
i

國 立 交 通 大 學

資訊工程學系

博 士 論 文

應用於終端設備以提供 TCP 相等性

與閘道器上以排程請求回應

的公平控制方法

Fairness Controls for
TCP-Equivalence at Endpoint and

Request-Response Scheduling at Gateway

 研 究 生：曹世強

 指導教授：林盈達 教授

中 華 民 國 九 十 六 年 十 二 月

ii

應用於終端設備以提供 TCP 相等性

與閘道器上以排程請求回應

的公平控制方法

Fairness Controls for
TCP-Equivalence at Endpoint and

Request-Response Scheduling at Gateway

研 究 生：曹世強 Student：Shih-Chiang Tsao
指導教授：林盈達 Advisor：Prof. Ying-Dar Lin

國 立 交 通 大 學
資 訊 工 程 學 系

博 士 論 文

A Dissertation Submitted to

Department of Computer Science

College of Computer Science

National Chiao Tung University

for the Degree of

Doctor of Philosophy

in

Computer Science

December 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年十二月

iii

應用於終端設備以提供 TCP 相等性

與閘道器上以排程請求回應

的公平控制方法

 學生：曹世強 指導教授：林盈達

國立交通大學資訊工程學系博士班

摘 要
為了在網路上傳送封包，資料流可能需要為頻寬而競爭。當資料流為 Internet

上頻寬競爭時，公眾公平性是需要被維持的，相對的，當資料流於私有的接取路

徑上競爭時，則私有公平性可能需要被維持。為維持公眾公平性，不同於 TCP

的速度控制方法必須使用不超過 TCP 資料流的頻寬。然而，這些方法常只使用

低於 TCP 資料流的頻寬來保守的達到公眾公平性。在另一方面，為維持私有公

平性，使用封包排程器來管理瓶頸路徑是一個常見的方法。但是, 這方法無法在

使用者端的接取閘道器上管理呈現瓶頸狀態的下載路徑，因為他不能控制或排程

那些在使用者端對面之 ISP 端閘道器等候的封包。

我們首先針對八個知名的速度控制方法，探討其為何無法恰巧使用與 TCP

相等的頻寬，也就是表現出 TCP-equivalence 的特性。接著我們提出了一個

window-averaging rate control (WARC)方法。藉由只考慮固定區間內的 TCP 速

度，使得 WARC 能夠更早的拋棄歷史封包遺失狀態，因而能表現出比過去方法

較好的 TCP-equivalence 特性。最後，我們又提出了 minimum-service first request

scheduling (MSF-RS)的方法來解決封包排程器無法在使用者端管理下載路徑的

私有公平性問題。MSF-RS 藉由排程上行路徑請求以控制下行路徑回應的方式，

來達到使用者為基礎的權重公平性，也就是無論一類別使用者數量多寡，都能確

保高等級類別使用者獲得較多的頻寬。

模擬結果分別在非週期性封包遺失，低耦合度流量，雙狀態遺失，及突現性

iv

大量遺失四種狀態下，顯示出先前速度控制方法無法在 TCP-equivalence 情況下

維持公眾公平性的原因，而分析及模擬結果也顯示 WARC 能藉由更快的加減速

反應，來表現更好的 TCP-equivalence 及達到公眾公平性。最後分析模擬及實驗

結果顯示 MSF-RS 能在使用者閘道器上提供以使用者為基礎的私有權重公平

性，並縮短 20~30%的使用者感受延遲時間。

關鍵字- TCP 友善性, 壅塞控制, 請求排程, 接取閘道器, 公平佇列

v

Fairness Controls for

TCP-Equivalence at Endpoint and

Request-Response Scheduling at Gateway

Student：Shih-Chiang Tsao Advisors：Dr. Ying-Dar Lin

Department of Computer Science
National Chiao Tung University

Abstract

Flows may compete for bandwidth to transmit packets. Public fairness should be

maintained by the flows when they compete for the bandwidth in the Internet, while

private fairness may be required when they do at a private access link which connects

the intranet to the Internet. To maintain the public fairness, rate control schemes

different from TCP should use no more bandwidth than TCP. However, these schemes

often only use less bandwidth to conservatively maintain the fairness. On the other

hand, for maintaining the private fairness, the usual solution is using a packet

scheduler to manage bottleneck. Nevertheless, the solution fails to manage the

downlink bottleneck at the user-side access gateway, since it cannot schedule the

packets queued at the ISP-side gateway, opposite to the user-side one.
This dissertation first investigates eight well-known rate control schemes to

reveal why they cannot maintain the public fairness by using just the same bandwidth

as TCP, i.e. being TCP-equivalent. Next, this dissertation proposes a

window-averaging rate control (WARC) scheme. Considering the TCP rate only over

a fixed interval leads WARC to forget the historical packet loss condition more

quickly and thus perform better TCP-equivalence than other schemes. Finally, a

minimum-service first request scheduling (MSF-RS) scheme is proposed to solve the

private fairness problem which packet schedulers fail to manage downlink at the

user-side gateway. MSF-RS schedules uplink requests to control downlink responses

in order to provide user-based weighted fairness, i.e. ensure high-class users to get

more bandwidth even more users belong to the high class.

The simulation results under non-periodic losses, low-multiplexing, two-state

losses, and bursty-losses reveal the causes that previous schemes cannot maintain

vi

public fairness with TCP-equivalence. Next, both analysis and simulation demonstrate

that WARC does maintain the fairness and perform better TCP-equivalence by

exhibiting the faster aggressive and responsive behaviors. Finally, the analysis,

simulation and field trial exhibit that MSF-RS provides the user-based private

weighted fairness while reducing 20~30% of user-perceived latency at the user-side

gateway.

Keywords- TCP-friendly, congestion control, request scheduling, access gateway, fair

queuing

vii

Table of Content
1 Introduction...1

1.1 Bottlenecks for the Internet Traffic ...1
1.2 Public Fairness Control for TCP-Friendliness ...1
1.3 Private Fairness Control for Weighted Fairness2
1.4 Related Work and Potential Problems ..3
1.5 Objective, Methodology and Road Map..5

2 Taxonomy and Evaluation of TCP-friendly Congestion-Control
Schemes..7
2.1 Introduction..7
2.2 TCP-Friendliness...9

2.2.1 Steady state and Transient state..9
2.2.2 TCP-friendly Criteria ...10

2.3 Taxonomy in Fairness, Aggressiveness, and Responsiveness12
2.3.1 Fairness Strategy ..12
2.3.2 Aggressiveness Strategy...13
2.3.3 Responsiveness Strategy ..14

2.4 Fairness Evaluation ...15
2.4.1 TCP-Equivalence: Artificial-losses Testing Scenario with Identical

Network Conditions ...15
2.4.2 TCP Equal-share: Low-multiplexing Testing Scenario with the Same

Bottleneck...17
2.5 Evaluation on Aggressiveness and Responsiveness19

2.5.1 TCP-Equivalence: Two-states Artificial-losses Testing Scenario with
Transient Convergence...19

2.5.2 TCP Equal-share: Bursty-loss Testing Scenario with the Same
Bottleneck...21

2.6 Related Work ...23
2.7 Summary ..24

3 A Fast-Converging TCP-Equivalent Window-Averaging Rate
Control Scheme ...26
3.1 Introduction ...26
3.2 Window-Averaging Rate Control (WARC)...28

3.2.1 Basic Rate-control Mechanism ..28
3.2.2 Complemental Rate-control Mechanisms ..30
3.2.3 Pseudo Code...33

3.3 Analysis on Fairness ..34
3.4 Analyses on Smoothness, Aggressiveness and Responsiveness35

3.4.1 Smoothness...36
3.4.2 Aggressiveness ...37
3.4.3 Responsiveness...38
3.4.4 False Positive of the HR procedure..40

3.5 Simulation Results ...42
3.5.1 Fairness...42
3.5.2 Smoothness...47
3.5.3 Aggressiveness and Responsiveness..48

3.6 Related Work ...51
3.7 Applicability...52

viii

3.8 Summary ..53
4 On Applying Fair Queuing Discipline to Schedule Requests at

Access Gateway for Downlink Differential QoS54
4.1 Introduction ...54
4.2 Problems on Using Class-based Fair Queuing..56

4.2.1 The Timing for Releasing Requests ...56
4.2.2 The Determination of the Next Request...57
4.2.3 The Class-based Fairness Policy ..57

4.3 A Request Scheduling Scheme for User-side Gateway...........................58
4.3.1 Minimum-service Order Arbiter (MOA)..59
4.3.2 Window-based Rate Controller (WRC) ...61

4.4 Analysis for Delay and Fairness ...62
4.4.1 Short User-perceived Latency ..63
4.4.2 Delay Bound...65
4.4.3 Fairness...68

4.5 Simulation Results ...69
4.5.1 Topology...70
4.5.2 Weighted Fairness and Bandwidth Sharing..71
4.5.3 User-perceived Latency..72
4.5.4 User-based Weighted Fairness ...73
4.5.5 Adjustment of Outstanding Responses ..74
4.5.6 Effect of U+ on Latency ...75

4.6 Affection of Exceptive Traffic...75
4.7 Field Trial ...78
4.8 Summary ..79

5 Conclusions ..81
Appendix 1 Smoothness Level of TCP-friendly Schemes.......................83
Appendix 2 Analysis on WARC ...85
Appendix 3 Unfairness of TFRCP and TEAR..90
References ..93

ix

List of Tables

2.1.1 The premises and proper behaviors in three criteria..9

2.1.2 The control parameters used in each scheme...9

2.2 Taxonomy in fairness, aggressiveness, responsiveness strategies12

2.3 Comparison on fairness, aggressive and responsive behaviors among
schemes ..25

3.1 The control parameters used in each scheme...42

4.1 The utilization of link under oscillating CBR traffic (U+=98%)77

4.2 User-perceived latency comparisons ...79

4.3 Comparison between MSF-RS and the original Squid on CPU time79

x

List of Figures
1.1 A typical network topology of the Internet with two types of hosts..................1

1.2 A tree is used to organize the related works in the dissertation3

1.3 A typical topology of connecting the Internet with the access link5

2.1 The throughputs of TCP-friendly schemes normalized with the throughput
of TCP, under the loss link whose inter-loss time has a general exponential
distribution. ..16

2.2 n TCP-friendly and n TCP flows compete for the bottleneck link. The
propagation delays among each set of n flows are distributed uniformly
with CV[RTT]=0~0.42. ..17

2.3 The comparison of the slowly convergent behaviors between TCP-friendly
schemes under the two-state loss condition ...20

2.4 The slowly aggressive behaviors of TCP-friendly schemes under the
bursty-losses network...22

3.1 The HR procedure would be invoked when () 1 (,)TCPR N K R t s<31

3.2 The state diagram of the fluid-based timeout procedure in WARC.................32

3.3 The pseudo code for the basic and three complemental rate control
mechanisms of WARC...34

3.4 The smoothness effects of WARC, GAIMD, and SIMD, relative to that of
TCP...37

3.5 The aggressiveness indices of WARC, SIMD, GAIMD and IIAD under
different increasing factor m’s and the tradeoff between aggressiveness
and smoothness when m=4. ...38

3.6 The responsiveness of WARC under varied decreasing factor m’s. The
initial average window W before bandwidth change is 20.39

3.7 The responsiveness of WARC, SIMD, GAIMD and IIAD..............................40

3.8 The probability of the false-positive invocation of the HR procedure42

3.9 The artificial loss-link topology is used to provide the same loss condition
for any two flows running through the link R1-R2...43

3.10 The dumbbell topology used to test the fair sharing between TCP and
TCP-friendly flows. ...43

xi

3.11 The throughputs of TCP-friendly schemes normalized with that of TCP
under different loss probabilities. ..44

3.12 The throughputs of the TCP-friendly schemes normalized with that of TCP
under the artificial-loss links with different CV[T]..45

3.13 The competing results between TCP and five TCP-friendly schemes under
the links managed by Drop-Tail are shown. ..46

3.14 The competing results between TCP and five schemes under the links
managed by RED are shown..47

3.15 The smoothness of each scheme over different time scales.............................48

3.16 The topology with oscillating CBR background traffic, used to test
TCP-friendly schemes in terms of aggressiveness and responsiveness...........49

3.17 The comparison between five TCP-friendly schemes on aggressiveness
and responsiveness under the on/off CBR background traffic49

3.18 The number of losses encountered by WARC, WARC without HR, and
other four schemes between the 600th

 ~ 620th second are plotted, which are
normalized with that by TCP..50

3.19 The normalized throughputs of TCP-friendly schemes under an oscillating
CBR traffic...50

4.1 A typical network topology that an enterprise accesses the Internet through
ISP..54

4.2 The internal architecture of MSF-RS...59

4.3 Two procedures in MOA: request selector and request receiver......................61

4.4 Procedure of window-based service-rate controller (WRC)............................62

4.5 The ratio on Ta of a MSF-RS gateway to an ordinary gateway65

4.6 The downlink can be conceptually divided into multiple sub-links.65

4.7 The difference of the service between Class i and Class j69

4.8 Simulation topology for three classes with service ratio 4:2:170

4.9 The average throughput of three classes over the four phases.........................71

4.10 The average throughput of three classes over the four phases under DRR72

4.11 User-perceived latency comparison by decomposing time factors: queuing
time and transmission time ..73

4.12 The difference on the bandwidth allocated for the high-class host between

xii

the host-based and class-based weighted fairness. ..74

4.13 The size of W+ is fixed in the period with insufficient traffic (the 500th
~1000th seconds) ..74

4.14 The user-perceived latency, queuing time, and the number of packets
queued in ISP-side router under different U+ ..75

4.15 Two potential integrated architectures for handling the network when the
uplink is a bottleneck. The diamond C represents a request classifier.............76

4.16 Fast-responsive W+ and full utilization of access link under oscillate CBR
traffic..77

4.17 The test bed for field trial in the Internet ...78

A1.1 The smooth level on the throughput of each scheme, relative to that of
TCP, under different levels of variant-losses condition83

A2.1 The increase curves of WARC, GAIMD, and TCP ...85

A3.2 The decreasing of the CWNDs and the mean CWNDs of a TCP flow when
the inter-loss time change to T seconds after the time m T×88

1

Chapter 1

Introduction
1.1 Bottlenecks for the Internet Traffic

The Internet traffic may encounter bottleneck at any one link. Fig. 1.1 shows a

common network topology to classify the positions of bottleneck links. The first

position is the link between any two edge routers (ERs) within the Internet while the

second position is the access link between an Intranet and the Internet. The link in the

first position is shared for public and thus has traffic coming from numerous hosts.

These hosts would compete for the bottleneck with uncertain hosts. For example, Host

S1 will not know whether its packets for D1 are competing for the link between ISP1

and ISP2 with packets from S2 or other hosts. However, the link in the second position

is only used by a group of users and has traffic for specific hosts. For example, the

traffic passing through the link of G and EG would be associated with H1 ~ Hn only.

Different from S1 and S2 which compete for the bandwidth of a public link, these

hosts are competed for that of a private link, which is rented and managed by them.

1.2 Public Fairness Control for TCP-Friendliness
When the bottleneck link is located in the Internet, it is important for a host to

ensure that its flow fair shares the bottleneck bandwidth with other competitory

Internet flows, which is called public fairness in this dissertation. However, there is

Fig. 1.1. Bottlenecks may be the links in the Internet or between the Internet and an intranet.

EDU2

ISP2

ISP1

EDU1

ERER

ER

ER

S2
S2

S1
S1

Internet

D2
D2

D1
D1

ER

ER

EGEG
GG

H1
H1

Hn
Hn

Intranet

Public
Fairness

Private
Fairness

EDU2

ISP2

ISP1

EDU1

ERER

ER

ER

S2
S2

S1
S1

Internet

D2
D2

D1
D1

ER

ER

EGEG
GG

H1
H1

Hn
Hn

Intranet

Public
Fairness

Private
Fairness

2

no central mechanism in the Internet to keep the public fairness, i.e. to tell a host

about how much bandwidth it should use in transmitting packets to avoid from

starving other flows. In fact, the current public fairness of the Internet depends on

using the same end-to-end rate control mechanism among all hosts. That is, the rates

of most Internet traffic are controlled by the additive-increase/multiple-decrease

(AIMD) embedded in TCP. AIMD increases the transmission rate per round-trip time

(RTT) to detect and use the available bandwidth and then decreases the rate to avoid

from the congestion when packet losses occur.

Unfortunately, the behavior of rate controlled by AIMD cannot satisfy the

real-time streaming traffic, because such traffic prefers a smooth rate but the rate

controlled by AIMD changes abruptly and largely. Therefore, new rate control

mechanisms are required and their controlled traffic may coexist with that of AIMD in

the Internet. In order to keep the public fairness of the Internet, the concept

“TCP-compatibility”, i.e. TCP-friendliness, is suggested in RFC 2309 [BCC98]. The

concept asks these rate control mechanisms to use no more bandwidth than TCP under

the same network conditions such as loss ratio and RTT.

1.3 Private Fairness Control for Weighted

Fairness
Compared to the public bandwidth in the Internet, the bandwidth on the access

link is private. If the owner of the access link has multiple hosts commonly sharing

the access link, then the owner may allocate the bandwidth for each host by his or her

preference policies, which is called private fairness in this dissertation. Class-based

weighted fairness [FJ95, PG93] is one of the policies widely used for allocating

private bandwidth. By the policy, traffic running through the access link will be

classified into multiple classes and each class is assigned a weight. Then, the ratio of

bandwidth of any two classes would match the ratio of their weights. The class with a

large weight, i.e. the high class, can get more bandwidth than that with small weight.

Besides, if the high class is idle, i.e. has no traffic for transmission, its bandwidth will

be proportionally allocated for other non-idle classes.

To carry out the class-based weighted fairness policy, deploying a classifier and a

scheduler at the gateway is necessary. As shown in Fig. 1.1, the access link has two

gateways, the user-side gateway G and the ISP-side gateway EG. G is more preferable

3

by user than EG to deploy these mechanisms, because the gateway G is owned by the

user renting the link and is easy to manage, while EG is owned by ISP. Moreover, if a

classifier is deployed at EG, it cannot classify packets by their IP addresses because

the source address of all uplink packets may be identical at EG, as well as the

destination address of all downlink packets may be. For hosts in the intranet,

commonly sharing a public IP address for connecting the Internet is often seen

because of security concern and the short of IPv4 addresses.

1.4 Related Work and Potential Problems
Fig. 1.2 shows a tree to organize the related work of this dissertation. The

dissertation focuses on the issues about bandwidth fairness and divides them into the

public and private fairness. Public fairness is promoted in [FF99, BCC98], which asks

the Internet traffic to be transmitted by a TCP-compatible rate control scheme.

Meanwhile, in order to understand what the TCP-compatible rate is, the throughput

models of TCP [PFT98, AAB05] are proposed and the network conditions in the

Internet [ZDP01] are investigated. Next, to implement public fairness, many

TCP-compatible rate control schemes are proposed [YL00, PHP00, ROY00, JGM03,

BB01, PKT99, WDM01]. These schemes intend to control the flow to have a

smoother rate while using the same bandwidth as TCP. However, several literatures

reveal that these schemes may have lower bandwidth under some testing cases

[BBF01, LT03, VB05]. Although such schemes still confirms to “TCP-compatibility”,

they are not favorable to carry the streaming traffic because they provide less

bandwidth than TCP.

4

Different from the public fairness which promotes each flow to use no more

bandwidth than a TCP flow, the private fairness allows the differential allocations on

bandwidth among the competitory flows. Class-based weighted fairness [FJ95, PG93]

is such a goal and often pursued by the private fairness controls, such as WFQ [PG93],

DRR [SV96], SCFQ [GOL94] and SFQ [GVC96]. Although all these schemes

achieve the goal, they provide different degrees of packet latency and short-term

fairness with different per-packet processing complexity. For example, DRR [SV96]

is an scheduling algorithm which has O(1) complexity but a little worse degree on

latency and short-term fairness. Thus, pre-order DRR is proposed in our previous

work [TL01] to shorten the packet latency in DRR while retaining the O(1)

complexity.

Unfortunately, all these packet-level scheduling schemes cannot allocate the

downlink bandwidth at the user-side gateway. As shown in Fig. 1.3, when the

downlink is the bottleneck, the inbound packets will queue at the ISP edge gateway.

Thus, scheduling packets at the user-side gateway is useless since packets have passed

through the bottleneck. For this problem, an idea is scheduling uplink requests to

control the returned downlink responses since the Internet traffic most follows the

request/response model. Request scheduling was used in several studies to provide

differential Web QoS for different-classes users [CKD02]. These studies provided

QoS services by designing request scheduling at a single Web server [PBB98, BBK00,

CP99] or a web-side gateway, i.e. a gateway ahead close to a group of Web servers

[CCC02, CC01, LGC01]. No published studies discussed how to design request

Fig. 1.2. A tree is used to organize the related work in the dissertation

Bandwidth
Fairness

Private Fairness
- Weighted Fairness [PG93]
- Class-based [FJ95]

Packet Scheduling

-WFQ [PG93]
-WRR/ DRR [SV96]
-SCFQ [GOL94]
-SFQ [GVC96]

Pre-order DRR [TL01]

Public Fairness
- TCP-friendliness [FF99, BCC98]
- TCP-equation [PFT98, AAB05]
- Internet Conditions [ZDP01]

Algorithms

- GAIMD [YL00]
- TFRC [FHP00]
- TEAR [ROY00]
- SQRT, IIAD [BB01]
- SIMD [JGM03]

WARC

Evaluation

- Survey [WDM01]
- Dynamic Cond. [BBF01]
- TFRC’s analysis [VB05]

Taxonomy & Evaluation

Request Scheduling

- Web server
[PBB98, BBK00, CP99]
- Server Farms
[CCC02, CC01, LGC01]

Minimum-service first
request scheduling

Bandwidth
Fairness

Private Fairness
- Weighted Fairness [PG93]
- Class-based [FJ95]

Private Fairness
- Weighted Fairness [PG93]
- Class-based [FJ95]

Packet Scheduling

-WFQ [PG93]
-WRR/ DRR [SV96]
-SCFQ [GOL94]
-SFQ [GVC96]

Pre-order DRR [TL01]

Public Fairness
- TCP-friendliness [FF99, BCC98]
- TCP-equation [PFT98, AAB05]
- Internet Conditions [ZDP01]

Algorithms

- GAIMD [YL00]
- TFRC [FHP00]
- TEAR [ROY00]
- SQRT, IIAD [BB01]
- SIMD [JGM03]

WARC

Evaluation

- Survey [WDM01]
- Dynamic Cond. [BBF01]
- TFRC’s analysis [VB05]

Taxonomy & Evaluation

Request Scheduling

- Web server
[PBB98, BBK00, CP99]
- Server Farms
[CCC02, CC01, LGC01]

Minimum-service first
request scheduling

5

scheduling at the access gateway. The key difference between the previous works and

this work is that the target Web servers in the former are specific and their status can

be detected or controlled. The resources each request will cost could be measured in

advance to assist in the scheduling mechanism. However, the servers in the latter are

infinite, distributed over the Internet, and cannot be managed. It is impossible to

measure the costing resources for all requests in advance.

1.5 Objective, Methodology and Road Map
The objective of this dissertation is to propose the fairness control schemes

respectively to solve the public and private unfair problems which currently existing

solutions cannot handle at the end host or at the user-side gateway.

In public fairness, to clarify why the existing schemes cannot always have the

same bandwidth as TCP, an investigation for eight well-know schemes is given in the

dissertation. These schemes are classified and evaluated according to their underlying

policies in three aspects, namely fairness, aggressiveness and responsiveness, as

defined in Chapter 2. Next, according to the investigation, a fast-converging

window-averaging rate control (WARC) scheme is proposed to have equal bandwidth

to TCP more closely than existing schemes [YL00, PHP00, ROY00, JGM03, BB01,

PKT99, WDM01]. WARC takes short time to converge its rate toward TCP’s

whenever the available bandwidth drastically increases or decreases. Besides, when

the available bandwidth keeps stationary, WARC is the first scheme providing the

same bandwidth as TCP under any distributions of inter-loss time. Existing schemes

provide it only under some specific assumptions, e.g. the packet losses occur

periodically or with a fixed probability, but these assumptions may not be realistic in

the Internet [ZDP01].

In private fairness, to realize the idea of managing the downlink bandwidth by

scheduling uplink requests, the dissertation first investigates the possibility of

Fig. 1.3. A typical topology of connecting the Internet with the access link

InternetG EG
W1

W2EG

EG

W3

user-side
access gateway

H1

Hn

Req.

Rsp.

queuing
packets

InternetG EG
W1

W2EG

EG

W3

user-side
access gateway

H1

Hn

Req.

Rsp.

queuing
packets

ISP-side
edge gateway

InternetG EG
W1

W2EG

EG

W3

user-side
access gateway

H1

Hn

Req.

Rsp.

queuing
packets

InternetG EG
W1

W2EG

EG

W3

user-side
access gateway

H1

Hn

Req.

Rsp.

queuing
packets

InternetG EG
W1

W2EG

EG

W3

user-side
access gateway

H1

Hn

Req.

Rsp.

queuing
packets

ISP-side
edge gateway

6

applying the class-based fair-queuing discipline, which is widely and maturely used in

scheduling packets, to schedule requests. However, we found that simply applying the

discipline to schedule requests would encounter three problems. The first two are on

the timing of releasing requests and the selection of the next released request,

respectively. The last one is about the class-based policy, which may not suit for the

user-level differentiation, i.e. may not guarantee high-class users to get more

bandwidth than low-class one when more users appear in the high class. Next, based

on the above investigation, we propose a minimum-service first request scheduling

(MSF-RS) scheme to provide bandwidth sharing and user-based weighted fairness, i.e.

a policy that guarantees the ratio of the bandwidth allocated for each high-class user

to that for each low-class user matches the ratio of their weights.

The road map of the dissertation is organized as follows. Chapter 2 presents a

taxonomy and evaluation for eight TCP-friendly rate control schemes. Chapter 3

proposes the fast-converging window-averaging rate control scheme for public

fairness. Chapter 4 proposes the MSF-RS scheme to manage the downlink at the

user-side access gateway for private fairness. The conclusions are given in Chapter 5

and advanced mathematic analyses for TCP-friendly schemes are described in

Appendices.

7

Chapter 2

Taxonomy and Evaluation of

TCP-Friendly Congestion-Control

Schemes

2.1 Introduction

Real-time streaming media, such as video/audio conversations and movies online,

are now often transmitted over the Internet. Because the available bandwidth in the

Internet is dynamic, a congestion control mechanism is needed to prevent the media

flow from suffering serious packet losses. A flow carried over TCP generally is

subject to such a congestion control mechanism. TCP is the most widely-used

transport protocol in the Internet, and embeds an Additive-Increase and

Multiplicative-Decrease (AIMD) congestion control mechanism.

The throughput controlled by AIMD in TCP changes dramatically and frequently,

which may not satisfy real-time streaming media. Many AIMD-variant and other-style

congestion control schemes have been proposed to solve this problem [YL00, PHP00,

ROY00, JGM03, BB01, PKT99, WDM01]. Besides being smooth, these schemes

have been suggested to be TCP-friendly [BCC98] because their controlled traffic is

expected to coexist with TCP traffic in the Internet. “TCP-friendly” is a generic term

describing that a scheme aims to use no more bandwidth than TCP. This study

discusses in detail the proper behaviors of a TCP-friendly scheme in view of the

following three criteria: TCP-compatibility, TCP-equivalence and TCP equal-share.

TCP-compatibility is defined in RFC 2309 [BCC98], which says that a

TCP-compatible flow, in the steady state, should use no more bandwidth than a TCP

flow under comparable conditions such as packet loss rate and round-trip time (RTT),

where RTT means the time required for a packet to travel from the source to the

destination and back. However, a TCP-compatible congestion control scheme is not

preferred if it always offers far lower throughput than a TCP flow. Hence, a better

8

congestion control scheme has to not only meet TCP-compatibility, but also pursue

TCP-equivalence. A TCP-equivalent flow has the same throughput as a TCP flow if it

experiences identical network conditions, which mean the same patterns of packet

loss occurrences and RTT changes. Most present schemes tend to provide

TCP-equivalence, rather than just TCP-compatibility. However, TCP-equivalence in

all network conditions is hard to achieve. Various studies have described schemes that

achieve compatibility without always achieving equivalence [YL00, FHP00, ROY00,

BBF01, LT03, VB05].

Although a TCP-equivalent scheme consumes TCP-equivalent bandwidth when

working by itself, it may not coexist well with TCP in the Internet. A TCP-equivalent

scheme merely ensures the same throughput between TCP and TCP-equivalent flows

when both experience identical conditions, but not that when both compete for the

same bottleneck, which is exactly the real situation in the Internet. Competing for the

same bottleneck does not imply experiencing identical network conditions [VB05].

Therefore, this study defines a new criterion, namely TCP equal-share. This criterion

is more realistic than TCP-equivalence, because the most important concern is

whether flows with different controls can co-exist and equally share bandwidth in the

same bottleneck while coexistence is not in the picture of TCP-equivalence. Moreover,

TCP equal-share is also more challenging than TCP-equivalence because a TCP

equivalent flow may not be TCP equal-share, but vice versa is true.

This study has three objectives. The first objective is to be the guide for selecting

from existing TCP-friendly schemes, based on the proposed taxonomy and evaluation.

The second objective is to indicate the potential fault cases and causes of the eight

schemes evaluated, thus helping designers to realize what needs to be enhanced. The

third objective is to recommend policies for designing an ideal scheme to meet all

TCP-friendly criteria. Unlike the survey of Widmer et al. [WDM01] which compares

the functionality of various schemes, this study tests the selected schemes for the

TCP-friendly criteria. Contrary to Bansal et al. [BBF01] who compare the transient

behaviors of various schemes, this study additionally investigates these schemes

under the steady state to reveal that they may use bandwidth unequal to TCP even in

this case. Besides, this study investigates the bandwidth sharing between TCP and

TCP-friendly flows (inter-fairness), differing from Tsaoussidis et al. [TZ05] who

study the bandwidth sharing among a group of homogeneous flows (intra-fairness).

For TCP-friendly schemes, Table 2.1.1 summarizes the proper behaviors for the

9

three TCP-friendly criteria in three aspects, namely fairness, aggressiveness and

responsiveness, as explained further in Chapter 2.2. Also, Table 2.1.2 shows the eight

typical TCP-friendly schemes selected for this study. In Chapter 2.3, the behaviors of

these schemes are classified according to their key operational characteristics to

realize how they meet the three criteria. In Chapter 2.4 and 2.5, the evaluation results

verify whether these schemes meet the criteria, and also reveal some further issues.

Next, related work is discussed in Chapter 2.6. Finally, we make recommendations

about the preferred schemes and policies, based on the observed results, in Chapter

2.7.

Notably, although TFRCP is simply the predecessor of TFRC, it is selected in

this study due to its simplicity, which may be preferred by the programmers of

real-time applications. Moreover, Bansal et al. [BBF01] defined a TCP-equivalent

scheme differently from this study, as a scheme with the same AIMD as TCP, but

without packet loss recovery or fast retransmission.

2.2 TCP-friendliness

2.2.1 Steady state and Transient state

TABLE 2.1.1. THE PREMISES AND PROPER BEHAVIORS IN THREE CRITERIA

Proper behaviors of a scheme

Steady state Transient state

Criterion Network
premise

Fairness Aggressiveness Responsiveness

TCP-compatibility Comparable
conditions Less bw Don’t care As fast as TCP

TCP-equivalence Identical
conditions

TCP equal-share Same
bottleneck

Equal bw As fast as TCP

TABLE 2.1.2. THE CONTROL PARAMETERS USED IN EACH SCHEME
SCHEME FULL NAME PARAMETERS REF.
GAIMD General additive inc./multiplicative-dec. α=0.2, β=0.125 [YL00]

IIAD Inverse-inc./additive-dec. α=1.0, β=0.67, k=1, l=0 [BB01]
SQRT Square-root inc./dec. α=1.0, β=0.67, k=0.5, l=0.5 [BB01]
SIMD Square-inc./multiplicative-dec. β=0.0625, k=-0.5, l=1 [JGM03]

AIAD/H Additive inc./dec. with history β=0.25, k=0, l=0 [JGM03]
TFRCP TCP-friendly rate control protocol Interval=5 seconds [PKT99]
TFRC TCP-friendly rate control The number of samples=8 [FHP00]
TEAR TCP-emulation at receiver The number of samples=8 [ROY00]

10

As shown in Table 2.1.1, the term “steady-state” is used in the description of the

three criteria. A steady-state network originally means that a network with a negligible

change over an arbitrarily long period. By this definition, the Internet would not be in

the steady-state condition unless the term “arbitrarily long” is removed from the

definition. The measured result in [ZDP01] reveals that the packet loss condition

experienced by an Internet flow may consist of multiple minute-scale steady-state

regions, and the time interval between any two consecutive losses may be mutually

independent and have the same probability distribution, i.e. be independently and

identically distributed (i.i.d.), within a region. Thus, a TCP-friendly scheme should

use the same bandwidth as TCP in a steady-state region, while being aggressive

enough to capture the available bandwidth and being responsive enough to protect

itself from congestion, as the packet loss condition changes across regions (the

transient state). Notably, a packet loss (event) in this study denotes an event causing a

TCP flow halving its congestion window. Such an event may imply that multiple

consequent packets are discarded. For convenience, this study, like other studies

[YL00, FHP00, ROY00, BBF01, LT03, VB05], ignores the term “event”.

2.2.2 TCP-friendly Criteria

This study uses the following three criteria to describe the proper behaviors of a

TCP-friendly scheme. Vojnovic et al. presented a criterion, named “conservative”

[VB05]. However, this criterion is suitable only for evaluating schemes that use TCP

throughput formula, and therefore is not considered herein.

1) TCP-compatibility: The basic criterion, introduced in RFC 2309 [BCC98], is

defined as, “A TCP-compatible flow is responsive to congestion notification, and uses

no more bandwidth in the steady state than a conformant TCP flow running under

comparable conditions (e.g. packet loss rate, RTT).” As shown in Table I-A, this

criterion forbids a scheme from providing a flow with more bandwidth than TCP, in

order to protect TCP flows from starvation. Based on this definition, a

TCP-compatible flow should decrease the throughput at least as fast as TCP when the

packet loss condition becomes severe, i.e. responsive but not necessarily aggressive.

Otherwise, the compatibility criterion would be violated during the long convergence

time of the flow.

2) TCP-equivalence: This study defines the criterion as, “If given identical

network conditions, then a TCP-equivalent flow uses the same bandwidth as a TCP

flow when the network condition is either in the steady or transient state.” This

11

criterion, unlike “TCP-compatibility”, requires the same bandwidth, not just “no

more” bandwidth than TCP. Therefore, a TCP-equivalent scheme is more desirable for

transmitting media traffic, because it provides more bandwidth than a

TCP-compatible scheme. Moreover, to meet the criterion in the transient state, a

TCP-equivalent scheme must consider aggressiveness besides responsiveness. That is,

if more bandwidth becomes available, then a TCP-equivalent scheme should increase

the throughput of its controlled flow as fast as TCP. Finally, TCP-equivalence requires

“identical network conditions”, rather than “comparable conditions”, to ensure the

same patterns of packet loss occurrences and RTT changes. The requirement is

necessary for testing a scheme whether to have the same throughput as TCP, because

TCP has different throughputs under the same mean but different variances of loss

rate or RTT [AAB05].

A TCP-equivalent scheme may work well in routers which use well-designed

Active Queuing Management (AQM) algorithms to manage their bottleneck links,

because such routers may offer the needed premise, namely “given identical network

conditions” to TCP and TCP-equivalent flows. However, if this premise is not

supported, then a TCP-equivalent flow may have more throughput than a TCP flow

when the TCP-equivalent flow experiences fewer packet losses from the routers. To

support the premise, these AQMs apply equal packet loss rate on flows of the same

throughput, with the loss rate being directly proportional to the throughput. Since TCP

and TCP-equivalent flows adjust the throughput based on their loss rates regulated by

the AQM, they finally would have the same throughput and loss rate. Readers

interested to this issue may refer to Gwyn et al. [CLB04].

3) TCP equal-share: This study defines the criterion as, “A TCP equal-share

flow uses the same bandwidth as a TCP flow if both flows compete for the same

bottleneck.” This criterion should hold regardless of whether the network conditions

experienced by the two flows are identical. This criterion differs from

TCP-equivalence in its premise, “competing for the same bottleneck”, which implies

“competing for the shared bandwidth resources”, but it is not necessary for

TCP-equivalence.

TCP equal-share is more realistic than TCP-equivalence. A new scheme is safe to

deploy if it provides the same bandwidth as TCP when competing for the same

bottleneck, not just when it has identical network conditions. However, achieving

TCP equal-share is more challenging than achieving TCP-equivalence, because

12

competing for the same bottleneck does not imply experiencing identical network

conditions [ZDP01]. Therefore, a TCP-equivalent flow may not be TCP equal-share if

it experiences different network conditions from a TCP flow. However, a TCP

equal-share flow should have the same bandwidth as a TCP flow, regardless of

network conditions, implying that it is also TCP-equivalent.

2.3 Taxonomy in Fairness, Aggressiveness, and

Responsiveness
The section investigates the fairness, aggressiveness and responsiveness policies

taken by the selected schemes, as summarized in Table 2.2.

2.3.1 Fairness Strategy

The fairness policy of a scheme describes how the scheme adjusts a flow to have

equivalent throughput to a TCP flow in the long term under the steady state. As shown

in Table 2.2, the selected schemes use two fairness policies, window-based (WB) and

rate-based (RB).

The WB fairness policy controls the throughput by adjusting the congestion

window (CWND). CWND represents the number of packets that can be freely sent

without waiting for their acknowledgements, and is updated by a set of control

TABLE 2.2. TAXONOMY IN

FAIRNESS, AGGRESSIVENESS, RESPONSIVENESS STRATEGIES

Policy Fairness Aggressiveness Responsiveness

Aspect throughput adjusting step
of each inc.

curve type life cycle of
loss statistics

GAIMD Window-based Non-historical Linear Variable-history

IIAD Window-based Historical Sub-linear Non-historical

SQRT Window-based Historical Sub-linear Variable-history

SIMD Window-based Historical Super-linear Variable-history

AIAD/H Window-based Historical Linear Non-historical

TFRCP Rate-based Non-historical Super-linear Fixed-history

TFRC Rate-based Historical Linear Fixed-history

TEAR Rate-based Historical Linear Fixed-history

13

parameters, see Table 2.1.2. A specific relationship exists between the parameters,

giving a scheme equal throughput to the TCP. Applying this policy requires the

developments of control parameters and their specific relationship. For instance,

GAIMD uses two parameters, α and β, to control its CWND, increasing CWND by α

for every RTT and decreasing CWND by β if a packet loss occurs. A specific

relationship α=3β/(2-β) exists between α and β for achieving the same throughput as

TCP. Five of the selected schemes, GAIMD, SQRT, IIAD, SIMD and AIAD/H, apply

the WB policy.

The RB fairness policy directly adjusts the throughput by finely controlling the

time between sending two packets and thus has a smoother rate than the WB policy.

The RB policy continues to estimate the potential throughput of a TCP flow during its

lifetime and repeatedly adjusts the sending rate according to this estimated TCP

throughput, enabling a flow to have equal throughput to TCP. Applying this policy

requires the developments of scheme for estimating the TCP throughput and

determining when to adjust the sending rate. The RB policy is applied in three

schemes, TFRCP, TFRC and TEAR.

2.3.2 Aggressiveness Strategy

The aggressiveness policy of a scheme describes how the scheme increases the

throughput of a flow before encountering the next packet loss. As shown in Table 2.2,

the non-historical policy is taken by GAIMD and TFRCP. The step of increase is

independent of the history of packet losses, and is thus fixed during the whole life of

the flow. Unfortunately, this behavior brings the tradeoff between aggressiveness and

smoothness. For instance, when GAIMD employs a small step for smoothness, a slow

rate of increase may prohibit GAIMD from achieving either TCP-equivalence or TCP

equal-share when the loss condition changes dramatically. Conversely, TFRCP

doubles its rate if it does not encounter any loss during a fixed time interval, which

makes it super-linear, i.e. fast and aggressive, but possibly causes large oscillation, i.e.

poor smoothness.

By contrast, the historical policy has a variable step. For example, to achieve

smoothness, SIMD initially takes a smaller increasing step than TCP after

encountering a packet loss. SIMD then enlarges the step according to the historical

maximum CWND, to increase the aggressiveness before encountering the next loss.

The historical policy also enables AIAD/H to dynamically determine a step for

14

linearly increasing the throughput. AIAD/H seems to be more adaptive than GAIMD.

Three of the schemes with the historical policy, namely SQRT, IIAD and SIMD,

have non-linearly increasing curves between packet losses, because they change their

steps per RTT, instead of per loss. SQRT and IIAD have sub-linearly increasing

curves, because they shorten the step inversely with increasing CWND and

CWND, respectively. By contrast, SIMD has a super-linear behavior and thus has the

fastest increasing rate because the step in SIMD is enlarged with the time escaped

from the latest loss.

2.3.3 Responsiveness Strategy

The responsiveness policy of a scheme describes how the scheme decreases the

throughput of a flow when the packet loss condition becomes severe. The key

difference among the policies is the life cycle of the loss statistics used in adjusting

the new throughput. The loss statistics include the number of inter-loss packets (the

received packets between two losses), the inter-loss time, or the loss rate measured in

an interval. There are three policies, namely non-historical, fixed-history and

variable-history, as shown in Table 2.2.

The non-historical policy ignores the historical packet loss statistics in

decreasing throughput, and thus decreases the throughput at a constant speed, thus

producing a tradeoff between responsiveness and smoothness. For example, to ensure

smoothness, IIAD and AIAD/H employ a small decreasing speed, leading to a long

convergence time and the violation of all three criteria, particularly when a significant

change of loss condition occurs.

The other two policies consider the historical packet loss statistics in order to

decrease the throughput. In the variable-history policy, loss statistics of a large value

may have a longer duration to affect the throughput than that of a small value. For

example, CWND in GAIMD controls the throughput, and can be regarded as a

weighted average over all historical values on inter-loss time, where the values

obtained earlier have smaller weights [ABB05]. Therefore, early but large values still

affect the throughput, even when their weights are small. However, schemes with

fixed history only consider the latest n loss statistics when computing the new

throughput. A loss statistic, regardless of its value, is eliminated from the computation

if it is not among the latest n values. Fixed-history schemes include TFRC, TEAR and

TFRCP.

15

2.4 Fairness Evaluation

We use ns-2 simulation [NS06] and examine the fairness of eight different

schemes to determine whether they meet the TCP-equivalence and TCP equal-share

criteria. The source codes of TEAR, TFRCP, SIMD, and AIAD are not included in the

package of ns-2 simulation, but instead are published individually on the Web sites of

their authors. Also, this study like [FHP00, JGM03, BB01] uses SACK [MMF96] as

the TCP version and assumes no delayed acknowledgments. For the simulation, we

use packets that were 1,000 bytes long and a maximum window size of 200 packets.

2.4.1 TCP-equivalence: Artificial-losses testing scenario with identical network

conditions

A link with artificial packet losses was used to test for TCP-equivalence. The link

discards the passing packets with a specific mathematical model. Such a link

guarantees that any two passing flows experience identical loss conditions, thus

satisfying the premise in TCP-equivalence, making this link suitable for the test of

TCP-equivalence. Sufficient bandwidth was allocated for this link to prevent the

packets from being dropped due to overflow.

The selected schemes were tested to determine whether they are robust enough to

have the same throughput as TCP under varied artificial links, which have different

means or Coefficient-of-Variations (CVs) of inter-loss time. The two statistics were

varied because both affect the TCP throughput [AAB05]. A general exponential

random variable allows its coefficient-of-variation to be changed while fixing its

mean, or vice versa, so it is employed to drop packets at the link. The time between

two packet losses thus forms a general exponential distribution, which is also used in

[VB05] to investigate the conservativeness of TFRC. Only the testing result under

links with different coefficient-of-variations is shown herein. The result with different

means has already been obtained [JGM03, BB01].

The artificial link plotted as the link R1-R2 in Fig. 2.1(a), drops one packet every T

seconds. T denotes a general exponential distributed random variable where E[T] is

fixed at 5 and CV[T] uniformly increases from 0 to 1. The results in Fig. 2.1 were

averaged from five runs of 5200 seconds each, where the data within the first 200

seconds were discarded, and the mean coefficient-of-variation of the simulation

results between the five runs was 0.025. Because this coefficient-of-variation is small,

16

it is ignored in plot to improve the clarity of the figure.

Observation 1: Non-periodic losses should be considered in adopting WB/RB fairness

policies.

Figures 2.1(b)(c) reveal that none of the WB/RB schemes meet TCP-equivalence

under non-periodic packet loss (CV[T]>0). When CV[T]=1, GAIMD and TFRC only

have 80% throughput of TCP while TEAR, IIAD, SQRT, and AIAD/H have 60% on

average, because all schemes, except SIMD, were proposed based only on the

periodic-loss assumption, i.e. the packet losses occur periodically. The unfairness

under CV[T]=1 should be handled by these schemes because the inter-loss time in the

Internet may approximate an i.i.d. exponential distribution equivalent to the link with

CV[T]=1, according to the observation in [ZDP01].

Notably, the TFRCP and SIMD flows exhibit a different trend from other flows in

Fig. 2.1(b)(c). The difference of TFRCP is due to the convex TCP throughput

equation and the fixed rate-adjusting period [VB05], while that of SIMD occurs

because its specific relationship between parameters is based on the packet loss model

with [] 1CV T [JGM03]. Figures 2.1(b) also plots the curve of SIMD variant,

SIMD/Period, with this design based on CV[T]=0. Unfortunately, SIMD/Period

violates the TCP-compatibility criterion under non-periodic conditions.

Fig. 2.1. The throughputs of TCP-friendly schemes normalized with the throughput of TCP, under
the loss link whose inter-loss time has a general exponential distribution. For clarity, results
are separately shown in (b) and (c).

S DR1 R2

100Mbps
20ms

100Mbps
20ms

100Mbps
30 ms

Discarding packets
 by math model

(a) The artificial-loss topology used in Chapter 2.4.A and 2.5.A

(b) (c)

17

2.4.2 TCP equal-share: Low-multiplexing testing scenario with the same bottleneck

A dumbbell topology provides the premise of TCP equal-share, i.e. “competing for

the same bottleneck,” and thus is used to verify the TCP equal-share of a scheme in

the steady state. As shown in Fig. 2.2(a), n TCP-friendly flows compete with n TCP

flows for a single bottlenecked link. All flows have backlogged data for the whole

testing period. This study particularly investigates a low-multiplexing scenario [F00],

where n is small and Drop-Tail is deployed to manage the bottleneck link, because

previous results [YL00, FHP00, ROY00, BBF01, LT03] imply that a TCP-equivalent

flow may violate TCP equal-share under such a scenario. Drop-Tail is a queuing

management algorithm which discards new arrival packets when its managed queue is

full.

To indicate the cause of the violation, the scenario used in [YL00, FHP00, ROY00,

BBF01, LT03] was slightly modified at two points. First, instead of using a fixed

capacity, e.g. 15 or 60 Mbps, the link had 2n Mbps. Such a link can provide on

average 1Mbps of bandwidth for each flow, avoiding the influence of the TCP

timeout-handling mechanism, as expected from previous studies [YL00, FHP00,

ROY00, BBF01, LT03]. Second, although multiple rounds were tested for the same n,

SQRT

TFRCP, TFRC, TEAR

(b) n = 8

(a) Dumbbell topology

SIMD

(c) Comparison on loss ratio

Fig. 2.2. n TCP-friendly and n TCP flows compete for the bottleneck link. The propagation
delays among each set of n flows are distributed uniformly with CV[RTT]=0~0.42.

IIAD

GAIMD

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

CV[RTT]=0 AVG(CV[RTT]>0.25)

Lo
ss

 (T
FC

C
) /

Lo
ss

(T
C

P
)

SIMD
GAIMD
AIAD/H
IIAD
SQRT
TFRCP
TFRC
TEAR

R1

S1

Sn

R2

Drop-Tail
n TCP-friendly
senders

2n Mbps
10msS’1

S’n

n TCP
senders

D1

Dn

D’1

D’n

100 Mbps
20ms on average

100 Mbps
20ms on average

R1

S1

Sn

R2

Drop-Tail
n TCP-friendly
senders

2n Mbps
10msS’1

S’n

n TCP
senders

D1

Dn

D’1

D’n

100 Mbps
20ms on average

100 Mbps
20ms on average

18

the RTT-heterogeneity of n TCP flows and of n studied flows were enlarged equally

over different rounds. The RTT-heterogeneity of n flows represents the

coefficient-of-variation of the RTTs of these flows, denoted as CV[RTT]. The mean

end-to-end propagation delay was set to 50ms for all rounds. The queue size was 1.5

times the bandwidth-delay product.

Observation 2: RB fairness policy wins and RTT-heterogeneity matters for TCP

equal-share.

Figure 2.2(b) indicates that the tested schemes do not always ensure TCP

equal-share under the scenario, because they are based on the premise of

TCP-equivalence, i.e. “any two flows experiencing identical network conditions,” but

not that of TCP equal-share. Thus, these schemes cannot have the same throughput as

TCP when the premise of TCP-equivalence is false, i.e. they do encounter different

numbers of packet losses.

To show that the premise of TCP-equivalence is false under the scenario, Fig.

2.2(c) plots the normalized packet loss rate experienced by the TCP-friendly flows

with the shortest RTT, compared with that of TCP flows. The loss rates of

shortest-RTT flows are shown because their differences are the most significant

among all flows. Three RB schemes, namely TFRCP, TFRC and TEAR, clearly suffer

a higher loss rate than TCP at CV[RTT]=0, but an equal rate at CV[RTT]>0.25, which

explains their bandwidth sharing with TCP in Fig. 2.2(b). Similarly, the other five

schemes suffer a lower loss rate than TCP, so they occupy much more bandwidth than

TCP.

Figure 2.2(b) also reveals that the RTT-heterogeneity of the competing flows

significantly affects the fairness between TCP and TCP-friendly flows. GAIMD and

SIMD occupy more bandwidth on average than TCP flows (1.5~4 times), particularly

when CV[RTT]=0 (>10 times), where the number of competing flows is small (n=8,

total is 16). The seriously unfair situation at CV[RTT]=0 also exists even when the

total number of competitory flows is 64.

The unfair situation in the five WB schemes results from their exercising the

packet acknowledgement mechanism. These schemes, like TCP, delay the

transmission of the next data packet if the transmitter does not receive an ACK packet

because the queue of a router in the transmission path has overflowed. By the delay,

they encounter fewer packet losses and thus have higher throughput than the three RB

19

schemes. Moreover, because the overflow is alleviated by TCP significantly reducing

its CWND, these five schemes, which slowly reduce their CWNDs, may monopolize

the link until the queue is overflowing again. Thus, they have higher average

throughput than TCP.

Although neither the WB and RB fairness policies can ensure TCP equal-share,

the RB flows would experience similar packet loss rate to TCP flows, and can meet

TCP equal-share in most cases, i.e. under CV[RTT]>0.05. By contrast, the WB flows

may severely starve TCP flows. Therefore, the RB fairness policy should have a better

chance than WB of meeting the TCP equal-share. Notably, these TCP-friendly

schemes were also tested under a topology with multiple bottlenecks, but the results

reveal that their TCP equal-share is unrelated to the number of bottlenecks, when this

number increases from 1 to 10.

2.5 Evaluation on Aggressiveness and

Responsiveness

This section evaluates the selected schemes on their aggressive and responsive

behaviors to verify whether they meet the TCP-equivalence and TCP equal-share

criteria.

2.5.1 TCP-equivalence: Two-state artificial-losses testing scenario with transient

convergence

The objective of the testing is to observe whether the throughput of the schemes

converge as fast as TCP. An artificial-loss link was used, as in 2.4.A, because it

satisfies the premise of TCP-equivalence. However, a two-state packet loss model was

adopted in the link to simulate large changes in the loss conditions. A packet was

dropped every 5 seconds during the 100th~800th seconds, and every 1 second at other

times. The result after 100 seconds exhibits aggressive behavior, and that after 800

seconds exhibits responsive behavior. The RTT of the testing flow was about 140ms.

Observation 3: Throughput-inversed aggressive, defined below, and non-historical

responsive policies are inadequate.

Figure 2.3(a) and the left part of Fig. 2.3(b) reveal that IIAD and AIAD/H take

20

700 seconds to increase their throughput to the new steady throughput. Such a long

time is unacceptable, particularly since the other six schemes reach steady throughput

within 100 seconds. Surprisingly, although AIAD/H has a linearly increasing curve

between two packet losses as mentioned earlier, it has a slower convergence than

IIAD. Under this scenario, the reason that both schemes seriously violate

TCP-equivalence is their slowly increasing behaviors across over multiple losses,

instead of between two losses. Both schemes shorten the increasing step inversely

with their throughput per loss. Herein such an unfavorable slow aggressive behavior

is called a throughput-inversed aggressiveness policy.

Figure 2.3(c) and the right part of Fig. 2.3(b) verify that the non-historical

responsiveness policy does not satisfy the TCP-equivalence criterion. The policy

TFRCP
SIMD

TEAR

SQRT

GAIMD

TFRC

TCP

IIAD

SIMD
GAIMD

TFRCP

TCP

SQRT

TFRC
TEAR

(b)

AIAD/H IIAD

AIAD/H

TFRCP IIAD

(a)

(c)

Fig. 2.3. The comparison of the slowly convergent behaviors between TCP-friendly schemes
under the two-state loss condition

TCP

IIAD

21

brings IIAD and AIAD/H longer convergence time than the other schemes. Figure

2.3(c) reveals that the fixed-history policy usually takes a shorter time to converge

than the variable-history policy. TFRC, TFRCP, and TEAR take 20 seconds to

converge, which is half the time of GAIMD and SIMD. However, the results also

reveal that SQRT, which has a variable-history policy, also has a short convergence

time. Further analysis indicates that the control parameters used in SQRT have the

advantage of a short convergent time.

2.5.2 TCP equal-share: Bursty-loss testing scenario with the same bottleneck

To test whether a scheme in the transient state meets the TCP equal-share criterion,

a two-state constant-bit rate (CBR) arrival traffic with obviously different rates

between on and off periods was applied to the dumbbell bottleneck scenario used in

Chapter 2.4.B. The oscillating CBR traffic emulates the arrival of a group of TCP

flows, significantly changing the packet loss condition of the bottleneck, and thus

providing the required transient-state scenarios. Such traffic in [BBF01] is used to

observe how a GAIMD, TFRC, IIAD, or SQRT flow competes with a bursty arrival of

TCP traffic.

Whereas Bansal et al. [BBF01] showed the statistical behavior for the selected

schemes, this study reveals their micro behavior in one on/off period. Additionally,

this study tested four schemes, SIMD, AIAD/H, TFRCP, and TEAR, which were not

tested in [BBF01], are included here. The bottleneck in the test was a 15Mbps link

managed with Drop-Tail, where the rate of the two-state CBR traffic oscillated

between two values, 14Mbps and 9Mbps, to vary the bandwidth available for the

TCP-friendly flow to 1Mbps and 6Mbps, respectively. The propagation delay of flows

was 60ms, and the queue size was set to 1.5 times the bandwidth-delay product

[BBF01].

Observation 4: Historical/super-linearly aggressive and fixed-history responsive

policies are satisfactory.

Figure 2.4(a) indicates that historical/super-linear aggressiveness is the preferred

policy, because it enables SIMD to use the available bandwidth as quickly as TCP, i.e.,

to meet the TCP equal-share criterion, and to have a smooth rate after the convergence.

By contrast, as shown in Fig. 2.4(b), the non-historical/super-linear policy of TFRCP

is not recommended, because a non-historical policy does not change the increasing

step to a small value after the convergence, thus causing large oscillations in TFRCP.

22

Notably, care should be taken when using the history. AIAD/H also uses a historical

aggressiveness policy, but takes too short a history to allow a stable increase during

the testing time. TFRCP and AIAD/H are not recommended because of their

instability. The historical/super-linear aggressiveness policy has the fastest rate of

increase, and provides both smoothness and aggressiveness, making it most likely to

meet the TCP-equivalence and TCP equal-share.

Figure 2.4(c) indicates that the fixed-history responsiveness policy meets TCP

equal-share in terms of responsiveness by encountering fewer packet losses than other

policies. Although all schemes reduce their throughput within about 15 seconds, Fig.

2.4(c) shows that the fixed-history schemes, such as TFRC and TEAR, encounter

fewer losses during convergence than variable-history schemes, such as SIMD and

GAIMD. Therefore, the fixed-history responsiveness policy appears to have the best

chance of meeting the three criteria, because it considers bounded statistics and thus

may reach convergence with fewer packet losses or shorter time than other policies,

particularly when the loss statistics change significantly.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

SQRT GAIMD SIMD TFRC TEAR

N
or

m
al

iz
ed

 lo
ss

 r
at

e

Fig. 2.4. (a) and (b) The slowly aggressive behaviors of TCP-friendly schemes under the bursty-losses
network. The (b) has longer timescale than (a) to show that TFRCP and AIAD/H have different behaviors in
each on/off period. (c) The number of loss events encountered by TCP-friendly schemes, normalized to that
by TCP, under the low-available bandwidth case.

(c) (a)

(b)

TCP
SIMD

TEAR

IIAD

GAIMD

TFRCP

AIAD/H

TFRC

SQRT

23

2.6 Related Work

Many AIMD variants have been proposed for different purposes. This study

evaluates variants that aim to have a throughput smoother than but equivalent on

average to TCP’s. Therefore, this study does not evaluate some schemes, e.g.

AIMD-FC [LT03] and [NK04], that stress fast convergence in high-speed links.

Additionally, this study focuses on the inter-fairness, i.e. whether a scheme shares the

same bandwidth with TCP. Intra-fairness, i.e. the fairness among the flows

controlled by the same scheme, is discussed in [TZ05,G04]. Moreover, the schemes

selected herein detect congestions only by packet losses as TCP Reno and SACK

[MMF96] do. Actually, the RTT variation can be used for the detection, as in TCP

Vegas [BP95], which also provides a smooth rate. However, RTT-based scheme may

share bandwidth unfairly in the Internet where most traffic is still controlled by

loss-based versions of TCP. C. Zheng and V. Tsaoussidis [ZT06] recently proposed a

scheme using both packet losses and RTTs, which may be the solution to the

unfairness problem.

Although the topologies discussed have appeared in the literature, e.g.

[BB01,VB05], this study revises the simulation scenarios and compares additional

schemes to reveal undiscovered phenomena. For example, this study uses a common

topology – dumbbell – to investigate the TCP equal-share of the schemes, but changes

the RTT-heterogeneity to display the difference between WB and RB schemes.

Tsaoussidis et al. considered the RTT-heterogeneity in [TZ05] but for the

intra-fairness of GAIMD flows. Moreover, this study like [BB01] uses the oscillating

CBR traffic, but includes four extra schemes to show three interesting results, i.e.

SIMD has the fastest aggressiveness, AIAD/H and TFRCP are the most unstable, and

TEAR has the slowest aggressiveness. Additionally, this study used the general

exponential distribution, as used by Vojnovic et al. [VB05] who show that TFRC may

have a lower throughput than TCP under non-periodic losses due to its design.

However, this study reveals that schemes other than TFRC have the same unfairness

phenomenon, although they control the throughput with methods different from

TFRC.

Besides the congestion control, other factors must also be considered when

24

designing a protocol for carrying streaming traffic. E. Kohler et al. [KHF06]

discussed these factors in depth, and proposed the Datagram Congestion Control

Protocol (DCCP). DCCP allows free selection of a congestion control scheme, and

therefore is the most realistic means for practical use of schemes addressed in this

study. The protocol currently only includes two schemes, namely TCP-like and TFRC.

We strongly encourage the addition of other schemes to the protocol.

2.7 Summary

For a TCP-friendly congestion control scheme, meeting TCP-compatibility only

protects TCP flows from starvation and network from congestion, but cannot

guarantee that the media flow obtains equal throughput to TCP. A good scheme should

use the same throughput as TCP in the steady state, but as aggressive and responsive

as TCP in the transient state. To examine whether the present TCP-friendly schemes

meet the TCP-equivalence and TCP equal-share criteria, we classify the behaviors of

eight typical schemes in terms of fairness, aggressiveness, and responsiveness.

Additionally, we test the conformance these schemes to the criteria under four

scenarios, namely non-periodic losses, low-multiplexing, two-state losses, and

bursty-losses.

Table 2.3 summarizes the evaluation result for the eight selected schemes for

fairness, aggressiveness and responsiveness. A comparison of the results in this table

with the taxonomy results shown in Table II demonstrates that a TCP friendly scheme

may have desirable TCP-equivalence and TCP equal-share in a general network

condition, if it takes the rate-based fairness, historical/super-linear aggressiveness and

fixed history responsiveness policies. The evaluation results of the three

recommended policies are shaded in Table 2.3, which are obviously more satisfactory

than that of other policies.

Unfortunately, no scheme simultaneously takes the three recommended policies

for meeting the three criteria. However, if protecting TCP flows from starvation, i.e.

meeting TCP-compatibility, is the major concern, then TFRC is recommended. TFRC

uses the rate-based fairness and fixed-history responsiveness policies, and therefore

has better behaviors under most scenarios than others on average, as shown in the row

TFRC of Table 2.3. However, if fast aggressiveness is the most important property,

25

SIMD is recommended, since it takes the shortest time to converge and then maintains

a stable throughput, due to its historical/super-linear aggressiveness policy.

Nevertheless, SIMD violates TCP-compatibility under low-multiplexing bottleneck,

because of its window-based fairness policy. Moreover, SIMD spends longer time or

encounters more packet losses before reducing its throughput to the available

bandwidth because of its variable-historical responsiveness policy.

As a result of this study, we also observed the following: (1) a scheme should

consider non-periodic loss models when taking any one of the fairness policies; (2)

the RTT-heterogeneity between competitory flows influences the TCP equal-share of

a scheme when the bottleneck is managed by the Drop-Tail algorithm, and (3) the

throughput-inversed aggressiveness and non-historical responsiveness policies should

not be taken, since they cannot adapt to the change of packet loss conditions.

Table 2.3. COMPARISON ON FAIRNESS, AGGRESSIVE AND RESPONSIVE
BEHAVIORS AMONG SCHEMES

Behavior Fairness Aggressiveness Responsiveness

Criterion TCP-eq
(TCP-comp)+

TCP eq-share TCP-eq
(TCP-comp)

TCP
eq-share

TCP-eq
(TCP-comp)

TCP
eq-share

Low-multiplexing
Scenario

Non-
periodic
Losses

Homogeneous
RTTs

Heterogeneous
RTTs

Two-state
Losses

Bursty
Losses

Two-state
Losses

Bursty
Losses

GAIMD Δ(O) X X Δ (O) Δ Δ (Δ) Δ
IIAD X(O) Δ X X (O) X X (X) X
SQRT X(O) Δ X O (O) Δ O (O) O
SIMD Δ(O) X X O (O) O Δ (Δ) X

AIAD/H X(O) Δ X X (O) X X (X) X
TFRCP X(X) Δ O Δ (O) X O (O) O
TFRC Δ(O) Δ O Δ (O) Δ O (O) O
TEAR X(O) Δ O X (O) X O (O) O

O: satisfactory Δ: Acceptable X: Unacceptable

TCP-eq: TCP-equivalence TCP-comp: TCP-compatibility TCP eq-share: TCP equal-share
+ The evaluating results on TCP-compatibility are shown in the parentheses.

26

Chapter 3

A Fast-Converging TCP-Equivalent

Window-Averaging Rate Control Scheme

3.1 Introduction

TCP is a widely-used transport protocol in the Internet. Its rate control

mechanism, Additive-Increase and Multiple-Decrease (AIMD), frequently and

dramatically adjusts the rate to detect the available bandwidth for transmitting packets

and to avoid the packets from the sequential losses. However, TCP may be unsuitable

to carry the streaming data because of its oscillatory rate. The playback of streaming

data will be paused, if the sending rate of TCP is lower than the encoding rate of the

streaming while no streaming data is buffered at the receiver. Although allocating a

large buffer may alleviate the oscillatory rate, it prolongs the start-up latency for

on-demand media traffic [GTC06] and causes an intolerable delay for interactive

applications, e.g. video conference. Besides, the oscillatory rate of TCP increases the

difficulty for media servers to decide which encoding rate should be taken to deliver

the media for a stable user-perceived quality.

For the oscillatory-rate problem, many rate control schemes were proposed

[YL00, PHP00, ROY00, JGM03, BB01, PKT99] to transmit streaming data at a

smooth rate. Besides being smooth, these schemes have been suggested to be

TCP-friendly [BCC98] because their controlled traffic is expected to coexist with

TCP traffic in the Internet. A TCP-compatible scheme uses no more throughput than

TCP, under the same conditions such as packet loss rate and round trip time (RTT).

Based on the suggestion, a scheme using the same throughput as TCP is the most

favorable for carrying media data because it conforms to TCP-compatibility with the

highest throughput. Such a scheme is called as a TCP-equivalent scheme in this work.

TCP-equivalence is more preferred than TCP-compatibility, since the latter

protects only TCP flows from starvation, but the former further ensures the fairness

between TCP and the TCP-equivalent flows. In fact, current schemes are proposed for

27

the TCP-equivalence criterion, e.g. [YL00, PHP00, ROY00, JGM03, BB01, PKT99].

However, they pursue the criterion only under a stationary packet loss condition, i.e.

the statistics of loss conditions like mean and variance are fixed at least for the whole

transmission time, which however is not realistic enough. Due to the arrival and

departure of burst traffic, the loss condition in the Internet may change drastically,

causing these schemes having lower throughput than TCP in the long term because of

their slowly aggressive behavior [BBF01]. Slow aggressiveness represents that these

schemes cannot use the available bandwidth as immediately as TCP after the burst

traffic departs. Several recent works focus on accelerating the aggressive behavior.

For example, the SIMD scheme [JGM03] has the exponentially aggressive behavior.

Actually, even under the stationary packet loss conditions, these schemes may still

have lower throughput than TCP. Vojnovic and Boudec [VB05] reveal that TFRC

[PFT98] has lower bandwidth than TCP if the number of inter-loss packets (i.e.

packets between two loss events1) is not periodic, i.e. its variance is not zero. In fact,

the non-zero variance is the common loss conditions in the Internet [ZDP01]. Our

later simulation results also show that GAIMD [YL00], IIAD [BB01], SQRT [BB01],

TEAR [ROY00], and TFRCP [PKT99] cannot meet TCP-equivalence under this loss

condition.

This work proposes a rate control scheme named window-average rate control

(WARC). WARC is expected to better meet TCP-equivalence than the existing

schemes because it takes short time to converge its rate toward TCP’s whenever the

available bandwidth drastically increases or decreases. Besides, when the available

bandwidth keeps stationary, WARC is the first scheme providing the same bandwidth

as TCP under any distributions of inter-loss time. Existing schemes [YL00, PHP00,

ROY00, JGM03, BB01, PKT99] provide it only under some specific assumptions, e.g.

the packet losses occur periodically or with a fixed probability, but these assumptions

may not be realistic in the Internet. The measured result in [ZDP01] reveals that the

packet loss condition experienced by an Internet flow may consist of multiple

minute-scale stationary regions, and the time intervals of any two consecutive losses

may follow an independently and identically distributed (i.i.d.) exponential

distribution within a region.

The basic mechanism of rate control in WARC is called run-time estimation

1 A loss event means an event causing a TCP flow halving its congestion window. Such an event may consist of multiple
sequent packet losses. For convenience, the term “event” is ignored in this work as done in related works.

28

(RTE), which repeatedly estimates the mean rate of TCP and adjusts its sending rate

to the estimated rate (packets/RTT). TFRCP, TFRC and TEAR also use the RTE

control, but WARC differing from them estimates the mean rate by averaging the

latest fixed-number congestion windows (CWNDs) which a TCP flow may use to

control its rate. By assuming RTT is fixed2, such an estimated rate represents the

mean rate of the TCP flow over a fixed time period, instead of over a dynamic time

period as that in TFRC and TEAR. The difference brings WARC use the same

bandwidth as TCP under all stationary packet loss distributions, as proved later.

Besides, since the number of considered CWNDs is bounded, WARC will forget the

early small CWNDs and use a high increasing rate as TCP when additional bandwidth

becomes available for a fixed time.

However, the RTE rate control in WARC may not be satisfying under three

special but realistic conditions. First, when the available bandwidth drops abruptly,

RTE may encounter many losses before reducing its rate to the available bandwidth.

Second, when passing along through a link managed by the Drop-Tail queuing

algorithm, RTE may exhibit a slight oscillation on rate. Third, under heavy losses,

RTE would use more bandwidth than TCP. Therefore, three complements:

history-reset procedure, one-RTT reduction mechanism and fluid-based timeout

mechanism, are proposed for handling the three conditions, respectively.

The remainder of this paper is organized as follows. Chapter 3.2 introduces the

WARC scheme, including RTE and three complements. The fairness between WARC

and TCP is proved in Chapter 3.3. The smoothness and convergence rate of WARC

and their tradeoffs are discussed in Chapter 3.4 according to the proofs in Appendix 2.

Chapter 3.5 shows the evaluated results of WARC running in the ns-2 simulator

[NS06]. Related Work is discussed in Chapter 3.6. Finally, the applicability of WARC

and conclusions are given in Chapter 3.7 and 3.8, respectively. The unfairness of

TFRCP and TEAR are proved in Appendix 3.

3.2 Window-Averaging Rate Control (WARC)
3.2.1 Basic Rate-control Mechanism

The goal of a TCP-equivalent streaming rate-control scheme is to have a

throughput smoother than but equivalent on average to TCP’s. To achieve the goal,

2 This work, like the related works [YL00, PHP00, ROY00, JGM03, BB01, PKT99], assumes that RTT is fixed in the analysis.
However, in the implementation of WARC, the value of RTT refers to the smoothed RTT which is dynamically updated by
the algorithm usually used in TCP.

29

several existing schemes such as TFRC and TEAR send packets at the mean rate of a

TCP flow. Besides, these schemes repeatedly estimate the mean rate during the whole

connection, since the mean rate within a period changes according to the network

conditions. Such an idea to control the rate is named run-time estimation (RTE)

model3 in this work.

WARC inheriting the RTE model considers two key designs. The first is how to

estimate the present mean rate (packet/RTT) of a corresponding TCP flow, and the

second is how often to adjust the rate of the controlled flow. For the first point,

WARC gets the mean TCP rate by averaging the latest s CWNDs of a corresponding

TCP flow, where s is fixed. For the second point, WARC adjusts the rate per RTT.

Notably, in this work, the CWND represents the number of packets sent by a TCP

flow in one RTT. Besides, packet/RTT is used as the unit of rate.

The following details the rate-control procedure between the sender and receiver

of WARC. The sender sends data packets at the rate periodically assigned by the

receiver. The receiver detects the packet losses with the sequence numbers of data

packets, and it estimates the CWND which may be used now by a TCP flow. If the

WARC receiver does not encounter losses, it will increase the CWND by one per RTT

as TCP does. However, if it encounters a loss, it will reduce the CWND by a half.

Next, the receiver averages the latest s CWNDs to get the new transmission rate and

reports the rate to the sender, where the averaging and reporting are repeated per RTT.

According to the above description, the following formally expresses the

transmission rate used in a WARC sender. Assume that the real time t is separated by

RTT into multiple rounds, i.e. { }1,2,...,t = ∞ . Suppose that R(t, s) denotes the

transmission rate (packets/RTT) of the WARC sender, computed from s CWNDs and

used in the tth round. Then, R(t, s) can be written as

min(,)

1

1(,) ()
min(,)

s t

i

R t s W t i
s t =

= −∑ , (3.1)

where W(t) is the number of packets transmitted by a TCP sender, i.e. its CWND, in

the tth round. A minimizing operation exists in (3.1), because there are at most t

CWNDs at the initial time (t<s) and thus R(t, s) is the average of the latest t CWNDs.

When t>s, R(t, s) will be the average of the latest s CWNDs.

When the available bandwidth suddenly increases, whether a scheme has a fast

3 We do not think that the familiar terms like “rate-based” or “equation-based” can represent such an idea. A RTE-based
scheme would be a window-based scheme if using a window to control the release of packets. Besides, TEAR is not an
equation-based scheme, but a RTE-based scheme as revealed later.

30

aggressive behavior, i.e. a high increasing rate, is determined by how fast the scheme

ignores the packet loss conditions measured before the increase. WARC would have

faster aggressiveness than TFRC and TEAR because WARC excludes these

conditions from the rate computing after a fixed number of RTTs. Differently, TFRC

and TEAR excludes these conditions after a fixed number of packet losses, say 8

losses. Unfortunately, the latter two may wait a long time to meet the first loss due to

the sudden increase of bandwidth; thus they have a slow aggressive behavior. In fact,

both schemes take additional rules to speed up the behavior which, however, is still

conservative as shown in our simulation results later.

3.2.2 Complemental Rate-control Mechanisms

1) History-reset (HR) procedure for responsiveness under bursty-losses:

The basic control mechanism in WARC, as later analyzed in Chapter 3.4, has a

conservative responsive behavior, which brings WARC a smooth rate but also a slow

response to an abrupt increase of packet loss rate. Thus, a history-reset procedure is

proposed to respond to the abrupt change right after a fixed number of loss events.

The procedure is invoked if the average TCP rate spanning over the latest N

packet losses, denoted as ()TCPR N , is smaller than or equal to 1/K of the current rate

of WARC, which can be expressed as

 1() (,)TCP KR N R t s≤ , (3.2)

where K is a constant larger than 1, and its effect on the HR procedure would be

discussed later. ()TCPR N is calculated by the formula

 3 1
2 1

() ()N
TCP N j

R N X j
=

= −∑ , (3.3)

where X(-j) represents the number of rounds in the last jth epoch, i.e. the period

between the jth and (j+1)th last losses. According to [AAB05], ()TCPR N got by (3.3)

represents the average rate that a TCP flow may have under a loss condition where the

number of inter-loss rounds is 1
1

()N
N j

X j
=

−∑ . The following
1

()N

j
X j

=
−∑ is denoted as

S(N).

As Fig. 3.1 shows, if (3.2) is true at the time T, then it is implied that the packet

loss condition has changed abruptly, because the fast-responsive TCP has far smaller

rate than WARC. Then, the HR procedure is invoked to perform the following actions.

All W(t)’s where ()t T S N< − are eliminated from the computation of (3.1). Contrarily,

the latest ()S N CWNDs are retained in the rate computing. By the elimination of old

31

CWNDs, WARC fast jumps to the mean rate that TCP uses at the time t.

Two parameters K and N in (3.2) control the threshold of invoking the

history-reset procedure. K decides how many differences in rate between WARC and

TCP denotes an abrupt change on packet loss condition. N decides how long the

difference should persist at least before the HR procedure is invoked. With small K

and N, the procedure will be invoked for small and short changes, which may damage

the smoothness of WARC. Contrarily, with large K and N, the procedure may be

conservatively invoked and lose its objective - fast responding to a change of packet

loss condition. A tradeoff exists here obviously. We analyze the tradeoff in Chapter

3.4.4 and suggest that with K=3 and N=12, the procedure has the enough fast

responsiveness and is not over-invoked to damage the smoothness.

2) One-RTT reduction procedure for smoothness under low-multiplexing

networks: A flow controlled by a rate-based scheme may encounter a series of packet

losses and exhibit an oscillatory behavior on the rate when passing through a

low-multiplexing network [BCC98], e.g. passing alone a link managed by Drop-Tail,

because the rate-based scheme does not have the per-packet ACK mechanism as the

window-based scheme. A self-clocked mechanism has been proposed in [BBF01] to

assist TFRC for such a case. The mechanism bounds the rate increase of TFRC

according to the received rate measured at the receiver. However, the mechanism may

slow down the aggressive ability of a scheme because it limits the rate increase of the

scheme.

To retain the fast aggressiveness, WARC adopts the mechanism only when a

packet loss occurs. When detecting a loss, the receiver of WARC will acknowledge

the sender to temporarily reduce the transmission rate used in the next round to 7/8 of

the received rate. The temporality means that the reduction holds only for one RTT,

Fig. 3.1. The HR procedure would be invoked when () 1 (,)TCPR N K R t s< .

R
at

e
(p

kt
/R

TT
)

Rounds

R(t,s)

s rounds
T

X(-1)X(-2)X(-N)
X(-N+1)

()TCPR N

the last loss

T-S(N)

the 2th last lossthe 9th last loss
CWND

R
at

e
(p

kt
/R

TT
)

Rounds

R(t,s)

s rounds
T

X(-1)X(-2)X(-N)
X(-N+1)

()TCPR N

the last loss

T-S(N)

the 2th last lossthe 9th last loss
CWND

32

which is long enough to prevent the flow from the sequent losses according to the

simulation result shown in Chapter 3.5.3. After one RTT, the rate will return to the

value computed by (3.1).

3) Fluid-based timeout (FTO) procedure for fairness under heavy-losses: A

fluid-based procedure is proposed to emulate the CWNDs of TCP running under the

timeout mechanism. These CWNDs will be involved in the rate computing of (3.1) to

influence the rate. This complement prevents WARC from grabbing too much

bandwidth when competing with TCP under heavy packet loss conditions.

WARC like TCP regards a packet loss as a timeout event if the loss occurs when

W(t) < 3. Then, as shown in Fig. 3.2, when a timeout event is recognized, WARC

enters the timeout phase from the normal phase and emulates the CWNDs by FTO

instead of AIMD. WARC sets W(t) to u-1 for I rounds where RTO
RTTu = ⎡ ⎤⎢ ⎥ , I is set to u, and

RTO represents the retransmission timeout and is updated by the usual algorithm in

TCP. Such a setting for W(t) and I emulates TCP only sending one packet before RTO

seconds. The variable I keeps the residual rounds that WARC stays at timeout, so it is

decreased one per RTT. If the variable I is decreased to zero, WARC leaves the

timeout phase. The timeout mechanism is called fluid-based because one packet sent

in the RTO seconds in TCP is divided into u-1 packet per RTT seconds in WARC.

To emulate the back-off mechanism in the TCP timeout mechanism, another

variable C is employed to record the times that packet losses occur during the phase.

If another loss occurs during the phase (C>0), WARC will regard the loss as the

second timeout event. Then, WARC sets W(t) to 1(2)Cu −× and adds 2Cu × into the

variable I. This prolongs the time that WARC stays in the timeout phase. Like TCP, C

is limited to 6 and does not increase even when more losses occur.

Normal Phase
I=0

C=0
W(t)=u-1

I=u

a loss occurs
when W(t)<3

C=1
W(t)=(u*2C)-1

I=I+u*2C

C=6
W(t)=(u*2C)-1

I=I+u*2C

a loss
occurs

I<=0
I<=0

I<=0

a loss
occurs

a loss
occurs

WARC emulates CWNDs
 by the fluid-based timeout procedure

Fig. 3.2. The state diagram of the fluid-based timeout procedure in WARC

WARC emulates
CWNDs by AIMD

33

3.2.3 Pseudo Code
Fig. 3.3 presents a pseudo code to jointly describe the basic and three

complemental rate-control mechanisms of WARC. The queue structures are used

herein to avoid the time-consuming summing operation in (3.1). A queue Qw keeps the

latest s CWNDs and a variable Sw records the summation of all CWNDs in Qw.

Instead of repeatedly summing up the latest s CWNDs to get Sw, we simply dequeue

the earliest CWND from Qw and subtracted it from Sw, while inserting the latest

CWND into Qw and adding it into Sw, as described in the UpdateSum procedure.

UpdateSum is a generic procedure to update the summation S in the queue Q with the

latest value v. Similarly, we use Qx to keep the latest N inter-loss time and Sx to store

the summation of values in Qx, to efficiently compute (3.3).

Procedure LossHandler is called at the receiver when a packet loss is detected.

The procedure takes charge of halving the TCP CWND w, recording w in Qw and

checking whether to invoke the HR procedure by (3.3). However, if the loss occurs

under the timeout phrase (I>0), LossHandler would update I, C and w, according to

the rules shown in Fig. 3.2.

Procedure UpdateW is called per RTT. When WARC is not in the timeout phase

(I=0), it increases w by one to emulate TCP when no packet loss is detected. However,

in the timeout phase (I>0), UpdateW counts down I to update the number of

remainder rounds of leaving the timeout phrase. Next, UpdateW sends an ACK to

inform the sender the transmission rate to be used. By the One-RTT reduction

procedure, the rate would be discounted by 1/8 if a loss has occurred.

s : The number of CWNDs considered in the rate computing
w : Current possible CWND (pkt) of a TCP connection
R : Tx. rate (pkt/RTT) to be used in the next round
t : The seq. num. of the current round
t’ : The seq. num. of round where the last loss occurred
I : The number of round to leave the timeout phrase
u : Ceiling value of RTO/RTT
Qw : A queue with s entries for keeping the latest CWNDs
Qx : A queue with N entries for keeping the latest inter-loss time in

RTT
Sw : The summation of values queued in Qw
Sx : The summation of values queued in Qz
X<<Y : A math. operation equal to X×2Y

HasLoss : A Boolean variable to indicate that a loss event has occurred
Ack(r) : Send an ack to tell the sender about the transmission rate

r.
HistoryReset(n):Keep the latest n CWNDs in the rate computing.
Enqueue(Q,v), Dequeue(Q), Len(Q), Full(Q): Four queue operations to

insert v into Q, get item from Q, query the length of Q and

34

check if Q is full, respectively.

LossHandler() // called when a loss event is detected
{
 if (I == 0) {

if (w >= 3) {
 w = w / 2
 HasLoss = TRUE
 } else { // enter the FTO procedure
 I = u; C = 0; w = 1/u
 }
 UpdateSum(Qw,Sw,w)
 UpdateSum(Qx,Sx,t-t’)
 t’ = t;

If ((Sx/Len(Qx)×1.5) × K ≦ R) // Eq. (3.3)
 HistoryReset(Sx)
 } else { // update by the FTO procedure in Fig. 3.2
 C = C + 1
 if (C > 6) then C = 6
 w = 1 / (u ×(2<<C))
 I = I + (u ×(2<<C))
 }
}
UpdateW() // called per RTT at the receiver
{

if (I == 0) then w = w + 1
else I = I - 1

 UpdateSum(Qw,Sw,w);
R = Sw / Len(Qw)
if (HasLoss == TRUE) then

Ack(R×7/8) // the one-RTT reduction procedure
else Ack(R)

 HasLoss = FALSE;
t=t+1;

}

UpdateSum(Q,S,v) // keep S as the summation of items in Q
{

if Full(Q) then S = S – Dequeue(Q)
S = S + v
Enqueue(Q, v)

}
HistoryReset(n) // keep the latest n CWNDs in Qw
{
 j = Len(Qw)- n
 while(j > 0) {

Sw = Sw – Dequeue(Qw)
 j=j-1;
 }
}

Fig. 3.3 The pseudo code for the basic and three complemental rate control mechanisms of WARC

3.3 Analysis on Fairness
Herein the fairness represents that in a steady state a scheme can control a flow

to have the same throughput as a TCP flow, when both flows experience the same

35

stationary packet loss condition. This section will prove the fairness of WARC.

Among another three RTE-based schemes, TFRC has been shown in [VB05] that it

meets the fairness only if an additional assumption is given, that is, the inter-loss time

is periodic, i.e. constant. Besides, we proved in Appendix 2 that TEAR uses lower

throughput while TFRCP may use higher throughput than TCP when the inter-loss

time is not periodic. The fairness analyses of other schemes aim to demonstrate that

the difference between WARC and other RTE-based schemes does cause the different

abilities in meeting the fairness. The effect of the TCP timeout mechanism is ignored

in the analysis below.

Recall that (3.1) shows the rate used by a WARC flow in the round t. Suppose that

when the time t=t0 the WARC flow converged its rate on a steady-state rate. Then, for

t>t0, the long-term average throughput of the flow, E[TWARC], can be expressed as

0

0
(,)

[] lim
t k

t t
WARC k

R t s
E T

k

+

=

→∞
=

∑ . (3.4)

Substituting (3.1) into (3.4) yields

0

0

0

0

0

0

1

1

1

1 ()
[] lim

()1 lim

()1 lim .

t k s

t t i

WARC k

s t k

i t t

k

t k
s t t
i k

W t i
sE T

k
W t i

s k

W t i

s k

+

= =

→∞

+

= =

→∞

+

=
= →∞

⎛ ⎞−⎜ ⎟
⎝ ⎠=

−
=

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑
∑

 (3.5)

Since W(t) represents the window size of a TCP flow in the round t, (3.5) can be

rewritten as

1

1[] [] []s
WARC TCP TCPi

E T E T E T
s =

= =∑ . (3.6)

Equation (3.6) shows that WARC meets the fairness.

3.4 Analyses on Smoothness, Aggressiveness and

Responsiveness
A tradeoff exists within three properties: smoothness, aggressiveness, and

responsiveness. Performing a smooth rate may imply the existence of slow

aggressiveness and responsiveness, i.e. taking longer time to converge toward the new

steady-state rate. The section first discusses the analytical results of WARC in terms

36

of smoothness, aggressiveness, and responsiveness. The analysis procedures are

described in Appendix 2. Secondly, we discuss the tradeoff within the three terms in

WARC, and compare it with that in SIMD, GAIMD, and IIAD. For the schemes

without the analyses, e.g. TFRC, TFRCP and TEAR, we compare WARC with them

by the simulation later.

3.4.1 Smoothness

The smoothness [JGM03] is defined as the average coefficient-of-variation

(CV) of the rate (packets/RTT) between two consecutive packet losses, as

 [[]] [[]][]
[]

E Var w E Var wCV w
E w W

= = , (7)

where w is the sending rate, i.e. the number of packets sent in one RTT, and W denotes

E[w]. Because the rate w of a TCP-equivalent flow is controlled based on the loss

conditions, the E[w] of the flow can represent the degree of loss conditions

experienced by the flow. Thus, by giving a specific E[w], (7) represents the

smoothness of a scheme performing under a specific degree of loss conditions.

According to the analysis in Appendix 2.1, Fig. 3.4 plots the []CV w of WARC,

normalized with that of TCP [JGM03], over various E[w]’s in order to show the

smoothness effect provided by WARC under different degrees of loss conditions. The

normalized []CV w ’s of SIMD and GAIMD, derived in [JGM03], are also plotted for

comparison. As shown in Fig. 3.4, the curves of WARC(120), WARC(160),

WARC(240), and WARC(320) cross over that of GAIMD respectively at W=23.625,

31.5, 47.25, and 63. That is, WARC has a smoother rate than GAIMD(1/8) when its

parameter s is configured to a value larger than 120/23.625 (i.e. 5.07) times of W.

According to Fig. 3.4 of [JID04], since the maximum CWND of most TCP flows are

smaller than 31.62, we set the parameter s to 5.07*31.62 (i.e. 160) in the following

work. Notably, WARC does have a smoother rate than TCP, i.e. the normalized

[]CV w is smaller than 1, although the four curves of WARC plotted in Fig. 3.4 seem

to increase linearly. Their slopes become smaller than 1 at W=150~200 and

their []CV w ’s are smaller than TCP’s one even when W is infinite.

37

3.4.2 Aggressiveness

A scheme is said as aggressiveness if it takes short time to increase its rate in

response to a step increase of available bandwidth [RKL01]. By such a concept,

Shudong et al. in [JGM03] defined4 the index 1/Aggr(m) as the time required by a

scheme to increase its rate by a factor of m. This work follows [JGM03] showing the

analysis of WARC by 1/Aggr(m) to easily compare WARC with GAIMD, SIMD, and

IIAD, which were analyzed in [JGM03]. According to the analysis in Appendix 2.2,

the aggressiveness of WARC is written as

 ⎧ + + − ≤ +⎪⎪= ⎨
⎪ − + > +
⎪⎩

2

1
()

1 2(18 18) ()
3 3 2

2 1 2() s ().
3 2 3 2

Aggr m
sW W msW sW m W
W
sm W m W
W

 (3.8)

Fig. 3.5(a) compares 1/Aggr(m) of WARC(160) with that of GAIMD(1/5,1/8),

SIMD(1/16) and IIAD(1,2/3) in different m. WARC like SIMD takes shorter time to

converge than GAIMD and IIAD, which is particularly obvious when m is larger than

1.6. Besides, Fig. 3.5(b) shows the tradeoff between aggressiveness and smoothness

for the four TCP-friendly schemes when m=4. Obviously, WARC has better tradeoff

than GAIMD and IIAD. For example, when the four schemes have [] 0.04CV w = ,

WARC takes merely 150 RTTs to converge the rate, but GAIMD and IIAD take 445

and 1080 RTTs, respectively.

4 Actually, Shudong et al. in [JGM03] first defined the index Aggr(m), but they plotted and discussed
all results by 1/Aggr(m). Aggr(m) can be considered as the average acceleration used by a scheme to
increase its rate by a factor of m. Assume that the increased amount of the rate is always one for any m.
Then, the average acceleration is the inverse of the time required by the scheme to increase its rate, i.e.
1/Aggr(m).

Fig. 3.4. The smoothness effects of WARC, GAIMD, and SIMD, relative to that of TCP.

20 40 60 80
W

0.05

0.1

0.15

0.2

0.25

0.3

Norm.
CV[w]

WARC(160)

WARC(120)

GAIMD(1/8)

SIMD(1/16)

WARC(240)

WARC(320)
W

20 40 60 80
W

0.05

0.1

0.15

0.2

0.25

0.3

Norm.
CV[w]

WARC(160)

WARC(120)

GAIMD(1/8)

SIMD(1/16)

WARC(240)

WARC(320)
W

20 40 60 80
W

0.05

0.1

0.15

0.2

0.25

0.3

Norm.
CV[w]

WARC(160)

WARC(120)

GAIMD(1/8)

SIMD(1/16)

WARC(240)

WARC(320)
W

38

3.4.3 Responsiveness

The responsiveness [JGM03] is defined as the inverse of the number of packet

losses encountered by a scheme before the scheme decreases its rate with a factor of

m. A scheme with a high responsiveness means that it decreases its rate in a large step

per packet loss on the average. Similar to 1/Aggr(m), 1/Resp(m) is used in the

following discussion. According to Appendix 2.3, the responsiveness of WARC can

be expressed as

 3 4+ if () (by the RTE control)
1/ () 2 3

 if () (by the HR procedure),

s m m b K
Resp m W

N m b K

⋅ ⋅⎧ <⎪= ⎨
⎪ ≥⎩

 (3.9)

where b(K) represents a separation whose value is displayed as

 () 1.1b K K≈ × .

For the situation where m is lower than the separation, the responsiveness of WARC is

ruled by the RTE control. Otherwise, it is ruled by the HR procedure.

1/Resp(m) represents how many packet losses a scheme would encounter

before converging its rate to 1/m of the original one. As shown in (3.9), WARC has

two types of responsive behaviors individually contributed by the RTE control and the

2 3 4 5
m

200

400

600

800

1000

1
/
A
g
g
r
e
s
s
i
v
e
n
e
s
s
(
R
T
T
s
)

WARC(160) SIM
D(1/16)

GAI
MD(

1/5
,1/

8)

TCP

I
I
A
D
(
1
,
2
/
3
)

2 3 4 5
m

200

400

600

800

1000

1
/
A
g
g
r
e
s
s
i
v
e
n
e
s
s
(
R
T
T
s
)

WARC(160) SIM
D(1/16)

GAI
MD(

1/5
,1/

8)

TCP

I
I
A
D
(
1
,
2
/
3
)

Fig. 3.5. (a) The aggressiveness indices of WARC, SIMD, GAIMD and IIAD under different
increasing factor m’s. The initial average window size before the bandwidth change is 20. (b) The
tradeoff between aggressiveness and smoothness when m=4.

(a)

(b)

0.02 0.04 0.06 0.08

500

1000

1500

2000

2500

3000

3500

SIMD

Smoothness (CV[w])

1
/
A
g
g
r
e
s
s
i
v
e
n
e
s
s

(
R
T
T
s
)

GAIMD

IIAD

WARC

WARC(160)

SIMD(1/16)

GAIMD(1/5,1/8)
IIAD(1,2/3)

0.02 0.04 0.06 0.08

500

1000

1500

2000

2500

3000

3500

SIMD

Smoothness (CV[w])

1
/
A
g
g
r
e
s
s
i
v
e
n
e
s
s

(
R
T
T
s
)

GAIMD

IIAD

WARC

WARC(160)

SIMD(1/16)

GAIMD(1/5,1/8)
IIAD(1,2/3)

39

HR procedure. To display the two behaviors, Fig. 3.6(a) plots the 1/Resp(m) of WARC

over various m. When m is small, WARC runs under the RTE control and the number

of the encountered losses before its convergence is direct proportional to m. Also,

WARC with large s would take more losses since it is supposed to have a smoother

rate. However, when m is large, the HR procedure would be invoked, leading that

WARC converges its rate right after a fixed number of losses. Fig. 3.6(b) further

displays the different effects on the responsiveness brought by various configurations.

Fig. 3.7(a) compares the responsiveness of WARC(160) with that of other

schemes. Although WARC takes more packet losses to converge its rate when the

change of loss condition is small, it takes merely half of losses as SIMD and IIAD to

converge its rate when the change is large. Unlike other schemes, WARC takes

different responsive behaviors for different degrees of loss change, which makes

WARC keep its rate smooth under small and temporary changes of loss condition, but

quickly respond to the abrupt change right after N losses. Fig. 3.7(b) shows the

tradeoff between smoothness and responsiveness for the four schemes. As expected,

WARC will take more packet losses before it converges its rate if the loss change is

small as shown in the top of the figure, but it will take fewer losses if the change is

large as shown in the bottom.

Fig. 3.6. The responsiveness of WARC under varied decreasing factor m’s. The initial average
window W before bandwidth change is 20. (a) Different s. (b) Different pairs of K and N.

(b)

2 4 6 8
m

10

20

30

40

50

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

K=3,N=12

WA
RC
(2
00
)

WA
RC
(1
60
)

WA
RC
(1
20
)

2 4 6 8
m

10

20

30

40

50

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

K=3,N=12

WA
RC
(2
00
)

WA
RC
(1
60
)

WA
RC
(1
20
)

2 4 6 8
m

10

20

30

40

50

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

K=3.5,N=16
K=3,N=12

K=2.5,N=8

WARC(160)

2 4 6 8
m

10

20

30

40

50

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

K=3.5,N=16
K=3,N=12

K=2.5,N=8

WARC(160)

(a)

40

3.4.4 False Positive of the HR procedure

Although the HR procedure provides WARC fast responsiveness when the

available bandwidth reduces dramatically, the smoothness of WARC may be degraded

if the procedure is invoked unnecessarily, i.e. invoked for a temporary and small

reduction. We call such an unnecessary invocation as a false-positive case. The

following analyzes the probability on the false-positive invocation when the HR

procedure is given a specific configuration of (K, N). The analysis will suggest that (K,

N)=(3,12) should be a suitable configuration.

Herein we define a false-positive invocation as that the HR procedure is invoked

when the inter-loss time is stationary. Assume that in the steady state R(t, s) equals to

the mean throughput of a TCP flow, which approximates 1.5 E[X] where E[X] denotes

the mean inter-loss time in RTT [AAB05]. By the definition, under the stationary

inter-loss time, the probability that (3.2) is true, i.e. HR is invoked, can be expressed

as

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10

20

30

40

50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10

20

30

40

50

Smoothness (CV[w])

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

WARC(160)

SIMD(1/16)

GAIMD(1/5,1/8)

IIAD(1,2/3)

WARC

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10

20

30

40

50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10

20

30

40

50

Smoothness (CV[w])

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

WARC(160)

SIMD(1/16)

GAIMD(1/5,1/8)

IIAD(1,2/3)

WARC

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10

20

30

40

50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10

20

30

40

50

Smoothness (CV[w])

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

WARC(160)

SIMD(1/16)

GAIMD(1/5,1/8)

IIAD(1,2/3)

WARC

Fig. 3.7. The responsiveness of WARC, SIMD, GAIMD and IIAD.
(a) Responsiveness under different increasing factors.
(b) Responsiveness versus smoothness when m=1.7 and m=4

(b)

WARC
SIMD

SIMD
GAIMD

IIAD

GAIMD

IIAD

(a)

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

2 4 6 8
m

10

20

30

40

50

WARC(160)K=3,N=12

GAIMD(1/5,1/8)
IIAD(1,2/3)

SIM
D(1/

16)

TCP=GAIMD(1,1/2)

1
/
R
e
s
p
o
n
s
i
v
e
n
e
s
s

(
#
l
o
s
s

e
v
e
n
t
s
)

2 4 6 8
m

10

20

30

40

50

WARC(160)K=3,N=12

GAIMD(1/5,1/8)
IIAD(1,2/3)

SIM
D(1/

16)

TCP=GAIMD(1,1/2)

2 4 6 8
m

10

20

30

40

50

WARC(160)K=3,N=12

GAIMD(1/5,1/8)
IIAD(1,2/3)

SIM
D(1/

16)

TCP=GAIMD(1,1/2)

41

1

3 31
2 21

1 1
1

[() (,)]

[() []]

[() []].

TCP K
N

N Kj

N
N Kj

P R N R t s

P X j E X

P X j E X

=

=

≤

= − ≤

= − ≤

∑
∑

 (10)

Obviously, the probability is controlled by two parameters: K and N. According

to the Internet loss conditions reported in [ZDP01], we assume that the inter-loss time

X experienced by a flow follows an i.i.d. exponential distribution with a parameter λ =

1/E[X]. Then, since the term
=

−∑ 1
()N

j
X j in (3.10) represents the sum of N exponential

random variables, it forms a gamma distribution (N, λ) by the probability theory.

Therefore, (3.10) could be rewritten as

()1

1 1

(,) (,1)

() (,)

() [] ()

() (),

TCP K

N N

j j

gamma N gamma N

P R N R t s

N NP X j E X P X j
K K

N NF F
K Kλ

λ

λ

= =

≤

⎛ ⎞ ⎛ ⎞= − ≤ = − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

∑ ∑
 (11)

where Fgamma(a,b) is the cumulative distribution function of the gamma distribution

with the shape parameter a and the scale parameter b. λ is set to 1 since its value does

not affect the probability.

According to (3.11), Fig. 3.8 plots the numerical results of the probability of

false-positive invocation over different K and N. Assume we expect that WARC has

10-3 of the false positive probability; then, the possible configuration of (K, N) may

include (2.5,16), (3,12) and (3.4,10). The probability of 10-3 implies that the HR

procedure may be unnecessary invoked once per 1000 losses. The probability should

be low enough. Assume W is the mean CWND of a flow and the inter-loss time in

RTT is W/1.5 [AAB05]. Also, the possible range on W is from 6 to 30 [JID04] and the

possible range on RTT is from 0.050s to 0.300s. Then, the mean time spanning 1000

losses in second is

 0.3 30

0.05 6

1 1 1000 2100
0.3 0.05 30 6 1.5

W RTT dW dRTT⎛ ⎞⎛ ⎞× × =⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠∫ ∫ ,

which should be long enough because the period of a stationary state in the Internet

mostly is shorter than 600 seconds [ZDP01].

42

3.5 Simulation Results
This section evaluates and shows that WARC has better behaviors than eight

TCP-friendly schemes in terms of 4 properties: fairness, smoothness, aggressiveness

and responsiveness, by running the ns-2 simulator [NS06]. Herein a TCP-friendly

scheme represents it aims to be TCP-equivalent. Table 3.1 describes the control

parameters of each scheme used in the simulation, which were suggested individually

according to the corresponding papers.

TABLE 3.1. THE CONTROL PARAMETERS USED IN EACH SCHEME

SCHEME CONTROL PARAMETERS REF.

WARC s=160, K=3, N=12

GAIMD α=0.2, β=0.125 [YL00]

IIAD α=1.0, β=0.67, k=1, l=0 [BB01]

SQRT α=1.0, β=0.67, k=0.5, l=0.5 [BB01]

SIMD β=0.0625, k=-0.5, l=1 [JGM03]

AIAD/H β=0.25, k=0, l=0 [JGM03]

TFRCP Interval=5 seconds [PKT99]

TFRC The number of samples=8 [FHP00]

TEAR The number of samples=8 [ROY00]

3.5.1 Fairness

3.5.1.1 Simulation topologies

WARC and other selected schemes are evaluated in three cases. The former two

use an artificial packet loss link, as plotted in Fig. 3.9, to drop packets based on

mathematical model. Such a link is usually for testing the fairness between TCP and

the TCP-friendly scheme because it ensures the identical loss conditions experienced

by any two passing flows, which is a basic assumption for these schemes to perform

fairness. The mathematical model used here follows a general exponential distribution,

Fig. 3.8. The probability of the false-positive invocation of the HR procedure
2.2 2.4 2.6 2.8 3 3.2 3.4

k

0.002

0.004

0.006

0.008

0.01

N=16 N=12

N=10
N=8

Prob.

K

10-3

2.2 2.4 2.6 2.8 3 3.2 3.4
k

0.002

0.004

0.006

0.008

0.01

N=16 N=12

N=10
N=8

Prob.

K

10-3

43

which has two degrees of freedom and thus allows its coefficient-of-variation to be

changed while fixing its mean, or vice versa. By the general exponential distribution,

we can test the fairness behavior in term of different means and different CVs,

individually. Sufficient bandwidth is allocated for this link to prevent the packets

being dropped because of overflow.

The third case makes all flows compete for a single bottleneck, which may be

managed by the Drop-Tail or RED algorithms. The test is used to verify whether a

TCP-friendly scheme is safe to deploy in the Internet. Fig. 3.10 shows the dumbbell

topology used in this test. The v TCP-friendly flows compete with v TCP flows for a

single bottlenecked link. All flows have backlogged data for the whole testing period.

Such a scenario tests whether v TCP-friendly flows can share the same bandwidth

with v TCP flows under different levels of congestion. The capacity of the congested

link is configured to 15Mbps or 60Mbps, and that of other links to 100Mbps. The

value v is changed from 1 to 64. The queue size is 1.5 and 2.0 of bandwidth-delay

product when R1 is managed by Drop-Tail and RED, respectively. The propagation

delay of the links from the sources to R1 or from R2 to the destinations is uniformly

distributed between 10 to 30 ms.

3.5.1.2 Case I - Under artificial-loss links with different means

Fig. 3.11 displays the normalized throughput of each TCP-friendly scheme,

compared with TCP, over the links with different means of the number of inter-loss

packets. The link discards packets every time when receiving P packets, where P is a

Fig. 3.10. The dumbbell topology used to test the fair sharing between TCP and TCP-friendly

R2R1

100 Mbps
10~30 ms

10 msDrop-Tail
or RED

Sv

S1

Dv

D1

S’v

S’1

D’v

D’1

v TCP
sender

v TCP-friendly
sender

v TCP
receiver

v TCP-friendly
receiver

15 or 60 Mbps

S DR1 R2

100Mbps
30 ms

Discarding packets
 by general exp. distribution

Fig. 3.9. The artificial loss-link topology is used to provide the same loss condition for any two
flows running through the link R1-R2.

100Mbps
2ms

100Mbps
2ms

44

general exponential distributed random variable with a small coefficient-of-variation

(CV[P]=0.01). The results are averaged from three 2200-seconds runs and the data in

the beginning 200 seconds is ignored. Error bounds of the results are not presented

because the three runs almost have the same results.

Fig. 3.11 shows WARC like SQRT has better fairness than other schemes under

various loss ratios. Particularly under the cases where the ratio>0.03, WARC provides

0.8~1.1 of TCP’s throughput while GAIMD, SIMD 5 and IIAD provide lower

throughput than TCP’s (0.4~0.6). The curve “WARC w/o TO” in the right part of Fig.

3.11 represents the result of WARC without the fluid-based timeout mechanism. By

comparing this curve with that of WARC, it is demonstrated that the timeout

mechanism proposed in Chapter 3.2.2.3 does prevent WARC from using more

bandwidth than TCP under the heavy-loss conditions. Moreover, although GAIMD,

SIMD and IIAD use the TCP timeout mechanism to control their rate under

heavy-losses, their lower throughput reveals that directly using the TCP timeout

mechanism does not ensure fairness, which results from that they trigger the timeout

mechanism more frequently than TCP, according to our further observation.

3.5.1.3 Case II - Under artificial-loss links with different CVs

The following reveals the fairness behaviors of schemes under the link with

different coefficient-of-variations of inter-loss time. The used link drops packets per T

5 The congestion control parameters of SIMD used in Case I is specially calculated for CV[P]=0 to match the loss model used
here. Under this case, the original parameters [JGM03], optimized for CV[P]~1, will cause SIMD to get lower bandwidth than
its result now plotted in Fig. 10.

Fig. 3.11. The throughputs of TCP-friendly schemes normalized with that of TCP under different
loss probabilities. Results are separately plotted in two parts for clarity.

45

seconds where T follows a general exponential distribution with E[T]=5 and CV[T]

uniformly increases from 0 to 1. In this testing case, the link drops packets based on

the escaping time from the last loss, instead of the number of received packets as that

in Case I, since dropping-by-time would be more realistic to emulate the loss

conditions in the highly multiplexing network like the Internet [BCC98]. Actually, we

also observed the fairness behaviors of schemes under the link with different

coefficient-of-variations of inter-loss packets. However, the result is skipped because

it is similar to that in Fig. 3.12.

Fig. 3.12 shows that WARC uses the same throughput as TCP under all CV[T]’s

because it is supposed to perform fairness under stationary losses, as proved in

Chapter 3.3. Contrarily, most schemes only have the fairness as CV[T]=0, i.e. as the

loss occurs periodically, because the assumption of periodic losses is given in these

schemes. Actually, this assumption does not consist with the loss pattern in the

Internet. The inter-loss time in Internet may approximate an i.i.d. exponential

distribution [ZDP01], which is the link with CV[T]=1. Under CV[T]=1, WARC

provides the fairness, but GAIMD and TFRC only have about 80% throughput of TCP

while TEAR, IIAD, SQRT, and AIAD/H have 60% on the average.

The TFRCP and SIMD flows exhibit different trends from others. The distinctness

of TFRCP is due to the convex TCP throughput equation [VB05] while that of SIMD

results from that SIMD computes the congestion control parameters under the loss

model with CV[P]~1 [JGM03]. We also plot the curve SIMD/Period for the SIMD

with the parameters computed under CV[P]=0, which does not use the same

Fig. 3.12. The throughputs of the TCP-friendly schemes normalized with that of TCP under the
artificial-loss links with different CV[T]. Results are separately plotted in two parts for clarity.

46

throughput as TCP.

3.5.1.4 Case III - Under Drop-Tail or RED

Fig. 3.13 and 3.14 show the results that TCP individually competes with five

TCP-friendly schemes under the four configurations of the congested link: (Drop-Tail,

15Mbps), (Drop-Tail, 60Mbps), (RED, 15Mbps), and (RED, 60Mbps). For each

configuration, five schemes are separately shown in two figures for clearness. As

shown in Fig. 3.13(a)(c) and Fig. 3.14(a)(c), WARC almost has the similar behavior

as TFRC to equally share the bottleneck bandwidth with TCP under the four

configurations. As shown in Fig. 3.13(c), WARC, as well as TFRC and TEAR, has

slightly lower throughput than TCP, because the rate-based control mechanism taken

in the three schemes may experience a bit higher loss ratio than the window-based

control mechanism taken in GAIMD and SIMD. These additional losses results from

that the former does not really control the data packet transmission by the received

acknowledgement packet and thus cannot respond to the overflow of the Drop-Tail

queue within a RTT.

Fig. 3.13. The competing results between TCP and five TCP-friendly schemes under the links managed
by Drop-Tail are shown. TCP(X) plots the average normalized throughput of TCP flows which
compete with the flows controlled by the scheme X.

(a) (b)

(c) (d)

15Mbps link

60Mbps link 60Mbps link

15Mbps link

TEARWARC
TFRC

GAIMD SIMD

WARC,
TEAR,TFRC

47

Fig. 3.13(a)(b) and Fig. 3.14(a)(b) display that TEAR and SIMD may have

unequal sharing to TCP when the number of flows v exceeds 16. Our further study

finds that under such conditions, TCP may encounter many losses, so controlling its

rate with the timeout mechanism. In such a situation, as mentioned in Chapter 5.1.2,

TEAR may use more bandwidth while SIMD and GAIMD may use less one than

TCP.

3.5.2 Smoothness

Herein the smoothness degree of a WARC flow is revealed and compared with

that of the flows carried by TCP and other TCP-friendly schemes. The smoothness

degree is observed over different time scales, because a scheme would be more

favorable to control the rate of a streaming flow if it can provide a smooth rate even

under a small time-scale. We define the smoothness metric as follows. The rate of a

flow, R, is sampled per 0.1 second. The CVk[R] is the coefficient-of-variation of R

(CV[R]) calculated over k samplings and represents the smoothness of a flow at the

time scale k.

The topology shown in Fig. 3.10 is applied for the testing. Ten TCP flows

compete with ten WARC flows for a 40 Mbps-link. RED is employed as the queue

management policy in this link and the queue size is set as twice bandwidth-delay

product. The competition continues 2200 seconds and the data in the former 200

Fig. 3.14. The competing results between TCP and five schemes under the links managed by RED are
shown.

(a) (b)

(c) (d)

15Mbps link

60Mbps link

15Mbps link

60Mbps link

TEARWARC,
TFRC

GAIMD SIMD

48

seconds is eliminated from the statistics of results. We also run such a competition for

other TCP-friendly schemes.

For each TCP-friendly scheme, Fig. 3.15 plots its CVk[R] normalized with that of

TCP over different time scale k’s. WARC, as well as TFRC and TEAR, has better

smoothness than other schemes because of its RTE control. It is also demonstrates that

the smoothness in WARC does not be destroyed by its fast aggressive and responsive

capabilities. Moreover, the results in this figure shows these TCP-friendly schemes do

provide smoother rate than TCP in the long term, observed from the normalized

CV512[R]~0.5. Lastly, because these schemes avoid largely changing their rates

between two losses, they have better smoothness at the time scale 16 (1.6 second)

which approximates the average inter-loss time in the testing.

3.5.3. Aggressiveness and Responsiveness

To demonstrate the fast-convergent behavior in WARC, an on/off CBR traffic

with obviously different rates between on and off periods is used, as shown in Fig.

3.16. Such traffic brings dramatic changes on the packet loss condition and thus

provides the required transient-state scenarios. In [BBF01], such an oscillating CBR

traffic is used to observe whether GAIMD, TFRC, IIAD, and SQRT use the same

bandwidth as TCP. The bottleneck in the test is a 16Mbps link managed with

Drop-Tail, where the rate of the on/off CBR traffic oscillated between two values,

15Mbps and 10Mbps, to vary the bandwidth available for the TCP-friendly flow to

1Mbps and 6Mbps, respectively. The propagation delay of flows was 30 ms, and the

Fig. 3.15. The smoothness of each scheme over different time scales.

WARC
TFRC TEAR

SIMD

49

queue size was set to 1.5 times the bandwidth-delay product.

Fig. 3.17 first shows that WARC has the fast aggressiveness when additional

bandwidth becomes available at the 450th second. WARC like SIMD converges

toward the new rate within about 20 seconds, which is shorter than GAIMD, TFRC

and TEAR. The fast aggressiveness results from that WARC forgets the measured

packet loss conditions earlier than a fixed number of RTTs, but TEAR and TFRC

cannot do it, as mentioned in Chapter 3.2.1.

On the other hand, by using the HR procedure, WARC like TFRC and TEAR has

the fast responsiveness at the 600th second. A fine look at Fig. 3.17 around the 600th

second reveals that the HR procedure in WARC is invoked at 603th second. Once the

HR procedure is invoked, the rate of WARC immediately reduces to the expected TCP

rate. Fig. 3.18 shows the number of losses encountered by each schemes between the

600th and 620th second, normalized with that by TCP. Obviously, by using HR, WARC

encounters fewer losses than GAIMD and SIMD before reducing its rate toward

TCP’s.

Fig. 3.17. The comparison between five TCP-friendly schemes on aggressiveness and
responsiveness under the on/off CBR background traffic

GAIMDSIMD TCP

WARC TFRC

TEAR

Fig. 3.16. The topology with oscillating CBR background traffic, used to test TCP-friendly
schemes in terms of aggressiveness and responsiveness

S D
R1 R2

100Mbps
2ms

100Mbps
2ms 16 Mbps

26 ms

S’ D’

TCP-friendly
sender

on/off CBR
sender

TCP-friendly
receiver

on/off CBR
receiver

Drop-Tail

50

Notably, in Fig. 3.17 the curve WARC’ plots the rate of a flow controlled by WARC

without the one-RTT reduction procedure. Obviously, the curve is more oscillatory

than that of WARC since the flow encounters more packet losses when the queue of

the bottleneck is overflowed. The result confirms that the one-RTT reduction

procedure prevents a WARC flow from the sequential losses and the rate oscillation

when the flow alone passes through a Drop-Tail link.

Next, we observe whether WARC uses the same bandwidth as TCP under links

with various frequencies of oscillating CBR traffic. In this test, the length of the

on/off period of the CBR traffic is varied from 2 seconds to 128 seconds. Fig. 3.19

plots the average rates of WARC and other TCP-friendly schemes, normalized with

that of TCP for comparison. Obviously, when the oscillating period is smaller than 16,

all schemes intends to keep its rate smooth, so they get less bandwidth than TCP.

However, under the link with long oscillating period, since WARC like SIMD has the

fast aggressiveness to immediately use the available bandwidth, it can use the similar

bandwidth as TCP.

Fig. 3.18. The number of losses encountered by WARC, WARC without HR, and other four
schemes between the 600th

 ~ 620th second are plotted, which are normalized with that by TCP.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

TFRC TEAR WARC GAIMD SIMD WARC
w/o HR

no
rm

.
#

 o
f
lo

ss
es

Fig. 3.19. The normalized throughputs of TCP-friendly schemes under an oscillating CBR traffic

51

3.6 Related Work
This work focuses on congestion control schemes which use smooth and

TCP-equivalent rate to send packets over the Internet. These schemes like TCP

NewReno and SACK consider packet loss as congestion signals to adjust their rates.

Actually, besides packet losses, the RTT variation can be used to detect congestions,

as in TCP Vegas [BP95] and FAST [JLH07]. Although RTT-based schemes provide a

smooth rate too, they may use the network bandwidth unequal to that used by

loss-based versions of TCP [TWH05], which still take charge of carrying most traffic

over the Internet. C. Zheng and V. Tsaoussidis [ZT06] recently proposed a scheme

using both losses and RTTs, which may be a solution to the unfairness problem.

All the schemes mentioned above have a low barrier to deploy into the Internet,

because they detect congestion by the packet loss or/and delay and need not any

feedback from routers. However, adjusting rate only by loss and delay may not work

well in high Bandwidth-Delay Product (BDP) networks [LPW03][KHR02], which a

future Internet may belong to. Therefore, researches, e.g. [KHR02] and [XSS05] ,

consider a tight corporation model between congestion control schemes and routers.

XCP [KHR02] is such a control scheme and requires multiple-bits congestion-related

feedback from routers. However, since there is no space in IP header to carry these

bits, XCP has a high barrier to be deployed in the Internet. Recently, VCP is proposed

in [XSS05] to use two bits to provide the similar effect as XCP. Although VCP

overcomes the problem in XCP, it still requires that all routers on the path encode the

level of congestion in the IP header. Therefore, the schemes which require feedback

from routers, e.g. XCP or VCP, may not be soon applied in the Internet to carry

streaming traffic.

Besides the congestion control, other factors must also be considered when

designing a protocol for carrying streaming traffic. E. Kohler et al. [KHF06]

discussed these factors in depth, and proposed the Datagram Congestion Control

Protocol (DCCP). DCCP allows free selection of a congestion control scheme, and

therefore is the most realistic means for practical use of schemes addressed in this

study. The protocol currently only includes two schemes, namely TCP-like and TFRC.

We strongly encourage adding other schemes to this protocol.

52

3.7 Applicability
There are two possible applicable positions in end hosts to deploy WARC. The

first is in the network transport layer, which is a heuristic position because WARC is

proposed to play a role like AIMD, which is in a transport-layer protocol, i.e. TCP.

However, instead of modifying TCP to support WARC, we suggest adding WARC

into DCCP [KHF06], a transport protocol recently designed for streaming. Compared

to TCP tightly binding AIMD, DCCP leaves options for the rate control schemes, and

thus WARC can easily stand as one of the rate-control options in DCCP. Besides,

DCCP removes several mechanisms in TCP, e.g. fast retransmission and fast recovery,

which are unnecessary for streaming and may cause additional packet delay.

In fact, deployment in the transport layer is also favorable to promote WARC for

existing streaming applications. Today most applications access the Internet through a

socket interface, which wraps the complex network protocols like TCP/IP in a

standard I/O functions, e.g. open/close and read/write. Therefore, there is no barrier to

enable these applications using new rate controls or transport protocols because the

socket interface is unchanged. However, the con of this deployment is the necessary

of kernel programming of operating system (OS), since the transport layer is usually

implemented inside the kernel. Therefore, it is difficult to implement WARC into the

kernel if the OS does not open the programming interface for the deployment.

Fortunately, it is difficult only but not impossible. Today, even the commercial OSs,

like Microsoft Windows, have released the programming interface for adding the

third-party transport protocols or rate controls.

For the OSs without interfaces for modifying its network transport layer, the

second position to deploy WARC is in an application-layer library, which can support

the development of streaming programs. An open-source package named LiveMedia

library [LM07] is such a candidate. LiveMedia accesses the Internet via the socket

interface, supports many media coding algorithms and can be used under multiple

OSs, like Linux and Windows.

However, deployment in the second position has to consider whether the network

conditions reported from real-time transport control protocol (RTCP) [SCF03] is

enough for WARC to control the rate, where RTCP is a widely-used application-layer

protocol to transmit the control messages for streaming playback. Actually, RTCP

does not provide enough network conditions for the TCP-equivalent schemes

53

introduced in this dissertation. Therefore, an IETF draft [LG07] has been proposed to

consider the required changes of RTCP to support the deployment of these schemes.

The conclusion of the draft will also be applied on WARC because WARC needs the

same network conditions as the existing schemes, e.g. RTT and loss events.
3.8 Summary

This work proposes a window-averaging rate control (WARC) scheme to

simultaneously meet four necessary properties required by a TCP-friendly

streaming-carrying scheme: fairness, smoothness, aggressiveness and responsiveness.

WARC takes the run-time estimation (RTE) model to adjust the rate. It averages

the rate over a constant number of CWNDs, leading to its two inherent advantages:

fairness under stationary conditions and fast aggressiveness, both are not owned by

most existing well-known schemes, such as GAIMD, TFRC, TEAR, and IIAD.

Besides, WARC additionally employs three complements including the history-reset

procedure, the one-RTT reduction procedure, and the fluid-based timeout mechanism,

in order to respectively handle three special but realistic loss conditions: bursty-losses,

low-multiplexing network, and heavy-losses.

The analysis shows that WARC like SIMD has the faster aggressive behavior and

better tradeoffs between smoothness and aggressiveness than other schemes. That is,

WARC takes shorter time to converge its rate, while providing a smoother rate at the

most time. Besides, the HR procedure ensures WARC to respond to the abrupt

decrease of available bandwidth right after a fixed number of packet losses. The

simulation verifies the analytic results that WARC use the same bandwidth as TCP

under stationary non-periodic losses, where most schemes fail to have that. Also, it

shows that WARC uses the bandwidth close to TCP’s even under the oscillating

background traffic.

Briefly, while WARC uses the same bandwidth as TCP under the cases where

other well-known TCP-friendly schemes cannot, WARC still provides the smoother

rate than all of them. On the other hand, while WARC provides far faster

aggressiveness behavior than other schemes, WARC also fast decreases its rate for an

abrupt decrease of available bandwidth right after a fixed number of loss events.

54

Chapter 4

On Applying Fair Queuing Discipline to

Schedule Requests at Access Gateway for

Downlink Differential QoS

4.1 Introduction
Numerous enterprises connect to the Internet with the access link of Internet

service provider (ISP), a typical topology of which could be depicted as Fig. 4.1. In

general, ISPs are willing to invest money in expanding the backbone bandwidth to

provide their customers better service. However, to minimize costs, their customers

often delay upgrading the bandwidth of the access link, which consequently becomes

the potential bottleneck to access the Internet. To guarantee key traffic getting enough

bandwidth when passing through the bottlenecked link, their customers may employ a

class-based fair-queuing (FQ) discipline or other packet-based bandwidth

management [WTL04] at the user-side access gateway to scheduling packets.

Unfortunately, these packet scheduling solutions fail to provide such guarantee

when the downlink is the bottleneck. In this case, packets are queued at the ISP-side

edge router, not at the user-side gateway, for traversing the bottleneck. Scheduling

packets at the user-side access gateway is useless because the packets have passed the

bottleneck. On the other hand, although scheduling packets at the ISP-side edge router

is useful, classifying packets at this router may be troublesome because of the network

address transfer (NAT) technique, which is widely deployed at the user-side gateway

to allow multiple users in an intranet sharing a public IP address. The packets which

Server1
Access
Link

Internet

User-side
Access

Gateway

ISP-side
Edge

Router

Client1

Intranet
Clientn

Serverm

Server1
Access
Link

Internet

User-side
Access

Gateway

ISP-side
Edge

Router

Client1

Intranet
Clientn

Serverm

Fig. 4.1. A typical network topology that an enterprise accesses the Internet through ISP

55

intend to enter the intranet cannot be classified by the ISP-side edge router because

the classification needs to refer to the destination IP addresses of these packets but

unfortunately they have the same destination IP address before they enter the

NAT-embedded user-side gateway.

Scheduling requests, instead of packets, at the user-side access gateway may solve

the mentioned failure condition of packet scheduling. Such an idea is based on that

applications running over the Internet mostly take the client-server model, i.e. the

request/response model, such as HTTP, FTP, and E-mail. Requests sent from clients

go through the access gateway and the uplink of the access link to remote servers, and

the corresponding responses answered by the remote servers return to clients through

the downlink of the access link and the access gateway. The bandwidth of downlink

could be managed by controlling the releasing of uplink requests.

Request scheduling was used in several studies to provide differential Web QoS for

different-classes users [CKD02]. These studies provided QoS services by designing

request scheduling on a single Web server [PBB98, BBK00, CP99] or a web-side

gateway, i.e. a gateway ahead close to a group of Web servers [CCC02, CC01,

LGC01]. However, no published studies discussed how to design request scheduling

at the user-side access gateway. The key difference of scheduling requests at the

server or the web-site gateway from at the user-side gateway is that the target web

servers in the former are specific and their statuses are easy to be measured or

controlled for assisting in the scheduling operation. However, the servers in the latter

are infinite, distributed over the Internet, and cannot be controlled.

In order to provide bandwidth sharing and weighted fairness among users of

different classes on their downlink responses, this work studies how to schedule

uplink requests at the user-side access gateway. We first investigate the possibility of

applying the class-based FQ discipline, which is widely and maturely used in

scheduling packets, to schedule requests. However, we found that simply applying the

discipline to schedule requests would encounter three problems. The first two are

related to the timing of releasing requests and the selection of the next released

request. The last one is about the class-based policy, which may not suit for the

user-level differentiation, i.e. may not guarantee high-class users to get more

bandwidth than low-class ones when more users appear in the high class. Next, based

on the above investigation, we propose a minimum-service first request scheduling

(MSF-RS) scheme to provide bandwidth sharing and user-based weighted fairness, i.e.

56

a policy that the ratio of the bandwidth allocated for each high-class user to that for

each low-class user matches the ratio of their weights.

MSF-RS consists of a minimum-service order arbiter (MOA) and a window-based

rate controller (WRC). MOA always selects the next request from the class which

receives the lowest amount of responses while WRC determines the timing to release

a request by monitoring the downlink utilization and controlling the number of

outstanding responses. A response is regarded as outstanding if its corresponding

request is released, but the response has not been received completely. MSF-RS is

originally designed based on the assumption that the uplink traffic consists of requests

only and the downlink traffic consists of responses only. Also, it is supposed that each

response comes back to answer a request forwarded by MSF-RS. However, MSF-RS

also works well under the network where the exceptive traffic coexists with the

assumed traffic. We would further discuss the traffic-mixed case and show the

robustness of MSF-RS by simulation in Chapter 4.6.

The remainder of the work is organized as follows. Chapter 4.2 identifies the three

problems occurring in scheduling requests with the class-based fair queuing discipline.

Also, the user-based weighted fairness is introduced herein. Chapter 4.3 proposes the

MSF-RS scheme. Chapter 4.4 reveals that MSF-RS does shorten the user-perceived

latency and analyzes the delay bound and fairness of MSF-RS. The effects of

MSF-RS on the delay and fairness are further demonstrated by the simulation results

in Chapter 4.5. Besides, the affection of exception traffic on MSF-RS is discussed in

Chapter 4.6. Chapter 4.7 demonstrates the effect of MSF-RS through field trail, where

MSF-RS is implemented in Squid [SQI06], an open-source Web proxy package.

Chapter 4.8 gives the summary.

4.2 Problems on Using Class-based Fair Queuing
Three problems would occur when the class-based FQ is used to schedule requests.

The former two are related to the FQ discipline while the last is about the class-based

policy.

4.2.1 The Timing for Releasing Requests

A FQ-based packet scheduler selects and sends the next packet right after the last

packet has finished its transmission. The bandwidth of the link behind the scheduler

would be totally consumed by the scheduled packets themselves. That is, each packet

transmission can monopolize the link bandwidth. However, a FQ-based request

57

scheduler cannot send the next request immediately following the last request. The

bottleneck downlink is consumed by responses, rather than scheduled requests.

Releasing requests one-by-one may bring a large number of concurrent response

transmissions at the bottleneck downlink, because the transmission time of a response,

due to its size, is often longer than that of a request. Each transmission, under such a

condition, only shares small bandwidth, resulting in the serious congestion or the long

user-perceived latency. On the other hand, the request scheduling cannot just wait to

send the next request till the preceding request completely gets its response, because

such a waiting may waste the downlink bandwidth. After a request is sent out, until its

response returns, the downlink bandwidth will be idle. Besides, even when the

response is transmitting, the transmission may not run out the whole downlink

bandwidth.

Since requests cannot be sent out as packets, a mechanism is necessary to control

the request releasing based on the bandwidth utilization, in order to avoid the

downlink from congestion while keeping it on high utilization.

4.2.2 The Determination of the Next Request

A FQ-based packet scheduler selects the next packet which is the earliest one to be

completely served, or say fully transmitted, in the fluid-based general processor

sharing (GPS) model [PG93]. The order of service completion is easily determined

when a packet arrives because the determination only involves two known parameters,

packet arrival time and packet size. For two packets arriving at the same time, the

packet size decides the order of service completion time. A smaller packet finishes

service earlier.

However, in a FQ-based request scheduler, although the arrival time of each

request is known, the size of a request does not affect the service time of the request,

which however is counted from releasing a request to receiving its whole response

and mainly contributed by the transmission time of the response. Because the

transmission time is determined by the response size and the available bandwidth in

Internet, it is uncertain at the request-scheduling moment. Therefore, the completion

time is uncertain too and the request scheduling cannot serve request simply by its

completion order. Hence, the selection of the next request will be a problem when the

FQ discipline is applied to request scheduling.

4.2.3 The Class-based Fairness Policy

The class-based fairness policy is originally proposed to provide differential QoS

58

for different service types of connections. For example, the real-time connections and

the best-effort connections would be classified into two distinct classes. Then,

according to the weights of these classes, each class is allocated with a fixed

proportion of bandwidth. When the class-based policy is applied, to guarantee that

each connection in a class gets enough bandwidth, controlling the number of the

active connections in the class is necessary. Establishing new connections will be

rejected when the number of active connections exceeds the expected value.

However, when the class-based fairness policy is applied on providing differential

QoS for different levels of users, it may expose undesirable characteristics for

high-class users. For example, a high-class user may be rejected from getting service

when the number of users now in the high class exceeds the expected value. Besides,

if the number of users in the high class is much more than that in the low class, each

high-class user may get lower bandwidth than the low-class user. Therefore, another

policy may be necessary to always provide the high-class users more bandwidth

particularly when more users are active in the high class than the low class. We call

such a policy the user-based weighted fairness. The policy guarantees that the ratio of

bandwidth allocated for each high-class user to that for each low-class user matches

the ratio of their weights.

4.3 A Request Scheduling Scheme for User-side

Gateway
The section proposes a minimum-service first request scheduling (MSF-RS)

scheme, which is deployed at the user-side access gateway and can provide user-based

weighed fairness, bandwidth sharing, full bandwidth utilization, and short

user-perceived latency. As shown in Fig. 4.2, the MSF-RS scheme consists of a

minimum-service order arbiter (MOA) and a window-based rate controller (WRC).

The former decides which request is the next one while the latter determines the

timing to release requests.

59

4.3.1 Minimum-service Order Arbiter (MOA)

As shown in Fig. 4.2, MOA includes a request selector, a request receiver, and

three groups of variables. Each class is allocated a queue Q, a user counter (UC), a

service counter (SC), and a weight w.

1) UC and SC: The UC of a class keeps the number of the active users now in

the class, where the active user means an intranet user who has requests or

outstanding responses in MSF-RS. The SC of a class keeps the amount of services

which the class has received. Herein the service represents the received responses in

bytes after normalized with w and UC. That is, every time when one class, say the

class i, partially receives its response of length L, its SC, SCi, is updated as

 new old
i i

i i

LSC SC
w UC

= +
×

. (4.1)

By normalizing L with w during the SC update, the ratio of the responses received by

any two classes with the same SC will match the ratio of their weights. Similarly, by

normalizing L with UC, the ratio of the received responses of the two classes will

match the ratio of their active users. That is, even when the number of active users in

the high class is much more than that in the low class, the ratio of the responses got by

one high-class user to that by one low-class user still matches the ratio of their

pre-assigned weights.

2) Next request selection: As shown in Fig. 2, when a request arrives, the

classifier Cq forwards the request into the corresponding Qi. On the other hand, the

Fig. 4.2. The internal architecture of MSF-RS

Cr

Q2

Qn

Cq

Requests

Response

request
selector

SC1

SCn

W

End of RI

U

W+

Minimum-Service First Request Scheduling (MSF-RS)

End of Rsp.

Minimum-service order
arbiter (MOA)Q1

A changes BA B
A is referenced by BA B

Data flow

Window-based
rate controller (WRC)

request
receiver

UC1 UCn

request
releaser

w1 w3

SC: Service Counter
UC: User Counter
w: Weight

Cr

Q2

Qn

Cq

Requests

Response

request
selector

SC1

SCn

W

End of RI

U

W+

Minimum-Service First Request Scheduling (MSF-RS)

End of Rsp.

Minimum-service order
arbiter (MOA)Q1

A changes BA B
A is referenced by BA B

Data flow

Window-based
rate controller (WRC)

request
receiver

UC1 UCn

request
releaser

w1 w3

SC: Service Counter
UC: User Counter
w: Weight

60

request selector selects the head-of-line (HOL) request from the class queue with the

minimum SC. A class with the smaller SC represents that it received less services than

other classes. Selecting a request from such a class queue improves the fairness

between classes, because it minimizes the difference of their SCs, i.e. on their

received services. Besides, if multiple classes have the same SC, the request selector

would select the class with the highest product of the weight and UC.

An idle class represents that the class has no outstanding responses and its request

queue is empty. When a class idles for a long period, its SC may be far smaller than

the SCs of other classes with backlogged requests and response. Once the idle class

has incoming requests, its far-small SC may cause the starvation of other classes. That

is, until its SC is larger than any one SC of other classes, no request can be selected

from other classes. Such a condition may be unfavorable. To avoid the condition, once

the idle class becomes busy, its SC is updated to the minimal SC among all active

classes. Such an update lets MOA follow the sharing concept used in the fair queuing

discipline: the bandwidth freed from the idle classes would be shared by active classes,

and these active classes will not get less bandwidth because of the sharing when the

idle classes become active. Notably, if all classes are idle, all SCs will be reset to 0.

3) Basic Procedures: Fig. 4.3 lists the pseudo codes for the two components in

MOA. The request_selector picks the class queue with the minimum SC and releases

the HOL request of this queue. The request_receiver classifies and en-queues all

incoming requests. If the arrival request is classified into an idle class, i.e. the class’s

UC is zero, the request receiver reset the SC of this class. Next, the request is put into

the specific queue, according to its class. If the request comes from a user j who has

no request waiting for service or being served, i.e. ReqFromUser[j]=0, then the UC of

its class will be added one, implying one more user arrives in the class. If the system

is idle, i.e. no responses are outstanding, the request_receiver actively asks the

request_scheduler to release the just coming request immediately.

61

4.3.2 Window-based Rate Controller (WRC)

As shown in Fig. 4.2, WRC controls the maximum of outstanding responses, W+,

according to the bandwidth utilization of the link, denoted by U. The variable W is

used to record the current number of outstanding responses. The U is updated by the

expression

 / ,k
k

S TU
C

= (4.2)

where Uk is the utilization between the kth and (k+1)th updates, C is the link capacity, T

is the time interval between two updates, and Sk is the responses in bytes received

during T. Next, once Uk is changed, WRC updates W+ by the equation

1 min{ , }k k

k

UW K W
U

+
+ +
+ = × , (4.3)

where 1kW +
+ is the maximum of outstanding responses allowed after the (k+1)th

update and 0 1W + = . U+ is the expected utilization. When kU is lower than U+, 1kW +
+

will be set to a larger value so that more outstanding responses can use the bandwidth

and then raise the utilization 1kU + . For example, if the current W+ is 6 and U is 60%,

then the next W+ will be set to 10 when U+=99%. On the contrary, when kU is

Fig. 4.3. Two procedures in MOA: request selector and request receiver

Array ReqFromUser[j] : # of requests now in MOA and
coming from the jth user

boolean Request_Selector // Called by Request_Receiver or WRC
{
 // Select the queue with min SC among all active queues,

// i.e. their corresponding classes’ PendingPpt are not zero.
 // return null if no active queues.
 Qi ← ActiveQ_with_minSC()
 If (Qi = null)
 return False // imply there are no active classes
 Else
 SendHeadReq(Qi)
 return True
}
Procedure Request_Receiver(Req)// Called when a request arrives
{
 i ← GetClassNo (Req)
 j ← GetUserNo(Req)
 If (UCi=0)
 SCi=GetMinSC()
 Enqueue(Req)
 If (ReqFromUser[j]=0)
 UCi= UCi+1
 ReqFromUser[j]++;
 If (W = 0)
 Request_Selector ()
}

62

higher than U+, 1kW +
+ will be decreased so that fewer responses compete for the

downlink bandwidth.

The U+ is constant and should be smaller than 100% (U+ < 100%). Otherwise,

when U+=100% and Uk=U+, it cannot be distinguished whether the bandwidth

required by the responses is larger than or just equal to that of the link. K is a constant

and assigned to 2 to avoid WRC from over-estimating the new W+ particularly when

the old W+ is small. Notably, W+ should be recomputed only when W=W+. When W<W+, it

is wrong to expect the raise of U by increasing W+, because the low U is caused by the

insufficient arrival requests, but not the insufficient W.

Fig. 4.4 lists the pseudo code of WRC. When WRC receives any part of a response,

it looks for the class and the user which this response belongs to, and updates its

class’s SC. Once the received data includes the last packet of a response, W is

decreased by one to imply a request having been fully answered. Also, ReqFromUser

of this user is decreased one. If this is the last request, UC of this class is decreased

one also, because one user leaves the class. Next, the request_scheduler is invoked to

release requests as more as possible, till W=W+ or all request queues are empty.

4.4 Analysis for Delay and Fairness
In the section, we first demonstrate that a MSF-RS gateway provides users

shorter latency than an ordinary gateway on the average. An ordinary gateway means

Fig. 4.4. Procedure of window-based service-rate controller (WRC)

Procedure WRC // called when partial response returns
{
 Data ← GetData()
 i ← GetClassNo(Data)
 j ← GetUserNo(Data)
 Len ← Size(Data)
 SCi ← SCi + Len / wi // update SC by (1)

 If (IsTail_of_Rsp(Data)) { // ending event of a transaction
 W ←W - 1
 ReqFromUser[j] ←ReqFromUser[j]-1
 If (ReqFromUser[j]=0)
 UCi ← UCi-1
 }

 While (W < W+) // imply more transactions are expected
 {
 If (Request_Scheduler()=False) // ask for releasing a request
 Goto no_reqs // if all req queues are empty
 W←W+1
 }
Label no_reqs:
}

63

that it directly forwards the requests or responses once receiving them from client

hosts or destination sites, respectively. Then, we analyze the delay and fairness

provided by MSF-RS in the worse case.

4.4.1. Short User-perceived Latency

Two definitions are given for conveniently analyzing the user-perceived latency.

Definition 4.1: A transaction includes a request and its corresponding response.

Besides, a transaction queued in a gateway G means that the request of the transaction

is queued in G. Moreover, a transaction being served by a gateway G represents that G

forwards the request of the transaction to the destination site, and later receives its

response from the destination site while forwarding it back to the client. Herein we

assume that a gateway can receive a response from the destination site while

forwarding it to the client host. Besides, the response of the transaction in serving is

also called an outstanding response in this work.

Definition 4.2: The active time of a transaction in a gateway G begins when G

receives the request of the transaction and ends when G returns the whole response of

the transaction back to the host. If Ta denotes such active time, then Ta consist of the

queuing time (Tq) and the service time (Ts) of the transaction, according to Definition

1. That is, Ta=Tq+Ts. Also, because Ts is dominated by the transmission time of the

response, we simply define Ts is a function of L and b, where L is the length of the

response and b is the average bandwidth used by the response during its transmission.

The user-perceived latency of a request begins when the client host sends out the

request and ends when it receives the whole responses of the request. That is, the

latency includes the data transmission time between the client host and the gateway G,

and between G and the destination site. However, the time in the former part is

eliminated from the following comparison because it approximates a small constant

no matter MSF-RS is deployed or not in the gateway. Therefore, we would show that

a MSF-RS gateway could provide shorter time in the latter part than an ordinary

gateway on average.

According to Definition 4.2, Ta just represents the time in the latter part. The

following compares the MSF-RS and ordinary gateways under a case that a batch of

m requests arrives into the gateways. Assume MSF-RS has a fixed W+. Besides, the

maximum bandwidth that W+ responses can use would approximate to the downlink

bandwidth C, because if a MSF-RS gateway allows W+ responses concurrently

64

transmitting, then these responses are expected to completely occupy but not overload

the downlink. Therefore, the maximum bandwidth of each response can be expressed

as C/W+.

Let us first consider the situation under an ordinary gateway. Because the

ordinary gateway directly forwards any received requests, the Tq of these transactions

is closed to zero, compared to their Ts. Besides, since the responses of the m requests

will concurrently share the downlink bandwidth, the bandwidth got by each response

can be written as C
m

. Therefore, the average Ta of transactions under an ordinary

gateway is

 () 0ordinary
a

L mLavg T C C
m

= + = (4.4).

Next, consider the case under MSF-RS. The Tq’s of the first W + transactions are

zero because their requests are forwarded immediately. Then, others transactions will

be queued until any of the W+ transactions have been served. In the worst case, these

transactions end concurrently. Thus, the Tq’s of the next W+ transactions would equal

to the Ts of the first W+ transaction, i.e. W L
C

+
. Next, the Tq’s of the residual

transactions could be derived from the same way. Thus, by summing up the Tq’s of

W+ transactions in each round and considering the possibility that the number of

transactions in the last round may be less than W+, the average Tq of the m requests

could be expressed as

 1() 0 1 2 ... max{ 1,0} (mod)MSF RS
q

m m W Lavg T W m W
m CW W

+
− + +

+ +

⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥= + + + + − +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
. (4.5)

Similarly, the mean Ts of the m transactions could be expressed as

 1 (mod)() ((mod)) (mod)MSF RS
s

W L m W Lavg T m m W m W
m C C

+ +
− + +⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

. (4.6)

Therefore, we get the average Ta of transactions under a MSF-RS by summing up Eq.

(4.5) and Eq. (4.6).

To compare the average period of transactions over the two gateways, Fig 4.5

plots the ratio of the MSF-RS gateway to an ordinary gateway on Ta over different m

and W+. Fig. 4.5 shows that the ratio is smaller than 1 always, i.e. the average time to

finish transactions under MSF-RS is no more than that under an ordinary gateway. For

example, as plotted by the dotted line, MSF-RS can reduce 25% of Ta when the

65

number of arrival requests is two times of W+. These results demonstrates that

MSF-RS does not cause additional delay on Ta through MSF-RS does queue requests,

i.e prolong Tq, to provide differential services for different classes of users.

4.4.2. Delay Bound

Two models are introduced before the definition and analysis of delay bound. As

shown in Fig. 4.6(a), we model MSF-RS as a multi-links fair queue to analyze the

delay bound caused by MSF-RS in the worse case. Assume that W+ is fixed and each

class has equal users in the residual analysis. The downlink with capacity C is

conceptually divided into W+ sub-links and each sub-link has bandwidth c=C/W+.

Besides the model for MSF-RS, we describe an ideal MSF-RS gateway, named

MSF-RS*, as shown in Fig. 4.6(b). Under MSF-RS*, the downlink bandwidth C can

be proportionally shared by N classes according to their weights. For example, if three

classes of users receive their responses through the downlink and the ratio of their

weights is 4:2:1, then the bandwidth C should be divided into 3 sub-links which

bandwidth are 4/7C, 2/7C, and 1/7C, respectively. Besides, the bandwidth got by each

class would be dynamically adjusted according to the number of non-empty class

queues.

Fig. 4.6. The downlink can be conceptually divided into multiple sub-links.

Request
Scheduler

Q1

User-side gateway

W+ sub-links
with C/W+ bw.

N sub-links with
proportional bw.

uplink for requests

downlink for responses
Q2

Qn-1

ISP-side gateway

Qu

QdQn OR

(a) If downlink is controlled
by MSF-RS, then

(b) If downlink is controlled
by MSF-RS*, then

Request
Scheduler

Q1

User-side gateway

W+ sub-links
with C/W+ bw.

N sub-links with
proportional bw.

uplink for requests

downlink for responses
Q2

Qn-1

ISP-side gateway

Qu

QdQn OR

(a) If downlink is controlled
by MSF-RS, then

(b) If downlink is controlled
by MSF-RS*, then

20 40 60 80 100
m

0.5

0.6

0.7

0.8

0.9

W+=10
W+=20

W+=40

W+=80

Fig. 4.5 The ratio on Ta of a MSF-RS gateway to an ordinary gateway
TaMSF-RS/Taordinary

66

Definition 4.3: An active class represents that the class has transactions handled in

the gateway. Also, an active period of Class i is the time during Class i is active.

Definition 4.4: A backlogged class represents that the class has a non-empty queue of

requests.

Definition 4.5: The delay bound for a transaction in a MSF-RS gateway means

Ta
MSF-RS-Ta

MSF-RS*, i.e. the additional time caused by MSF-RS, compared to an ideal

MSF-RS gateway.

Such a delay may be contributed from two parts. The first is the queuing time of

requests in the MSF-RS gateway. For the first request queued in a class, its queuing

time under a MSF-RS* gateway is zero because MSF-RS* has W+=n and thus the

request must be immediately forwarded. However, the request may be delayed in

MSF-RS when all sub-links are busy. Another source to contribute the delay is the

additional transmission time of responses if lower downlink bandwidth is allocated

for a class than its allocated bandwidth, which is possible in MSF-RS. Since a

MSF-RS gateway only affects the allocation of downlink bandwidth by controlling

the releasing of uplink requests, it cannot directly adjust the downlink bandwidth used

by each class.

Assume that ak denotes the time of a request k arriving at MSF-RS, bk denotes

the time it departed from MSF-RS, and dk denotes the time that MSF-RS finished to

return the whole response back to the client host. Similarly, *
kb , and *

kd denotes the

corresponding times at MSF-RS*. The denotation *
ka is unnecessary since the arrival

times at MSF-RS and MSF-RS* are equal. Next, assume the total length of the

response is Lk and k
k k

L
d b

r
= + where r represents the receiving rate of the response.

Herein, the time between bk and receiving the first data of its response is ignored,

since it is far smaller than the receiving time of the whole response.

Theorem 4.1: The delay in MSF-RS has a bound equal to

 2L
c

+
,

where L+ is the maximum responses among all classes and c is the bandwidth of a

sub-link. That is, for any request k, the time that MSF-RS finishes its transaction must

not be 2L
c

+
 later than that under MSF-RS*, i.e. * 2

k k
Ld d
c

+
− ≤ .

Proof:

67

Case 1: The request k arrives when W<W+.

In this case, bk=ak because MSF-RS immediately sends out requests if W<W+. Then,

k
k k

L
d a

c
= + . Besides, * k

k k
Ld a
C

≥ + because the capacity C of a link is the maximum

bandwidth that a transaction can use in MSF-RS*. Thus,

 * 1 k
k k

LWd d
cW

+

+
−− ≤ (4.7)

Case 2: The request k arrives when W=W+.

Consider the transaction of the request k is the (m+1)th transaction in the same

active period of Class i. Let us mark the transaction. Next, we calculate how many

transactions will be served from other classes ahead of this marked transaction in the

worst case. Assume n is the number of active classes now in the gateway and all W+

sub-links are serving transactions. Assume these transactions have responses of the

largest size L+. That is, in the worst case the earliest time to release the next request

from the gateway will be at k
La
c

+
+ . Next, for each Class j where j i≠ , it may

receive a maximum i
j

i

mL r
r

+
× of total responses, before their timestamps are assigned

to a value equal to that of Class i, where Li
+ denotes the maximum response of Class i.

Moreover, as mentioned in Chapter 4.3.1.2, when all classes have the same timestamp,

MSF-RS forwards requests from the class with the highest weight. Thus, if Class i has

the qth highest weight, then its request will be forwarded at the rank of q among all

classes with the same timestamp. Therefore, the time at which the marked transaction

will be finished is given by

1 1

1

1 k n
i

k k j j
ij k m j

j i

LL q Ld a L m r
c r cW c W

− −+ +

+ +
= − =

≠

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎡ ⎤≤ + + + +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

∑ ∑ . (4.8)

However, under MSF-RS* the request k will be forwarded once no requests queued in

Class i. Besides, because a class with the qth highest weight must get no more

bandwidth than the classes with weight equal to or higher than it, it can get at most

W c
q

+
 bandwidth. Therefore, the time at which the marked transaction will be finished

under MSF-RS* is given by

68

1 1

*

1 1

1 k n
i

k k j j
ij k m j

j i

L Ld a L m r
rW c W c

q

− − +

+ +
= − + =

≠

⎛ ⎞
⎜ ⎟

≥ + + +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ . (4.9)

Therefore, by subtracting Eq. (4.9) from Eq. (4.8) and considering Eq. (4.7), we get

the delay bound under MSF-RS is given by

 * 2
k k

L q q L Ld d
c c cW W

+ + +

+ +
⎛ ⎞⎡ ⎤− ≤ + − ≤⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

.

4.4.3. Fairness

The fairness parameter that we use is based on the definition presented by

Golestani [GOL94] for the analysis of self-clocked fair queuing. The parameter is

defined as the maximum difference of the service got by any two backlogged classes

over arbitrary time intervals. A scheduling algorithm has a zero value of fairness if it

always provides equal service for any two classes even in a short time interval. The

fairness of MSF-RS* is zero since the downlink bandwidth can be concurrently shared

by all non-backlogged classes anytime. The following analyzes the fairness of

MSF-RS.

Theorem 4.2. The fairness of MSF-RS is

+

ji

i j

LW L
w w

++

+ ,

where i and j could be the indexes of any two backlogged classes and ji

i j

LL
w w

++

≥ .

Proof: We consider two classes, Class i and Class j, through the following analysis

because the definition of fairness only concerns two classes. The existence of more

active classes does not affect the difference of services got between two classes.

Besides, let ji

i j

LL
w w

++

≥ , where wi and wj are the weights of Class i and j, respectively. As

shown in Fig. 7, assume the MSF-RS is idle before the time t0, i.e. W=0. Then, at the

time t0 more than W+ requests of Class i arrive. Let v denotes the timestamp of the

first request of Class i, where timestamp represents the value in SCi when the request

arrives into Class i. Upon these requests arrives, MSF-RS will forward the first W+

ones and W is set to W+. Let k be the (W++1)th request, i.e. it would be the first request

in the queue of Class i after t0. Since W+ requests of Class i would be served before k,

69

k will have a timestamp v’ expressed by

 '
1

1 W h i
ih

i i

W Lv v L v
w w

+ + +

=
= + ≤ +∑ .

Assume that requests of Class j arrive right after the time t0, and the first request

should have the timestamp v since the timestamp of the request latest released by the

server is v. However, although the first request of Class j has timestamp v smaller than

that of Class i, i.e. vk, no requests can be forwarded from Class j because all W+

sub-links are busy for Class i. Let the sub-links become idle at t1. Then, in the worse

case all requests of Class j with a timestamp no larger than v’ will be forwarded

before k. Assume the Class-j request with v’ asks a response with size equal to Lj
+.

Then, between t1 and t2 the maximum of the total responses received by Class j will

be 1
j i j

i

w W L L
w

+ + +⎛ ⎞
+⎜ ⎟

⎝ ⎠
. However, as shown in Fig. 4.7, Class i does not get any service

during the period. Thus, between t1 and t2, the difference of the service between the

two classes is ji

i j

LW L
w w

++ +

+ . For the time later than t2, when the service of a class already

equals to another one, the additional service which the class can get must smaller than

i

i

L
w

+
 since ji

i j

LL
w w

++

≥ is supposed. Since the difference of service after t2 and before t1 is

smaller than that between t1 and t2, the difference of the service between t1 and t2 is

the fairness of MSF-RS, i.e. ji

i j

LW L
w w

++ +

+ .

Fig. 4.7. The difference of the service between Class i and Class j

Time t0~t1 t1~t2 t2~
Max. difference of service

between Class i and j i

i

W L
w

+ +
i i

i i

W L L
w w

+ + +
+ i

i

L
w

+

Time

Timestamp

Class i
Class j

t0 t1 t2

v

v’

Time

Timestamp

Class i
Class j

t0 t1 t2

v

v’

70

4.5 Simulation Results
This section verifies the effects of MSF-RS by ns-2 [NS06] in terms of the fairness

and -bandwidth sharing, user-perceived latency, the relationship between U and W+,

the effect of U+ on latency.

4.5.1 Topology

The HTTP/Cache in ns-2 acts as a web proxy cache, and sits between clients and

web servers. It intercepts the requests sent from clients and forwards them to the

remote servers if the requested data is not cached yet. This work disables the cache

function and implements MSF-RS in HTTP/Cache. Fig. 4.8 shows the topology used

in the simulation. The MSF-RS gateway provides three classes, Class 1, Class 2, and

Class 3, with the weights, 4, 2, and 1, respectively. Each class involves four clients

and each client repeatedly requests pages from the 12 remote web servers through the

MSF-RS gateway. For each client, its time interval between two requests is an

exponential distribution with mean equal to 5 seconds. The link between the MSF-RS

gateway and every client is 10Mbps with 2ms propagation delay. The ISP router

connects to twelve servers with twelve independent links. These servers are classified

into two equal numbers of groups, representing overseas servers and domestic servers.

Links between the gateway and these servers have a uniform distribution, as shown in

Fig. 4.8. By the statistics from the real Internet [BC98], the web response size has a

lognormal distribution with M=9.357 and S =1.318. The average response size is
2 / 2M Se + bytes, i.e. 27,656 bytes. The U+ in WRC is set to 98% and the time interval

between two updates is set to 5 seconds. Chapter 4.5.6 would further reveal the effects

of different U+’s on link utilization, but that of different update intervals are ignored

Fig. 4.8. Simulation topology for three classes with service ratio 4:2:1

2Mbps
10ms ISP-side

Gateway

6 Overseas Servers
BW: uniform [1-5] Mbps
RTT: uniform [40-140] ms

6 Domestic Servers
BW: uniform [1-20] Mbps
RTT: uniform [0-40] ms

Used-side
Gateway

10Mbps
2ms

Class 1

Class 3

Class 2
2Mbps
10ms ISP-side

Gateway

6 Overseas Servers
BW: uniform [1-5] Mbps
RTT: uniform [40-140] ms

6 Domestic Servers
BW: uniform [1-20] Mbps
RTT: uniform [0-40] ms

Used-side
Gateway

10Mbps
2ms

Class 1

Class 3

Class 2

71

to show because of their insignificant effects. Besides, we use TCP SACK and assume

no delayed acknowledgments. Over the simulation the packet size is 1000 bytes and

the maximum congestion window of TCP is 200. The queues at the two gateways are

managed by Drop-Tail and their sizes are 1.5 bandwidth-delay products.

4.5.2 Weighted Fairness and Bandwidth Sharing

First, we demonstrate that when all classes have the same users, MSF-RS provides

weighted fairness between classes and the idle bandwidth is shared by active classes.

Four phases are included in the simulation and the duration of each phase is 200

seconds. In the first phase, all of the three classes have backlogged requests. In the

next two phases, Class 1 and 2 stop requesting individually, and then both of them

have backlogged requests again in the last phase.

Fig. 4.9 shows the average throughput in each phase. During the first phase, the

three classes get proportional bandwidth in ratio 3.96:1.98:1, which is close to the

expected ratio 4:2:1. In the second phase, the idle bandwidth freed by Class 1 is

shared by Class 2 and Class 3 proportionally. Both of the bandwidth obtained by

Class 2 and Class 3 increase in this phase, and the usage ratio between them is still 2:1.

After Class 2 stops requesting in the third phase, Class 3 occupies all bandwidth until

the end of this phase. During the second and the third phases, Class 1 and Class 2 still

obtain a bit of bandwidth separately due to their unfinished transactions at the 200th

and 400th second, respectively. Once all idle classes have requests again in the last

phase, the three classes obtain the bandwidth in the expected proportion, 4:2:1, again.

As mentioned in Chapter 4.1, packet scheduling algorithms fail to allocate the

Fig. 4.9. The average throughput of three classes over the four phases

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 Phase

BW(kbps)

Class 1
Class 2
Class 3
All

72

downlink bandwidth at the user-side gateway, because the packets of responses have

passed the bottleneck and can be immediately forwarded to the clients. Under the

situation, a packet scheduling algorithm would degrade into a first-in-first-out

scheduling. To demonstrate such degradation, we employ a deficit round robin (DRR)

[SV96] instead of MSF-RQ at the user-side gateway. DRR is a widely used packet

scheduling algorithm because it is easy to implement. Fig. 4.10 shows the bandwidth

allocation managed by DRR. Obviously, over the four phases, Class 1 and Class 2 do

not get higher bandwidth than Class 3, even though both classes have larger weights

than Class 3. Further observation shows that the request queues of three classes in

DRR are empty during the simulation, which verifies that requests will be forwarded

upon their arrival, i.e. forwarded with a FIFO order.

4.5.3 User-perceived Latency

The simulation scenario here is the same as that used in the first phase in Chapter

4.5.2. Fig. 4.11 illustrates the user-perceived latency for the three classes, the average

latency of all classes, and the latency if no MSF-RS is deployed, denoted as

non-MSF-RS. Also, the latency is decomposed into the queuing time and the service

time of the transactions.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 Phase

BW(kbps)

Class 1
Class 2
Class 3
All

Fig. 4.10. The average throughput of three classes over the four phases under DRR

73

First, by comparing the left three bars, the three classes in MSF-RS experience the

different user-perceived latencies, mainly caused from different queuing time since

they have different weights. Second, by comparing the right two bars, the average

latency (6.76 secs) in MSF-RS is shorter than that in non-MSF-RS (8.83 secs) by

23.44%. It is because the average service time in MSF-RS (1.44 secs) is far shorter

than that in non-MSF-RS (8.83 secs). The service time in MSF-RS is reduced because

of the well-controlled number of concurrent outstanding responses.
4.5.4 User-based Weighted Fairness

 Next, we show the MSF-RS gateway provides the high-class users more

bandwidth than the low-class users regardless of the number of users in the high class.

The same testing scenario as that in Chapter 4.5.2 is used, but the number of users in

Class 1 is increased in each test from 4 to 24. Also, all of the three classes have

backlogged requests during the whole testing time, 800 seconds. Fig. 4.12(a) plots the

difference of the average bandwidth allocated for the users in each class. When there

are 4 users in Class 1, each user in this class owns 270Kbps, which is the two and four

times of that allocated for the user in Class 2 and Class 3, respectively. The fixed ratio

on the allocated bandwidth among the three classes is kept even when users in the

first class are increased. Fig. 4.12(b) plots the result provided by the MSF-RS gateway

without considering the number of users when updating SC, i.e. the L in Eq. (4.1) is

not divided by the UC. Obviously, under such a gateway, the users in Class 1 cannot

be ensured to get more bandwidth than that in other classes when more users are

active in Class 1.

Fig. 4.11. User-perceived latency comparison by decomposing time factors: queuing time and
service time

2.95
6.78

11.91

1.34

1.68

1.50

8.83
5.32

1.44

0

4

8

12

16

Time (sec)

transmission time
queuing time

Class 1 Class 2 Class 3 Average Non-FQRS

Service time
Queuing time

74

4.5.5 Adjustment of Outstanding Responses

The subsection observes the adjustment of W+ when the arrival of requests is not

backlogged always, i.e. the scheduling server may be idle sometimes. In the

1500-second test, clients in Class 1 and 2 send requests every 1 second while that in

Class 3 send one every 10 second. Besides, during the middle 500 seconds, clients in

Class 1 and 2 stop sending requests, which results in insufficient requests so that the

MSF-RS gateway has no request to send out. Fig. 4.13 reveals the relation between U

and W+. The utilization of access link stays around 0.98 as the expected U+ in the first

and last 500-second periods because of sufficient arrival requests.

In the 500th~1000th sec, the utilization falls apparently and the value of W+ keeps

constant as described in Chapter 4.3.2. Increasing W+ for raising the utilization during

the period is in vain because the low utilization results from the fact that the incoming

Fig. 4.13. The size of W+ is fixed in the period with insufficient traffic (the 500th ~1000th seconds)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400
Time (sec)

Util(%)

0

5

10

15

20

25

30
Win

U
W+

W

0

50

100

150

200

250

300

4 8 12 16 20 24

Hosts in Class 1

B
an

dw
id

th
 (K

bp
s)

C lass 1
Class 2
Class 3

0

50

100

150

200

250

300

4 8 12 16 20 24

Hosts in Class 1

B
an

dw
id

th
 (K

bp
s)

C lass 1
Class 2
Class 3

(a) (b)

Fig. 4.12. The difference on the bandwidth allocated for the high-class host between the host-based
and class-based weighted fairness.

75

requests are too few to occupy all sub-links. Besides, the value of W varies with a

wide range, determined by the dynamically arrival requests. During the period, any

requests are forwarded immediately once they arrive, since there are always free

sub-links. Notably, at the 1000th second, once the two stopped classes restart sending

requests, all requests can be released soon and the utilization jumps to the expected

value.

4.5.6 Effect of Umax on Latency

Fig. 4.14 depicts the user-perceived latency, the queuing time spent in the MSF-RS

access gateway and in the ISP-side edge router when U+ is assigned from 0.65 to 0.99.

Raising U+ follows shorter user-perceived latency, because more responses can be

concurrently transmitted and the bandwidth can be more utilized. However, the raise

also causes packets to be queued in the ISP-side router because of less free bandwidth

for eliminating the queued packets as U+ is high. By the observation in Fig. 4.14, the

value of U+ is suggested to be set to 98%.

4.6 Affection of Exceptive Traffic
MSF-RS is designed under the assumption that the uplink traffic comprises

requests only and the downlink traffic comprises their corresponding responses only.

However, the exceptive traffic does coexist with the assumed traffic in the real

environment. We classify the exceptive traffic into three types and explain why they

do not affect the fairness or link utilization provided by MSF-RS.

1) Uplink exceptive traffic: The type of traffic may include the uplink responses

and the packets actively sent from the internal users. If this traffic is heavy enough to

turn the uplink to a bottleneck, a packet scheduler with the FQ discipline is suggested

Fig. 4.14. The user-perceived latency, queuing time, and the number of packets queued in
ISP-side router under different U+

0

2

4

6

8

10

0.7 0.75 0.8 0.85 0.9 0.95 1
U+

Time (sec)

Latency
Queuing Time
10 * Avg. pkt queuing time in ISP

76

to be deployed at the access gateway first. MSF-RS can coexist with the uplink FQ

discipline well, as shown in Fig. 4.15(a). Also, if the weighted fairness on uplink is

not a concern, the combination of MSF-RS and priority queues is a simple solution, as

shown in Fig. 4.15(b). The solution gives the request traffic higher priority since they

are smaller than responses usually.

2) Downlink exceptive traffic belonging to some classes: Such traffic is still the

downlink responses, but their requests are not recognized by the implementation of

MSF-RS. For example, POP3 mail traffic for someone’s host belongs to Class i. It is

possible since only the web request is recognizable for the present implementation of

MSF-RS.

The MOA in MSF-RS regards these exceptive packets as the received service of

classes. That is, when the packets not triggered by an (recognized) request arrive from

the Internet, their sizes are accumulated into the SC of the class which the packets

belong to, as other response packets triggered by requests. That is, if a user of Class i

receives a crowd of such packets from the Internet, the sizes of packets would be

accumulated into SCi. Although the additional value in SCi caused by these exceptive

packets brings the fewer requests sent out from Class i by MSF-RS, it does not affect

the weighted fairness between classes and the link utilization.

3) Downlink exceptive traffic not belonging to any class: Exceptive traffic not

belonging to any class may include requests from outside network for the responses

provided by the internal servers, or the malicious attacks. The former case is possible

for the enterprises having web servers for their customers. The exceptive traffic

(a) The architecture providing weighted fairness
between request traffic and exceptive traffic

(b) The architecture giving the higher priority for request traffic

Fig. 4.15. Two potential integrated architectures for handling the network when the uplink is a
bottleneck.

P
REQ

uplink
traffic H

L
N

Y
MSF-RS

downlink
traffic

P
REQ

uplink
traffic H

L
N

Y
MSF-RS

downlink
traffic

S
wn

w2

w1

Classifier

downlink
traffic

uplink
traffic

PKT-FQ

w3

Req.
MSF-RS

S
wn

w2

w1

Classifier

downlink
traffic

uplink
traffic

PKT-FQ

w3

Req.
MSF-RS

77

contributed from such requests is usually small, compared with other response traffic

running on the downlink. The latter case may rudely and fully occupy the downlink,

resulting in the failure for all transmissions. However, the latter case is a security

problem and out of the scope of this work.

Actually, this exceptive traffic could be considered as response traffic, when WRC

monitors the utilization of the downlink to set W+. Such traffic would bring a smaller

W+ than that in the case without the exceptive traffic. That is, WRC may think such a

small W+ is enough to fully utilize the downlink bandwidth. Besides, when the

exceptive traffic passed, because WRC would quickly adjust W+ according to the new

U, the link utilization is not affected in this case.

We use the following simulation to demonstrate that the utilization is not affected

by the downlink exceptive traffic. The on-off CBR traffic not belonging to any classes

with different rates during different periods are generated to demonstrate the

responsiveness of WRC is fast enough to keep the high link utilization. Five on/off

periods are tested: 40, 80, 160, 320, and 640 seconds. During the on-period, three

rates of CBR traffic are tested individually: 20%, 40%, and 60% of the downlink

capacity. Each test is run for 3000 seconds and the U+ is set to 98%. Fig. 4.16 shows

the case where on/off period is 640 seconds and CBR rate is 40% of link capacity, i.e.

0.8 Mbps. At 1280 and 2560, once the CBR traffic stops, WRC immediately resets W+

from 7 to 13 in order to release more requests. The bandwidth freed by CBR traffic is

fully and fast occupied by the response traffic. In fact, the results in all tests, as shown

in Table I, reveal that WRC keeps the utilization on 97.84% averagely, closing to the

designed goal, 98%.

Fig. 4.16. Fast-responsive W+ and full utilization of access link under oscillate CBR traffic

0

20

40

60

80

100

0 640 1280 1920 2560
Time (sec)

Util (%)

0

5

10

15

20

25
W+

Utilization
W+

78

4.7 Field Trial
We implemented MSF-RS in Squid [SQI06], which is an open source package of

web proxy cache, and performed field trial in an open network environment. Fig. 4.17

illustrates the test bed for evaluating the MSF-RS in Squid. An application-layer

traffic generator named Avalanche [AVA06] is used to emulate the behaviors of

multiple clients and send requests to the web servers in the Internet. Avalanche is

imported with a URL list, a historical record logged by an enterprise in a couple of

days.

The access gateway installed with MSF-RS is configured as a transparent proxy

with iptables [NET06]. All HTTP requests destined to port 80 are directed to port

3128, the service port of Squid. A layer 3 switch is acted as the ISP-side gateway. The

bandwidth of the access link between the access gateway and the layer 3 switch is

limited to 2Mbps. As the configuration in simulation, three classes are provided with

service ratio 4:2:1. Notably, the cache function is disabled to avoid getting responses

directly from caches. The effects of MSF-RS Squid are observed in terms of weighted

fairness, user-perceived latency, and CPU loading as follows.

1) Weighted fairness: The amounts of bandwidth allocated to three classes for a

200-second test are 1.03 Mbps, 0.52 Mbps, and 0.26 Mbps, respectively, when

backlogged requests are applied. The result quite obeys the configured service ratio

4:2:1.

Fig. 4.17. The test bed for field trial in the Internet

user space
127.0.0.1:3128

kernel space
Linux

MSF-RS
Squid

Realistic
Servers in
Internet

eth0
eth1

192.168.2.53

Port Redirect (iptables):
iptables -t nat -A PREROUTING -i eth1 -s 192.168.2.0/24 -p
tcp --dport 80 -j REDIRECT --to-port 3128

Rate Limiting by switch:
Input 2Mbps / Output 2Mbps

switch

Avalanche
(Clients)

user space
127.0.0.1:3128

kernel space
Linux

MSF-RS
Squid

Realistic
Servers in
Internet

eth0
eth1

192.168.2.53

Port Redirect (iptables):
iptables -t nat -A PREROUTING -i eth1 -s 192.168.2.0/24 -p
tcp --dport 80 -j REDIRECT --to-port 3128

Rate Limiting by switch:
Input 2Mbps / Output 2Mbps

switch

Avalanche
(Clients)

TABLE 4.1. THE UTILIZATION OF LINK
UNDER OSCILLATING CBR TRAFFIC (U+=98%)

The Rate of CBR During On-period On/Off
Period 0.4 Mbps 0.8 Mbps 1.2 Mbps
40 sec 97.94% 97.91% 97.62%
80 sec 97.90% 97.95% 97.77%

160 sec 97.94% 97.92% 97.68%
320 sec 97.83% 97.80% 97.76%
640 sec 97.93% 97.83% 97.85%

79

2) User-perceived latency: Table 4.2 shows the latency provided by the original

Squid and the MSF-RS Squid. The original-Squid case represents all requests are

immediately released by the proxy. The MSF-RS Squid reduces (1686-1175)/1686, or

30%, of the average user-perceived latency in the original Squid case, although the

user-perceived latency in MSF-RS includes the additional queuing time, 515.5 ms.

3) CPU loading: Table 4.3 shows the benchmark results on CPU time occupied by

the MSF-RS Squid process and the original Squid process when both processes

provide the same link-speed throughput during 200 seconds. As expected, the CPU

time increases as the number of classes or the access link bandwidth increases.

Notably, the time under MSF-RS is always lower than that under the original Squid.

Under the original Squid, all requests are immediately released by the proxy, bringing

great concurrent transactions. However, a proper number of concurrent transactions

are allowed by MSF-RS. It is believed that the number of concurrent transactions

dominates the cost of CPU computing.

4.8 Summary
Scheduling the uplink requests is a potential method to manage the bottlenecked

downlink at the user-side access gateway. Because the class-based fair queuing (FQ)

discipline is widely and maturely used in scheduling packets, we first investigate the

possibility of applying the discipline to schedule requests. However, we found that

three problems occur at applying the class-based FQ discipline to schedule requests:

TABLE 4.3. COMPARISON BETWEEN MSF-RS AND THE
ORIGINAL SQUID ON CPU TIME

Link Capacity
Case

2 Mbps 10 Mbps

MSF-RS Squid
with 10 Classes 44.8 secs 56.34 secs

MSF-RS Squid
with 100 Classes 46.02 secs 58.04 secs

Original Squid 63.22 secs 84.90 secs

TABLE 4.2. USER-PERCEIVED LATENCY COMPARISONS

Case
Item

Original
Squid MSF-RS Squid

User-perceived
latency

1686.1
ms

1174.9 ms
(include queuing
time 515.5 ms)

80

the timing and ordering to release requests and the suitability of class-based for

user-level differentiation. Based on the investigation on the three problems, we

propose the minimum-service first request scheduling (MSF-RS) scheme to manage

the access link bandwidth at user-side access gateway. To achieve high bandwidth

utilization while avoiding congesting the link, the window rate control module in

MSF-RS determines the releasing rate of requests and the number of outstanding

responses. To perform user-based weighted fairness and bandwidth sharing, the

minimum-service arbiter module in MSF-RS always selects the request from the class

receiving the least normalized responses.

The analysis proves that MSF-RS shortens 25% of the user-perceived latency on

average, compared with an ordinary gateway, because the number of concurrent

transmissions is controlled, even though this control may queue requests in the

MSF-RS gateway. Besides, the existence of bounds on delay and fairness represents

that the MSF-RS gateway does provide the differential service among classes while

avoiding the low-class users from long latency. The results in the simulation and the

field trial show that the bandwidth usage between classes conforms to the targeted

ratio and the idle bandwidth is proportionally shared by all active classes. Besides,

MSF-RS reduces 23.44% and 30% of user-perceived latency in the simulation and the

field trial, respectively.

81

Chapter 5

Conclusions
This dissertation investigates and proposes fairness control schemes respectively

to solve the public and private unfair problems which currently existing solutions

cannot handle at the end host or at the user-side gateway. To maintain the public

fairness in the Internet without the sacrifice of media flows on their deserved

bandwidth, we promote that a good end-to-end rate control scheme should be

TCP-equivalent, i.e. use the same throughput as TCP in the steady state, but as

aggressive and responsive as TCP in the transient state. Moreover, it should be TCP

equal-share, i.e. using bandwidth equal to TCP flows in the same bottleneck. On the

other hand, to solve the private fairness problem which packet schedulers fail at the

user-side gateway, this dissertation considers a solution of scheduling uplink requests

to manage the downlink bandwidth.

We first exhibits that a TCP friendly scheme may have desirable

TCP-equivalence and TCP equal-share to maintain public fairness, if it takes the

rate-based fairness strategy, the historical/super-linear aggressiveness strategy, and the

fixed history responsiveness strategy. Because no single existing scheme

simultaneously takes the three recommended strategies to meet the public fairness, a

window-averaging rate control (WARC) scheme is proposed based on the above

observation and to be deployed in the end hosts. WARC averages the rate over a

constant number of CWNDs, leading to its two inherent advantages: fairness under

stationary conditions and fast aggressiveness. Besides, WARC employs the

history-reset procedure to have fast responsiveness when the available bandwidth

drops dramatically.

Next, we investigates the possibility of scheduling requests by using the

class-based fair queuing discipline for the private fairness, then identify the difficulty

on the timing and ordering determination of releasing requests and discuss the

suitability of the class-based policy for user-level differentiation. By the investigation,

a minimum-service first request-scheduling (MSF-RS) scheme is proposed and to be

deployed in the user-side access gateway. MSF-RS always selects the request from the

class receiving the least normalized responses to perform user-based weighted

fairness and bandwidth sharing. Also, MSF-RS determines the releasing rate of

82

requests and the number of outstanding responses to achieve high bandwidth

utilization while avoiding congesting the link.

The analysis and simulation results demonstrate that WARC does perform better

TCP equivalence and TCP equal-share to maintain the public fairness than other

TCP-friendly schemes, while WARC still provides the smoother rate than all of them.

Besides, the analysis proves that MSF-RS has bounds on delay and fairness,

representing that MSF-RS not only provides the differential service among classes for

the private fairness but also avoids the low-class users from long latency, which are

also demonstrated by the simulation and field trial. Besides, MSF-RS shortens 20%~30%

of the user-perceived latency and 25% of CPU loading on average.

83

Appendix 1

Smoothness Level of TCP-friendly Schemes
The appendix displays the smooth level of the schemes to reveal (1) Except

TFRCP, other schemes do have smoother throughput than TCP (<60% of CV of TCP

throughput.) (2) Although the smooth levels among schemes are different, such

differences do not affect our conclusions, that is, the suitable strategies and the

recommendation for schemes.

For the non-periodic loss scenario (Chapter 2.4.1), we measure the CV of

throughput for each scheme under different CV[T], where T means the inter-loss time.

Fig. A1.1 plots the CV of throughput, denoted as CV[R], for each scheme, normalized

with that of TCP.

TFRC and TEAR provide obviously smoother behavior under a less variant

condition (CV[T]<0.5). They postpone the rate increase until the time escaped from

the last loss is longer enough. Such a delay-beginning mechanism thus provides them

better smoothness feature than others when the inter-loss time is regular. IIAD, SQRT,

and AIAD/H provide smoother throughput even when the loss condition is variant,

but they sacrifice their deserved throughput, as shown in Fig. 2.1(b) and (c). IIAD and

AIAD/H have the strange values as CV[T]=1, since occasionally their CWND may

decrease to zero and then take long time to recover. TFRCP, unexpectedly, has worse

CV[R] than TCP under the testing, resulting from its non-historical/super-linear

Fig. A1.1. The smooth level on the throughput of each scheme, relative to that of TCP, under different
levels of variant-losses condition

(b) (a)

84

increasing strategy. Its normalized CV[R] is larger than one once CV[T]>0.1, and

linearly increases to 2.2 as CV[T]=1.

85

Appendix 2
Analysis on WARC

Herein we describe the increase function of WARC and sequentially analyze its

smoothness, aggressiveness and responsiveness.

A2.1 Increase Functions

The increase function of a scheme describes how the scheme increases its rate

between two consecutive packet losses. The rate means the number of packets sent in

one RTT. The increase functions of several well-known schemes, such as AIMD,

SIMD, and AIAD, are expressed in [JGM03]. Fig. A2.1 plots the increase curve of

TCP, GAIMD(1/5,1/8), and WARC.

The increase function of WARC is calculated from that of TCP as follows.

Assume that TCP stays at the steady state with an average rate W before the time 0,

and then a packet loss occurs at the time 0. Because a TCP with an average rate W

implies that its CWND increases from 2 / 3W to 4 / 3W and then falls back to 2 / 3W

once after a packet loss, the CWND in the TCP at the time 0 is 2 / 3W . Next, since TCP

increases CWND one per RTT, the average CWND in TCP between the time 0~t

would be 2 / 3 / 2W t+ . Recall that WARC gets the new rate by averaging the CWNDs

of TCP over the latest s RTTs. Thus, before the time s (t s≤), the rate of WARC can be

averaged with weight from the mean rate before the time 0 and between the time 0

and t, as written by the expression

2

2() ()
3 2

,
2 3

s t t tw t W W
s s

t WtW
s s

−= × + × +

= + −

 (A2.1)

Fig. A2.1 The increase curves of WARC, GAIMD, and TCP

GAIMD(1/5,1/8)

0 time (RTT)

TCP=
GAIMD(1,1/2)

s

W

s/2 3s/2

WARC(s)

rate (pkt/RTT)

2/3W+ s

2/3W+ s/2
GAIMD(1/5,1/8)

0 time (RTT)

TCP=
GAIMD(1,1/2)

s

W

s/2 3s/2

WARC(s)

rate (pkt/RTT)

2/3W+ s

2/3W+ s/2

86

where w(t) represents the rate of WARC at time t (in RTTs) elapsed since the last loss

and w(0)=W. After the time s (t>s), the rate of WARC equals to the average CWNDs

of TCP between t and t-s, as written by the expression

1 2 2() () ()
2 3 3
2 .
3 2

w t W t s W t

sW t

⎛ ⎞= + − + +⎜ ⎟
⎝ ⎠

= + −

 (A2.2)

From (A2.1) and (A2.2), the increase function of WARC is expressed as

2

 ()
2 3()

2 ()
3 2

t WtW t s
s sw t

sW t t s

⎧
+ − ≤⎪⎪= ⎨

⎪ + − >
⎪⎩

. (A2.3)

A2.2 Smoothness

The skill for the following analysis is derived from [JGM03]. Assume that x

packets are sent between two losses by a flow with the mean rate W. Then, x/W will

be the time between two losses, denoted as T. According to the increase function of

WARC, the mean and variance of w between two losses, E[w] and Var[w] can be

respectively expressed as

0

2

0

2

0

2

2

[]
1 ()

1 ()
2 3

1 2 ()
2 3 3 2

1 ()
6 6
1 (4 3) ()
2 6 6

T

T

s T

s

E w

w t dt
T

t WtW dt T s
T s s

t Wt sW dt W t dt T s
T s s

WT T W T s
s s

W s Ws sT T s
T

=

⎧ + − ≤⎪⎪= ⎨ ⎛ ⎞⎪ + − + + − >⎜ ⎟⎪ ⎝ ⎠⎩
⎧ − + ≤⎪⎪= ⎨ − +⎪ + + >
⎪⎩

∫

∫

∫ ∫

 (A2.4)

and

2

0

2
2 2

2

4 4

3
2

2 2 2

1[] (() [()])

(12 15 5) ()
540

45 15
1 6 (12 5) 10 (9 2) ().

540
15 (6 7)

T
Var w w t E w t dt

T
T T WT W T s
s

T s
s T W sTW T w T s

T
s T TW W

= −

⎧ − + ≤⎪
⎪⎪ ⎛ ⎞−= ⎨ ⎜ ⎟⎪ + − + − + >⎜ ⎟⎪ ⎜ ⎟− − +⎪ ⎝ ⎠⎩

∫
 (A2.5)

Herein we take the same assumption as that in [JGM03], x is i.i.d. exponential

distributed with a mean 2W2/3. Next, we calculate the mean of Var[w] over different

loss probabilities as

87

 ()
()
()

3
22

2

3
22

2

3
22

2

0

3
20

3
1 20

3
2 2

[[]] [] ()

[]

[]

[] ,

W

W

W

x

W

sW x

W

x

WsW

E Var w Var w P T dT

Var w e dx

Var w e dx

Var w e dx

∞

∞ −

−

∞ −

=

=

=

+

∫

∫

∫

∫

 (A2.6)

where Var1[w] and Var2[w] are the two expressions shown in (A2.5), respectively.

Finally, the smoothness of WARC can be expressed as

=

+
= 1 2

[[]][]

(,) (,)

E Var wCV w
W

CV s W CV s W
W

 (A2.7)

where

 ()
()

−

∞ −

⎧ =⎪
⎨
⎪ =
⎩

∫

∫

3
22

2

3
22

2

3
1 1 20

3
2 2 2

(,) []

(,) []

W

W

sW x

W

x

WsW

CV s W Var w e dx

CV s W Var w e dx

. (A2.8)

Instead of showing the complex calculated result of (A2.8), we plot it in Fig. 3.5 to

display the smoothness of WARC, comparing with SIMD and GAIMD.

A2.3 Aggressiveness

The aggressiveness, Aggr(m), means the inverse of the time that a scheme

increases its rate from w(0) to (0)m w× [JGM03]. Suppose that WARC achieves the

steady state before the time 0 and has the average rate W, i.e. w(0)=W in (A1). Next,

assume at the time T, WARC increases the rate to m W× , i.e. ()w T m W= × . Then, by

solving T in (A2.1), we get Aggr(m) of WARC, expressed as

2

1
()

1 2(18 18) ()
3 3 2

2 1 2() s ().
3 2 3 2

Aggr m
T

sW W msW sW m W
W
sm W m W
W

=

⎧ + + − ≤ +⎪⎪= ⎨
⎪ − + > +
⎪⎩

 (A2.9)

A2.4 Responsiveness

The responsiveness, Resp(m), means the inverse of the number of loss events

required by a scheme to decrease the rate with a factor of 1/m. Since the

responsiveness of WARC would be fixed to N when the history-reset procedure is

invoked, we analyze the responsiveness provided by the basic control of WARC,

denoted as Respbasic(m). Assume that the inter-loss time is m T× RTTs before the

88

time 0, and it changes to T RTTs after the time 0. Suppose that WARC has a

steady-state rate W before the time 0, where 1.5W m T= × which is the mean CWND

that a TCP or TCP-equivalent flow should have under such an inter-loss time [ZDP01].

Fig. A2.2 plots the CWNDs of the potential TCP flow. The first start window w1 of

the TCP flow at the time 0 is m T× . Then, its ith start window wi can be derived as

1

1 (1)
2i iw m T T−= − + .

Assume the
iw denotes the mean CWNDs between the ith and (i+1)th losses after the

time 0, and then it can be expressed as

1

2
1 3(1) .

22

i i

i

Tw w

m T T−

= +

= − +

Since the packet rate in WARC is the average of the latest s CWNDs, the packet

rate after n losses can be represented as

 ()
1

1 3()
2

n

i
i

R n s nT mT T w
s =

⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑ , (A2.10)

where s is supposed larger than n*T. Next, according to the definition of

responsiveness, 1/Respbasic(m) is the number of received losses before WARC reduces

its rate, expressed by (A2.10), to 1.5T. That is, 1/Respbasic(m) equals to the n satisfying

 3
2()R n T≤ . (A2.11)

Finally, after T in (A2.10) and (A2.11) is replaced with 2
3
W
m

, by algebra we get

that (A2.11) is true once if

 4 3
3 2

msn
W

≥ + .

Fig. A2.2. The decreasing of the CWNDs and the mean CWNDs of a TCP flow when the inter-loss
time change to T seconds after the time m T× .

time (RTT)

rate (pkt/RTT)

0 T 2T 3T

W=3/2(m*T)

m*T

1/2(m*T)

TCP CWNDs

-m*T

1w

2w

3w1w

2w
3w

time (RTT)

rate (pkt/RTT)

0 T 2T 3T

W=3/2(m*T)

m*T

1/2(m*T)

TCP CWNDs

-m*T

1w

2w

3w1w

2w
3w

89

Next, we consider under what m the history-reset procedure would be invoked.

According to the description in Section 3.2, the HR procedure would be invoked if the

present sending rate of WARC is larger than K times of ()TCPR N where

() 1.5TCPR N T= in this example based on (3.4) since () (1)X j T j n− = ≤ ≤ . That is, the HR

procedure is invoked if the following equation is true.

 3
2() ()TCPR N K R N KT> = . (A2.12)

From (A2.12) and (A2.10) we can say that the HR procedure will be invoked if

3 2 () 4 (1 2)
3 2 () 4 (1 2)

1.1 .

N N

N N

Ks N T Tm
s N T T

K

⋅ − ⋅ − +>
⋅ − ⋅ − +

≈

90

Appendix 3
Unfairness of TFRCP and TEAR

Here we prove the unfairness of TFRCP and TEAR under non-periodic loss

model. A scheme following RTE represents that during the whole connection, it

repeatedly estimates the TCP throughput and adjusts the packet rate to the estimated

throughput. The long-term throughput of such a scheme can be expressed as

 ()
1 1

[] () () ()RTE
n n

E T R n L n L n
∞ ∞

= =

= ×∑ ∑ , (A3.1)

where L(n) is the length of the nth rate-adjusting interval and R(n) is the rate used in

this interval.

A3.1 Unfairness of TFRCP

The rate-adjusting interval L in TFRCP is fixed. The packet rate in the nth

interval, Rn, is set as the mean rate a TCP flow had during the last time interval Ln-1.

To estimate the mean rate, TFRCP calculates the TCP throughput formula [PFT98], f,

with the measured packet loss ratio pn-1 and RTT, where pn-1 is defined as the packet

loss ratio in the last time interval Ln-1. The measurement on RTT is the same as that

used in TCP.

Next, we show that in the long term the mean rate of TFRCP, E[TTFRCP], is equal

to or larger than that of TCP, E[TTCP]. Because Ln is fixed in TFRCP, E[TTFRCP] is a

simplified form of Eq. (A3.1),

 1

1
[] lim () [()]TFRCP vv n

E T R n E R n
ν

→∞ =

= =∑ . (A3.2)

where R(n) in TFRCP is got by the TCP throughput formula f , pn-1, and RTT. By

assuming that RTT is fixed during the connection, Eq (A3.2) can be rewritten as

 1[] [()] [()]TFRCP n nE T E f p E f p−= = . (A3.3)

However, according to [PKT99],

91

 E[TTCP]= f (E[pn]). .

Thus,

 [] [()] [[]] []TFRCP n n TCPE T E f p f E p E T= ≥ =

because of the convexity6 of f (p) [VB05].

TFRCP seems to assume that the loss condition measured in a fixed period

represents the steady-state loss condition. That is, it expects that pn=E[pn]. The

expression may be false particularity when pn is varied. When the expression is false,

the adjusted rate in TFRCP, f(pn-1), will not equal to the mean rate of TCP averaged

over a fixed period. However, WARC really averages the rate of TCP over a fixed

period, so it can meet fairness even under the varied pn.

A3.2 Unfairness of TEAR

The rate-adjusting interval L in the basic form of TEAR is the length of an epoch.

Different from TFRCP, the rate adjusted in the present interval, R(n), is not calculated

with the TCP throughput formula. The R(n) is averaged directly from the CWNDs of

the TCP flow emulated at the receiver. By the emulation, TEAR gets the CWND of a

TCP flow in each round and computes the mean CWND, W , for each epoch at the

end of each epoch. Next, TEAR sets R(n) to a weighted average of W , that is

8

1
() n jj

j
R n c W −

=

=∑ (A3.4)

where { }jc is a series of weights with sum equal to 1.

Because the mean window in an epoch is the weighted average of the historical

inter-loss time, i.e.
8

1
n i n i

i
W u L −

=

=∑ , Eq. (A3.4) can be rewritten with L directly, shown

as

16

1
() 'i n i

i
R n c L −

=
=∑ (A3.5)

6 A function f (x) is convex if for any two point x1 and x2, [] []1 1

1 2 1 22 2() () ()f x x f x f x+ ≤ + .

92

where { }jc is a series of production with ci and ui and
16

1

3'
2i

i
c

=

=∑ since
8

1

3
2i

i
u

=

=∑ .

Next, we show that in the long term the mean rate of TEAR, E[TTEAR], is equal

or smaller than that of TCP. By rewriting Eq. (A3.1) with Eq. (A3.5) and assuming

that the distribution of the inter-loss time is i.i.d., we can get

()
16

2
16

0 1 0
TEAR

1

0 0
2

2

'
[]= '

[]3
2 []

[]3 3 [] [].
2 [] 2

i n i n n
n i n

i
i

n n
n n

n

n

n
n TCP

n

c L L L
E T c

L L

E L
E L

E L E L E T
E L

∞ ∞

−
= = =

∞ ∞
=

= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ =

=

≤ = =

∑ ∑ ∑
∑

∑ ∑

 (A3.6)

According to Eq. (A3.6), we conclude that E[TTEAR] would equal to E[TTCP] only if

2 2[] []n nE L E L= , that is the inter-loss time is fixed, or the loss arrives periodically.

Otherwise, E[TTEAR] will smaller than E[TTCP].

93

References
[AAB05] E. Altman, K. Avrachenkov, and C. Barakat, “A Stochastic Model of TCP/IP with Stationary

Random Losses,” IEEE/ACM Transactions on Networking, vol. 13, no 2, pp. 356-369, April

2005.

[AVA06] Avalanche, http://www.spirentcom.com/analysis/product_line.cfm?PL =32.

[BB01] D. Bansal and H. Balakrishnan., “Binomial Congestion Control Algorithms,” In Proc. of

IEEE INFOCOM, April 2001, pp. 631-640.

[BBF01] D. Bansal, H. Balakrishnan, S. Floyd, S. Shenker, “Dynamic Behavior of Slowly-responsive

Congestion Control Algorithms,” in Proc. of ACM SIGCOMM’01, Aug. 2001, pp. 263-274.

[BBK00] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating User-Perceived Quality into Web

Server Design,” Proceedings of the 9th International World Wide Web Conference, 2000.

[BC98] P. Barford and M. Crovella, “Generating Representative Web Workloads for Network and

Server Performance Evaluation,” ACM SIGMETRICS Performance Evaluation Review, vol.

26, issue 1, pp. 151-160, June 1998.

[BCC98] B. Braden, D. Clark and J. Crowcroft, “Recommendations on Queue Management and

Congestion Avoidance in the Internet,” RFC 2309, Apr 1998, Available at

http://www.ietf.org.

[BP95] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global

Internet,” IEEE Journal on Selected Areas in Communication, vol 13, no. 8, Oct. 1995, pp.

1465-1480.

[CC01] E. Casalicchio and M. Colajanni, “A Client-Aware Dispatching Algorithm for Web Clusters

Providing Multiple Services,” Proceedings of the 10th International World Wide Web

Conference, 2001.

[CCC02] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mambelli, “Enhancing a Web-Server

Cluster with Quality of Service Mechanisms,” Proceedings of IEEE International

Performance Computing and Communications Conference, 2002.

[CKD02] M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi, “Quality of Service Issues in Internet

Web Services,” IEEE Trans. on Computers, vol. 51, no. 6, June 2002.

[CLB04] Gwyn Chatranon, Miguel Labrador, and Sujata Banerjee, "Fairness of AQM Schemes for

TCP-friendly Traffic" in Proc. of IEEE Globecom, Dallas, Dec. 2004, pp 721-731.

[CP99] L. Cherkasova and P. Phaa, “Session Based Admission Control: a Mechanism for Web

QoS,” Proceedings of the International Workshop on Quality of Service, 1999.

[F00] S. Floyd, “Congestion Control Principles,” RFC 2914, Sept. 2000.

[FF99] Floyd, S., and Fall, K., “Promoting the Use of End-to-End Congestion Control in the

Internet.” IEEE/ACM Transactions on Networking, August 1999.

[FHP00] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based Congestion Control for

Unicast Applications,” in Proc. of ACM SIGCOMM’00, Aug 2000, pp. 43-56.

94

[FJ95] S. Floyd, and V. Jacobson, “Link-sharing and Resource Management Models for Packet

Networks,” IEEE/ACM Transactions on Networking, Vol. 3 No. 4, pp. 365-386, August

1995.

[G04] S. Gorinsky, "Feedback Modeling in Internet Congestion Control", in Proc. of Next

Generation Teletraffic and Wired/Wireless Advanced Networking (NEW2AN 2004), Feb.

2004, pp. 231-234.

[GOL94] J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broadband Applications,”

Proceedings of the IEEE INFOCOM, Toronto, June 1994.

[GTC06] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck and X. Zhang, “Delving into Internet

Streaming Media Delivery: A Quality and Resource Utilization Perspective,” in Proc. of

ACM IMC’06, Oct. 2006.

[GVC96] P. Goyal, H. Vin, and H. Chen, “Start-Time Fair Queueing: A Scheduling Algorithm for

Integrated Services Packet Switching Networks,” Proceedings of the ACM SIGCOMM,

August 1996.

[JGM03] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros, "A Spectrum of TCP-friendly

Window-based Congestion Control Algorithms," IEEE/ACM Transactions on Networking,

vol. 11, no. 3, pp. 341-355, June 2003.

[JID04] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, Towsley, D., “Inferring TCP connection

characteristics through passive measurements,” IEEE INFOCOM 2004, Mar. 2004, pp.

1582-1592.

[JLH07] D. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, Architecture, Algorithms,

Performance, “ IEEE/ACM Transactions on Networking, vol. 14, no. 6, pp. 1246-1259,

2007.

[KHF06] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: congestion control without

reliability,” ACM SIGCOMM Computer Communication Review, vol. 36, no. 4, Sept. 2006.

[KHR02] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High Bandwidth-Delay

Product Networks,” in Proc. of ACM SIGCOMM’02, Aug. 2002, pp. 89-102.

[LG07] Ladan Gharai, “RTP with TCP Friendly Rate Control,” draft-ietf-avt-tfrc-profile-10.txt,

IETF Internet-draft, 22 July, 2007.

[LGC01] C. Li, G. Peng, K. Gopalan, and T. Chiuch, “Performance Guarantee for Cluster-Based

Internet Services,” State University of Stony Brook, May 2001.

[LM07] Live Network, Inc. “LIVE555 Streaming Media,” http://www.live555.com/liveMedia/

[LPW03] S. H. Low, F. Paganini, J. Wang, and J. Doyle, “Linear Stability of TCP/RED and a Scalable

Control,” Computer Networks Journal, vol. 43, no. 5, pp. 633-647, Dec. 2003.

[LT03] Lahanas A and Tsaoussidis V, “Exploiting the efficiency and fairness potential of

AIMD-based congestion avoidance and control,” Computer Networks, vol 43, no 2, pp.

227-245, Oct. 7 2003.

[MMF96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment

95

Options, “ RFC 2018, April 1996.

[NFT06] The netfilter/iptables project, http://www.netfilter.org/.

[NK04] N. Itaya and S. Kasahara, “Dynamic Parameter Adjustment for Available-bandwidth

Estimation of TCP in Wired-wireless Networks,” Computer Communications, vol. 27 no. 10,

pp. 976-988, June 2004.

[NS06] The Network Simulator - ns-2, 2.1b9, http://www.isi.edu/nsnam/ns/.

[PBB98] R. Pandey, J. Fritz Barnes, and R. Fritz Barnes, “Supporting Quality of Service in HTTP

Servers,” Proceedings of the Seventeenth Annual ACM Symposium on Principles of

Distributed Computing, pp. 247-256, 1998.

[PFT98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple

model and its Empirical Validation,” in Proc. of ACM SIGCOMM’98, Sep. 1998, pp.

303-314.

[PG93] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to Flow

Control in Integrated Services Networks: The Single-Node case,” IEEE/ACM Trans. on

Networking, pp. 344-357, June 1993.

[PG93] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to Flow

Control in Integrated Services Networks: The Single-Node case,” IEEE/ACM Trans. on

Networking, pp. 344-357, June 1993.

[PKT99] J. Padhye, J. Kurose, D. Towsley, and R. Koodli., “A Model Based TCP-friendly Rate

Control Protocol,” In Proc. of NOSSDAV, June 1999.

[RHE99] R. Rejaie, M. Handley, and D. Estrin, “Rap: An End-to-end Rate-based Congestion Control

Mechanism for Real-time Streams in the Internet,” In Proc. of IEEE INFOCOM, Mar. 1999,

pp. 1337-1345.

[RKL01] Y. R. Yang, M. S. Kim, and S. S. Lam, “Transient behavior of TCP friendly congestion

control protocols,” in Proc. of IEEE INFOCOM, Apr. 2001, pp. 1716-1725.

[ROY00] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Receivers-Flow Control for

Multimedia Streaming,” Tech. Rep., Department of Computer Science, NCSU, Apr. 2000.

[SCF03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for

Real-Time Applications,” RFC 3550.

[SQI06] Squid Web Proxy Cache, http://www.squid-cache.org/.

[SV96] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-Robin,”

IEEE/ACM transactions on networking vol. 4, no. 3, June 1996.

[SW00] D. Sisalem and A. Wolisz, “Lda+ tcp-friendly adaptation: A measurement and comparison

study,” in Proc. of NOSSDAV, June 2000.

[TL01] Shih-Chiang Tsao and Ying-Dar Lin, “Pre-order Deficit Round Robin: A New Scheduling

Algorithm for Packet-switched Networks,” Computer Networks, Vol. 35(2-3), pp. 287-305,

2001.

[TWH05] K. A. Tang, J. Wang, S. Hegde, and S. H. Low, “Equilibrium and Fairness of Networks

96

Shared by TCP Reno and FAST”, Telecommunications Systems special issue on High Speed

Transport Protocols, vol. 30, no. 4, pp. 417-439, Dec. 2005.

[TZ05] V. Tsaoussidis and C. Zhang, “The Dynamics of Responsiveness and Smoothness in

Heterogeneous Networks,” IEEE J SEL AREA COMM, vol. 23, no. 6, pp. 1178-1189, June

2005.

[VB05] Milan Vojnovic and J.-Y. Le Boudec, "On the Long-Run Behavior of Equation-Based Rate

Control," IEEE/ACM Transactions on Networking, vol. 13, no 3, pp. 568-581, June 2005.

[WDM01] J. Widmer, R. Denda and M. Mauve, “A survey on TCP-friendly congestion control,”

Special Issue of the IEEE Network ``Control of Best Effort Traffic”, vol. 15, no 3, pp. 28-37,

May/June 2001.

[WTL04] H. Y. Wei, S. C. Tsao, and Y. D. Lin, “Assessing and Improving TCP Rate Shaping Over

Edge Gateways,” IEEE Trans. on Computer, vol. 53, issue 3, pp. 259-275, March 2004.

[XSS05] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, "One More Bit Is Enough", in Proc.

of ACM SIGCOMM’05, Aug. 2005

[YL00] Y. Yang and S. Lam, “General AIMD Congestion Control,” in Proc. of IEEE ICNP 2000,

Nov 2000, pp. 187-198.

[ZDP01] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the Constancy of Internet Path

Properties, “ in Proc. of ACM SIGCOMM Internet Measurement Workshop, Nov. 2001, pp

197-211.

[ZT06] C. Zhang and V. Tsaoussidis, "TCP Smoothness and Window Adjustment Strategy", IEEE

Transactions on Multimedia, vol 8, no. 3, pp. 600-609, June 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

