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摘 要 

 

 

本研究主要是提出一套基於電腦視覺技術，可讓自動車航行在室內環境中且

具有安全監控的能力。我們利用一台小型自動車為實驗平台，並且利用無線操控

的方式讓自動車航行在室內的環境中。我們設計了一套人簡單且有效的學習方

式，讓使用者可以操控自動車行走且自由的選擇要被監控的物品或是房門，自動

車將會自動的建立導航的地圖。在學習完路線、物品和門的資料之後，我們運用

了一套完整的導航策略來完成安全巡邏的任務。這個策略包括了監控物品的安全

偵測和房門情況的識別，利用自動車判斷物品是否遭竊或者是門被開起，我們能

夠立刻發出警報給使用者，已達成安全巡邏的任務。最後我們以成功的學習與導

航實驗結果證明本系統的完整性與可行性。 
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Vision-Based Security Patrolling in Indoor Environments Using 
Autonomous Vehicles 

Student: Ming-Che Chen   Advisor: Dr. Wen-Hsiang Tsai 

Department of Computer and Information Science 

National Chiao Tung University 

ABSTRACT 

A vision-based approach to security patrolling in indoor environments using 

autonomous vehicles is proposed. A small vehicle with wireless control and image 

grabbing capabilities is used as a test bed. Three stages of security patrolling are 

proposed. First, a simple learning strategy is designed for flexible and effective 

learning of reachable spots and monitored objects in indoor environments. 

Accordingly, a planned path is obtained, and monitored objects and doors are 

specified by analyzing user commands. Next, following the learned path, the vehicle 

can accomplish specified navigation sessions. Two different kinds of methods, 

mechanic error correction modeling and vehicle position modification by positions of 

monitored objects, are proposed for navigation accuracy maintenance. Finally, an 

object matching algorithm is used for checking the existence of monitoring objects 

and the opening status of doors. All the experimental results show flexibility and 

feasibility of the proposed approach for the application of indoor security patrolling. 
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Chapter 1  
Introduction 

1.1 Motivation 

The development of autonomous vehicles or mobile robots is paid much 

attention recently. Many researchers are devoted to developing functions of vehicles 

or robots such that they can do works conducted by human beings. Among 

applications of the autonomous vehicle, security patrolling is a practical function for 

human beings. 

We often install cameras in the house to monitor the indoor situation nowadays. 

We only depend on looking at videos to find out thieves when we discover that 

thieves broke into the house or objects were stolen. It takes much time and manpower, 

and lacks efficiency. Moreover, the positions of cameras are always fixed such that 

there might exist corners where the camera view cannot cover. 

The use of a vision-based autonomous vehicle system is a good choice to solve 

the above problem. Because the vehicle only spends electric power or fuel, it can 

substitute for manpower to do security patrolling cheaply. By computer control, the 

vehicle can repeat identical steps, never feels tired, and makes errors. Hence, the 

vehicle is able to patrol the whole day and will not rest like human beings. Another 

advantage is that when the vehicle detects an unusual situation; the monitoring system 

can send warning messages to guards or hosts immediately through signal 

transmission equipment. So the works of monitoring will cost less time and money. 

So the research goal of this study is to design an intelligent system for security 
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patrolling by means of a vehicle. It is desired to design the system to be capable of 

indoor navigation and security checks, including object detection and door situation 

recognition. 

1.2 Survey of Relative Studies 

To achieve the mission of security patrolling in indoor environments, learning 

navigation paths and recording features of monitored objects is required before the 

vehicle can navigate automatically. Since scenes of indoor environments consisting of 

rooms, corridors, and objects are usually complicated, the vehicle must have the 

ability of computing the distance between objects. Lai [9] proposed a curve fitting 

technique and a modified interpolation technique to perform 2D-to-3D distance 

transformations. By this method, we can know the distances between the vehicle and 

the surroundings in real space through captured images. Li [10] proposed learning 

methods for dealing with complicated surroundings as well as strategies for 

autonomous vehicle navigation techniques. The user controls the vehicle to patrol and 

analyze the captured image in the learning process, and a navigation map is created 

dynamically. The vehicle can keep away from obstacles when it navigates 

automatically. Moreover, Chen [12] proposed two navigation modes and a fuzzy 

guidance technique. A navigation map is created by two kinds of learned data and the 

fuzzy guidance technique is applied to achieve obstacle avoidance. About security 

patrolling navigation, Liu [13] proposed a method for use in building corridors by 

multiple-camera vision and automatic vehicle navigation techniques. 

In the learning process, the vehicle has to record the features of monitored 

objects. It is usually difficult to segment objects from complicated background in 
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images. Kass, WitKin, and Terzopoulos [1] proposed a prototype of the snake 

algorithm to segment patterns in the image. However, there are some drawbacks in 

the snake algorithm. Some researches [2-6] tried to improve this algorithm by using 

more complicated techniques. After detecting an object from the image, the features 

of the object is recorded in the learning process. In order to represent the shapes of 

objects, Sussman [7] mentioned the technique of fitting an ellipse to a set of data 

points by using the least square fitting technique. And Pilu, Fitzgibbon, and Fisher [8] 

proposed the ellipse representation of object pixels by using the edge pixels of the 

object. There are methods of coordinate transformations in the space and vector 

operations techniques for use in Fraleigh and Beauregard [14]. There are some image 

processing techniques consulted in Gonzalez and Woods [15]. 

1.3 Overview of Proposed Approach 

In this study, we try to design a vision-based vehicle system for security 

patrolling in indoor environments. In order to achieve the mission of security 

patrolling, to recognize surrounding objects and know the vehicle positions are 

necessary. The chief tools are the images captured by the camera and the odometer in 

the vehicle hardware system. An overall framework of the proposed system is 

illustrated in Figure 1.1. 

The proposed vehicle system for security patrolling includes three major 

processes: setup of the vehicle system, learning of paths and objects by user control, 

and vehicle navigation. 

Setup of the vehicle system is the basis of navigation. It includes location 

mapping calibration and mechanic error correction. After fixing the camera on the 
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vehicle, a mapping calibration technique for using 2D image analysis is used to 

calculate the distance between the vehicle and an object. On the other hand, because 

the vehicle is a machine, it is unavoidable that there exist mechanic errors. Although 

the odometer provides the position of the vehicle, the real position of the vehicle is 

different from the value provided by the odometer due to the mechanic error. By the 

way of correcting the value provided by the odometer, navigation can be made more 

accurate. A mechanic error correction model is proposed to solve the problem. 

Moreover, the mechanic error causes the vehicle moving far away from original 

straight path. We propose a straight navigation technique to deal with this problem. 

Before the vehicle navigates, how to detect objects from the image is essential. 

Because the computer can not identify objects likes people, an improved snake 

algorithm is proposed in this study to detect objects in captured images. Although 

some researches [2-6] improve the snake algorithm, these methods are complicated 

and slow. We design a faster method to meet the real time requirement. In order to 

recognize objects, we utilize three kinds of object features in this study; they are color, 

shape, and coordinates. We propose three methods to compute these three features, 

respectively. 

In the learning process, the vehicle is controlled to move to desired places by 

using a user interface designed in this study. Some coordinates of the vehicles which 

are denoted as nodes are recorded along the learning path. The user may identify 

objects or doors to be monitored from the images when the vehicle moves to 

neighborhood of objects. The system will record the features of the objects which are 

illustrated in last paragraph automatically. 

According to the node data and the position of the objects and doors, a 

navigation map is created for use of the vehicle navigating automatically. The vehicle 

moves along the path and detects the objects and doors one by one by the positions of 
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them. As soon as the vehicle can not detect the monitored object, a warning message 

will be sent out from the system right away. When detecting the object, the system 

compares it with the learned data further. If the features are not correct, the same 

warning is announced. In the same manner, the vehicle moves to the neighborhood of 

the door to check whether the door is opened or not. 

Due to the mechanic error, the vehicle might move far away from the original 

path gradually. We propose two methods to improve the stability of navigation. One is 

to use the coordinates of learned objects as an auxiliary tool to adjust the position and 

direction of the vehicle. The other is a line following technique. After completing the 

check of the objects and doors, one circle of security patrolling is finished. 

 

 Location mapping 
calibration and mechanic 

error correction

Path learning by 
user control

Creation of learned 
path map

Security patrolling

Features of objects and 
doors saving

 
Figure 1.1 A flowchart of proposed system. 

 

 5



1.4 

1.5 

Contributions 

Some major contributions of this study are listed as follows. 

(1) A mechanic error correction method is designed. 

(2) A technique for reducing mechanic error effect on straight navigation is 

proposed. 

(3) A fast object detection method in indoor environments by using an improved 

snake algorithm is proposed. 

(4) Three methods for object feature computing are proposed. 

(5) A strategy for learning paths, objects, and doors is proposed. 

(6) A method for path map creation by learned data is designed. 

(7) A line following method which can reduce accumulative errors for navigation is 

proposed. 

(8) Methods for object matching and door situation recognition are proposed. 

(9) A method for correcting vehicle positions in the navigation session is proposed. 

Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, the system 

configuration of the vehicle and the principles of learning and navigation are 

described. In Chapter 3, the proposed methods for location mapping calibration and 

mechanic error correction are described. The proposed methods for object detection in 

the images and feature computing are described in Chapter4. The proposed learning 

strategy and path map creation method are described in Chapter 5. The proposed 

vehicle navigation method, the strategies for navigation accuracy maintenance, object 
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recognition, and judgment of the door situation are described in Chapter 6. Some 

experimental results are given in Chapter 7. Finally, conclusions and some 

suggestions for future works are included in Chapter 8. 
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Chapter 2  
System Configuration And 
Navigation Principles 

2.1 Introduction 

In order to achieve the goal of security patrolling by an autonomous vehicle, 

conditions around the vehicle are investigated. There are usually many obstacles and 

narrow paths in indoor environments. Hence, it is a wonderful choice that the size of a 

vehicle is small and its action is dexterous. The smaller the size of the vehicle, the 

larger range the vehicle can navigate. Moreover, if the size of the vehicle is small 

enough, it can monitor the space under tables, beds, cabinets, etc. 

In this study, a small vehicle is used as a test bed. Beside the vehicle structure, a 

camera is installed on the vehicle. For a user to achieve the function of controlling the 

vehicle, some communication and control equipments are required. The entire 

hardware equipment and software used in this study are introduced in Section 2.2. 

After introducing the equipment, the vehicle navigation principles and some 

detailed relevant processes are described in the following sections. In Section 2.3, we 

will describe the process of learning. Path and object data which are necessary for 

security patrolling are recorded in the learning process. In Section 2.4, we will 

describe the process of security patrolling in which the vehicle monitors concerned 

objects and checks whether a door is opened or not. As soon as an unusual situation is 

detected, a warning is issued. 
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2.2 System Configuration 

The vehicle is shown in Figure 2.1. 

 

(a) 

 
(b) 

Figure 2.1 The vehicle used in this study. (a) The front of the vehicle. (b) The flank 

of the vehicle. 

 

Recently, wireless networking and communication techniques advance quickly. 

More and more communication products are made with wireless transmission. In this 

study, we use an Amigo robot, a mini-vehicle made by ActiveMedia Robotics 
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Technologies Inc., on which a camera is installed, as the testbed of our research. We 

utilize wireless transmission equipment to control the vehicle and get images captured 

by the camera. We will describe the hardware system in Section 2.2.1 and the 

software used in this study in Section 2.2.2. 

2.2.1 Hardware Configuration 
The entire system is illustrated in Figure 2.2. The first part is the vehicle system. 

The length, width, and height with the camera of the vehicle are 33cm, 28cm, and 

21cm, respectively. There are two larger wheels and one auxiliary small wheel at the 

rear of the vehicle. The maximum speed of the vehicle is 75cm/sec and the maximum 

rotation speed is 300 degrees/sec. There are eight ultrasonic sensors, an odometer, and 

an embedded hardware system in this mobile vehicle. The ultrasonic sensors are not 

used in this study. The odometer provides the coordinates and direction of the vehicle 

in the navigation. The origin of coordinates is the starting position of the vehicle. 

There is a 12V battery in the vehicle to supply the power of the vehicle system. 

The second part is the vision system. There is a wireless 2.4GHz camera which 

can transmit analog signals on the vehicle. A receiver and an imaging frame grabber 

are connected to the computer. The receiver receives analog signals from the camera 

and a digital image can be obtained by the imaging frame. The image grabbed in our 

experiments is of the resolution of 320×240 pixels. 

A personal computer with Centrino 1.4GHz CPU, a 768MB DDR RAM, and a 

5400 rpm 40GB HDD is used as a remote control and monitoring system; a kernel 

program can be executed on it to give commands to the vehicle through a wireless 

transmission system. 

There is one wireless device in the vehicle and another in the PC. The commands 

of the remote system are transmitted to the wireless signal receiver by an access point 
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that meets the IEEE 802.11b standard. By using the access point as a medium, the 

commands can be transmitted from the PC to the vehicle. 

Figure 2.2 Structure of system. 

 

2.2.2 Software Configuration 
lications-programming interface for The ARIA is an object-oriented control app

Wireless 
Device 

Access 
Point 

Wireless Transmission System 

PC 

Remote System 

Vehicle

Camera 
9V Battery

12V Battery 
Embedded 

Hardware System 

Vehicle System 

Imaging frame 
grabber 

Receiver 
Vision System 
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ActivMedia Robotics’ line of intelligent mobile robots. The ARIA is written in the 

C++ language. We use it to control and retrieve the status of the vehicle. The 

operation system in the PC is Microsoft Windows XP and we use Borland C++ 

Builder as the development tool in our experiments. 

2.3 Learning Principle And Proposed 
Process of Learning 

Before security patrolling, a learning process is necessary. Navigation path, 

object, and door data are recorded in advance. The entire learning process in this 

study is shown in Figure 2.3. 

A user control interface is designed for use in controlling the vehicle and 

choosing monitored objects and doors. The user controls the vehicle to navigate in 

indoor environments and move to the front of objects for choosing monitored objects. 

The main recorded data include two categories, path and object data. The door is 

considered as an object in this study. As soon as the learning process ends, all data are 

stored in the storages of the computer such that the learning process is only executed 

once and data can be used repeatedly. 

When the vehicle patrols in rooms and corridors, the computer records the path 

data provided by the odometer, and denote them as nodes. The monitored objects are 

selected in the image captured by the camera when the user controls the vehicle to 

patrol. The features of the objects are also computed automatically from the images. 

There are three kinds of object features are recorded in this study. They are color, 

shape, and coordinates respectively.  
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The process of door learning is similar to that of ordinary object learning. The 

computer can record more than one object when the vehicle is at a single position. By 

means of turning the vehicle at same position, we can learn neighboring objects of the 

vehicle. The user can choose objects continuously along the path until finishing a 

learning process. 

 

Start learning 

Manual 
control 

Data collection 

Figure 2.3 A flowchart of proposed learning process. 

 

End learning 

Odometer data Feature data of 
objects and doors 

Saving data in the storage 

Choosing objects 
and doors 

Driving vehicle 

Map created by learned data 
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After finishing learning process, we can get a navigation map by way of 

combining the path data and object positions. The vehicle utilizes this map to monitor 

the doors and objects consecutively along the navigation path. 

2.4 Vehicle Guidance Principle And 
Proposed Process 

In the navigation process, the vehicle monitors the objects and doors 

consecutively by using the map created from learned data. The vehicle moves to a 

fixed position and stops to check the existence of the monitored objects. As soon as an 

unusual situation is occurred, a warning is issued. After checking the objects at a 

location, the vehicle moves to the next position where there are monitored objects or 

doors, and then continues checking the existence of the monitored objects or whether 

the door is opened. An illustration of the vehicle navigation process is shown in 

Figure 2.4. 

In order to patrol along the learning path, the vehicle moves along each node in 

the map one by one. To move from a node to another, a line following technique is 

used to reduce navigation errors. 

When the vehicle moves to a node where there is a nearby monitored object, the 

computer detects the object by using the position of the learned object. As soon as the 

computer detects an object from the image, its features are compared with those of the 

learned objects. If the features are incorrect, a warning is issued. Of course, when the 

computer can not detect the object, the same warning is also issued. Because the 

vehicle might navigate far away from the original path gradually, we use a 
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vision-based technique to reduce accumulative errors for navigation. When the 

vehicle detects an object and consider it as a learned object, we use its position 

recorded in the learning process to correct the position of the vehicle for reducing 

accumulative errors. 

 

Start navigation 

Vehicle patrolling

Figure 2.4 A flowchart of proposed navigation process 

 

Although the door is considered an object, the method of recognizing the door 

End navigation 

Door identificationObject detection 

Whether correct Whether closed

Whether unchecked objects

No 
Yes

A warning is announced 

Yes No 
Yes 

Correct the vehicle 

position 

No 

Navigating unfinished path
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situation is different from the method of object matching. After the vehicle moves to a 

suitable position recorded in the learning process, the computer checks the door 

situation to see if it is opened or closed. After the vehicle patrols the entire route and 

checks all objects and doors, a security patrolling process is finished. 
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Chapter 3  
Location Mapping Calibration and 
Mechanic Error Correction 

3.1 Introduction 

When a vehicle navigates in indoor environments, the position and distance are 

important data for the navigation. By using these data, the vehicle can arrive at 

suitable positions to search monitored objects or doors and navigate along a learned 

path. In order to get position data and distance values, a camera and an odometer are 

used in this study, which are equipped on the vehicle. 

At first, we utilize an image captured by the camera to obtain the relative 

position between an object and the vehicle. We use a 2D mapping method to achieve 

this goal. The detailed process is described in Section 3.2. 

The odometer provides the positions of the vehicle in the environment. It records 

the coordinates and the direction angles of the vehicle when the vehicle navigates. 

Possible mechanic errors might cause the real positions of the vehicle to be unequal to 

the expected values provided by the odometer. Hence, in Section 3.3, we will propose 

a correction method to reduce the mechanic error so that the vehicle can navigate 

more stably. 

Before describing the above-mentioned methods, we first introduce some 

coordinates system and the definition of the direction angle of the vehicle for use in 

this study. We introduce the coordinate systems in Section 3.1.1 and the definition of 
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the direction angle of the vehicle in the space is described in Section 3.1.2. By using 

the direction angle, a transformation function between the coordinate systems is 

described in Section 3.1.3. 

3.1.1 Coordinate Systems 
Three coordinate systems are utilized in this study to describe the locations of the 

vehicle and objects. The coordinate systems are shown in Figure 3.1. The definitions 

of these systems are stated in the following. 

u

v

I

 

Room

x

y

G

 

(a) (b) 

 Vy

VxV

Vx

Vy

V

 

(c) 

Figure 3.1 Three coordinate systems in this study. (a) ICS (b) GCS (c) VCS. 

 

(1) The image coordinate system (ICS): denoted as u−v. The u−v plane is coincident 

with the image plane and the origin I of the ICS is placed at the center of the 
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image plane. 

(2) The global coordinate system (GCS): denoted as x-y. The x-axis and the y-axis 

are defined to lie to on the ground, and the origin G of the global coordinate 

system is a pre-defined point on the ground. In this study, we define G as the 

starting position of the navigation. 

(3) The vehicle coordinate system (VCS): denoted as Vx-Vy. The Vx-Vy plane is 

coincident with the ground. The Vx-axis is parallel to two wheels of the vehicle. 

The Vy-axis is parallel to the body of the vehicle. And the origin V is placed at 

the middle of the line segment that connects the two contact points of the two 

driving wheels with the ground. 

3.1.2 The Direction Angle 
The direction angle of the vehicle is defined in the global coordinate system, the 

x-y plane. The angle denoted as θ represents the rotation degree of the vehicle in the 

global system and plays a very important role in the coordinate transformations. 

θ is the angle between the positive direction of the x-axis and the front of the 

vehicle. The direction angle θ is set to be zero at the beginning of navigation. The 

range of θ is between 0 and π if θ is in the first and second quadrants, as illustrated in 

Figure 3.2(a) and (b). It is between 0 and −π if θ is in the third and forth quadrants, as 

illustrated in Figure 3.2(c) and (d). 

3.1.3 Coordinate Transformation 
By using the direction angle and the coordinates of the vehicle in the GCS, we 

can describe the coordinate transformation between the vehicle coordinate system and 

the global coordinate system by the following equations. 
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V cos V sinx y px xθ θ= × − × +   

V sin V cosx y py yθ θ= × + × +   

where xp and yp are the coordinates of the vehicle in the GCS. It is shown in Figure 

3.3. 
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Figure 3.2 Definition of the direction angle (a)(b) θ is positive. (c)(d) θ is negative. 
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Figure 3.3 The coordinate transformation between the GCS and VCS. 

 

3.2 Location mapping Calibration 

The camera is the only sensor of the vehicle to gather the features of the 

environment, and the techniques of learning and guidance are based on visual 

perception. Location mapping calibration and image analysis techniques are 

indispensable in this study. A real location data acquisition method by Location 

mapping calibration and image mapping is proposed to obtain the relative positions of 

the vehicle and the surrounding environment precisely. 

We use a point set P = {P00, P01, …,Pmn} whose coordinates are known in 

advance in the VCS attached on the floor, and their corresponding point set V = {V00, 

V01, …,Vmn} appearing in the image, to compute the VCS coordinates of a set of 

pixels. The detailed process is described in the following algorithms. 

Algorithm 3.1. Real location data acquisition by image taking and mapping. 

Input: An image I, as shown in Figure 3.5(a). 

Output: A point set V = {V00, V01, …,Vmn} and another point set P = {P00, P01, …,Pmn} 

Steps: 
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Step 1. Attach some straight lines on the floor, as shown in Figure 3.4. Set the length 

between every two vertical lines to be 30 cm and the length between every 

two horizontal lines to be 30 cm, too, where every rectangle is a 30×30 

square. There exists a distance Div equal to 80cm in the front of the vehicle, 

which the camera can not view.  

Step 2. For those tessellated regions shown in the image which are not surrounded by 

the lines, extend the lines such that every quadrilateral is complete. Mark red 

points on the intersections of the lines, as shown in Figure 3.5(b). 

Step 3. Record the coordinates of each red point Pij(uij, vij) in the ICS and group all 

such points into the set P.  

Step 4. Measure relative coordinates Vij(xij, yij) manually in the VCS of the point Pij 

and group such points into the set V. 

 

 

Div

 

Figure 3.4 An illustrated of attaching the lines on the floor. 

 

 

 22



 

(a) 

 

(b) 

Figure 3.5 A method of finding image coordinates of tessellated points in the grabbed 
image. (a) A grabbed image with tessellated points. (b) The tessellated 
points marked by red points. 

 

We now have known the VCS coordinates of red points. As for the VCS 

coordinates of the other pixels, we use an interpolation method to obtain them, as 

described in the following algorithm. 

Algorithm 3.2. Interpolation for computing lateral distances. 

Input: A point I(u,v) in the ICS, a point set P, and another point set V. 

Output: The coordinates of I in the VCS. 

Steps: 

Step 1. Compute the varibales a and b of the line equation y = ax + b for lines L0, L1, 

L2, and L3 by using ICS coordinates of four endpoints, Pij, P(i+1)j, Pi(j+1), and 
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P(i+1)(j+1) in the following ways, as illustrated in Figure 3.6. 

2 1

2 1

v va
u u
−

=
−

. (3.1) 

1 2 2 1

2 1

v u v ub
u u

× − ×
=

−
. (3.2) 

Step 2. Decide whether the point I is in the region surrounded by four endpoints, Pij, 

P(i+1)j, Pi(j+1), P(i+1)(j+1) by substituting (u, v) for (x, y) of the line equation in 

the following ways. 

0 0 2 2( ) (a u b v a u b v⋅ + − ⋅ ⋅ + − ≤) 0

) 0

. (3.3) 

1 1 3 3( ) (a u b v a u b v⋅ + − ⋅ ⋅ + − ≤ . (3.4) 

Step 3. If the inequalities (3.3) and (3.4) are satisfied, the point I is in this region. 

Else, repeat Step 2 to check the next region. 

Step 4. By using a horizontal line equation y = v which passes the point I, we obtain 

two intersections H(uh, vh) and K(uk, vk) as shown in Figure 3.6(a). 

Step 5. By using a vertical line equation x = u which passes the point I, we obtain 

two intersections S(us, vs) and T(ut, vt). 

Step 6. Use an interpolation method to obtain the VCS coordinates (xI, yI) of I by the 

following equations: 

30 ( 3) 30 (1 ),  if 3;  

30 ( 3) 30 ( ),      if 3.

h

h k
I

k

h k

u uj j
u u

x
u uj j
u u

−⎧ × − + × − ≤⎪ −⎪= ⎨ −⎪ × − + × >
⎪ −⎩

 (3.5) 

30 7 30 ( )s
I iv

s t

v vy D i
v v
−

= + × − + ×
−

. (3.6) 

Where i is serial number of the horizontal lines and j is serial number of the vertical 

lines. 

Although the image is distorted slightly, we consider every line as a straight line. 

Every region is not rectangular as appearing in the image; therefore, we use the 

interpolation method to compute xI and yI respectively. 
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(a) (b) 

Figure 3.6 An illustration of the interpolation method. (a) A region contains the point I 
in the ICS. (b) The projection of the region in (a) onto a floor region. 

 

3.3 Proposed Mechanical Error 
Correction Method 

There exist mechanic errors when the vehicle navigates back and forth, no matter 

how people control the vehicle or how the vehicle navigates automatically. 

Whenever the control instruction is moving ahead or backing off, the vehicle will 

move away from the original straight path gradually and the coordinates and the 

direction angle of the vehicle provided by the odometer will be different from the 

actual position and angle of the vehicle. 

A method is proposed for solving the above problem. A mathematical model is 

set up for correcting mechanic errors. In Section 3.3.1, we will describe the concept of 

the method briefly. Utilizing this mathematical model; we can adjust the coordinates 

and the direction angle of the vehicle provided by the odometer, as described in 

Section 3.3.2. Finally, we hope the vehicle can move along straight path automatically; 

hence, we propose a method to solve this problem, as described in Section 3.3.3. 
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Because there exists a similar problem when the vehicle backs off, we use the same 

concept to correct navigation errors. It is described in Section 3.3.4. 

3.3.1 Brief Description of Proposed Error Correction 

Model 
Due to mechanic errors, a straight path of the vehicle navigation will become a 

curve path. A detailed situation is illustrated in Figure 3.7. In Figure 3.7(a), the 

vehicle starts moving and the expected path is a straight line in advance. After moving 

a distance, the vehicle moves along path  instead of the expected path . The same 

situation occurs when the vehicle backs off. In Figure 3.7(b), the vehicle backs along 

path  instead of path . 

 

Expected path

Actual path

 �

�

Expected path

Actual path

(a) (b) 

Figure 3.7 Illustrations of navigation path deviation. (a) Moving ahead. (b) Backing 
off. 

 

Besides the last problem, the coordinates and direction angle provided by the 

odometer do not show the actual position of the vehicle in the GCS due to the 

mechanic error. As shown in Figure 3.8, the vehicle moves from the starting position 

P0 and arrives at position Pc finally. But the coordinates provided by the odometer are 

the point P1 instead of Pc and the direction angle is the original angle of the starting 
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position. Actually, because the vehicle moves along the curve path, the vehicle has 

rotated for an angle θ. 

Because the path of the vehicle is a curve, we compute a curve equation to 

represent the path. We measure the deviation distances in advance to build a 

mathematical equation as a correction model such that the vehicle can modify 

navigation errors dynamically. The concept is described as follows. 

At first, we get some the vertical deviation distance values measured manually 

when the vehicle navigates forward a distance. According to the values, a 

second-order equation y = ax2 + bx + c is obtained by a curve fitting technique. 

Among the equation, x is the distance between the starting position P0 and the position 

P1, and y is the deviation distance from the expected path. Moreover, In Section 3.3.2, 

we will describe how to get the coefficients a, b, and c of the equation. This correction 

equation always accompanies the vehicle whether the vehicle is controlled by a user 

or navigates automatically.  

To correct the direction angle of the vehicle, we use the first derivative equation 

to compute the rotation angle. It is like a concept in physics mentioning that when the 

object is in a curvilinear motion, by using a tangent line, the direction of the vehicle 

can be computed. Based on such a principle, we can find a tangent line L1 as shown in 

Figure 3.8. We compute the slope of line L1 by using the first derivative of y = ax2 + 

bx + c. The process of modifying the values of the vehicle position is shown in Figure 

3.9 and a brief computing process is described as follows. 

A distance xd is gathered by computing the length between P0 and P1. 

Substituting xd into the equation y = ax2 + bx + c, we can get the deviation value yd. 

By using xd and the slope 2dy ax b
dx

= + , we can get an deviation angle θ the vehicle 

had turned in the GCS. Hence, by using coordinate transformation techniques, we can 
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use xd, yd and θ to get actual position Pc. The details are described in Section 3.3.3. 

Every time the vehicle starts moving, the above method is carried out. As long as 

the vehicle stops moving, the correct values of xd, yd and θ must be computed again in 

the next moving circle. 

 

 

y
d

0P
1P

cP
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⎠
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Figure 3.8 An illustration the correction model. 

 

Compute the  
navigation distance xd
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Compute the deviation 
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xd

yd

¬ Correct the direction 
angle ¬¬

¬¬

Correct the coordinates of 
the odometer

End correction

Figure 3.9 Flowchart of correction process. 

 

3.3.2 Curve Fitting for Navigation Path 
In Section 3.3.1, we have described the concept of the correction model. 

According to the discussion in the last section, to build the second-order curve 

equation is the most basic requirement. All correction computation is based on this 
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curve equation, so we describe how we compute the coefficients of the equation first 

in this section. A detailed process is described in the following algorithm. 

Algorithm 3.3. Curve fitting for navigation path. 

Input: A navigation path. 

Output: An equation y = ax2 + bx + c. 

Steps: 

Step 1. Measure a deviation distance ydv every 0.5m when the vehicle navigates, as 

shown in Figure 3.10. 

 

 

Figure 3.10 An illustration of recording the coordinates. 

 

Step 2. Record the deviation distance ydv when the vehicle navigates a distance x, and 

denote the data as P1j(xj, y1,j) where xj is navigation distance computed 

between the starting position and the new position provided by the odometer 

and y1,j is a deviation distance. We record thirteen data when the vehicle 

moves a 6m distance. Finally, we group the data into a point set P1 = {P1,0, 

P1,1, …, P1,12}. 

Step 3. Repeat Step 1 two times and group the data into two sets P2 and P3. 

Step 4. There are three deviation values at each distance xj. Compute a mean set P  

in the following way; 
3 3 3 3

,0 ,1 ,2 ,12
1 1 1 1

1 , , ,  ...,
3 i i i i

i i i i
P P P P P

= = = =

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑ ∑ ∑ ∑ . (3.7) 

 29



where the data in the set P  are denoted as ( , )j j jP x y . 

Step 5. By using the least square method, we compute the coefficients of the 

optimum curve  according to cbxaxy ++= 2
jx  and jy , as shown in 

Figure 3.11. 
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Figure 3.11 A figure of the curve. 

 

Because the deviations are slightly different in each navigation path, we measure 

each deviation three times and use their means to compute the curve equation. In this 

study, a, b, and c are computed to be a = 0.00008, b = −0.0089, and c = 0.5828. The 

distance unit we use is cm. 

3.3.3 Coordinates And Angle Correction 
After computing the path curve equation, the main goal is to adjust the odometer 

values of a navigating vehicle. Utilizing the curve equation; we can conjecture that the 

vehicle has shifted how much distance from a straight line when it is still to move a 

certain distance. A detailed description of the adjustment is described as follows. 

In Figure 3.12, the vehicle starts moving from point  toward the goal 

point  in the GCS. The direction of the vehicle in the starting position is θ. 

),( 000 yxP

),( 111 yxP
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Due to mechanic errors, the final position the vehicle arrives at is point ),( 111 yxP ′′′ . 

Although the position of the vehicle is 1P′  and the angle has become αθ + , the 

odometer shows that the position and angle are  and 1P θ . The point  and angle 1P′

α  is the most important data we want to modify the error of the odometer. We 

compute the distance D as follows: 

2
01

2
01 )()( yyxxD −+−= . (3.8) 

Utilizing D and the curve equation , the deviation distance  is 

derived to be as follows: 

cbxaxy ++= 2
yd

cbDaDd y ++= 2 . (3.9) 

Then we use the coordinate transformation technique to get the point  as 

follows: 

1P′

1 0yx D cos d sin xθ θ′ = ⋅ − ⋅ +  (3.10) 

1 0yy D sin d cos yθ θ′ = ⋅ + ⋅ +  (3.11) 

 

x 
G 

y 

θ  

θα +

0L

0P  

1P

1P′

D 

yd

Figure 3.12 An illustration of correction detailed. 
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In the following, we want to get the rotation angle α , as shown in Figure 3.13. 

Utilizing the tangent slope ][ baDb += 2,12y ax b′ = + , we can get vector  in the 

error correction model. Using the unit vector ][ 0,1=a , we can get the angle α  by 

the following formula: 

)(cos 1

ba
ba •

= −α . (3.12) 

 

1P′Finally, we correct the coordinates of the vehicle to be  and correct the angle 

to be αθ + .  

a

1P′

1Pα
b

x 

Figure 3.13 An illustration of computing correct angle. 

 

3.3.4 Straight Navigation Technique 
Because the vehicle always navigates along a curve path, in this section, we 

propose a technique to control the vehicle to navigate along a straight line 

automatically. The most important concept behind our technique is that we control the 

vehicle to return to the original straight path, as illustrated in Figure 3.14. The path of 

the vehicle is shown as a red line in Figure 3.14. 

Assume that the vehicle starts from point , and plans to navigate along path 

. According to the curve equation 

0P

2y ax bx c= + +0L , we can get a distance dy when 
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the vehicle has moved a distance . We use these data to compute a moving 

distance and a rotation angle such that the vehicle can turn toward path  and go 

back to this path. Although we can correct the values of the odometer at any time, it is 

impossible to do this in the practical operation. Hence, we correct the mechanic error 

when the vehicle stops moving. 

tD

0L

1P′When the vehicle goes to point , the vehicle stops and corrects the values of 

the odometer. To utilize the tangent line, we compute the rotational angle α . 

Point  which is on the path  is the goal for the vehicle to go back to path 

. We compute the distance 

2 2 2( , )P x y′ ′ ′ 0L

1 2PP′ ′0L  by the following equation: 

1 2
yd

PP
sinα

′ ′ = (3.13) . 
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1L 2L  

0P

1P′

2P′

2P

2α

φ

yd

tD  

α

Figure 3.14 An illustration of the correction path 

 

The vehicle should turn 2α  toward path  and go through the distance 0L

1 2PP′ ′  back to , as the path  shown in Figure 3.3.4.1. Unfortunately, the 

vehicle does not arrive at point 

0L 2L

2P′  because of the curve path. If the vehicle goes 

toward point , the path will be like the blue line shown in 2P′ Figure 3.15 and the 

terminal will be  finally, as shown in tP Figure 3.15. Hence, the vehicle has to turn an 

angle of φ  such that it can navigate along the curve and arrive at  finally. As 2P′
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1Lshown in Figure 3.15, the planed path is  and the expected goal is , 

such that the vehicle can arrive at 

2 2 2( , )P x y

2P′  finally. 

1 2PP′ ′From the triangle , we have known the length tPPP 21 ′′ , hence we can 

compute the length 2tPP′  by the following curve equation: 

2

2 1 2 1 2tPP a PP b PP c′ ′ ′ ′ ′= + + . (3.14) 

And the angle  can be computed as follows: 1 2tPPP′ ′∠

21
1 2

1 2

tan ( )
t

t

PP
PPP

PP
−

′
′ ′∠ =

′ ′
. (3.15) 

2 1 2P PP′ ′∠Let  be equal to 1 2tPPP′ ′∠  which is denoted as φ , then we can get 

. Hence, we can get the following relation: 2 1 2P PP′ ′1 2tPPP′ ′ ≈

1 1

1 2 1 2

tPP PP

PP PP
2′ ′ ′

=
′ ′ ′

(3.16) 
. 

1 1tPP PP1 2tPPP′ ′∠ 2′ ′ ′≈ is small enough, then we can get If the angle . Hence, we can 

get 1 2 1 2PP PP′ ′ ′≈ . Therefore, we get a navigation distance by computing the distance 

between  and . 1P′ 2P′

 

1P′
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1L
2Lφ

2P′

2P

tP

Figure 3.15 Computation of corrected path 
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Summarizing the above description, we describe the correction process as 

follows: 

Step 1. Start the vehicle from point . According to value of the odometer, the 

vehicle stops at the point 

0P

1P′  after going through a distance of . tD

Step 2. Correct the coordinates and the angle of the vehicle. 

Step 3. Compute the turn angle φ by using Equation (3.15) and navigate a distance 

1 2PP′ ′ . 

Step 4. Turn the vehicle for the angle of 2α φ+  toward the straight path  and 

let it navigate for a distance of 

0L

1 2PP′ ′ 2P′ to arrive at point  and stop. 

Step 5. Correct the coordinates and the angle of the vehicle again. 

Step 6. Turn the vehicle such that the direction of the vehicle is the same as the 

direction in the beginning position P  at the point  in the GCS. 0P0

The above process is just only one correction circle among the navigation. If the 

path is longer, the vehicle has to repeat the above process many times. The final path 

which is the red line is shown in Figure 3.3.4.3. It is periodic and looks like a 

trigonometric function of mathematics. 

 

Figure 3.16 An Illustration of corrected navigation path 
 

3.3.5 Correction of Backing off 
Due to the mechanic error the vehicle also backs off along a curve path. The 

navigation path when the vehicle backs off is shown in Figure 3.17. We use the same 

method as mentioned in last sections to correct the errors in this section. 
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Expected path

Actual path
 

Figure 3.17 An illustration of Backing path. 

 

As first, using curve fitting to compute the curve equation y = ax2 + bx + c, as 

shown in Figure 3.18. The equation is different from the equation computed when the 

vehicle moves ahead. The distance between the starting position and the now position 

is record as a negative value. The coefficients of a, b, and c are computed to be a = 

0.0001, b = 0.002, and c = 0.0216, respectively, in this study. 
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Figure 3.18 The path curve of backing off. 

 

We still use the same method to correct the coordinates and direction angle of the 

vehicle. The correction equations are different from those of (3.10) and (3.11). The 

equation of computing the actual position ( 1x′ 1y′, ) of the vehicle become as: 

1 0yx D cos d sin xθ θ′ = − ⋅ − ⋅ + ; (3.17) 

1 0yy D sin d cos yθ θ′ = − ⋅ + ⋅ + . (3.18) 
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Finally, the process of backing along the straight line is the same with the 

process of moving ahead. 

 37



Chapter 4  
A Method for Detection of Monitored 
Objects by Image Analysis 

4.1 Introduction 

We use a vision-based vehicle to monitor concerned objects and doors in this 

study. How to recognize objects and doors are an important problem in this study. 

Hence, before describing the vehicle navigation process, we will first describe the 

image processing and pattern recognition techniques we use for solving this problem 

in this chapter. 

There are two main processes to recognize an object in an image. One is to detect 

the object region, and the other is to compute the feature data of the object. To detect 

an object, we propose the use of an improved snake algorithm to accomplish the task. 

The details of the method are described in Section 4.2. 

After detecting objects, we have to compute useful feature data and save them 

for use in the learning process such that we can use them to monitor the objects in the 

security patrolling process. We will describe how to compute the feature data in 

Section 4.3. 
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4.2 Process of Monitored Objects 
Detection 

In this section, we will describe how to detect an object region in an image. We 

tried to use a famous object detection technique, called “Snake Algorithm” [1] in this 

study. In Section 4.2.1, we will briefly describe the basic concept of the snake 

algorithm. But the snake algorithm has many weaknesses when it is used in the 

complicated environments; hence, we will propose an improved version of the method 

to detect objects in indoor environments in Section 4.2.2. 

Some complicated environment backgrounds could influence the result of object 

detection; we will describe a feasible method proposed in this study in Section 4.2.4. 

In Section 4.2.3, we will describe the details of the proposed improved snake 

algorithm. 

4.2.1 Brief Description of Snake Algorithm 
The performance of the snake algorithm is like the behavior of an elastic band. 

Imagine that there is an elastic band in the image and an object exists in it. By 

repeating continuous operations, the elastic band becomes narrow and approaches the 

object edge. Finally, the elastic band will enclose the edge of the object and stop 

computing, as illustrated in Figure 4.1. We now describe the principle of the snake 

algorithm below. 

The snake algorithm uses a set of control points, effectively connected by 

straight lines. Each control point has a position, specified by coordinates (x, y) in the 

ICS, and the snake is entirely specified by the number and coordinates of its control 

points. By means of adjusting the positions of the control points and computing the 
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energy of the snake at every moment, computation stops finally when the energy 

achieves the minimum value. The strength of traction is determined by the energy. 

When the control points are moved toward their center continuously, some image 

properties will influence energy computation and cause the control points to stop 

moving. 

 

 

 

(a) (b) 

Figure 4.1 Performance of the snake algorithm. (a) The behavior of elastic band and 
an object in it. (b) Final result of repeating continuous computations. 

 

The energy for a snake exists in two parts, the internal and external energies. 

That is, 

∫∫ += )()( sEsEE externalinternalsnake vv  (4.1) 

where v(s) = (x(s), y(s)) which specifies image coordinates. The internal energy 

Einternal is the part that depends on the intrinsic properties of the snake, such as its 

length or curvature. The external energy Eexternal depends on factors such as the image 

structure, and the particular constraints the user has imposed. Each control point has 

its internal and external energies and Esnake is the total energy of all the control points. 

The equation of the internal energy is written as  
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2 2( ) ( )internal s ssE s sα β= ⋅ + ⋅v v . (4.2) 

The subscript s denotes the derivative. The above equation is the sum of the first 

derivative and the second derivative of the control point. Also, the values α and β are 

the coefficients determined by the designer. 

The first derivate can be written as 

2
2 2 2

1 1 1( ) ( ) ,  1, 2, ...,i
i i i i i i

d x x y y i
ds − − −≈ − = − + − =
v v v n (4.3) . 

From the above equation, we can understand that when two control points are 

more close, the value of the first derivate will be smaller. Hence, the first derivate 

accounts for stretching of the snake and will have a large value when there is a gap 

between the control points. So, when the distribution of the control points becomes 

smaller, the internal energy will have a smaller value, as shown in Figure 4.2 (a) and 

(b). 

The second derivate can be written as 

22
2 2 2

1 1 1 1 12 2 ( 2 ) ( 2i
i i i i i i i i

d x x x y y y
ds + − + − +≈ − + = − + + − +i -1

v v v v ) .  (4.4) 

The second order term accounts for bending and will be large in a region of high 

curvature. When the edge of the object is smooth, the internal energy will have a 

smaller value, as shown in Figure 4.2(c) and (d). Therefore, when the control points 

are closer to each other and their distribution shape is smooth, a smaller internal 

energy is obtained. 
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(a) (b) 

  

(c) (d) 

Figure 4.2 A illustration of internal energy. (a) A pattern has a larger internal energy. 

(b) A pattern has a smaller internal energy. (c) A pattern has a larger 

internal energy. (d) A pattern has a smaller internal energy. 

 

Now we will focus on the external forces on the snake. These determine its 

relationship to the image. Suppose that we want a snake to latch on to bright 

structures in the image. We usually use the magnitude of the gradient in image 

processing. 

4.2.2 Description of Improved Snake Algorithm  
In the last section, we have described the principle of the snake algorithm. We 

will now describe the proposed method in this section. 

Before computing the Esnake energy, the locations of the control points have to be 

decided at first. In this study, the shape distributed by the control points is a rectangle 

at the beginning in the image plane. A larger object in the image will have a larger 

rectangle, and vice versa. The terminal of control point shrinking is the center of the 
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locations of the control points, as shown in Figure 4.3. The center of the control point 

P (xcenter 0, y ) is computed as: 0

),(),( 11
00 n

y

n

x
yx

n

i
i

n

i
i

center

∑∑
===P (4.5) . 

where n is the number of the control points, and x  and yi i are the coordinates of the 

control points in the image plane. Each control point moves toward the center point 

 in each cycle of computation. The moving path is computed as a vector 

 in the following way: 

),( 00 yxcenterP

( , )v vV x y

0

0

v i

v i

x x x
V

y y y
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
. (4.6) 

After computing Esnake each time, the control points move to the center point 

 gradually. The new position of the control points in each moving step 

becomes: 

),( 00 yxcenterP

0
1v

i v
v

xx x x
x
−

= × + , 

(4.7) 

0
1v

i v
v

yy y
y
−

= × + y . 

Through repeated computations, the shape of the control point distribution is no 

longer a rectangle. The distribution will be deformed gradually and the control point 

is close to the center point P (x , ycenter 0 0). Until the Esnake reaches a minimum value, .the 

process of the snake algorithm ends. 
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Figure 4.3 Contribution of control point. 

 

The strength of shrinking comes from internal energy computation. Besides the 

method that Section 4.2.1 mentions, we add the so-called centripetal force into the 

internal energy. The improved internal energy is computed in the following way: 

22 2 2

2
i i

internal
d dE V
ds ds

α β γ= ⋅ + ⋅ + ⋅
v v . (4.8) 

The detailed mathematical operation is specified by: 

2 2
1 1 1

2 2 2
1 1 0 0

( ) ( ) ( 2 )

              ( 2 ) ( ) ( ) .
internal i i i i i i i

i i i i i

E x x y y x x x

y y y x x y y
− − −

− +

= − + − + − +

− + + − + −

α α β

β γ γ

2
1+ +

 (4.9) 

(xWe utilize the distance between a control point and Pcenter 0, y0) as an element 

for computing internal energy. When the control point is closer to the point P (xcenter 0, 

y0), the distance becomes smaller gradually so that the internal energy has a smaller 

value. Hence, using centripetal force causes the control points to gather together. 

The internal energy causes the control points to gather, so we have to compute 

the external energy so that the moving of the control points can be stopped. The final 

result is that the control points surround an object. The Sobel operator is shown in 

Figure 4.4 and its equation is shown in Eq.(4.10). The following specifies its 

operation formula: 
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Figure 4.4 Sobel operators. 
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+ + + − + +
 (4.10) 

 denotes gray value in the position (u,v), zwhere z5 1 denotes gray value in (u − 1,v − 1), 

and so on. 

By using the Sobel operator, the edge of an object becomes obvious, as shown in 

Figure 4.5. Hence, utilizing the value of the Sobel operator of the pixels on the 

control point’s position, we can get the external energy of a control point, as 

illustrated in the following way: 

=externalE  λ × [minus (value of Sobel operator of the control point in 

the image)
(4.11)

2] 

where λ is a coefficient. Finally, the total energy, i.e., the snake energy, is computed as 

follows: 

1 1

n n
i i

snake internal external
i i

E E E
= =

= +∑ ∑  (4.12)

where n is the number of control points. 

Because the data are discrete, the integration is substituted by a summation. The 

snake energy Esnake is the sum of each control point’s internal and external energy. 

The internal energy is smaller when the control points are closer to the center such 

that the snake energy has smaller value. As soon as the control points bump into the 

edges, the external energy has a larger value such that the snake energy value 
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becomes larger; in the mean while the snake energy computation is stopped because 

the minimum snake energy is reached. 

 

 

Figure 4.5 The result of using the Sobel operator. 

 

The coefficients, α, β, γ, and λ play important roles in the snake energy. The 

magnitudes of the coefficients α and β influence the control points’ pulling force. The 

magnitude of coefficient γ influences the cohesion of the control points, and the 

magnitude of coefficient λ influences the result of the captured object edge. In this 

study, the magnitudes of α, β, γ, and λ are set to be 2, 3, 2 and 1, respectively. 

4.2.3 Computing Object Region 
After detecting an object, we have to recognize the object region from the image. 

Through the above repeated calculations, the control points surround the object edge 

pixels finally. Utilizing the coordinates of two adjacent control points to compute a 

straight equation y = ax + b, we can find out the pixels of the object edge by using this 

equation. A detailed process is described in the following algorithm. 

Algorithm 4.1. Object region extraction. 

Input: A set of control points P. 

Output: An object region ObjR. 
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Steps: 

Step 1. For any two adjacent points Ps(x , y ) and P  (x , y ), do the following steps. ts s t t

Step 1.1 Compute a straight line equation y = ax + b which crosses P  and Ps t by 

the following equation: 

),(),(
st

stts

st

st

xx
xyxy

xx
yyba

−
−

−
−

= 0)( ≠− st xx . , if (4.13)

 − xIf xt s = 0, the equation becomes x = x . t

Step 1.2 Compute the value y of the edge point coordinates between P  and Ps t 

by using the value of x in the following way: 

 to xy = ax + b, x = x . (4.14)t s

Step 2. Find out the leftmost pixel and rightmost pixel denoted as (xL, yL) and (xR, yR ) 

after comparing the x coordinate of each edge pixel.  

Step 3. Find out the maximum and minimum y coordinates of each value of xi, 

denoted as (xui, yui) and (xdi, ydi). 

(x , y ), if its x coordinate is between x  and xStep 4. For each pixel, Pi i i L R and its value 

of y satisfies the following inequality, then P  is considered as an object pixel: i

(4.15)ydi ≤ y  ≤ yi ui. 

 

4.2.4 Eliminating Noise of Background 
Because of the effect of the noise and edges in the background, the experimental 

result of object detection is usually not satisfactory, as shown in Figure 4.6. If a wall 

or the floor under the object is not clear, it usually influences the result of the moving 

of the control points. Hence, we have to improve the method for object detection. 
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(a) (b) 

Figure 4.6 Effect of background on object detection (a) Before detection. (b) Result of 
detection. 

 

Besides the methods of Section 4.2, we add the strength of pull and drag between 

the control points. We hope that the distance of adjacent control points can keep inside 

a reasonable domain. In order to achieve this goal, the number of the control points is 

determined by a beginning rectangle size. According to the length of a rectangle’s 

boundary and the coordinates of the four endpoints of the rectangle, we compute 

every control point position on the edge of the rectangle so that every control point 

can keep a fixed distance to each other. Utilizing the distance of the control points, we 

can adopt a threshold Dt such that the distance between two adjacent control points 

are kept inside D  when the control points are moving along the path. t

As illustrated in Figure 4.7(a), the control point , and the two points, 

 and  are adjacent points of P

),( iii yxP

),( 111 −−− iii yxP ),( 111 +++ iii yxP i. We compute the distances 

 and by the following equations: 1D 2D

111 −− −+−= iiii yyxxD ; (4.16)

112 ++ −+−= iiii yyxxD . (4.17)

If the inequality  is true, then we will modify the position of the 

control point , as shown in 

tDDD >+ 21

iP Figure 4.7(b). Utilizing the coordinates of the control 
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points  and , we can get a center position m1−iP 1+iP i between them by using the 

equation of 
2

1++
= ii

i
PPm iii Pmv −=. After computing a vector , the position of the 

control point  is changed to the new position specified by ii vP
4
3

+iP . 

iP  

1−iP

1+iP

im

iv
4
3  

2D  

1D  
iP  

1−iP  

1+iP  

(a) (b) 

Figure 4.7 Correction of control points. (a) Before correction. (b) After correction. 

 

An experimental result of the above-mentioned method is shown in Figure 4.8. 

  
(a) (b) 

Figure 4.8 Results of improved method. (a) Detecting a ball. (b) Detecting a tub 

 

The vehicle sometimes will navigate on a decorative floor, as shown in Figure 

4.9(a). Before detecting the object, we have to filter the floor region by using a region 

growing technique. A result is shown in Figure 4.9(b). When the position of control 

point is on the floor region, it is moved without being stopped until it leaves the floor 

region. 
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(a) (b) 

Figure 4.9 Elimination of a floor region. (a) A decorative floor. (b) An experimental 
result. 

  

4.2.5 Detailed Object Detection 
We have already described the concept behind the proposed improved snake 

algorithm in the above sections. The detail of the proposed object detection process is 

described in the following algorithm. 

Algorithm 4.2. Object detection. 

Input: An object image I. 

Output: An object region ObjR. 

Steps: 

Step 1. Specify manually four end points of a rectangle in the ICS as initial control 

points and compute the coordinates of the four points. 

Step 2. Compute the coordinates of the other control points according to the 

coordinates of the four endpoints. 

Step 3. Compute the center point Pcenter by using the coordinates of all the control 

points.  
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Step 4. Use a region growing technique to filter out the floor region. 

Step 5. Compute the internal energy Einternal and the external energy Eexternal of every 

control point. And compute the original snake energy Esnake by summing up 

all the values of Einternal and Eexternal. 

Step 6. For each control point, do the following steps. 

Step 6.1. Compute next position of the control point on the shrinking path and 

its internal energy Einternal and external energy Eexternal and the new 

snake energy newEsnake by summing up Einternal and Eexternal. 

Step 6.2. Compare the original snake energy Esnake with newEsnake. 

Step 6.3. If original energy Esnake is smaller than newEsnake, the control point is 

not moved to the next position. Else moving the control point to the 

next position and substitute Esnake with the new snake energy newEsnake. 

Step 6.4. Compute the distances D  and D1 2 between the control point and its two 

adjacent points. 

Step 6.5. Sum up D  and D . If their sum is larger than a threshold Dt1 2 , then 

adjust the coordinates of the control point by using the method described in 

Section 4.2.3 and compute the new snake energy. 

Step 7. When reaching the minimum energy, stop moving the control points. 

Step 8. Compute the object edges using the coordinates of the control points. 

Step 9. Detect object region ObjR using the coordinates of the object edge points. 

4.3 Object Feature Extraction  

After detecting an object from an image, we hope to gather useful features of the 

object for object matching. Through comparing the object features with those of a 
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learned object, we can achieve the purpose of security patrolling. The object features 

for use in this study are color, shape, and coordinates in the GCS. Among the features, 

the coordinates are used as vehicle navigation data, and the others are used for object 

matching. In Section 4.3.1, we will illustrate how to use simple mathematics to 

describe color features. We will use an ellipse to fit the shape of each object, as 

illustrated in Section 4.3.2. Finally, a coordinate transformation is described in 

Section 4.3.3 for computing the coordinates of objects in the GCS. 

4.3.1 Color Feature 
Each object has its own colors which are the most useful feature. We can use it 

for object matching in the security patrolling process. About color data, we adopt the 

RGB color model and choose certain statistics to describe color features in this study. 

After segmentation of object pixels, we compute the means of the R, G, and B 

colors, respectively, and denote them as objR objG objB, , and . The means can be 

used to describe the whole color situation and are influenced slightly by noise or some 

fragmented edges. The equation is shown as follows: 
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(4.18) 

where , , and  are the R , G, and B values of object pixels, and n is the 

number of the object pixels.  

iR iG iB

Representing the color deviation of the object, we use the standard deviation to 

show this feature. We compute the standard deviations of the R, G, and B values, 

respectively, which are denoted as , , and . The equation for this is 

shown as follows:  

sd
objR sd

objG sd
objB
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4.3.2 Ellipse Fitting for Shape Representation 
Shapes of objects are usually different, such as circle, triangle, ellipse, rectangle, 

etc. Moreover, many object shapes are irregular. Hence, if all shapes can be 

represented by using only one shape, it will be convenient and fast. In this study, we 

use the ellipse shape to represent all object shapes. Although the shapes of objects are 

different, we always can compute an ellipse shape to fit the object shape. 

12

2

2

2

=+
b
y

a
xAccording to the ellipse equation, , there are two unknown variables 

a and b which are the horizontal and the vertical axis length. We can distinguish 

different objects by different values of a and b. Because the center of the ellipse is 

usually taken to be the origin of the coordinate system, we must change the 

coordinates of the object pixels and the origin is moved to the center of object region 

such that the equation 12

2

2

2

=+
b
y

a
x  can be used. 

The center of the object region is denoted as , and calculated by 

the following equation: 
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where variables, x  and yi i, are the coordinates of the object pixels in the ICS. For all 

the object pixels , they are moved to the new coordinates, denoted as  and 

, by using the equation  and the least square method 

to solve variables a and b by the following equation: 

ix′),( ii yx
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objiobjiii yyxxyx −−=′′iy′
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Finally, we take a and b to represent this object. An experimental result is shown 

in Figure 4.10. 

 

Figure 4.10 The ellipse representation of a safe. 

 

4.3.3 Coordinate Transformation 
The coordinates of an object are useful for navigation guidance. When the 

vehicle navigates along a route, it can detect the object according to coordinates of the 

learned object to help navigation on the right path. In this study, we use the 

coordinates of the object in the GCS as navigation data. 

After detecting an object in an image, we use Equation (4.20) to compute the 

center of object pixels, such as the red point shown in Figure 4.11. By using a 

region-growing technique to find out the floor region in the image, the object can then 

be located on the floor, such as the green point shown in Figure 4.11. Computing the 
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coordinates of green points in the VCS by the 2D mapping technique as illustrated in 

Chapter 3, we can get relative positions of the vehicle and the object. 

Using the coordinates and the direction angle of the vehicle in the GCS, we can 

compute the coordinates of the object in the GCS by the following equations: 

cos sinobj obj obj carGx Vx Vy Gxθ θ= ⋅ − ⋅ + ; (4.23)

sin cosobj obj obj carGy Vx Vy Gyθ θ= ⋅ + ⋅ + , (4.24)

where Gxobj and Gyobj are the coordinates of the object in the GCS, Vxobj and Vyobj are 

the coordinates of the object in the VCS, and Gxcar and Gycar are the coordinates of 

the vehicle in the GCS. Finally, θ is the direction angle of the vehicle in the GCS. 

 

  
(a) (b) 

  

(c) (d) 

Figure 4.11 The locations of objects (a) An original image in which a ball is on the 
floor. (b) An original image in which a TV is on the wall. (c) An 
experimental result of (a). (d) An experimental result of (b). 
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Chapter 5  
Learning Strategies for Indoor 
Navigation by Manual Driving 

5.1 Introduction 

Before the vehicle navigates, it is a necessary process that we control the vehicle 

to record the paths and objects. Because indoor environments are usually complicated 

and objects are placed at different positions, building a complete navigation map is 

necessary. Hence, to create the navigation path and choose monitored objects is a 

primary work of security patrolling by vehicle navigation. We will describe how to 

build navigation data by manual driving in this chapter. 

In Section 5.2, we will first describe the control rules and the entire manual 

learning process simply. It includes all the steps that the user may use a control 

interface to control the vehicle to patrol in indoor surroundings and point out which 

object has to be monitored by using the control system.  

Two kinds of navigation data are used in this study. One is path data and the 

other object data. Although we can get the position of the vehicle by the odometer 

value any time, how to represent the entire path by using useful and simple values is a 

problem. In Section 5.3, we will describe how to gather path data when the user 

controls the vehicle to navigate in indoor environment. Every object has its own color 

and shape; if different kinds of objects use different learning methods, the work will 

be annoying to the user. We design a simple object learning method to solve this 
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problem in this study, as illustrated in Section 5.4. The door is considered as an object, 

and monitoring of it is also described in Section 5.4. 

After learning whole data, we have to utilize the data to build information for 

security patrolling. In Section 5.5, we will describe how to use path data and the 

positions of learned objects to create a navigation path which is then used when the 

vehicle navigates automatically. 

5.2 Control Rules And Entire learning 
Process 

In this study, the user controls the vehicle to navigate by the following fives 

types of actions. 

(1) Moving forward. 

(2) Moving backward. 

(3) Turning left at the original position. 

(4) Turning right at the original position. 

(5) Stop. 

Because the vehicle only owns three wheels and the rear wheel is an auxiliary 

wheel, rotation of the vehicle depends on the two side-wheels. Also, the vehicle can 

rotate at any position. Therefore, we can control the vehicle to move to the 

neighborhood of an object and a door, and let it turn to the front of the object or the 

door to learn relative object features. 

The control rules for the vehicle are described as follows. 

(1) When a user wants to turn rightward or leftward, the vehicle should be made still 
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first. If the vehicle is moving, the user has to stop the vehicle and then turn the 

vehicle. 

(2) Because the view of camera is fixed, there is a limit of distance in the front of the 

vehicle, 60cm, in which the camera can not take clear images of the scene. 

Hence, the distance between the vehicle and a learning object has to be kept 

larger than 60cm. 

(3) The process of object learning should be done when the vehicle is still. 

(4) The object region should be around the center of an image. 

The entire learning process is described as following algorithm and a example of 

learning process is shown in Figure 5.1. 

 

Figure 5.1 Proposed learning process. 

 

Algorithm 5.1. Learning process. 

Input: The user control interface in the PC.  

Output: Learned data. 

Steps: 
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Step 1. Control the vehicle to move from a start position using the control interface. 

Step 2. Let the vehicle move to the front of a monitored object or a door. 

Step 3. Choose the monitored object by using the user control interface in the control 

system, a personal computer in this study. Compute the features of objects or 

doors, and show the result on the control interface. 

Step 4. If the learning result of the object and door are not satisfactory, repeat Step 3 

until satisfactory, and then save the features of the objects and doors. 

Step 5. Repeat Steps 2 through 4 until all the features of the monitored objects are 

grasped and saved. 

Step 6. If another object is to be learned, repeat Steps 2 through 5; else, continue 

following steps. 

Step 7. Decide whether the learning process should be continued, and continue 

driving and repeat Step 2 through 6 if so; else control the vehicle to move to 

the destination and finish the learning process. 

Step 8. Save the learned data. 

 

 
Stop at a position

Manual 
driving

End learning

Choose a object 
or door

Continue choose 
a object or door

Compute feature 
data

Continue 
driving

Whether data are 
recorded

Record learned data

Store navigation data in the 
storage

No

Yes
No

Yes

Turn to a object 
or door

Yes

No

Start learning

Figure 5.2 Flowchart of manual learning process. 
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5.3 Process of Learning Navigation 
Paths 

When the vehicle moves along a path, the odometer values are changed 

continuously. The odometer provides the rotation angles and the vehicle coordinates 

(x, y) with the coordinate origin being the beginning position of the vehicle. We only 

record vehicle coordinates as path data in this study. 

Although the coordinates are changing all the time, we just save some 

coordinates (x, y) which are called node Ni in this study. Two types of data are stored 

in node Ni. Besides the coordinates, a number denoted as NNumber and used to mark 

the order of the object is also saved. The number is computed from 0. 

Saving the path data is different from saving the object data. The user has to 

point out an object manually in the acquired image on the interface in the object 

learning process, but the user does not have to do so in the path learning process. 

When the user controls the vehicle to move ahead or back, the vehicle system will 

automatically collect values of the coordinates (x, y) and the moving direction. 

Each node of a path is marked with a serial number. After finishing learning, we 

have a set of notes, denoted as Npath. The process of recording the path data is 

described as an algorithm in the following. 

Algorithm 5.2 . Path node collection. 

Input: The coordinates provided by the odometer in the vehicle. 

Output: A set of nodes denoted by Npath ={N0, N , N , …, N }. 1 2 t

Steps: 

Step 1. Record the first node as (x0, y0) = (0, 0) into the set Npath and mark the node 
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as N  with index 0, when the vehicle is at the starting position. 0

into the set NStep 2. Record the node N (x , y ) pathi i i   by taking the values of the 

odometer (x, y) and mark the node Pi  with the next index number, when the 

vehicle is at one of the following three situations: 

(1) when the direction angle and coordinates are corrected, as described in 

Section 3.3; 

(2) when the user controls the vehicle to turn; 

(3) when the user controls the vehicle to learn the data of certain objects. 

 into the set NStep 3. Record the finally node N path and mark it as Nt t by the next 

index number when the learning process is finished. 

Step 4. Save all the nodes of the set Npath into the PC. 

According to Section 3.3, the navigation path of vehicle is a curve when the 

vehicle moves ahead. In the learning process, the direction angle and coordinates of 

the vehicle are corrected automatically. In this study, we design the direction angle 

and coordinates to be corrected once each time when the vehicle moves for the 

distance of 250cm. We record a node each time the vehicle comes to a stop in a 

learning course. Besides the start position which the vehicle begins to move ahead, 

there are two types of nodes which should be recorded. One is the position where the 

vehicle turns back to a straight path, as denoted by node s1 in Figure 5.3(a). The other 

is the position where the vehicle already comes back to a straight path, as denoted by 

node s2 in Figure 5.3(a). Recorded nodes are shown in Figure 5.3(b) when the vehicle 

navigates along a straight path. And we use the same method to record nodes when 

the vehicle moves backward. 

As an illustration of the result of applying Algorithm 5.2, we show an example 

of recorded nodes in Figure 5.4 that a navigation path shown in Figure 5.1 mentioned 

in Section 5.2. We can see that all critical nodes of the three situations are recorded in 
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addition to the start and the end nodes. All nodes are marked with index numbers 

according to the order of patrolling. And the start node and the end node are the same 

node in this example. The index numbers are useful for path map creation and object 

detection. We will describe them in detail in Section 5.5. 

 

(a) 

(b) 

Figure 5.3 Recorded nodes when the vehicle moves straightly. (a) Nodes in one circle 
of the navigation correction. (b) Nodes in a longer path. 

 

 
Figure 5.4 An experimental result of path learning with critical nodes recorded. 
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5.4 Process of Learning Monitored 
Objects and Doors 

5.4.1 Process of Learning Objects 
When the user controls the vehicle to move to the front of objects, the user must 

use the mouse connected to the PC to choose an object which appears in the image. 

As soon as the user chooses the object, the object data are computed automatically 

and saved. The set of object data is denoted by LearnOi and i = 1, 2, 3, …, n. There 

are six kinds of data to be saved in LearnO . They are: i

(1) The color set denoted as LearnCobj,i.  

(2) The shape set denoted as LearnSobj,i.  

(3) The GCS coordinate set denoted as LearnGCobj,i. 

(4) The ICS coordinate set of object centers denoted as LearnCICobj,i.  

(5) The set of light source of the floor, denoted as LearnCfloor,i. 

(6) The number of path nodes NodeNumber.  

Hence, we have LearnO  = {LearnCICi obj,i, LearnCobj,i, LearnSobj,i, LearnGCobj,i, 

LearnCfloor,i, NodeNumber}. 

The methods for computing the color, shape, and coordinates of the object have 

already been described in Section 4.4. After the vehicle records all the data of 

monitored objects LearnO , we save the data into the set LearnOobjecti . The entire 

learning process of the object is described as follows. 

Algorithm 5.3 . Learning of object features. 

Input: A color image I captured by the camera on the vehicle. 

Output: A set of object data LearnOobject = {LearnO , LearnO , LearnO ,…, 0 1 2
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LearnO }. n

Steps: 

Step 1. Control the vehicle to move to the front of the first object and turn toward it 

such that the image of the object can be taken. 

Step 2. Use the mouse to choose an object from the image, as shown in Figure 5.5(a) 

and enclose the object by a rectangle. 

Step 3. Release the button of the mouse for the computer to perform the improved 

snake algorithm to capture the object, as shown in Figure 5.5. 

Step 4. Compute the elements of the object data in LearnO  as follows: 0

Step 3.1. Record the object center coordinates in the ICS into LearnCICobj,i 

by using Equation (4.5) with LearnCIC  computed by obj,i

LearnCICobj,i = { Learn_uobj_centerj,i, Learn_vobj_centerj,i }. (5.1) 

Step 3.2. Record the mean and standard deviation values of the R, G, and B 

values into the color set LearnCobj,i by using Equations 4.13 and 

4.14 with LearnC  computed as obj,i

, ,,, ,

,

{ , , , ,

}.

sd sd
obj i obj iobj iobj i obj i obj i

sd
obj i

LearnC LearnR LearnG LearnB LearnR LearnG

LearnB

= , ,
 (5.2) 

Step 3.3. Record the shape data of the object into LearnSobj,i in terms of the 

horizontal axis Learn_a  and the vertical axis Learn _bobj,i obj,i as 

illustrated in Section 4.4.2: 

LearnSobj,i = {Learn_aobj,i, Learn _bobj,i}. (5.3) 

Step 3.4. Record the coordinates of the object in the GCS into the set 

LearnGC  in terms of Learn_xobj,i obj,i and Learn_yobj,i as illustrated 

in Section 4.4.3: 

LearnGCobj,i = { Learn_xobj,i, Learn_yobj,i}. (5.4) 

Step 3.5. Record the means of the R, G, and B values of the floor into the set 
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,floor iLearnR ,floor iLearnGLearnCfloor,i, denoted by , , and 

,floor iLearnB . 

, ,,, { , , }floor i floor ifloor ifloor iLearnC LearnR LearnG LearnB= . (5.5) 

Step 3.6. Record the number of path nodes NodeNumber which the vehicle 

has located. 

 should be saved into LearnOStep 5. Decide whether the data of object LearnO object0  

or not. If the result of object segmentation is not satisfactory, repeat Steps 2 

through 4. 

into LearnOStep 6. Save the object data LearnO object0  and control the vehicle to 

move to the next object and repeat Steps 2 through 5 to save object data 

LearnO  into LearnOobjecti  until all data of monitored objects are collected and 

saved. 

Step 7. Save LearnOobject into the PC and finish the learning process. 

 

 
(a) (b) 

Figure 5.5 Learning process of choosing an object manually. (a) Choosing an object. 
(b) An experimental result of computing object features data. 

 

Because of the lighting effect of the environment, the R, G, and B values of an 

object are not always the same when the camera takes the object images at different 
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times. It causes erroneous results when the vehicle navigates using the object color 

feature to conduct object matching. We utilize an offsetting technique to solve this 

problem. We record the color features of a floor area in an object learning process. In 

Figure 5.6, the red area is the floor area, and we compute the R, G, and B means of the 

interior area of the rectangle. As the object matching process is done when the vehicle 

navigates, we utilize the differences of the R, G, and B values of the floor region to 

modify the thresholds used in the object matching process. 

 

 
Figure 5.6 A selected floor region. 

 

5.4.2 Process of Learning Doors 
When a user controls the vehicle to move, he/she can choose doors as monitored 

objects. After the features of a door are recorded, the vehicle can check their situations 

in a security patrolling navigation. When the vehicle learns the features of a door, we 

record its color data (denoted as LearnCdoor,i) and coordinates (denoted as 

LearnGCdoor). 

All door data are saved in a set Di and the date sets of all doors in the navigation 

are saved in a set LearnD = {D , D , D , …,D0 1 2 n}. The entire learning process for a 

door is described in the following. 
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Algorithm 5.4. Learning of a door. 

Input: An image I, and the number of nodes NNumber. 

Output: A set of door data D  = {LearnCi door,i, LearnGCdoor,i, NodeNumber, baseline}. 

Steps: 

Step 1. Point out a door on the image I using a cursor, as shown in Figure 5.7(a). 

Step 2. Use a region growing technique to find out the door region DoorR, as shown 

in Figure 5.7(b). 

 

(a) (b) 

Figure 5.7 A learning process of choosing a door manually. (a) Choose a door. (b) A 
door region is shown. 

 

Step 3. Compute the means of the R, G, and B values of DoorR and save them in the 

set LearnC  as follows: door

, ,,, { ,  ,  }floor i floor ifloor idoor iLearnC LearnR LearnG LearnB= . (5.6) 

step 1. Compute the coordinates of the door in the GCS and save them in the set 

LearnGCdoor,i as follows: 

, ,{ _ ,  _door i door i door iLearnGC Learn x Learn y= , }. (5.7) 

Step 4. Record the index number of the node as NodeNuber = NNumber. 

Step 5. Detect the edges of I by applying the Sobel operator to get an edge image S. 
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Step 6. Detect the door edge edoor, the right baseline edge er, and the left baseline 

edge e  of the door, as shown in Figure 5.8. l

Step 7. Compute the slopes adoor, a , and a  of er l door, e , and er l, using a line fitting 

technique by the following equation: 

2 2( )
e e e

e e

u v n uv
a

x n x

−
=

−

∑ ∑ ∑
∑ ∑

 (5.8) 

Step 8. Compare a  and a  with ar l door by the following equation: 

(5.9) | a  − ar door | ≤ | a  − al door |. 

If the above equation is true, then set baseline = 1; else, set baseline = 0. The variable 

baseline is used to illustrate which baseline is used in the navigation process. 

As shown in Figure 5.8, we utilize a baseline of a wall and compare it with the 

edge of the door to test whether it is open or not, as done in Step 9 in the above 

algorithm. Hence, if the edge of the wall is not parallel to the door edge when the door 

is closed, we can not use its baseline to compare with the door edge. So we compute 

the slopes of two baselines and the door edge, and choose a baseline whose slope is 

close to the door edge for use in the comparison. The slope of er is closer to the slope 

of edoor than that of e , as seen in Figure 5.8. l

 

 

Figure 5.8 An experimental result of detection of three edges. 
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5.5 Process of Automatic Path Map 
Creation from Learned Data 

After ending the learning process, the path data Npath, the object data LearnOobject, 

and the door data LearnDdoor are already saved. We use the index number NNumber 

of each node and the total number of nodes NodeNumber to create a path map for later 

navigation sessions, as shown in Figure 5.9. By using the index numbers NNumber of 

the nodes, the vehicle can move along the navigation path. 

 

 
Figure 5.9 An example of navigation map. 
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Chapter 6  
Security Patrolling in Indoor 
Environments 

6.1 Introduction 

By using the learning strategies mentioned in the previous chapters, path data 

and object data are saved in the PC. The vehicle can navigate according to the 

information. In this chapter, we will describe the entire process of security patrolling 

in more detail. 

In Section 6.2, we will first describe a navigation process briefly. The vehicle 

navigates according to the node data and checks the existence of the monitored 

objects by using the coordinates of the learned object during the navigation process. 

In Section 6.3, a line following technique is proposed. Since the vehicle 

navigates along the nodes one by one, the entire navigation path can be divided into 

many straight sections. A line following technique is used for correcting mechanic 

errors generated in each straight section when the vehicle is moving from one node to 

another consecutively. 

In Section 6.4, we will propose an object security monitoring process. First, the 

vehicle moves forward to a node where there is a monitored object nearby, and the 

object should be detected according to the previous learned data in the learning stage. 

Next, a rotation angle is computed such that the vehicle can turn accordingly toward 

the monitored object. Also, by using the improved snake algorithm, the vehicle 

 70



detects an object by using the improved snake algorithm. Finally, a recognition 

process is conducted to compare the images with the learned ones to decide whether 

the original object exists or not. 

In Section 6.5, we will describe the proposed door situation recognition process. 

The door situation will be checked to see if it is opened or closed when the vehicle 

moves automatically to a suitable position recorded in the learning process.  

In Section 6.6, we will describe a vehicle coordinate correction method. Since 

the vehicle might navigate a long distance in the original path gradually, the method is 

basically based on a vision-based technique which is proposed for reducing the 

accumulative mechanical errors for precise path navigation. When the vehicle detects 

a previously learned object from the image, our method will use this information to 

correct position errors. 

6.2 Navigation Process 

In the security patrolling process, the vehicle navigates along the generated path 

by visiting each path node consecutively through the routes specified by the node 

edges and checks the existence of the learned objects. A simple security patrolling 

process is described in the following algorithm. 

Algorithm 6.1. Security patrolling. 

Input: The set of nodes Npath, object data LearnOobject, and doors data LearnDdoor. 

Output: Navigation process. 

Steps: 

Step 1. The vehicle starts navigating from a starting node N . 0

Step 2. Scan the node list Npath to read the next node data. 
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Step 3. Perform the line following process until the vehicle arrives at the next node. 

Step 4. Check whether the vehicle has to monitor objects or doors. 

Step 5. If there exists a monitored object O  or a door Dj k in the current node, take the 

following action; else, continue the remaining navigation. 

Step 5.1. If the learned data are object data, do the following steps. 

Step 5.1.1. Turn toward to the learned object according the coordinates 

recorded in the learning process. 

Step 5.1.2. Do the object matching process. 

Step 5.2. If the learned data is a door data, recognize the door situation. 

Step 6. Read the next node data. If there exists the remaining nodes, repeat step 3 to 

step 5. Else, finish the navigation. 

 

 

Read the learned data

Move to the node

Whether view the 
objects or the doors 

Start navigation

End Navigation

Object or door

Turn toward to the 
object

Object matching

Recognize door 
situation

Whether  remaining 
nodes exist

Yes

No

Object Door

Yes

No

 
Figure 6.1 Flowchart of security patrolling process 
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6.3 Navigation Strategy for 
Straight-Line Sections 

The navigation strategy of line following is adopted to reduce deviations from 

the route when the vehicle passes a node in its navigation path. The line following 

process will ensure that the vehicle passes each node during crossing two adjacent 

nodes. The details are described as an algorithm as follows and a related figure is 

shown in Figure 6.2. 

Algorithm 6.2. Line following navigation. 

Input: Coordinates L(xodo,yodo) and direction angle θ0 of the vehicle provided by the 

odometer, next node N [ ]1,0i =(x ,y ), and a unit vector . i i+1 i+1

Output: A navigation path between two adjacent nodes. 

Steps: 

step 1. Compute a vector  by using the following equation. iV

1

1

i i od
i

i i o

X x x
V

Y y y
+

+

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

o

do

. (6.1) 

step 2. Compute the direction angle θ1 of the vehicle in the GCS after the vehicle 

turns toward the node N  by using the following equations: i+1

1

1
1

cos ( ),            if 0;

( 1) cos ( ),  if 0.

i
i

i

i
i

i

V i Y
V i

V i Y
V i

θ

−

−

⎧
≥⎪

⎪
= ⎨
⎪ − × <⎪
⎩

i

i
 (6.2) 

step 3. Compute the rotation angle as α = θ − θ1 0 and the navigation distance 

as id V= . 

step 4. Because of the mechanic error, the vehicle can not move to the correct 
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position as shown in Figure 6.2. A correction angle β is computed as follows 

by using the curve equation y = ax2 + bx + c as illustrated in Section 3.3: 

2

1tan ( )i i

i

a V b V c

V
β −

+ +
= (6.3) . 

step 5. Compute the real rotation angle as r = α − β. 

step 6. Turn the vehicle leftward for the angle of r if r is larger than zero; otherwise, 

turn the vehicle rightward for the angle of r. Therefore, the direction of the 

vehicle become θ  − γ. 0

step 7. Move the vehicle forward. Read the odometer to obtain the current vehicle 

location L  and compute how far the vehicle has moved as d  = |L  − L|. v 1 v

step 8. End this navigation session if d  ≥ d. 1

Theoretically, there are two main parameters we have to compute in the 

navigation session, namely, the rotation angle γ and the navigation distance d between 

two adjacent nodes. By using the curve built in advance which is mentioned in 

Chapter 3, we compute the real distance d and angle r. Although the vehicle can not 

move straightly due to the mechanic error, it can still arrive at the next position 

accurately by adjusting the direction of starting for compensation. 

As shown in Figure 6.2, the starting position of the vehicle should be Ni in theory, 

but the vehicle will not stop at node N  in last line following navigation from N  to Ni i-1 i 

due to the condition of ending a navigation session. The real position of the vehicle 

became L. Hence, we can compute parameters of a navigation session by using L 

provided by the odometer instead of N . i
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Figure 6.2 Line following navigation. 

 

6.4 Object Security Monitoring Process 

In this Section, we will describe the detailed object monitoring process. In the 

process, the vehicle has to search for the monitored object or the door automatically 

which was pre-selected by the user in the security patrolling. Then it checks the 

existence of the objects or the door situation. A new parameter NodeNumber is created 

which is stored in each object data for specifying the position of the object searching. 

Another problem to be addressed is that when the vehicle moves to the neighborhood 

of a monitored object, there are some unmonitored objects near the vehicle. How to 

distinguish a monitored object from them is a problem we have to deal with. Here, we 

use data of the learned objects to distinguish other objects. In Section 6.4.1, we will 

propose an object detection method. And in Section 6.4.2, an object matching method 

will be proposed. 

Although the vehicle can detect the learned object according the object 

coordinates recorded in the learning process, in practice, the navigation deviation 

often causes the vehicle to be unable to search an object at once. The vehicle moves to 
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the neighbor of the object and detects it but it can not detect an object if the object is 

not in the image. The last method in Section 6.4 is to decide the searching angle of the 

object due to the navigation deviation. Also in this section, we will describe the entire 

object monitoring process. 

6.4.1 Proposed Monitored Object Detection Method 
When the vehicle moves to the neighborhood of the object O , the data of Oi i, 

LearnO = {LearnCICi obj,i, LearnCobj,i, LearnSobj,i, LearnGCobj,i, LearnCfloor,i, 

NodeNumber} which is illustrated in the learning process is used to detect the object 

O . The detailed algorithm is described as follows. i

Algorithm 6.3. Monitored object detection. 

Input: A color image I, coordinates L(xodo,yodo), and direction angle θ0 provided by the 

odometer, and a learned object data LearnO . i

Output: A set of object region ObjR. 

Steps: 

step 1. Use coordinates of the object, LearnGCobj,i = { Learn _xobj,i, Learn _yobj,i}, 

and the coordinates of the vehicle L to compute rotation angle α by the 

following steps, as shown in Figure 6.3. 

Vstep 1.1. Compute a vector  by the following equation: 

, odo

, odo

_

_
obj i

obj i

Learn x xX
V

Y Learn y y

−⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

. (6.4) 

step 1.2. Compute a direction angle θ1 between the vector V  and the unit 

vector of GCS  by the following equation: i
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step 1.3. Compute the rotation angle α as α = θ  − θ1 0. 

step 2. Turn the vehicle leftward for the angle α if α is larger than zero; otherwise, 

turn the vehicle rightward for the angle α. 

 

 
Figure 6.3 Illustration of turn angle computing. 

 

step 3. Capture an image and decide the coordinates of the control points in the ICS 

of the snake algorithm by the following steps. 

step 3.1. Decide four endpoints of a rectangle in the ICS in the following way, 

as shown in Figure 6.4. 

I0(u ,v ) = ((−1.5) × Learn_a0 0 obj,i, Learn_vobj_centerj,i + 1.5 × Learn_bobj,i) 

I1(u ,v ) = (1.5 × Learn_a1 1 obj,i, Learn_vobj_centerj,i + 1.5 × Learn_aobj,i) 
(6.6) 

I2(u ,v ) = ((−1.5) × Learn_a2 2 obj,i, Learn_vobj_centerj,i − 1.5 × Learn_aobj,i) 

I3(u ,v ) = (1.5 × Learn_a3 3 obj,i, Learn_vobj_centerj,i − 1.5 × Learn_aobj,i) 

step 3.2. Execute the improved snake algorithm by using the four endpoints to 

detect an object.  

step 4. Get the detected object pixels ObjR by using the coordinates of the control 
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points in the ICS, as shown in Figure 6.4. 

 

 

Figure 6.4 An experimental result of object region. 

 

In this process, the vehicle turns its head forward to the front of the object. If no 

mechanic error occurs, the center of the object region is located on a vertical line 

which is at the image center. It is shown in Figure 6.5. 

 

 
Figure 6.5 An ideal experimental result of the vehicle turning to the object. 

 

6.4.2 Proposed Object Matching Method 
After finishing the object detection process as illustrated in the last section, a 

matching rule is proposed to determine whether the object is exact the same as the 

previous learned one. A detailed matching algorithm is described as follows. 
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Algorithm 6.4. Object Matching Process. 

Input: An image I and a learned object data O . i

Output: A boolean value, true or false. 

Steps: 

Step 1. Perform the monitored object detection process. 

Step 2. If the object cannot be detected, as shown in Figure 6.6, end this process and 

return false. 

 

 
Figure 6.6 An experimental result of detecting no object. 

 

Step 3. Else, detect an object Obj, and compute the feature data which are denoted as 

ObjData = { Cobj, Sobj, GCobj, Cfloor}. All features are illustrated as follows. 

(1) Color data Cobj. 

{ , , , , , }sd sd sd
obj objobjobj obj obj objC R G B R G B= . (6.7) 

objR objG objB, and where ,  are the means of the R, G, and B values respectively. 

sd
objR sd

objG sd
objB, , and  are the standard deviations of the R, G, B values, respectively. 

(2) Shape data Sobj. 

Sobj = {aobj, bobj}. (6.8) 

aobj and bobj are the horizontal axis and vertical axis of the ellipse to represent the 

shape of the object. 
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(3) Global coordinate GCobj. 

GCobj = {xobj, yobj}. (6.9) 

xobj and yobj are coordinates of the object in the GCS. 

(4) Floor color Cfloor. 

{ , , , , ,sd sd sd
floor floorfloor }floor floor floor floorC R G B R G B=  (6.10) 

floorR floorG floorB sd
floorR, , and  are the means of R, G, and B values respectively. , 

sd
floorG sd

floorB, and  are the standard deviations of R, G, B values respectively. 

Step 4. Compare the learned object with this object by using the color data in the 

following methods. 

step 4.1. Compare the means of color data in the following way. 

step 4.1.1. First compute light difference by using the floor color. 

,floor i floorldR LearnR R= −  (6.11) 

,floor i floorldG LearnG G= −  (6.12) 

,floor i floorldB LearnB B= −  (6.13) 

, G , and BR  are the differences of the values R, G, and B.  ld ld Bld

step 4.1.2. Compare these means by using three inequalities below. 

, 1obj obj ildR R LearnR Ctλ+ × − ≤  (6.14) 

, 1obj obj ildG G LearnG Ctλ+ × − ≤  (6.15) 

, 1obj obj ildB B LearnB Ctλ+ × − ≤  (6.16) 

where the parameter λ is a coefficient and Ct1 is a threshold. 

step 4.2. Compare the standard deviations by using the following three 

inequalities: 
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, 2
sd sd
obj obj iR LearnR Ct− ≤ , (6.17) 

, 2
sd sd
obj obj iG LearnG Ct− ≤ , (6.18) 

, 2
sd sd
obj obj iB LearnB Ct− ≤ . (6.19) 

where the parameter Ct2 is a threshold. 

Step 5. Compare the learned object with this object by using the shape data in the 

following ways. 

step 5.1. Compute the ratio of the horizontal axis and vertical axis of the learned 

object and this object by using following equations. 

LearnR = (Learn_aobj,i / Learn_bobj,i) (6.20) 

R = (aobj / bobj) (6.21) 

Compare ratios in the following inequality. 

(6.22) | (LearnR / R) − 1| ≤ St 

The parameter St is a threshold. 

Step 6. If the above inequalities are satisfied in Steps 4 step 5, then return true, else 

return false. 

6.4.3 Detailed Object Monitoring Algorithm 
Although the vehicle can detect the object by using the learned object 

coordinates and the vehicle location in the object detection process as described in 

Section 6.4.1, there are some situations in which the vehicle can not detect the 

monitored object. The reason is that sometimes mechanic errors cause the vehicle 

moveing far away from the route such that it can not view the monitored objects, as 

shown in Figure 6.7. Therefore, a complete object monitoring process including 

searching view adjustment for improving the robustness is described in the following 

algorithm and a detailed flowchart is shown in Figure 6.8

 81



 

 
 

(a) (b) 

  

(c) (d) 

Figure 6.7 Situations of object detection. 

 

Algorithm 6.5. Monitored object monitoring process. 

Input: A learned object data LearnO , coordinates L(xi odo,yodo), and direction angle θ0 

provided by the odometer. 

Output: A warning message or nothing. 

Steps: 

step 1. Perform the monitored object detection process. 

step 2. Perform the object matching process. 

step 3. If the return value is true, then end this process. Else, continue the following 

steps. 

step 4. Compute a rotation angle Φ by the following equation; 
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1tan ( )
10

V
− (6.23) Φ = . 

VThe symbol  is the distance between the object and the vehicle as illustrated 

in Algorithm 6.3. 

step 5. Turn the vehicle leftward for the angle Φ. 

step 6. Repeat Step 2. 

step 7. If the return value is still false, continue the following steps. Else, end this 

process 

step 8. Turn the vehicle rightward for the angle 2Φ. 

step 9. Repeat Step 2. 

step 10. If the return value is still false, a warning is announced. Else, end this 

process. 

 

 

Detect a object

Turn toward the 
object

Compute feature data

Turn right

Whether a object exists

Turn left

Detection times

A warning is issued

Compare the learned 
object with this object

Whether conditions are 
satisfied

No

NO

1 2

Stop monitroing

Yes

3

Yes

Learned data

 
Figure 6.8 Flowchart of object matching. 
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The main goal of turning the vehicle is to search an object. When the vehicle 

cannot discover the desired object, it must turn left or turn right for the angle Φ to 

search the object again. The angle Φ is extracted according to the distance between 

the vehicle and the learned object. After finishing the searches in the three directions, 

if the vehicle still can not find the desired object, then a warning message is 

announced. 

6.5 Detection of Door Opening 

In this section, the detection algorithm for the determination of the current 

situation of a door is proposed. The algorithm is performed after the vehicle moving 

itself to the front of a door, and it is conducted to detect if the door is open or not. The 

detection process is illustrated as following algorithm. 

Algorithm 6.6. Detection of door opening. 

Input: An image I and a set data of the door D . i

Output: A Boolean value, true or false. 

Steps: 

step 1. Detect the edges of I by applying the Sobel operator. 

step 2. Detect the edge of the door E  and the edge of the baseline Ed b. Choose the 

right or left side baseline of the door according to learned data baseline. 

step 3. Compute the slopes of the E  and Ed b by the following equation: 

2 2( )
e e e

e e

u v n uv
a

x n x

−
=

−

∑ ∑ ∑
∑ ∑

(6.24) .

step 4. Compare a  and ad b by the following inequity: 
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(6.25) |a  − a | ≤ th. d b

where th is a threshold. 

step 5. If it is not satisfactory, it means the door is open, and then return true. Else 

continue the following steps. 

step 6. Compute color data by selecting a rectangular region, as shown in Figure 6.9. 

step 7. Compare the color data. If it is satisfactory, then return false, else return true. 

The main idea here is to utilize the edges of the door and the baseline. We detect 

the edges of the door’s downside and baseline. We compute their slopes by using a 

line fitting technique. If the door is closed, the edge of the door’s downside is parallel 

to the baselines. Hence, the two slopes should be closer. But when the door is open 

completely, as shown in Figure 6.9(b), we can not detect the edge of the door. Hence, 

we utilize the color conditions to decide whether the door is open or not. 

 

 

  
(a) (b) 

Figure 6.9 An illustration of door detection. (a) The door is opened. (b) 
The door is closed. 
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6.6 Improved Guidance Precision in 
Navigation by Learned Object 
Location 

Although the line following technique and the mechanic error correction method 

are helpful for the improvement of the navigation accuracy, it is still possible that the 

vehicle moves for a great deviation from the normal path after a long distance of 

security patrol. A vision-based technique is proposed to correct the navigation 

deviation in this section. The main idea of correcting the navigation deviation is to 

correct the position coordinates of the vehicle. Utilizing the known position of the 

monitored object which was mentioned in Chatper5, we can correct the coordinates of 

the vehicle in the GCS. 

When the vehicle searches for the object, an ideal situation is that the vehicle 

turns directly to the front of the vehicle in the object detection process, as illustrated 

in Section 6.4.1. However, if the vehicle has turned an extra angle Φ leftward or 

rightward to search for the object, as illustrated in Section 6.4.3, the angle Φ has to be 

considered during the correction of the coordinates of the vehicle. 

Algorithm 6.7. Improved guidance precision in navigation by learned object 

location. 

Input: A detected object region Obj, the coordinates of the learned object LearnGCobj,i 

= {Learn_xobj,i, Learn_y }, the direction angle θobj,i 0 from the odometer, and a 

turn angle Φ illustrated in Algorithm 6.5 in Section 6.4.3. 

Output: A set of coordinates (xv,yv) and direction angle θ1. 

Steps: 

step 1. Compute the coordinates of the detected object (Vxobj, Vyobj) in the VCS now 
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by using region Obj when the vehicle turns for the angle Φ to detect the 

object. 

step 2. Compute the coordinates of the detected object (Vx , Vyo o) in the VCS when 

the vehicle does not turn leftward or rightward for the angle Φ by the 

following equations: 

(6.26)Vx  = Vxo obj × sinΦ − Vyobj × cosΦ; 

(6.27)Vy  = Vxo obj × cosΦ + Vyobj × sinΦ. 

step 3. Compute the coordinates of the vehicle (Oxv, Oyv) in the object coordinate 

system by transforming the coordinates (Vx ,Vy ) by the following equation: o o

(6.28)(Oxv, Oy ) = ((−1) × Vx , (−1) × Vy ). v o o

step 4. Correct the current direction angle of the vehicle by the following equation: 

1 o
1 0

o

Vtan ( )
V 2

y
x

πθ θ −= − − . (6.29)

Assume that θ  is the new value of the direction angle. 1

step 5. Compute the angle ρ between the object coordinate system and the global 

coordinate system by using the direction angleθ  by the following equation: 1

(6.30)ρ = θ1 − π/2 − Φ. 

step 6. Correct the coordinates of the vehicle in the GCS by using the learned object 

data by the following equations: 

(6.31)xv = Ox  × sinρ − Oyv v × cosρ + Learn_xobj,i; 

(6.32)yv = Ox  × cosρ − Oyv v × sinρ + Learn_yobj,i. 

step 7. The vehicle navigates according to navigation strategy for straight-line 

section. 

The main idea of correcting the vehicle position is to utilize the recognized 

monitored object GCS coordinates to modify the odometer values of the vehicle. 

When the vehicle detects an object and considers it as a learned object, we can use its 

 87



GCS coordinates. From the image; we can compute its VCS coordinates. The origin 

of the VCS is the center of the vehicle and the coordinates of the object, Vxobj and 

Vyobj are the distances relative to the vehicle, as shown in Figure 6.10(a). Since we 

transform the VCS to the coordinate system whose origin is the object center, we can 

get the vehicle coordinates Ox  and Oy , as shown in Figure 6.10v v (b). Then using the 

coordinates of the learned object, we can compute the vehicle position in the GCS. 

The direction angle and coordinates are considered. In order to correct the angle, 

we use the object detection process. When the vehicle turns to the front of the vehicle 

in the object detection process, the object should appear in the image center if no 

mechanic error occurs. However, if the error does occur, we correct the direction 

angle of the vehicle by using the position of the object appearing in the image. The 

real coordinates of the vehicle in the GCS can be obtained from our method by using 

the Oxv and Oy  and the direction angle. v

As soon as we have corrected the direction and coordinates of the vehicle, the 

vehicle can not return the original node position, as node N  shown in Figure 6.11i . The 

real position of the vehicle is L. We use the real position L of the vehicle and next 

node Ni+1 to compute the navigation path by using the line following technique 

mentioned in Section 6.3, as blue path shown in Figure 6.11. Hence, although the 

vehicle may not arrive at original position Ni due to navigation deviation, we use the 

object to correct the vehicle position and vehicle can continue navigating in the 

precise path without returning original position Ni. It is helpful for improving 

efficiency and precision of navigation. 

Also, there is another situation we must consider. Although the vehicle turns 

toward to the object, the vehicle will turn another angle Φ additionally if the vehicle 

cannot detect an object. Hence, Φ is included in each correction computation. 
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(a) (b) 

Figure 6.10 Coordinate Transform between the VCS and the object coordinate 
system. (a) A sidelong view of the VCS. (b) A vertical view of the 
object coordinates. 

 

 

Figure 6.11 An illustration of navigation after correcting the position of the vehicle.
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Chapter 7  
Experimental Results And 
Discussions 

7.1 Experimental Results 

We will show some experimental results of the proposed security patrolling 

system in this section. The user interface of the system is shown in Figure 7.1. 

At first, a user controls the vehicle to learn a path and some monitored objects 

and doors, as shown in Figure 7.2. The experimental images are shown in the remote 

system. Figure 7.2(a) illustrates the results of the learning process in which the user 

chose an arbitrary object to be monitored by selecting its area from the image. Figure 

7.2(b) shows a door to be monitored, which has been selected by a user. 

 

 
Figure 7.1 An interface of the experiment. 
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(a) (b) 

Figure 7.2 The learning images. 

 

The entire learned data is shown in Figure 7.3. It includes the path nodes and 

saved objects and a door. There are two safes saved in this experimental. 

 

 

Figure 7.3 An illustration of learned data. 

 

After ending the learning process, the entire vehicle navigation process is shown 

in Figure 7.4. Some experimental results of monitoring objects and doors are shown 

in Figure 7.5. There are two regions in the images; the left side is the view of the 

vehicle, and the right side is the image processing result. Some warning messages of 

 91



monitoring results are shown in the image. Figure 7.5(a) ~ (d) demonstrate that our 

system successfully recognizes the existence of monitoring objects. Figure 7.5(e) and 

(f) include another successful example of our system successfully distinguishing 

different kinds of door situations. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.4 A navigation process. 
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(a) 

 

(b) 

 

(c) 

Figure 7.5 The experimental result of security monitoring. 
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(d) 

 

(e) 

 

(f) 

Figure 7.5 The experimental result of security monitoring (continued). 
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7.2 Discussions 

By analyzing the experimental results of navigation, some problems are 

identified as follows. 

(1) The result of detecting an object by using the improved snake algorithm might 

become worse due to the complex background. The control points of the snake 

will not converge to the edge of the object since the colors of background are 

too complex. The control point will stop at the edge of background. In the future, 

the results of the object detection will more satisfactory by improving the snake 

algorithm. 

(2) Object matching is often degraded by the varying lighting condition. Although 

lighting in indoor environment is more stable than outside, an image still can be 

affected easily due to the diaphragm of the camera. The vehicle needs to stop 

more than one second to wait the light steady. Since we use an offsetting 

technique to overcome it, an erroneous judgment sometimes will occur. 

(3) That the floor has to be flat is a constraint of our system. A mechanic error 

correction model is used in this study but the situation of the vehicle wheel 

gliding can not be totally overcome. The navigation precision is affected by the 

roughness of the floor. 
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Chapter 8  
Conclusions and Suggestions for 
Future Works 

8.1 Conclusions 

Several techniques and strategies have been proposed in this study and integrated 

into an autonomous vehicle system for security patrolling in the indoor environments 

with mechanic error correction and visual object monitoring capabilities. 

At first, a setup strategy for the autonomous vehicle is proposed. Two kinds of 

tasks, namely, Location mapping calibration and mechanic error correction, have been 

proposed to set up the vehicle before its patrolling. Feasible 2D Location mapping 

calibration is proposed for acquiring the relative positions between the vehicle and the 

surrounding environment precisely. The mechanic error correction model which is 

based on a second-order curve equation is proposed to improve navigation accuracy. 

Next, some learning strategies are proposed for the autonomous vehicle, 

including learning of the planned path and learning of monitoring objects and doors. 

The user can easily control the vehicle to navigate in the environment and select 

monitored objects in the image. And in order to make a precise navigation along a 

path, one method is to use the coordinates of learned objects as an auxiliary tool to 

adjust the position and direction of the vehicle. Another method is based on a line 

following technique. Both ways have been implemented in this study. 

In addition, a computer vision process has been proposed for security monitoring 
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in the navigation path. Several processes, namely, object detection, object recognition, 

object searching, and door opening detection, have been proposed to detect the current 

situation during the patrolling process. 

The experimental results shown in the previous chapter have revealed the 

feasibility of the proposed system. 

8.2 Suggestions for Future Works 

The proposed strategies and methods, as mentioned previously, have been 

implemented on a small vehicle system. Several suggestions and related interesting 

issues are worth further investigation in the future. They are described as follows. 

(1) Improving the object detection method --- In order to detect monitored object 

with a more complicated image, the object detection method need be improved, 

which can then be adopted for more application environments. 

(2) Adding the capability of object feature extraction --- This is especially useful 

when the interesting image regions of an object are hollow. For example, the 

things are a ring, a wheel, or a flowerpot, etc. 

(3) Adding the vehicle abilities of obstacle detection and avoidance such that it can 

navigate in complex and dynamic environments with objects or humans 

appearing suddenly on the navigation path. 

(4) Adding the ability of human detection and tracking during the vehicle 

navigation. 

(5) Adding the ability of conflagration detection in the house. 

(6) Designing a friendlier user-machine interface and simplifying the learning 

strategy for object and path learning. 
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(7) Designing a camera system with a capability of panning, tilting, and swinging. 

(8) Adding the capability of voice control in the learning process. 

(9) Adding the capability of transmitting warning messages from the vehicle to 

the user’s cell phone by using telecommunication systems. 
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