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Student: Ming-Che Chen  Advisor: Dr. Wen-Hsiang Tsai

Department of Computer and Information Science

National Chiao Tung University

ABSTRACT

A vision-based approach to security patrolling in indoor environments using
autonomous vehicles is proposed. A small vehicle with wireless control and image
grabbing capabilities is used as a test bed. Three stages of security patrolling are
proposed. First, a simple learning strategy 1S designed for flexible and effective
learning of reachable spots ~and monitored .objects in indoor environments.
Accordingly, a planned path 1s obtained;-and monitored objects and doors are
specified by analyzing user commands.. Next, following the learned path, the vehicle
can accomplish specified navigation sessions. Two different kinds of methods,
mechanic error correction modeling and vehicle position modification by positions of
monitored objects, are proposed for navigation accuracy maintenance. Finally, an
object matching algorithm is used for checking the existence of monitoring objects
and the opening status of doors. All the experimental results show flexibility and

feasibility of the proposed approach for the application of indoor security patrolling.
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Chapter 1
Introduction

1.1 Motivation

The development of autonomous vehicles or mobile robots is paid much
attention recently. Many researchers are devoted to developing functions of vehicles
or robots such that they can do works conducted by human beings. Among
applications of the autonomous vehicle, security patrolling is a practical function for
human beings.

We often install cameras in'the house to menitor the indoor situation nowadays.
We only depend on looking at videos.to find out:thieves when we discover that
thieves broke into the house or objects were stolefi+It takes much time and manpower,
and lacks efficiency. Moreover, the positions of cameras are always fixed such that
there might exist corners where the camera view cannot cover.

The use of a vision-based autonomous vehicle system is a good choice to solve
the above problem. Because the vehicle only spends electric power or fuel, it can
substitute for manpower to do security patrolling cheaply. By computer control, the
vehicle can repeat identical steps, never feels tired, and makes errors. Hence, the
vehicle is able to patrol the whole day and will not rest like human beings. Another
advantage is that when the vehicle detects an unusual situation; the monitoring system
can send warning messages to guards or hosts immediately through signal
transmission equipment. So the works of monitoring will cost less time and money.

So the research goal of this study is to design an intelligent system for security



patrolling by means of a vehicle. It is desired to design the system to be capable of
indoor navigation and security checks, including object detection and door situation

recognition.

1.2 Survey of Relative Studies

To achieve the mission of security patrolling in indoor environments, learning
navigation paths and recording features of monitored objects is required before the
vehicle can navigate automatically. Since scenes of indoor environments consisting of
rooms, corridors, and objects are usually complicated, the vehicle must have the
ability of computing the distance:between objects. Lai [9] proposed a curve fitting
technique and a modified interpolation 'technique-to perform 2D-to-3D distance
transformations. By this method, welcan know-the distances between the vehicle and
the surroundings in real space through. captured images. Li [10] proposed learning
methods for dealing with complicated surroundings as well as strategies for
autonomous vehicle navigation techniques. The user controls the vehicle to patrol and
analyze the captured image in the learning process, and a navigation map is created
dynamically. The vehicle can keep away from obstacles when it navigates
automatically. Moreover, Chen [12] proposed two navigation modes and a fuzzy
guidance technique. A navigation map is created by two kinds of learned data and the
fuzzy guidance technique is applied to achieve obstacle avoidance. About security
patrolling navigation, Liu [13] proposed a method for use in building corridors by
multiple-camera vision and automatic vehicle navigation techniques.

In the learning process, the vehicle has to record the features of monitored

objects. It is usually difficult to segment objects from complicated background in
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images. Kass, WitKin, and Terzopoulos [1] proposed a prototype of the snake
algorithm to segment patterns in the image. However, there are some drawbacks in
the snake algorithm. Some researches [2-6] tried to improve this algorithm by using
more complicated techniques. After detecting an object from the image, the features
of the object is recorded in the learning process. In order to represent the shapes of
objects, Sussman [7] mentioned the technique of fitting an ellipse to a set of data
points by using the least square fitting technique. And Pilu, Fitzgibbon, and Fisher [8]
proposed the ellipse representation of object pixels by using the edge pixels of the
object. There are methods of coordinate transformations in the space and vector
operations techniques for use in Fraleigh and Beauregard [14]. There are some image

processing techniques consulted in Gonzalez and Woods [15].

1.3 Overview of Proposed Approach

In this study, we try to design a vision-based vehicle system for security
patrolling in indoor environments. In order to achieve the mission of security
patrolling, to recognize surrounding objects and know the vehicle positions are
necessary. The chief tools are the images captured by the camera and the odometer in
the vehicle hardware system. An overall framework of the proposed system is
illustrated in Figure 1.1.

The proposed vehicle system for security patrolling includes three major
processes: setup of the vehicle system, learning of paths and objects by user control,
and vehicle navigation.

Setup of the vehicle system is the basis of navigation. It includes location

mapping calibration and mechanic error correction. After fixing the camera on the

3



vehicle, a mapping calibration technique for using 2D image analysis is used to
calculate the distance between the vehicle and an object. On the other hand, because
the vehicle is a machine, it is unavoidable that there exist mechanic errors. Although
the odometer provides the position of the vehicle, the real position of the vehicle is
different from the value provided by the odometer due to the mechanic error. By the
way of correcting the value provided by the odometer, navigation can be made more
accurate. A mechanic error correction model is proposed to solve the problem.
Moreover, the mechanic error causes the vehicle moving far away from original
straight path. We propose a straight navigation technique to deal with this problem.

Before the vehicle navigates, how to detect objects from the image is essential.
Because the computer can not identify objects likes people, an improved snake
algorithm is proposed in this study to detect objects in captured images. Although
some researches [2-6] improve-the.snake algorithm; these methods are complicated
and slow. We design a faster method to-meet-the real time requirement. In order to
recognize objects, we utilize three kinds.of object features in this study; they are color,
shape, and coordinates. We propose three methods to compute these three features,
respectively.

In the learning process, the vehicle is controlled to move to desired places by
using a user interface designed in this study. Some coordinates of the vehicles which
are denoted as nodes are recorded along the learning path. The user may identify
objects or doors to be monitored from the images when the vehicle moves to
neighborhood of objects. The system will record the features of the objects which are
illustrated in last paragraph automatically.

According to the node data and the position of the objects and doors, a
navigation map is created for use of the vehicle navigating automatically. The vehicle

moves along the path and detects the objects and doors one by one by the positions of
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them. As soon as the vehicle can not detect the monitored object, a warning message
will be sent out from the system right away. When detecting the object, the system
compares it with the learned data further. If the features are not correct, the same
warning is announced. In the same manner, the vehicle moves to the neighborhood of
the door to check whether the door is opened or not.

Due to the mechanic error, the vehicle might move far away from the original
path gradually. We propose two methods to improve the stability of navigation. One is
to use the coordinates of learned objects as an auxiliary tool to adjust the position and
direction of the vehicle. The other is a line following technique. After completing the

check of the objects and doors, one circle of security patrolling is finished.

Location mapping
calibration and mechanic
error correction

Path learning by
user control

Features of objects and
doors saving

Creation of learned
path map

Security patrolling

Figure 1.1 A flowchart of proposed system.



1.4 Contributions

(D
2

3)

4
)
(6)
(7

®)
©)

Some major contributions of this study are listed as follows.

A mechanic error correction method is designed.

A technique for reducing mechanic error effect on straight navigation is
proposed.

A fast object detection method in indoor environments by using an improved
snake algorithm is proposed.

Three methods for object feature computing are proposed.

A strategy for learning paths, objects, and doors is proposed.

A method for path map creation by learned data is designed.

A line following method which can reduce accumulative errors for navigation is
proposed.

Methods for object matching and doer-situation recognition are proposed.

A method for correcting vehicle peositionsin the navigation session is proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, the system

configuration of the vehicle and the principles of learning and navigation are

described. In Chapter 3, the proposed methods for location mapping calibration and

mechanic error correction are described. The proposed methods for object detection in

the images and feature computing are described in Chapter4. The proposed learning

strategy and path map creation method are described in Chapter 5. The proposed

vehicle navigation method, the strategies for navigation accuracy maintenance, object

6



recognition, and judgment of the door situation are described in Chapter 6. Some
experimental results are given in Chapter 7. Finally, conclusions and some

suggestions for future works are included in Chapter 8.



Chapter 2
System Configuration And
Navigation Principles

2.1 Introduction

In order to achieve the goal of security patrolling by an autonomous vehicle,
conditions around the vehicle are investigated. There are usually many obstacles and
narrow paths in indoor environments. Hence, it is a wonderful choice that the size of a
vehicle is small and its action is“dexterous, The smaller the size of the vehicle, the
larger range the vehicle can navigate. Moreover, if the size of the vehicle is small
enough, it can monitor the space under tables, beds, cabinets, etc.

In this study, a small vehicle is used as a‘test bed. Beside the vehicle structure, a
camera is installed on the vehicle. For a user to achieve the function of controlling the
vehicle, some communication and control equipments are required. The entire
hardware equipment and software used in this study are introduced in Section 2.2.

After introducing the equipment, the vehicle navigation principles and some
detailed relevant processes are described in the following sections. In Section 2.3, we
will describe the process of learning. Path and object data which are necessary for
security patrolling are recorded in the learning process. In Section 2.4, we will
describe the process of security patrolling in which the vehicle monitors concerned
objects and checks whether a door is opened or not. As soon as an unusual situation is

detected, a warning is issued.



2.2 System Configuration

The vehicle is shown in Figure 2.1.

(b)

Figure 2.1 The vehicle used in this study. (a) The front of the vehicle. (b) The flank

of the vehicle.

Recently, wireless networking and communication techniques advance quickly.
More and more communication products are made with wireless transmission. In this

study, we use an Amigo robot, a mini-vehicle made by ActiveMedia Robotics



Technologies Inc., on which a camera is installed, as the testbed of our research. We
utilize wireless transmission equipment to control the vehicle and get images captured
by the camera. We will describe the hardware system in Section 2.2.1 and the

software used in this study in Section 2.2.2.

2.2.1 Hardware Configuration

The entire system is illustrated in Figure 2.2. The first part is the vehicle system.
The length, width, and height with the camera of the vehicle are 33cm, 28cm, and
21cm, respectively. There are two larger wheels and one auxiliary small wheel at the
rear of the vehicle. The maximum speed of the vehicle is 75cm/sec and the maximum
rotation speed is 300 degrees/sec. There are eight ultrasonic sensors, an odometer, and
an embedded hardware system in.this mobile vehicle. The ultrasonic sensors are not
used in this study. The odometer provides the.coordinates and direction of the vehicle
in the navigation. The origin of coordinates.is the starting position of the vehicle.
There is a 12V battery in the vehicle to:supply the power of the vehicle system.

The second part is the vision system. There is a wireless 2.4GHz camera which
can transmit analog signals on the vehicle. A receiver and an imaging frame grabber
are connected to the computer. The receiver receives analog signals from the camera
and a digital image can be obtained by the imaging frame. The image grabbed in our
experiments is of the resolution of 320x240 pixels.

A personal computer with Centrino 1.4GHz CPU, a 768MB DDR RAM, and a
5400 rpm 40GB HDD is used as a remote control and monitoring system; a kernel
program can be executed on it to give commands to the vehicle through a wireless
transmission system.

There is one wireless device in the vehicle and another in the PC. The commands

of the remote system are transmitted to the wireless signal receiver by an access point
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that meets the IEEE 802.11b standard. By using the access point as a medium, the

commands can be transmitted from the PC to the vehicle.

Vision System \/

/ Receiver

=

Imaging frame
9V Battery

grabber

Embedded
12V Battery
Hardware System

Vehiele Systen

Device Point g

Remote System
Wireless Transmission System

Figure 2.2 Structure of system.

2.2.2 Software Configuration

The ARIA is an object-oriented control applications-programming interface for

11



ActivMedia Robotics’ line of intelligent mobile robots. The ARIA is written in the
C++ language. We use it to control and retrieve the status of the vehicle. The
operation system in the PC is Microsoft Windows XP and we use Borland C++

Builder as the development tool in our experiments.

2.3 Learning Principle And Proposed
Process of Learning

Before security patrolling, a learning process is necessary. Navigation path,
object, and door data are recorded in, advance. The entire learning process in this
study is shown in Figure 2.3.

A user control interface -is ‘designed” for use -in controlling the vehicle and
choosing monitored objects and-doors. The-user controls the vehicle to navigate in
indoor environments and move to the front of ‘objects for choosing monitored objects.
The main recorded data include two categories, path and object data. The door is
considered as an object in this study. As soon as the learning process ends, all data are
stored in the storages of the computer such that the learning process is only executed
once and data can be used repeatedly.

When the vehicle patrols in rooms and corridors, the computer records the path
data provided by the odometer, and denote them as nodes. The monitored objects are
selected in the image captured by the camera when the user controls the vehicle to
patrol. The features of the objects are also computed automatically from the images.
There are three kinds of object features are recorded in this study. They are color,

shape, and coordinates respectively.
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The process of door learning is similar to that of ordinary object learning. The
computer can record more than one object when the vehicle is at a single position. By
means of turning the vehicle at same position, we can learn neighboring objects of the
vehicle. The user can choose objects continuously along the path until finishing a

learning process.

Start learning

/\

Manual Data collection

control

Driving vehicle Choosing objects

and doors

Y
Feature data of Odometer data

objects and doors

‘ Saving data in the storage

y

Map created by learned data

A 4
| Endlearning )

Figure 2.3 A flowchart of proposed learning process.




After finishing learning process, we can get a navigation map by way of
combining the path data and object positions. The vehicle utilizes this map to monitor

the doors and objects consecutively along the navigation path.

2.4 Vehicle Guidance Principle And
Proposed Process

In the navigation process, the vehicle monitors the objects and doors
consecutively by using the map created from learned data. The vehicle moves to a
fixed position and stops to check the existence of the monitored objects. As soon as an
unusual situation is occurred, a.warninglis iSsued. After checking the objects at a
location, the vehicle moves to the next position where there are monitored objects or
doors, and then continues checking the. existence of‘the monitored objects or whether
the door is opened. An illustration offthe wehicle navigation process is shown in
Figure 2.4.

In order to patrol along the learning path, the vehicle moves along each node in
the map one by one. To move from a node to another, a line following technique is
used to reduce navigation errors.

When the vehicle moves to a node where there is a nearby monitored object, the
computer detects the object by using the position of the learned object. As soon as the
computer detects an object from the image, its features are compared with those of the
learned objects. If the features are incorrect, a warning is issued. Of course, when the
computer can not detect the object, the same warning is also issued. Because the

vehicle might navigate far away from the original path gradually, we use a

14



vision-based technique to reduce accumulative errors for navigation. When the
vehicle detects an object and consider it as a learned object, we use its position
recorded in the learning process to correct the position of the vehicle for reducing

accumulative errors.

» Vehicle patrolling

/\

Object detection Door identification

Yes

Correct the vehicle | | A warning is announced

position

No

Navigating unfinished path

(v

Figure 2.4 A flowchart of proposed navigation process

Although the door is considered an object, the method of recognizing the door

15



situation is different from the method of object matching. After the vehicle moves to a
suitable position recorded in the learning process, the computer checks the door
situation to see if it is opened or closed. After the vehicle patrols the entire route and

checks all objects and doors, a security patrolling process is finished.
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Chapter 3
L_ocation Mapping Calibration and
Mechanic Error Correction

3.1 Introduction

When a vehicle navigates in indoor environments, the position and distance are
important data for the navigation. By using these data, the vehicle can arrive at
suitable positions to search monitored objects or doors and navigate along a learned
path. In order to get position data-and distancé.valties, a camera and an odometer are
used in this study, which are equipped on the vehicle.

At first, we utilize an image ‘captured-by the camera to obtain the relative
position between an object and the véhicle.fWe use a 2D mapping method to achieve
this goal. The detailed process is described in Section 3.2.

The odometer provides the positions of the vehicle in the environment. It records
the coordinates and the direction angles of the vehicle when the vehicle navigates.
Possible mechanic errors might cause the real positions of the vehicle to be unequal to
the expected values provided by the odometer. Hence, in Section 3.3, we will propose
a correction method to reduce the mechanic error so that the vehicle can navigate
more stably.

Before describing the above-mentioned methods, we first introduce some
coordinates system and the definition of the direction angle of the vehicle for use in

this study. We introduce the coordinate systems in Section 3.1.1 and the definition of
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the direction angle of the vehicle in the space is described in Section 3.1.2. By using
the direction angle, a transformation function between the coordinate systems is

described in Section 3.1.3.

3.1.1 Coordinate Systems

Three coordinate systems are utilized in this study to describe the locations of the
vehicle and objects. The coordinate systems are shown in Figure 3.1. The definitions

of these systems are stated in the following.

/ . \ Room

(a) (b)

\%
Vy

Vx

(c)
Figure 3.1 Three coordinate systems in this study. (a) ICS (b) GCS (c) VCS.

(1) The image coordinate system (ICS): denoted as u—v. The u—v plane is coincident

with the image plane and the origin | of the ICS is placed at the center of the
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image plane.

(2) The global coordinate system (GCS): denoted as X-y. The x-axis and the y-axis
are defined to lie to on the ground, and the origin G of the global coordinate
system is a pre-defined point on the ground. In this study, we define G as the
starting position of the navigation.

(3) The vehicle coordinate system (VCS): denoted as Vy-Vy. The Vy-Vy plane is
coincident with the ground. The Vy-axis is parallel to two wheels of the vehicle.
The Vy-axis is parallel to the body of the vehicle. And the origin V is placed at
the middle of the line segment that connects the two contact points of the two

driving wheels with the ground.

3.1.2 The Direction Angle

The direction angle of the wehicle is defined in the global coordinate system, the
X-y plane. The angle denoted as @ représents-the rotation degree of the vehicle in the
global system and plays a very impottant role-in the coordinate transformations.

0 is the angle between the positive direction of the X-axis and the front of the
vehicle. The direction angle @ is set to be zero at the beginning of navigation. The
range of @is between 0 and 7 if £ 1is in the first and second quadrants, as illustrated in
Figure 3.2(a) and (b). It is between 0 and —m if s in the third and forth quadrants, as

illustrated in Figure 3.2(c) and (d).

3.1.3 Coordinate Transformation

By using the direction angle and the coordinates of the vehicle in the GCS, we
can describe the coordinate transformation between the vehicle coordinate system and

the global coordinate system by the following equations.
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X=V,xcos0—V, xsinfd+X,
y=V,xsinf+V, xcosf+y,

where X, and Y, are the coordinates of the vehicle in the GCS. It is shown in Figure

3.3.

y
A
AN
I \
\\ 0
AN
NN .y
(a) (b)
N /2
A
/\I y
/I TTor—7C / 9,/
/ ,I VX /\_./
A0 //
-2
() (d)

Figure 3.2 Definition of the direction angle (a)(b) &1is positive. (c)(d) #is negative.
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GCS

Figure 3.3 The coordinate transformation between the GCS and VCS.

3.2 Location mapping Calibration

The camera is the only sensor of:the"vehicle to gather the features of the
environment, and the techniques of learning and:guidance are based on visual
perception. Location mapping “calibration and: image analysis techniques are
indispensable in this study. A real location data acquisition method by Location
mapping calibration and image mapping is proposed to obtain the relative positions of
the vehicle and the surrounding environment precisely.

We use a point set P = {Pgo, Po1, ...,Pmn} whose coordinates are known in
advance in the VCS attached on the floor, and their corresponding point set V = {Vy,
Voi, ...,Vmn} appearing in the image, to compute the VCS coordinates of a set of
pixels. The detailed process is described in the following algorithms.

Algorithm 3.1. Real location data acquisition by image taking and mapping.
Input: An image I, as shown in Figure 3.5(a).
Output: A point set V = {Voo, Vo, ...,Vmn} and another point set P = {Po, Po1, ...,Pmn}

Steps:
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Step 1.

Step 2.

Step 3.

Step 4.

Attach some straight lines on the floor, as shown in Figure 3.4. Set the length
between every two vertical lines to be 30 cm and the length between every
two horizontal lines to be 30 cm, too, where every rectangle is a 30x30
square. There exists a distance Dj, equal to 80cm in the front of the vehicle,
which the camera can not view.

For those tessellated regions shown in the image which are not surrounded by
the lines, extend the lines such that every quadrilateral is complete. Mark red
points on the intersections of the lines, as shown in Figure 3.5(b).

Record the coordinates of each red point Pjj(Uj;, Vi) in the ICS and group all
such points into the set P.

Measure relative coordinates Vj(Xij, Yij) manually in the VCS of the point Pjj

and group such points inte'the set V.

Figure 3.4 An illustrated of attaching the lines on the floor.
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Bz E

il | L "|I
Figure 3.5 A method of finding image cootdinates of tessellated points in the grabbed
image. (a) A grabbed"'iijlgge with tgss'é:-llated points. (b) The tessellated
points marked by red points. '

We now have known the VCS coordinates of red points. As for the VCS
coordinates of the other pixels, we use an interpolation method to obtain them, as
described in the following algorithm.

Algorithm 3.2. Interpolation for computing lateral distances.

Input: A point I(u,v) in the ICS, a point set P, and another point set V.

Output: The coordinates of | in the VCS.

Steps:

Step 1. Compute the varibales a and b of the line equation y = ax + b for lines Ly, L;,

L, and L3 by using ICS coordinates of four endpoints, Pjj, P+, Pig+1), and
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P+1y+1) 1n the following ways, as illustrated in Figure 3.6.

a=-21 3.1
u—u 3.1

V, XU, =V, xu
i Bk e Rahe B (3.2)

u, —u,

Step 2. Decide whether the point | is in the region surrounded by four endpoints, Pjj,
P+, Pig+1), Pa+1yg+1) by substituting (u, V) for (X, y) of the line equation in
the following ways.

(a,-u+b,-v)-(a,-u+b,-v)<0. (3.3)
(8 -u+b —v)-(a;-u+b,-v)<0. (3.4)

Step 3. If the inequalities (3.3) and (3.4) are satisfied, the point | is in this region.
Else, repeat Step 2 to check the next region.

Step 4. By using a horizontal line’equation y =V:which passes the point |, we obtain
two intersections H(Un,*Vi)-and K(Ug, Vi) as shown in Figure 3.6(a).

Step 5. By using a vertical line equation-x-—-4 which passes the point I, we obtain
two intersections S(Us, Vs) and-T (U, Vi)

Step 6. Use an interpolation method to obtain the VCS coordinates (X, yi) of | by the

following equations:

u,—u

30%(j—3)+30x(1— ), ifj <3;
h — Yk

X, = 3.5
. i, (3.5)

30x(j=3)+30x (L), ifj >3,
h ™ Yk
Y, =Dy +30xi 7]+ 30x (222 (3.6)
V. =V

S t

Where i is serial number of the horizontal lines and j is serial number of the vertical
lines.

Although the image is distorted slightly, we consider every line as a straight line.
Every region is not rectangular as appearing in the image; therefore, we use the

interpolation method to compute X; and y; respectively.
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Vij Vig1

H

Viani Vi
P(m)j L, S P(i+1)(j+1) (i+1)j (i+1)G+1)

(a) (b)
Figure 3.6 An illustration of the interpolation method. (a) A region contains the point |

in the ICS. (b) The projection of the region in (a) onto a floor region.

3.3 Proposed Mechanical Error
Correction Method

There exist mechanic errors when-the vehicle navigates back and forth, no matter
how people control the vehicle or how the vehicle navigates automatically.

Whenever the control instruction is moving ahead or backing off, the vehicle will
move away from the original straight path gradually and the coordinates and the
direction angle of the vehicle provided by the odometer will be different from the
actual position and angle of the vehicle.

A method is proposed for solving the above problem. A mathematical model is
set up for correcting mechanic errors. In Section 3.3.1, we will describe the concept of
the method briefly. Utilizing this mathematical model; we can adjust the coordinates
and the direction angle of the vehicle provided by the odometer, as described in
Section 3.3.2. Finally, we hope the vehicle can move along straight path automatically;

hence, we propose a method to solve this problem, as described in Section 3.3.3.
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Because there exists a similar problem when the vehicle backs off, we use the same

concept to correct navigation errors. It is described in Section 3.3.4.

3.3.1 Brief Description of Proposed Error Correction

Model

Due to mechanic errors, a straight path of the vehicle navigation will become a
curve path. A detailed situation is illustrated in Figure 3.7. In Figure 3.7(a), the
vehicle starts moving and the expected path is a straight line in advance. After moving
a distance, the vehicle moves along path @ instead of the expected path ®. The same
situation occurs when the vehicle backs off. In Figure 3.7(b), the vehicle backs along

path @ instead of path ®.

Expected path
Expected path Xpected pa
Actual path Actual path
(a) (b)
Figure 3.7 Illustrations of navigation path deviation. (a) Moving ahead. (b) Backing
off.

Besides the last problem, the coordinates and direction angle provided by the
odometer do not show the actual position of the vehicle in the GCS due to the
mechanic error. As shown in Figure 3.8, the vehicle moves from the starting position
Py and arrives at position P finally. But the coordinates provided by the odometer are

the point P, instead of P, and the direction angle is the original angle of the starting
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position. Actually, because the vehicle moves along the curve path, the vehicle has
rotated for an angle 6.

Because the path of the vehicle is a curve, we compute a curve equation to
represent the path. We measure the deviation distances in advance to build a
mathematical equation as a correction model such that the vehicle can modify
navigation errors dynamically. The concept is described as follows.

At first, we get some the vertical deviation distance values measured manually
when the vehicle navigates forward a distance. According to the values, a
second-order equation y = ax* + bx + ¢ is obtained by a curve fitting technique.
Among the equation, X is the distance between the starting position Py and the position
P, and y is the deviation distance from the expected path. Moreover, In Section 3.3.2,
we will describe how to get the coefficients a, b, and ¢ of the equation. This correction
equation always accompanies the vehicle whether the vehicle is controlled by a user
or navigates automatically.

To correct the direction angle’of the vehicle; we use the first derivative equation
to compute the rotation angle. It is like a concept in physics mentioning that when the
object is in a curvilinear motion, by using a tangent line, the direction of the vehicle
can be computed. Based on such a principle, we can find a tangent line L; as shown in
Figure 3.8. We compute the slope of line L; by using the first derivative of y = ax* +
bx + ¢. The process of modifying the values of the vehicle position is shown in Figure
3.9 and a brief computing process is described as follows.

A distance Xq is gathered by computing the length between P, and P;.
Substituting X4 into the equation y = ax® + bx + ¢, we can get the deviation value .

By using Xq and the slope % =2ax+b, we can get an deviation angle € the vehicle
X

had turned in the GCS. Hence, by using coordinate transformation techniques, we can
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use Xg, Ya and @to get actual position P. The details are described in Section 3.3.3.

Every time the vehicle starts moving, the above method is carried out. As long as

the vehicle stops moving, the correct values of Xq, Y¢ and @ must be computed again in

the next moving circle.

y=ax’ +bx+c

c

<<
}H
Lo

Figure 3.8 An illustration the correction model.

A .oU

Xd

Coordinates

N

(Start correction)—» s

” Compute the deviation ﬂ Correct the direction
navigation distance Xy angle — angle —,

A
Compute the deviation Compute correct

distance Yy coordinates o
A
= I S, Correct the coordinates of
the odometer

Figure 3.9 Flowchart of correction process.

3.3.2 Curve Fitting for Navigation Path

In Section 3.3.1, we have described the concept of the correction model.
According to the discussion in the last section, to build the second-order curve

equation is the most basic requirement. All correction computation is based on this
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curve equation, so we describe how we compute the coefficients of the equation first

in this section. A detailed process is described in the following algorithm.

Algorithm 3.3. Curve fitting for navigation path.

Input: A navigation path.

Output: An equation y = ax’ + bx + c.

Steps:

Step 1.

Step 2.

Step 3.

Step 4.

Measure a deviation distance Yqy every 0.5m when the vehicle navigates, as

shown in Figure 3.10.

0.5
& o
Im

Figure 3.10 An illustration of récording the coordinates.

Record the deviation distance Y4, when the vehicle navigates a distance X, and
denote the data as Pij(X;, yij) where X; is navigation distance computed
between the starting position and the new position provided by the odometer
and Yy;j is a deviation distance. We record thirteen data when the vehicle
moves a 6m distance. Finally, we group the data into a point set P; = {P,,
Pit, ..., Pri2}.

Repeat Step 1 two times and group the data into two sets P, and Ps.

There are three deviation values at each distance Xj. Compute a mean set P

in the following way;

— 1(e 3 3 3
Pzg{ZPi,O’ZRJ’Z I:)i,zﬂ ’z Pi,lz}' (37)



where the data in the set P are denoted as P (X ,9 R

Step 5. By using the least square method, we compute the coefficients of the

optimum curve Yy =ax’+bx+c according to X; and y;, as shown in

Figure 3.11.

cm Path curve
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Figure'3.11 Arfigure of the curve.

Because the deviations are slightly different in each navigation path, we measure
each deviation three times and use théir'means to compute the curve equation. In this
study, a, b, and ¢ are computed to be a = 0.00008, b = —0.0089, and ¢ = 0.5828. The

distance unit we use 1s cm.

3.3.3 Coordinates And Angle Correction

After computing the path curve equation, the main goal is to adjust the odometer
values of a navigating vehicle. Utilizing the curve equation; we can conjecture that the
vehicle has shifted how much distance from a straight line when it is still to move a

certain distance. A detailed description of the adjustment is described as follows.

In Figure 3.12, the vehicle starts moving from point P,(X,,Yy,) toward the goal

point P (X,,Y,) in the GCS. The direction of the vehicle in the starting position is 6.
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Due to mechanic errors, the final position the vehicle arrives at is point P/(X[,Y;).
Although the position of the vehicle is P’ and the angle has become &+, the
odometer shows that the position and angle are P, and &. The point P’ and angle
a 1is the most important data we want to modify the error of the odometer. We

compute the distance D as follows:

D =X = %)+ (¥, = ¥,) - (3.8)
Utilizing D and the curve equation y=ax’+bx+c, the deviation distance d y 18
derived to be as follows:
d, =aD’+bD+c. (3.9)

Then we use the coordinate transformation technique to get the point P’ as

follows:

X, =D-cosf—d, -sind+X; (3.10)

y; = D-sin@ +d, -coso+ y, (3.11)

Figure 3.12 An illustration of correction detailed.
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In the following, we want to get the rotation angle «, as shown in Figure 3.13.
Utilizing the tangent slope y'=2ax+b, we can get vector b = [1,2aD +b] in the
error correction model. Using the unit vector a= [1,0], we can get the angle o by

the following formula:

4 aob

alb ‘ (3.12)

= COS

Finally, we correct the coordinates of the vehicle to be P and correct the angle

tobe O0+«.

Figure 3.13 An illustration of computing correct angle.

3.3.4 Straight Navigation Technique

Because the vehicle always navigates along a curve path, in this section, we
propose a technique to control the vehicle to navigate along a straight line
automatically. The most important concept behind our technique is that we control the
vehicle to return to the original straight path, as illustrated in Figure 3.14. The path of

the vehicle is shown as a red line in Figure 3.14.

Assume that the vehicle starts from point P,, and plans to navigate along path

L, . According to the curve equation y=ax’+bx+c, we can get a distance dy when
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the vehicle has moved a distance D,. We use these data to compute a moving
distance and a rotation angle such that the vehicle can turn toward path L, and go
back to this path. Although we can correct the values of the odometer at any time, it is
impossible to do this in the practical operation. Hence, we correct the mechanic error
when the vehicle stops moving.

When the vehicle goes to point P, the vehicle stops and corrects the values of
the odometer. To utilize the tangent line, we compute the rotational angle « .

Point P/(x;,y;) which is on the path L, is the goal for the vehicle to go back to path

L, . We compute the distance

PP]| by the following equation:

_ % (3.13)

PP ==
SINx

AU®

Figure 3.14 An illustration of the correction path

The vehicle should turn 2o toward path L, and go through the distance

G

back to L,, as the path L, shown in Figure 3.3.4.1. Unfortunately, the

vehicle does not arrive at point P, because of the curve path. If the vehicle goes
toward point P,, the path will be like the blue line shown in Figure 3.15 and the
terminal will be P, finally, as shown in Figure 3.15. Hence, the vehicle has to turn an

angle of ¢ such that it can navigate along the curve and arrive at P, finally. As
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shown in Figure 3.15, the planed path is L, and the expected goal is P,(X,,Y,),

such that the vehicle can arrive at P, finally.

From the triangle A PP/P,, we have known the length ‘W , hence we can

RP;

compute the length by the following curve equation:

[RP;|=alRP| +b[PP]|+c. (3.14)

And the angle ZPPP, can be computed as follows:

PP/
/PPP! = tan™ (). 3.15
thi2 PP, ( )

Let ZPPP, be equal to ZP/RP, which is denoted as ¢, then we can get

A BPP/ =~ A P/RP,. Hence, we can get the following relation:

PR |PP

PP’ E PP (3.16)

If the angle ZR PP, is small enough; thenrwercan get ‘ﬁ ~ ‘W‘ . Hence, we can

get ‘PI'PZ" ~ ‘PI'PZ‘ . Therefore, we get a navigation distance by computing the distance

between B’ and P).

e
; /qﬁ L

I_l

Figure 3.15 Computation of corrected path
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Summarizing the above description, we describe the correction process as

follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Start the vehicle from point P,. According to value of the odometer, the
vehicle stops at the point B’ after going through a distance of D, .
Correct the coordinates and the angle of the vehicle.

Compute the turn angle ¢ by using Equation (3.15) and navigate a distance

G

Turn the vehicle for the angle of 2a+¢ toward the straight path L, and
let it navigate for a distance of ‘W‘ to arrive at point P, and stop.

Correct the coordinates and the angle of the vehicle again.

Turn the vehicle such that:the direction of the vehicle is the same as the

direction in the beginning position Py at the point P, in the GCS.

The above process is just only one correction circle among the navigation. If the

path is longer, the vehicle has to tepeat the above process many times. The final path

which is the red line is shown in Figure 3.3.4.3. It is periodic and looks like a

trigonometric function of mathematics.

Figure 3.16 An Illustration of corrected navigation path

3.3.5 Correction of Backing off

Due to the mechanic error the vehicle also backs off along a curve path. The

navigation path when the vehicle backs off is shown in Figure 3.17. We use the same

method as mentioned in last sections to correct the errors in this section.
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e
Expected path

Actual path

Figure 3.17 An illustration of Backing path.

As first, using curve fitting to compute the curve equation y = ax* + bx + ¢, as
shown in Figure 3.18. The equation is different from the equation computed when the
vehicle moves ahead. The distance between the starting position and the now position
is record as a negative value. The coefficients of a, b, and ¢ are computed to be a =

0.0001, b =0.002, and ¢ = 0.0216,.tespectively, in'this study.

Back path curve

— 13

-450 -400 -350 -300 -250 -200 -150 -100 -50

“wn

cm

Figure 3.18 The path curve of backing off.

We still use the same method to correct the coordinates and direction angle of the
vehicle. The correction equations are different from those of (3.10) and (3.11). The

equation of computing the actual position (X; , Y, ) of the vehicle become as:

x{ =-D-cosf—d, -sind + X, ; (3.17)

y, =-D-sind+d, -cosf+y,. (3.18)
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Finally, the process of backing along the straight line is the same with the

process of moving ahead.
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Chapter 4
A Method for Detection of Monitored
Objects by Image Analysis

4.1 Introduction

We use a vision-based vehicle to monitor concerned objects and doors in this
study. How to recognize objects and doors are an important problem in this study.
Hence, before describing the vehicle navigation process, we will first describe the
image processing and pattern recognitiontechhiqués we use for solving this problem
in this chapter.

There are two main processes to-recognize an object in an image. One is to detect
the object region, and the other is to compute ‘the feature data of the object. To detect
an object, we propose the use of an improved snake algorithm to accomplish the task.
The details of the method are described in Section 4.2.

After detecting objects, we have to compute useful feature data and save them
for use in the learning process such that we can use them to monitor the objects in the
security patrolling process. We will describe how to compute the feature data in

Section 4.3.
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4.2 Process of Monitored Objects
Detection

In this section, we will describe how to detect an object region in an image. We
tried to use a famous object detection technique, called “Snake Algorithm” [1] in this
study. In Section 4.2.1, we will briefly describe the basic concept of the snake
algorithm. But the snake algorithm has many weaknesses when it is used in the
complicated environments; hence, we will propose an improved version of the method
to detect objects in indoor environments in Section 4.2.2.

Some complicated environment backgrounds could influence the result of object
detection; we will describe a feasible method proposed in this study in Section 4.2.4.
In Section 4.2.3, we will desctibe the7details of the proposed improved snake

algorithm.

4.2.1 Brief Description’of-Snake Algorithm

The performance of the snake algorithm is like the behavior of an elastic band.
Imagine that there is an elastic band in the image and an object exists in it. By
repeating continuous operations, the elastic band becomes narrow and approaches the
object edge. Finally, the elastic band will enclose the edge of the object and stop
computing, as illustrated in Figure 4.1. We now describe the principle of the snake
algorithm below.

The snake algorithm uses a set of control points, effectively connected by
straight lines. Each control point has a position, specified by coordinates (X, y) in the
ICS, and the snake is entirely specified by the number and coordinates of its control

points. By means of adjusting the positions of the control points and computing the
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energy of the snake at every moment, computation stops finally when the energy
achieves the minimum value. The strength of traction is determined by the energy.
When the control points are moved toward their center continuously, some image
properties will influence energy computation and cause the control points to stop

moving.

(a) (b)
Figure 4.1 Performance of the snake algorithm.-(a) The behavior of elastic band and

an object in it. (b) Final result of repeating continuous computations.

The energy for a snake exists in two parts, the internal and external energies.

That is,

Evnae = | EimernaV(9) + [ EeernaV(9) (4.1)
where V(S) = (X(S), ¥(S)) which specifies image coordinates. The internal energy
Einternar 1S the part that depends on the intrinsic properties of the snake, such as its
length or curvature. The external energy Eexernal depends on factors such as the image
structure, and the particular constraints the user has imposed. Each control point has

its internal and external energies and Egnake is the total energy of all the control points.

The equation of the internal energy is written as
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Enmermar = & Vs(S)| +B-|vis(S)[ - 4.2)
The subscript S denotes the derivative. The above equation is the sum of the first
derivative and the second derivative of the control point. Also, the values « and S are
the coefficients determined by the designer.
The first derivate can be written as
2

dv,

ds z|Vi _Vi—1|2 = (%=X + (¥, -y i=12,...n. (4.3)

From the above equation, we can understand that when two control points are
more close, the value of the first derivate will be smaller. Hence, the first derivate
accounts for stretching of the snake and will have a large value when there is a gap
between the control points. So, when the distribution of the control points becomes
smaller, the internal energy will have a smaller, value, as shown in Figure 4.2 (a) and
(b).

The second derivate can be*written as

2

d?v
2 Vig =2V V[ = (6 = 2%+ %)%+ (Vi =2V + Vi) (4.4)

ds’

The second order term accounts for bending and will be large in a region of high
curvature. When the edge of the object is smooth, the internal energy will have a
smaller value, as shown in Figure 4.2(c) and (d). Therefore, when the control points
are closer to each other and their distribution shape is smooth, a smaller internal

energy is obtained.
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Figure 4.2 A illustration of internal energy. (a) A pattern has a larger internal energy.
(b) A pattern has a smaller internal‘energy. (c) A pattern has a larger

internal energy. (d) A pattern has a-smaller internal energy.

Now we will focus on the external forces on the snake. These determine its
relationship to the image. Suppose that we want a snake to latch on to bright
structures in the image. We usually use the magnitude of the gradient in image

processing.

4.2.2 Description of Improved Snake Algorithm

In the last section, we have described the principle of the snake algorithm. We
will now describe the proposed method in this section.

Before computing the Egake energy, the locations of the control points have to be
decided at first. In this study, the shape distributed by the control points is a rectangle
at the beginning in the image plane. A larger object in the image will have a larger

rectangle, and vice versa. The terminal of control point shrinking is the center of the
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locations of the control points, as shown in Figure 4.3. The center of the control point
Peenter(Xo, Yo) 1s computed as:

2% DY (4.5)

P (X2 ¥) = (5= 1)

where n is the number of the control points, and X; and Y; are the coordinates of the
control points in the image plane. Each control point moves toward the center point

Peenter (X905 Yo) 1n each cycle of computation. The moving path is computed as a vector

\7(xv, y,) in the following way:

_ X X — %,
V== .
{yj [yi —yJ (4.6)

After computing Espake €ach time, the control points move to the center point

Peenter (Xo5Yo) gradually. The new positionrofithe eontrol points in each moving step

becomes:

X, = L X X, + Xgs
X,
4.7)
-1
Yi = B XYyt Y-
Y

Through repeated computations, the shape of the control point distribution is no
longer a rectangle. The distribution will be deformed gradually and the control point
is close to the center point Peenter(Xo, Yo). Until the Egnake reaches a minimum value, .the

process of the snake algorithm ends.
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Figure 4.3 Contribution of control point.

The strength of shrinking comes from internal energy computation. Besides the
method that Section 4.2.1 mentions, we add the so-called centripetal force into the
internal energy. The improved internal energy is computed in the following way:

2

dvy,
ds

2
E +Bs ?123\; A (4.8)

internal — & *

The detailed mathematical:operation‘is specifiedby:

E =a(X — Xi—1)2 +oy;= Yi—1)2 + 06, — 2% + Xi+1)2 +

By, =2y + yi+1)2 +y(X — Xo)2 +y(y; - yo)z-

internal

(4.9)

We utilize the distance between a control point and Peenter(Xo, Yo) as an element
for computing internal energy. When the control point is closer to the point Pcenter(Xo,
Yo), the distance becomes smaller gradually so that the internal energy has a smaller
value. Hence, using centripetal force causes the control points to gather together.

The internal energy causes the control points to gather, so we have to compute
the external energy so that the moving of the control points can be stopped. The final
result is that the control points surround an object. The Sobel operator is shown in
Figure 4.4 and its equation is shown in Eq.(4.10). The following specifies its

operation formula:
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Figure 4.4 Sobel operators.

L(U,V) =|(z, + 22, + 2,) — (2, + 22, + 2,)| @10
+](z3 4224+ 29) (2, + 22, + 7,)| '

where zs denotes gray value in the position (U,V), z; denotes gray value in (U — 1,v — 1),
and so on.

By using the Sobel operator, the edge of an object becomes obvious, as shown in
Figure 4.5. Hence, utilizing the yalue of the Sebel operator of the pixels on the
control point’s position, we can_get the external- energy of a control point, as

illustrated in the following way:

E = A x [minus (value of Sebel-operator of the control point in

external

(4.11)
the image)’]

where A is a coefficient. Finally, the total energy, i.e., the snake energy, is computed as

follows:
n . n -
I 1
Esnake = Z Einternal + z Eexternal (4 12)
i=1 i=1
where n is the number of control points.
Because the data are discrete, the integration is substituted by a summation. The
snake energy Egnake is the sum of each control point’s internal and external energy.
The internal energy is smaller when the control points are closer to the center such

that the snake energy has smaller value. As soon as the control points bump into the

edges, the external energy has a larger value such that the snake energy value
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becomes larger; in the mean while the snake energy computation is stopped because

the minimum snake energy is reached.

Figure 4.5 The result of using the Sobel operator.

The coefficients, «, f, 7 and A'play impertant roles in the snake energy. The
magnitudes of the coefficients ¢and £ influence.the‘control points’ pulling force. The
magnitude of coefficient y influences the cohesion of the control points, and the
magnitude of coefficient A influénces the result ‘of the captured object edge. In this

study, the magnitudes of &, S, %, and A are set to be 2, 3, 2 and 1, respectively.

4.2.3 Computing Object Region

After detecting an object, we have to recognize the object region from the image.
Through the above repeated calculations, the control points surround the object edge
pixels finally. Utilizing the coordinates of two adjacent control points to compute a
straight equation y = ax + b, we can find out the pixels of the object edge by using this
equation. A detailed process is described in the following algorithm.

Algorithm 4.1. Object region extraction.
Input: A set of control points P.

Output: An object region ObjR.

46



Steps:
Step 1. For any two adjacent points Ps(X, Ys) and P: (X, i), do the following steps.
Step 1.1 Compute a straight line equation y = ax + b which crosses Ps and P; by
the following equation:
Yo

—_ —_ X .
(aby=L"Ys, Yoy i (x,—x,)#0. 4.13)
Xt_xs Xt_xs

If X — Xs = 0, the equation becomes X = X;.
Step 1.2 Compute the value y of the edge point coordinates between Ps and Py
by using the value of X in the following way:
y=ax+bh, X=X to Xs. (4.14)
Step 2. Find out the leftmost pixel and rightmost pixel denoted as (X., y.) and (Xr, Yr)
after comparing the X coordinate of each edge pixel.
Step 3. Find out the maximum®and minimum Y coordinates of each value of X;,
denoted as (Xui, Yui) and"(Xgi, Ydi)-
Step 4. For each pixel, Pi(X;, Vi)s if its X coordinate is between X, and Xgr and its value

of y satisfies the following inequality, then P; is considered as an object pixel:

Ydi < Yi < Yui. (4.15)

4.2.4 Eliminating Noise of Background

Because of the effect of the noise and edges in the background, the experimental
result of object detection is usually not satisfactory, as shown in Figure 4.6. If a wall
or the floor under the object is not clear, it usually influences the result of the moving

of the control points. Hence, we have to improve the method for object detection.
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(a) (b)
Figure 4.6 Effect of background on object detection (a) Before detection. (b) Result of

detection.

Besides the methods of Section 4.2, we add the strength of pull and drag between
the control points. We hope that the distance of adjacent control points can keep inside
a reasonable domain. In order thachieve this gpal; the number of the control points is
determined by a beginning reqfangle size. rAccording to the length of a rectangle’s
boundary and the coordinates of ther‘ féur’ éﬂdpoinfs of the rectangle, we compute
every control point position on the edge' of the féctangle so that every control point
can keep a fixed distance to each other. Utilizing the distance of the control points, we
can adopt a threshold Dy such that the distance between two adjacent control points
are kept inside D; when the control points are moving along the path.

As illustrated in Figure 4.7(a), the control point P.(X;,Y;), and the two points,

P, (X_,Y,,) and P, (X,,,Y;,) areadjacent points of P;. We compute the distances

D, and D, by the following equations:

D, :|Xi _Xi—1|+|yi —Yia

; (4.16)

D, :|Xi _Xi+1|+|yi - Yi+1|- (4.17)
If the inequality D, + D, > D, is true, then we will modify the position of the

control point P, as shown in Figure 4.7(b). Utilizing the coordinates of the control
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points P_, and P,

i+l

we can get a center position m; between them by using the

5 Pl + Pi+1
equation of m; =

. After computing a vector V; =m, —P,, the position of the

control point P, is changed to the new position specified by P, +%\7i .

P
3
_Vi
44/. R
m;
I:)i+1
(a) (b)

Figure 4.7 Correction of control points. (a) Before correction. (b) After correction.
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An experimental result of the ahﬁ?é-ineﬁﬁl)ﬁé’d’-méﬁibd is shown in Figure 4.8.
. T ey AT

(a) (b)
Figure 4.8 Results of improved method. (a) Detecting a ball. (b) Detecting a tub

The vehicle sometimes will navigate on a decorative floor, as shown in Figure
4.9(a). Before detecting the object, we have to filter the floor region by using a region
growing technique. A result is shown in Figure 4.9(b). When the position of control
point is on the floor region, it is moved without being stopped until it leaves the floor

region.
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(@) (b)

Figure 4.9 Elimination of a floor region. (a) A decorative floor. (b) An experimental

result.

NVTTTTT

4.2.,5 Detailed Objegt‘le_ ctlbﬁu_

= : A
We have already descrlbéd, the con;:ﬁpt behnitd the proposed improved snake

l.?"':"" k \a

algorithm in the above sections. ‘Hhe 'ﬂgtalLdf-'the /yfi;ﬁ)posed object detection process is
,.-"

l.'

described in the following algonthm T

Algorithm 4.2. Object detection.

Input: An object image I.

Output: An object region ObjR.

Steps:

Step 1. Specify manually four end points of a rectangle in the ICS as initial control
points and compute the coordinates of the four points.

Step 2. Compute the coordinates of the other control points according to the

coordinates of the four endpoints.
Step 3. Compute the center point Peener by using the coordinates of all the control

points.
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Step 4. Use a region growing technique to filter out the floor region.

Step 5. Compute the internal energy Einwernal and the external energy Eexwernal of every
control point. And compute the original snake energy Egpae by summing up
all the values of Einternal and Eexternal-

Step 6. For each control point, do the following steps.

Step 6.1. Compute next position of the control point on the shrinking path and
its internal energy Einernal and external energy Eexwerna and the new
snake energy NeWEspake by summing up Einternal and Eexternal-

Step 6.2. Compare the original snake energy Egyake With NeWEgpage.

Step 6.3. If original energy Espake is smaller than NewWEgnake, the control point is
not moved to the next position. Else moving the control point to the
next position and substitute Eg,ae With the new snake energy NeWEgnake.

Step 6.4. Compute the distances D} and.D; between the control point and its two
adjacent points.

Step 6.5. Sum up D; and D;.7If their. sum"is larger than a threshold Dy, then

adjust the coordinates of the control point by using the method described in
Section 4.2.3 and compute the new snake energy.

Step 7. When reaching the minimum energy, stop moving the control points.

Step 8. Compute the object edges using the coordinates of the control points.

Step 9. Detect object region ObjR using the coordinates of the object edge points.

4.3 Object Feature Extraction

After detecting an object from an image, we hope to gather useful features of the

object for object matching. Through comparing the object features with those of a
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learned object, we can achieve the purpose of security patrolling. The object features
for use in this study are color, shape, and coordinates in the GCS. Among the features,
the coordinates are used as vehicle navigation data, and the others are used for object
matching. In Section 4.3.1, we will illustrate how to use simple mathematics to
describe color features. We will use an ellipse to fit the shape of each object, as
illustrated in Section 4.3.2. Finally, a coordinate transformation is described in

Section 4.3.3 for computing the coordinates of objects in the GCS.

4.3.1 Color Feature

Each object has its own colors which are the most useful feature. We can use it
for object matching in the security patrolling process. About color data, we adopt the
RGB color model and choose certain statistics to describe color features in this study.

After segmentation of object pixels, we.compute the means of the R, G, and B
colors, respectively, and denote them as ﬁobj : aobj , and Eobj. The means can be

used to describe the whole color situation and ‘are influenced slightly by noise or some
fragmented edges. The equation is shown as follows:
2R 2.G 2B
i=1

(ﬁObj 96013] ,Eobj) = ( i=l , i=1 , i )
n n n

(4.18)

whereR;, G;, and B, are the R , G, and B values of object pixels, and n is the
number of the object pixels.
Representing the color deviation of the object, we use the standard deviation to

show this feature. We compute the standard deviations of the R, G, and B values,

respectively, which are denoted as R, G and B

obj > Oopj » oj - 1he equation for this is

shown as follows:
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(R%,G B) = (|- A RE )

obj > ~obj > = obj
) J ) n n n

4.3.2 Ellipse Fitting for Shape Representation

Shapes of objects are usually different, such as circle, triangle, ellipse, rectangle,
etc. Moreover, many object shapes are irregular. Hence, if all shapes can be
represented by using only one shape, it will be convenient and fast. In this study, we
use the ellipse shape to represent all object shapes. Although the shapes of objects are

different, we always can compute an ellipse shape to fit the object shape.

. . . X’
According to the ellipse equation, —-+ Y

2
b2

=1, there are two unknown variables

<]

a and b which are the horizontal and the. vertical axis length. We can distinguish
different objects by different values, of @and'b. Because the center of the ellipse is
usually taken to be the origin of the coordinate: system, we must change the

coordinates of the object pixels and the origin-is moved to the center of object region

2 2

such that the equation + rel =1 can be used.

a’
The center of the object region is denoted as Py, (Xq,, Yoy )» and calculated by

the following equation:
(Xobj ygb,-)=%(i2n0‘, Xi,iZno‘,yi) (4.20)
where variables, X; and Y;, are the coordinates of the object pixels in the ICS. For all

the object pixels (X;,Y,;), they are moved to the new coordinates, denoted as X, and
y;, by using the equation (X[, ¥{)=(X; =X, Y; — Yo, ) and the least square method

to solve variables a and b by the following equation:
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a= . - - . ; (4.21)
(Z x?yf)(Z y;z)—(z x;z)(z )
XXy - (XYY
b i=0 i=0 i=0 (422)

ORRBORBEIRBONRT

Finally, we take a and b to represent this object. An experimental result is shown

in Figure 4.10.

Figure 4.10 The ealse representation of a safe.

4.3.3 Coordinate Transformation

The coordinates of an object are useful for navigation guidance. When the
vehicle navigates along a route, it can detect the object according to coordinates of the
learned object to help navigation on the right path. In this study, we use the
coordinates of the object in the GCS as navigation data.

After detecting an object in an image, we use Equation (4.20) to compute the
center of object pixels, such as the red point shown in Figure 4.11. By using a
region-growing technique to find out the floor region in the image, the object can then

be located on the floor, such as the green point shown in Figure 4.11. Computing the
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coordinates of green points in the VCS by the 2D mapping technique as illustrated in
Chapter 3, we can get relative positions of the vehicle and the object.
Using the coordinates and the direction angle of the vehicle in the GCS, we can

compute the coordinates of the object in the GCS by the following equations:

GXypj = VX - €08 =V -sin€ + GX,, 5 (4.23)

GYopj =VXgpj -SINE + VY, -cos O+ Gy, (4.24)

where GXopj and GYoj are the coordinates of the object in the GCS, VXopj and Wop; are
the coordinates of the object in the VCS, and GXcar and GYcqr are the coordinates of

the vehicle in the GCS. Finally, @1is the direction angle of the vehicle in the GCS.

(©) (d)

Figure 4.11 The locations of objects (a) An original image in which a ball is on the

floor. (b) An original image in which a TV is on the wall. (c) An

experimental result of (a). (d) An experimental result of (b).
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Chapter 5
L_earning Strategies for Indoor
Navigation by Manual Driving

5.1 Introduction

Before the vehicle navigates, it is a necessary process that we control the vehicle
to record the paths and objects. Because indoor environments are usually complicated
and objects are placed at different positions, building a complete navigation map is
necessary. Hence, to create the .havigation path ahd choose monitored objects is a
primary work of security patrolling by vehicle navigation. We will describe how to
build navigation data by manual dtivingin this-chapter.

In Section 5.2, we will first describe the control rules and the entire manual
learning process simply. It includes all the steps that the user may use a control
interface to control the vehicle to patrol in indoor surroundings and point out which
object has to be monitored by using the control system.

Two kinds of navigation data are used in this study. One is path data and the
other object data. Although we can get the position of the vehicle by the odometer
value any time, how to represent the entire path by using useful and simple values is a
problem. In Section 5.3, we will describe how to gather path data when the user
controls the vehicle to navigate in indoor environment. Every object has its own color
and shape; if different kinds of objects use different learning methods, the work will

be annoying to the user. We design a simple object learning method to solve this
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problem in this study, as illustrated in Section 5.4. The door is considered as an object,
and monitoring of it is also described in Section 5.4.

After learning whole data, we have to utilize the data to build information for
security patrolling. In Section 5.5, we will describe how to use path data and the
positions of learned objects to create a navigation path which is then used when the

vehicle navigates automatically.

5.2 Control Rules And Entire learning
Process

In this study, the user conttols the vehicle to. navigate by the following fives

types of actions.

(1) Moving forward.

(2) Moving backward.

(3) Turning left at the original position.
(4) Turning right at the original position.
(5) Stop.

Because the vehicle only owns three wheels and the rear wheel is an auxiliary
wheel, rotation of the vehicle depends on the two side-wheels. Also, the vehicle can
rotate at any position. Therefore, we can control the vehicle to move to the
neighborhood of an object and a door, and let it turn to the front of the object or the
door to learn relative object features.

The control rules for the vehicle are described as follows.

(1) When a user wants to turn rightward or leftward, the vehicle should be made still
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2)

€)
(4)

first. If the vehicle is moving, the user has to stop the vehicle and then turn the
vehicle.

Because the view of camera is fixed, there is a limit of distance in the front of the
vehicle, 60cm, in which the camera can not take clear images of the scene.
Hence, the distance between the vehicle and a learning object has to be kept
larger than 60cm.

The process of object learning should be done when the vehicle is still.

The object region should be around the center of an image.

The entire learning process is described as following algorithm and a example of

learning process is shown in Figure 5.1.

A parking
Q space

Navigation
direction

@ [. Mavigation

path

% ) ‘ The vehicle

Figure 5.1 Proposed learning process.

Algorithm 5.1. Learning process.

Input: The user control interface in the PC.

Output: Learned data.

Steps:
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Step 1. Control the vehicle to move from a start position using the control interface.

Step 2. Let the vehicle move to the front of a monitored object or a door.

Step 3. Choose the monitored object by using the user control interface in the control
system, a personal computer in this study. Compute the features of objects or
doors, and show the result on the control interface.

Step 4. If the learning result of the object and door are not satisfactory, repeat Step 3
until satisfactory, and then save the features of the objects and doors.

Step 5. Repeat Steps 2 through 4 until all the features of the monitored objects are
grasped and saved.

Step 6. If another object is to be learned, repeat Steps 2 through 5; else, continue
following steps.

Step 7. Decide whether the learning process should be continued, and continue
driving and repeat Step-2,through 6 if so; else control the vehicle to move to
the destination and finish thé l€arning-process.

Step 8. Save the learned data.

(Start 1earning> Stop at a position > Turnotro dz:)(())‘rbject — Chogizz(:)rbject %Compl(lit:tafeature

No

Yes
v

N

Yes
< Store navigation data in the End leaming
storage

Figure 5.2 Flowchart of manual learning process.

Record learned data

No

v




5.3 Process of Learning Navigation
Paths

When the vehicle moves along a path, the odometer values are changed
continuously. The odometer provides the rotation angles and the vehicle coordinates
(X, y) with the coordinate origin being the beginning position of the vehicle. We only
record vehicle coordinates as path data in this study.

Although the coordinates are changing all the time, we just save some
coordinates (X, y) which are called node N; in this study. Two types of data are stored
in node N;. Besides the coordinates, a number denoted as NNumber and used to mark
the order of the object is also saved. The.number is computed from 0.

Saving the path data is different ffom saving.the object data. The user has to
point out an object manually in the acquited image on the interface in the object
learning process, but the user does mot have-to do so in the path learning process.
When the user controls the vehicle to*move ahead or back, the vehicle system will
automatically collect values of the coordinates (X, y) and the moving direction.

Each node of a path is marked with a serial number. After finishing learning, we
have a set of notes, denoted as Npan. The process of recording the path data is

described as an algorithm in the following.

Algorithm 5.2. Path node collection.

Input: The coordinates provided by the odometer in the vehicle.
Output: A set of nodes denoted by Npath ={No, N1, Na, ..., N}.
Steps:

Step 1. Record the first node as (Xo, Yo) = (0, 0) into the set Npath and mark the node
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as Ny with index 0, when the vehicle is at the starting position.

Step 2. Record the node Ni(Xi, Yi) into the set Npan by taking the values of the
odometer (X, ¥) and mark the node P; with the next index number, when the
vehicle is at one of the following three situations:

(1) when the direction angle and coordinates are corrected, as described in
Section 3.3;

(2) when the user controls the vehicle to turn;

(3) when the user controls the vehicle to learn the data of certain objects.

Step 3. Record the finally node N; into the set Npah and mark it as N¢ by the next
index number when the learning process is finished.

Step 4.  Save all the nodes of the set Nyath into the PC.

According to Section 3.3, theé navigation path of vehicle is a curve when the
vehicle moves ahead. In the learning process; the. direction angle and coordinates of
the vehicle are corrected automatically.-In-this,study, we design the direction angle
and coordinates to be corrected once.each time when the vehicle moves for the
distance of 250cm. We record a node each time the vehicle comes to a stop in a
learning course. Besides the start position which the vehicle begins to move ahead,
there are two types of nodes which should be recorded. One is the position where the
vehicle turns back to a straight path, as denoted by node sl in Figure 5.3(a). The other
is the position where the vehicle already comes back to a straight path, as denoted by
node S2 in Figure 5.3(a). Recorded nodes are shown in Figure 5.3(b) when the vehicle
navigates along a straight path. And we use the same method to record nodes when
the vehicle moves backward.

As an illustration of the result of applying Algorithm 5.2, we show an example
of recorded nodes in Figure 5.4 that a navigation path shown in Figure 5.1 mentioned

in Section 5.2. We can see that all critical nodes of the three situations are recorded in
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addition to the start and the end nodes. All nodes are marked with index numbers
according to the order of patrolling. And the start node and the end node are the same
node in this example. The index numbers are useful for path map creation and object

detection. We will describe them in detail in Section 5.5.

O Recorded node

——  Navigation path

(a)

PR R

Figure 5.3 Recorded nodes when the, vehicle moves straightly. (a) Nodes in one circle

of the navigation:Correcﬁon."(‘Bj Nodes in a longer path.

Situations of
recording
Ol -

. Starting and
Finishing

—
"

Q
— ( ) O Correction
&

— . Tumning
oy

. % )
. O Learned Object

Figure 5.4 An experimental result of path learning with critical nodes recorded.
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5.4 Process of Learning Monitored
Objects and Doors

5.4.1 Process of Learning Objects

When the user controls the vehicle to move to the front of objects, the user must
use the mouse connected to the PC to choose an object which appears in the image.
As soon as the user chooses the object, the object data are computed automatically
and saved. The set of object data is denoted by LearnO; and i = 1, 2, 3, ..., n. There
are six kinds of data to be saved in LearnO;. They are:

(1) The color set denoted as LearnCopj,i.

(2) The shape set denoted as LearnSqpji:

(3) The GCS coordinate set:denoted as L.earnGCop;,i.

(4) The ICS coordinate set/of object centers denoted as LearnCICp;;;.

(5) The set of light source of the floor, denoted as LearnCigor;.

(6) The number of path nodes NodeNumber.

Hence, we have LearnO; = {LearnCICgpji, LearnCopji, LearnSoyi, LearnGCopji,
LearnCiioori, NodeNumber}.

The methods for computing the color, shape, and coordinates of the object have
already been described in Section 4.4. After the vehicle records all the data of
monitored objects LearnO;, we save the data into the set LearnOgpject. The entire

learning process of the object is described as follows.

Algorithm 5.3. Learning of object features.

Input: A color image | captured by the camera on the vehicle.

Output: A set of object data LearnOgpject = {LearnO,, LearnO,, LearnO,,...,
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LearnO,}.
Steps:
Step 1. Control the vehicle to move to the front of the first object and turn toward it
such that the image of the object can be taken.
Step 2. Use the mouse to choose an object from the image, as shown in Figure 5.5(a)
and enclose the object by a rectangle.
Step 3. Release the button of the mouse for the computer to perform the improved
snake algorithm to capture the object, as shown in Figure 5.5.
Step 4. Compute the elements of the object data in LearnQO, as follows:
Step 3.1.  Record the object center coordinates in the ICS into LearnClCopj,;
by using Equation (4.5) with LearnClCpj; computed by
LearnCICopji = { LearnsUobj center,i, LEAXN_Vobj centerj,i |- (5.1)
Step 3.2. Record the mean.and standard deviation values of the R, G, and B
values into the colot-set-LearnCgi by using Equations 4.13 and

4.14 with LearnCgpjji computed as

= {LearnRa;ji, LearnGa;i, LearnBosi, LearnR® ., LearnG

LearnC obj.i obj,i ?

obj, i
5.2
LearnB™ (5-2)

obj,i}'

Step 3.3.  Record the shape data of the object into LearnSep;; in terms of the
horizontal axis Learn ag,; and the vertical axis Learn _boy; as
illustrated in Section 4.4.2:

LearnSqpji = {Learn_aopj,i, Learn _bgp;,i}. (5.3)

Step 3.4. Record the coordinates of the object in the GCS into the set
LearnGCyyp;;i in terms of Learn Xopji and Learn Yo as illustrated
in Section 4.4.3:

LearnGCopji = { Learn Xopji, Learn Yopji}. (5.4)

Step 3.5. Record the means of the R, G, and B values of the floor into the set
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LearnCrigori, denoted by Learnﬁﬂoor,i , Learnaﬂoor,i , and
LearnB floori «

LearnC = {Learnﬁnoor,i ,LearnG fioor.i, LearnB fioor i }. (5.5)

floor,i

Step 3.6. Record the number of path nodes NodeNumber which the vehicle
has located.

Step 5. Decide whether the data of object LearnO, should be saved into LearnOgpject
or not. If the result of object segmentation is not satisfactory, repeat Steps 2

through 4.
Step 6. Save the object data LearnOg into LearnOgpject and control the vehicle to
move to the next object and repeat Steps 2 through 5 to save object data
LearnO; into LearnOgpject: liﬁtil'.all dat'a_l "o'f'.r_nonitored objects are collected and

saved.

Step 7. Save LearnOgpject into the PCLaﬁéﬁ&;}_sh the learning process.

(@) (b)

Figure 5.5 Learning process of choosing an object manually. (a) Choosing an object.

(b) An experimental result of computing object features data.

Because of the lighting effect of the environment, the R, G, and B values of an

object are not always the same when the camera takes the object images at different
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times. It causes erroneous results when the vehicle navigates using the object color
feature to conduct object matching. We utilize an offsetting technique to solve this
problem. We record the color features of a floor area in an object learning process. In
Figure 5.6, the red area is the floor area, and we compute the R, G, and B means of the
interior area of the rectangle. As the object matching process is done when the vehicle
navigates, we utilize the differences of the R, G, and B values of the floor region to

modify the thresholds used in the object matching process.

Figure 5".6A éelected floor region.

5.4.2 Process of Learning Doors

When a user controls the vehicle to move, he/she can choose doors as monitored
objects. After the features of a door are recorded, the vehicle can check their situations
in a security patrolling navigation. When the vehicle learns the features of a door, we
record its color data (denoted as LearnCgeri) and coordinates (denoted as
LearnGCoor).

All door data are saved in a set D; and the date sets of all doors in the navigation
are saved in a set LearnD = {Dy, D, Dy, ...,Dy}. The entire learning process for a

door is described in the following.
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Algorithm 5.4. Learning of a door.

Input: An image I, and the number of nodes NNumber.

Output: A set of door data D; = {LearnCgyoori, LearnGCyoori, NodeNumber, baseline}.
Steps:

Step 1. Point out a door on the image | using a cursor, as shown in Figure 5.7(a).
Step 2. Use a region growing technique to find out the door region DoorR, as shown

in Figure 5.7(Db).

T Bl . E:';r "-'.:- G "_:-.'_. Lo P e
“d?ﬁxh ,ﬂfﬁgﬁ
@ S )

Figure 5.7 A learning process of choosing a door manually. (a) Choose a door. (b) A

door region is shown.

Step 3. Compute the means of the R, G, and B values of DoorR and save them in the

set LearnCgoor as follows:

LearnC,,,.; = {LearnR oori, LearnG oori, LearnBoor.i}. (5.6)

door,i

step 1. Compute the coordinates of the door in the GCS and save them in the set

LearnGCyoori as follows:

LearnGC,,,, ; ={Learn _ X, i, Learn_y, . .}. (5.7)

Step 4. Record the index number of the node as NodeNuber = NNumber.

Step 5. Detect the edges of | by applying the Sobel operator to get an edge image S.
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Step 6. Detect the door edge eqoor, the right baseline edge er, and the left baseline
edge e of the door, as shown in Figure 5.8.
Step 7. Compute the slopes agoor, @r, and @ of eqoor, €r, and e, using a line fitting

technique by the following equation:

> udv-nduv

a=-—="2 £ 5.8
ORI S
Step 8. Compare a, and a; with agoor by the following equation:
| ar — Adoor | < | a1 — Adoor | (5-9)

If the above equation is true, then set baseline = 1; else, set baseline = 0. The variable
baseline is used to illustrate which baseline is used in the navigation process.

As shown in Figure 5.8, we utilize a baseline of a wall and compare it with the
edge of the door to test whether.it 1s open or not, as done in Step 9 in the above
algorithm. Hence, if the edge of-the.wall is not patallel to the door edge when the door
is closed, we can not use its baseliné.to-compate with the door edge. So we compute
the slopes of two baselines and the‘door edge; and choose a baseline whose slope is
close to the door edge for use in the comparison. The slope of e, is closer to the slope

of eqoor than that of ey, as seen in Figure 5.8.

Figure 5.8 An experimental result of detection of three edges.
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5.5 Process of Automatic Path Map
Creation from Learned Data

After ending the learning process, the path data Npam, the object data LearnOgpject,
and the door data LearnDgqor are already saved. We use the index number NNumber
of each node and the total number of nodes NodeNumber to create a path map for later
navigation sessions, as shown in Figure 5.9. By using the index numbers NNumber of

the nodes, the vehicle can move along the navigation path.

@ Node

Object

. DUUT

0Anmd 17

Figure 5.9 An example of navigation map.
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Chapter 6
Security Patrolling in Indoor
Environments

6.1 Introduction

By using the learning strategies mentioned in the previous chapters, path data
and object data are saved in the PC. The vehicle can navigate according to the
information. In this chapter, we will describe the entire process of security patrolling
in more detail.

In Section 6.2, we will first describe a navigation process briefly. The vehicle
navigates according to the node data‘and-checks- the existence of the monitored
objects by using the coordinates of the learned object during the navigation process.

In Section 6.3, a line following technique is proposed. Since the vehicle
navigates along the nodes one by one, the entire navigation path can be divided into
many straight sections. A line following technique is used for correcting mechanic
errors generated in each straight section when the vehicle is moving from one node to
another consecutively.

In Section 6.4, we will propose an object security monitoring process. First, the
vehicle moves forward to a node where there is a monitored object nearby, and the
object should be detected according to the previous learned data in the learning stage.
Next, a rotation angle is computed such that the vehicle can turn accordingly toward

the monitored object. Also, by using the improved snake algorithm, the vehicle
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detects an object by using the improved snake algorithm. Finally, a recognition
process is conducted to compare the images with the learned ones to decide whether
the original object exists or not.

In Section 6.5, we will describe the proposed door situation recognition process.
The door situation will be checked to see if it is opened or closed when the vehicle
moves automatically to a suitable position recorded in the learning process.

In Section 6.6, we will describe a vehicle coordinate correction method. Since
the vehicle might navigate a long distance in the original path gradually, the method is
basically based on a vision-based technique which is proposed for reducing the
accumulative mechanical errors for precise path navigation. When the vehicle detects
a previously learned object from the image, our method will use this information to

correct position errors.

6.2 Navigation Process

In the security patrolling process, the vehicle navigates along the generated path
by visiting each path node consecutively through the routes specified by the node
edges and checks the existence of the learned objects. A simple security patrolling
process is described in the following algorithm.

Algorithm 6.1. Security patrolling.

Input: The set of nodes Npath, object data LearnOgpject, and doors data LearnDgoor.
Output: Navigation process.

Steps:

Step 1. The vehicle starts navigating from a starting node Ny.

Step 2. Scan the node list Nyath to read the next node data.
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Step 3. Perform the line following process until the vehicle arrives at the next node.
Step 4. Check whether the vehicle has to monitor objects or doors.
Step 5. If there exists a monitored object O; or a door Dy in the current node, take the
following action; else, continue the remaining navigation.
Step 5.1. If the learned data are object data, do the following steps.
Step 5.1.1. Turn toward to the learned object according the coordinates
recorded in the learning process.
Step 5.1.2. Do the object matching process.
Step 5.2. If the learned data is a door data, recognize the door situation.
Step 6. Read the next node data. If there exists the remaining nodes, repeat step 3 to

step 5. Else, finish the navigation.

Start navigation )

v |

Read the learned data

v

» Move to the node

& Object Door—y
No Turn toward to the Recognize door
object situation
Yes
Object matching

End Navigation

Figure 6.1 Flowchart of security patrolling process
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6.3 Navigation Strategy for
Straight-Line Sections

The navigation strategy of line following is adopted to reduce deviations from
the route when the vehicle passes a node in its navigation path. The line following
process will ensure that the vehicle passes each node during crossing two adjacent
nodes. The details are described as an algorithm as follows and a related figure is
shown in Figure 6.2.

Algorithm 6.2. Line following navigation.

Input: Coordinates L(Xod0,Yodo) and direction angle &, of the vehicle provided by the

odometer, next node Ni(Xi+1,Yi+1)sandsa unit vector i= [1,0].

Output: A navigation path between two adjacent nodes.

Steps:

step 1. Compute a vector \7, by‘using the following equation.

v_{xi}_|:xi+l_xodo:| (61)
LY ] LY Yoo | '

step 2. Compute the direction angle &, of the vehicle in the GCS after the vehicle

turns toward the node Nj;; by using the following equations:

cos™ E),
wi"
(=1)x cos’l(\ii—.i_), if Y, <0.
Vi

if'Y; > 0;
(6.2)

step 3. Compute the rotation angle as a = 6 — & and the navigation distance

asd:’\ﬂ.

step 4. Because of the mechanic error, the vehicle can not move to the correct

73



position as shown in Figure 6.2. A correction angle £ is computed as follows

by using the curve equation y = ax® + bx + ¢ as illustrated in Section 3.3:

vl |

step 5. Compute the real rotation angle as r = a— f.

step 6. Turn the vehicle leftward for the angle of r if r is larger than zero; otherwise,
turn the vehicle rightward for the angle of r. Therefore, the direction of the
vehicle become 6 — -

step 7. Move the vehicle forward. Read the odometer to obtain the current vehicle
location L, and compute how far the vehicle has moved as d; = |L, — L|.

step 8. End this navigation session if d; > d.

Theoretically, there are twe®main parameters we have to compute in the
navigation session, namely, the rotation angle-7 and the navigation distance d between
two adjacent nodes. By using-the lcutve built in' advance which is mentioned in
Chapter 3, we compute the real distance.d and angle r. Although the vehicle can not
move straightly due to the mechanic error, it can still arrive at the next position
accurately by adjusting the direction of starting for compensation.

As shown in Figure 6.2, the starting position of the vehicle should be N; in theory,
but the vehicle will not stop at node N; in last line following navigation from N;_; to N;
due to the condition of ending a navigation session. The real position of the vehicle
became L. Hence, we can compute parameters of a navigation session by using L

provided by the odometer instead of N;.
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—+ Expected path

—= YVehicle direction

@ L:arned node

£ Real position

Figure 6.2 Line following navigation.

6.4 Object Security Monitoring Process

In this Section, we will describe the detailed object monitoring process. In the
process, the vehicle has to search for the'monitored object or the door automatically
which was pre-selected by the uUser in the security patrolling. Then it checks the
existence of the objects or the door situation. A new parameter NodeNumber is created
which is stored in each object data for specifying the position of the object searching.
Another problem to be addressed is that when the vehicle moves to the neighborhood
of a monitored object, there are some unmonitored objects near the vehicle. How to
distinguish a monitored object from them is a problem we have to deal with. Here, we
use data of the learned objects to distinguish other objects. In Section 6.4.1, we will
propose an object detection method. And in Section 6.4.2, an object matching method
will be proposed.

Although the vehicle can detect the learned object according the object
coordinates recorded in the learning process, in practice, the navigation deviation

often causes the vehicle to be unable to search an object at once. The vehicle moves to
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the neighbor of the object and detects it but it can not detect an object if the object is
not in the image. The last method in Section 6.4 is to decide the searching angle of the
object due to the navigation deviation. Also in this section, we will describe the entire

object monitoring process.

6.4.1 Proposed Monitored Object Detection Method

When the vehicle moves to the neighborhood of the object O;, the data of O;,
LearnO; = {LearnCICypji, LearnCypji, LearnSeyji, LearnGCepji, LearnCoori,
NodeNumber} which is illustrated in the learning process is used to detect the object
Oi. The detailed algorithm is described as follows.

Algorithm 6.3. Monitored object detection.

Input: A color image |, coordinates'L{(X,4o,Yodo), anid direction angle &, provided by the

odometer, and a learned object data LearnO;.

Output: A set of object region OBJR.

Steps:

step 1. Use coordinates of the object, LearnGCopji = { Learn Xopji, Learn _Yop;i},
and the coordinates of the vehicle L to compute rotation angle « by the
following steps, as shown in Figure 6.3.

step 1.1.  Compute a vector V by the following equation:
_ X Learn_xobj,i —Xodo
V= = . (6.4)
Y Learn _ Yoy i = Youo
step 1.2. Compute a direction angle 6 between the vector V and the unit

vector of GCS 1 by the following equation:
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-1

Vel
cos” (=)» ifY 20.
VI

(6.5)
(~)xcos™ (=), if Y <0.

di

step 1.3.  Compute the rotation angle o as a= 6, — 6.

Vei
i

step 2. Turn the vehicle leftward for the angle « if « is larger than zero; otherwise,

turn the vehicle rightward for the angle .

0

N

Figure 6.3 Illustration of turn angle computing.

step 3. Capture an image and decide the coordinates of the control points in the ICS
of the snake algorithm by the following steps.
step 3.1.  Decide four endpoints of a rectangle in the ICS in the following way,
as shown in Figure 6.4.

lo(Uo,Vo) = ((—1.5) x Learn_aop;i, Learn_Vobj centerji + 1.5 x Learn bop;,i)
l1(uy,vi) = (1.5 x Learn_aobji, Learn_Vobj centerji + 1.5 x Learn_aqp;;i) o
I2(U2,V2) = ((—1.5) x Learn_agp;i, Learn_Vopj centerji — 1.5 x Learn_aqp;,i) (©0
I3(u3,v3) = (1.5 x Learn_aopj,i, Learn_Vobj centerji — 1.5 x Learn_aop;;i)

step 3.2. Execute the improved snake algorithm by using the four endpoints to

detect an object.

step 4. Get the detected object pixels ObjR by using the coordinates of the control
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points in the ICS, as shown in Figure 6.4.

Figure 6.4 An experimental result of object region.

In this process, the vehicle turns its head forward to the front of the object. If no
mechanic error occurs, the center of'the object, region is located on a vertical line

which is at the image center. It i$'shown in Figure 6.5.

&il Otljd.?ut center

Figure 6.5 An ideal experimental result of the vehicle turning to the object.

6.4.2 Proposed Object Matching Method

After finishing the object detection process as illustrated in the last section, a
matching rule is proposed to determine whether the object is exact the same as the

previous learned one. A detailed matching algorithm is described as follows.
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Algorithm 6.4. Object Matching Process.

Input: An image | and a learned object data O;.

Output: A boolean value, true or false.

Steps:

Step 1. Perform the monitored object detection process.

Step 2. If the object cannot be detected, as shown in Figure 6.6, end this process and

return false.

Figure 6.6 An exﬁg_l"_imé.r;gt;ﬁt_gl msu,l't_-'_of .c_l_e}tecting no object.

i =
L ik

Step 3. Else, detect an object Obj, and compute the feature data which are denoted as
ObjData= { Cqbj, Sobj, GCobj, Crioor} - All features are illustrated as follows.

(1) Color data Cqp;.

Ca; = {Robi, G, Bavi, R3S, Go . Besi b - (6.7)

obj > ~obj > ~obj
where ﬁobj,aobj, and Eobj are the means of the R, G, and B values respectively.

Rsy» Go»and By are the standard deviations of the R, G, B values, respectively.

(2) Shape data Sqp;.
Sobj = {@obj, Dobj} - (6.8)
aobj and bopj are the horizontal axis and vertical axis of the ellipse to represent the
shape of the object.
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(3) Global coordinate GCop;.
GCobj = {Xobj, Yobi} - (6.9)
Xobj and Yopj are coordinates of the object in the GCS.
(4) Floor color Cgor.

C floor — {ﬁ floor , aﬂoor s E floor , R?Ici)or ’ G ?ﬁ)or ’ B?ﬁ)or} (6 10)

sd

Riioor , G fioor, and  Bioor are the means of R, G, and B values respectively. Riioor »

G ,and B are the standard deviations of R, G, B values respectively.

Step 4. Compare the learned object with this object by using the color data in the
following methods.
step 4.1. Compare the means of color data in the following way.

step 4.1.1. First compute light difference’by using the floor color.

Rld = Learnﬁﬂoor,i —ﬁﬂoor (6.11)
G, = Learngﬂoor,i —aﬂoor (6.12)
B, = LearnB fioor,i — B fioor (6.13)

Rig, Gig, and Byq are the differences of the values R, G, and B.

step 4.1.2. Compare these means by using three inequalities below.

Ruj + 4% Ry — LearnRay| < Ct, (6.14)
Gay + 2% Gy, — LearnGon| < C, (6.15)
Bu + 4 x By, — LearnBay| < Ct, (6.16)

where the parameter A is a coefficient and Ct; is a threshold.
step 4.2. Compare the standard deviations by using the following three

inequalities:
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Rsy — LearnRjgj,i‘ <Ct,, 6.17)
Gy —LearnGyy | <Ct,, (6.18)

By — LearnBjﬂLi‘ <Ct,. (6.19)

where the parameter Ct; is a threshold.
Step 5. Compare the learned object with this object by using the shape data in the
following ways.
step 5.1.  Compute the ratio of the horizontal axis and vertical axis of the learned
object and this object by using following equations.
LearnR = (Learn_aop;i / Learn_bo;;i) (6.20)
R = (obj / Dobj) (6.21)
Compare ratios in the following mequality.
| (LearnR./ R) — 1} =St (6.22)
The parameter St is a threshold.
Step 6. If the above inequalities are satisfied-in ‘Steps 4 step 5, then return true, else

return false.

6.4.3 Detailed Object Monitoring Algorithm

Although the vehicle can detect the object by using the learned object
coordinates and the vehicle location in the object detection process as described in
Section 6.4.1, there are some situations in which the vehicle can not detect the
monitored object. The reason is that sometimes mechanic errors cause the vehicle
moveing far away from the route such that it can not view the monitored objects, as
shown in Figure 6.7. Therefore, a complete object monitoring process including
searching view adjustment for improving the robustness is described in the following

algorithm and a detailed flowchart is shown in Figure 6.8
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(©) — & - (d)

Figure 6.7——'S‘it‘u‘ait-i"(')n's of E(3bj ect detection.

Algorithm 6.5. Monitored object monitoring process.

Input: A learned object data LearnQ;, coordinates L(Xodo,Yodo), and direction angle &,

provided by the odometer.

Output: A warning message or nothing.

Steps:

step 1. Perform the monitored object detection process.

step 2. Perform the object matching process.

step 3. If the return value is true, then end this process. Else, continue the following
steps.

step 4. Compute a rotation angle @ by the following equation;
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®= tan”' (g) . (6.23)

The symbol ’\7‘ is the distance between the object and the vehicle as illustrated

in Algorithm 6.3.

step 5. Turn the vehicle leftward for the angle @.

step 6. Repeat Step 2.

step 7. If the return value is still false, continue the following steps. Else, end this
process

step 8. Turn the vehicle rightward for the angle 2 @.

step 9. Repeat Step 2.

step 10. If the return value is still %lﬁ_, a ?)E)varning is announced. Else, end this
__qﬁ.": .:. 'h_d":':"-._ i

" B,
% iz [l i
process. 5 T r o, e
= 6l Wk,
h"F | o [ 1 I -
=] i e R
ol B T | =
b£'| . .-"-'f-:-:?:".-. i i -
= 1 kg
“ | Turmn toward the
'l'_FJ b oY .
o object
o
Learned data

Yes » Stop monitroing

Figure 6.8 Flowchart of object matching.
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The main goal of turning the vehicle is to search an object. When the vehicle
cannot discover the desired object, it must turn left or turn right for the angle @ to
search the object again. The angle @ is extracted according to the distance between
the vehicle and the learned object. After finishing the searches in the three directions,
if the vehicle still can not find the desired object, then a warning message is

announced.

6.5 Detection of Door Opening

In this section, the detection: algorithm fot. the determination of the current
situation of a door is proposed~The'algorithm is performed after the vehicle moving
itself to the front of a door, and 1t'is conducted-to detect if the door is open or not. The
detection process is illustrated as following algorithm.

Algorithm 6.6. Detection of door opening.

Input: An image | and a set data of the door D;.

Output: A Boolean value, true or false.

Steps:

step 1. Detect the edges of | by applying the Sobel operator.

step 2. Detect the edge of the door E4 and the edge of the baseline E,. Choose the
right or left side baseline of the door according to learned data baseline.

step 3. Compute the slopes of the E4 and E;, by the following equation:

dudv-n>uv

Q) -nd x>

step 4. Compare a4 and ay by the following inequity:

(6.24)
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|ag — ap| < th. (6.25)
where th is a threshold.
step 5. If it is not satisfactory, it means the door is open, and then return true. Else
continue the following steps.

step 6. Compute color data by selecting a rectangular region, as shown in Figure 6.9.
step 7. Compare the color data. If it is satisfactory, then return false, else return true.

The main idea here is to utilize the edges of the door and the baseline. We detect
the edges of the door’s downside and baseline. We compute their slopes by using a
line fitting technique. If the door is closed, the edge of the door’s downside is parallel
to the baselines. Hence, the two slopes should be closer. But when the door is open

completely, as shown in Figure 6.9(b), we can not detect the edge of the door. Hence,

bz,
we utilize the color conditions to dg_?;’ade

S

(a) (b)
Figure 6.9 An illustration of door detection. (a) The door is opened. (b)

The door is closed.
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6.6 Improved Guidance Precision in
Navigation by Learned Object
Location

Although the line following technique and the mechanic error correction method
are helpful for the improvement of the navigation accuracy, it is still possible that the
vehicle moves for a great deviation from the normal path after a long distance of
security patrol. A vision-based technique is proposed to correct the navigation
deviation in this section. The main idea of correcting the navigation deviation is to
correct the position coordinates of the vehicle. Utilizing the known position of the
monitored object which was mentioned in Chatper5, we can correct the coordinates of
the vehicle in the GCS.

When the vehicle searches for the.object, an ideal situation is that the vehicle
turns directly to the front of the vehicle in the object detection process, as illustrated
in Section 6.4.1. However, if the vehicle has turned an extra angle @ leftward or
rightward to search for the object, as illustrated in Section 6.4.3, the angle @ has to be
considered during the correction of the coordinates of the vehicle.

Algorithm 6.7. Improved guidance precision in navigation by learned object
location.
Input: A detected object region Obj, the coordinates of the learned object LearnGCpj,i
= {Learn_Xopj,i, Learn_Yopj,i}, the direction angle &, from the odometer, and a
turn angle @ illustrated in Algorithm 6.5 in Section 6.4.3.
Output: A set of coordinates (Xy,yy) and direction angle 6.
Steps:

step 1. Compute the coordinates of the detected object (VXobj, VYobj) in the VCS now
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by using region Obj when the vehicle turns for the angle @ to detect the
object.
step 2. Compute the coordinates of the detected object (VX,, VY,) in the VCS when
the vehicle does not turn leftward or rightward for the angle @ by the
following equations:
VX, = VXobj X SIN@ — VYgpi X cos D, (6.26)
VYo = VXobj X cos@+ VYpi x sSIn@. (6.27)
step 3. Compute the coordinates of the vehicle (Ox,, Oyy) in the object coordinate
system by transforming the coordinates (VX,,VY,) by the following equation:
(OXy, Oyy) = ((=1) x VX, (=1) x V¥,). (6.28)
step 4. Correct the current direction angle of the vehicle by the following equation:

VY,
6, =6, ztan l(V—i) 28 (6.29)

O

Assume that 6, is the new Value of the direction angle.
step 5. Compute the angle p between the object coordinate system and the global
coordinate system by using the direction angle, by the following equation:
p=6-1/2-@. (6.30)
step 6. Correct the coordinates of the vehicle in the GCS by using the learned object
data by the following equations:
Xy = OXy x sinp — Oy, x cosp + Learn_Xoj,i; (6.31)
Yv = OX, x cosp — Oyy x sinp + Learn_Yopj,i. (6.32)
step 7. The vehicle navigates according to navigation strategy for straight-line
section.
The main idea of correcting the vehicle position is to utilize the recognized
monitored object GCS coordinates to modify the odometer values of the vehicle.

When the vehicle detects an object and considers it as a learned object, we can use its
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GCS coordinates. From the image; we can compute its VCS coordinates. The origin
of the VCS is the center of the vehicle and the coordinates of the object, VXq; and
VYo are the distances relative to the vehicle, as shown in Figure 6.10(a). Since we
transform the VCS to the coordinate system whose origin is the object center, we can
get the vehicle coordinates OX, and Oy,, as shown in Figure 6.10(b). Then using the
coordinates of the learned object, we can compute the vehicle position in the GCS.

The direction angle and coordinates are considered. In order to correct the angle,
we use the object detection process. When the vehicle turns to the front of the vehicle
in the object detection process, the object should appear in the image center if no
mechanic error occurs. However, if the error does occur, we correct the direction
angle of the vehicle by using the position of the object appearing in the image. The
real coordinates of the vehicle in the GCS can be‘ebtained from our method by using
the Ox, and Oy, and the direction angle.

As soon as we have corrected the-direction and coordinates of the vehicle, the
vehicle can not return the original node position,.as node N; shown in Figure 6.11. The
real position of the vehicle is L. We use the real position L of the vehicle and next
node Ni;; to compute the navigation path by using the line following technique
mentioned in Section 6.3, as blue path shown in Figure 6.11. Hence, although the
vehicle may not arrive at original position Ni due to navigation deviation, we use the
object to correct the vehicle position and vehicle can continue navigating in the
precise path without returning original position N;. It is helpful for improving
efficiency and precision of navigation.

Also, there is another situation we must consider. Although the vehicle turns
toward to the object, the vehicle will turn another angle @ additionally if the vehicle

cannot detect an object. Hence, @1is included in each correction computation.
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Figure 6.10 Coordinate Transform between the VCS and the object coordinate

system. (a) A sidelong view of the VCS. (b) A vertical view of the
object coordinates.

Figure 6.11 An illustration of navigation after correcting the position of the vehicle.
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Chapter 7
Experimental Results And
Discussions

7.1 EXxperimental Results

We will show some experimental results of the proposed security patrolling
system in this section. The user interface of the system is shown in Figure 7.1.

At first, a user controls the vehicle to. learn a path and some monitored objects
and doors, as shown in Figure 7.2. The experimeﬁtal images are shown in the remote
system. Figure 7.2(a) illustrates the results of the learning process in which the user
chose an arbitrary object to be anitofed by-selecting its area from the image. Figure

7.2(b) shows a door to be monitored, which has been selected by a user.
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Figure 7.1 An interface of the experiment.
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Figure 7.2 The learning images.

The entire learned data is shown in Figure 7.3. It includes the path nodes and

saved objects and a door. There are two safes saved in this experimental.

Situations of

O . recording
Starting and
Door . Finishing
O
O  Correction
L
Q |5
A T .
Q . . urnnmg
O Learned Object

Figure 7.3 An illustration of learned data.

After ending the learning process, the entire vehicle navigation process is shown
in Figure 7.4. Some experimental results of monitoring objects and doors are shown
in Figure 7.5. There are two regions in the images; the left side is the view of the

vehicle, and the right side is the image processing result. Some warning messages of
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monitoring results are shown in the image. Figure 7.5(a) ~ (d) demonstrate that our
system successfully recognizes the existence of monitoring objects. Figure 7.5(e) and
(f) include another successful example of our system successfully distinguishing

different kinds of door situations.

(©) (d)

(e) ®

Figure 7.4 A navigation process.
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Figure 7.5 The experimental result of security monitoring.
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Figure 7.5 The experimental result of security monitoring (continued).
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7.2 Discussions

By analyzing the experimental results of navigation, some problems are

1dentified as follows.

(D

2

€)

The result of detecting an object by using the improved snake algorithm might
become worse due to the complex background. The control points of the snake
will not converge to the edge of the object since the colors of background are
too complex. The control point will stop at the edge of background. In the future,
the results of the object detection will more satisfactory by improving the snake
algorithm.

Object matching is often degraded by the varying lighting condition. Although
lighting in indoor environment 1s more stable than outside, an image still can be
affected easily due to the-diaphragm of the,camera. The vehicle needs to stop
more than one second to wait-the light, steady. Since we use an offsetting
technique to overcome it, an eértoneous judgment sometimes will occur.

That the floor has to be flat is a constraint of our system. A mechanic error
correction model is used in this study but the situation of the vehicle wheel
gliding can not be totally overcome. The navigation precision is affected by the

roughness of the floor.
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Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

Several techniques and strategies have been proposed in this study and integrated
into an autonomous vehicle system for security patrolling in the indoor environments
with mechanic error correction and visual object monitoring capabilities.

At first, a setup strategy forthe autonomous ¥chicle is proposed. Two kinds of
tasks, namely, Location mapping calibration and mechanic error correction, have been
proposed to set up the vehicle before.its-patrolling. Feasible 2D Location mapping
calibration is proposed for acquiring the'relative positions between the vehicle and the
surrounding environment precisely. The mechanic error correction model which is
based on a second-order curve equation is proposed to improve navigation accuracy.

Next, some learning strategies are proposed for the autonomous vehicle,
including learning of the planned path and learning of monitoring objects and doors.
The user can easily control the vehicle to navigate in the environment and select
monitored objects in the image. And in order to make a precise navigation along a
path, one method is to use the coordinates of learned objects as an auxiliary tool to
adjust the position and direction of the vehicle. Another method is based on a line
following technique. Both ways have been implemented in this study.

In addition, a computer vision process has been proposed for security monitoring
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in the navigation path. Several processes, namely, object detection, object recognition,
object searching, and door opening detection, have been proposed to detect the current
situation during the patrolling process.

The experimental results shown in the previous chapter have revealed the

feasibility of the proposed system.

8.2 Suggestions for Future Works

The proposed strategies and methods, as mentioned previously, have been
implemented on a small vehicle system. Several suggestions and related interesting
issues are worth further investigation in the future: They are described as follows.

(1) Improving the object detection method---- In erder to detect monitored object
with a more complicated 1mage; the-object detection method need be improved,
which can then be adopted for‘more application environments.

(2) Adding the capability of object feature extraction --- This is especially useful
when the interesting image regions of an object are hollow. For example, the
things are a ring, a wheel, or a flowerpot, etc.

(3) Adding the vehicle abilities of obstacle detection and avoidance such that it can
navigate in complex and dynamic environments with objects or humans
appearing suddenly on the navigation path.

(4) Adding the ability of human detection and tracking during the vehicle
navigation.

(5) Adding the ability of conflagration detection in the house.

(6) Designing a friendlier user-machine interface and simplifying the learning

strategy for object and path learning.
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(7) Designing a camera system with a capability of panning, tilting, and swinging.
(8) Adding the capability of voice control in the learning process.
(9) Adding the capability of transmitting warning messages from the vehicle to

the user’s cell phone by using telecommunication systems.
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