

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

M D 4 和 M D 5 碰 撞 攻 擊 之 研 究

A Study of the Collision Cryptanalysis against

MD4 and MD5

研 究 生：陳冠廷

指導教授：曾文貴 教授

中 華 民 國 九 十 五 年 六 月

MD4 和 MD5 碰撞攻擊之研究

A Study of the Collision Cryptanalysis against MD4 and MD5

研 究 生：陳冠廷 Student：Guan-Ting Chen

指導教授：曾文貴 Advisor：Wen-Guey Tzeng

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

MD4 與 MD5 碰撞攻擊之研究

學生：陳冠廷 指導教授：曾文貴 博士

國立交通大學資訊科學與工程研究所

摘要

王小雲等人在密碼會議 EuroCrypt2005 上發表他們對 MD4 和 MD5

的碰撞攻擊演算法。之後許多研究者根據他們的結果並相繼提出他們

對於碰撞攻擊演算法的改進。其中大部分研究者著重在如何讓訊息修

改演算法更有效率。在本篇論文中，我們改進了訊息修改演算法。對

於 MD5，我們提出一些訊息修改的方法，能滿足第一個回合的一個充

分條件和第二個回合的五個充分條件。對於 MD4，我們修正了之前 MD4

碰撞攻擊演算法的一些錯誤。同時我們實作了對於 MD4 和 MD5 的碰撞

攻擊演算法。我們對於 MD5 的碰撞攻擊演算法的實作平均大約需要

1.75 個小時去找出一組碰撞的訊息。根據我們的實驗，我們的實作

能在 12 個小時內找到一組碰撞的訊息之機率為 1。

關鍵字：碰撞攻擊，差分攻擊，雜湊，MD4，MD5，訊息修改，充分條

件。

i

A Study of the Collision Cryptanalysis against MD4 and MD5

Student: Guan-Ting Chen Advisor: Dr. Wen-Guey Tzeng

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

In EuroCrypt2005, Wang et al. publish their collision searching algorithms

for MD4 and MD5. Many researchers follow their results and publish their

improvements on the collision searching algorithms. Many of them focus on

how to do the message modification efficiently. In this thesis, we improve the

message modification techniques. We use our message modification methods

to satisfy 1 sufficient condition in the first iteration and 5 sufficient conditions

in the second iteration for MD5. For MD4 collision searching algorithm,

we correct the errors in the previous results. We implement the collision

searching algorithm for both MD4 and MD5. Our implementation of the

MD5 collision searching algorithm takes about 1.75 hours to give a collision

pair in average. The successful probability to find the collision pair in 12

hours is 1 according to our experiments.

Keywords: Collision Cryptanalysis, Differential Cryptanalysis, Hash, MD4,

MD5, Message Modification, Sufficient Conditions.

ii

誌 謝

首先要感謝我的指導老師曾文貴教授，在我碩士班的學習過程

中，帶領我深入密碼學的領域，我使獲益良多。另外，我要感謝口試

委員，交大資工蔡錫鈞教授與中研院資訊科學研究所呂及人教授，在

論文上給我許多建議與指導，讓我的論文更加完善。
除此之外，我要感謝實驗室學長成康的指導，實驗室同學君偉、

資工 92 級陳榮傑老師密碼理論實驗室漢璋的幫忙，和你們一起討論

和學習是一件愉快的事，室友哲瑩在程式上的一些建議和幫忙，以及

所有曾經與我一起在資科系計中工作過和一起在實驗室學習的夥伴

在精神方面的鼓勵。
最後，我要感謝我的父母、弟弟、小舅和舅媽，不論在精神或物

質上都給我極大的支持，讓我能在無後顧之憂的情況下順利完成學

業。得之於人者太多，出之於己者太少，要感謝的人實在太多了，無

法一一列舉，就感謝天罷。

iii

Contents

1 Introduction 1

2 Description of The Hash Algorithms 6

2.1 Hash Functions . 6

2.2 The Compression Function of MD4 10

2.3 The Compression Function of MD5 12

3 Review of Wang et al.’s Attack on MD4 and MD5 15

3.1 Collision Differentials . 15

3.2 Sufficient Conditions . 18

3.3 Message Modification . 19

3.4 Collision Searching Algorithm 21

4 Some Improvements on Message Modification 23

4.1 Previous Results . 24

4.2 Our Improvements . 33

4.2.1 The Improvements on MD4 33

4.2.2 The Improvements on MD5 38

iv

5 Our Implementation on the Collision Searching Algorithm 48

5.1 A brief description of the Implementation 48

5.2 Analysis of Our Implementation 58

5.2.1 Correctness Analysis 58

5.2.2 Performance Analysis 59

6 Conclusions 61

v

List of Tables

4.1 The successful probability that some sufficient conditions are

not fulfilled . 38

5.1 The Execution Time of the Experiments 60

vi

Chapter 1

Introduction

Cryptographic Hash Functions are a kind of important primitive in cryp-

tographic applications. Many cryptographic schemes, such as digital sig-

natures, MACs, authentications, certificates, IBE, and so on, use the hash

functions as their internal subroutines to construct the whole cryptographic

schemes. Some cryptographic schemes that use hash functions as their inter-

nal subroutines are proven to be secure by assuming that their underlying

hash functions are truly-random functions. This is called the random or-

acle model. But some studies show that the security of the cryptographic

schemes under the random oracle model is not guaranteed when their un-

derlying hash functions are not truly-random functions. The studies don’t

find the insecurity of the existing cryptographic schemes that are proven to

be secure under the random oracle model in the real world. Instead, they

give a counter example to show that the cryptographic schemes proven se-

cure under the random oracle model are not secure if their underlying hash

functions are substituted with a real hash function such as SHA-1, not a

1

truly random function [CGH98, CGH04]. Goldwasser and Kalai [GK03] find

that the security of the Fiat-Shamir transformation that transform secure

3-round public-coin identification schemes into digital signature schemes is

not guaranteed although the methodology is proven secure under the ran-

dom oracle model. Therefore, we can’t ignore the real structure of the hash

functions and just see them as the black-box of the truly-random functions.

A cryptographic scheme that uses an insecure hash function as its internal

subroutine may be insecure [LWdW05, Mik04, LdW05]. So many researchers

do their best to re-evaluate the security of the existing cryptographic hash

algorithms and study how to design a secure ones.

There are many existing hash functions, such as MD2 [Kal92], MD4

[Riv90, Riv92a], MD5 [Riv92b],RIPEMD-128 and RIPEMD-160 [DBP96],

HAVAL [ZPS92], SHA-1 [FIP95], SHA-256 and SHA-512 [FIP02], Whirlpool

[RB00], and so on. Before these hash functions were proposed, the hash func-

tions were constructed from blockcipher. Generally speaking, the encryption

and decryption of the blockcipher is less efficient than the compression of

the hash function on the same message (or plaintext). If a large file is trans-

fered from Alice to Bob on 100M ethernet, the computation time of the

blockcipher-based hash value of the file will be larger than the transmission

time. We want the hash value to be computed as fast as possible to meet the

transmission speed of the ethernet. Nowadays, when we download files from

the FTP or Web site, these files are usually associate with their hash values

2

or PGP digital signatures, that also use cryptographic hash functions as their

internal functions, for file integrity. The efficiency of computing the hash val-

ues is very important due to their heavy use, and MD2 was not used widely

because of its inefficiency. Besides it, some researchers [RC97, Mul04, KM05]

figure out the insecurity of MD2. MD4 is an early-appeared hash function

that is used to replace MD2 and designed for modern computers. All MD4

operations are basic arithmetic and Boolean operations on 32-bit words that

are suitable in modern computers and able to be computed efficiently. So

the MD4 hash value can be computed fast by using modern computers. This

type of hash functions, referred as dedicated hash functions, is quite different

from the traditional design of the blockcipher-based hash functions. Gener-

ally speaking, the computational cost of a blockcipher is much larger than

that of a dedicated hash functions. After MD4 was published, many new

dedicated hash functions, such as MD5, HAVAL, RIPEMD, RIPEMD-160,

SHA-1, etc, follow the design of MD4. Among these hash functions, MD5

and SHA-1 are used most widely.

On the other hand, some researches evaluate the security of the existing

hash functions. Some focus on the Merkle-Damg̊ard structure that is widely

used in many hash functions. Some check whether the compression function

is secure. After the publication of MD4 and other their derived dedicated

hash functions, many researchers started to analyze them. Recently, Wang et

al. give collision searching algorithms for MD4 [WLF+05], MD5 [WY05], and

3

SHA-1 [WYY05]. The time complexity of their collision searching algorithms

for MD4 and MD5 are small enough to run on modern PCs. After the

publication of their researches on MD4 and MD5 collisions, some researchers

[NSKO05, HPR04, Kli05b, Kli05a, SNKO05, LL05] published their results

based on Wang et al.’s results subsequently. Some implementations of the

collision searching algorithms are also given [Sta05a, Sta05b].

By our study, it is still possible to improve the previous collision search-

ing algorithms. In this thesis, we give some techniques in speeding up the

collision searching algorithms. Although Wang et al.’s [WLF+05, WY05] and

their subsequent results [NSKO05, HPR04, Kli05b, Kli05a, SNKO05, LL05]

are sufficient enough, there’s something that can be improved. Most im-

provements on the collision searching algorithms on MD4 and MD5 focus on

message modification that we will introduce in Chapter 4. We improve the

message modification techniques to ensure that more sufficient conditions are

fulfilled. According to our research, we find that there’s something wrong in

Naito et al.’s results [NSKO05] for the MD4 collision searching algorithm. We

give some message modification methods to correct these errors. For MD5

collision searching algorithm, we give some message modification methods to

satisfy the sufficient condition “c5,32 = d5.32” in the first iteration and the

sufficient conditions “d5,18 = 1”, “d5,32 = a5,32”, “c5,18 = 0”, “c5,32 = d5,32”,

and “d6,32 = a6,32” in the second iteration for MD5. Sasaki et al. also give

message modification method for the sufficient condition “c5,32 = d5.32” in the

4

first iteration [SNKO05]. But their method reduce the set size of the collision

pair too much. Then we implement the collision searching algorithm for both

MD4 and MD5 and it takes about 1.75 hours to given a MD5 collision pair

in average. The successful probability to find the collision pair in 12 hours is

1 according to our experiments.

The Organization of the Thesis. In Chapter 2, we give some introduc-

tion of the hash functions, MD4 and MD5. In Chapter 3, we review the

collision searching algorithms on MD4 and MD5 given by Wang et al. In

Chapter 4, we introduce the previous results on message modification tech-

niques, and give our own improvements from theirs. In Chapter 5, we give

an introduction of our implementation on MD5 and analyze it. Finally, We

conclude this thesis in Chapter 6.

5

Chapter 2

Description of The Hash
Algorithms

2.1 Hash Functions

A cryptographic hash function F with a k-bit output is a function that

accepts an arbitrary length input M ∈ {0, 1}∗ and outputs a fixed length

output H ∈ {0, 1}k. We call that H is the hash value of the input message

M via the hash function F . Cryptographic hash functions at least need to

satisfy the following three basic security requirements:

• Preimage Resistance: Given a randomly chosen image H ∈ {0, 1}k,

there is no probabilistic polynomial time adversary with less than about

2k computations to give a value M such that F (M) = H with an non-

negligible probability with respective to its output size k. If the hash

function F satisfy this security requirement, we also say that the hash

function F is an one-way hash function.

6

• Second Preimage Resistance: Given a randomly chosen value M , there

is no probabilistic polynomial time adversary with less than about 2k

computations to give another M ′, M ′ 6= M , such that F (M) = F (M ′)

with an non-negligible probability with respective to its output size k.

• Collision Resistance: There is no probabilistic polynomial time adver-

sary with less than about 2
k
2 computations to find M and M ′, M 6= M ′,

such that F (M) = F (M ′) with an non-negligible probability with re-

spective to its output size k. The value 2
k
2 is the theoretic lower bound

of the birthday attack suppose the hash function F is balance over its

image.

The above three properties are the minimal security requirements for the

cryptographic hash functions. There are still other security requirements

for hash functions on other specific cryptographic applications. We can find

that breaking the second preimage resistance property is more difficult than

breaking the collision resistance property. But there is no reduction relation

between preimage resistance and second preimage resistance.

Many existing cryptographic hash functions are iterated hash functions

built from compression functions. We denote the compression function as f ,

and its input and output as x and y, respectively. The length of x and y is

always fixed, and |x| > |y|. But the input length of F is arbitrary, so F need

to call the compression function f many times to compute the hash value.

7

Many existing cryptographic hash functions use the Merkel-Damg̊ard con-

struction [Dam89, Mer89] as their iterative structure. It is that, if we want

to compute the hash value H of the message M , we compute as follows:

1. We pad the message M according to its padding algorithm. For brevity

of explaining, we also denote the padded message as M . After padding,

|M | is an integer multiple of |x| − |y| bits.

2. We divide M into n blocks, each block size is equal to |x| − |y|, where

n = |M |
|x|−|y| . For each block of M , we denote the ith block as Mi. So

M = M1||M2|| . . . ||Mn−1||Mn.

3. We use the following recursive equation to compute the hash values:

yi = f(yi−1||Mi) for i = 1 to n

where y0 =IV.

4. Finally H = yn is the hash value of M via the hash function F .

In the step 3 of the above computation of H, IV, or initial value, is a fixed

value chosen by the designer of the hash function. In step 1, we mention that

the padding algorithm can be split from the Merkel-Damg̊ard construction of

the hash functions, as long as the sender and the receiver knows the padding

algorithm. Many padding algorithms, such as RC5-CBC-PAD [BR96], ran-

dom padding, the padding for ESP [Ken05, Page 15], and so on, used in

blockcipher can be used in hash functions. In blockcipher, when ciphertext

8

is decrypted then the padded message must be removed to recover the orig-

inal plaintext so that the padding algorithms must be invertible. Unlike the

blockcipher algorithms, the padding algorithms of the hash functions are not

necessary to be invertible because the original message M is a plaintext and

are known by both the sender and the receiver. The padded message can

be also a checksum of the message M or something else. The checksum is

also a hash value, but it is not a cryptographic hash value. The checksum

algorithms is much more efficient than the cryptographic ones, but it’s not

necessary to satisfy the three basic security requirements of the cryptographic

hash functions. Its output length is usually shorter than that of the cryp-

tographic hash functions. Nowadays, the string 10|x|−|y|−(|M |+1 mod (|x|−|y|)) is

padded and then the length of the unpadded message is also appeared in

the last block after the padded message in many hash functions that use the

Merkle-Damågrd structure, such as MD4, MD5, SHA-1 and so on.

Actually the cryptographic hash functions are similar (but not the same)

to the blockciphers in many aspects. For a long message, we partition it

into several blocks and then use the blockcipher, such as DES, RC5, and

AES, to encrypt each block. There are many mode of operations, such as

ECB, CBC, CFB, OFB, and so on, used during the encryption or decryption

of the blockcipher for long messages. We can also see the Merkle-Damg̊ard

construction as the mode used in cryptographic hash functions.

9

Someone may use hi = f(hi−1, mi−1) to denote the computation of the

compression function instead of yi = f(yi−1||Mi−1). We also call hi−1 as

the initial value, hi as the hash value and mi−1 as the message block of

the compression function f in this (the ith) iteration in later description.

In the following statements, we will use hi = f(hi−1, mi−1) to denote the

computation of the compression function instead of yi = f(yi−1||Mi−1) for

brevity of explaining.

2.2 The Compression Function of MD4

In this section, we denote the input of the compression function of the mes-

sage digest algorithm MD4 in this iteration as (h,m), where h and m are the

initial value and message block of the compression function, respectively. In

MD4 spec, h consists of 4 words, i.e., h = a0||b0||c0||d0, and a0, b0, c0 and d0

are all 32-bit words. The message block m consists of 16 words, we denote

m = m0||m1|| . . . ||m15, where mi are all 32-bit words for all 0 ≤ i ≤ 15.

There are some internal values used during the computation of the compres-

sion function of MD4. In this thesis, we will call these internal values as

chaining values, shorten as CV. In MD4, there are four registers that are

used to store the CVs, and we denote them as a, b, c, and d. Then given

the input (m, h), we set (a, b, c, d) = (a0, b0, c0, d0), and the output of the

compression function is computed as follows:

Σi = a + φi(b, c, d) + wi + ti a = Σi ≪ si if i mod 4 = 1

10

Σi = d + φi(a, b, c) + wi + ti d = Σi ≪ si if i mod 4 = 2

Σi = c + φi(d, a, b) + wi + ti c = Σi ≪ si if i mod 4 = 3

Σi = b + φi(c, d, a) + wi + ti b = Σi ≪ si if i mod 4 = 0

for i = 1 to 48.

In the above equations, si’s are step-dependent constants, wi’s are chosen

from mi for 0 ≤ i ≤ 15 according to its step i, ti’s are round-dependent

constants, and φi’s are round-dependent Boolean functions. All variables

used in the above steps are all 32-bit words, and the addition operation is

under the group Z232 , and the operation “≪” is the cyclic left rotation on

32-bit words.

We divide all the 48 steps of the computation of the compression function

into 3 rounds, and each round is of 16-step. The round-dependent Boolean

function is defined as follows:

φi(X, Y, Z) =

FF (X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) for 1 ≤ i ≤ 16

GG(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z) for 17 ≤ i ≤ 32

HH(X, Y, Z) = X ⊕ Y ⊕ Z for 33 ≤ i ≤ 48

Finally, the hash value of the compression function f is (a0 + a)||(b0 +

b)||(c0 + c)||(d0 + d), where the addition is also under the group Z232 .

Later, we will denote ai to the ith update of the register a, i.e., we denote

the jth update of the chaining value as ad j
4e if j mod 4 = 1, and bi, ci, and

11

di are defined similarly.

2.3 The Compression Function of MD5

MD4 and MD5 are both the dedicated hash functions and MD5 is the

strengthened version of MD4 with a little modification on MD4 algorithm.

MD5 is used to replace MD4 and now is still used widely. So the compression

function of MD5 is similar with that of MD4 but for some exceptions, and

we will mention them later in this section. In this section, we also denote

the input of the compression function of the message digest algorithm MD5

in this iteration as (h,m), where h and m are the initial value and message

block of the compression function, respectively. Like MD4, in MD5 spec,

h also consists of 4 words, i.e., h = a0||b0||c0||d0, and a0, b0, c0 and d0 are

all 32-bit words. The message block m also consists of 16 words, we de-

note m = m0||m1|| . . . ||m15, where mi are all 32-bit words for all 0 ≤ i ≤ 15.

There are four registers that are used to store the CV, and we denote them as

a, b, c, and d. Then given the input (m, h), we set (a, b, c, d) = (a0, b0, c0, d0),

and the output of the compression function is computed as follows:

Σi = a + φi(b, c, d) + wi + ti a = b + Σi ≪ si if i mod 4 = 1

Σi = d + φi(a, b, c) + wi + ti d = a + Σi ≪ si if i mod 4 = 2

Σi = c + φi(d, a, b) + wi + ti c = d + Σi ≪ si if i mod 4 = 3

Σi = b + φi(c, d, a) + wi + ti b = c + Σi ≪ si if i mod 4 = 0

for i = 1 to 64.

12

In the above equations, si’s are step-dependent constants, wi’s are chosen

from mi for 0 ≤ i ≤ 15 according to its step i, and φi’s are round-dependent

Boolean functions. All variables used in the above steps are all 32-bit words,

the addition operation is under the group Z232 , and the operation “≪” is

the cyclic left rotation on 32-bit words. But note here, unlike MD4, ti’s are

step-dependent constants, not round-dependent constants. So there are 64

different ti’s for i = 1 to 64 in the whole MD5 compression function. In

MD4, there are only 3 different ti’s for i = 1 to 48 in the whole compression

function. There are total 64 steps, not 48 steps, in the compression function

of MD5. In each step computation, there is a little difference between MD4

and MD5. The Σi’s computation of MD4 and of MD5 are the same. But

when updating the register of the chaining value, MD5 will add the last one

updated chaining value and the addition is also under the group Z232 . Here

we divide all the 64 steps of the computation of the compression function into

4 rounds, and each round is also of 16-step like MD4. The round-dependent

Boolean function is defined as follows:

φi(X, Y, Z) =

FF (X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) for 1 ≤ i ≤ 16

GG(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ Z) for 17 ≤ i ≤ 32

HH(X, Y, Z) = X ⊕ Y ⊕ Z for 33 ≤ i ≤ 48

II(X, Y, Z) = Y ⊕ (x ∨ Z) for 49 ≤ i ≤ 64

13

Here we can observe that the round-dependent Boolean function φi of MD5

are not all the same as that of MD4.

Finally, the hash value of the compression function f is (a0 + a)||(b0 +

b)||(c0 + c)||(d0 + d), where the addition is also under the group Z232 . We

stress that without final step (add the initial value a0, b0, c0, and d0 to the

registers a, b, c, and d), the whole computation of the MD4 and MD5 are

not one-way given the message block m.

Like that of MD4, we will denote ai to the ith update of the register a,

and bi, ci, and di are defined similarly.

14

Chapter 3

Review of Wang et al.’s Attack
on MD4 and MD5

3.1 Collision Differentials

The attacks given by Wang et al. on MD4 and MD5 are differential attacks

whose differential is under the addition operation of the group Z232 . They

focus on the flaw of the compression function, not the whole hash function.

Both MD4 and MD5 use the Merkel-Damg̊ard construction as their iterative

hash structure, the block that represent the original length of the message

is always padded as the last block of the input of the hash function. So

we can find that Wang et al. want to find a equal-length collision pair such

that all the padded strings are the same. According to the Merkel-Damg̊ard

construction, the hash value of the original message are the same implies

that the hash value of the padded message are also the same. In other

words, Wang et al. give messages (M, M ′) where |M | = |M ′| and then the

same padded message M̂ will be padded after M and M ′. Here we denote the

padded message of M and M ′ as M̃ = M ||M̂ and M̃ ′ = M ′||M̂ , respectively.

15

We set n = |M |
r

= |M ′|
r

and ñ = |M̃ |
r

= |M̃ ′|
r

= n + 2 where r is the size of the

message block in each iteration of the compression function, and the length

of M or M ′ is always an integer multiple of r bits because Wang et al. focus

on the compression functions. According to the description of the Merkel-

Damg̊ard construction described in the previous chapter, the hash value in

the nth iteration of the computations of the original messages M and M ′ are

hn = (hn−1||Mn) and h′
n = (h′

n−1||M ′
n), respectively. The messages given by

Wang et al. will let hn = h′
n, and the following message of M̃ and M̃ ′ are the

same, so the final hash values will be the same.

They want to find a collision pair (M, M ′), M and M ′ are both of message

block size (512-bit), of MD4 such that:

∆h0 = 0
∆M→ ∆h1 = 0

where ∆M = M ′ − M = ∆m0||∆m1|| . . . ||∆m15 = (m′
0 − m0)||(m′

1 −

m1)|| . . . ||(m′
15 −m15), and

∆m1 = 231, ∆m2 = 231 − 228, ∆m12 = −216,

and ∆mi = 0 for 0 ≤ i ≤ 15 ∧ i 6= 1 ,2 ,12.

They want to find a two-block message pair (M, M ′), where M = M1||M2

and M ′ = M ′
1||M ′

2, to give a collision of MD5. The differential path between

the compression function is shown as follows:

∆h0 = 0
∆M1→ ∆h1

∆M2→ ∆h2 = 0

16

where, ∆M1 = M ′
1−M1 = ∆m1,0||∆m1,1|| . . . ||∆m1,15 = (m′

1,0−m1,0)||(m′
1,1−

m1,1)|| . . . ||(m′
1,15 −m1,15)

∆m1,4 = 231, ∆m1,11 = 215, ∆m1,14 = 231,

and ∆m1,i = 0 for 0 ≤ i ≤ 15 ∧ i 6= 4 ,11 ,14.

and ∆M2 = M ′
2 −M2 = ∆m2,0||∆m2,1|| . . . ||∆m2,15 = (m′

2,0 −m2,0)||(m′
2,1 −

m2,1)|| . . . ||(m′
2,15 −m2,15)

∆m2,4 = 231, ∆m2,11 = −215, ∆m2,14 = 231,

and ∆m2,i = 0 for 0 ≤ i ≤ 15 ∧ i 6= 4 ,11 ,14.

The differential value ∆h1 = (231, 231+225, 231+225, 231+225). In all the above

equations in this section, all of the message block differentials are consisted

from its element word differentials.

Wang et al. give a differential path of the chaining values during the

computation of the compression function in [WLF+05, Table 5] and [WY05,

Table 3 & 5] of MD4 and MD5, respectively. With the differential path of

the chaining values, two message M and M ′ with the differential described

above will collide if their differential of the chaining values are the same as

Wang et al.’s. But note here, any collision message pair is not always satisfy

the differential of the message and of the internal chaining value given by

Wang et al. Like the differential cryptanalysis against DES, we always use

the differential path (In DES, someone may call that the input differential

and the output differential for each round sub-key encryption) that we think

17

that is the most useful for attacking. Wang et al. give a differential path that

can be used to find a collision pair fast by them.

3.2 Sufficient Conditions

Given the differential path, it is not practical to find the collision pairs. So

Wang et al. also give the sufficient conditions [WLF+05, Table 6] and [WY05,

Table 4 & 6] of MD4 and MD5 respectively according to their differential

path. It is that if a randomly chosen message M satisfy all the sufficient

conditions, then the differential of chaining values of M and M ′ = M + ∆M

during the computation of the compression function will be equal to that

given by Wang et al. In other words, the sufficient conditions of the message

M are to guarantee the differential path of the message pair M and M ′ to

be equivalent with Wang et al.’s. With the sufficient conditions, we can

focus on the message M itself, not the collision pair (M, M ′) instead. So we

now want to find a message M that satisfy all the sufficient conditions given

by Wang et al. If the message M satisfy all the sufficient conditions, then

M ′ = M + ∆M and M will collide.

Note here that the sufficient conditions can be computed by anyone who

knows the differential path. The sufficient conditions given by Wang et al.

are also computed according to the differential path given by them. Some

papers post on ePrint to figure out that the sufficient conditions given by

Wang et al. are not sufficient and can be relaxed [YS05, LL05, SNY+06].

18

They find that some message M that satisfy all the sufficient conditions

given by Wang et al., but M ′ = M + ∆M and M don’t collide. That is

because the differential path of the chaining value during the computation

of the compression function on M and M ′ is not the same as Wang et al.’s.

So the probability that M and M ′ will collide is not always 1 under this

situation.

3.3 Message Modification

Given the sufficient conditions by Wang et al., the probability of a randomly

chosen massage M that will satisfy all the sufficient conditions is very small.

So we want the message M to satisfy more sufficient conditions to decrease

the probability that M will satisfy all the sufficient conditions. Thus given a

randomly chosen message M , we need to modify it to satisfy some sufficient

conditions. We introduce the message modification techniques here to modify

the randomly chosen message M to decrease the probability that M satisfies

all the sufficient conditions.

Single-Message Modification. In MD4 and MD5, each word of the mes-

sage block is used exactly once during the computation of the compression

function in the first round. So we can modify the message to let it satisfy

all the sufficient conditions in the first round easily. But there are also many

sufficient conditions besides the first round. If we don’t care these sufficient

conditions, the collision searching algorithm is not efficient enough and may

19

cost much more time to find a collision pair. So we also need to modify the

message M to let it satisfy more sufficient conditions. If we want the message

to satisfy the sufficient conditions not only in the first round, but outside the

first round, it need some tricky techniques, Multi-Message Modification, to

achieve this.

Multi-Message Modification. Because some message words are used

more than once during the computation after the first round, we can’t modify

the message word to satisfy the sufficient condition in more than two chain-

ing values in the same time trivially. So we need to think deeper about the

compression function and the sufficient conditions and give some definitive

modification methods to let the message to satisfy as many sufficient con-

ditions as possible. More sufficient conditions the message satisfies, less the

time-complexity of the collision searching algorithms of the hash function

MD4 or MD5 is.

Many recents researches focus on how to let the chaining values of the

message M during the computation of the compression function to satisfy

more sufficient conditions in the same time. They give many multi-message

modifications techniques to achieve the goal. We will introduce these tech-

niques deeper in Chapter 4.

20

3.4 Collision Searching Algorithm

With the introduction in the previous section of this chapter, we will sum-

marize the collision searching algorithm as below:

MD4 Collision Searching Algorithm:

1. We randomly choose a message block M .

2. We modify the message M by the message modification techniques.

3. For all the sufficient conditions that can’t be satisfied by the message

modification techniques, we check if the chaining values during the

computation of the compression function on M and these sufficient

conditions are equivalent. If they are not equivalent, we randomly

choose m14 and m15 of M and go back to step 2.

4. Finally, if the message M satisfy all the sufficient conditions, M ′ =

M + ∆M and M collide.

MD5 Collision Searching Algorithm:

1. We randomly choose a message block M1.

2. We modify the message M1 by the message modification techniques.

3. For all the sufficient conditions that can’t be satisfied by the message

modification techniques, we check if the chaining value during the com-

21

putation of the compression function on M1 and these sufficient con-

ditions are equivalent. If they are not equivalent, we randomly choose

m1,14 and m1,15 of M1 and go back to step 2.

4. We randomly choose a message block M2.

5. We modify the message M2 by the message modification techniques.

6. For all the sufficient conditions that can’t be satisfied by the message

modification techniques, check if the chaining value during the compu-

tation of the compression function on M2 and these sufficient conditions

are equivalent. If they are not equivalent, we randomly choose m2,14

and m2,15 of M2 and go back to step 5.

7. Finally, if the message M = M1||M2 satisfy all the sufficient conditions,

M ′ = M ′
1||M ′

2 = (M1 + ∆M1)||(M2 + ∆M2) and M collide.

22

Chapter 4

Some Improvements on
Message Modification

After Wang et al. published the papers of the collision cryptanalysis against

MD4 and MD5 [WLF+05, WY05], many cryptographic researchers study how

to improve the performance of the collision searching algorithms. Many re-

searches focus on how to improve the multi-message modification techniques.

They use the correct sufficient conditions derived from the same differential

path given by Wang et al. In this chapter, we introduce their results so far and

give our own improvements. We will use the successful probability instead

of the computation numbers of the hash compression function to measure

and compare the time complexity of the below multi-message modification

results. The successful probability is computed according to the number

of unsatisfied sufficient conditions by using the multi-message modification

techniques. In other words, the more sufficient conditions are fulfilled by the

multi-message modification, the more efficient this multi-message modifica-

tion algorithm is.

23

4.1 Previous Results

Many results on finding the collisions of MD4 and MD5, given by Wang et

al., are ambiguous. Only a rough discovery is given. The reason for such

discovery is not introduced. In the message modification techniques, they

also just give a very rough method. If someone follows the multi-message

modification methods given by them to find the collision of MD4, he can’t

find any collision at all. This is found by Naito et al. in their research of

the collision searching algorithm on MD4 [NSKO05]. They show that some

extra conditions given by Wang et al. may be broken by their type 1 multi-

message modification. The extra conditions introduced in this chapter are

not sufficient conditions, instead they are used to improve the efficiency of the

multi-message modification methods outside the first round. Any randomly

generated message block M is not necessary to satisfy the extra conditions.

The sufficient conditions is to guarantee the differential path of M and M ′

to hold. The extra conditions are used to guarantee the modification on

message words, that are after the first round, doesn’t affect too many chaining

values that are in the first round. If all except a very small size sufficient

conditions are fulfilled by the message block M , then the probability that

M and M ′ = M + ∆M collide is negligible. So the priority of the sufficient

conditions are higher than that of extra conditions, i.e., any extra conditions

must not contradict with the sufficient conditions. Below we show the two

types of multi-message modifications.

24

Type 1 Muiti-Message Modification. Here we use the multi-message

modification of the sufficient condition “a5,19 = c4,19” given by Naito et al.

[NSKO05, Table 9] as the example to introduce the type 1 multi-message

modification. According to the MD4 algorithms, a5 = (a4 + GG(b4, c4, d4) +

m0 + t17) ≪ 3 and m0 is used to compute the chaining value a5. We can find

that the complement of m0,16 will always cause the complement of a5,19 to

occur because the left shift number is 3. The complement of a5 implies that

“a5,19 6= c4,14” becomes “a5,19 = c4,14” as long as c4,14 is unchange. In other

words, if some bits of the chaining values don’t satisfy their corresponding

sufficient conditions, we only need to cause the complement of these bits to

occur using anything we can do. But the complement of m0,16 will cause the

bit a1,19 (a1 = (a0+FF (b0, c0, d0)+m0+t1) ≪ 3) in the first round to change

and a1,i may change due to the carry or the borrow on a1,19 for 20 ≤ i ≤ 32.

To prevent carry or borrow on a1,19, we need to consider the direction of the

change on a1,19. If a1,19 = 1, then we modify a1,19 to 0, otherwise we modify

a1,19 to 1. Since m0 is updated by m0 = (a1 ≫ 3)− a0 − FF (b0, c0, d0)− t1,

the complement of m0,16 occurs. Then the subsequent chaining values d1 c1

b1 and a2 are computed as follows:

d1 = (d0 + FF (a1, b0, c0) + m1 + t2) ≪ 7

c1 = (c0 + FF (d1, a1, b0) + m2 + t3) ≪ 11

b1 = (b0 + FF (c1, d1, a1) + m3 + t4) ≪ 19

a2 = (a1 + FF (b1, c1, d1) + m4 + t5) ≪ 3

25

They all use a1 to compute themselves and may change because a1 changes.

We need to do something to prevent them from changing because any change

of them will result in that the change of all subsequent chaining values. So

we need to update the message words m1, m2, m3, and m4 to cancel the

change from a1 to its subsequent chaining values as follows:

m1 = (d1 ≫ 7)− d0 + FF (a1, b0, c0)− t2

m2 = (c1 ≫ 11)− c0 + FF (d1, a1, b0)− t3

m3 = (b1 ≫ 19)− b0 + FF (c1, d1, a1)− t4

m4 = (a2 ≫ 3)− a1 + FF (b1, c1, d1)− t5

We summary the type 1 multi-message modification techniques here. Con-

sider the sufficient condition of the jth bit of the chaining value x in the ith

step computation of the compression function. If is is not what we want, we

modify it to satisfy the sufficient condition as follows:

1. We find which message word in the message block m is used to compute

the chaining values in the ith step. We assume it is ml for 0 ≤ l ≤ 15.

2. We find which chaining value in the first round that use ml to compute

itself, suppose it is y and is in the i′th step.

3. We complement the bit yj−si+si′ mod 32 and update the 5 message words

that is used to compute the chaining values in the rth to the (r + 4)th

steps.

26

Type 2 Multi-Message Modification. In type 1 multi-message modifi-

cation, there exist some cases that the techniques may not work. The first

case is that yj−si+si′ mod 32 itself is a sufficient condition. The second case is

that y is in the rth step and r ≥ 13. The reason that r ≥ 13 is not allowed

is that some of the chaining values in the rth to the (r + 4)th steps are in

the second round. The message used to compute the chaining values in the

second round are also used to compute a chaining value in the first round. In

this case, the multi-message modification methods are not as easy as those

described in the type 1 multi-message modification. There are also some

other cases that cause the type 1 multi-message modification to fail. One

among them is that the type 1 multi-message modification breaks the extra

condition used for other sufficient conditions. The multi-message modifica-

tion techniques here under this situation are much more complex. We need to

introduce the extra condition to help us to guarantee that the modification

on the corresponding chaining value doesn’t affect its subsequent chaining

values too much.

Here we introduce the multi-message modification of the sufficient condi-

tion “c5,26 = d5,26” given by Naito et al. [NSKO05, Table 12] to explain the

type 2 multi-message modification. As described in the type 1 multi-message

modification, we find that we must consider the bit a3,26−9+3 mod 32 = a3,20.

However, we find that a3,20 itself is a sufficient condition, so the type 1 multi-

message modification doesn’t work. So we follow the type 2 multi-message

27

modification given by Naito et al. as follows:

1. We add the extra condition “d2,17 = 0”.

2. We change the bit d2,17 from 0 to 1.

3. We update the message word m5 by m5 = (d2 ≫ 7)−d1−FF (a2, b1, c1)−

t6 = ((dold
2 + 216) ≫ 7)− d1 − FF (a2, b1, c1)− t6 = mold

5 + 29.

4. We add the extra condition “a2,17 = b1,17”.

5. We compute the chaining value c2 by c2 = (c1 + FF (d2, a2, b1) + m6 +

t7) ≪ 11 but d2,17 changes from 0 to 1. However, the extra condi-

tion “a2,17 = b1,17” guarantees that FF (d2,17, a2,17, b1,17) = FF (0 →

1, a2,17, b1,17) = b1,17 → a2,17” unchanges. That implies that c2 un-

change.

6. We add the extra condition “c2,17 = 0”.

7. We compute the chaining value b2 by b2 = (b1 + FF (c2, d2, a2) + m7 +

t8) ≪ 19 but d2,17 changes from 0 to 1. However, the extra condi-

tion “c2,17 = 0” guarantees that FF (c2,17, d2,17, a2,17) = FF (0, 0 →

1, a2,17) = a2,17 unchanges. That implies that b2 unchange.

8. We add the extra condition “b2,17 = 0”.

9. We update the message word m8 by m8 = (a3 ≫ 3)−a2−FF (b2, c2, d2)−

t9 = (a3 ≫ 3)− a2 − (FF (b2, c2, d
old
2) + 216)− t9 = mold

8 − 216 for the

extra condition “b2,17 = 0”.

28

10. m8 = mold
8 −216 will cause the complement of the bit m8,17 to occur, then

the complement of the bit c5,26 (c5 = (c4 +GG(d5, a5, b4)+m8 + t19) ≪

9) also occurs and the sufficient condition “c5,26 = d5,26” will be fulfilled.

11. Finally, We update the message word m9 by m9 = (d3 ≫ 7) − d2 −

FF (c2, b2, a2) − t10 = (d3 ≫ 7) − (dold
2 + 216) − FF (c2, b2, a2) − t10 =

mold
9 − 216.

We stress that the extra conditions must be in the first round of the compres-

sion function and must be fulfilled by the simple single-message modification.

We will introduce single-message modification below.

Klima [Kli05b, Kli05a] first introduced an efficient and definite multi-

message modification algorithms on MD5. His single-message modification

methods is very useful to find the collision on both MD4 and MD5. By

the introduction of the compression function of MD4 and MD5 in Section

2.2 and 2.3, respectively. We set (a, b, c, d) = (a0, b0, c0, d0) first and do the

single-message modification of MD4 as follows:

We randomly generate x but satisfy all the sufficient conditions of ad i
4e,

Σi = x ≫ si mi−1 = Σi − a− FF (b, c, d)− ti a = x if i mod 4 = 1

We randomly generate x but satisfy all the sufficient conditions of dd i
4e,

Σi = x ≫ si mi−1 = Σi − d− FF (a, b, c)− ti d = x if i mod 4 = 2

We randomly generate x but satisfy all the sufficient conditions of cd i
4e,

29

Σi = x ≫ si mi−1 = Σi − c− FF (d, a, b)− ti c = x if i mod 4 = 3

We randomly generate x but satisfy all the sufficient conditions of bd i
4e,

Σi = x ≫ si mi−1 = Σi − b− FF (c, d, a)− ti b = x if i mod 4 = 0

where x is a 32-bit word for i = 1 to 16.

The single-message modification of MD5 is as follows:

We randomly generate x but satisfy all the sufficient conditions of ad i
4e,

Σi = (x− b) ≫ si mi−1 = Σi − a− FF (b, c, d)− ti a = x if i mod 4 = 1

We randomly generate x but satisfy all the sufficient conditions of dd i
4e,

Σi = (x− a) ≫ si mi−1 = Σi − d− FF (a, b, c)− ti d = x if i mod 4 = 2

We randomly generate x but satisfy all the sufficient conditions of cd i
4e,

Σi = (x− d) ≫ si mi−1 = Σi − c− FF (d, a, b)− ti c = x if i mod 4 = 3

We randomly generate x but satisfy all the sufficient conditions of bd i
4e,

Σi = (x− c) ≫ si mi−1 = Σi − b− FF (c, d, a)− ti b = x if i mod 4 = 0

where x is a 32-bit word for i = 1 to 16.

The main philosophy of the single-message modification methods is that the

message word mi is not used to compute the chaining values but is able to be

computed from the chaining values for 0 ≤ i ≤ 15. After the computations

of the single-message modification given by Klima, the 128-bit message block

m is recovered wholly. Klima also mentioned that there is no sufficient con-

ditions in the chaining values a1 and d1 in the first iteration of MD5. In the

30

first round of the compression function of MD5, the chaining value a1 and d1

are computed using the message words m0 and m1, respectively. In the sec-

ond round, the message words m0 and m1 are used to compute the chaining

value b5 and a5, respectively. So in first 20 steps of the compression function

of MD5, all message words of m are used exactly once except m6 and m11,

that are used to compute the chaining values d5 and c5, respectively. Then

in first 20 steps of the first iteration, all sufficient conditions of the chaining

values except d5 and c5 can be fulfilled by the single-message modification

introduced above easily. But the method given by Klima on how to modify

m0 and m1 to satisfy the sufficient conditions on d5 and c5 is a brute-force

method. He doesn’t guarantee that the modification always succeeds, and

it may need to restart the collision searching algorithm by re-generate some

chaining values (that implies re-generate their corresponding message words

as described in Section 3.4).

Sasaki et al. improve the message modification of the first iteration of

MD5 [SNKO05]. In their paper, they claimed that they can satisfy all the

sufficient conditions in first 23 steps of the first iteration with probability 1
2
.

In other words, all sufficient conditions in ai bj ci and di can be fulfilled by

their message modification methods for 0 ≤ i ≤ 5 ∧ 0 ≤ j ≤ 4. Similar

to their results on MD4 [NSKO05], they also use the extra conditions to

guarantee that later in the second round the message modification doesn’t

affect too many chaining values that are in the first round.

31

Later Liang and Lai improve the message modification techniques [LL05].

They introduced a new techniques, small range searching techniques, to do

the multi-message modification. In [LL05, Chapter 5] they said that for the

computation of the chaining value N = ((L+φ(X, Y, Z)+M +T) ≪ s)+U ,

they can modify the jth bit of N by changing the jth bit of U or the (j− s)th

bit of L, X, Y , Z, or M if these bits has no sufficient condition. But this was

already used widely in type 1 or type 2 multi-message modification introduced

before. They claimed that they can modify the jth bit of N by changing the

bits lower than the jth bit of U and/or the bits lower than the (j− s)th bit of

L, X, Y , Z, and/or M by “carry” or “borrow” on these bits if these bits has

no sufficient condition. But we think what they give to do the multi-message

modification is less efficient than that given by Sasaki et al. Because the

small range searching techniques need to search all the corresponding lower

bits where there is no sufficient condition (i.e., the bit value is random) and

modify them. Suppose there are total n the corresponding lower bits in U ,

L, X, Y , Z, and M . Then they may need total 2n testing in searching these

n bits and may fail in the worst case because no carry or borrow occurs.

The small range searching technique doesn’t guarantee that it must be able

to modify the jth bit of N successfully. But according to the introduction

of the small range searching techniques by them, it is more flexible to do

the multi-message modification than that Sasaki et al.’s. There is no extra

condition to narrow the size of the message block M , and there are many

32

possibilities how to do the multi-message modification by searching these

n bits in U , L, X, Y , Z, and M . But the prerequisite is that the small

range searching technique need always to work successfully. On the other

hand, their small range searching techniques on Σ19 in both iterations will

always work. Because we can select the corresponding bits in M randomly

and modify it by the type 1 multi-message modification. If Σ20 in the first

iteration is not what we want, we can regenerate b5 randomly. In their

papers of finding the MD5 collisions, they also give a type 2 multi-message

modification on the sufficient conditions “d5,18 = 1”, “d5,30 = a5,30”, and

“d5,32 = a5,32” in the first iteration and their corresponding extra conditions.

4.2 Our Improvements

In this section, we will gave some improvements on multi-message modifica-

tion techniques. We will introduce this in two parts, MD4 and MD5.

4.2.1 The Improvements on MD4

Although Naito et al.’s result [NSKO05] is efficient enough, but we find

that three extra conditions given by them are not in the first round. So

these three extra conditions can not be modified trivially by the simple

single-message modification. We need to modify them by the multi-message

modification techniques. One of the three extra conditions is the condition

“a5,20 = b4,20” for the sufficient condition “c5,29 = d5,29” [NSKO05, Table

13]. Follow their type 2 multi-message-modification method for the sufficient

33

condition “c5,29 = d5,29”, we can find that the update of the chaining value d5

[NSKO05, Table 13, Step 18] is computed as d5 = (d4 +GG(a5, b4, c4)+m4 +

t18) ≪ 5. The complement of the bit c4,20 causes GG(a5,20, b4,20, c4,20) =

GG(a5,20, b4,20, 0 → 1) = a5,20 ∧ b4,20 → (a5,20 ∧ b4,20) ∨ a5,20 ∨ b4,20 and

a5,20 ∧ b4,20 = (a5,20 ∧ b4,20) ∨ a5,20 ∨ b4,20 if and only if a5,20 = c5,20. If the

extra condition “a5,20 = d4,20” is not fulfilled during the message modification

for “c5,29 = d5,29”, d5 changes. So when we do the multi-message modifica-

tion for the chaining value a5, besides their sufficient condition, we also need

to consider the extra condition “a5,20 = d4,20”. If a5,20 6= b4,20, we need to

use the following procedure to do the multi-message modification to cause a5

satisfy the extra condition.

1. We complement the bit a1,20.

2. We use the following equations to update the message words m0, m1,

m2, and m3.

m0 = (a1 ≫ 3)− a0 − FF (b0, c0, d0)− t1 (4.1)

m1 = (d1 ≫ 7)− d0 − FF (a1, b0, c0)− t2

m2 = (c1 ≫ 11)− c0 − FF (d1, a1, b0)− t3

m3 = (b1 ≫ 19)− b0 − FF (c1, d1, a1)− t4

m4 = (a2 ≫ 3)− a1 − FF (b1, c1, d1)− t5

3. In equation 4.1, m0 = ((a1 ± 219) ≫ 3) − a0 − FF (b0, c0, d0) − t1 =

mold
0 ± 216. Then a5 = (a4 + GG(b4, c4, d4) + m0 + t17) ≪ 3 = (a4 +

34

GG(b4, c4, d4) + (mold
0 ± 216) + t17) ≪ 3 = aold

5 ± 219. This implies that

the complement of the bit a5,20 to occur.

The other two extra conditions are “a5,22 = b4,22” and “c5,31 = 1” for

the sufficient condition “c5,32 = d5,32” [NSKO05, Table 15]. By their type

2 multi-message-modification method for the sufficient condition “c5,32 =

d5,32”, we can find that the Boolean function φ18 of the chaining value d5

[NSKO05, Table 15, Step 18] is computed as GG(a5, b4, c4). The complement

of the bit c4,22 causes GG(a5,22, b4,22, 0→ 1) = a5,22 ∧ b4,22 → (a5,22 ∧ b4,22) ∨

a5,22 ∨ b4,22 and a5,22 ∧ b4,22 = (a5,22 ∧ b4,22)∨ a5,22 ∨ b4,22 if and only if a5,22 =

d5,22. If the extra condition “a5,22 = d4,22” is not fulfilled during the message

modification for “c5,32 = d5,32”, d5 changes. So when we do the multi-message

modification for the chaining value a5, besides their sufficient condition, we

need to consider the extra condition “a5,22 = d4,22”. If a5,22 6= b4,22, we need

to use the following procedure to do the multi-message modification to cause

a5 to satisfy the extra condition.

1. We complement the bit a1,22.

2. We use the following equations to update the message words m0, m1,

m2, m3, and m4.

m0 = (a1 ≫ 3)− a0 − FF (b0, c0, d0)− t1 (4.2)

m1 = (d1 ≫ 7)− d0 − FF (a1, b0, c0)− t2

m3 = (c1 ≫ 11)− c0 − FF (d1, a1, b0)− t3

35

m4 = (b1 ≫ 19)− b0 − FF (c1, d1, a1)− t4

m5 = (a2 ≫ 3)− a1 − FF (b1, c1, d1)− t5

3. In equation 4.2, m0 = ((a1 ± 221) ≫ 3) − a0 − FF (b0, c0, d0) − t1 =

mold
0 ± 218. Then a5 = (a4 + GG(b4, c4, d4) + m0 + t17) ≪ 3 = (a4 +

GG(b4, c4, d4) + (mold
0 ± 218) + t17) ≪ 3 = aold

5 ± 221. This implies that

the complement of the bit a5,22 to occur.

Naito et al.’s type 2 multi-message modification for the sufficient con-

dition “c5,32 = d5,32” doesn’t cause the complement of c5,32 to occur di-

rectly. Instead, they add the extra condition “c5,31 = 1” and c5 is up-

dated by c5 = (c4 + GG(d5, a5, b4) + m8 + t19) ≪ 9. c4,22 : 0 → 1 causes

c5 = ((cold
4 + 221) + GG(d5, a5, b4) + m8 + t19) ≪ 9 = cold

5 + 230. The extra

condition “c5,31 = 1” causes the carry on c5,31 to occur and implies that the

complement of c5,32 also occur. So if we need to do the multi-message modi-

fication for “c5,32 = d5,32” and “c5,31 = 0 6= 1”, we need to use the following

procedure to do the multi-message modification to cause c5 to satisfy the

extra condition.

1. We complement the bit a3,25.

2. We use the following equations to update the message word m8, m9,

36

m10, m11, and m12.

m8 = (a3 ≫ 3)− a2 − FF (b2, c2, d2)− t9 (4.3)

m9 = (d3 ≫ 7)− d2 − FF (a3, b2, c2)− t10

m10 = (c3 ≫ 11)− c2 − FF (d3, a3, b2)− t11

m11 = (b3 ≫ 19)− b2 − FF (c3, d3, a3)− t12

m12 = (a4 ≫ 3)− a3 − FF (b3, c3, d3)− t13

3. In equation 4.3, m8 = ((aold
3 ± 224) ≫ 3) − a2 − FF (b2, c2, d2) − t9 =

mold
8 ± 221. Then c5 = (c4 + GG(d5, a5, b4) + m8 + t19) ≪ 9 = (c4 +

GG(d5, a5, b4) + (m8 ± 221) + t19) ≪ 9 = cold
5 ± 230. This implies that

the complement of the bit c5,31 to occur.

Finally we compare our improvements with Naito et al.’s result. Here we

assume that all bits of all chaining values are uniform under {0, 1} and are

totally independent. Let E1 be the event that the sufficient condition “c5,29 =

d5,29” is not fulfilled and need to be modified by Naito et al.’s type 2 multi-

message modification during the collision searching algorithm, E2 be the

event that the sufficient condition “c5,32 = d5,32” is not fulfilled and need to be

modified by their type 2 multi-message modification, and S be the successful

event (i.e., the extra conditions described above are what we want). Then

successful probabilities conditioned on E are listed in table 4.1. For the four

possibilities of E, each is of probability 1
4
. So the successful probability of

Naito et al.’s multi-message modification on MD4 is:

37

The Event E The Probability Pr[S|E]

E1 ∩ E2 1

E1 ∩ E2
1
4

E1 ∩ E2
1
2

E1 ∩ E2
1
8

Table 4.1: The successful probability that some sufficient conditions are not
fulfilled

Pr[S]

=Pr[E1 ∩ E2]Pr[S|E1 ∩ E2] + Pr[E1 ∩ E2]Pr[S|E1 ∩ E2]

+Pr[E1 ∩ E2]Pr[S|E1 ∩ E2] + Pr[E1 ∩ E2]Pr[S|E1 ∩ E2]

=
1

4
× 1 +

1

4
× 1

4
+

1

4
× 1

2
+

1

4
× 1

8

=
15

32

Our modified version of their multi-message modification is of probability

1. Even if they restart the random generation of some message words for the

failure as described in Section 3.4, our modified version is also about 32
15

times faster than their multi-message modification. They also need 2 extra

computations of the MD4 compression function to verify if the message pair

(M, M ′) collide.

4.2.2 The Improvements on MD5

After surveying the previous papers about the multi-message modification

techniques on MD5 [Kli05b, Kli05a, SNKO05, LL05], we find that something

can be improved. As mentioned in Section 3.4, there are two iterations in the

38

collision searching algorithm of MD5. We also introduce our improvements

in two parts, the first iteration (or the first block) and the second iteration

(or the second block).

• The First Iteration:

– For the sufficient condition “c5,32 = d5,32” in the first iteration, we

do the following procedure.

1. We complement the bit c4,18.

2. Because c4 changes, we use the following equations to update

the message words m14, m15, and m0.

m14 = ((c4 − d4) ≫ 17)− c3 − FF (d4, a4, b3)− t15

m15 = ((b4 − c4) ≫ 22)− b3 − FF (c4, d4, a4)− t16

m0 = ((a5 − b4) ≫ 5)− a4 −GG(b4, c4, d4)− t17

3. We add the extra condition “b4,18 = a5,18 = 0”. Note that

“a5,18 = 0” itself is a sufficient condition.

4. We compute the chaining value d5 by d5 = ((d4+GG(a5, b4, c4)+

m6+t18) ≪ 9)+a5 but c4,18 changes. However, the extra con-

dition “b4,18 = a5,18” guarantees that GG(a5,18, b4,18, c4,18) =

GG(0, 0, cold
4,18) = 0 → 0 unchanges. This also implies that d5

unchanges.

5. We update the chaining value c5 by c5 = ((c4+GG(d5, a5, b4)+

m11 + t19) ≪ 14)+d5 = (((cold
4 ±217)+GG(d5, a5, b4)+m11 +

39

t19) ≪ 14)+d5 = cold
5 ±231. This implies that the complement

of the bit c5,32 occurs.

6. Because m0 changes, we update the chaining value a1 by a1 =

((a0 + FF (b0, c0, d0) + m0 + t1) ≪ 7) + b0.

7. Because a1 also changes, we use the following equations to

update the message words m1, m2, m3, and m4.

m1 = ((d1 − a1) ≫ 12)− d0 − FF (a1, b0, c0)− t2

m2 = ((c1 − d1) ≫ 17)− c0 − FF (d1, a1, b0)− t3

m3 = ((b1 − c1) ≫ 22)− b0 − FF (c1, d1, a1)− t4

m4 = ((a2 − b1) ≫ 7)− a1 − FF (b1, c1, d1)− t5

Sasaki et al. also give a type 2 multi-message modification for the

sufficient condition “c5,32 = d5,32” in their paper [SNKO05, Ta-

ble 6]. But there are six extra conditions in their multi-message

modification method. As mentioned in Section 4.1, the extra con-

dition is not necessary for the message modification techniques,

they are used to avoid too many chaining values from changing

instead. So if the message modification method need too many

extra conditions, the size of the set of the collision message pair

will become too small. Even if sometimes we need to add the extra

condition to help us to do the multi-message modification, but we

must decrease the total number of the extra conditions as possible

as we can to enlarge the size of the set of the collision message

40

pair. In our multi-message modification for the sufficient condition

“c5,32 = d5,32”, we need only one extra condition “c5,32 = d5,32”.

• The Second Iteration:

– For the sufficient condition “d5,18 = 1” in the second iteration, we

do the following procedure.

1. We complement the bit d4,9.

2. Because d4 changes, we use the following equations to update

the message words m13, m14, and m15.

m13 = ((d4 − a4) ≫ 12)− d3 − FF (a4, b3, c3)− t14

m14 = ((c4 − d4) ≫ 17)− c3 − FF (d4, a4, b3)− t15

m15 = ((b4 − c4) ≫ 22)− b3 − FF (c4, d4, a4)− t16

3. We add the extra condition “b4,9 = c4,9”.

4. Because the bit d4,9 changes, we update ∆17,9 by ∆17,9 =

GG(b4,9, c4,9, d4,9) = GG(b4,9, c4,9, dold
4,9) = (b4,9 → c4,9)∨(c4,9 →

b4,9). The extra condition “b4,9 = c4,9” guarantees that ∆17,9

unchange. This also implies that a5 = ((a4 + GG(b4, c4, d4) +

m1 + t17) ≪ 5) + b4 unchanges.

5. Finally, we update the chaining value d5 by d5 = ((d4 +

GG(a5, b4, c4)+m6+t18) ≪ 9)+a5 = (((dold
4 ±28)+GG(a5, b4, c4)+

m6 + t18) ≪ 9) + a5 = dold
5 ± 217. This will cause the comple-

ment of the bit d5,18 to occur.

41

– For the sufficient condition “d5,32 = a5,32” in the second iteration,

we do the following procedure.

1. We complement the bit d2,23.

2. We add the extra condition “a2,23 = b1,23”.

3. Because d2 changes, we use the following equations to update

the message words m5, m6, m7, m8, and m9.

m5 = ((d2 − a2) ≫ 12)− d1 − FF (a2, b1, c1)− t6

m6 = ((c2 − d2) ≫ 17)− c1 − FF (d2, a2, b1)− t7 (4.4)

m7 = ((b2 − c2) ≫ 22)− b1 − FF (c2, d2, a2)− t8

m8 = ((a3 − b2) ≫ 7)− a2 − FF (b2, c2, d2)− t9

m9 = ((d3 − a3) ≫ 12)− d2 − FF (a3, b2, c2)− t10

4. In equation 4.4, FF (d2,23, a2,23, b1,23) = FF (dold
2,23, a2,23, b1,23) =

(b1,23 → a2,23) ∨ (a2,23 → b1,23). The extra condition “a2,23 =

b1,23” cause the complement of FF (d2,23, a2,23, b1,23) to oc-

cur. The word m6 = ((c2 − (dold
2 ± 222)) ≫ 17) − c1 −

(FF old(d2, a2, b1) ± 222) − t7 = mold
6 ∓ (25 + 222). Then d5 =

((d4+GG(a4, b3, c3)+m6+t18) ≪ 9)+a5 = ((d4+GG(a4, b3, c3)+

(mold
6 ∓ (25 + 222)) + t18) ≪ 9) + a5 = dold

5 ∓ (214 + 231). This

causes the complement of the bit d5,32 to occur.

– For the sufficient condition “c5,18 = 0” in the second iteration, we

do the following procedure.

42

1. We complement the bit b2,4.

2. Because b2 changes, we use the following equations to update

the message words m7, m8, m9, m10, and m11.

m7 = ((b2 − c2) ≫ 22)− b1 − FF (c2, d2, a2)− t8

m8 = ((a3 − b2) ≫ 7)− a2 − FF (b2, c2, d2)− t9

m9 = ((d3 − a3) ≫ 12)− d2 − FF (a3, b2, c2)− t10

m10 = ((c3 − d3) ≫ 17)− c2 − FF (d3, a3, b2)− t11

m11 = ((b3 − c3) ≫ 22)− b2 − FF (c3, d3, a3)− t12 (4.5)

3. In equation 4.5, m11 = ((b3 − c3) ≫ 22) − (bold
2 ± 23) −

FF (c3, d3, a3)−t12 = mold
11 ∓23. Then c5 = ((c4+GG(d5, a5, b4)+

m11 + t19) ≪ 14) + d5 = ((c4 + GG(d5, a5, b4) + (m11 ∓ 23) +

t19) ≪ 14)+d5 = cold
5 ∓217. This implies that the complement

of the bit c5,18 to occur.

– For the sufficient condition “c5,32 = d5,32” in the second iteration,

we do the following procedure.

1. We complement the bit c4,18.

2. Because c4 changes, we use the following equations to update

the message words m14 and m15.

m14 = ((c4 − d4) ≫ 17)− c3 − FF (d4, a4, b3)− t15

m15 = ((b4 − c4) ≫ 22)− b3 − FF (c4, d4, a4)− t16

43

3. We compute the chaining value a5 by a5 = ((a4+GG(b4, c4, d4)+

m0 + t17) ≪ 5)+ b4 but c4,18 changes. However, the sufficient

condition “d4, 18 = 1” guarantees that GG(b4,18, c4,18, d4,18) =

GG(b4,18, cold
4,18, 0) is always equal to b4,18. This also implies

that a5 unchanges.

4. We add the extra condition “b4,18 = 0”.

5. We compute the chaining value d5 by d5 = ((d4+GG(a5, b4, c4)+

m6+t18) ≪ 9)+a5 and c4,18 changes. But the extra condition

“b4,18 = 0” cause that GG(a5,18, b4,18, c4,18) = GG(a5,18, b4,18, cold
4,18) =

(a5,18 → b4,18) ∧ (b4,18 → a5,18). The bit “a5,18 = 0” itself is

a sufficient condition, so GG(a5,18, b4,18, c4,18) = 0 → 0 un-

changes. This also implies that d5 unchanges.

6. Finally, we update the chaining value c5 is by c5 = ((c4 +

GG(d5, a5, b4) + m11 + t19) ≪ 14) + d5 = (((cold
4 ± 217) +

GG(d5, a5, b4) + m11 + t19) ≪ 14) + d5 = cold
5 ± 231. This

implies that the complement of the bit c5,32 to occur.

– For the sufficient condition “d6,32 = a6,32” in the second iteration,

we do the following procedure.

1. We complement the bit a3,23.

2. We add the extra conditions “d3,23 = 1” and “c3,23 = 1”.

3. Because a3 changes, so we use the following equations to up-

44

date the message words m8, m9, m10, and m12.

m8 = ((a3 − b2) ≫ 7)− a2 − FF (b2, c2, d2)− t9

m9 = ((d3 − a3) ≫ 12)− d2 − FF (a3, b2, c2)− t10

m10 = ((c3 − d3) ≫ 17)− c2 − FF (d3, a3, b2)− t11 (4.6)

m12 = ((a4 − b3) ≫ 7)− a3 − FF (b3, c3, d3)− t13

4. Because a3 also changes, we update the chaining value b3 by

b3 = ((b2 + FF (c3, d3, a3) + m11 + t12) ≪ 22) + c3. But the

extra condition “c3,23 = 1” cause that FF (c3,23, d3,23, a3,23) =

FF (1, d3,23, aold
3,23) is always equal to d3,23 and unchanges. So

b3 unchanges.

5. In equation 4.6, the extra conditions “d3,23 = 1” cause that

FF (d3,23, a3,23, b2,23) = FF (1, aold
3,23, b2,23) = aold

3,23. Then m10 =

((c3−d3) ≫ 17)− c2− (FF old(d3, a3, b2)±222)− t11 = mold
10 ∓

222. The word d6 = ((d5 + GG(a6, b5, c5) + m10 + t22) ≪

9)+a6 = ((d5+GG(a6, b5, c5)+(mold
10 ∓222)+t22) ≪ 9)+a6 =

dold
6 ∓ 231. This implies that the complement of the bit d6,32

occurs.

Finally we analyze the time complexity of our improvements on multi-message

modification of MD5. In the first iteration of MD5, our improvements is as

efficient as Sasaki et al.’s results [SNKO05]. But the size of the set of our

collision message pair is larger than Sasaki et al.’s. We also find that some

45

extra conditions in their multi-message modification can be erased. These

extra conditions are as follows:

• The extra condition “d3,4 = 0” for the sufficient condition “c5,18 = 0”

[SNKO05, Table 5]. No matter what c5,18 is, we just need to comple-

ment it.

• The extra condition “a4,1 = 1” and “d1,13 = 0” for the sufficient condi-

tion “a6,18 = b5,18” [SNKO05, Table 8]. No matter what a4,1 and d1,13

are, we just need to complement them.

• The extra condition “a3,23 = 0” for the sufficient condition “d6,32 =

a6,32” [SNKO05, Table 10]. No matter what a3,23 is, we just need to

complement it.

So the size of the set of the collision message pair can be enlarged by eras-

ing these four extra conditions. Because the collision searching algorithm

so far doesn’t satisfy all the sufficient conditions, they need to restart the

whole collision searching algorithm many times. If we add these extra condi-

tions, we must reset these extra conditions when restarting the whole collision

searching algorithm. This is because that these extra conditions are broken

when doing the message modification in the second round. So we need to

recover them by resetting them. But other conditions, including sufficient

conditions and other extra conditions, are not broken when doing the mes-

sage modification in the second round. Our improvements is more efficient

46

than Liang and Lai’s results [LL05]. Note that the collision searching algo-

rithm will restart the whole algorithm many times. As mentioned before,

the small range searching algorithm given by Liang and Lai [LL05] is less

efficient than Sasaki et al.’s multi-message modification methods [SNKO05].

So in each time, a small time increase will cause that the time of finding the

collision increase longer because the algorithm will execute inside the loop

many times.

For the second iteration of MD5, Sasaki et al. don’t give any multi-

message modification method. We combine Liang and Lai’s results [LL05]

and our improvements introduced before. We can modify for the sufficient

conditions “a5,4 = b4,4”, “a5,16 = b4,16”, “a5,18 = 0”, and “d5,30 = a5,30” by us-

ing Liang and Lai’s type 1 multi-message modification methods, and for the

sufficient conditions “d5,18 = 1”, “d5,32 = a5,32”, “c5,18 = 0”, “c5,32 = d5,32”,

and “d6,32 = a6,32” by using our own type 2 multi-message modification meth-

ods. Because Sasaki et al. don’t give any multi-message modification method

for the second iteration, so our improvements are more efficient than theirs.

We give 5 more type 2 multi-message modification on 5 sufficient conditions

than Liang and Lai’s results for the second round. In these 5 sufficient con-

ditions, Liang and Lai either use the small range searching techniques or

restart the whole collision searching algorithm. So our improvements are

more efficient than Liang and Lai’s results.

47

Chapter 5

Our Implementation on the
Collision Searching Algorithm

5.1 A brief description of the Implementa-

tion

In this section, we describe our implementation of the collision searching

algorithm briefly. The code is available on http://www.cs.nctu.edu.tw/

∼gtchen/Codes/md4coll.c and http://www.cs.nctu.edu.tw/∼gtchen/Codes/

md5coll.c for MD4 and MD5, respectively. The MD4 code was developed

independently, and Stach has his own implementation [Sta05a]. The MD5

code was derived from Stach’s implementation[Sta05b], although most of

them was already modified by us. Stach is the first man who implemented

the collision searching algorithm of MD4 and MD5 and published the codes.

We can find that there are 7 kinds of all the bits of all the chaining values.

Stach also found that and implemented it in his code, although we have al-

ready found that before the release of his implementation. Now we consider

the jth bit of the chaining value x in the ith step (we denote it as xj), and

48

http://www.cs.nctu.edu.tw/~gtchen/Codes/md4coll.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md4coll.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll.c

the 7 kinds of the bit xj:

1. There is no sufficient condition here, i.e., this bit of the chaining value

xj can be set to 0 or 1.

2. This bit of the chaining value xj here must set to be 0.

3. This bit of the chaining value xj here must set to be 1.

4. This bit of the chaining value xj here must set to be the value of the

same bit of the last updated chaining value (the jth bit of the chaining

value in the (i− 1)th step).

5. This bit of the chaining value xj here must set to be the complement

of the same bit of the last updated chaining value(the jth bit of the

chaining value in the (i− 1)th step).

6. This bit of the chaining value xj here must set to be the value of the

same bit of the last two updated chaining value (the jth bit of the

chaining value in the (i− 2)th step).

7. This bit of the chaining value xj here must set to be the complement

of the same bit of the last two updated chaining value (the jth bit of

the chaining value in the (i− 2)th step).

In the above statements, if we consider the sufficient condition xj in the

chaining value x, yj is the same bit of the chaining value y with respective to

xj. So we need to construct the bit masks for representing the 7 types of the

49

bits of the chaining values. But for the bit of the chaining values that has

no sufficient condition, we can ignore it. So we construct the 6 bit-mask for

every chaining values during the computation of the compression function.

We define the six 32-bit bit mask Si,k, where 0 ≤ k ≤ 5, for the ith step

chaining value x as follows:

1. The bit Si,0,j is 1 if xj must set to be 0, otherwise Si,0,j is 0.

2. The bit Si,1,j is 1 if xj must set to be 1, otherwise Si,1,j is 0.

3. The bit Si,2,j is 1 if xj must set to be the value of the same bit of the

last updated chaining value, otherwise Si,2,j is 0.

4. The bit Si,3,j is 1 if xj must set to be the complement of the same bit

of the last updated chaining value, otherwise Si,3,j is 0.

5. The bit Si,4,j is 1 if xj must set to be the value of the same bit of the

last two updated chaining value, otherwise Si,4,j is 0.

6. The bit Si,5,j is 1 if xj here must set to be the complement of the same

bit of the last two updated chaining value, otherwise Si,5,j is 0.

We don’t need to modify Wang et al.’s MD4 collision searching algorithm as

described in Section 3.4. But we need to modify Wang et al.’s MD5 colli-

sion searching algorithm as described in Section 3.4 to optimize the collision

searching algorithm. Our MD5 collision searching algorithm now will run as

follows:

50

1. We use the following procedure to generate the first iteration message

block M1.

(a) We set IV0 = IV = a0||b0||c0||d0.

(b) For the sufficient conditions in the first round, we do the single-

message modification by Klima’s idea [Kli05a] as follows:

x
u← Z232 ,

c1 = [x ∧ S3,0] ∨ [x ∨ S3,1].

x
u← Z232 ,

b1 = [x ∧ S4,0] ∨ [x ∨ S4,1]

∨ [(x ∧ S4,2) ∨ (c1 ∧ S4,2)] ∨ [(x ∧ S4,3) ∨ (c1 ∧ S4,3)].

x
u← Z232 ,

a2 = [x ∧ S5,0] ∨ [x ∨ S5,1]

∨ [(x ∧ S5,2) ∨ (b1 ∧ S5,2)] ∨ [(x ∧ S5,3) ∨ (b1 ∧ S5,3)]

∨ [(x ∧ S5,4) ∨ (c1 ∧ S5,4)] ∨ [(x ∧ S5,5) ∨ (c1 ∧ S5,5)].

Then for i = 6 to 16,

If i mod 4 = 1, x
u← Z232 ,

ad i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (bd i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (bd i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (cd i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (cd i−2

4 e ∧ Si,5)]

Σi = (ad i
4e − bd i−1

4 e) ≫ si

51

mi−1 = Σi − ad i−4
4 e − FF (bd i−1

4 e, cd i−2
4 e, dd i−3

4 e)− ti

If i mod 4 = 2, x
u← Z232 ,

dd i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (ad i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (ad i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (bd i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (bd i−2

4 e ∧ Si,5)]

Σi = (dd i
4e − ad i−1

4 e) ≫ si

mi−1 = Σi − dd i−4
4 e − FF (ad i−1

4 e, bd i−2
4 e, cd i−3

4 e)− ti

If i mod 4 = 3, x
u← Z232 ,

cd i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (dd i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (dd i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (ad i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (ad i−2

4 e ∧ Si,5)]

Σi = (cd i
4e − dd i−1

4 e) ≫ si

mi−1 = Σi − cd i−4
4 e − FF (dd i−1

4 e, ad i−2
4 e, bd i−3

4 e)− ti

If i mod 4 = 0, x
u← Z232 ,

bd i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (cd i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (cd i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (dd i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (dd i−2

4 e ∧ Si,5)]

52

Σi = (bd i
4e − cd i−1

4 e) ≫ si

mi−1 = Σi − bd i−4
4 e − FF (cd i−1

4 e, dd i−2
4 e, ad i−3

4 e)− ti

where x is a 32-bit word.

(c) For the sufficient conditions in the chaining value a5, we do the

single-message modification as follows:

x
u← Z232 ,

a5 = [x ∧ S17,0] ∨ [x ∨ S17,1]

∨ [(x ∧ S17,2) ∨ (b4 ∧ S17,2)] ∨ [(x ∧ S17,3) ∨ (b4 ∧ S17,3)]

∨ [(x ∧ S17,4) ∨ (c4 ∧ S17,4)] ∨ [(x ∧ S17,5) ∨ (c4 ∧ S17,5)]

Σ17 = (a5 − b4) ≫ 5

m0 = Σ17 − a4 − FF (b4, c4, d4)− t17

We recover the chaining value a1 as follows:

a1 = ((a0 + FF (b0, c0, d0) + m0 + t1) ≪ 7) + b0

(d) We use the multi-message modification introduced in Chapter 4 to

let the chaining values d5 and c5 to satisfy all their corresponding

sufficient conditions.

(e) For the sufficient conditions in the chaining value b5, we do the

53

single-message modification as follows:

x
u← Z232 ,

b5 = [x ∧ S20,0] ∨ [x ∨ S20,1]

∨ [(x ∧ S20,2) ∨ (c5 ∧ S20,2)] ∨ [(x ∧ S20,3) ∨ (c5 ∧ S20,3)]

∨ [(x ∧ S20,4) ∨ (d5 ∧ S17,4)] ∨ [(x ∧ S20,5) ∨ (d5 ∧ S20,5)]

Σ20 = (b5 − c5) ≫ 20

m1 = Σ20 − b4 − FF (c5, d5, a5)− t20

We recover the chaining value d1 as follows:

d1 = ((d0 + FF (a1, b0, c0) + m1 + t2) ≪ 12) + a1

Then we recover the message words m2, m3, and m4 as follows:

m2 = ((c1 − d1) ≫ 17)− c0 − FF (d1, a1, b0)− t3

m3 = ((b1 − c1) ≫ 22)− b0 − FF (c1, d1, a1)− t4

m4 = ((a2 − b1) ≫ 7)− a1 − FF (b1, c1, d1)− t5

(f) For the remaining sufficient conditions that can be fulfilled by the

multi-message modification as described in Chapter 4, if the cor-

responding bits of the chaining values are not the same as them,

we correct them by using the multi-message modification intro-

duced in Chapter 4. For all the sufficient conditions that can’t

54

be fulfilled by the message modification techniques, we check if

the chaining value x in the ith step during the computation of the

compression function and its corresponding sufficient conditions

are equivalent using the following equation:

(x ∧ (Si,0 ∨ Si,1 ∨ Si,2 ∨ Si,3 ∨ Si,4 ∨ Si,5))

=(x ∧ Si,0) ∨ (y ∧ Si,2) ∨ (y ∧ Si,3) ∨ (z ∧ Si,4) ∨ (z ∧ Si,5) ∨ Si,1

(5.1)

where y and z are the chaining values in the

(i− 1)th and (i− 2)th step, respectively.

If it is not the case, we go back to step 1c.

(g) Then the first message block M1 , m1||m2|| . . . ||m15 and IV1 ,

(a0 + a16)||(b0 + b16)||(c0 + c16)||(d0 + d16).

2. We use the following procedure to generate the second iteration message

block M2.

(a) We set IV1 = a0||b0||c0||d0

(b) We set ilow = 1 and ihigh = 16.

(c) For the sufficient conditions in the first round, we do the single-

message modification as follows:

55

For i = ilow to ihigh.

If i mod 4 = 1, x
u← Z232 ,

ad i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (bd i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (bd i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (cd i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (cd i−2

4 e ∧ Si,5)]

Σi = (ad i
4e − bd i−1

4 e) ≫ si

mi−1 = Σi − ad i−4
4 e − FF (bd i−1

4 e, cd i−2
4 e, dd i−3

4 e)− ti

If i mod 4 = 2, x
u← Z232 ,

dd i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (ad i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (ad i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (bd i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (bd i−2

4 e ∧ Si,5)]

Σi = (dd i
4e − ad i−1

4 e) ≫ si

mi−1 = Σi − dd i−4
4 e − FF (ad i−1

4 e, bd i−2
4 e, cd i−3

4 e)− ti

If i mod 4 = 3, x
u← Z232 ,

cd i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (dd i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (dd i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (ad i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (ad i−2

4 e ∧ Si,5)]

Σi = (cd i
4e − dd i−1

4 e) ≫ si

56

mi−1 = Σi − cd i−4
4 e − FF (dd i−1

4 e, ad i−2
4 e, bd i−3

4 e)− ti

If i mod 4 = 0, x
u← Z232 ,

bd i
4e = [x ∧ Si,0] ∨ [x ∨ Si,1]

∨ [(x ∧ Si,2) ∨ (cd i−1
4 e ∧ Si,2)] ∨ [(x ∧ Si,3) ∨ (cd i−1

4 e ∧ Si,3)]

∨ [(x ∧ Si,4) ∨ (dd i−2
4 e ∧ Si,4)] ∨ [(x ∧ Si,5) ∨ (dd i−2

4 e ∧ Si,5)]

Σi = (bd i
4e − cd i−1

4 e) ≫ si

mi−1 = Σi − bd i−4
4 e − FF (cd i−1

4 e, dd i−2
4 e, ad i−3

4 e)− ti

where x is a 32-bit word.

(d) Then for the remaining sufficient conditions that can be fulfilled

by the multi-message modification as described in Chapter 4, if

the corresponding bits of the chaining values are not the same as

them, we correct them by using the multi-message modification

introduced in Chapter 4. For all the sufficient conditions that can’t

be fulfilled by the message modification techniques, we check if

the chaining value x in the ith step during the computation of the

compression function and its corresponding sufficient conditions

are equivalent using the equation 5.1. If it is not the case, we set

ilow = 15, ihigh = 16 and then go back to step 2c.

(e) Then the second message block is set as M2 , m1||m2|| . . . ||m15.

57

3. Finally, if the message M = M1||M2 satisfies all the correct sufficient

conditions, M ′ = M ′
1||M ′

2 = (M1 + ∆M1)||(M2 + ∆M2) and M will

collide.

In the above MD5 collision finding procedure, if Si,j = 0 for 1 ≤ i ≤

64 ∧ 0 ≤ j ≤ 5, we can ignore it for efficiency.

5.2 Analysis of Our Implementation

Because the MD4 collision searching algorithm is very efficient, so we don’t

compare its performance in this section. But according to our execution ex-

periments, our implementation is also more efficient than Stach’s. You can

download our implementation code and compare it with Stach’s by compiling

and executing both ones. Our implementation of the MD4 collision search-

ing algorithm gives a collision pair in a very short time even in the worst

case. But Stach’s takes more than 1 minute in the worst case. In this sec-

tion, we compare our implementation of MD5 collision searching algorithm

with Stach’s. We put our experiment data on http://www.cs.nctu.edu.tw/

∼gtchen/Data/md5.tbz and the modified version of Stach’s code on http://

www.cs.nctu.edu.tw/∼gtchen/Codes/md5coll-orig modified.c for com-

parison.

5.2.1 Correctness Analysis

In Stach’s implementation of the collision searching algorithms of MD5, the

second block does not always exist for any the first block whose message

58

http://www.cs.nctu.edu.tw/~gtchen/Data/md5.tbz
http://www.cs.nctu.edu.tw/~gtchen/Data/md5.tbz
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll-orig_modified.c
http://www.cs.nctu.edu.tw/~gtchen/Codes/md5coll-orig_modified.c

differential is ∆M1 and hash value differential is ∆h1 as described in sec-

tion 3.1. In http://www.stachliu.com/collisions.html, he claimed that

“some block #1’s don’t have block #2 solutions.” But we think what he

claimed is not correct. As long as the differential value of the internal chain-

ing values are the same as Wang et al.’s, the probability that the message

pair M and M ′ = M +∆M collide is always 1. So in our opinion, there may

be some sufficient conditions lost in his implementation. We do the experi-

ments by running our implementation and Stach’s implementation 50 times

respectively to measure the correctness and the performance of the imple-

mentations. We assume that the experiment whose execution time exceeds

12 hours would fail to find the collision pair. According to the experiments

on Stach’s implementation, we find that 50% of the executions exceed 12

hours. But all the execution experiments of our implementation don’t ex-

ceed 9 hours. Although some experiments of Stach’s implementation don’t

give the collision pair, but it always find the first iteration message block.

5.2.2 Performance Analysis

In this section, we compare the execution time of our implementation of

MD5 collision finding algorithm with Stach’s. We summary the result of

the total fifty times experiments per implementation in table 5.1. In http:

//www.stachliu.com/collisions.html, he said “average run time on P4

1.6ghz PC — 45 minutes.” But according to our experiments on P4 2.8GHz

PC, the result is quite different from what he said. We should mention that

59

http://www.stachliu.com/collisions.html
http://www.stachliu.com/collisions.html
http://www.stachliu.com/collisions.html

Average
Case

Best Case Worst Case Sucessful
Probability

Our Implementation 1h48m10s 4m20s 8h50m01s 1
Stach’s Implementa-
tion

2h06m13s 8m29s 5h58m57s 0.5

Table 5.1: The Execution Time of the Experiments

the execution time of his implementation in the worst case is much better

than ours.

60

Chapter 6

Conclusions

After Wang et al. publish their MD4 and MD5 collision searching algorithms,

many researchers publish their improvements. After their improvements were

given, the collision searching algorithms become more and more definitive and

efficient. In this thesis, we also give our own improvements on the message

modification techniques. Then we implement the MD4 and MD5 collision

searching algorithms to show that our improvements are efficient enohgh to

run on modern PCs. Some cryptographic scholars think that the collision

resistance requirement is not necessary for a cryptographic hash function in

all cryptographic applications. Because it is infeasible for any probabilistic

polynomial time adversary to break all cryptographic applications even their

internal cryptographic hash function is not collision resistant. For example,

if the adversary Eve want to fake Alice’s certificate, it is infeasible for him

to do this even the certificate use a non-collision resistant cryptographic

hash function. So we can relax the collision resistance requirements in some

cryptographic applications, but not in all of them. As mentioned in Section

61

2.1, some cryptographic applications need stronger security requirements of

the hash functions, not just the three basic ones. If a hash function is not

second preimage resistant, the hash function is broken wholly. So how to find

the second preimage of the existing hash functions is an interesting problem.

Yu et al. [YWZW05] gave their discovery on finding the second preimage of

the hash function MD4. But they didn’t really find the real second preimage

of the hash function MD4. Instead, they gave a collision path that is of higher

probability to find the second preimage of MD4 than Wang et al.’s [WLF+05,

Chapter 6]. For a randomly chosen message block M , they gave a sufficiently

efficient algorithm to modify M to M̂ , where the hamming distance of M and

M̂ is very small, and the second preimage of M̂ can be computed efficiently.

But their results are not practical enough to damage the use of MD4 in the

real world for digital signatures, certificates, MACs, and so on. Instead, we

want an algorithm to find the second preimage for any message, even though

the time complexity of the algorithm is a little bigger. As long as the time

complexity of the second preimage finding algorithm is not too large to run

on modern computers, we can accept it. So how to find the second preimage

for arbitrary message of the dedicated hash functions, such as MD4, MD5,

SHA-1, is an interesting problem for solving.

62

Bibliography

[BR96] R. Baldwin and R. Rivest. The RC5, RC5-CBC, RC5-CBC-Pad,

and RC5-CTS Algorithms. Request for Comments (RFC 2040),

October 1996.

[Bra90] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89,

9th Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 20-24, 1989, Proceedings, volume

435 of Lecture Notes in Computer Science. Springer, 1990.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random

oracle methodology, revisited (preliminary version). In STOC,

pages 209–218, 1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random

oracle methodology, revisited. J. ACM, 51(4):557–594, 2004.

[Cra05] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT

2005, 24th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Aarhus, Denmark,

63

May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes

in Computer Science. Springer, 2005.

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In Bras-

sard [Bra90], pages 416–427.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. Ripemd-

160: A strengthened version of ripemd. In Dieter Gollmann,

editor, Fast Software Encryption, volume 1039 of Lecture Notes

in Computer Science, pages 71–82. Springer, 1996.

[FIP95] Secure hash standard (shs). Federal Information Processing

Standard (FIPS) Publication 180-1, National Institute of Stan-

dards and Technology (NIST), April 1995.

[FIP02] Secure hash standard (shs). Federal Information Processing

Standard (FIPS) Publication 180-2, National Institute of Stan-

dards and Technology (NIST), August 2002.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of

the fiat-shamir paradigm. In FOCS, pages 102–. IEEE Computer

Society, 2003.

[HPR04] Philip Hawkes, Michael Paddon, and Gregory G. Rose. Musings

on the wang et al. md5 collision. Cryptology ePrint Archive,

Report 2004/264, 2004. http://eprint.iacr.org/2004/264.

pdf.

64

http://eprint.iacr.org/2004/264.pdf
http://eprint.iacr.org/2004/264.pdf

[Kal92] B. Kaliski. The MD2 Message-Digest Algorithm. Request for

Comments (RFC 1319), April 1992.

[Ken05] S. Kent. IP Encapsulating Security Payload (ESP). Request for

Comments (RFC 4303), December 2005.

[Kli05a] Vlastimil Klima. Finding md5 collisions on a notebook pc using

multi-message modifications. Cryptology ePrint Archive, Report

2005/102, 2005. http://eprint.iacr.org/2005/102.pdf.

[Kli05b] Vlastimil Klima. Finding md5 collisions v a toy for a notebook.

Cryptology ePrint Archive, Report 2005/075, 2005. http://

eprint.iacr.org/2005/075.pdf.

[KM05] Lars R. Knudsen and John Erik Mathiassen. Preimage and col-

lision attacks on md2. In Henri Gilbert and Helena Handschuh,

editors, FSE, volume 3557 of Lecture Notes in Computer Sci-

ence, pages 255–267. Springer, 2005.

[LdW05] Arjen K. Lenstra and Benne de Weger. On the possibility of

constructing meaningful hash collisions for public keys. In Colin

Boyd and Juan Manuel González Nieto, editors, ACISP, vol-

ume 3574 of Lecture Notes in Computer Science, pages 267–279.

Springer, 2005.

[LL05] Jie Liang and Xuejia Lai. Improved collision attack on hash

65

http://eprint.iacr.org/2005/102.pdf
http://eprint.iacr.org/2005/075.pdf
http://eprint.iacr.org/2005/075.pdf

function md5. Cryptology ePrint Archive, Report 2005/425,

2005. http://eprint.iacr.org/2005/425.pdf.

[LWdW05] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding

x.509 certificates. Cryptology ePrint Archive, Report 2005/067,

2005. http://eprint.iacr.org/2005/067.pdf.

[Mer89] Ralph C. Merkle. One way hash functions and des. In Brassard

[Bra90], pages 428–446.

[Mik04] Ondrej Mikle. Practical attacks on digital signatures using md5

message digest. Cryptology ePrint Archive, Report 2004/356,

2004. http://eprint.iacr.org/2004/356.pdf.

[Mul04] Frédéric Muller. The md2 hash function is not one-way. In

Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture

Notes in Computer Science, pages 214–229. Springer, 2004.

[NSKO05] Yusuke Naito, Yu Sasaki, Noboru Kunihiro, and Kazuo Ohta.

Improved collision attack on md4 with probability almost 1. In

Dongho Won and Seungjoo Kim, editors, ICISC, volume 3935

of Lecture Notes in Computer Science, pages 122–135. Springer,

2005.

[RB00] Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL

hash function. First open NESSIE Workshop record, November

66

http://eprint.iacr.org/2005/425.pdf
http://eprint.iacr.org/2005/067.pdf
http://eprint.iacr.org/2004/356.pdf

2000. The document is available at http://paginas.terra.

com.br/informatica/paulobarreto/WhirlpoolPage.html.

[RC97] N. Rogier and Pascal Chauvaud. Md2 is not secure without the

checksum byte. Des. Codes Cryptography, 12(3):245–251, 1997.

[Riv90] Ronald L. Rivest. The md4 message digest algorithm. In Alfred

Menezes and Scott A. Vanstone, editors, CRYPTO, volume 537

of Lecture Notes in Computer Science, pages 303–311. Springer,

1990.

[Riv92a] R. Rivest. The MD4 Message-Digest Algorithm. Request for

Comments (RFC 1320), April 1992.

[Riv92b] R. Rivest. The MD5 Message-Digest Algorithm . Request for

Comments (RFC 1321), April 1992.

[SNKO05] Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta.

Improved collision attack on md5. Cryptology ePrint Archive,

Report 2005/400, 2005. http://eprint.iacr.org/2005/400.

pdf.

[SNY+06] Yu Sasaki, Yusuke Naito, Jun Yajima, Takeshi Shimoyama,

Noboru Kunihiro, and Kazuo Ohta. How to construct suffi-

cient condition in searching collisions of md5. Cryptology ePrint

Archive, Report 2006/074, 2006. http://eprint.iacr.org/.

67

http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://eprint.iacr.org/2005/400.pdf
http://eprint.iacr.org/2005/400.pdf
http://eprint.iacr.org/

[Sta05a] Patrick Stach. MD4 Collision Generation— Faster implemen-

tation of techniques in “Cryptanalysis for Hash Functions MD4

and RIPEMD”. http://www.stachliu.com/md4coll.c, 2005.

[Sta05b] Patrick Stach. MD5 Collision Generation— Faster implemen-

tation of techniques in “How to Break MD5 and Other Hash

Functions”. http://www.stachliu.com/md5coll.c, 2005.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xi-

uyuan Yu. Cryptanalysis of the hash functions md4 and ripemd.

In Cramer [Cra05], pages 1–18.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break md5 and other

hash functions. In Cramer [Cra05], pages 19–35.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding colli-

sions in the full sha-1. In Victor Shoup, editor, CRYPTO, vol-

ume 3621 of Lecture Notes in Computer Science, pages 17–36.

Springer, 2005.

[YS05] Jun Yajima and Takeshi Shimoyama. Wang’s sufficient con-

ditions of md5 are not sufficient. Cryptology ePrint Archive,

Report 2005/263, 2005. http://eprint.iacr.org/2005/263.

pdf.

[YWZW05] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang.

The second-preimage attack on md4. In Yvo Desmedt, Huaxiong

68

http://www.stachliu.com/md4coll.c
http://www.stachliu.com/md5coll.c
http://eprint.iacr.org/2005/263.pdf
http://eprint.iacr.org/2005/263.pdf

Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of

Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[ZPS92] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. Haval - a

one-way hashing algorithm with variable length of output. In

Jennifer Seberry and Yuliang Zheng, editors, ASIACRYPT, vol-

ume 718 of Lecture Notes in Computer Science, pages 83–104.

Springer, 1992.

69

	Introduction
	Description of The Hash Algorithms
	Hash Functions
	The Compression Function of MD4
	The Compression Function of MD5

	Review of Wang et al.'s Attack on MD4 and MD5
	Collision Differentials
	Sufficient Conditions
	Message Modification
	Collision Searching Algorithm

	Some Improvements on Message Modification
	Previous Results
	Our Improvements
	The Improvements on MD4
	The Improvements on MD5

	Our Implementation on the Collision Searching Algorithm
	A brief description of the Implementation
	Analysis of Our Implementation
	Correctness Analysis
	Performance Analysis

	Conclusions

