diminish the tile
fragmentation if the tile planes are over-fragmented. Figure 3-1(a) displays the entire
routing flow, while Fig. 3-1(b) shows the detailed routing flow including routing
graph reduction. Rip-up and reroute operation aims at solving all routing violation

using dirty routing, which will be discussed in more details in Section 3-2.

Netlist

<

Netlist Preporcessing
decomposes nets into 2-pins net by
MST algorithm and sort the routing

order
Global Roqtmg | Detailed
find the a l'f.)ngh path in the routing Routing
cells to guide the detailed routing Global Routing
Net Routing
- - - routes a net and
Detalled Routlng Wlth updates the tile plane

Routing Graph Reduction

find the actual path for each net and
reduce the fragmentation of tile plane
to accelerate routing seed

Ny

Rip-up and Reroute
solve the unroutable nets in the
detailed routing

Routing Graph
Reduction

No All Nets
Done

N ‘]

Final R.ESlll t Rip-up and Reroute

(a) (b)

Figure 3-1. The flowchart of routing.

-12 -



3.1 General-Purpose Routing with Routing Graph Reduction

Li [23] proposed a novel routing graph reduction method to diminish tile
fragmentation and to improve the performance of ECO tile-based routing. In this
thesis, the redundant tiles removal is applied to general-purpose tile-based router.

The main concept of the work is to perform redundant tiles removal when the
routing tile planes are over-congested; therefore, the scheme to measure the exact
degree of tile fragmentation is indispensable for efficient tile plane check and
simplification. Frequent redundant tile removal operation can not contribute to great
improvement in routing performance; instead, the penalty of redundant tile removal
operations getcauses Consequently, it is necessary to know in what kind of the
situation we should apply the defragment procedure. In this section, we use an
estimating mechanism to involve the defragment procedure.

To apply defragment procedure at the proper timing, we maintain the information
of density of the space tiles during the process-of routing. The density value Sp shows
how fragment the tile plane is. The higher-this value, the more fragment of the routing
region is. We would involve the defragment procedure to reduce the fragmentation of

layout if Sp greater than a threshold value. Sp is calculated by the following equation.

SD=3"5C,/n

i=1
Where Sc is the count of space tiles in each panel, n is the total number of panels.
It is very easy to get the space tile count in each panel using the area enumeration
algorithm of corner-stitching to visit the specific panel. Although this enumeration
algorithm will count some tiles doubly, but in the larger design this small
miscalculation could be ignored. In the beginning of the detailed routing, each routing

layer is divided into several panels in their prefer direction. The advantage of dividing

-13 -



panel in prefer direction is that the new routing path would induce or merge space tile
in prefer direction too. Therefore, we could update the count information of the panel
locally and calculate a new Sp quickly. Every time routing a net is completed, only
routing path passed panels would need to recount the space tiles. Figure 3-2 is an
example to indicate how to calculate Sp. In Figure 3-2, Ty, T, T3 and T4 would be

counted twice, so the total count of space tile is 11 and the density value is 11/3.

# of panels : 3

osssssnnnnnnnnnny TTTIIIIII Space tlle count: 3+5+3=11

space tile density:11/3

Figure 3-2. An example illustrates the space tile density.

If all panels have been updated we choose the current Sp as the base density Bp,
and check the criterion to apply defragment procedure to reduce tiles. The criterion is
defined as,

Sp>Bp * AR

Where AR is the applying ratio, we can adjust AR to control the number of times
of the defragment procedure. Nevertheless, it is possible after defragment procedure
finished while the criterion still holds. It means, in the next time, when routing net
completed we would apply the procedure again. For this season, we will increase AR

with a small value when Sp is not reduced too much.

-14 -



The defragment procedure using another tile color to represent the redundant
tiles instead of considering as the block tiles. It is easy to get along with rip-up and
reroute procedure. Because we might rip up some nets to release the routing resource
in the rip-up and reroute procedure, if we treat the redundant tile in different color,
then it will be easy to check whether the redundant tile should be recycled. In the
Figure 3-3 (a) T, is a redundant tile. If we consider T, as a block tile as shown in
Figure 3-3 (b), T, would be merged with neighbor tiles. When T is ripped, as shown
in Figure 3-3 (c), a path through T, to adjacent layer disappeared too. Figure 3-3(d)
depicts that T, is represented straightly. Figure 3-3(e) shows the result with a possible

path from T, to the adjacent layer if T, is released.

-15-



B FEEEEE

(d) (€)

Figure 3-3. An example for recycling the redundant tile.

-16 -



3.2 Rip-up and Reroute

In the complex design, usually, the detailed router is very difficult to connect all
nets straightly. Therefore, it is necessary to perform the rip-up and reroute procedure
to complete the routing. This phase allows dirty routing which routes uncompleted net
overlapped with different signal nets. The dirty routing propagates both space and
block tiles to find a dirty path in the contour planes. A dirty path is the path of a net
with minimum of design rule violations to other nets. But the contour plane does not
keep any net information in the tiles. We query quad-tree to know which segments
overlapping with this dirty path. VWe would rather.rip-up and reroute the overlapped
segment than the entire net. If it can’t find out the path then marks the net as
un-routable and perform dirty routing in the.next iteration of rip-up and reroute.
Figure 3-4 presents the algorithm of rip-up and reroute. Where U, is the set of

un-routable nets, V, is the set of nets that violated with the dirty path p of n;.

217 -



Procedure Rip-upandReroute(U,)
input: U, — un-routable nets;
begin
1 for each net n; of U,
2 dirty path p <— DirtyRouting (n;)
3 Vh < QueryQuadtree(p)
4 for each net n; of V,
5 Rip-up violated segment and update S-tree of nj
6 Reroute(n;)
7 if reroute failed
8 U, < n;
9 endfor
10 endfor
end

Figure 3-4. The rip-up and-teroute algorithm.

-18 -




Chapter 4

Segment Tree

Rip-up and reroute is a time-consuming stage during detailed routing, so a
powerful and flexible scheme for rip-up and reroute can fast resolve the un-routable
errors or design rule violations. In this section, we introduce a novel tree structure,
called segment tree (S-tree), for efficient rip-up and reroute on the tile-based routing.

A general single net routing problem is to connect a set of terminals, T={t, t5, ...,
t, }, with a set of wire segments, W= { Wy, W, ..., W}, which are composed of the
shapes of the metal and via layers. The S-tree is a rooted tree, which contains two
kinds of nodes, called Steiner nodes (s-node) and.path nodes (p-node). An s-node is
either a Steiner point or a net terminal and can be.used to reserve the global topology

of a net, while a p-node can be a wire.or-a-via-segment.

4.1 Data Structure

Segment tree is used to represent the routing paths of a net. One net terminal is the
root s-node of a segment tree and the others are the leaf s-nodes. Each s-node, except
the root node, has a forward pointer pointing to another s-node closer to root s-node.
In Fig. 4-1, there are three net terminals and one Steiner point. The leaf s-nodes are
terminals A and B and their outward edges point to the s-node of the Steiner point,
whose related s-node finally points to the root s-node, that is, terminal C. Segment
tree only describes the global topology of a routing path. Physical wire and via
segments must be embedded in the segment tree. Since the edge of an s-node stands

for a routing path from one point to another, a physical pointer is attached to each

-19 -



s-node to indicate the start path segment of the routing path that realizes the forward
edge. The path segments along the routing path are then linked by their internal
pointer and the last segment can point to null to show the end of a path. Each s-node
also contains a number to identify its type, where a net terminal s-node has a net

terminal number and a Steiner point s-node has a number of zero.

B Metall
¢ . Metal 2
N\ Via
. Net terminal
r Steiner point

—  Forward pointer

(b) The corresponding S-tree.
Figure 4-1: An example shows the structure of S-tree.
A path node contains the following information:
® The x and y coordinates of the path segment’s bottom left and top right
corners.
® The net field denotes the net number of the path segment and the layer field

denotes the routing layer of the path segment.

-20 -



® A path pointer, which points to the p-node of the following path segment to
form a list. The last p-node is set to null.
® Actopology pointer, which points back to the s-node.
For example, the routing path between terminal A and Steiner point S in Fig. 4-1
contains five path segments; five path segments can then be accessed from s-node Sa

through its physical pointer.

4.2 Tree Operation

Three operations, node insertion, node deletion, and p-node fetching, for the
query and manipulation of the S-tree will be presented in this sub-chapter. Based on
these operations, the rip-up and reroute process could efficiently query net
information. The time complexity of each operation will be also discussed to show the
efficiency of the S-tree structure:

The following notation is first introduced before-describing the above operations.

® [(si): the preceding s-nede of a s-node's;:

® T,(si): the last p-node of a path associated with the s-node s;.

® P, (pi): the path pointer of p-node p;.

® M(p;): the topology pointer of p-node p;.

4.2.1 Node Insertion

A multi-terminal net has been decomposed into several 2-terminal nets in the
preprocessing stage. The tile-based detailed router routes 2-terminal net one by one in
the routing order. When a net routing is completed and the new routing path is
inserted to the corner-stitching tile planes, the S-tree has to be also updated to

maintain the new tree structure. Three cases are considered for the operations of

-21-



saving a routing path and updating the S-tree.

Case (1): a new path connects a new terminal T; to another terminal T, with a set
of path segments, P= {P1, Py, ..., Py}, i.e., Ty can reach T, by passing through the
sequence of the path segments from P; to Py, If terminal T, has an associated s-node,
a new s-node is created for T; and pointed to the s-node of T,. On the contrary, if
terminal T, is also a new terminal, a new s-node is created for T, and assigned as the
root of the new tree; besides, a new s-node sy, is created for T; and Fs(Sn1) is set to be
T,. Figure 4-2 shows an example of Case (1), where terminal B connects to another
new terminal C through three path segments. A new s-node Sc is created for terminal
C and assigned as the root of the S-tree and the forward pointer of the new s-node Sg
of terminal B points to Sc, as shown in Fig.4-2(b).

GO o

¥
b

7 [
Cmmger |

(@) (b)

Figure 4-2: An example for Case (1) of node insertion.

Case (2): a new routing path, which consists of a set of path segments, connects a
new terminal to an existing path segment P, with a set of path segment, P= {P, P, ...,
Pm}. In this case, a Steiner point S, will be produced at the join of Pnand P, Figure
4-3 (a) shows that the terminal A is connected to a path segment c; in the routing path
connecting terminals B and C. The detailed process of updating the S-tree is explained
in the following through Figs. 4-3 (b) to (e).

1) A query operation for the path segment c1 is first performed on the quad-tree

to obtain the pointer of c; and then the s-node to which c; is attached through

Ms(Cl).

-22 -



2) Since a new Steiner point is produced on the path segment c;, a new s-node S;
must be created here to maintain the tree structure. Fs(S;) is set to be Sc and Ty(S;)
IS set to be c;, as shown in Figure 4-3(b).

3) When a connection in the S-tree is divided into 2 parts and a new s-node is
inserted, the routing path of the original connection also has to be divided into
two parts which are attached two s-nodes. In Fig. 4-3(c), path segment c,, ¢;, and
b, are divided into two parts and b; is attached to the original s-node Sg while c;
and c; are attached to the new s-node S;. Also T,(Sg) is set to be by, and T,(S1) is
set to be cy.

4) Five new p-nodes are created for the new routing path, ai, a,, as, as, and as.
They are all attached to the new s-node of terminal A, as shown in Fig. 4-3(d).

5) Finally, Fs(Sa) is set to be S; to finish the construction of the new Steiner tree,
as shown in Fig. 4-3(e). -Figure 4-3(f)~illustrates the physical path segments

associated with the S-tree in Figu4-3(e):

(@) (b)

-23-



g \\
|
,
r
sﬂﬂ«[@: FHEHE]

(e) ()
Figure 4-3: An example to show the updating sequence.

Case (3): During routing and the construction of the S-tree, more than one S-tree
may simultaneously exist. Figure 4-4(a) depicts an incomplete net routing which
contains two connected routing paths and Fig. 4-4(b) show its related S-trees. The
complete net routing will merge th¢§g two routing paths, so the operation of merging

two S-trees must be considered and proyi'g'ed_ i,
- | AN W,

(@) (b)

Figure 4-4. (a) One incomplete net with two connected components; (b) its

corresponding S-tree.

Considering the case of using a routing path of a set path segments P= {P,
P2, ..., Pm} to connected these two routing paths on the path segments of P; and P;.

This case will merge two trees into the single. Figure 4-5 depicts the process of

=24 -



merging two S-trees. In Fig. 4-5(a), two disjoined components are connected by the

path segments iy and i, and two Steiner points S; and S3 are produced on two S-trees.

The first three steps of S-tree merging operation are the same as those in the case (2).

1)

2)

3)

Figures 4-5(b) to (d) depict the process of the insertion of a Steiner point in the
S-tree and the division of the routing path containing the Steiner point.

Since the new Steiner point is connected to another S-tree through the new
routing path segments i; and i, the new Steiner point must temporarily act as
the new root of this S-tree before merging. Figures 4-5(e) and (f) shows the
pre-process of a new root insertion.

In order to reserve the forwarding property of the S-tree, a reversing tree
operation is provided. Assume the new Steiner point Sp is located between two
s-nodes, say S; and S,, and Si-points to S;. Sp connects to another S-tree to form
a new S-tree. The reverse tree operation is.to-modify the S-tree structure such
that Sp becomes the new-root'by-reversing the forward pointers along the list
from S, to the old root. Also“the path segments attached to each s-node along
the list must be reversed. The sub-tree outlined by bold dotted line in Fig. 4-5(g)

shows the reverse result. A final S-tree is obtained by pointing Sp to the other

new Steiner point on another S-tree, as shown in Fig. 4-5(g).

-25-



& - & ©
. E Slice ¢, into _

wo l}fart% E %

5:)
Reverse list

’ toSéSe] -
[
N

alia N

7_D’> -.,_tS'D> - <SE/ - . ,\’.

() @)

Figure 4-5:The processes of case(3).

4.2.2 Node Deletion

During the rip-up and reroute stage, the dirty routing completes those un-routable
nets by passing through existing path segments. The overlapped path segments then
have to be ripped up for cleaning design rule violations. Because the contour planes
have no information about the overlapped segments, a query on the quad-tree is
performed to obtain the net and geometrical information of the overlapped segments.
The ripped-up operation has to be applied to corner-stitching tile planes as well as the
S-trees. The main objective of deletion operation on the S-tree is to preserve the

forwarding property of the S-tree. Two cases are considered for the deletion operation.

-26 -



To simplify the description, the following discussion is based on the assumption that
the root s-node will only be pointed by one s-node; besides, the net routing will not
produce the crossing pattern and the most complex pattern is the T pattern. As a
matter of fact, this thesis has extended the capability of segment tree beyond the
above limitation.

Case (1): The dirty path segment is attached to a leaf s-node Sg. Two conditions
for different types of the s-node S;, to which the forward pointer of s-node Sg points,
are discussed in the following. (1) If s-node S; is the root, all p-nodes and two s-nodes
are freed and the S-tree is degenerated into two terminals. (I1) If s-node S;, whose
forward pointer points to s-node Sc, is not the root and another s-node Sa also points
to s-node S; through its forward pointer. After s-node Sg is deleted, s-node S; is not a
Steiner point any more and can be remeved. Therefore, s-node Sp can directly points
to s-node Sc and the p-nodes, which origi‘n‘ally‘ are attached to s-nodes S; and Sa, must
be linked together. The physical pointer of s-node SA“is set to be the physical pointer
of s-node S; and the last p-node ef s-node S; points to the physical pointer of s-node
Sa. Figure 4-6 shows the case, where path segment b; will be ripped-up and the
routing path will become two disconnected components after removing b;, as shown

in Fig. 4-6(b). Figures 4-6(c) to (e) show the process of updating S-tree structure.

C2

aq das

a\
=

-27-



<~ &

/

,
: NIE I? E -E: -6‘5? E
(Y £ 2 e M
1

[
\J

(e)

Figure 4-6. The process of updating S-tree by removing a leaf s-node. (a) b; is a dirty
path segment; (b) the net routing is composed of one routing path and one disjoint
terminal after removing bs; (c) the original S-tree; (d) s-node S; becomes non-Steiner
and disappears; the p-nodes of Sa and S; are combined; (e) final result.

Case (2): The dirty path segment is attached to internal s-node S, and the s-node
S, to which the forward pointer of s-node S, points, is also internal. After removing
all p-nodes attached to S,, the S-tree will be split into two sub-S-trees and s-nodes S;
and S, will disappear. Figure 4-7 (b) shows an example of a net with a dirty segment.
Removing an internal s-node i can be accomplished in the following way.

-28 -



1) S-node Sg’s forward pointer also points to S; and s-node S;’s forward pointer
points to Sc. Since the Steiner point S; disappears after removing s-node S;, s-node
Sg must directly connect to Sc. The physical pointer of Sg is set to the physical
pointer of S; and the last p-node of S; connects to the first p-node of Sg. The
process is shown in Fig. 4-8(b).

2) The sub-tree below S, forms another S-tree and its root is the terminal s-node, say
Sa, whose forward pointer points to S;.

3) If another internal s-node S; also points to Sy, the path segments in Sz and Sa must
be linked together and Ss directly points to the new root Sa. The sequence of the
p-nodes of the new root Sy is reversed and the new last p-node connects to the first
p-node of S3 and the physical pointer of Sz is set to be the new first p-node, as

shown in Figs. 4-8(c) and (d). . |

wy
. A
I

i
= s b |
(&) =)

Figure 4-7: An example of a net routing for node deletion Case (2). (a) as is a dirty
path segment and all the p-nodes in S; will be removed; (b) the net routing are
composed of two connected components after ripping-up the path segments as, a4, and
as.

-29-



Figure 4.8: The process of splitting a S-tree into two S-trees by removing an internal
s-node (a) asz is a dirty segment and all p-nodes of S, are removed; (b) s-node S;
becomes non-Steiner and the p-nodes in S; and Sg are connected to form a new S-tree;
(c) the sub-S-tree below S, forms another new S-tree by selecting terminal s-node Sa
as the new root and linking all the p-nodes in S; and S together; (d) the final two
S-trees after removing unnecessary nodes.

-30 -



4.2.3 p-node Fetching

Both point-to-component and component-to-component routing require fetching the
p-node of tree to initial the routing process. This operation is implemented by storing
the pointers of all s-nodes of an S-tree in a linked list. Another memory-efficient
method is to store the pointers of all leaf s-nodes of a tree in a linked list, the S-tree

can traversed by starting traverse at each leaf s-node.

-31-



Chapter 5

Experimental Results

We implemented our tile-based router in this work using the C++ language on
the 1.2GHz SUN Blade 2000 workstation with 2GB memory. We compare our
tile-based router to multilevel framework [21,22] with six benchmark circuits
provided by the authors. Table 5.1 indicates the information of these six circuits;
include the circuit dimensions, design rules, number of routing layers, total of

2-terminal nets and the number of terminals.

Table 5.2 shows the comparisons on wire:length; the number of via, run-time and
the completion rate. The results show that-our-approach could achieve average 4.7X
and 7.2X faster routing speed than [21} and.[22]. The S-tree for multi-terminal routing

also brings better wire length and number of via than others by about 3% to 10%.

Table 5.1. The benchmark circuits.

Circuits
Name Size( 1 m) Design #Layers #2-terminal | # Terminals
rules( 1 m) Nets
S5378 4330x2370 3.6 3 3124 4734
S9234 4020x2230 3.6 3 2774 4185
S13207 6590x3640 3.6 3 6995 10562
S15850 7040x3880 3.6 3 8321 12566
S38417 111430x6180 3.6 3 21035 32210
S38584 112940x6710 3.6 3 28177 42589

-32-



Table 5.2. Routing results comparison.

Circuits | Enhanced multilevel routing Multilevel Routing without Our results

with rip-up and reroute [21] antenna avoidance [22]

Name | Wire | #Vias |Runtime| Cmp. | Wire | #Vias |Runtime| Cmp. | Wire | #Vias |Runtime| Cmp.

length (sec.) | Rates | length (sec.) | Rates | length (sec.) | Rates

S5378 | 8.0e7 | 7197 | 343 [99.74%| 8.2¢7 | 7163 35 100% | 7.7¢7 | 6410 | 5.27 | 100%
S9234 | 5.9e7 | 6155 | 244 199.89% | 6.0e7 | 6287 | 26.2 | 100% | 5.7¢7 | 5461 | 3.53 | 100%
S13207 | 1.9.e8 | 15832 | 1154 [99.83% | 2.2e8 | 14938 | 106.7 | 100% | 1.8e8 |14185| 20.42 | 100%

S15850 | 2.3.e8 | 18778 | 154.6 |99.88% | 2.4e8 | 17334 | 538.8 | 100% | 2.2e8 | 16900 | 42.65 | 100%
S38417 | 5.0e8 | 45620 | 567.6 |99.80% | 5.9e8 | 43551 | 899.9 | 100% | 5.0e8 |41376 | 111.59 | 100%
S38584 | 7.0e8 | 63205 | 1308.2 |99.84% | 7.7e8 | 61053 | 1953.7 | 100% | 6.9e8 |56233 | 379.11 | 100%

Avg. | 3.0% |105% | 4.7X 10.5% | 73% | 12X

In Table 5.3, we compare the tile-based router with and without RTR at the
detailed routing stage. However, the resultssindicate that the routing time almost is not
improved, instead getting worse. It produced a contrary to our intention. It is
interesting to note that if the tile plane.is more fragmented the redundant tiles removal
could produce the better reduction result. Besides, the time for determining the
over-fragmented tile planes and performing RTR would increase the total of runtime.
The reduced rate denoted in the final column of Table 5.3 shows that these six circuits

are too sparse to reduce the redundant tiles and speedup the routing process.

The operation time spent on S-tree and Quad-tree are list in Table 5.4. In the
table, the second and fifth column indicates the time for updating S-tree and quad-tree
that includes the insertion and deletion time. In third column, “Query” shows the time
to fetch p-node of S-tree for initial routing. The “per. routing” in the fourth and final

column represents the proportion of tree operation to the total of routing time. These

-33-



auxiliary data structure provide the quick operation for the routing process with the

small portion of the penalty. Figure 5.1 shows the routing result of circuit S5378.

Table 5.3 Apply Redundant Tiles Removal

Without RTR With RTR
Circuit Runtime(sec.) Runtime(sec.) | # Reduced | # Final space | Reduced rate
tiles tiles
S5378 5.00 6.33 1053 15102 0.070
59234 3.34 4.27 493 13098 0.038
S13207 19.41 23.49 1587 35358 0.045
S15850 42.40 37.70 2042 41461 0.049
S38417 109.42 127.61 4463 101788 0.044
S38584 279.61 325.79 6462 133744 0.048
® Reducde rate: # Reduce tiles / # Final space tiles
Table 5.4. The operation time spent'on S-tree and quad-tree.
Cireuits S-tree - Quad-tree
Update(sec.)|Query«(sec.),| Per..routing |Update(sec.)| Query(sec.) | Per. routing
S5378 0.02 0.01 0.47% 0.19 <0.01 3.01%
59234 0.01 0.01 0:47% 0.09 <0.01 2.12%
S13207 0.03 0.05 0.33% 0.30 <0.01 1.23%
S15850 0.01 0.08 0.24% 0.41 <0.01 1.09%
S38417 0.17 0.47 0.50% 1.12 <0.01 0.87%
S38584 0.67 2.08 0.82% 1.34 <0.01 0.40%
Avg. 0.47% 1.45%

-34-




(b)

Figure 5.1 The routing result of circuit S5378.

-35-



Chapter 6

Conclusions

In this thesis, we integrate the algorithm of routing graph reduction into the
two-stage routing flow to promote the performance of tile-based router. We also
propose a segment tree to help the rip-up and reroute procedure work more flexibly
and efficiently. Segment tree maintains the topology of multi-terminal net segment by
segment so that the RR procedure just rip-up and reroute the violated segment instead
of the entire net. Experiment results. show-the expeditious routing speed and better
routing solution than the multilevel framework. But, the space benchmark limits the

improvement of the routing graph reduction.

-36 -



(1]

(2]

(3]

[4]

[5]

Bibliography

J. Cong, L. He, C.-K. Koh, and P. Madden, “Performance optimization of VLSI
interconnect layout,” Integration VLSI Journal, vol. 21, no. 1-2, pp. 1-94, Nov.

1996.

T. Ohtsuki, “Gridless routers—New wire routing algorithms based on
computational geometry, in Proceedings International Conf. Circuits and Systems,

pp. 802-809, May 1985.

K. L. Clarkson, S. Kapoor, and P, M::Vaidya, “Rectilinear shortest paths through
polygonal obstacles in O(n(log n)-) time,™ in.Proceedings 3rd Annual Symposium

Computational Geometry, 1987, pp: 251=257:

Y. Wu, P. Widmayer, M. Schlag, and C. Wong, “Rectilinear shortest paths and
minimum spanning trees in the presence of rectilinear obstacles,” IEEE

Transactions on Computers, vol. C-36, no. 1, pp. 321-331, 1987.

S.Zheng, J.S. Lim, and S. lyengar, “Finding obstacle-avoiding shortest paths using
implicit connection graphs,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 15, no. 1, pp. 103-110, Jan. 1996.

-37-



(6]

[7]

(8]

(9]

J. Cong, J. Fang, and K. Khoo, “An implicit connection graph maze routing

algorithm for ECO routing,” in Proceedings International Conference on

Computer-Aided Design, pp. 163-167, Nov. 1999.

J. Cong, J. Fang, and K. Khoo, “DUNE: A multilayer gridless routing system with

wire plan-ning,” in Proceedings International Symposium Physical Design, Apr.

2000, pp. 12-18.

J. Cong, J. Fang, and K. Khoo, “DUNE - A multilayer gridless routing system,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 20, no. 5, pp. 633-647, May. 2001.

M. Sato, J. Sakanaka, and T. Ohtsuki,““A fast line-search method based on a tile

plane,” in IEEE International Symposium Circuits and Systems, pp. 588-591, May

1987.

[10] A. Margarino, A. Romano, A. De Gloria, F. Curatelli, and P. Antognetti, “A

tile-expansion router,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. CAD-6, pp. 507-517, July 1987.

[11] R. Eric Lunow, “A Channelless, Multilayer Router,” in Proceedings of the 25th

ACM/IEEE Design Automation Conference, pp. 667 — 671, 1988.

[12] L. C. Liu, H.-P. Tseng, and C. Sechen, “Chip-level area routing,” in Proceedings

International Symposium Physical Design, pp. 197-204, Apr. 1998.

-38 -



[13]1 C. Tsai, S. Chen, and W. Feng, “An H-V Alternating Router,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 11, pp.

976-991, Aug. 1992.

[141 J. Dion and L. M. Monier, “Contour: A tile-based gridless router,” Western

Research Laboratory, Palo Alto, CA, Research Report 95/3.

[15] Zhaoyun Xing and Russell Kaog, “Shortest Path Search Using Tiles and Piecewise
Linear Cost Propagation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 2, pp. 145-158, Feb. 2002.

6] J. K. Ousterhout, “Corner Stitching: A data-structuring technique for VLSI layout

tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. CAD-3, pp. 87-100; Jan. 1984.

171 G. Kedem, “The Quad-CIF tree: A data structure for hierarchical on-line
algorithms,” in Proc. 19" Design Automation Conf., pp.352-357, June 1982.
[18] H. Samet, “The quadtree and related hierarchical data structures,” Computer

Surveys, vol. 16, pp. 187-260, June 1984.

[19] R. L. Brown, “Multiple storage quad trees: A simpler faster alternative to bisector
list quad trees,” IEEE Trans. Computer-Aided Design, vol. CAD-5, pp. 413-419,

July 1985.

-39-



[20] L. Weyten and W. de Pauw, “Quad list quad trees: A geometrical data structure

with improved performance for large region queries,” IEEE Trans.

Computer-Aided Design, vol. 8, pp. 229-233, Mar 1989.

[211J. Cong, M. Xie and Y. Zhang, “An Enhanced Multilevel Routing System,”

in Proceedings IEEE International Conference on Computer Aided Design, San

Jose, California, pp 51-58, Nov. 2002.

221 T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, “Multilevel routing with antenna

avoidance,” Proc. ISPD, April 2004.

231 J.-Y. Li and Y.-L. Li, “An efficient tile=sbased router with routing graph

reduction,” Proc. ISPD, April 2005.

- 40 -



