Ew‘f‘ﬂ\qu{‘gg

SR 2B TR

Bt @ X

MD4 4= MDS md sc ¥ 2 &=

A Study of the Collision Cryptanalysis against
MD4 and MD5

g4 mEe

T TR R 2

PEREBE L+ HE F&FAKA



MD4 = MD5 #ii-d s # 2 #7 3
A Study of the Collision Cryptanalysis against MD4 and MD5

Foyod I Student : Guan-Ting Chen
hERER G T Advisor : Wen-Guey Tzeng
RS
FARE & 1o g o
oL o~
A Thesis

Submitted to Institute of Computer Science and Engineering
College of ComputerSeience
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

PEARAY LT EAD



MD4 2 MD5 #i 48 s< ¥ 2 7 3
£ mEe hEFR e L

R~ FF A1 2877 97

DIEN

£}

F A %4 €3k EuroCrypt2005 + 4 £ i i % MD4 4= MD5
LRI R Y 2 B S F L ARG PR kD D e
ESIERP S Ab R ob S NPE 2 L= (AR B N DA iy X FE Ao BN L
FEZLFRF A hRHm Y AP NALBFEZ o H
¥ MD5 o AR A - e L geeen S HL R RS - Bw Lo B
AT I‘L‘ff’rav_‘ Bw Loy Bows ik 2eof MDA A 3 2w MD4
R s R B E - e R VRT3 MDA e MDD shRi g
T EE o AP MDD R s R B 2 g (RS 9T &
175 @ ] P2 35 0 - e pdg a4 o RN P e B 0 AP T
oo 12 ‘]; p:‘l*:]]\ ;Ip} I - gl e %M—; —1 =1

M4t s LA 3% MDA MD5 2 4 B ee 0 A iE



A Study of the Collision Cryptanalysis against MD4 and MD5

Student: Guan-Ting Chen Advisor: Dr. Wen-Guey Tzeng

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

In EuroCrypt2005, Wang et al. publish their collision searching algorithms
for MD4 and MD5. Many researchers follow their results and publish their
improvements on the collision searching algorithms. Many of them focus on
how to do the message modification efficiently. In this thesis, we improve the
message modification techniques. We-ise our message modification methods
to satisfy 1 sufficient conditionin the first iteration and 5 sufficient conditions
in the second iteration for MD5. For MD4 collision searching algorithm,
we correct the errors in the previous results. We implement the collision
searching algorithm for both MD4 and MD5. Our implementation of the
MD?5 collision searching algorithm takes about 1.75 hours to give a collision
pair in average. The successful probability to find the collision pair in 12
hours is 1 according to our experiments.

Keywords: Collision Cryptanalysis, Differential Cryptanalysis, Hash, MD4,

MD5, Message Modification, Sufficient Conditions.

ii



FAEZRHA R EEY 2 R ARAFLIIOE Y
P RARNIE N RAEE AR AREF LS o ¥ by AR R P o
LR AT LIRIGRREY PRTAPEFLITE 2 AR &
% Rk T-EAL AN L AR G

P2 ARR M REFFEAE DT FHRIRE R T
2 MR B EF RGN R B 3 E MaOFl 0 foin - A3dih

19
MR EEA AT A LT R ERFREZEY PP
WG R

S NBREBA DA 5 F ] TGS 2 H A &

4’;’
Frigfec i FAL LR RBELRDOFRT Rz &
Fo@amAgi iz ERHNLF S F0 R

il



Contents

(1 _Introduction|

2 Description of The Hash Algorithms|

[2.2 The Compression Fanction oi,MD.{LII

(2.3 The Compression Funetion of MDo|

"

i

£

B Roview of Wang et al.’s Attack on MD4 and MD3

3.1 Collision Differentials . . .70 "0 . .
(3.2 Sufficient Conditionsl . . . . . . ..
[3.3  Message Modification| . . . . . . ..
[3.4  Collision Searching Algorithm| . . .

[4 Some Improvements on Message Modification|

(4.2 Our Improvements| . ... ... ..

[4.2.1 The Improvements on MD4]

[4.2.2  The Improvements on MD5|

v

10

12

15

18

19

21

23



[> Our Implementation on the Collision Searching Algorithm| 48

[5.1 A brief description of the Implementation|. . . . . . . . . . .. 48
[5.2  Analysis of Our Implementation| . . . . . . . . ... ... ... 58
[5.2.1 Correctness Analysis| . . . . . . .. .. ... ... ... 58

[5.2.2  Performance Analysis|. . . . . . . ... ... ... ... 59

6 Conclusions| 61




List of Tables

[4.1 The successtul probability that some sufficient conditions are

not fulfilledl . . . . . . ..

vi



Chapter 1

Introduction

Cryptographic Hash Functions are a kind of important primitive in cryp-
tographic applications. Many cryptographic schemes, such as digital sig-
natures, MACs, authentications, certificates, IBE, and so on, use the hash
functions as their internal subroutines toconstriict the whole cryptographic
schemes. Some cryptographi¢ schemesthat-use hash functions as their inter-
nal subroutines are proven to be secure by assuming that their underlying
hash functions are truly-random functions. This is called the random or-
acle model. But some studies show that the security of the cryptographic
schemes under the random oracle model is not guaranteed when their un-
derlying hash functions are not truly-random functions. The studies don’t
find the insecurity of the existing cryptographic schemes that are proven to
be secure under the random oracle model in the real world. Instead, they
give a counter example to show that the cryptographic schemes proven se-
cure under the random oracle model are not secure if their underlying hash

functions are substituted with a real hash function such as SHA-1, not a



truly random function [CGHOS8, [CGHO04]. Goldwasser and Kalai [GKO03] find
that the security of the Fiat-Shamir transformation that transform secure
3-round public-coin identification schemes into digital signature schemes is
not guaranteed although the methodology is proven secure under the ran-
dom oracle model. Therefore, we can’t ignore the real structure of the hash
functions and just see them as the black-box of the truly-random functions.
A cryptographic scheme that uses an insecure hash function as its internal
subroutine may be insecure [LWdWO05|, [Mik04, LAWO05]. So many researchers
do their best to re-evaluate the security of the existing cryptographic hash
algorithms and study how to design a secure ones.

There are many existing: hash fimetions, 'such as MD2 [Kal92], MD4
[Riv90l, Riv92a], MD5 [Riv92b],RIPEMD-128 and RIPEMD-160 [DBP96],
HAVAL [ZPS92], SHA-1 [FTP95}; SHA-256 and SHA-512 [FTP02], Whirlpool
[RB0O0], and so on. Before these hash functions were proposed, the hash func-
tions were constructed from blockcipher. Generally speaking, the encryption
and decryption of the blockcipher is less efficient than the compression of
the hash function on the same message (or plaintext). If a large file is trans-
fered from Alice to Bob on 100M ethernet, the computation time of the
blockcipher-based hash value of the file will be larger than the transmission
time. We want the hash value to be computed as fast as possible to meet the
transmission speed of the ethernet. Nowadays, when we download files from

the FTP or Web site, these files are usually associate with their hash values



or PGP digital signatures, that also use cryptographic hash functions as their
internal functions, for file integrity. The efficiency of computing the hash val-
ues is very important due to their heavy use, and MD2 was not used widely
because of its inefficiency. Besides it, some researchers [RC9I7, Mul04) [KMO05]
figure out the insecurity of MD2. MD4 is an early-appeared hash function
that is used to replace MD2 and designed for modern computers. All MD4
operations are basic arithmetic and Boolean operations on 32-bit words that
are suitable in modern computers and able to be computed efficiently. So
the MD4 hash value can be computed fast by using modern computers. This
type of hash functions, referred as'dedicated hash functions, is quite different
from the traditional design ¢f the blockaipher-based hash functions. Gener-
ally speaking, the computational ¢ost-of a blockcipher is much larger than
that of a dedicated hash funéfions. After MP4 was published, many new
dedicated hash functions, such as MD5, HAVAL, RIPEMD, RIPEMD-160,
SHA-1, etc, follow the design of MD4. Among these hash functions, MD5
and SHA-1 are used most widely.

On the other hand, some researches evaluate the security of the existing
hash functions. Some focus on the Merkle-Damgard structure that is widely
used in many hash functions. Some check whether the compression function
is secure. After the publication of MD4 and other their derived dedicated
hash functions, many researchers started to analyze them. Recently, Wang et

al. give collision searching algorithms for MD4 [WLET05], MD5 [WY05], and



SHA-1 [WYYO05]. The time complexity of their collision searching algorithms
for MD4 and MDb5 are small enough to run on modern PCs. After the
publication of their researches on MD4 and MD5 collisions, some researchers
INSKOO05, HPR04, KIi05b, KIi05al, [SNKOO05), [LL05| published their results
based on Wang et al.’s results subsequently. Some implementations of the
collision searching algorithms are also given [Sta05al, [Sta05b].

By our study, it is still possible to improve the previous collision search-
ing algorithms. In this thesis, we give some techniques in speeding up the
collision searching algorithms. Although Wang et al.’s [IWLET05, WY05] and
their subsequent results [NSKOQ55 HPRO4,KIi05b] KIi05al [SNKOO05, [LLO5]
are sufficient enough, there’s something that can be improved. Most im-
provements on the collision searching algorithms:on MD4 and MD5 focus on
message modification that we’will introduce/in” Chapter 4. We improve the
message modification techniques to ensure that more sufficient conditions are
fulfilled. According to our research, we find that there’s something wrong in
Naito et al.’s results [NSKOO5] for the MD4 collision searching algorithm. We
give some message modification methods to correct these errors. For MD5
collision searching algorithm, we give some message modification methods to
satisfy the sufficient condition “cs3s = ds32” in the first iteration and the
sufficient conditions “ds 15 = 17, “d532 = as32”, “c518 = 07, “C532 = d532”,

)

and “dg 32 = ag32” in the second iteration for MD5. Sasaki et al. also give

message modification method for the sufficient condition “c5 32 = d5.32” in the



first iteration [SNKOO05]. But their method reduce the set size of the collision
pair too much. Then we implement the collision searching algorithm for both
MD4 and MD5 and it takes about 1.75 hours to given a MD5 collision pair
in average. The successful probability to find the collision pair in 12 hours is

1 according to our experiments.

The Organization of the Thesis. In Chapter 2] we give some introduc-
tion of the hash functions, MD4 and MD5. In Chapter [3, we review the
collision searching algorithms on MD4 and MD5 given by Wang et al. In
Chapter [4, we introduce the previous results on message modification tech-
niques, and give our own improvementsifrom theirs. In Chapter [ we give
an introduction of our implémentation.on MD5 and analyze it. Finally, We

conclude this thesis in Chapter [6}



Chapter 2

Description of The Hash
Algorithms

2.1 Hash Functions

A cryptographic hash function # with a &-bit output is a function that
accepts an arbitrary lengthzinput M. € {0, 1}* and outputs a fixed length
output H € {0,1}*. We call that H is the hash value of the input message
M via the hash function F. Cryptographic hash functions at least need to

satisfy the following three basic security requirements:

e Preimage Resistance: Given a randomly chosen image H € {0,1}",
there is no probabilistic polynomial time adversary with less than about
2F computations to give a value M such that F(M) = H with an non-
negligible probability with respective to its output size k. If the hash
function F' satisfy this security requirement, we also say that the hash

function F'is an one-way hash function.



e Second Preimage Resistance: Given a randomly chosen value M, there
is no probabilistic polynomial time adversary with less than about 2*
computations to give another M’, M’ # M, such that F(M) = F(M')

with an non-negligible probability with respective to its output size k.

e (Collision Resistance: There is no probabilistic polynomial time adver-
sary with less than about 25 computations to find M and M’ M # M’,
such that F(M) = F(M') with an non-negligible probability with re-
spective to its output size k. The value 25 is the theoretic lower bound
of the birthday attack suppose the hash function F' is balance over its

image.

The above three properties are the minimal sécurity requirements for the
cryptographic hash functionss There are still- other security requirements
for hash functions on other specific cryptographic applications. We can find
that breaking the second preimage resistance property is more difficult than
breaking the collision resistance property. But there is no reduction relation
between preimage resistance and second preimage resistance.

Many existing cryptographic hash functions are iterated hash functions
built from compression functions. We denote the compression function as f,
and its input and output as x and y, respectively. The length of x and y is
always fixed, and |z| > |y|. But the input length of F is arbitrary, so F' need

to call the compression function f many times to compute the hash value.



Many existing cryptographic hash functions use the Merkel-Damgard con-
struction [Dam8&9 Mer89] as their iterative structure. It is that, if we want

to compute the hash value H of the message M, we compute as follows:

1. We pad the message M according to its padding algorithm. For brevity
of explaining, we also denote the padded message as M. After padding,

|M]| is an integer multiple of |x| — |y| bits.

2. We divide M into n blocks, each block size is equal to |z| — |y|, where
n = 1ML For each block of M, we denote the i*" block as M;. So

|| —lyl”

M = My||Ma]| ... [| My—1]| Mg
3. We use the following recursive €quation to-compute the hash values:
yi = Fly; ] M) forii=1ton
where yy =IV.

4. Finally H = y, is the hash value of M via the hash function F'.

In the step |3l of the above computation of H, IV, or initial value, is a fixed
value chosen by the designer of the hash function. In step |1, we mention that
the padding algorithm can be split from the Merkel-Damgard construction of
the hash functions, as long as the sender and the receiver knows the padding
algorithm. Many padding algorithms, such as RC5-CBC-PAD [BR96, ran-
dom padding, the padding for ESP [Ken05, Page 15|, and so on, used in

blockcipher can be used in hash functions. In blockcipher, when ciphertext

8



is decrypted then the padded message must be removed to recover the orig-
inal plaintext so that the padding algorithms must be invertible. Unlike the
blockcipher algorithms, the padding algorithms of the hash functions are not
necessary to be invertible because the original message M is a plaintext and
are known by both the sender and the receiver. The padded message can
be also a checksum of the message M or something else. The checksum is
also a hash value, but it is not a cryptographic hash value. The checksum
algorithms is much more efficient than the cryptographic ones, but it’s not
necessary to satisfy the three basic security requirements of the cryptographic
hash functions. Its output length'is usually. shorter than that of the cryp-
tographic hash functions. Ndgwadays, the string 1 0/e/~vI=(1Ml+1 mod (lzI=ly])) jg
padded and then the length of the unpadded message is also appeared in
the last block after the padded message in many hash functions that use the
Merkle-Damagrd structure, such as MD4, MD5, SHA-1 and so on.

Actually the cryptographic hash functions are similar (but not the same)
to the blockciphers in many aspects. For a long message, we partition it
into several blocks and then use the blockcipher, such as DES, RC5, and
AES, to encrypt each block. There are many mode of operations, such as
ECB, CBC, CFB, OFB, and so on, used during the encryption or decryption
of the blockcipher for long messages. We can also see the Merkle-Damgard

construction as the mode used in cryptographic hash functions.



Someone may use h; = f(h;_1,m;_1) to denote the computation of the
compression function instead of y; = f(y;_1||M;—1). We also call h;_; as
the initial value, h; as the hash value and m;_; as the message block of
the compression function f in this (the ") iteration in later description.
In the following statements, we will use h; = f(h;_1,m;_1) to denote the
computation of the compression function instead of y; = f(y;—1||M;_1) for

brevity of explaining.
2.2 The Compression Function of MD4

In this section, we denote the input of thé‘compression function of the mes-
sage digest algorithm MD4 in this iteration as (k, m), where h and m are the
initial value and message block of the:compression function, respectively. In
MD4 spec, h consists of 4 words, 1.e., h = ag{|bs||co||do, and ag, bo, co and dy
are all 32-bit words. The message block m consists of 16 words, we denote
m = mg||m4]|...||mis, where m; are all 32-bit words for all 0 < ¢ < 15.
There are some internal values used during the computation of the compres-
sion function of MD4. In this thesis, we will call these internal values as
chaining values, shorten as CV. In MD4, there are four registers that are
used to store the CVs, and we denote them as a, b, ¢, and d. Then given
the input (m,h), we set (a,b,c,d) = (ag, b, co,dy), and the output of the

compression function is computed as follows:

Si=a+¢i(be,d) +wi+t; a=%<s;  ifi mod4=1

10



Elzd—i—gﬁl(a,b,c)—l—wl—l—tz d:21<<<81 ifi mod4=2
Zi:c+¢i(d,a,b)+wi+ti C:EZ‘<<<SZ‘ ifi mod4=3
Yi=b+¢i(c,d,a) +w; + t; b=13; K s; ifi mod4=0

for i = 1 to 48.

In the above equations, s;’s are step-dependent constants, w;’s are chosen
from m; for 0 < ¢ < 15 according to its step i, t;’s are round-dependent
constants, and ¢;’s are round-dependent Boolean functions. All variables
used in the above steps are all 32-bit words, and the addition operation is
under the group Zss2, and the operation .‘<<” is the cyclic left rotation on
32-bit words.

We divide all the 48 steps of the computation of the compression function
into 3 rounds, and each round is*af 16-step. The round-dependent Boolean

function is defined as follows:

¢1(X7Y72) =
FF(X,Y,Z) =(XAY)V (X AZ) for 1 <i <16
GG(X,Y,Z) =(XAY)V(XAZ)V(YNZ) for17<i<32

HH(X,Y,Z)=Xa&Y & Z for 33 < i < 48

Finally, the hash value of the compression function f is (ag + a)||(bo +
b)||(co + ¢)||(do + d), where the addition is also under the group Zys:.
Later, we will denote a; to the i*® update of the register a, i.e., we denote

the j*™ update of the chaining value as ars] if  mod 4 =1, and b;, ¢;, and

J
4

11



d; are defined similarly.

2.3 The Compression Function of MD5

MD4 and MD5 are both the dedicated hash functions and MD5 is the
strengthened version of MD4 with a little modification on MD4 algorithm.
MD?5 is used to replace MD4 and now is still used widely. So the compression
function of MD5 is similar with that of MD4 but for some exceptions, and
we will mention them later in this section. In this section, we also denote
the input of the compression function of the message digest algorithm MD5
in this iteration as (h,m), where+h and misare the initial value and message
block of the compression function, respectively: Like MD4, in MD5 spec,
h also consists of 4 words, re., "= dollbol|co||dg, and ag, by, o and dy are
all 32-bit words. The message block m also.consists of 16 words, we de-
note m = mg||mq|| ... ||mis, where m; are all 32-bit words for all 0 < i < 15.
There are four registers that are used to store the CV, and we denote them as
a, b, ¢, and d. Then given the input (m, h), we set (a, b, c,d) = (ag, b, co, do),

and the output of the compression function is computed as follows:
Yi=a+ ¢i(bc,d) +w; +t; a=b+3%, Ks; ifi mod4=1
Y =d+ ¢i(a,b,c) +w; +t; d=a+ X, K s; ifi mod4=2
Yi=c+ ¢i(d,a,b) +w; +1; c=d+ Y, K s; ifi mod4=3
Y, =b+¢i(c,d,a) +w; +t; b=c+¥ Ks; ifi mod4=0

for i =1 to 64.

12



In the above equations, s;’s are step-dependent constants, w;’s are chosen
from m; for 0 < ¢ < 15 according to its step i, and ¢;’s are round-dependent
Boolean functions. All variables used in the above steps are all 32-bit words,
the addition operation is under the group Zss2, and the operation “<” is
the cyclic left rotation on 32-bit words. But note here, unlike MD4, t;’s are
step-dependent constants, not round-dependent constants. So there are 64
different t;’s for ¢ = 1 to 64 in the whole MD5 compression function. In
MD4, there are only 3 different ¢;’s for ¢ = 1 to 48 in the whole compression
function. There are total 64 steps, not 48 steps, in the compression function
of MD5. In each step computation, there ig a little difference between MD4
and MD5. The ¥,’s computation of M4 andof MD5 are the same. But
when updating the register of the chaining value; MD5 will add the last one
updated chaining value and the addition is also under the group Zys2. Here
we divide all the 64 steps of the computation of the compression function into
4 rounds, and each round is also of 16-step like MD4. The round-dependent

Boolean function is defined as follows:

¢i(XaYaZ) =

FF(X,Y,Z) =(XAY)V(XAZ) for1<i<16
GG(X,)Y,Z) =(XANZ)V (Y NZ) for17<i< 32
HH(X,)Y,Z)=X®oYaZ for 33 <4 < 48

[I(X,Y,Z) =Y & (xVZ) for 49 < i < 64

13



Here we can observe that the round-dependent Boolean function ¢; of MD5
are not all the same as that of MD4.

Finally, the hash value of the compression function f is (ag + a)||(bo +
b)||(co + ¢)||(do + d), where the addition is also under the group Za=. We
stress that without final step (add the initial value ag, by, ¢y, and dy to the
registers a, b, ¢, and d), the whole computation of the MD4 and MD5 are
not one-way given the message block m.

Like that of MD4, we will denote a; to the i*® update of the register a,

and b;, ¢;, and d; are defined similarly.

14



Chapter 3

Review of Wang et al.’s Attack
on MD4 and MD5

3.1 Collision Differentials

The attacks given by Wang ¢t ali-on MD4 and“MD5 are differential attacks
whose differential is under the addition operation of the group Zss2. They
focus on the flaw of the compression function, not the whole hash function.
Both MD4 and MD5 use the Merkel-Damgard construction as their iterative
hash structure, the block that represent the original length of the message
is always padded as the last block of the input of the hash function. So
we can find that Wang et al. want to find a equal-length collision pair such
that all the padded strings are the same. According to the Merkel-Damgard
construction, the hash value of the original message are the same implies
that the hash value of the padded message are also the same. In other
words, Wang et al. give messages (M, M') where |M| = |M’| and then the
same padded message M will be padded after M and M’. Here we denote the

padded message of M and M’ as M = M||M and M’ = M’||M, respectively.

15



M’ ~ M M’
We set n = 2 = M 4nq 7 = M = M

T T T T

= n 4+ 2 where r is the size of the

message block in each iteration of the compression function, and the length
of M or M’ is always an integer multiple of r bits because Wang et al. focus
on the compression functions. According to the description of the Merkel-
Damgard construction described in the previous chapter, the hash value in
the n' iteration of the computations of the original messages M and M’ are
hy, = (hp_1||M,) and b, = (hl,_,||M!), respectively. The messages given by
Wang et al. will let h,, = h!,, and the following message of M and M’ are the
same, so the final hash values will be the same.

They want to find a collision pair (M; M*), M and M’ are both of message

block size (512-bit), of MD4.such that:
Aho 202525 =0

where AM = M' — M = Amg||Amy||...||Amis = (my — mo)||(m) —

ma)l[ ... [|(m}5 — mis), and

Aml = 231, Amg = 231 — 228, Amlg = —216,

and Am; =0 for0<i<15 AN i#1,2 12,

They want to find a two-block message pair (M, M'), where M = M, || M,
and M' = M;|| M}, to give a collision of MD5. The differential path between

the compression function is shown as follows:
Ahg = 05" Ay 252 Any =0

16



where, AM, = Mj—M, = Amyol|Amy | .. [|[Amy s = (m) g—map)||(m] —
mi)lf - H(m/1,15 — my,15)
Amyg =28 Amyg =2, Amy =2,

and Am,,; =0 for 0 <i<15 A i#4 11 14

and AMQ = Mé — Mz = AmQ,OHAleH Ce |‘Am2715 = (m’270 — mgjo)H(méyl —
maa)l| - H(mlzw — Ma,15)
Am274 = 2317 A7712,11 = —215, A77”02,14 = 231,

and Amgy; =0 for 0 <i <15 A i#4 11 14.

The differential value Ahy = (2% 2314-9% 28! 1925 9314 925) Tn all the above
equations in this section, allkof the message bloeck differentials are consisted
from its element word differentials:

Wang et al. give a differential path of the chaining values during the
computation of the compression function in [WLEFT05, Table 5] and [WY05,
Table 3 & 5] of MD4 and MD5, respectively. With the differential path of
the chaining values, two message M and M’ with the differential described
above will collide if their differential of the chaining values are the same as
Wang et al.’s. But note here, any collision message pair is not always satisfy
the differential of the message and of the internal chaining value given by
Wang et al. Like the differential cryptanalysis against DES, we always use
the differential path (In DES, someone may call that the input differential

and the output differential for each round sub-key encryption) that we think

17



that is the most useful for attacking. Wang et al. give a differential path that

can be used to find a collision pair fast by them.

3.2 Sufficient Conditions

Given the differential path, it is not practical to find the collision pairs. So
Wang et al. also give the sufficient conditions [WLET05, Table 6] and [WY05]
Table 4 & 6] of MD4 and MD5 respectively according to their differential
path. It is that if a randomly chosen message M satisfy all the sufficient
conditions, then the differential of chaining values of M and M’ = M + AM
during the computation of the compression. function will be equal to that
given by Wang et al. In other words, the sufficient conditions of the message
M are to guarantee the differential path of the message pair M and M’ to
be equivalent with Wang et al’s.” With the.sufficient conditions, we can
focus on the message M itself, not the collision pair (M, M’) instead. So we
now want to find a message M that satisfy all the sufficient conditions given
by Wang et al. If the message M satisfy all the sufficient conditions, then
M' = M+ AM and M will collide.

Note here that the sufficient conditions can be computed by anyone who
knows the differential path. The sufficient conditions given by Wang et al.
are also computed according to the differential path given by them. Some
papers post on ePrint to figure out that the sufficient conditions given by

Wang et al. are not sufficient and can be relaxed [YS05, [LLO5, SNYT06].

18



They find that some message M that satisfy all the sufficient conditions
given by Wang et al., but M' = M + AM and M don’t collide. That is
because the differential path of the chaining value during the computation
of the compression function on M and M’ is not the same as Wang et al.’s.
So the probability that M and M’ will collide is not always 1 under this

situation.

3.3 Message Modification

Given the sufficient conditions by Wang et al., the probability of a randomly
chosen massage M that will satisfy ‘all the sufficient conditions is very small.
So we want the message M to satisfy-more sufficient conditions to decrease
the probability that M will satisfy all-the sufficient conditions. Thus given a
randomly chosen message M ,*we need to modify it to satisfy some sufficient
conditions. We introduce the message modification techniques here to modify
the randomly chosen message M to decrease the probability that M satisfies

all the sufficient conditions.

Single-Message Modification. In MD4 and MD5, each word of the mes-
sage block is used exactly once during the computation of the compression
function in the first round. So we can modify the message to let it satisfy
all the sufficient conditions in the first round easily. But there are also many
sufficient conditions besides the first round. If we don’t care these sufficient

conditions, the collision searching algorithm is not efficient enough and may

19



cost much more time to find a collision pair. So we also need to modify the
message M to let it satisfy more sufficient conditions. If we want the message
to satisfy the sufficient conditions not only in the first round, but outside the
first round, it need some tricky techniques, Multi-Message Modification, to

achieve this.

Multi-Message Modification. Because some message words are used
more than once during the computation after the first round, we can’t modify
the message word to satisfy the sufficient condition in more than two chain-
ing values in the same time trivially. ;So,we need to think deeper about the
compression function and the'sufficientreonditions and give some definitive
modification methods to let:the message to satisfy as many sufficient con-
ditions as possible. More sufficient conditions the message satisfies, less the
time-complexity of the collision ‘searching algorithms of the hash function
MD4 or MD?5 is.

Many recents researches focus on how to let the chaining values of the
message M during the computation of the compression function to satisfy
more sufficient conditions in the same time. They give many multi-message
modifications techniques to achieve the goal. We will introduce these tech-

niques deeper in Chapter

20



3.4 Collision Searching Algorithm

With the introduction in the previous section of this chapter, we will sum-

marize the collision searching algorithm as below:

MD4 Collision Searching Algorithm:
1. We randomly choose a message block M.
2. We modify the message M by the message modification techniques.

3. For all the sufficient conditions that can’t be satisfied by the message
modification techniques, a¥e check if the chaining values during the
computation of the cogmpression function-on M and these sufficient
conditions are equivalent. . lf“they are not equivalent, we randomly

choose mq4 and my5 of M- and go back to step [2

4. Finally, if the message M satisfy all the sufficient conditions, M’ =

M + AM and M collide.

MD5 Collision Searching Algorithm:
1. We randomly choose a message block Mj.
2. We modify the message M; by the message modification techniques.

3. For all the sufficient conditions that can’t be satisfied by the message

modification techniques, we check if the chaining value during the com-

21



putation of the compression function on M; and these sufficient con-
ditions are equivalent. If they are not equivalent, we randomly choose

mi.14 and my 15 of My and go back to step .
. We randomly choose a message block M,.
. We modify the message M, by the message modification techniques.

. For all the sufficient conditions that can’t be satisfied by the message
modification techniques, check if the chaining value during the compu-
tation of the compression function on M, and these sufficient conditions
are equivalent. If they are mot equivalent, we randomly choose myg 14

and my 15 of My and ge back to-step

. Finally, if the message M. = Mj|[Mssatisty all the sufficient conditions,

M’ = M!||M}, = (M; + AV Mz AM,) and M collide.

22



Chapter 4

Some Improvements on
Message Modification

After Wang et al. published the papers of the collision cryptanalysis against
MD4 and MD5 [WLF ™05, WY05], many-exyptographic researchers study how
to improve the performance-of the collision searching algorithms. Many re-
searches focus on how to improve the multi-message modification techniques.
They use the correct sufficient conditions derived from the same differential
path given by Wang et al. In this chapter, we introduce their results so far and
give our own improvements. We will use the successful probability instead
of the computation numbers of the hash compression function to measure
and compare the time complexity of the below multi-message modification
results. The successful probability is computed according to the number
of unsatisfied sufficient conditions by using the multi-message modification
techniques. In other words, the more sufficient conditions are fulfilled by the
multi-message modification, the more efficient this multi-message modifica-

tion algorithm is.

23



4.1 Previous Results

Many results on finding the collisions of MD4 and MD5, given by Wang et
al., are ambiguous. Only a rough discovery is given. The reason for such
discovery is not introduced. In the message modification techniques, they
also just give a very rough method. If someone follows the multi-message
modification methods given by them to find the collision of MD4, he can’t
find any collision at all. This is found by Naito et al. in their research of
the collision searching algorithm on MD4 [NSKOO05]. They show that some
extra conditions given by Wang et al. may be broken by their type 1 multi-
message modification. The extra conditions mtroduced in this chapter are
not sufficient conditions, instead they aresedtoimprove the efficiency of the
multi-message modification methods-outside the first round. Any randomly
generated message block M is not, necessary to satisfy the extra conditions.
The sufficient conditions is to guarantee the differential path of M and M’
to hold. The extra conditions are used to guarantee the modification on
message words, that are after the first round, doesn’t affect too many chaining
values that are in the first round. If all except a very small size sufficient
conditions are fulfilled by the message block M, then the probability that
M and M' = M + AM collide is negligible. So the priority of the sufficient
conditions are higher than that of extra conditions, i.e., any extra conditions
must not contradict with the sufficient conditions. Below we show the two

types of multi-message modifications.

24



Type 1 Muiti-Message Modification. Here we use the multi-message
modification of the sufficient condition “as19 = c419” given by Naito et al.
[INSKOO05|, Table 9] as the example to introduce the type 1 multi-message
modification. According to the MD4 algorithms, a5 = (a4 + GG (by, ¢4, dy) +
mo+1t17) <€ 3 and my is used to compute the chaining value as. We can find
that the complement of mg 6 will always cause the complement of as 19 to
occur because the left shift number is 3. The complement of a5 implies that
“as19 # c414” becomes “as19 = 414" as long as c414 is unchange. In other
words, if some bits of the chaining values don’t satisfy their corresponding
sufficient conditions, we only need to causé:the complement of these bits to
occur using anything we cando. But the complement of mg 16 will cause the
bit a1 19 (a1 = (ao+FF(bo, co,do) Hmg+t1) < 3)in the first round to change
and a;; may change due to the carry or the borrow on a; ;9 for 20 <1 < 32.
To prevent carry or borrow on a; 19, we need to consider the direction of the
change on ay19. If @119 = 1, then we modify a; 19 to 0, otherwise we modify
ar19 to 1. Since my is updated by mg = (a1 >> 3) —ag — F' F(by, co, do) — t1,
the complement of mg 14 occurs. Then the subsequent chaining values d; ¢;

b1 and ay are computed as follows:
d1 - (do + FF<a17 b07 CO) +m1 + t2) K 7
¢1 = (co + FF(dy, a1, by) +may + t3) << 11
by = (bo + FF(c1,dy,a1) +ms +t,) <19
ag = (a1 + FF(by,c1,dy) +my +t5) < 3

25



They all use a; to compute themselves and may change because a; changes.
We need to do something to prevent them from changing because any change
of them will result in that the change of all subsequent chaining values. So
we need to update the message words my, ms, msz, and my to cancel the

change from a; to its subsequent chaining values as follows:

my = (dl > 7) —d0+FF(a1,b0,Co) _t2
mo = (01 > 11) —Co + FF(dl,al,bo) — t3
ms = (bl > 19) — bo + FF(cl,dl,al) — t4

my = (CLQ>>>3)—O/1+FF(b1,Cl,d1)—t5

We summary the type 1 multi-message modification techniques here. Con-
sider the sufficient conditiorzof the 4™ bit'of the chaining value z in the '
step computation of the compression function: If is is not what we want, we

modify it to satisfy the sufficient condition as follows:

1. We find which message word in the message block m is used to compute

the chaining values in the i*" step. We assume it is m; for 0 <[ < 15.

2. We find which chaining value in the first round that use m; to compute

/th

itself, suppose it is y and is in the " step.

3. We complement the bit 4/ s, 15, mod 32 and update the 5 message words
that is used to compute the chaining values in the 7" to the (r + 4)®

steps.

26



Type 2 Multi-Message Modification. In type 1 multi-message modifi-
cation, there exist some cases that the techniques may not work. The first
case is that y; s, +s, mod 32 itself is a sufficient condition. The second case is
that y is in the r™ step and r > 13. The reason that » > 13 is not allowed
is that some of the chaining values in the r*™ to the (r + 4)™ steps are in
the second round. The message used to compute the chaining values in the
second round are also used to compute a chaining value in the first round. In
this case, the multi-message modification methods are not as easy as those
described in the type 1 multi-message modification. There are also some
other cases that cause the type,1 multi-miessage modification to fail. One
among them is that the type 1 multitmessage modification breaks the extra
condition used for other sufficient conditions. The multi-message modifica-
tion techniques here under thigsituation are much more complex. We need to
introduce the extra condition to help us to guarantee that the modification
on the corresponding chaining value doesn’t affect its subsequent chaining
values too much.

Here we introduce the multi-message modification of the sufficient condi-
tion “cs a6 = ds26” given by Naito et al. [NSKOO5, Table 12] to explain the
type 2 multi-message modification. As described in the type 1 multi-message
modification, we find that we must consider the bit as26_913 mod 32 = @3 20-
However, we find that as o itself is a sufficient condition, so the type 1 multi-

message modification doesn’t work. So we follow the type 2 multi-message

27



modification given by Naito et al. as follows:

1. We add the extra condition “dy 7 = 07.
2. We change the bit dy ;7 from 0 to 1.

3. We update the message word ms by ms = (dy >> 7)—d;—F F(ag, by, c¢1)—

te = ((dS'4 +2'6) >> 7) — dy — FF(ay, by, c1) — tg = med + 29,
4. We add the extra condition “as 17 = b1 17”.

5. We compute the chaining value ¢s by ¢o = (¢ + FF(da, as, by) + me +
t7) <& 11 but dy ;7 changes from 0 to 1. However, the extra condi-
tion “ag 7 = b117” guaranteessthatn ' F(ds 17, as17,b117) = FF(0 —

)

1,a217,b117) = b117 = 'agq7” unchanges.” That implies that ¢ un-

change.
6. We add the extra condition “cy;7 = 0.

7. We compute the chaining value by by by = (by + FF(ca,ds, az) + my +
ts) <& 19 but dy ;7 changes from 0 to 1. However, the extra condi-
tion “co17 = 07 guarantees that FF(cyi7,d217,a217) = FF(0,0 —

1,a217) = ag17 unchanges. That implies that by unchange.
8. We add the extra condition “by ;7 = 0”.

9. We update the message word mg by mg = (a3 >> 3)—as—F F(by, ca, do)—
tg = (CL3 > 3) — a2 — (FF(bQ, Co, dgld) + 216) — tg = mgld — 216 for the

extra condition “bg 17 = 07.

28



10. mg = m24—216 will cause the complement of the bit msg 17 to occur, then
the complement of the bit ¢ 26 (¢5 = (ca+GG(ds, as, by) +mg+1t19) K

9) also occurs and the sufficient condition “cj 26 = d526” will be fulfilled.

11. Finally, We update the message word mg by mg = (ds >> 7) — dy —
FF(CQ, bg, ag) — th = (dg > 7) — (dgld + 216) — FF(CQ, bg, 0,2) — th =

mgld _ 216

We stress that the extra conditions must be in the first round of the compres-
sion function and must be fulfilled by the simple single-message modification.

We will introduce single-message modification below.

Klima [KIi05b, KIi05a] first introduced an efficient and definite multi-
message modification algorithmson MD5His'single-message modification
methods is very useful to find the ‘collision on both MD4 and MD5. By
the introduction of the compression function of MD4 and MD5 in Section
and respectively. We set (a,b, ¢,d) = (ag, by, co, dp) first and do the

single-message modification of MD4 as follows:

We randomly generate x but satisfy all the sufficient conditions of ariy,
Yi=x>»s mi =% —a—FF(bcd —t a==x ifi mod4=1

We randomly generate x but satisfy all the sufficient conditions of d( i
4

Ei:l’>>>8i mi_lei—d—FF(a,b,c)—ti d=x ifi mod4 =2

We randomly generate x but satisfy all the sufficient conditions of crs]s
4

29



Yi=x>>»s mi,=%—c—FF(d,a,b)—t; c=x ifi mod4=3
We randomly generate x but satisfy all the sufficient conditions of b( i
4

Yi=x>»s mi=%—-b—FF(c,d,a)—1t; b=z ifi mod4=0

where x is a 32-bit word for i =1 to 16.
The single-message modification of MD5 is as follows:

We randomly generate z but satisfy all the sufficient conditions of arsy,
Yi=(x—=b>s m_1=%—a—FF(bcd —t; a==x ifi mod4d=1
We randomly generate z but satisfy all the sufficient conditions of d[ i
Yi=(rx—a)>s my =% —d-=aFtlabc)—t; d==x ifi mod4=2
We randomly generate = but satisfy all the sufficient conditions of cri)s
Yi=(x—d)>s mi1=XNg—c—FF,ab)—t, c=x ifi mod4=3
We randomly generate = but satisfy all the sufficient conditions of b( i1

Yi=(rx—c¢)>s mi1=%—-b—FF(c,d,a)—t; b==x ifi mod4=0

where z is a 32-bit word for i = 1 to 16.

The main philosophy of the single-message modification methods is that the
message word m; is not used to compute the chaining values but is able to be
computed from the chaining values for 0 < i < 15. After the computations
of the single-message modification given by Klima, the 128-bit message block
m is recovered wholly. Klima also mentioned that there is no sufficient con-

ditions in the chaining values a; and d; in the first iteration of MD5. In the

30



first round of the compression function of MD5, the chaining value a; and d;
are computed using the message words mg and m;, respectively. In the sec-
ond round, the message words mgy and m; are used to compute the chaining
value bs and as, respectively. So in first 20 steps of the compression function
of MD5, all message words of m are used exactly once except mg and mqq,
that are used to compute the chaining values ds and cs5, respectively. Then
in first 20 steps of the first iteration, all sufficient conditions of the chaining
values except ds and c5 can be fulfilled by the single-message modification
introduced above easily. But the method given by Klima on how to modify
mg and my to satisfy the sufficient eonditions on ds and cs5 is a brute-force
method. He doesn’t guarantee that the modification always succeeds, and
it may need to restart the collision searching algorithm by re-generate some
chaining values (that implies fe-generate their:corresponding message words
as described in Section [3.4).

Sasaki et al. improve the message modification of the first iteration of
MD5 [SNKOQ5]. In their paper, they claimed that they can satisfy all the
sufficient conditions in first 23 steps of the first iteration with probability %
In other words, all sufficient conditions in a; b; ¢; and d; can be fulfilled by
their message modification methods for 0 <7 <5 A 0 <7 <4. Similar
to their results on MD4 [NSKOO5], they also use the extra conditions to
guarantee that later in the second round the message modification doesn’t

affect too many chaining values that are in the first round.

31



Later Liang and Lai improve the message modification techniques [LL05].
They introduced a new techniques, small range searching techniques, to do
the multi-message modification. In [LL0O5, Chapter 5] they said that for the
computation of the chaining value N = ((L+¢(X,Y, Z2)+ M+T) < s)+U,
they can modify the j' bit of N by changing the j** bit of U or the (j — )™
bit of L, X, Y, Z, or M if these bits has no sufficient condition. But this was
already used widely in type 1 or type 2 multi-message modification introduced
before. They claimed that they can modify the j' bit of N by changing the
bits lower than the j* bit of U and/or the bits lower than the (j — s)™ bit of
L, X, Y, Z and/or M by “carry*or “borrow” on these bits if these bits has
no sufficient condition. But we think what they give to do the multi-message
modification is less efficient_than that given by Sasaki et al. Because the
small range searching techniqtieés need to seateh all the corresponding lower
bits where there is no sufficient condition (i.e., the bit value is random) and
modify them. Suppose there are total n the corresponding lower bits in U,
L, X,Y,Z, and M. Then they may need total 2" testing in searching these
n bits and may fail in the worst case because no carry or borrow occurs.
The small range searching technique doesn’t guarantee that it must be able
to modify the j™ bit of N successfully. But according to the introduction
of the small range searching techniques by them, it is more flexible to do
the multi-message modification than that Sasaki et al.’s. There is no extra

condition to narrow the size of the message block M, and there are many

32



possibilities how to do the multi-message modification by searching these
n bits in U, L, X, Y, Z, and M. But the prerequisite is that the small
range searching technique need always to work successfully. On the other
hand, their small range searching techniques on 9 in both iterations will
always work. Because we can select the corresponding bits in M randomly
and modify it by the type 1 multi-message modification. If X5 in the first
iteration is not what we want, we can regenerate b; randomly. In their
papers of finding the MD5 collisions, they also give a type 2 multi-message
modification on the sufficient conditions “dss = 17, “ds30 = as30”, and

“d5 30 = a532” in the first iteration and their corresponding extra conditions.

4.2 QOur Improvements

In this section, we will gave some improvements on multi-message modifica-

tion techniques. We will introduce this in two parts, MD4 and MDJ5.

4.2.1 The Improvements on MD4

Although Naito et al.’s result [NSKOOQ5] is efficient enough, but we find
that three extra conditions given by them are not in the first round. So
these three extra conditions can not be modified trivially by the simple
single-message modification. We need to modify them by the multi-message
modification techniques. One of the three extra conditions is the condition
“asa0 = bage” for the sufficient condition “cs09 = d520” [NSKOO05, Table

13]. Follow their type 2 multi-message-modification method for the sufficient

33



condition “cs 99 = d529”, we can find that the update of the chaining value d5
[NSKOOQ5, Table 13, Step 18] is computed as ds = (dy+ GG (as, by, cs) +my+
t13) << 5. The complement of the bit c499 causes GG(as a0, ba20, Ca20) =
GG(as20,b120,0 — 1) = as20 A baoo — (as20 A ba2o) V as20 V bygo and
as20 N baoo = (as0 A bago) V as20 V baoo if and only if as90 = ¢520. If the
extra condition “as 20 = d4 20" is not fulfilled during the message modification
for “csa9 = ds29”, d5 changes. So when we do the multi-message modifica-
tion for the chaining value as, besides their sufficient condition, we also need
to consider the extra condition “asoo = da20”. If as20 # ba2o, We need to
use the following procedure to desthe multitmessage modification to cause as

satisfy the extra condition.

1. We complement the bit @ .

2. We use the following equations to update the message words mg, myq,
ms, and ms.
mo = (ay 3> 3) —ag — F'F(bo, co, do) — 1 (4.1)
my = (dy >>7) —dy — FF(ay, by, co) — to
me = (c1 3> 11) — cg — FF(dy, a1,by) — t3
ms = (by >>19) — by — FF(cy,dy,a1) — t4

my = (ag 3> 3) —ay — FF(by,c1,dq) — t5

3. In equation [4.1, my = ((a; +2'%) >> 3) — ag — FF(by,co,dy) — t1 =

mgld + 216 Then as = (a4 + GG(b4, Cq, d4) + mg + t17) K 3= (a4 +

34



GG (by, ca,dy) + (MG £210) +17) << 3 = @@ £ 2'9. This implies that

the complement of the bit a5 2 to occur.

The other two extra conditions are “asgs = bs22” and “c531 = 17 for
the sufficient condition “cs30 = d5 32" [NSKOO05, Table 15]. By their type
2 multi-message-modification method for the sufficient condition “c532 =
ds 32", we can find that the Boolean function ¢5 of the chaining value ds
INSKOOQ5, Table 15, Step 18] is computed as GG(as, by, c4). The complement
of the bit cq90 causes GG(as22,b422,0 — 1) = a520 A byos — (@522 A bgaa) V
5,20 V by oo and as 00 A bygs = (a5922 Aba2a) V @590 V by oo if and only if as 90 =
ds 2. If the extra condition “asss = daq2” isnet fulfilled during the message
modification for “cs 32 = ds5 35" ,1ds changest So-when we do the multi-message
modification for the chaining value asshesides their sufficient condition, we
need to consider the extra condition “ases = ds20”. If as99 # by o0, We need
to use the following procedure to do the multi-message modification to cause

as to satisfy the extra condition.
1. We complement the bit a; 2.

2. We use the following equations to update the message words mg, mq,

mo, mg, and my.
moy = (CL1 > 3) — ag — FF(b(), Co, dg) — 1 (42)
my = (di >>7) —dy — FF(a1, by, co) — to
ms = (Cl > 1].) — Cy — FF(dhal,bo) — tg

35



my = (bl > 19) —bO—FF(cl,dl,al) —t4

mys = (Clz > 3) — ay —FF(bl,Cl,dl) —t5

3. In equation 4.2 my = ((a1 £ 2%) >> 3) — a9 — FF(bo, co,dp) — t1 =
mgld + 218. Then as = (CL4 + GG(b4, Cy4, d4) + mog + t17) XK 3= (CL4 +
GG (by, s, dy) + (M4 £ 2'8) + #17) <« 3 = @ £ 221, This implies that

the complement of the bit a5 22 to occur.

Naito et al.’s type 2 multi-message modification for the sufficient con-
dition “cs32 = ds32” doesn’t cause the complement of c532 to occur di-
rectly. Instead, they add the extra condition “cs3; = 17 and ¢; is up-
dated by ¢5 = (c4 + GG(dsas, by) +ms +t19) <K 9. c420 1 0 — 1 causes
cs = (99 + 22) + GG(ds, as, by) F1g +119) &L 9 = 24 + 230, The extra
condition “cs 31 = 17 causes the earry on czgp-to occur and implies that the
complement of cs 32 also occur. So if we need to do the multi-message modi-
fication for “cs3y = d532” and “c531 = 0 # 17, we need to use the following
procedure to do the multi-message modification to cause c5 to satisfy the

extra condition.
1. We complement the bit asos.

2. We use the following equations to update the message word mg, my,

36



mig, M1, and M.

mg = (a3 >>3) — ay — FF(by,co,dy) — tg (4.3)
mg = (d3 >>7) — dy — FF (a3, by, c2) — t1o

mig = (c3 > 11) — co — FF(ds, a3, by) — t11

ma = (bg > 19) — by — FF(c3,ds, a3) — t12

mia = (ay 3> 3) — ag — FF(bs,c3,d3) — t13

3. In equation 1.3} mg = (a3 + 2%4) >> 3) —ag — FF(ba, c2,dz) — tg =
mgld + 221. Then C; = (64 + GG(d5, as, b4) + mg + tlg) K 9 = (C4 +
GG (ds, as, by) + (mg £ 228) + t9)c 9 = ¢4 £ 230 This implies that

the complement of the-bit ¢ 3 to occur:

Finally we compare our improvements with:Naito et al.’s result. Here we
assume that all bits of all chaining values are uniform under {0,1} and are
totally independent. Let E; be the event that the sufficient condition “c5 99 =
ds29” is not fulfilled and need to be modified by Naito et al.’s type 2 multi-
message modification during the collision searching algorithm, FEs be the
event that the sufficient condition “cs 32 = d5 32" is not fulfilled and need to be
modified by their type 2 multi-message modification, and S be the successful
event (i.e., the extra conditions described above are what we want). Then
successful probabilities conditioned on E are listed in table 4.1} For the four
possibilities of E, each is of probability }L. So the successful probability of

Naito et al.’s multi-message modification on MD4 is:

37



The Event E | The Probability Pr[S|E]
E\NE, 1
E\NE, %
EyNE, z
EiNE, 3

Table 4.1: The successful probability that some sufficient conditions are not
fulfilled

Pr[S]
=Pr[E, N E5|Pr[S|Ey N Ey] + Pr[E} N Ey]Pr[S|E; N By

+Pr[E; N Ey|Pr[S|Ey N By + Pr[Ey N Ex]Pr[S|Ey N Ey)

—1><1+1><1+1><1+1><1
4 4 4 A EHATYS
15
32

Our modified version of their;multi-message modification is of probability
1. Even if they restart the random generation of some message words for the
failure as described in Section , our modified version is also about i’—g
times faster than their multi-message modification. They also need 2 extra
computations of the MD4 compression function to verify if the message pair

(M, M) collide.
4.2.2 The Improvements on MD5

After surveying the previous papers about the multi-message modification
techniques on MD5 [KIi05b, [KIi05al [SNKO05, [LL05], we find that something

can be improved. As mentioned in Section[3.4] there are two iterations in the

38



collision searching algorithm of MD5. We also introduce our improvements
in two parts, the first iteration (or the first block) and the second iteration

(or the second block).

e The First Iteration:

— For the sufficient condition “c5 32 = d5 32" in the first iteration, we
do the following procedure.
1. We complement the bit ¢4 5.

2. Because ¢4 changes, we use the following equations to update

the message words #iik, Mis, and my.

mug = ((ey —da)y 33/ 17) — 3 — FF(dy, a4,b3) — t15
mis = ((by —1ca) =>22) — by — FF(cy,da, as) — ti

mo = ((a5 — b4) =>> 5) = A4 — GG(Z)4, Cy, d4) — t17

3. We add the extra condition “bs;3 = as13 = 07. Note that
“as 13 = 07 itself is a sufficient condition.

4. We compute the chaining value ds by ds = ((d4+GG(as, by, c4)+
me—+tis) <€ 9)+as but ¢4 15 changes. However, the extra con-
dition “by 15 = as1s” guarantees that GG(as s, ba1s, C118) =
GG(0, 0,%) = 0 — 0 unchanges. This also implies that ds
unchanges.

5. We update the chaining value c5 by ¢5 = ((c4+GG(ds, a5, by)+

mi1 +t19) ¢ 14) + d5 = (((Cild + 217) + GG(d5, as, b4) —|—m11 +

39



tig) < 14)+ds = 244231, This implies that the complement
of the bit c¢5 32 occurs.

6. Because mg changes, we update the chaining value a; by a; =
((ap + FF(bo, co,dy) +mo+t1) K 7) + by.

7. Because a; also changes, we use the following equations to

update the message words my, ms, mg, and my.
my = ((dy —ay) > 12) — dy — FF(ay,by, co) — to
me = ((c; —dy) >>17) — cg — FF(dy,a1,by) — t3
mg = ((by — ¢).>> 22) — by — FF(cy,d1,a1) — tg
my = ((a3 — b)) —dy — FF(by,c1,dy) — 5

Sasaki et al. also give a type 2 multi-message modification for the
sufficient conditionr “c5 35 = d5 327 In their paper [SNKOO5, Ta-
ble 6]. But there are six extra conditions in their multi-message
modification method. As mentioned in Section [4.1], the extra con-
dition is not necessary for the message modification techniques,
they are used to avoid too many chaining values from changing
instead. So if the message modification method need too many
extra conditions, the size of the set of the collision message pair
will become too small. Even if sometimes we need to add the extra
condition to help us to do the multi-message modification, but we
must decrease the total number of the extra conditions as possible

as we can to enlarge the size of the set of the collision message

40



pair. In our multi-message modification for the sufficient condition

“c532 = ds 32”7, we need only one extra condition “cs5 32 = ds 32" .
e The Second Iteration:

— For the sufficient condition “ds;5 = 17 in the second iteration, we
do the following procedure.
1. We complement the bit dy .

2. Because d4 changes, we use the following equations to update

the message words my3, myy, and mys.

mi3 = ((d4 T (14) > 12) o d3 — FF(CL4, bg, 63) —t14
mig = ((04 = d4) > 17) by C — FF(d4, ay, 173) — t15

mis = ((b4 — C4) > 22) — b3 — FF(C4, d4, CL4) — t16

3. We add the extra condition “bsg = c49”.

4. Because the bit dy9 changes, we update Aj79 by Ayzg =
GG(byyg,Ca9,dsg) = GG(byy, 04,9,@) = (byg — c19)V(ca9 —
byg). The extra condition “byg = c49” guarantees that Aj7g
unchange. This also implies that as = ((a4 + GG(by, ¢4, dy) +
my + t17) <€ 5) + by unchanges.

5. Finally, we update the chaining value ds by ds = ((dy +
GG(as, by, cq)+me+tiz) <K 9)+as = (((d3942%)+GG(as, by, c4)+
me +t1g) << 9) + as = d2'4 4217, This will cause the comple-

ment of the bit ds5 15 to occur.

41



— For the sufficient condition “ds 32 = a532” in the second iteration,
we do the following procedure.
1. We complement the bit ds 23.
2. We add the extra condition “as 93 = F,ggﬂ.

3. Because d, changes, we use the following equations to update

the message words ms, mg, my, mg, and my.

ms = ((dy — ag) >>12) —dy — FF(as,b1,¢1) — tg

me = ((co —dy) >>17) — c; — FF(dg,a9,b1) —t;  (4.4)
mr = ((by — cg)3>22) &b, — FF(ca,ds,as) — g

mg = ((ag= by) 1) =dy —FF(by, co,dy) — tg

my = ((ds= ag) 3> 12) = dy = FF(as, by, c2) —tio

4. In equation, FF(dy g, a593,b123) = FF(K}% 23, b123) =
(by23 — a293) V (aga3 — bia3). The extra condition “ag ey =
@” cause the complement of FF(dja3,as293,b123) to oc-
cur. The word mg = ((co — (3 £ 222)) >> 17) — ¢ —
(FF'(dy, ag, by) + 2%2) — t; = mgd F (25 4 222). Then d5 =
((ds+GG(aa, bs, c3)+me+tis) <K 9)+as = ((ds+GG(aq, by, c3)+
(Mm@ F (25 +2%2)) + t15) <« 9) + a5 = 2 F (2! 4 231). This

causes the complement of the bit ds 32 to occur.

— For the sufficient condition “c5 15 = 0” in the second iteration, we

do the following procedure.

42



1. We complement the bit by 4.

2. Because by changes, we use the following equations to update

the message words my;, mg, mg, myg, and my;.

my = ((ba — ca) >> 22) — by — FF(c,dy, az) — tg
mg = ((ag — by) >>7) —ay — FF(by, co,dy) — tg
mg = ((d3 — az) >> 12) — dy — F'F(ag, by, c3) — t1o
mio = ((c3 — d3) >> 17) — co — FF(d3,as3,by) — t11

mi1 = ((b3 — C3> > 22) — bg — FF(C3, d3, a3) — t12 (45)

3. In equation My = (b3 = c3) > 22) — (b5 £ 23) —
FF(c3,ds, a3}ty = m$3F23. Then c5 = ((c4+GG(ds, as, by)+
myy + ty) K< 14) H dg=1l(ei +' GG (ds, as, by) + (m1y F 23) +
tig) < 14)+ds = 242177 This implies that the complement

of the bit ¢515 to occur.

— For the sufficient condition “cs 32 = d532” in the second iteration,

we do the following procedure.

1. We complement the bit ¢4 ;5.

2. Because ¢, changes, we use the following equations to update

the message words mq4 and mys.

miy = ((04 — d4) > 17) — C3 — FF(CZ4,CL4, bg) — t15

mi5 = ((b4 — C4) > 22) — bg — FF(C4, d4, CL4) — t16

43



3. We compute the chaining value as by a5 = ((a4+GG(by, ¢4, dy)+
mo+t17) < 5)+ by but ¢415 changes. However, the sufficient
condition “d4,18 = 1”7 guarantees that GG(by 18, €415, da18) =
GG(b4,18,ﬂ, 0) is always equal to by1s. This also implies
that as unchanges.

4. We add the extra condition “by 3 = 07.

5. We compute the chaining value ds by ds = ((d4+GG (as, by, c4)+
me+t1s) <K 9)+as and cq15 changes. But the extra condition
“by1s = 07 cause that GG (a5 s, ba1s, ca18) = GG(as1s, b4718,?f‘f8) =
(as18 — bais) Nlbi1s — asas). The bit “as15 = 07 itself is
a sufficient condition; s6' GG(asjs, bs1s,cs15) = 0 — 0 un-
changes. This also implies that dz unchanges.

6. Finally, we update the chaining value c¢; is by ¢5 = ((¢s +
GG(ds, a5, by) + mar + tig) < 14) + d5 = (((§¢ £ 2'7) +
GG(ds,as,by) + myy + t1g) << 14) + ds = g4 £ 231, This

implies that the complement of the bit c5 32 to occur.

— For the sufficient condition “dg 32 = ag32” in the second iteration,

we do the following procedure.

1. We complement the bit as 23.
2. We add the extra conditions “d3 93 = 17 and “c393 = 17.

3. Because a3 changes, so we use the following equations to up-

44



date the message words msg, mg, mig, and mqs.

mg = ((ag — by) 3> 7) — ay — FF(by, ca,dz) — to
mg = ((d3 — az) >>12) — dy — F'F(a3, by, ca) — o
mig = ((03 — dg) > 17) — Cy — FF(dg, as, bg) — tll (46)

mig = ((ag — bg) > T7) —ag — FF(bs,c3,d3) — ty3

4. Because ag also changes, we update the chaining value b3 by
by = ((ba + FF(cs3,ds,a3) +myy + t12) << 22) 4 ¢3. But the
extra condition “cso3 = 1”7 cause that FF(cs93,d393,a3293) =
FF(1, d3723,@) is always equal to ds23 and unchanges. So

bs unchanges.

5. In equation the extra-conditions “ds23 = 1”7 cause that
FF(dy 03, a3.93, by og)i= FE@, 055, b 93) = ag'd;. Then myg =
((c3—d3) >> 17) — ey — (FF(ds, a3, by) +2%2) —t;; = mSQ F
222, The word dg = ((ds + GG(ag, bs,c5) + mig + t2) K
9)+as = ((d5+ GG (ap, bs, c5)+ (MEF222) +192) << 9)+ag =
dgld F 231, This implies that the complement of the bit de 32

occurs.

Finally we analyze the time complexity of our improvements on multi-message
modification of MD5. In the first iteration of MD5, our improvements is as
efficient as Sasaki et al.’s results [SNKOO5]. But the size of the set of our

collision message pair is larger than Sasaki et al.’s. We also find that some

45



extra conditions in their multi-message modification can be erased. These

extra conditions are as follows:

e The extra condition “ds34 = 0” for the sufficient condition “c5 ;3 = 0"
[SNKOOQ5, Table 5]. No matter what c5 15 is, we just need to comple-

ment it.

e The extra condition “ays; = 1”7 and “dy 13 = 0”7 for the sufficient condi-
tion “ag1s = bs18” [SNKOOSH, Table 8]. No matter what as; and dj 13

are, we just need to complement them.

e The extra condition “asagi= 0" for the sufficient condition “dg32 =
ag32” [SNKOOS, Table-10]. Ne-matter what as o3 is, we just need to

complement it.

So the size of the set of the collisionimessage pair can be enlarged by eras-
ing these four extra conditions. Because the collision searching algorithm
so far doesn’t satisfy all the sufficient conditions, they need to restart the
whole collision searching algorithm many times. If we add these extra condi-
tions, we must reset these extra conditions when restarting the whole collision
searching algorithm. This is because that these extra conditions are broken
when doing the message modification in the second round. So we need to
recover them by resetting them. But other conditions, including sufficient
conditions and other extra conditions, are not broken when doing the mes-

sage modification in the second round. Our improvements is more efficient

46



than Liang and Lai’s results [LLO5]. Note that the collision searching algo-
rithm will restart the whole algorithm many times. As mentioned before,
the small range searching algorithm given by Liang and Lai [LLO5| is less
efficient than Sasaki et al.’s multi-message modification methods [SNEKOOQ5].
So in each time, a small time increase will cause that the time of finding the
collision increase longer because the algorithm will execute inside the loop
many times.

For the second iteration of MD5, Sasaki et al. don’t give any multi-
message modification method. We combine Liang and Lai’s results [LL05]
and our improvements introduced before..We can modify for the sufficient
conditions “as4 = bs4”, “a516 = bai6 s “@5u8.=10", and “d5 30 = a5 30" by us-
ing Liang and Lai’s type 1 multi-message modification methods, and for the
sufficient conditions “ds 15 = 175 “d5 32 = as82”, “cs18 = 07, “Cs5320 = d532”,
and “ds 32 = ag 32" by using our own type 2 multi-message modification meth-
ods. Because Sasaki et al. don’t give any multi-message modification method
for the second iteration, so our improvements are more efficient than theirs.
We give 5 more type 2 multi-message modification on 5 sufficient conditions
than Liang and Lai’s results for the second round. In these 5 sufficient con-
ditions, Liang and Lai either use the small range searching techniques or
restart the whole collision searching algorithm. So our improvements are

more efficient than Liang and Lai’s results.

47



Chapter 5

Our Implementation on the
Collision Searching Algorithm

5.1 A brief description of the Implementa-
tion

In this section, we describé our implementation of the collision searching
algorithm briefly. The code®is availablezen http://www.cs.nctu.edu.tw/
~gtchen/Codes/md4coll.cand http://www.cs.nctu.edu.tw/~gtchen/Codes/
md5coll.c| for MD4 and MD5, respectively. The MD4 code was developed
independently, and Stach has his own implementation [Sta05a]. The MD5
code was derived from Stach’s implementation[Sta05b], although most of
them was already modified by us. Stach is the first man who implemented
the collision searching algorithm of MD4 and MD5 and published the codes.
We can find that there are 7 kinds of all the bits of all the chaining values.
Stach also found that and implemented it in his code, although we have al-
ready found that before the release of his implementation. Now we consider

the j™ bit of the chaining value z in the i*" step (we denote it as z;), and

48


http://www.cs.nctu.edu.tw/~gtchen/Codes/md4coll.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md4coll.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll.c

the 7 kinds of the bit x;:

1. There is no sufficient condition here, i.e., this bit of the chaining value

x; can be set to 0 or 1.
2. This bit of the chaining value x; here must set to be 0.
3. This bit of the chaining value x; here must set to be 1.

4. This bit of the chaining value z; here must set to be the value of the
same bit of the last updated chaining value (the j' bit of the chaining

value in the (i — 1)™ step).

5. This bit of the chaining valuejz; here, must set to be the complement
of the same bit of the last updated chaining value(the ;' bit of the

chaining value in the (2°=1)*"®'stepY.

6. This bit of the chaining value z; here must set to be the value of the
same bit of the last two updated chaining value (the j*® bit of the

chaining value in the (i — 2)*® step).

7. This bit of the chaining value x; here must set to be the complement
of the same bit of the last two updated chaining value (the ;' bit of

the chaining value in the (i — 2)' step).

In the above statements, if we consider the sufficient condition z; in the
chaining value z, y; is the same bit of the chaining value y with respective to

xj. So we need to construct the bit masks for representing the 7 types of the

49



bits of the chaining values. But for the bit of the chaining values that has
no sufficient condition, we can ignore it. So we construct the 6 bit-mask for
every chaining values during the computation of the compression function.
We define the six 32-bit bit mask S;;, where 0 < k < 5, for the i*® step

chaining value x as follows:
1. The bit S;; is 1 if 2; must set to be 0, otherwise S; ¢ ; is 0.
2. The bit S; 1, is 1 if ; must set to be 1, otherwise S; ; ; is 0.

3. The bit S;2; is 1 if z; must set to be the value of the same bit of the

last updated chaining value, otherwisess; » ; is 0.

4. The bit S;3; is 1 if z;=must set to-be the complement of the same bit

of the last updated chaining valtie;-ctherwise S; 3 ; is 0.

5. The bit S;4; is 1 if x; must set to be the value of the same bit of the

last two updated chaining value, otherwise S; 4 ; is 0.

6. The bit S;5; is 1 if 2; here must set to be the complement of the same

bit of the last two updated chaining value, otherwise S; 5 ; is 0.

We don’t need to modify Wang et al.’s MD4 collision searching algorithm as
described in Section [3.4, But we need to modify Wang et al.’s MD5 colli-
sion searching algorithm as described in Section to optimize the collision
searching algorithm. Our MD5 collision searching algorithm now will run as

follows:

50



1. We use the following procedure to generate the first iteration message

block Ml-

(a) We set IVy = IV = ag||bg||co||do-

(b) For the sufficient conditions in the first round, we do the single-

message modification by Klima’s idea [KIi05a] as follows:

T T,

c1 =[x ASs0] V [z V S34].

T T,

by = [x A Syol¥rV Sy 1]

V [(x A Sia) Voler A8V (@A Siz) V (0 A Saz)].
T Zigs2,

az = [z A Ss0] V]EvSsil

V(@A S52) V(b ASs2)] V(@ A S53) V (br A Ss.3)]

V@A Ss54) V(e ASsa)] V(A Sss) V(e ASss)].
Then for i = 6 to 16,

Ifi modd=1, & Zoyso,

ars) = e A Siol V]2V Si]

.

V(@ ASi2) V (brizay ASig)] V(A Sig) V (brizay A Sis)]

4

VI@ASia) V(erisay ASia)l V(A Si5) V (E72] A Sis)]

i = (apsy —brg)) > s

o1



Mo = B opge] = FEOpa epge ) —

Ifi mod4=2 x Zys,

dri = [ A Sio] V [z V S;1]

V [(33' A %) V (a(%1 A Siyg)] V [(Q? A Siyg) vV

—
<

[ A i)

j=p

VKmAgﬁﬂM%%ﬂAsmﬂVKxAgav(P%WA&@]
= (g ~ o)) s

Mo = B = dpge = PR by epgy) =

If i mod4=3 & Los,

qﬂ:hAEthv&ﬂ

V(@A Si2) Vv (dimgd Sl (@ A Sis) V (s A Sis)]

V [(l’ VAN Si,4) vV (a(%] A Si74)] vV [(ZL‘ A Si75) V (CL(¢72‘|
X = (CP'| — d[%‘l) > 85

4

Mo = 2 ]~ FEURg o) bpage) —

Ifi modd=0, z Zys,

b[i—l = [.’13 A Si,O] V [.’13 V Sz’,l]
V[(x A Si2)V (0[%1 A Si2) V [(x A Siz) V (C[%1 A Sis)]
VI(z A Sia) V (drize ASia)] V(2 A Sis) (d[iz2] A Sis)]

92



= O eppy) 2

4

m;_1 = 21 — b[%“ — FF(C"%‘I,d"%“,a[%“) — tz

where z i1s a 32-bit word.

(c) For the sufficient conditions in the chaining value as, we do the

single-message modification as follows:

T ¢ Zosa,

as = [z A m] V[z V Si74]

V [(z A Si72) M (bs AiSum)] Vil A Siz3) V (ba A Siz3)]
V [(@ A Sir.a) Vilea A SV (@A Si75) V (€1 A Sirs)]
Y17 = (a5 — b)) =>5

mo = Y17 — ag — FF(by, cq,dy) — th7

We recover the chaining value a; as follows:
a1 = ((ag + FF(bo, co, do) + mo + t1) <K 7) + by

(d) We use the multi-message modification introduced in Chapter 4| to
let the chaining values d5 and c5 to satisfy all their corresponding

sufficient conditions.

(e) For the sufficient conditions in the chaining value bs, we do the

33



single-message modification as follows:

T Zys2,

bs = [2 A Sa0] V [V Sy1]

V [(# A Sa.2) V (€5 A S202)] V [(2 A Sa03) V (T A Sa03)]
V (2 A Sa0.4) V (ds A Si74)] V [(x A Sas) V (ds A Sags)]

220 = (b5 — 05) > 20

my = Yog — by — FF(cs,ds, a5) — ta

We recover the chaining value dy as*follows:
d1 = ((do =+ FF(al, bo, CO) + T + tg) K 12) -+ aq
Then we recover the messageswords ms, mg, and my as follows:

ma = ((Cl - dl) > 17) —Co — FF(dlaal)bO) - Z53
m3 = ((b1 — Cl) > 22) — bo — FF(cl,dl,al) — t4

my = ((CLQ - bl) > 7) —a) — FF(bl,Cl,dl) — 15

(f) For the remaining sufficient conditions that can be fulfilled by the

multi-message modification as described in Chapter [4], if the cor-

responding bits of the chaining values are not the same as them,

we correct them by using the multi-message modification intro-

duced in Chapter [d For all the sufficient conditions that can’t

o4



be fulfilled by the message modification techniques, we check if
the chaining value z in the i*" step during the computation of the
compression function and its corresponding sufficient conditions

are equivalent using the following equation:

(i[f N (Si’() vV Si,l \Y SZ'72 V Sz"g V Si,4 V Si’5))

:<CL’ N Si’()) V (y VAN SZ"Q) V (@ A 81'73) V (Z A 8@4) V (E A Si,5) V S@l

(5.1)
where y and z are the chaining values in the
(i — 1) and (i — 2)™ step, respectively.
If it is not the case,swe go_back testep [Id
(2) Then the first messhge block- M, £ m,||my]|. .. ||mis and IV, £

(ao + ai6)!|(bo + b1e)|| (co.FEa (o 4 die)-

2. We use the following procedure to generate the second iteration message

block MQ.

(a) We set IV = ao|bol|col|do
(b) We set i1o, = 1 and ipign = 16.

(c) For the sufficient conditions in the first round, we do the single-

message modification as follows:

95



For ¢ = ilow to ihigh-

Ifi modd=1, x & Zys,

CLI‘i"I = [ZE VAN Sz"()] V [ZE vV 8171]

V[(x A Si2)V (bf%W ASio)] V[(xASiz)V (bV

V [(Q? N Si,4> V (CI‘%‘I VAN Si’4)] V [(ZE N S,;’5) V (Cl‘z

If i mod 4 =202 < Zys,

d"i-l = [:L‘ VAN Si’()] vV [$ Vs S@l]

V (2 A Biz) Vilag Seasialy I8 A i) v

—
<

ES N Si3)]

[i2] A Sis)]

[

V(@ A Sia) v (br ISV [(z A Sis) v (
5= 1 )

Mo = B = dpige = PR by epgy) =

Ifi mod4d=3, z& Zos,

C[i" = [:E /\m] V [ZL‘ V S@l]

4

V[(x A Siz) Vv <df%1 A Sio)] V [(x A Si3)V (d( 1/ S;i3)]

i—1
4

V [(ZL‘ N 5@4) vV (CL(%‘| A Si74)] vV [(1’ A Si75) V

—
S

2] A i)

Y= (CP‘| — d[%‘l) > 8

1

56



Mo =B o] = FEUpg o) by —

Ifi mod4=0, x< Zys,

-| = [ZE A Si,O] V [[E V Sz‘,l]

K
4

or

VI(z A Sig) Verizy ASi2)] V(@ A Sig) V (€[] A Sia)]
VI@ASia) Y (drie) ASial V(@ A Sis) V (dfez) A Sis)]

Ei = (b([‘ - Cl'i—l—‘) > 8

4 4

Mo = 8= bige) = BEep dpge o) =

where z is a 32-bit word|

(d) Then for the remaining sufficient conditions that can be fulfilled
by the multi-message modification as described in Chapter [ if
the corresponding bits of the chaining values are not the same as
them, we correct them by using the multi-message modification
introduced in Chapter[d] For all the sufficient conditions that can’t
be fulfilled by the message modification techniques, we check if
the chaining value z in the i'" step during the computation of the
compression function and its corresponding sufficient conditions
are equivalent using the equation [5.1] If it is not the case, we set

flow = 15, ipign = 16 and then go back to step [2d

(e) Then the second message block is set as My = my||ms| . .. ||mis.

o7



3. Finally, if the message M = M;||M, satisfies all the correct sufficient
conditions, M’ = M{||M} = (M; + AM,)||(Mzy + AMs;) and M will

collide.

In the above MD5 collision finding procedure, if S;; = 0 for 1 < ¢ <

64 A0 < j <5, we can ignore it for efficiency.

5.2 Analysis of Our Implementation

Because the MD4 collision searching algorithm is very efficient, so we don’t
compare its performance in this section. But according to our execution ex-
periments, our implementation’is also more efficient than Stach’s. You can
download our implementation code and compareit with Stach’s by compiling
and executing both ones. Our implementation of the MD4 collision search-
ing algorithm gives a collision ‘pait._in a very short time even in the worst
case. But Stach’s takes more than 1 minute in the worst case. In this sec-
tion, we compare our implementation of MD5 collision searching algorithm
with Stach’s. We put our experiment data on http://www.cs.nctu.edu.tw/
~gtchen/Data/md5. tbz and the modified version of Stach’s code on http://
www.cs.nctu.edu.tw/~gtchen/Codes/md5coll-orig modified. c| for com-

parison.
5.2.1 Correctness Analysis

In Stach’s implementation of the collision searching algorithms of MD5, the

second block does not always exist for any the first block whose message

28


http://www.cs.nctu.edu.tw/~gtchen/Data/md5.tbz
http://www.cs.nctu.edu.tw/~gtchen/Data/md5.tbz
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll-orig_modified.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll-orig_modified.c

differential is AM; and hash value differential is Ah; as described in sec-
tion 3.1} In http://www.stachliu.com/collisions.html, he claimed that
“some block #1’s don’t have block #2 solutions.” But we think what he
claimed is not correct. As long as the differential value of the internal chain-
ing values are the same as Wang et al.’s, the probability that the message
pair M and M’' = M 4+ AM collide is always 1. So in our opinion, there may
be some sufficient conditions lost in his implementation. We do the experi-
ments by running our implementation and Stach’s implementation 50 times
respectively to measure the correctness and the performance of the imple-
mentations. We assume that theiexperimént whose execution time exceeds
12 hours would fail to find the collision:pair. According to the experiments
on Stach’s implementation,“we find.that 50% of the executions exceed 12
hours. But all the execution“experiments of eur implementation don’t ex-
ceed 9 hours. Although some experiments of Stach’s implementation don’t

give the collision pair, but it always find the first iteration message block.
5.2.2 Performance Analysis

In this section, we compare the execution time of our implementation of
MD5 collision finding algorithm with Stach’s. We summary the result of
the total fifty times experiments per implementation in table 5.1} In http:
//www.stachliu.com/collisions.html, he said “average run time on P4
1.6ghz PC — 45 minutes.” But according to our experiments on P4 2.8GHz

PC, the result is quite different from what he said. We should mention that

39


http://www.stachliu.com/collisions.html
http://www.stachliu.com/collisions.html
http://www.stachliu.com/collisions.html

Average Best Case | Worst Case | Sucessful
Case Probability
Our Implementation 1h48m10s 4m20s 8h50m01s 1
Stach’s  Implementa- | 2h06m13s 8m29s 5h58mb7s 0.5
tion

Table 5.1: The Execution Time of the Experiments

the execution time of his implementation in the worst case is much better

than ours.

60




Chapter 6

Conclusions

After Wang et al. publish their MD4 and MD5 collision searching algorithms,
many researchers publish their improvements. After their improvements were
given, the collision searching algorithms become more and more definitive and
efficient. In this thesis, we also give our.éwn improvements on the message
modification techniques. Then we implement, the MD4 and MD5 collision
searching algorithms to show that eur improvements are efficient enohgh to
run on modern PCs. Some cryptographic scholars think that the collision
resistance requirement is not necessary for a cryptographic hash function in
all cryptographic applications. Because it is infeasible for any probabilistic
polynomial time adversary to break all cryptographic applications even their
internal cryptographic hash function is not collision resistant. For example,
if the adversary Eve want to fake Alice’s certificate, it is infeasible for him
to do this even the certificate use a non-collision resistant cryptographic
hash function. So we can relax the collision resistance requirements in some

cryptographic applications, but not in all of them. As mentioned in Section

61



some cryptographic applications need stronger security requirements of
the hash functions, not just the three basic ones. If a hash function is not
second preimage resistant, the hash function is broken wholly. So how to find
the second preimage of the existing hash functions is an interesting problem.
Yu et al. [YWZWO05] gave their discovery on finding the second preimage of
the hash function MD4. But they didn’t really find the real second preimage
of the hash function MD4. Instead, they gave a collision path that is of higher
probability to find the second preimage of MD4 than Wang et al.’s [WLE 05,
Chapter 6]. For a randomly chosen message block M, they gave a sufficiently
efficient algorithm to modify M to M , where the hamming distance of M and
M is very small, and the second preimage of Mcan be computed efficiently.
But their results are not pragctical enough to'damage the use of MD4 in the
real world for digital signaturés;.certificates; MACs, and so on. Instead, we
want an algorithm to find the second preimage for any message, even though
the time complexity of the algorithm is a little bigger. As long as the time
complexity of the second preimage finding algorithm is not too large to run
on modern computers, we can accept it. So how to find the second preimage
for arbitrary message of the dedicated hash functions, such as MD4, MD5,

SHA-1, is an interesting problem for solving.

62



Bibliography

(BRG]

[Bra90]

[CGHOS]

[CGHO4]

[Cra05]

R. Baldwin and R. Rivest. The RC5, RC5-CBC, RC5-CBC-Pad,
and RC5-CTS Algorithms. Request for Comments (RFC 2040),

October 1996.

Gilles Brassard, editer) Advanices in Cryptology - CRYPTO 89,
9th Annual International Cryptology Conference, Santa Bar-
bara, California; USA, August 20-24; 1989, Proceedings, volume

435 of Lecture Notes 1n Computer:Science. Springer, 1990.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited (preliminary version). In STOC,

pages 209-218, 1998.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random

oracle methodology, revisited. J. ACM, 51(4):557-594, 2004.

Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Aarhus, Denmark,

63



[Dam89]

[DBP96]

[FIPY5]

[FIP02]

[GKO3]

[HPRO4]

May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes

in Computer Science. Springer, 2005.

Ivan Damgard. A design principle for hash functions. In Bras-

sard [Bra90], pages 416-427.

Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. Ripemd-
160: A strengthened version of ripemd. In Dieter Gollmann,
editor, Fast Software Encryption, volume 1039 of Lecture Notes

in Computer Science, pages 71-82. Springer, 1996.

Secure hash standaxd’(shs). 7;Federal Information Processing
Standard (FIPS) Publication 180-1; National Institute of Stan-

dards and Technology (NIST), April 1995.

Secure hash standard. (shs)...Federal Information Processing
Standard (FIPS) Publication 180-2, National Institute of Stan-

dards and Technology (NIST), August 2002.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of
the fiat-shamir paradigm. In FOCS, pages 102—. IEEE Computer

Society, 2003.

Philip Hawkes, Michael Paddon, and Gregory G. Rose. Musings
on the wang et al. md5 collision. Cryptology ePrint Archive,
Report 2004/264, 2004. http://eprint.iacr.org/2004/264.

pdf.

64


http://eprint.iacr.org/2004/264.pdf
http://eprint.iacr.org/2004/264.pdf

[Kal92]

[Ken05]

[KIi05a]

[K1i05b)

[KMO5]

[LAW05]

[LLO5]

B. Kaliski. The MD2 Message-Digest Algorithm. Request for

Comments (RFC 1319), April 1992.

S. Kent. IP Encapsulating Security Payload (ESP). Request for

Comments (RFC 4303), December 2005.

Vlastimil Klima. Finding md5 collisions on a notebook pc using
multi-message modifications. Cryptology ePrint Archive, Report

2005/102, 2005. http://eprint.iacr.org/2005/102.pdf.

Vlastimil Klima. Finding md5 collisions v a toy for a notebook.
Cryptology ePrint Archive, Report 2005/075, 2005. http://

eprint.iacr.org/2005/075 .pdf.

Lars R. Knudseh and John Erik Mathiassen. Preimage and col-
lision attacks on md2. In-Henri'Gilbert and Helena Handschuh,
editors, FSE, volume 3557 of Lecture Notes in Computer Sci-

ence, pages 255—267. Springer, 2005.

Arjen K. Lenstra and Benne de Weger. On the possibility of
constructing meaningful hash collisions for public keys. In Colin
Boyd and Juan Manuel Gonzalez Nieto, editors, ACISP, vol-
ume 3574 of Lecture Notes in Computer Science, pages 267-279.

Springer, 2005.

Jie Liang and Xuejia Lai. Improved collision attack on hash

65


http://eprint.iacr.org/2005/102.pdf
http://eprint.iacr.org/2005/075.pdf
http://eprint.iacr.org/2005/075.pdf

[LWAWO05]

[Merg9]

[Mik04]

[Mul04]

[NSKOO5]

[RBOO]

function md5. Cryptology ePrint Archive, Report 2005/425,

2005. http://eprint.iacr.org/2005/425.pdf.

Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding
x.509 certificates. Cryptology ePrint Archive, Report 2005/067,

2005. http://eprint.iacr.org/2005/067.pdf.

Ralph C. Merkle. One way hash functions and des. In Brassard

[Bra90], pages 428-446.

Ondrej Mikle. Practical attacks on digital signatures using mdb
message digest. Cryptology ePrint Archive, Report 2004/356,

2004. http://eprint.iacr. org/2004/356.pdf.

Frédéric Mullers The md2-hash function is not one-way. In
Pil Joong Lee, editor, / ASIACRYPT, volume 3329 of Lecture

Notes in Computer Science, pages 214-229. Springer, 2004.

Yusuke Naito, Yu Sasaki, Noboru Kunihiro, and Kazuo Ohta.
Improved collision attack on md4 with probability almost 1. In
Dongho Won and Seungjoo Kim, editors, ICISC, volume 3935
of Lecture Notes in Computer Science, pages 122—-135. Springer,

2005.

Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL

hash function. First open NESSIE Workshop record, November

66


http://eprint.iacr.org/2005/425.pdf
http://eprint.iacr.org/2005/067.pdf
http://eprint.iacr.org/2004/356.pdf

[RCY7]

[Riv90]

[Riv92a

[Riv92b]

[SNKOO5]

[SNY*06]

2000. The document is available at http://paginas.terra.

com.br/informatica/paulobarreto/WhirlpoolPage.html.

N. Rogier and Pascal Chauvaud. Md2 is not secure without the

checksum byte. Des. Codes Cryptography, 12(3):245-251, 1997.

Ronald L. Rivest. The md4 message digest algorithm. In Alfred
Menezes and Scott A. Vanstone, editors, CRYPTO, volume 537
of Lecture Notes in Computer Science, pages 303-311. Springer,

1990.

R. Rivest. The MP4 Message-Digest Algorithm. Request for

Comments (RFE 1320), April 1992:

R. Rivest. The-MD5 Message-Digest Algorithm . Request for

Comments (RFC 1321);-April 1992.

Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta.
Improved collision attack on md5. Cryptology ePrint Archive,
Report 2005/400, 2005. http://eprint.iacr.org/2005/400.

pdf.

Yu Sasaki, Yusuke Naito, Jun Yajima, Takeshi Shimoyama,
Noboru Kunihiro, and Kazuo Ohta. How to construct suffi-
cient condition in searching collisions of md5. Cryptology ePrint

Archive, Report 2006/074, 2006. http://eprint.iacr.org/.

67


http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://eprint.iacr.org/2005/400.pdf
http://eprint.iacr.org/2005/400.pdf
http://eprint.iacr.org/

[Sta05a]

[Sta05b]

[WLF*05]

[WY05]

[(WYYO5]

[YS05]

[YWZWO05]

Patrick Stach. MD4 Collision Generation— Faster implemen-
tation of techniques in “Cryptanalysis for Hash Functions MD4

and RIPEMD”. http://www.stachliu.com/md4coll.c, 2005.

Patrick Stach. MDb5 Collision Generation— Faster implemen-
tation of techniques in “How to Break MD5 and Other Hash

Functions”. http://www.stachliu.com/md5coll.cl 2005.

Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xi-
uyuan Yu. Cryptanalysis of the hash functions md4 and ripemd.

In Cramer [Cra0], pages 1—-18.

Xiaoyun Wang and Hongho Yu. How to break md5 and other

hash functions.=In Cramer [Cra05], pages 19-35.

Xiaoyun Wang, Yiqua Lisa Yin,.and Hongbo Yu. Finding colli-
sions in the full sha-1. In Victor Shoup, editor, CRYPTO, vol-
ume 3621 of Lecture Notes in Computer Science, pages 17-36.

Springer, 2005.

Jun Yajima and Takeshi Shimoyama. Wang’s sufficient con-
ditions of md5 are not sufficient. Cryptology ePrint Archive,
Report 2005/263, 2005. http://eprint.iacr.org/2005/263.

pdf.

Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang.

The second-preimage attack on md4. In Yvo Desmedt, Huaxiong

68


http://www.stachliu.com/md4coll.c
http://www.stachliu.com/md5coll.c
http://eprint.iacr.org/2005/263.pdf
http://eprint.iacr.org/2005/263.pdf

[ZPS92]

Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of

Lecture Notes in Computer Science, pages 1-12. Springer, 2005.

Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. Haval - a
one-way hashing algorithm with variable length of output. In
Jennifer Seberry and Yuliang Zheng, editors, ASTACRYPT, vol-
ume 718 of Lecture Notes in Computer Science, pages 83-104.

Springer, 1992.

69



	Introduction
	Description of The Hash Algorithms
	Hash Functions
	The Compression Function of MD4
	The Compression Function of MD5

	Review of Wang et al.'s Attack on MD4 and MD5
	Collision Differentials
	Sufficient Conditions
	Message Modification
	Collision Searching Algorithm

	Some Improvements on Message Modification
	Previous Results
	Our Improvements
	The Improvements on MD4
	The Improvements on MD5


	Our Implementation on the Collision Searching Algorithm
	A brief description of the Implementation
	Analysis of Our Implementation
	Correctness Analysis
	Performance Analysis


	Conclusions

