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摘  要 
為了在網路上傳送封包，資料流可能需要為頻寬而競爭。當資料流為 Internet

上頻寬競爭時，公眾公平性是需要被維持的，相對的，當資料流於私有的接取路

徑上競爭時，則私有公平性可能需要被維持。為維持公眾公平性，不同於 TCP

的速度控制方法必須使用不超過 TCP 資料流的頻寬。然而，這些方法常只使用

低於 TCP 資料流的頻寬來保守的達到公眾公平性。在另一方面，為維持私有公

平性，使用封包排程器來管理瓶頸路徑是一個常見的方法。但是, 這方法無法在

使用者端的接取閘道器上管理呈現瓶頸狀態的下載路徑，因為他不能控制或排程

那些在使用者端對面之 ISP 端閘道器等候的封包。 

我們首先針對八個知名的速度控制方法，探討其為何無法恰巧使用與 TCP

相等的頻寬，也就是表現出 TCP-equivalence 的特性。接著我們提出了一個

window-averaging rate control (WARC)方法。藉由只考慮固定區間內的 TCP 速

度，使得 WARC 能夠更早的拋棄歷史封包遺失狀態，因而能表現出比過去方法

較好的 TCP-equivalence 特性。最後，我們又提出了 minimum-service first request 

scheduling (MSF-RS)的方法來解決封包排程器無法在使用者端管理下載路徑的

私有公平性問題。MSF-RS 藉由排程上行路徑請求以控制下行路徑回應的方式，

來達到使用者為基礎的權重公平性，也就是無論一類別使用者數量多寡，都能確

保高等級類別使用者獲得較多的頻寬。 

模擬結果分別在非週期性封包遺失，低耦合度流量，雙狀態遺失，及突現性
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大量遺失四種狀態下，顯示出先前速度控制方法無法在 TCP-equivalence 情況下

維持公眾公平性的原因，而分析及模擬結果也顯示 WARC 能藉由更快的加減速

反應，來表現更好的 TCP-equivalence 及達到公眾公平性。最後分析模擬及實驗

結果顯示 MSF-RS 能在使用者閘道器上提供以使用者為基礎的私有權重公平

性，並縮短 20~30%的使用者感受延遲時間。 

關鍵字- TCP 友善性, 壅塞控制, 請求排程, 接取閘道器, 公平佇列 
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Abstract 

Flows may compete for bandwidth to transmit packets. Public fairness should be 

maintained by the flows when they compete for the bandwidth in the Internet, while 

private fairness may be required when they do at a private access link which connects 

the intranet to the Internet. To maintain the public fairness, rate control schemes 

different from TCP should use no more bandwidth than TCP. However, these schemes 

often only use less bandwidth to conservatively maintain the fairness. On the other 

hand, for maintaining the private fairness, the usual solution is using a packet 

scheduler to manage bottleneck. Nevertheless, the solution fails to manage the 

downlink bottleneck at the user-side access gateway, since it cannot schedule the 

packets queued at the ISP-side gateway, opposite to the user-side one. 
This dissertation first investigates eight well-known rate control schemes to 

reveal why they cannot maintain the public fairness by using just the same bandwidth 

as TCP, i.e. being TCP-equivalent. Next, this dissertation proposes a 

window-averaging rate control (WARC) scheme. Considering the TCP rate only over 

a fixed interval leads WARC to forget the historical packet loss condition more 

quickly and thus perform better TCP-equivalence than other schemes. Finally, a 

minimum-service first request scheduling (MSF-RS) scheme is proposed to solve the 

private fairness problem which packet schedulers fail to manage downlink at the 

user-side gateway. MSF-RS schedules uplink requests to control downlink responses 

in order to provide user-based weighted fairness, i.e. ensure high-class users to get 

more bandwidth even more users belong to the high class. 

The simulation results under non-periodic losses, low-multiplexing, two-state 

losses, and bursty-losses reveal the causes that previous schemes cannot maintain 
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public fairness with TCP-equivalence. Next, both analysis and simulation demonstrate 

that WARC does maintain the fairness and perform better TCP-equivalence by 

exhibiting the faster aggressive and responsive behaviors. Finally, the analysis, 

simulation and field trial exhibit that MSF-RS provides the user-based private 

weighted fairness while reducing 20~30% of user-perceived latency at the user-side 

gateway. 

Keywords- TCP-friendly, congestion control, request scheduling, access gateway, fair 

queuing 
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Chapter 1 

Introduction 
1.1 Bottlenecks for the Internet Traffic 

The Internet traffic may encounter bottleneck at any one link. Fig. 1.1 shows a 

common network topology to classify the positions of bottleneck links. The first 

position is the link between any two edge routers (ERs) within the Internet while the 

second position is the access link between an Intranet and the Internet. The link in the 

first position is shared for public and thus has traffic coming from numerous hosts. 

These hosts would compete for the bottleneck with uncertain hosts. For example, Host 

S1 will not know whether its packets for D1 are competing for the link between ISP1 

and ISP2 with packets from S2 or other hosts. However, the link in the second position 

is only used by a group of users and has traffic for specific hosts. For example, the 

traffic passing through the link of G and EG would be associated with H1 ~ Hn only. 

Different from S1 and S2 which compete for the bandwidth of a public link, these 

hosts are competed for that of a private link, which is rented and managed by them. 

 

1.2 Public Fairness Control for TCP-Friendliness 
When the bottleneck link is located in the Internet, it is important for a host to 

ensure that its flow fair shares the bottleneck bandwidth with other competitory 

Internet flows, which is called public fairness in this dissertation. However, there is 

Fig. 1.1. Bottlenecks may be the links in the Internet or between the Internet and an intranet. 
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no central mechanism in the Internet to keep the public fairness, i.e. to tell a host 

about how much bandwidth it should use in transmitting packets to avoid from 

starving other flows. In fact, the current public fairness of the Internet depends on 

using the same end-to-end rate control mechanism among all hosts. That is, the rates 

of most Internet traffic are controlled by the additive-increase/multiple-decrease 

(AIMD) embedded in TCP. AIMD increases the transmission rate per round-trip time 

(RTT) to detect and use the available bandwidth and then decreases the rate to avoid 

from the congestion when packet losses occur. 

Unfortunately, the behavior of rate controlled by AIMD cannot satisfy the 

real-time streaming traffic, because such traffic prefers a smooth rate but the rate 

controlled by AIMD changes abruptly and largely. Therefore, new rate control 

mechanisms are required and their controlled traffic may coexist with that of AIMD in 

the Internet. In order to keep the public fairness of the Internet, the concept 

“TCP-compatibility”, i.e. TCP-friendliness, is suggested in RFC 2309 [BCC98]. The 

concept asks these rate control mechanisms to use no more bandwidth than TCP under 

the same network conditions such as loss ratio and RTT.  

1.3 Private Fairness Control for Weighted 

Fairness 
Compared to the public bandwidth in the Internet, the bandwidth on the access 

link is private. If the owner of the access link has multiple hosts commonly sharing 

the access link, then the owner may allocate the bandwidth for each host by his or her 

preference policies, which is called private fairness in this dissertation. Class-based 

weighted fairness [FJ95, PG93] is one of the policies widely used for allocating 

private bandwidth. By the policy, traffic running through the access link will be 

classified into multiple classes and each class is assigned a weight. Then, the ratio of 

bandwidth of any two classes would match the ratio of their weights. The class with a 

large weight, i.e. the high class, can get more bandwidth than that with small weight. 

Besides, if the high class is idle, i.e. has no traffic for transmission, its bandwidth will 

be proportionally allocated for other non-idle classes. 

To carry out the class-based weighted fairness policy, deploying a classifier and a 

scheduler at the gateway is necessary. As shown in Fig. 1.1, the access link has two 

gateways, the user-side gateway G and the ISP-side gateway EG. G is more preferable 
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by user than EG to deploy these mechanisms, because the gateway G is owned by the 

user renting the link and is easy to manage, while EG is owned by ISP. Moreover, if a 

classifier is deployed at EG, it cannot classify packets by their IP addresses because 

the source address of all uplink packets may be identical at EG, as well as the 

destination address of all downlink packets may be. For hosts in the intranet, 

commonly sharing a public IP address for connecting the Internet is often seen 

because of security concern and the short of IPv4 addresses. 

1.4 Related Work and Potential Problems 
Fig. 1.2 shows a tree to organize the related work of this dissertation. The 

dissertation focuses on the issues about bandwidth fairness and divides them into the 

public and private fairness. Public fairness is promoted in [FF99, BCC98], which asks 

the Internet traffic to be transmitted by a TCP-compatible rate control scheme. 

Meanwhile, in order to understand what the TCP-compatible rate is, the throughput 

models of TCP [PFT98, AAB05] are proposed and the network conditions in the 

Internet [ZDP01] are investigated. Next, to implement public fairness, many 

TCP-compatible rate control schemes are proposed [YL00, PHP00, ROY00, JGM03, 

BB01, PKT99, WDM01]. These schemes intend to control the flow to have a 

smoother rate while using the same bandwidth as TCP. However, several literatures 

reveal that these schemes may have lower bandwidth under some testing cases 

[BBF01, LT03, VB05]. Although such schemes still confirms to “TCP-compatibility”, 

they are not favorable to carry the streaming traffic because they provide less 

bandwidth than TCP.  
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Different from the public fairness which promotes each flow to use no more 

bandwidth than a TCP flow, the private fairness allows the differential allocations on 

bandwidth among the competitory flows. Class-based weighted fairness [FJ95, PG93] 

is such a goal and often pursued by the private fairness controls, such as WFQ [PG93], 

DRR [SV96], SCFQ [GOL94] and SFQ [GVC96]. Although all these schemes 

achieve the goal, they provide different degrees of packet latency and short-term 

fairness with different per-packet processing complexity. For example, DRR [SV96] 

is an scheduling algorithm which has O(1) complexity but a little worse degree on 

latency and short-term fairness. Thus, pre-order DRR is proposed in our previous 

work [TL01] to shorten the packet latency in DRR while retaining the O(1) 

complexity. 

Unfortunately, all these packet-level scheduling schemes cannot allocate the 

downlink bandwidth at the user-side gateway. As shown in Fig. 1.3, when the 

downlink is the bottleneck, the inbound packets will queue at the ISP edge gateway. 

Thus, scheduling packets at the user-side gateway is useless since packets have passed 

through the bottleneck. For this problem, an idea is scheduling uplink requests to 

control the returned downlink responses since the Internet traffic most follows the 

request/response model. Request scheduling was used in several studies to provide 

differential Web QoS for different-classes users [CKD02]. These studies provided 

QoS services by designing request scheduling at a single Web server [PBB98, BBK00, 

CP99] or a web-side gateway, i.e. a gateway ahead close to a group of Web servers 

[CCC02, CC01, LGC01]. No published studies discussed how to design request 

Fig. 1.2. A tree is used to organize the related work in the dissertation 
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scheduling at the access gateway. The key difference between the previous works and 

this work is that the target Web servers in the former are specific and their status can 

be detected or controlled. The resources each request will cost could be measured in 

advance to assist in the scheduling mechanism. However, the servers in the latter are 

infinite, distributed over the Internet, and cannot be managed. It is impossible to 

measure the costing resources for all requests in advance. 

 

1.5 Objective, Methodology and Road Map 
The objective of this dissertation is to propose the fairness control schemes 

respectively to solve the public and private unfair problems which currently existing 

solutions cannot handle at the end host or at the user-side gateway. 

In public fairness, to clarify why the existing schemes cannot always have the 

same bandwidth as TCP, an investigation for eight well-know schemes is given in the 

dissertation. These schemes are classified and evaluated according to their underlying 

policies in three aspects, namely fairness, aggressiveness and responsiveness, as 

defined in Chapter 2. Next, according to the investigation, a fast-converging 

window-averaging rate control (WARC) scheme is proposed to have equal bandwidth 

to TCP more closely than existing schemes [YL00, PHP00, ROY00, JGM03, BB01, 

PKT99, WDM01]. WARC takes short time to converge its rate toward TCP’s 

whenever the available bandwidth drastically increases or decreases. Besides, when 

the available bandwidth keeps stationary, WARC is the first scheme providing the 

same bandwidth as TCP under any distributions of inter-loss time. Existing schemes 

provide it only under some specific assumptions, e.g. the packet losses occur 

periodically or with a fixed probability, but these assumptions may not be realistic in 

the Internet [ZDP01].  

In private fairness, to realize the idea of managing the downlink bandwidth by 

scheduling uplink requests, the dissertation first investigates the possibility of 

Fig. 1.3. A typical topology of connecting the Internet with the access link
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applying the class-based fair-queuing discipline, which is widely and maturely used in 

scheduling packets, to schedule requests. However, we found that simply applying the 

discipline to schedule requests would encounter three problems. The first two are on 

the timing of releasing requests and the selection of the next released request, 

respectively. The last one is about the class-based policy, which may not suit for the 

user-level differentiation, i.e. may not guarantee high-class users to get more 

bandwidth than low-class one when more users appear in the high class. Next, based 

on the above investigation, we propose a minimum-service first request scheduling 

(MSF-RS) scheme to provide bandwidth sharing and user-based weighted fairness, i.e. 

a policy that guarantees the ratio of the bandwidth allocated for each high-class user 

to that for each low-class user matches the ratio of their weights. 

The road map of the dissertation is organized as follows. Chapter 2 presents a 

taxonomy and evaluation for eight TCP-friendly rate control schemes. Chapter 3 

proposes the fast-converging window-averaging rate control scheme for public 

fairness. Chapter 4 proposes the MSF-RS scheme to manage the downlink at the 

user-side access gateway for private fairness. The conclusions are given in Chapter 5 

and advanced mathematic analyses for TCP-friendly schemes are described in 

Appendices. 
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Chapter 2 

Taxonomy and Evaluation of 

TCP-Friendly Congestion-Control 

Schemes 

 
2.1 Introduction 

Real-time streaming media, such as video/audio conversations and movies online, 

are now often transmitted over the Internet. Because the available bandwidth in the 

Internet is dynamic, a congestion control mechanism is needed to prevent the media 

flow from suffering serious packet losses. A flow carried over TCP generally is 

subject to such a congestion control mechanism. TCP is the most widely-used 

transport protocol in the Internet, and embeds an Additive-Increase and 

Multiplicative-Decrease (AIMD) congestion control mechanism. 

The throughput controlled by AIMD in TCP changes dramatically and frequently, 

which may not satisfy real-time streaming media. Many AIMD-variant and other-style 

congestion control schemes have been proposed to solve this problem [YL00, PHP00, 

ROY00, JGM03, BB01, PKT99, WDM01]. Besides being smooth, these schemes 

have been suggested to be TCP-friendly [BCC98] because their controlled traffic is 

expected to coexist with TCP traffic in the Internet. “TCP-friendly” is a generic term 

describing that a scheme aims to use no more bandwidth than TCP. This study 

discusses in detail the proper behaviors of a TCP-friendly scheme in view of the 

following three criteria: TCP-compatibility, TCP-equivalence and TCP equal-share. 

TCP-compatibility is defined in RFC 2309 [BCC98], which says that a 

TCP-compatible flow, in the steady state, should use no more bandwidth than a TCP 

flow under comparable conditions such as packet loss rate and round-trip time (RTT), 

where RTT means the time required for a packet to travel from the source to the 

destination and back. However, a TCP-compatible congestion control scheme is not 

preferred if it always offers far lower throughput than a TCP flow. Hence, a better 
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congestion control scheme has to not only meet TCP-compatibility, but also pursue 

TCP-equivalence. A TCP-equivalent flow has the same throughput as a TCP flow if it 

experiences identical network conditions, which mean the same patterns of packet 

loss occurrences and RTT changes. Most present schemes tend to provide 

TCP-equivalence, rather than just TCP-compatibility. However, TCP-equivalence in 

all network conditions is hard to achieve. Various studies have described schemes that 

achieve compatibility without always achieving equivalence [YL00, FHP00, ROY00, 

BBF01, LT03, VB05]. 

Although a TCP-equivalent scheme consumes TCP-equivalent bandwidth when 

working by itself, it may not coexist well with TCP in the Internet. A TCP-equivalent 

scheme merely ensures the same throughput between TCP and TCP-equivalent flows 

when both experience identical conditions, but not that when both compete for the 

same bottleneck, which is exactly the real situation in the Internet. Competing for the 

same bottleneck does not imply experiencing identical network conditions [VB05]. 

Therefore, this study defines a new criterion, namely TCP equal-share. This criterion 

is more realistic than TCP-equivalence, because the most important concern is 

whether flows with different controls can co-exist and equally share bandwidth in the 

same bottleneck while coexistence is not in the picture of TCP-equivalence. Moreover, 

TCP equal-share is also more challenging than TCP-equivalence because a TCP 

equivalent flow may not be TCP equal-share, but vice versa is true. 

This study has three objectives. The first objective is to be the guide for selecting 

from existing TCP-friendly schemes, based on the proposed taxonomy and evaluation. 

The second objective is to indicate the potential fault cases and causes of the eight 

schemes evaluated, thus helping designers to realize what needs to be enhanced. The 

third objective is to recommend policies for designing an ideal scheme to meet all 

TCP-friendly criteria. Unlike the survey of Widmer et al. [WDM01] which compares 

the functionality of various schemes, this study tests the selected schemes for the 

TCP-friendly criteria. Contrary to Bansal et al. [BBF01] who compare the transient 

behaviors of various schemes, this study additionally investigates these schemes 

under the steady state to reveal that they may use bandwidth unequal to TCP even in 

this case. Besides, this study investigates the bandwidth sharing between TCP and 

TCP-friendly flows (inter-fairness), differing from Tsaoussidis et al. [TZ05] who 

study the bandwidth sharing among a group of homogeneous flows (intra-fairness). 

For TCP-friendly schemes, Table 2.1.1 summarizes the proper behaviors for the 
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three TCP-friendly criteria in three aspects, namely fairness, aggressiveness and 

responsiveness, as explained further in Chapter 2.2. Also, Table 2.1.2 shows the eight 

typical TCP-friendly schemes selected for this study. In Chapter 2.3, the behaviors of 

these schemes are classified according to their key operational characteristics to 

realize how they meet the three criteria. In Chapter 2.4 and 2.5, the evaluation results 

verify whether these schemes meet the criteria, and also reveal some further issues. 

Next, related work is discussed in Chapter 2.6. Finally, we make recommendations 

about the preferred schemes and policies, based on the observed results, in Chapter 

2.7. 

Notably, although TFRCP is simply the predecessor of TFRC, it is selected in 

this study due to its simplicity, which may be preferred by the programmers of 

real-time applications. Moreover, Bansal et al. [BBF01] defined a TCP-equivalent 

scheme differently from this study, as a scheme with the same AIMD as TCP, but 

without packet loss recovery or fast retransmission. 

 

2.2 TCP-friendliness 

2.2.1 Steady state and Transient state 

TABLE 2.1.1. THE PREMISES AND PROPER BEHAVIORS IN THREE CRITERIA  

Proper behaviors of a scheme 

Steady state Transient state 

Criterion Network 
premise 

Fairness Aggressiveness Responsiveness 

TCP-compatibility Comparable 
conditions Less bw Don’t care As fast as TCP 

TCP-equivalence Identical 
conditions 

TCP equal-share Same 
bottleneck 

Equal bw As fast as TCP 

TABLE 2.1.2. THE CONTROL PARAMETERS USED IN EACH SCHEME 
SCHEME FULL NAME PARAMETERS REF. 
GAIMD General additive inc./multiplicative-dec. α=0.2, β=0.125 [YL00] 

IIAD Inverse-inc./additive-dec. α=1.0, β=0.67, k=1, l=0 [BB01] 
SQRT Square-root inc./dec. α=1.0, β=0.67, k=0.5, l=0.5 [BB01] 
SIMD Square-inc./multiplicative-dec. β=0.0625, k=-0.5, l=1 [JGM03] 

AIAD/H Additive inc./dec. with history β=0.25, k=0, l=0 [JGM03] 
TFRCP TCP-friendly rate control protocol Interval=5 seconds [PKT99] 
TFRC TCP-friendly rate control The number of samples=8 [FHP00] 
TEAR TCP-emulation at receiver The number of samples=8 [ROY00] 
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As shown in Table 2.1.1, the term “steady-state” is used in the description of the 

three criteria. A steady-state network originally means that a network with a negligible 

change over an arbitrarily long period. By this definition, the Internet would not be in 

the steady-state condition unless the term “arbitrarily long” is removed from the 

definition. The measured result in [ZDP01] reveals that the packet loss condition 

experienced by an Internet flow may consist of multiple minute-scale steady-state 

regions, and the time interval between any two consecutive losses may be mutually 

independent and have the same probability distribution, i.e. be independently and 

identically distributed (i.i.d.), within a region. Thus, a TCP-friendly scheme should 

use the same bandwidth as TCP in a steady-state region, while being aggressive 

enough to capture the available bandwidth and being responsive enough to protect 

itself from congestion, as the packet loss condition changes across regions (the 

transient state). Notably, a packet loss (event) in this study denotes an event causing a 

TCP flow halving its congestion window. Such an event may imply that multiple 

consequent packets are discarded. For convenience, this study, like other studies 

[YL00, FHP00, ROY00, BBF01, LT03, VB05], ignores the term “event”. 

2.2.2 TCP-friendly Criteria 

This study uses the following three criteria to describe the proper behaviors of a 

TCP-friendly scheme. Vojnovic et al. presented a criterion, named “conservative” 

[VB05]. However, this criterion is suitable only for evaluating schemes that use TCP 

throughput formula, and therefore is not considered herein.  

1) TCP-compatibility: The basic criterion, introduced in RFC 2309 [BCC98], is 

defined as, “A TCP-compatible flow is responsive to congestion notification, and uses 

no more bandwidth in the steady state than a conformant TCP flow running under 

comparable conditions (e.g. packet loss rate, RTT).” As shown in Table I-A, this 

criterion forbids a scheme from providing a flow with more bandwidth than TCP, in 

order to protect TCP flows from starvation. Based on this definition, a 

TCP-compatible flow should decrease the throughput at least as fast as TCP when the 

packet loss condition becomes severe, i.e. responsive but not necessarily aggressive. 

Otherwise, the compatibility criterion would be violated during the long convergence 

time of the flow.  

2) TCP-equivalence: This study defines the criterion as, “If given identical 

network conditions, then a TCP-equivalent flow uses the same bandwidth as a TCP 

flow when the network condition is either in the steady or transient state.” This 
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criterion, unlike “TCP-compatibility”, requires the same bandwidth, not just “no 

more” bandwidth than TCP. Therefore, a TCP-equivalent scheme is more desirable for 

transmitting media traffic, because it provides more bandwidth than a 

TCP-compatible scheme. Moreover, to meet the criterion in the transient state, a 

TCP-equivalent scheme must consider aggressiveness besides responsiveness. That is, 

if more bandwidth becomes available, then a TCP-equivalent scheme should increase 

the throughput of its controlled flow as fast as TCP. Finally, TCP-equivalence requires 

“identical network conditions”, rather than “comparable conditions”, to ensure the 

same patterns of packet loss occurrences and RTT changes. The requirement is 

necessary for testing a scheme whether to have the same throughput as TCP, because 

TCP has different throughputs under the same mean but different variances of loss 

rate or RTT [AAB05]. 

A TCP-equivalent scheme may work well in routers which use well-designed 

Active Queuing Management (AQM) algorithms to manage their bottleneck links, 

because such routers may offer the needed premise, namely “given identical network 

conditions” to TCP and TCP-equivalent flows. However, if this premise is not 

supported, then a TCP-equivalent flow may have more throughput than a TCP flow 

when the TCP-equivalent flow experiences fewer packet losses from the routers. To 

support the premise, these AQMs apply equal packet loss rate on flows of the same 

throughput, with the loss rate being directly proportional to the throughput. Since TCP 

and TCP-equivalent flows adjust the throughput based on their loss rates regulated by 

the AQM, they finally would have the same throughput and loss rate. Readers 

interested to this issue may refer to Gwyn et al. [CLB04]. 

3) TCP equal-share: This study defines the criterion as, “A TCP equal-share 

flow uses the same bandwidth as a TCP flow if both flows compete for the same 

bottleneck.” This criterion should hold regardless of whether the network conditions 

experienced by the two flows are identical. This criterion differs from 

TCP-equivalence in its premise, “competing for the same bottleneck”, which implies 

“competing for the shared bandwidth resources”, but it is not necessary for 

TCP-equivalence. 

TCP equal-share is more realistic than TCP-equivalence. A new scheme is safe to 

deploy if it provides the same bandwidth as TCP when competing for the same 

bottleneck, not just when it has identical network conditions. However, achieving 

TCP equal-share is more challenging than achieving TCP-equivalence, because 
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competing for the same bottleneck does not imply experiencing identical network 

conditions [ZDP01]. Therefore, a TCP-equivalent flow may not be TCP equal-share if 

it experiences different network conditions from a TCP flow. However, a TCP 

equal-share flow should have the same bandwidth as a TCP flow, regardless of 

network conditions, implying that it is also TCP-equivalent. 

 

2.3 Taxonomy in Fairness, Aggressiveness, and 

Responsiveness 
The section investigates the fairness, aggressiveness and responsiveness policies 

taken by the selected schemes, as summarized in Table 2.2.  

 

2.3.1 Fairness Strategy 

The fairness policy of a scheme describes how the scheme adjusts a flow to have 

equivalent throughput to a TCP flow in the long term under the steady state. As shown 

in Table 2.2, the selected schemes use two fairness policies, window-based (WB) and 

rate-based (RB).  

The WB fairness policy controls the throughput by adjusting the congestion 

window (CWND). CWND represents the number of packets that can be freely sent 

without waiting for their acknowledgements, and is updated by a set of control 

TABLE 2.2. TAXONOMY IN  

FAIRNESS, AGGRESSIVENESS, RESPONSIVENESS STRATEGIES  

Policy Fairness Aggressiveness Responsiveness 

Aspect throughput adjusting step 
of each inc. 

curve type life cycle of 
loss statistics 

GAIMD Window-based Non-historical Linear Variable-history 

IIAD Window-based Historical Sub-linear Non-historical 

SQRT Window-based Historical Sub-linear Variable-history 

SIMD Window-based Historical Super-linear Variable-history 

AIAD/H Window-based Historical Linear Non-historical 

TFRCP Rate-based Non-historical Super-linear Fixed-history 

TFRC Rate-based Historical Linear Fixed-history 

TEAR Rate-based Historical Linear Fixed-history 
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parameters, see Table 2.1.2. A specific relationship exists between the parameters, 

giving a scheme equal throughput to the TCP. Applying this policy requires the 

developments of control parameters and their specific relationship. For instance, 

GAIMD uses two parameters, α and β, to control its CWND, increasing CWND by α  

for every RTT and decreasing CWND by β if a packet loss occurs. A specific 

relationship α=3β/(2-β) exists between α and β for achieving the same throughput as 

TCP. Five of the selected schemes, GAIMD, SQRT, IIAD, SIMD and AIAD/H, apply 

the WB policy. 

The RB fairness policy directly adjusts the throughput by finely controlling the 

time between sending two packets and thus has a smoother rate than the WB policy. 

The RB policy continues to estimate the potential throughput of a TCP flow during its 

lifetime and repeatedly adjusts the sending rate according to this estimated TCP 

throughput, enabling a flow to have equal throughput to TCP. Applying this policy 

requires the developments of scheme for estimating the TCP throughput and 

determining when to adjust the sending rate. The RB policy is applied in three 

schemes, TFRCP, TFRC and TEAR. 

2.3.2 Aggressiveness Strategy 

The aggressiveness policy of a scheme describes how the scheme increases the 

throughput of a flow before encountering the next packet loss. As shown in Table 2.2, 

the non-historical policy is taken by GAIMD and TFRCP. The step of increase is 

independent of the history of packet losses, and is thus fixed during the whole life of 

the flow. Unfortunately, this behavior brings the tradeoff between aggressiveness and 

smoothness. For instance, when GAIMD employs a small step for smoothness, a slow 

rate of increase may prohibit GAIMD from achieving either TCP-equivalence or TCP 

equal-share when the loss condition changes dramatically. Conversely, TFRCP 

doubles its rate if it does not encounter any loss during a fixed time interval, which 

makes it super-linear, i.e. fast and aggressive, but possibly causes large oscillation, i.e. 

poor smoothness. 

By contrast, the historical policy has a variable step. For example, to achieve 

smoothness, SIMD initially takes a smaller increasing step than TCP after 

encountering a packet loss. SIMD then enlarges the step according to the historical 

maximum CWND, to increase the aggressiveness before encountering the next loss. 

The historical policy also enables AIAD/H to dynamically determine a step for 
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linearly increasing the throughput. AIAD/H seems to be more adaptive than GAIMD. 

Three of the schemes with the historical policy, namely SQRT, IIAD and SIMD, 

have non-linearly increasing curves between packet losses, because they change their 

steps per RTT, instead of per loss. SQRT and IIAD have sub-linearly increasing 

curves, because they shorten the step inversely with increasing CWND  and 

CWND, respectively. By contrast, SIMD has a super-linear behavior and thus has the 

fastest increasing rate because the step in SIMD is enlarged with the time escaped 

from the latest loss. 

2.3.3 Responsiveness Strategy 

The responsiveness policy of a scheme describes how the scheme decreases the 

throughput of a flow when the packet loss condition becomes severe. The key 

difference among the policies is the life cycle of the loss statistics used in adjusting 

the new throughput. The loss statistics include the number of inter-loss packets (the 

received packets between two losses), the inter-loss time, or the loss rate measured in 

an interval. There are three policies, namely non-historical, fixed-history and 

variable-history, as shown in Table 2.2. 

The non-historical policy ignores the historical packet loss statistics in 

decreasing throughput, and thus decreases the throughput at a constant speed, thus 

producing a tradeoff between responsiveness and smoothness. For example, to ensure 

smoothness, IIAD and AIAD/H employ a small decreasing speed, leading to a long 

convergence time and the violation of all three criteria, particularly when a significant 

change of loss condition occurs. 

The other two policies consider the historical packet loss statistics in order to 

decrease the throughput. In the variable-history policy, loss statistics of a large value 

may have a longer duration to affect the throughput than that of a small value. For 

example, CWND in GAIMD controls the throughput, and can be regarded as a 

weighted average over all historical values on inter-loss time, where the values 

obtained earlier have smaller weights [ABB05]. Therefore, early but large values still 

affect the throughput, even when their weights are small. However, schemes with 

fixed history only consider the latest n loss statistics when computing the new 

throughput. A loss statistic, regardless of its value, is eliminated from the computation 

if it is not among the latest n values. Fixed-history schemes include TFRC, TEAR and 

TFRCP. 
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2.4 Fairness Evaluation 

We use ns-2 simulation [NS06] and examine the fairness of eight different 

schemes to determine whether they meet the TCP-equivalence and TCP equal-share 

criteria. The source codes of TEAR, TFRCP, SIMD, and AIAD are not included in the 

package of ns-2 simulation, but instead are published individually on the Web sites of 

their authors. Also, this study like [FHP00, JGM03, BB01] uses SACK [MMF96] as 

the TCP version and assumes no delayed acknowledgments. For the simulation, we 

use packets that were 1,000 bytes long and a maximum window size of 200 packets.  

2.4.1 TCP-equivalence: Artificial-losses testing scenario with identical network 

conditions 

A link with artificial packet losses was used to test for TCP-equivalence. The link 

discards the passing packets with a specific mathematical model. Such a link 

guarantees that any two passing flows experience identical loss conditions, thus 

satisfying the premise in TCP-equivalence, making this link suitable for the test of 

TCP-equivalence. Sufficient bandwidth was allocated for this link to prevent the 

packets from being dropped due to overflow. 

The selected schemes were tested to determine whether they are robust enough to 

have the same throughput as TCP under varied artificial links, which have different 

means or Coefficient-of-Variations (CVs) of inter-loss time. The two statistics were 

varied because both affect the TCP throughput [AAB05]. A general exponential 

random variable allows its coefficient-of-variation to be changed while fixing its 

mean, or vice versa, so it is employed to drop packets at the link. The time between 

two packet losses thus forms a general exponential distribution, which is also used in 

[VB05] to investigate the conservativeness of TFRC. Only the testing result under 

links with different coefficient-of-variations is shown herein. The result with different 

means has already been obtained [JGM03, BB01]. 

The artificial link plotted as the link R1-R2 in Fig. 2.1(a), drops one packet every T 

seconds. T denotes a general exponential distributed random variable where E[T] is 

fixed at 5 and CV[T] uniformly increases from 0 to 1. The results in Fig. 2.1 were 

averaged from five runs of 5200 seconds each, where the data within the first 200 

seconds were discarded, and the mean coefficient-of-variation of the simulation 

results between the five runs was 0.025. Because this coefficient-of-variation is small, 
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it is ignored in plot to improve the clarity of the figure. 

 

Observation 1: Non-periodic losses should be considered in adopting WB/RB fairness 

policies.  

Figures 2.1(b)(c) reveal that none of the WB/RB schemes meet TCP-equivalence 

under non-periodic packet loss (CV[T]>0). When CV[T]=1, GAIMD and TFRC only 

have 80% throughput of TCP while TEAR, IIAD, SQRT, and AIAD/H have 60% on 

average, because all schemes, except SIMD, were proposed based only on the 

periodic-loss assumption, i.e. the packet losses occur periodically. The unfairness 

under CV[T]=1 should be handled by these schemes because the inter-loss time in the 

Internet may approximate an i.i.d. exponential distribution equivalent to the link with 

CV[T]=1, according to the observation in [ZDP01]. 

Notably, the TFRCP and SIMD flows exhibit a different trend from other flows in 

Fig. 2.1(b)(c). The difference of TFRCP is due to the convex TCP throughput 

equation and the fixed rate-adjusting period [VB05], while that of SIMD occurs 

because its specific relationship between parameters is based on the packet loss model 

with [ ] 1CV T  [JGM03]. Figures 2.1(b) also plots the curve of SIMD variant, 

SIMD/Period, with this design based on CV[T]=0. Unfortunately, SIMD/Period 

violates the TCP-compatibility criterion under non-periodic conditions. 

Fig. 2.1. The throughputs of TCP-friendly schemes normalized with the throughput of TCP, under 
the loss link whose inter-loss time has a general exponential distribution. For clarity, results 
are separately shown in (b) and (c). 
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2.4.2 TCP equal-share: Low-multiplexing testing scenario with the same bottleneck 

A dumbbell topology provides the premise of TCP equal-share, i.e. “competing for 

the same bottleneck,” and thus is used to verify the TCP equal-share of a scheme in 

the steady state. As shown in Fig. 2.2(a), n TCP-friendly flows compete with n TCP 

flows for a single bottlenecked link. All flows have backlogged data for the whole 

testing period. This study particularly investigates a low-multiplexing scenario [F00], 

where n is small and Drop-Tail is deployed to manage the bottleneck link, because 

previous results [YL00, FHP00, ROY00, BBF01, LT03] imply that a TCP-equivalent 

flow may violate TCP equal-share under such a scenario. Drop-Tail is a queuing 

management algorithm which discards new arrival packets when its managed queue is 

full. 

 
To indicate the cause of the violation, the scenario used in [YL00, FHP00, ROY00, 

BBF01, LT03] was slightly modified at two points. First, instead of using a fixed 

capacity, e.g. 15 or 60 Mbps, the link had 2n Mbps. Such a link can provide on 

average 1Mbps of bandwidth for each flow, avoiding the influence of the TCP 

timeout-handling mechanism, as expected from previous studies [YL00, FHP00, 

ROY00, BBF01, LT03]. Second, although multiple rounds were tested for the same n, 
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(b) n = 8 

(a) Dumbbell topology  

SIMD 

(c) Comparison on loss ratio  

Fig. 2.2. n TCP-friendly and n TCP flows compete for the bottleneck link. The propagation 
delays among each set of n flows are distributed uniformly with CV[RTT]=0~0.42. 
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the RTT-heterogeneity of n TCP flows and of n studied flows were enlarged equally 

over different rounds. The RTT-heterogeneity of n flows represents the 

coefficient-of-variation of the RTTs of these flows, denoted as CV[RTT]. The mean 

end-to-end propagation delay was set to 50ms for all rounds. The queue size was 1.5 

times the bandwidth-delay product.  

Observation 2: RB fairness policy wins and RTT-heterogeneity matters for TCP 

equal-share. 

Figure 2.2(b) indicates that the tested schemes do not always ensure TCP 

equal-share under the scenario, because they are based on the premise of 

TCP-equivalence, i.e. “any two flows experiencing identical network conditions,” but 

not that of TCP equal-share. Thus, these schemes cannot have the same throughput as 

TCP when the premise of TCP-equivalence is false, i.e. they do encounter different 

numbers of packet losses.  

To show that the premise of TCP-equivalence is false under the scenario, Fig. 

2.2(c) plots the normalized packet loss rate experienced by the TCP-friendly flows 

with the shortest RTT, compared with that of TCP flows. The loss rates of 

shortest-RTT flows are shown because their differences are the most significant 

among all flows. Three RB schemes, namely TFRCP, TFRC and TEAR, clearly suffer 

a higher loss rate than TCP at CV[RTT]=0, but an equal rate at CV[RTT]>0.25, which 

explains their bandwidth sharing with TCP in Fig. 2.2(b). Similarly, the other five 

schemes suffer a lower loss rate than TCP, so they occupy much more bandwidth than 

TCP.  

Figure 2.2(b) also reveals that the RTT-heterogeneity of the competing flows 

significantly affects the fairness between TCP and TCP-friendly flows. GAIMD and 

SIMD occupy more bandwidth on average than TCP flows (1.5~4 times), particularly 

when CV[RTT]=0 (>10 times), where the number of competing flows is small (n=8, 

total is 16). The seriously unfair situation at CV[RTT]=0 also exists even when the 

total number of competitory flows is 64. 

The unfair situation in the five WB schemes results from their exercising the 

packet acknowledgement mechanism. These schemes, like TCP, delay the 

transmission of the next data packet if the transmitter does not receive an ACK packet 

because the queue of a router in the transmission path has overflowed. By the delay, 

they encounter fewer packet losses and thus have higher throughput than the three RB 
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schemes. Moreover, because the overflow is alleviated by TCP significantly reducing 

its CWND, these five schemes, which slowly reduce their CWNDs, may monopolize 

the link until the queue is overflowing again. Thus, they have higher average 

throughput than TCP. 

Although neither the WB and RB fairness policies can ensure TCP equal-share, 

the RB flows would experience similar packet loss rate to TCP flows, and can meet 

TCP equal-share in most cases, i.e. under CV[RTT]>0.05. By contrast, the WB flows 

may severely starve TCP flows. Therefore, the RB fairness policy should have a better 

chance than WB of meeting the TCP equal-share. Notably, these TCP-friendly 

schemes were also tested under a topology with multiple bottlenecks, but the results 

reveal that their TCP equal-share is unrelated to the number of bottlenecks, when this 

number increases from 1 to 10. 

 

2.5 Evaluation on Aggressiveness and 

Responsiveness 

This section evaluates the selected schemes on their aggressive and responsive 

behaviors to verify whether they meet the TCP-equivalence and TCP equal-share 

criteria.  

2.5.1 TCP-equivalence: Two-state artificial-losses testing scenario with transient 

convergence 

The objective of the testing is to observe whether the throughput of the schemes 

converge as fast as TCP. An artificial-loss link was used, as in 2.4.A, because it 

satisfies the premise of TCP-equivalence. However, a two-state packet loss model was 

adopted in the link to simulate large changes in the loss conditions. A packet was 

dropped every 5 seconds during the 100th~800th seconds, and every 1 second at other 

times. The result after 100 seconds exhibits aggressive behavior, and that after 800 

seconds exhibits responsive behavior. The RTT of the testing flow was about 140ms. 

Observation 3: Throughput-inversed aggressive, defined below, and non-historical 

responsive policies are inadequate. 

Figure 2.3(a) and the left part of Fig. 2.3(b) reveal that IIAD and AIAD/H take 
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700 seconds to increase their throughput to the new steady throughput. Such a long 

time is unacceptable, particularly since the other six schemes reach steady throughput 

within 100 seconds. Surprisingly, although AIAD/H has a linearly increasing curve 

between two packet losses as mentioned earlier, it has a slower convergence than 

IIAD. Under this scenario, the reason that both schemes seriously violate 

TCP-equivalence is their slowly increasing behaviors across over multiple losses, 

instead of between two losses. Both schemes shorten the increasing step inversely 

with their throughput per loss. Herein such an unfavorable slow aggressive behavior 

is called a throughput-inversed aggressiveness policy.  

 
Figure 2.3(c) and the right part of Fig. 2.3(b) verify that the non-historical 

responsiveness policy does not satisfy the TCP-equivalence criterion. The policy 
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brings IIAD and AIAD/H longer convergence time than the other schemes. Figure 

2.3(c) reveals that the fixed-history policy usually takes a shorter time to converge 

than the variable-history policy. TFRC, TFRCP, and TEAR take 20 seconds to 

converge, which is half the time of GAIMD and SIMD. However, the results also 

reveal that SQRT, which has a variable-history policy, also has a short convergence 

time. Further analysis indicates that the control parameters used in SQRT have the 

advantage of a short convergent time. 

2.5.2 TCP equal-share: Bursty-loss testing scenario with the same bottleneck 

To test whether a scheme in the transient state meets the TCP equal-share criterion, 

a two-state constant-bit rate (CBR) arrival traffic with obviously different rates 

between on and off periods was applied to the dumbbell bottleneck scenario used in 

Chapter 2.4.B. The oscillating CBR traffic emulates the arrival of a group of TCP 

flows, significantly changing the packet loss condition of the bottleneck, and thus 

providing the required transient-state scenarios. Such traffic in [BBF01] is used to 

observe how a GAIMD, TFRC, IIAD, or SQRT flow competes with a bursty arrival of 

TCP traffic. 

Whereas Bansal et al. [BBF01] showed the statistical behavior for the selected 

schemes, this study reveals their micro behavior in one on/off period. Additionally, 

this study tested four schemes, SIMD, AIAD/H, TFRCP, and TEAR, which were not 

tested in [BBF01], are included here. The bottleneck in the test was a 15Mbps link 

managed with Drop-Tail, where the rate of the two-state CBR traffic oscillated 

between two values, 14Mbps and 9Mbps, to vary the bandwidth available for the 

TCP-friendly flow to 1Mbps and 6Mbps, respectively. The propagation delay of flows 

was 60ms, and the queue size was set to 1.5 times the bandwidth-delay product 

[BBF01]. 

Observation 4: Historical/super-linearly aggressive and fixed-history responsive 

policies are satisfactory.  

Figure 2.4(a) indicates that historical/super-linear aggressiveness is the preferred 

policy, because it enables SIMD to use the available bandwidth as quickly as TCP, i.e., 

to meet the TCP equal-share criterion, and to have a smooth rate after the convergence. 

By contrast, as shown in Fig. 2.4(b), the non-historical/super-linear policy of TFRCP 

is not recommended, because a non-historical policy does not change the increasing 

step to a small value after the convergence, thus causing large oscillations in TFRCP. 
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Notably, care should be taken when using the history. AIAD/H also uses a historical 

aggressiveness policy, but takes too short a history to allow a stable increase during 

the testing time. TFRCP and AIAD/H are not recommended because of their 

instability. The historical/super-linear aggressiveness policy has the fastest rate of 

increase, and provides both smoothness and aggressiveness, making it most likely to 

meet the TCP-equivalence and TCP equal-share. 

Figure 2.4(c) indicates that the fixed-history responsiveness policy meets TCP 

equal-share in terms of responsiveness by encountering fewer packet losses than other 

policies. Although all schemes reduce their throughput within about 15 seconds, Fig. 

2.4(c) shows that the fixed-history schemes, such as TFRC and TEAR, encounter 

fewer losses during convergence than variable-history schemes, such as SIMD and 

GAIMD. Therefore, the fixed-history responsiveness policy appears to have the best 

chance of meeting the three criteria, because it considers bounded statistics and thus 

may reach convergence with fewer packet losses or shorter time than other policies, 

particularly when the loss statistics change significantly. 

 

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

SQRT GAIMD SIMD TFRC TEAR

N
or

m
al

iz
ed

 lo
ss

 r
at

e

Fig. 2.4. (a) and (b) The slowly aggressive behaviors of TCP-friendly schemes under the bursty-losses 
network. The (b) has longer timescale than (a) to show that TFRCP and AIAD/H have different behaviors in 
each on/off period. (c) The number of loss events encountered by TCP-friendly schemes, normalized to that 
by TCP, under the low-available bandwidth case. 

(c) (a)  

(b) 

TCP 
SIMD 

TEAR

IIAD 

GAIMD

TFRCP

AIAD/H 

TFRC

SQRT 



23 

 

2.6 Related Work 

Many AIMD variants have been proposed for different purposes. This study 

evaluates variants that aim to have a throughput smoother than but equivalent on 

average to TCP’s. Therefore, this study does not evaluate some schemes, e.g. 

AIMD-FC [LT03] and [NK04], that stress fast convergence in high-speed links. 

Additionally, this study focuses on the inter-fairness, i.e. whether a scheme shares the 

same bandwidth with TCP.  Intra-fairness, i.e. the fairness among the flows 

controlled by the same scheme, is discussed in [TZ05,G04]. Moreover, the schemes 

selected herein detect congestions only by packet losses as TCP Reno and SACK 

[MMF96] do. Actually, the RTT variation can be used for the detection, as in TCP 

Vegas [BP95], which also provides a smooth rate. However, RTT-based scheme may 

share bandwidth unfairly in the Internet where most traffic is still controlled by 

loss-based versions of TCP. C. Zheng and V. Tsaoussidis [ZT06] recently proposed a 

scheme using both packet losses and RTTs, which may be the solution to the 

unfairness problem. 

Although the topologies discussed have appeared in the literature, e.g. 

[BB01,VB05], this study revises the simulation scenarios and compares additional 

schemes to reveal undiscovered phenomena. For example, this study uses a common 

topology – dumbbell – to investigate the TCP equal-share of the schemes, but changes 

the RTT-heterogeneity to display the difference between WB and RB schemes. 

Tsaoussidis et al. considered the RTT-heterogeneity in [TZ05] but for the 

intra-fairness of GAIMD flows. Moreover, this study like [BB01] uses the oscillating 

CBR traffic, but includes four extra schemes to show three interesting results, i.e. 

SIMD has the fastest aggressiveness, AIAD/H and TFRCP are the most unstable, and 

TEAR has the slowest aggressiveness. Additionally, this study used the general 

exponential distribution, as used by Vojnovic et al. [VB05] who show that TFRC may 

have a lower throughput than TCP under non-periodic losses due to its design. 

However, this study reveals that schemes other than TFRC have the same unfairness 

phenomenon, although they control the throughput with methods different from 

TFRC. 

Besides the congestion control, other factors must also be considered when 
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designing a protocol for carrying streaming traffic. E. Kohler et al. [KHF06] 

discussed these factors in depth, and proposed the Datagram Congestion Control 

Protocol (DCCP). DCCP allows free selection of a congestion control scheme, and 

therefore is the most realistic means for practical use of schemes addressed in this 

study. The protocol currently only includes two schemes, namely TCP-like and TFRC. 

We strongly encourage the addition of other schemes to the protocol. 

 

2.7 Summary 

For a TCP-friendly congestion control scheme, meeting TCP-compatibility only 

protects TCP flows from starvation and network from congestion, but cannot 

guarantee that the media flow obtains equal throughput to TCP. A good scheme should 

use the same throughput as TCP in the steady state, but as aggressive and responsive 

as TCP in the transient state. To examine whether the present TCP-friendly schemes 

meet the TCP-equivalence and TCP equal-share criteria, we classify the behaviors of 

eight typical schemes in terms of fairness, aggressiveness, and responsiveness. 

Additionally, we test the conformance these schemes to the criteria under four 

scenarios, namely non-periodic losses, low-multiplexing, two-state losses, and 

bursty-losses. 

Table 2.3 summarizes the evaluation result for the eight selected schemes for 

fairness, aggressiveness and responsiveness. A comparison of the results in this table 

with the taxonomy results shown in Table II demonstrates that a TCP friendly scheme 

may have desirable TCP-equivalence and TCP equal-share in a general network 

condition, if it takes the rate-based fairness, historical/super-linear aggressiveness and 

fixed history responsiveness policies. The evaluation results of the three 

recommended policies are shaded in Table 2.3, which are obviously more satisfactory 

than that of other policies.  

Unfortunately, no scheme simultaneously takes the three recommended policies 

for meeting the three criteria. However, if protecting TCP flows from starvation, i.e. 

meeting TCP-compatibility, is the major concern, then TFRC is recommended. TFRC 

uses the rate-based fairness and fixed-history responsiveness policies, and therefore 

has better behaviors under most scenarios than others on average, as shown in the row 

TFRC of Table 2.3. However, if fast aggressiveness is the most important property, 
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SIMD is recommended, since it takes the shortest time to converge and then maintains 

a stable throughput, due to its historical/super-linear aggressiveness policy. 

Nevertheless, SIMD violates TCP-compatibility under low-multiplexing bottleneck, 

because of its window-based fairness policy. Moreover, SIMD spends longer time or 

encounters more packet losses before reducing its throughput to the available 

bandwidth because of its variable-historical responsiveness policy. 

 
As a result of this study, we also observed the following: (1) a scheme should 

consider non-periodic loss models when taking any one of the fairness policies; (2) 

the RTT-heterogeneity between competitory flows influences the TCP equal-share of 

a scheme when the bottleneck is managed by the Drop-Tail algorithm, and (3) the 

throughput-inversed aggressiveness and non-historical responsiveness policies should 

not be taken, since they cannot adapt to the change of packet loss conditions.  

Table 2.3. COMPARISON ON FAIRNESS, AGGRESSIVE AND RESPONSIVE  
BEHAVIORS AMONG SCHEMES  

Behavior Fairness Aggressiveness Responsiveness 

Criterion TCP-eq 
(TCP-comp)+ 

TCP eq-share TCP-eq 
(TCP-comp)

TCP 
eq-share

TCP-eq 
(TCP-comp) 

TCP 
eq-share 

Low-multiplexing 
Scenario 

Non- 
periodic 
Losses 

Homogeneous 
RTTs 

Heterogeneous 
RTTs 

Two-state 
Losses 

Bursty 
Losses

Two-state  
Losses 

Bursty  
Losses 

GAIMD Δ(O) X X Δ (O) Δ Δ (Δ) Δ 
IIAD X(O) Δ X X (O) X X (X) X 
SQRT X(O) Δ X O (O) Δ O (O) O 
SIMD Δ(O) X X O (O) O Δ (Δ) X 

AIAD/H X(O) Δ X X (O) X X (X) X 
TFRCP X(X) Δ O Δ (O) X O (O) O 
TFRC Δ(O) Δ O Δ (O) Δ O (O) O 
TEAR X(O) Δ O X (O) X O (O) O 

 
O: satisfactory   Δ: Acceptable   X: Unacceptable 

TCP-eq: TCP-equivalence  TCP-comp: TCP-compatibility  TCP eq-share: TCP equal-share 
+ The evaluating results on TCP-compatibility are shown in the parentheses. 
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Chapter 3 

A Fast-Converging TCP-Equivalent 

Window-Averaging Rate Control Scheme 

 
3.1 Introduction 

TCP is a widely-used transport protocol in the Internet. Its rate control 

mechanism, Additive-Increase and Multiple-Decrease (AIMD), frequently and 

dramatically adjusts the rate to detect the available bandwidth for transmitting packets 

and to avoid the packets from the sequential losses. However, TCP may be unsuitable 

to carry the streaming data because of its oscillatory rate. The playback of streaming 

data will be paused, if the sending rate of TCP is lower than the encoding rate of the 

streaming while no streaming data is buffered at the receiver. Although allocating a 

large buffer may alleviate the oscillatory rate, it prolongs the start-up latency for 

on-demand media traffic [GTC06] and causes an intolerable delay for interactive 

applications, e.g. video conference. Besides, the oscillatory rate of TCP increases the 

difficulty for media servers to decide which encoding rate should be taken to deliver 

the media for a stable user-perceived quality. 

For the oscillatory-rate problem, many rate control schemes were proposed 

[YL00, PHP00, ROY00, JGM03, BB01, PKT99] to transmit streaming data at a 

smooth rate. Besides being smooth, these schemes have been suggested to be 

TCP-friendly [BCC98] because their controlled traffic is expected to coexist with 

TCP traffic in the Internet. A TCP-compatible scheme uses no more throughput than 

TCP, under the same conditions such as packet loss rate and round trip time (RTT). 

Based on the suggestion, a scheme using the same throughput as TCP is the most 

favorable for carrying media data because it conforms to TCP-compatibility with the 

highest throughput. Such a scheme is called as a TCP-equivalent scheme in this work. 

TCP-equivalence is more preferred than TCP-compatibility, since the latter 

protects only TCP flows from starvation, but the former further ensures the fairness 

between TCP and the TCP-equivalent flows. In fact, current schemes are proposed for 
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the TCP-equivalence criterion, e.g. [YL00, PHP00, ROY00, JGM03, BB01, PKT99]. 

However, they pursue the criterion only under a stationary packet loss condition, i.e. 

the statistics of loss conditions like mean and variance are fixed at least for the whole 

transmission time, which however is not realistic enough. Due to the arrival and 

departure of burst traffic, the loss condition in the Internet may change drastically, 

causing these schemes having lower throughput than TCP in the long term because of 

their slowly aggressive behavior [BBF01]. Slow aggressiveness represents that these 

schemes cannot use the available bandwidth as immediately as TCP after the burst 

traffic departs. Several recent works focus on accelerating the aggressive behavior. 

For example, the SIMD scheme [JGM03] has the exponentially aggressive behavior. 

Actually, even under the stationary packet loss conditions, these schemes may still 

have lower throughput than TCP. Vojnovic and Boudec [VB05] reveal that TFRC 

[PFT98] has lower bandwidth than TCP if the number of inter-loss packets (i.e. 

packets between two loss events1) is not periodic, i.e. its variance is not zero. In fact, 

the non-zero variance is the common loss conditions in the Internet [ZDP01]. Our 

later simulation results also show that GAIMD [YL00], IIAD [BB01], SQRT [BB01], 

TEAR [ROY00], and TFRCP [PKT99] cannot meet TCP-equivalence under this loss 

condition. 

This work proposes a rate control scheme named window-average rate control 

(WARC). WARC is expected to better meet TCP-equivalence than the existing 

schemes because it takes short time to converge its rate toward TCP’s whenever the 

available bandwidth drastically increases or decreases. Besides, when the available 

bandwidth keeps stationary, WARC is the first scheme providing the same bandwidth 

as TCP under any distributions of inter-loss time. Existing schemes [YL00, PHP00, 

ROY00, JGM03, BB01, PKT99] provide it only under some specific assumptions, e.g. 

the packet losses occur periodically or with a fixed probability, but these assumptions 

may not be realistic in the Internet. The measured result in [ZDP01] reveals that the 

packet loss condition experienced by an Internet flow may consist of multiple 

minute-scale stationary regions, and the time intervals of any two consecutive losses 

may follow an independently and identically distributed (i.i.d.) exponential 

distribution within a region. 

The basic mechanism of rate control in WARC is called run-time estimation 

                                                 
1 A loss event means an event causing a TCP flow halving its congestion window. Such an event may consist of multiple 
sequent packet losses. For convenience, the term “event” is ignored in this work as done in related works. 
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(RTE), which repeatedly estimates the mean rate of TCP and adjusts its sending rate 

to the estimated rate (packets/RTT). TFRCP, TFRC and TEAR also use the RTE 

control, but WARC differing from them estimates the mean rate by averaging the 

latest fixed-number congestion windows (CWNDs) which a TCP flow may use to 

control its rate. By assuming RTT is fixed2, such an estimated rate represents the 

mean rate of the TCP flow over a fixed time period, instead of over a dynamic time 

period as that in TFRC and TEAR. The difference brings WARC use the same 

bandwidth as TCP under all stationary packet loss distributions, as proved later. 

Besides, since the number of considered CWNDs is bounded, WARC will forget the 

early small CWNDs and use a high increasing rate as TCP when additional bandwidth 

becomes available for a fixed time. 

However, the RTE rate control in WARC may not be satisfying under three 

special but realistic conditions. First, when the available bandwidth drops abruptly, 

RTE may encounter many losses before reducing its rate to the available bandwidth. 

Second, when passing along through a link managed by the Drop-Tail queuing 

algorithm, RTE may exhibit a slight oscillation on rate. Third, under heavy losses, 

RTE would use more bandwidth than TCP. Therefore, three complements: 

history-reset procedure, one-RTT reduction mechanism and fluid-based timeout 

mechanism, are proposed for handling the three conditions, respectively. 

The remainder of this paper is organized as follows. Chapter 3.2 introduces the 

WARC scheme, including RTE and three complements. The fairness between WARC 

and TCP is proved in Chapter 3.3. The smoothness and convergence rate of WARC 

and their tradeoffs are discussed in Chapter 3.4 according to the proofs in Appendix 2. 

Chapter 3.5 shows the evaluated results of WARC running in the ns-2 simulator 

[NS06]. Related Work is discussed in Chapter 3.6. Finally, the applicability of WARC 

and conclusions are given in Chapter 3.7 and 3.8, respectively. The unfairness of 

TFRCP and TEAR are proved in Appendix 3. 

3.2 Window-Averaging Rate Control (WARC) 
3.2.1 Basic Rate-control Mechanism 

The goal of a TCP-equivalent streaming rate-control scheme is to have a 

throughput smoother than but equivalent on average to TCP’s. To achieve the goal, 

                                                 
2 This work, like the related works [YL00, PHP00, ROY00, JGM03, BB01, PKT99], assumes that RTT is fixed in the analysis. 
However, in the implementation of WARC, the value of RTT refers to the smoothed RTT which is dynamically updated by 
the algorithm usually used in TCP. 
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several existing schemes such as TFRC and TEAR send packets at the mean rate of a 

TCP flow. Besides, these schemes repeatedly estimate the mean rate during the whole 

connection, since the mean rate within a period changes according to the network 

conditions. Such an idea to control the rate is named run-time estimation (RTE) 

model3 in this work.  

WARC inheriting the RTE model considers two key designs. The first is how to 

estimate the present mean rate (packet/RTT) of a corresponding TCP flow, and the 

second is how often to adjust the rate of the controlled flow. For the first point, 

WARC gets the mean TCP rate by averaging the latest s CWNDs of a corresponding 

TCP flow, where s is fixed. For the second point, WARC adjusts the rate per RTT. 

Notably, in this work, the CWND represents the number of packets sent by a TCP 

flow in one RTT. Besides, packet/RTT is used as the unit of rate. 

The following details the rate-control procedure between the sender and receiver 

of WARC. The sender sends data packets at the rate periodically assigned by the 

receiver. The receiver detects the packet losses with the sequence numbers of data 

packets, and it estimates the CWND which may be used now by a TCP flow. If the 

WARC receiver does not encounter losses, it will increase the CWND by one per RTT 

as TCP does. However, if it encounters a loss, it will reduce the CWND by a half. 

Next, the receiver averages the latest s CWNDs to get the new transmission rate and 

reports the rate to the sender, where the averaging and reporting are repeated per RTT. 

According to the above description, the following formally expresses the 

transmission rate used in a WARC sender. Assume that the real time t is separated by 

RTT into multiple rounds, i.e. { }1,2,...,t = ∞ . Suppose that R(t, s) denotes the 

transmission rate (packets/RTT) of the WARC sender, computed from s CWNDs and 

used in the tth round. Then, R(t, s) can be written as 

 
min( , )

1

1( , ) ( )
min( , )

s t

i

R t s W t i
s t =

= −∑ , (3.1) 

where W(t) is the number of packets transmitted by a TCP sender, i.e. its CWND, in 

the tth round. A minimizing operation exists in (3.1), because there are at most t 

CWNDs at the initial time (t<s) and thus R(t, s) is the average of the latest t CWNDs. 

When t>s, R(t, s) will be the average of the latest s CWNDs. 

When the available bandwidth suddenly increases, whether a scheme has a fast 
                                                 
3 We do not think that the familiar terms like “rate-based” or “equation-based” can represent such an idea. A RTE-based 
scheme would be a window-based scheme if using a window to control the release of packets. Besides, TEAR is not an 
equation-based scheme, but a RTE-based scheme as revealed later. 
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aggressive behavior, i.e. a high increasing rate, is determined by how fast the scheme 

ignores the packet loss conditions measured before the increase. WARC would have 

faster aggressiveness than TFRC and TEAR because WARC excludes these 

conditions from the rate computing after a fixed number of RTTs. Differently, TFRC 

and TEAR excludes these conditions after a fixed number of packet losses, say 8 

losses. Unfortunately, the latter two may wait a long time to meet the first loss due to 

the sudden increase of bandwidth; thus they have a slow aggressive behavior. In fact, 

both schemes take additional rules to speed up the behavior which, however, is still 

conservative as shown in our simulation results later. 

3.2.2 Complemental Rate-control Mechanisms 

1) History-reset (HR) procedure for responsiveness under bursty-losses: 

The basic control mechanism in WARC, as later analyzed in Chapter 3.4, has a 

conservative responsive behavior, which brings WARC a smooth rate but also a slow 

response to an abrupt increase of packet loss rate. Thus, a history-reset procedure is 

proposed to respond to the abrupt change right after a fixed number of loss events.  

The procedure is invoked if the average TCP rate spanning over the latest N 

packet losses, denoted as ( )TCPR N , is smaller than or equal to 1/K of the current rate 

of WARC, which can be expressed as 

 1( ) ( , )TCP KR N R t s≤ , (3.2) 

where K is a constant larger than 1, and its effect on the HR procedure would be 

discussed later. ( )TCPR N  is calculated by the formula 

 3 1
2 1

( ) ( )N
TCP N j

R N X j
=

= −∑ , (3.3) 

where X(-j) represents the number of rounds in the last jth epoch, i.e. the period 

between the jth and (j+1)th last losses. According to [AAB05], ( )TCPR N  got by (3.3) 

represents the average rate that a TCP flow may have under a loss condition where the 

number of inter-loss rounds is 1
1

( )N
N j

X j
=

−∑ . The following 
1

( )N

j
X j

=
−∑  is denoted as 

S(N). 

As Fig. 3.1 shows, if (3.2) is true at the time T, then it is implied that the packet 

loss condition has changed abruptly, because the fast-responsive TCP has far smaller 

rate than WARC. Then, the HR procedure is invoked to perform the following actions. 

All W(t)’s where ( )t T S N< −  are eliminated from the computation of (3.1). Contrarily, 

the latest ( )S N  CWNDs are retained in the rate computing. By the elimination of old 
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CWNDs, WARC fast jumps to the mean rate that TCP uses at the time t. 

 

Two parameters K and N in (3.2) control the threshold of invoking the 

history-reset procedure. K decides how many differences in rate between WARC and 

TCP denotes an abrupt change on packet loss condition. N decides how long the 

difference should persist at least before the HR procedure is invoked. With small K 

and N, the procedure will be invoked for small and short changes, which may damage 

the smoothness of WARC. Contrarily, with large K and N, the procedure may be 

conservatively invoked and lose its objective - fast responding to a change of packet 

loss condition. A tradeoff exists here obviously. We analyze the tradeoff in Chapter 

3.4.4 and suggest that with K=3 and N=12, the procedure has the enough fast 

responsiveness and is not over-invoked to damage the smoothness. 

2) One-RTT reduction procedure for smoothness under low-multiplexing 

networks: A flow controlled by a rate-based scheme may encounter a series of packet 

losses and exhibit an oscillatory behavior on the rate when passing through a 

low-multiplexing network [BCC98], e.g. passing alone a link managed by Drop-Tail, 

because the rate-based scheme does not have the per-packet ACK mechanism as the 

window-based scheme. A self-clocked mechanism has been proposed in [BBF01] to 

assist TFRC for such a case. The mechanism bounds the rate increase of TFRC 

according to the received rate measured at the receiver. However, the mechanism may 

slow down the aggressive ability of a scheme because it limits the rate increase of the 

scheme.  

To retain the fast aggressiveness, WARC adopts the mechanism only when a 

packet loss occurs. When detecting a loss, the receiver of WARC will acknowledge 

the sender to temporarily reduce the transmission rate used in the next round to 7/8 of 

the received rate. The temporality means that the reduction holds only for one RTT, 

Fig. 3.1. The HR procedure would be invoked when ( ) 1 ( , )TCPR N K R t s< . 
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which is long enough to prevent the flow from the sequent losses according to the 

simulation result shown in Chapter 3.5.3. After one RTT, the rate will return to the 

value computed by (3.1). 

3) Fluid-based timeout (FTO) procedure for fairness under heavy-losses: A 

fluid-based procedure is proposed to emulate the CWNDs of TCP running under the 

timeout mechanism. These CWNDs will be involved in the rate computing of (3.1) to 

influence the rate. This complement prevents WARC from grabbing too much 

bandwidth when competing with TCP under heavy packet loss conditions.  

WARC like TCP regards a packet loss as a timeout event if the loss occurs when 

W(t) < 3. Then, as shown in Fig. 3.2, when a timeout event is recognized, WARC 

enters the timeout phase from the normal phase and emulates the CWNDs by FTO 

instead of AIMD. WARC sets W(t) to u-1 for I rounds where RTO
RTTu = ⎡ ⎤⎢ ⎥ , I is set to u, and 

RTO represents the retransmission timeout and is updated by the usual algorithm in 

TCP. Such a setting for W(t) and I emulates TCP only sending one packet before RTO 

seconds. The variable I keeps the residual rounds that WARC stays at timeout, so it is 

decreased one per RTT. If the variable I is decreased to zero, WARC leaves the 

timeout phase. The timeout mechanism is called fluid-based because one packet sent 

in the RTO seconds in TCP is divided into u-1 packet per RTT seconds in WARC. 

To emulate the back-off mechanism in the TCP timeout mechanism, another 

variable C is employed to record the times that packet losses occur during the phase. 

If another loss occurs during the phase (C>0), WARC will regard the loss as the 

second timeout event. Then, WARC sets W(t) to 1( 2 )Cu −×  and adds 2Cu ×  into the 

variable I. This prolongs the time that WARC stays in the timeout phase. Like TCP, C 

is limited to 6 and does not increase even when more losses occur. 

 

Normal Phase 
I=0 

C=0 
W(t)=u-1 

I=u 

a loss occurs 
when W(t)<3 

C=1 
W(t)=(u*2C)-1

I=I+u*2C

C=6 
W(t)=(u*2C)-1 

I=I+u*2C 

a loss 
occurs 

I<=0 
I<=0 

I<=0 

a loss 
occurs 

a loss 
occurs 

WARC emulates CWNDs 
 by the fluid-based timeout procedure 

Fig. 3.2. The state diagram of the fluid-based timeout procedure in WARC 

WARC emulates 
CWNDs by AIMD
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3.2.3 Pseudo Code 
Fig. 3.3 presents a pseudo code to jointly describe the basic and three 

complemental rate-control mechanisms of WARC. The queue structures are used 

herein to avoid the time-consuming summing operation in (3.1). A queue Qw keeps the 

latest s CWNDs and a variable Sw records the summation of all CWNDs in Qw. 

Instead of repeatedly summing up the latest s CWNDs to get Sw, we simply dequeue 

the earliest CWND from Qw and subtracted it from Sw, while inserting the latest 

CWND into Qw and adding it into Sw, as described in the UpdateSum procedure. 

UpdateSum is a generic procedure to update the summation S in the queue Q with the 

latest value v. Similarly, we use Qx to keep the latest N inter-loss time and Sx to store 

the summation of values in Qx, to efficiently compute (3.3). 

Procedure LossHandler is called at the receiver when a packet loss is detected. 

The procedure takes charge of halving the TCP CWND w, recording w in Qw and 

checking whether to invoke the HR procedure by (3.3). However, if the loss occurs 

under the timeout phrase (I>0), LossHandler would update I, C and w, according to 

the rules shown in Fig. 3.2. 

Procedure UpdateW is called per RTT. When WARC is not in the timeout phase 

(I=0), it increases w by one to emulate TCP when no packet loss is detected. However, 

in the timeout phase (I>0), UpdateW counts down I to update the number of 

remainder rounds of leaving the timeout phrase. Next, UpdateW sends an ACK to 

inform the sender the transmission rate to be used. By the One-RTT reduction 

procedure, the rate would be discounted by 1/8 if a loss has occurred. 

 
s : The number of CWNDs considered in the rate computing 
w : Current possible CWND (pkt) of a TCP connection 
R : Tx. rate (pkt/RTT) to be used in the next round 
t : The seq. num. of the current round 
t’ : The seq. num. of round where the last loss occurred 
I : The number of round to leave the timeout phrase 
u : Ceiling value of RTO/RTT 
Qw : A queue with s entries for keeping the latest CWNDs 
Qx : A queue with N entries for keeping the latest inter-loss time in 

RTT 
Sw : The summation of values queued in Qw 
Sx :  The summation of values queued in Qz 
X<<Y : A math. operation equal to X×2Y 

HasLoss : A Boolean variable to indicate that a loss event has occurred
Ack(r) : Send an ack to tell the sender about the transmission rate 

r. 
HistoryReset(n):Keep the latest n CWNDs in the rate computing. 
Enqueue(Q,v), Dequeue(Q), Len(Q), Full(Q): Four queue operations to 

insert v into Q, get item from Q, query the length of Q and 
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check if Q is full, respectively. 
 
LossHandler() // called when a loss event is detected 
{ 
 if (I == 0) { 

if (w >= 3) { 
   w = w / 2 
   HasLoss = TRUE 
  } else {   // enter the FTO procedure 
   I = u; C = 0; w = 1/u 
  } 
  UpdateSum(Qw,Sw,w) 
  UpdateSum(Qx,Sx,t-t’) 
  t’ = t; 

If ((Sx/Len(Qx)×1.5) × K ≦  R)   // Eq. (3.3) 
   HistoryReset(Sx) 
 } else { // update by the FTO procedure in Fig. 3.2 
  C = C + 1 
  if (C > 6) then C = 6 
  w = 1 / (u ×(2<<C)) 
  I = I + (u ×(2<<C)) 
 } 
} 
UpdateW() // called per RTT at the receiver 
{ 

if (I == 0) then w = w + 1 
else I = I - 1 

 UpdateSum(Qw,Sw,w); 
R = Sw / Len(Qw) 
if (HasLoss == TRUE) then  

Ack(R×7/8) // the one-RTT reduction procedure 
else Ack(R) 

 HasLoss = FALSE; 
t=t+1; 

} 
 
UpdateSum(Q,S,v) // keep S as the summation of items in Q 
{ 

if Full(Q) then S = S – Dequeue(Q) 
S = S + v 
Enqueue(Q, v) 

} 
HistoryReset(n) // keep the latest n CWNDs in Qw 
{ 
 j = Len(Qw)- n 
 while(j > 0) { 

Sw = Sw – Dequeue(Qw) 
  j=j-1; 
 } 
} 

Fig. 3.3 The pseudo code for the basic and three complemental rate control mechanisms of WARC 

 

3.3 Analysis on Fairness  
Herein the fairness represents that in a steady state a scheme can control a flow 

to have the same throughput as a TCP flow, when both flows experience the same 
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stationary packet loss condition. This section will prove the fairness of WARC. 

Among another three RTE-based schemes, TFRC has been shown in [VB05] that it 

meets the fairness only if an additional assumption is given, that is, the inter-loss time 

is periodic, i.e. constant. Besides, we proved in Appendix 2 that TEAR uses lower 

throughput while TFRCP may use higher throughput than TCP when the inter-loss 

time is not periodic. The fairness analyses of other schemes aim to demonstrate that 

the difference between WARC and other RTE-based schemes does cause the different 

abilities in meeting the fairness. The effect of the TCP timeout mechanism is ignored 

in the analysis below. 

Recall that (3.1) shows the rate used by a WARC flow in the round t. Suppose that 

when the time t=t0 the WARC flow converged its rate on a steady-state rate. Then, for 

t>t0, the long-term average throughput of the flow, E[TWARC], can be expressed as 
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 (3.5) 

Since W(t) represents the window size of a TCP flow in the round t, (3.5) can be 

rewritten as 

 
1

1[ ] [ ] [ ]s
WARC TCP TCPi

E T E T E T
s =

= =∑ . (3.6) 

Equation (3.6) shows that WARC meets the fairness. 
 

3.4 Analyses on Smoothness, Aggressiveness and 

Responsiveness 
A tradeoff exists within three properties: smoothness, aggressiveness, and 

responsiveness. Performing a smooth rate may imply the existence of slow 

aggressiveness and responsiveness, i.e. taking longer time to converge toward the new 

steady-state rate. The section first discusses the analytical results of WARC in terms 
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of smoothness, aggressiveness, and responsiveness. The analysis procedures are 

described in Appendix 2. Secondly, we discuss the tradeoff within the three terms in 

WARC, and compare it with that in SIMD, GAIMD, and IIAD. For the schemes 

without the analyses, e.g. TFRC, TFRCP and TEAR, we compare WARC with them 

by the simulation later. 

3.4.1 Smoothness 

The smoothness [JGM03] is defined as the average coefficient-of-variation 

(CV) of the rate (packets/RTT) between two consecutive packet losses, as 

 [ [ ]] [ [ ]][ ]
[ ]

E Var w E Var wCV w
E w W

= = , (7) 

where w is the sending rate, i.e. the number of packets sent in one RTT, and W denotes 

E[w]. Because the rate w of a TCP-equivalent flow is controlled based on the loss 

conditions, the E[w] of the flow can represent the degree of loss conditions 

experienced by the flow. Thus, by giving a specific E[w], (7) represents the 

smoothness of a scheme performing under a specific degree of loss conditions. 

According to the analysis in Appendix 2.1, Fig. 3.4 plots the [ ]CV w  of WARC, 

normalized with that of TCP [JGM03], over various E[w]’s in order to show the 

smoothness effect provided by WARC under different degrees of loss conditions. The 

normalized [ ]CV w ’s of SIMD and GAIMD, derived in [JGM03], are also plotted for 

comparison. As shown in Fig. 3.4, the curves of WARC(120), WARC(160), 

WARC(240), and WARC(320) cross over that of GAIMD respectively at W=23.625, 

31.5, 47.25, and 63. That is, WARC has a smoother rate than GAIMD(1/8) when its 

parameter s is configured to a value larger than 120/23.625 (i.e. 5.07) times of W. 

According to Fig. 3.4 of [JID04], since the maximum CWND of most TCP flows are 

smaller than 31.62, we set the parameter s to 5.07*31.62 (i.e. 160) in the following 

work. Notably, WARC does have a smoother rate than TCP, i.e. the normalized 

[ ]CV w  is smaller than 1, although the four curves of WARC plotted in Fig. 3.4 seem 

to increase linearly. Their slopes become smaller than 1 at W=150~200 and 

their [ ]CV w ’s are smaller than TCP’s one even when W is infinite.  
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3.4.2 Aggressiveness 

A scheme is said as aggressiveness if it takes short time to increase its rate in 

response to a step increase of available bandwidth [RKL01]. By such a concept, 

Shudong et al. in [JGM03] defined4 the index 1/Aggr(m) as the time required by a 

scheme to increase its rate by a factor of m. This work follows [JGM03] showing the 

analysis of WARC by 1/Aggr(m) to easily compare WARC with GAIMD, SIMD, and 

IIAD, which were analyzed in [JGM03]. According to the analysis in Appendix 2.2, 

the aggressiveness of WARC is written as 

 ⎧ + + − ≤ +⎪⎪= ⎨
⎪ − + > +
⎪⎩

2

1
( )

1 2( 18 18 )   ( )
3 3 2
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sW W msW sW m W
W
sm W m W
W

 (3.8) 

Fig. 3.5(a) compares 1/Aggr(m) of WARC(160) with that of GAIMD(1/5,1/8), 

SIMD(1/16) and IIAD(1,2/3) in different m. WARC like SIMD takes shorter time to 

converge than GAIMD and IIAD, which is particularly obvious when m is larger than 

1.6. Besides, Fig. 3.5(b) shows the tradeoff between aggressiveness and smoothness 

for the four TCP-friendly schemes when m=4. Obviously, WARC has better tradeoff 

than GAIMD and IIAD. For example, when the four schemes have [ ] 0.04CV w = , 

WARC takes merely 150 RTTs to converge the rate, but GAIMD and IIAD take 445 

and 1080 RTTs, respectively. 

                                                 
4 Actually, Shudong et al. in [JGM03] first defined the index Aggr(m), but they plotted and discussed 
all results by 1/Aggr(m). Aggr(m) can be considered as the average acceleration used by a scheme to 
increase its rate by a factor of m. Assume that the increased amount of the rate is always one for any m. 
Then, the average acceleration is the inverse of the time required by the scheme to increase its rate, i.e. 
1/Aggr(m). 

Fig. 3.4. The smoothness effects of WARC, GAIMD, and SIMD, relative to that of TCP. 
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3.4.3 Responsiveness 

The responsiveness [JGM03] is defined as the inverse of the number of packet 

losses encountered by a scheme before the scheme decreases its rate with a factor of 

m. A scheme with a high responsiveness means that it decreases its rate in a large step 

per packet loss on the average. Similar to 1/Aggr(m), 1/Resp(m) is used in the 

following discussion. According to Appendix 2.3, the responsiveness of WARC can 

be expressed as 

 3 4+     if ( ) (by the RTE control)
1/ ( ) 2 3

             if ( ) (by the HR procedure),

s m m b K
Resp m W

N m b K

⋅ ⋅⎧ <⎪= ⎨
⎪ ≥⎩

 (3.9) 

where b(K) represents a separation whose value is displayed as 

 ( ) 1.1b K K≈ × .  

For the situation where m is lower than the separation, the responsiveness of WARC is 

ruled by the RTE control. Otherwise, it is ruled by the HR procedure. 

1/Resp(m) represents how many packet losses a scheme would encounter 

before converging its rate to 1/m of the original one. As shown in (3.9), WARC has 

two types of responsive behaviors individually contributed by the RTE control and the 
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Fig. 3.5. (a) The aggressiveness indices of WARC, SIMD, GAIMD and IIAD under different 
increasing factor m’s. The initial average window size before the bandwidth change is 20. (b) The 
tradeoff between aggressiveness and smoothness when m=4.
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HR procedure. To display the two behaviors, Fig. 3.6(a) plots the 1/Resp(m) of WARC 

over various m. When m is small, WARC runs under the RTE control and the number 

of the encountered losses before its convergence is direct proportional to m. Also, 

WARC with large s would take more losses since it is supposed to have a smoother 

rate. However, when m is large, the HR procedure would be invoked, leading that 

WARC converges its rate right after a fixed number of losses. Fig. 3.6(b) further 

displays the different effects on the responsiveness brought by various configurations.  

 
Fig. 3.7(a) compares the responsiveness of WARC(160) with that of other 

schemes. Although WARC takes more packet losses to converge its rate when the 

change of loss condition is small, it takes merely half of losses as SIMD and IIAD to 

converge its rate when the change is large. Unlike other schemes, WARC takes 

different responsive behaviors for different degrees of loss change, which makes 

WARC keep its rate smooth under small and temporary changes of loss condition, but 

quickly respond to the abrupt change right after N losses. Fig. 3.7(b) shows the 

tradeoff between smoothness and responsiveness for the four schemes. As expected, 

WARC will take more packet losses before it converges its rate if the loss change is 

small as shown in the top of the figure, but it will take fewer losses if the change is 

large as shown in the bottom. 

 

Fig. 3.6. The responsiveness of WARC under varied decreasing factor m’s. The initial average 
window W before bandwidth change is 20. (a) Different s. (b) Different pairs of K and N. 
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3.4.4 False Positive of the HR procedure 

Although the HR procedure provides WARC fast responsiveness when the 

available bandwidth reduces dramatically, the smoothness of WARC may be degraded 

if the procedure is invoked unnecessarily, i.e. invoked for a temporary and small 

reduction. We call such an unnecessary invocation as a false-positive case. The 

following analyzes the probability on the false-positive invocation when the HR 

procedure is given a specific configuration of (K, N). The analysis will suggest that (K, 

N)=(3,12) should be a suitable configuration. 

Herein we define a false-positive invocation as that the HR procedure is invoked 

when the inter-loss time is stationary. Assume that in the steady state R(t, s) equals to 

the mean throughput of a TCP flow, which approximates 1.5 E[X] where E[X] denotes 

the mean inter-loss time in RTT [AAB05]. By the definition, under the stationary 

inter-loss time, the probability that (3.2) is true, i.e. HR is invoked, can be expressed 

as 
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Obviously, the probability is controlled by two parameters: K and N. According 

to the Internet loss conditions reported in [ZDP01], we assume that the inter-loss time 

X experienced by a flow follows an i.i.d. exponential distribution with a parameter λ = 

1/E[X]. Then, since the term 
=

−∑ 1
( )N

j
X j  in (3.10) represents the sum of N exponential 

random variables, it forms a gamma distribution (N, λ) by the probability theory. 

Therefore, (3.10) could be rewritten as 
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where Fgamma(a,b) is the cumulative distribution function of the gamma distribution 

with the shape parameter a and the scale parameter b. λ is set to 1 since its value does 

not affect the probability. 

According to (3.11), Fig. 3.8 plots the numerical results of the probability of 

false-positive invocation over different K and N. Assume we expect that WARC has 

10-3 of the false positive probability; then, the possible configuration of (K, N) may 

include (2.5,16), (3,12) and (3.4,10). The probability of 10-3 implies that the HR 

procedure may be unnecessary invoked once per 1000 losses. The probability should 

be low enough. Assume W is the mean CWND of a flow and the inter-loss time in 

RTT is W/1.5 [AAB05]. Also, the possible range on W is from 6 to 30 [JID04] and the 

possible range on RTT is from 0.050s to 0.300s. Then, the mean time spanning 1000 

losses in second is 

 0.3 30

0.05 6

1 1 1000 2100
0.3 0.05 30 6 1.5

W RTT dW dRTT⎛ ⎞⎛ ⎞× × =⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠∫ ∫ , 

which should be long enough because the period of a stationary state in the Internet 

mostly is shorter than 600 seconds [ZDP01]. 
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3.5 Simulation Results 
This section evaluates and shows that WARC has better behaviors than eight 

TCP-friendly schemes in terms of 4 properties: fairness, smoothness, aggressiveness 

and responsiveness, by running the ns-2 simulator [NS06]. Herein a TCP-friendly 

scheme represents it aims to be TCP-equivalent. Table 3.1 describes the control 

parameters of each scheme used in the simulation, which were suggested individually 

according to the corresponding papers. 

TABLE 3.1. THE CONTROL PARAMETERS USED IN EACH SCHEME 

SCHEME CONTROL PARAMETERS REF. 

WARC s=160, K=3, N=12  

GAIMD α=0.2, β=0.125 [YL00] 

IIAD α=1.0, β=0.67, k=1, l=0 [BB01] 

SQRT α=1.0, β=0.67, k=0.5, l=0.5 [BB01] 

SIMD β=0.0625, k=-0.5, l=1 [JGM03] 

AIAD/H β=0.25, k=0, l=0 [JGM03] 

TFRCP Interval=5 seconds [PKT99] 

TFRC The number of samples=8 [FHP00] 

TEAR The number of samples=8 [ROY00] 

3.5.1 Fairness  

3.5.1.1 Simulation topologies 

WARC and other selected schemes are evaluated in three cases. The former two 

use an artificial packet loss link, as plotted in Fig. 3.9, to drop packets based on 

mathematical model. Such a link is usually for testing the fairness between TCP and 

the TCP-friendly scheme because it ensures the identical loss conditions experienced 

by any two passing flows, which is a basic assumption for these schemes to perform 

fairness. The mathematical model used here follows a general exponential distribution, 

Fig. 3.8. The probability of the false-positive invocation of the HR procedure 
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which has two degrees of freedom and thus allows its coefficient-of-variation to be 

changed while fixing its mean, or vice versa. By the general exponential distribution, 

we can test the fairness behavior in term of different means and different CVs, 

individually. Sufficient bandwidth is allocated for this link to prevent the packets 

being dropped because of overflow. 

 
The third case makes all flows compete for a single bottleneck, which may be 

managed by the Drop-Tail or RED algorithms. The test is used to verify whether a 

TCP-friendly scheme is safe to deploy in the Internet. Fig. 3.10 shows the dumbbell 

topology used in this test. The v TCP-friendly flows compete with v TCP flows for a 

single bottlenecked link. All flows have backlogged data for the whole testing period. 

Such a scenario tests whether v TCP-friendly flows can share the same bandwidth 

with v TCP flows under different levels of congestion. The capacity of the congested 

link is configured to 15Mbps or 60Mbps, and that of other links to 100Mbps. The 

value v is changed from 1 to 64. The queue size is 1.5 and 2.0 of bandwidth-delay 

product when R1 is managed by Drop-Tail and RED, respectively. The propagation 

delay of the links from the sources to R1 or from R2 to the destinations is uniformly 

distributed between 10 to 30 ms. 

 
3.5.1.2 Case I - Under artificial-loss links with different means 

Fig. 3.11 displays the normalized throughput of each TCP-friendly scheme, 

compared with TCP, over the links with different means of the number of inter-loss 

packets. The link discards packets every time when receiving P packets, where P is a 

Fig. 3.10. The dumbbell topology used to test the fair sharing between TCP and TCP-friendly 
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general exponential distributed random variable with a small coefficient-of-variation 

(CV[P]=0.01). The results are averaged from three 2200-seconds runs and the data in 

the beginning 200 seconds is ignored. Error bounds of the results are not presented 

because the three runs almost have the same results.  

Fig. 3.11 shows WARC like SQRT has better fairness than other schemes under 

various loss ratios. Particularly under the cases where the ratio>0.03, WARC provides 

0.8~1.1 of TCP’s throughput while GAIMD, SIMD 5  and IIAD provide lower 

throughput than TCP’s (0.4~0.6). The curve “WARC w/o TO” in the right part of Fig. 

3.11 represents the result of WARC without the fluid-based timeout mechanism. By 

comparing this curve with that of WARC, it is demonstrated that the timeout 

mechanism proposed in Chapter 3.2.2.3 does prevent WARC from using more 

bandwidth than TCP under the heavy-loss conditions. Moreover, although GAIMD, 

SIMD and IIAD use the TCP timeout mechanism to control their rate under 

heavy-losses, their lower throughput reveals that directly using the TCP timeout 

mechanism does not ensure fairness, which results from that they trigger the timeout 

mechanism more frequently than TCP, according to our further observation. 

 
3.5.1.3 Case II - Under artificial-loss links with different CVs  

The following reveals the fairness behaviors of schemes under the link with 

different coefficient-of-variations of inter-loss time. The used link drops packets per T 

                                                 
5 The congestion control parameters of SIMD used in Case I is specially calculated for CV[P]=0 to match the loss model used 
here. Under this case, the original parameters [JGM03], optimized for CV[P]~1, will cause SIMD to get lower bandwidth than 
its result now plotted in Fig. 10. 

Fig. 3.11. The throughputs of TCP-friendly schemes normalized with that of TCP under different 
loss probabilities. Results are separately plotted in two parts for clarity. 
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seconds where T follows a general exponential distribution with E[T]=5 and CV[T] 

uniformly increases from 0 to 1. In this testing case, the link drops packets based on 

the escaping time from the last loss, instead of the number of received packets as that 

in Case I, since dropping-by-time would be more realistic to emulate the loss 

conditions in the highly multiplexing network like the Internet [BCC98]. Actually, we 

also observed the fairness behaviors of schemes under the link with different 

coefficient-of-variations of inter-loss packets. However, the result is skipped because 

it is similar to that in Fig. 3.12. 

Fig. 3.12 shows that WARC uses the same throughput as TCP under all CV[T]’s 

because it is supposed to perform fairness under stationary losses, as proved in 

Chapter 3.3. Contrarily, most schemes only have the fairness as CV[T]=0, i.e. as the 

loss occurs periodically, because the assumption of periodic losses is given in these 

schemes. Actually, this assumption does not consist with the loss pattern in the 

Internet. The inter-loss time in Internet may approximate an i.i.d. exponential 

distribution [ZDP01], which is the link with CV[T]=1. Under CV[T]=1, WARC 

provides the fairness, but GAIMD and TFRC only have about 80% throughput of TCP 

while TEAR, IIAD, SQRT, and AIAD/H have 60% on the average. 

 
The TFRCP and SIMD flows exhibit different trends from others. The distinctness 

of TFRCP is due to the convex TCP throughput equation [VB05] while that of SIMD 

results from that SIMD computes the congestion control parameters under the loss 

model with CV[P]~1 [JGM03]. We also plot the curve SIMD/Period for the SIMD 

with the parameters computed under CV[P]=0, which does not use the same 

Fig. 3.12. The throughputs of the TCP-friendly schemes normalized with that of TCP under the 
artificial-loss links with different CV[T]. Results are separately plotted in two parts for clarity. 
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throughput as TCP. 

3.5.1.4 Case III - Under Drop-Tail or RED 

Fig. 3.13 and 3.14 show the results that TCP individually competes with five 

TCP-friendly schemes under the four configurations of the congested link: (Drop-Tail, 

15Mbps), (Drop-Tail, 60Mbps), (RED, 15Mbps), and (RED, 60Mbps). For each 

configuration, five schemes are separately shown in two figures for clearness. As 

shown in Fig. 3.13(a)(c) and Fig. 3.14(a)(c), WARC almost has the similar behavior 

as TFRC to equally share the bottleneck bandwidth with TCP under the four 

configurations. As shown in Fig. 3.13(c), WARC, as well as TFRC and TEAR, has 

slightly lower throughput than TCP, because the rate-based control mechanism taken 

in the three schemes may experience a bit higher loss ratio than the window-based 

control mechanism taken in GAIMD and SIMD. These additional losses results from 

that the former does not really control the data packet transmission by the received 

acknowledgement packet and thus cannot respond to the overflow of the Drop-Tail 

queue within a RTT. 

 

Fig. 3.13. The competing results between TCP and five TCP-friendly schemes under the links managed 
by Drop-Tail are shown. TCP(X) plots the average normalized throughput of TCP flows which
compete with the flows controlled by the scheme X. 
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Fig. 3.13(a)(b) and Fig. 3.14(a)(b) display that TEAR and SIMD may have 

unequal sharing to TCP when the number of flows v exceeds 16. Our further study 

finds that under such conditions, TCP may encounter many losses, so controlling its 

rate with the timeout mechanism. In such a situation, as mentioned in Chapter 5.1.2, 

TEAR may use more bandwidth while SIMD and GAIMD may use less one than 

TCP. 

3.5.2 Smoothness 

Herein the smoothness degree of a WARC flow is revealed and compared with 

that of the flows carried by TCP and other TCP-friendly schemes. The smoothness 

degree is observed over different time scales, because a scheme would be more 

favorable to control the rate of a streaming flow if it can provide a smooth rate even 

under a small time-scale. We define the smoothness metric as follows. The rate of a 

flow, R, is sampled per 0.1 second. The CVk[R] is the coefficient-of-variation of R 

(CV[R]) calculated over k samplings and represents the smoothness of a flow at the 

time scale k. 

The topology shown in Fig. 3.10 is applied for the testing. Ten TCP flows 

compete with ten WARC flows for a 40 Mbps-link. RED is employed as the queue 

management policy in this link and the queue size is set as twice bandwidth-delay 

product. The competition continues 2200 seconds and the data in the former 200 

Fig. 3.14. The competing results between TCP and five schemes under the links managed by RED are 
shown. 
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seconds is eliminated from the statistics of results. We also run such a competition for 

other TCP-friendly schemes. 

For each TCP-friendly scheme, Fig. 3.15 plots its CVk[R] normalized with that of 

TCP over different time scale k’s. WARC, as well as TFRC and TEAR, has better 

smoothness than other schemes because of its RTE control. It is also demonstrates that 

the smoothness in WARC does not be destroyed by its fast aggressive and responsive 

capabilities. Moreover, the results in this figure shows these TCP-friendly schemes do 

provide smoother rate than TCP in the long term, observed from the normalized 

CV512[R]~0.5. Lastly, because these schemes avoid largely changing their rates 

between two losses, they have better smoothness at the time scale 16 (1.6 second) 

which approximates the average inter-loss time in the testing. 

 
3.5.3. Aggressiveness and Responsiveness 

To demonstrate the fast-convergent behavior in WARC, an on/off CBR traffic 

with obviously different rates between on and off periods is used, as shown in Fig. 

3.16. Such traffic brings dramatic changes on the packet loss condition and thus 

provides the required transient-state scenarios. In [BBF01], such an oscillating CBR 

traffic is used to observe whether GAIMD, TFRC, IIAD, and SQRT use the same 

bandwidth as TCP. The bottleneck in the test is a 16Mbps link managed with 

Drop-Tail, where the rate of the on/off CBR traffic oscillated between two values, 

15Mbps and 10Mbps, to vary the bandwidth available for the TCP-friendly flow to 

1Mbps and 6Mbps, respectively. The propagation delay of flows was 30 ms, and the 

Fig. 3.15. The smoothness of each scheme over different time scales.  
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TFRC TEAR 
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queue size was set to 1.5 times the bandwidth-delay product. 

 
Fig. 3.17 first shows that WARC has the fast aggressiveness when additional 

bandwidth becomes available at the 450th second. WARC like SIMD converges 

toward the new rate within about 20 seconds, which is shorter than GAIMD, TFRC 

and TEAR. The fast aggressiveness results from that WARC forgets the measured 

packet loss conditions earlier than a fixed number of RTTs, but TEAR and TFRC 

cannot do it, as mentioned in Chapter 3.2.1.  

On the other hand, by using the HR procedure, WARC like TFRC and TEAR has 

the fast responsiveness at the 600th second. A fine look at Fig. 3.17 around the 600th 

second reveals that the HR procedure in WARC is invoked at 603th second. Once the 

HR procedure is invoked, the rate of WARC immediately reduces to the expected TCP 

rate. Fig. 3.18 shows the number of losses encountered by each schemes between the 

600th and 620th second, normalized with that by TCP. Obviously, by using HR, WARC 

encounters fewer losses than GAIMD and SIMD before reducing its rate toward 

TCP’s. 

 
 

Fig. 3.17. The comparison between five TCP-friendly schemes on aggressiveness and 
responsiveness under the on/off CBR background traffic 

GAIMDSIMD TCP

WARC TFRC 

TEAR
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Notably, in Fig. 3.17 the curve WARC’ plots the rate of a flow controlled by WARC 

without the one-RTT reduction procedure. Obviously, the curve is more oscillatory 

than that of WARC since the flow encounters more packet losses when the queue of 

the bottleneck is overflowed. The result confirms that the one-RTT reduction 

procedure prevents a WARC flow from the sequential losses and the rate oscillation 

when the flow alone passes through a Drop-Tail link. 

Next, we observe whether WARC uses the same bandwidth as TCP under links 

with various frequencies of oscillating CBR traffic. In this test, the length of the 

on/off period of the CBR traffic is varied from 2 seconds to 128 seconds. Fig. 3.19 

plots the average rates of WARC and other TCP-friendly schemes, normalized with 

that of TCP for comparison. Obviously, when the oscillating period is smaller than 16, 

all schemes intends to keep its rate smooth, so they get less bandwidth than TCP. 

However, under the link with long oscillating period, since WARC like SIMD has the 

fast aggressiveness to immediately use the available bandwidth, it can use the similar 

bandwidth as TCP. 

 

Fig. 3.18. The number of losses encountered by WARC, WARC without HR, and other four 
schemes between the 600th

 ~ 620th second are plotted, which are normalized with that by TCP. 
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3.6 Related Work 
This work focuses on congestion control schemes which use smooth and 

TCP-equivalent rate to send packets over the Internet. These schemes like TCP 

NewReno and SACK consider packet loss as congestion signals to adjust their rates. 

Actually, besides packet losses, the RTT variation can be used to detect congestions, 

as in TCP Vegas [BP95] and FAST [JLH07]. Although RTT-based schemes provide a 

smooth rate too, they may use the network bandwidth unequal to that used by 

loss-based versions of TCP [TWH05], which still take charge of carrying most traffic 

over the Internet. C. Zheng and V. Tsaoussidis [ZT06] recently proposed a scheme 

using both losses and RTTs, which may be a solution to the unfairness problem.  

All the schemes mentioned above have a low barrier to deploy into the Internet, 

because they detect congestion by the packet loss or/and delay and need not any 

feedback from routers. However, adjusting rate only by loss and delay may not work 

well in high Bandwidth-Delay Product (BDP) networks [LPW03][KHR02], which a 

future Internet may belong to. Therefore, researches, e.g. [KHR02] and [XSS05] , 

consider a tight corporation model between congestion control schemes and routers. 

XCP [KHR02] is such a control scheme and requires multiple-bits congestion-related 

feedback from routers. However, since there is no space in IP header to carry these 

bits, XCP has a high barrier to be deployed in the Internet. Recently, VCP is proposed 

in [XSS05] to use two bits to provide the similar effect as XCP. Although VCP 

overcomes the problem in XCP, it still requires that all routers on the path encode the 

level of congestion in the IP header. Therefore, the schemes which require feedback 

from routers, e.g. XCP or VCP, may not be soon applied in the Internet to carry 

streaming traffic. 

Besides the congestion control, other factors must also be considered when 

designing a protocol for carrying streaming traffic. E. Kohler et al. [KHF06] 

discussed these factors in depth, and proposed the Datagram Congestion Control 

Protocol (DCCP). DCCP allows free selection of a congestion control scheme, and 

therefore is the most realistic means for practical use of schemes addressed in this 

study. The protocol currently only includes two schemes, namely TCP-like and TFRC. 

We strongly encourage adding other schemes to this protocol. 
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3.7 Applicability 
There are two possible applicable positions in end hosts to deploy WARC. The 

first is in the network transport layer, which is a heuristic position because WARC is 

proposed to play a role like AIMD, which is in a transport-layer protocol, i.e. TCP. 

However, instead of modifying TCP to support WARC, we suggest adding WARC 

into DCCP [KHF06], a transport protocol recently designed for streaming. Compared 

to TCP tightly binding AIMD, DCCP leaves options for the rate control schemes, and 

thus WARC can easily stand as one of the rate-control options in DCCP. Besides, 

DCCP removes several mechanisms in TCP, e.g. fast retransmission and fast recovery, 

which are unnecessary for streaming and may cause additional packet delay. 

In fact, deployment in the transport layer is also favorable to promote WARC for 

existing streaming applications. Today most applications access the Internet through a 

socket interface, which wraps the complex network protocols like TCP/IP in a 

standard I/O functions, e.g. open/close and read/write. Therefore, there is no barrier to 

enable these applications using new rate controls or transport protocols because the 

socket interface is unchanged. However, the con of this deployment is the necessary 

of kernel programming of operating system (OS), since the transport layer is usually 

implemented inside the kernel. Therefore, it is difficult to implement WARC into the 

kernel if the OS does not open the programming interface for the deployment. 

Fortunately, it is difficult only but not impossible. Today, even the commercial OSs, 

like Microsoft Windows, have released the programming interface for adding the 

third-party transport protocols or rate controls. 

For the OSs without interfaces for modifying its network transport layer, the 

second position to deploy WARC is in an application-layer library, which can support 

the development of streaming programs. An open-source package named LiveMedia 

library [LM07] is such a candidate. LiveMedia accesses the Internet via the socket 

interface, supports many media coding algorithms and can be used under multiple 

OSs, like Linux and Windows.  

However, deployment in the second position has to consider whether the network 

conditions reported from real-time transport control protocol (RTCP) [SCF03] is 

enough for WARC to control the rate, where RTCP is a widely-used application-layer 

protocol to transmit the control messages for streaming playback. Actually, RTCP 

does not provide enough network conditions for the TCP-equivalent schemes 
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introduced in this dissertation. Therefore, an IETF draft [LG07] has been proposed to 

consider the required changes of RTCP to support the deployment of these schemes. 

The conclusion of the draft will also be applied on WARC because WARC needs the 

same network conditions as the existing schemes, e.g. RTT and loss events. 
3.8 Summary 

This work proposes a window-averaging rate control (WARC) scheme to 

simultaneously meet four necessary properties required by a TCP-friendly 

streaming-carrying scheme: fairness, smoothness, aggressiveness and responsiveness. 

WARC takes the run-time estimation (RTE) model to adjust the rate. It averages 

the rate over a constant number of CWNDs, leading to its two inherent advantages: 

fairness under stationary conditions and fast aggressiveness, both are not owned by 

most existing well-known schemes, such as GAIMD, TFRC, TEAR, and IIAD. 

Besides, WARC additionally employs three complements including the history-reset 

procedure, the one-RTT reduction procedure, and the fluid-based timeout mechanism, 

in order to respectively handle three special but realistic loss conditions: bursty-losses, 

low-multiplexing network, and heavy-losses. 

The analysis shows that WARC like SIMD has the faster aggressive behavior and 

better tradeoffs between smoothness and aggressiveness than other schemes. That is, 

WARC takes shorter time to converge its rate, while providing a smoother rate at the 

most time. Besides, the HR procedure ensures WARC to respond to the abrupt 

decrease of available bandwidth right after a fixed number of packet losses. The 

simulation verifies the analytic results that WARC use the same bandwidth as TCP 

under stationary non-periodic losses, where most schemes fail to have that. Also, it 

shows that WARC uses the bandwidth close to TCP’s even under the oscillating 

background traffic. 

Briefly, while WARC uses the same bandwidth as TCP under the cases where 

other well-known TCP-friendly schemes cannot, WARC still provides the smoother 

rate than all of them. On the other hand, while WARC provides far faster 

aggressiveness behavior than other schemes, WARC also fast decreases its rate for an 

abrupt decrease of available bandwidth right after a fixed number of loss events. 
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Chapter 4 

On Applying Fair Queuing Discipline to 

Schedule Requests at Access Gateway for 

Downlink Differential QoS 
 

4.1 Introduction 
Numerous enterprises connect to the Internet with the access link of Internet 

service provider (ISP), a typical topology of which could be depicted as Fig. 4.1. In 

general, ISPs are willing to invest money in expanding the backbone bandwidth to 

provide their customers better service. However, to minimize costs, their customers 

often delay upgrading the bandwidth of the access link, which consequently becomes 

the potential bottleneck to access the Internet. To guarantee key traffic getting enough 

bandwidth when passing through the bottlenecked link, their customers may employ a 

class-based fair-queuing (FQ) discipline or other packet-based bandwidth 

management [WTL04] at the user-side access gateway to scheduling packets. 

 
Unfortunately, these packet scheduling solutions fail to provide such guarantee 

when the downlink is the bottleneck. In this case, packets are queued at the ISP-side 

edge router, not at the user-side gateway, for traversing the bottleneck. Scheduling 

packets at the user-side access gateway is useless because the packets have passed the 

bottleneck. On the other hand, although scheduling packets at the ISP-side edge router 

is useful, classifying packets at this router may be troublesome because of the network 

address transfer (NAT) technique, which is widely deployed at the user-side gateway 

to allow multiple users in an intranet sharing a public IP address. The packets which 
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intend to enter the intranet cannot be classified by the ISP-side edge router because 

the classification needs to refer to the destination IP addresses of these packets but 

unfortunately they have the same destination IP address before they enter the 

NAT-embedded user-side gateway. 

Scheduling requests, instead of packets, at the user-side access gateway may solve 

the mentioned failure condition of packet scheduling. Such an idea is based on that 

applications running over the Internet mostly take the client-server model, i.e. the 

request/response model, such as HTTP, FTP, and E-mail. Requests sent from clients 

go through the access gateway and the uplink of the access link to remote servers, and 

the corresponding responses answered by the remote servers return to clients through 

the downlink of the access link and the access gateway. The bandwidth of downlink 

could be managed by controlling the releasing of uplink requests.  

Request scheduling was used in several studies to provide differential Web QoS for 

different-classes users [CKD02]. These studies provided QoS services by designing 

request scheduling on a single Web server [PBB98, BBK00, CP99] or a web-side 

gateway, i.e. a gateway ahead close to a group of Web servers [CCC02, CC01, 

LGC01]. However, no published studies discussed how to design request scheduling 

at the user-side access gateway. The key difference of scheduling requests at the 

server or the web-site gateway from at the user-side gateway is that the target web 

servers in the former are specific and their statuses are easy to be measured or 

controlled for assisting in the scheduling operation. However, the servers in the latter 

are infinite, distributed over the Internet, and cannot be controlled. 

In order to provide bandwidth sharing and weighted fairness among users of 

different classes on their downlink responses, this work studies how to schedule 

uplink requests at the user-side access gateway. We first investigate the possibility of 

applying the class-based FQ discipline, which is widely and maturely used in 

scheduling packets, to schedule requests. However, we found that simply applying the 

discipline to schedule requests would encounter three problems. The first two are 

related to the timing of releasing requests and the selection of the next released 

request. The last one is about the class-based policy, which may not suit for the 

user-level differentiation, i.e. may not guarantee high-class users to get more 

bandwidth than low-class ones when more users appear in the high class. Next, based 

on the above investigation, we propose a minimum-service first request scheduling 

(MSF-RS) scheme to provide bandwidth sharing and user-based weighted fairness, i.e. 



56 

a policy that the ratio of the bandwidth allocated for each high-class user to that for 

each low-class user matches the ratio of their weights.  

MSF-RS consists of a minimum-service order arbiter (MOA) and a window-based 

rate controller (WRC). MOA always selects the next request from the class which 

receives the lowest amount of responses while WRC determines the timing to release 

a request by monitoring the downlink utilization and controlling the number of 

outstanding responses. A response is regarded as outstanding if its corresponding 

request is released, but the response has not been received completely. MSF-RS is 

originally designed based on the assumption that the uplink traffic consists of requests 

only and the downlink traffic consists of responses only. Also, it is supposed that each 

response comes back to answer a request forwarded by MSF-RS. However, MSF-RS 

also works well under the network where the exceptive traffic coexists with the 

assumed traffic. We would further discuss the traffic-mixed case and show the 

robustness of MSF-RS by simulation in Chapter 4.6. 

The remainder of the work is organized as follows. Chapter 4.2 identifies the three 

problems occurring in scheduling requests with the class-based fair queuing discipline. 

Also, the user-based weighted fairness is introduced herein. Chapter 4.3 proposes the 

MSF-RS scheme. Chapter 4.4 reveals that MSF-RS does shorten the user-perceived 

latency and analyzes the delay bound and fairness of MSF-RS. The effects of 

MSF-RS on the delay and fairness are further demonstrated by the simulation results 

in Chapter 4.5. Besides, the affection of exception traffic on MSF-RS is discussed in 

Chapter 4.6. Chapter 4.7 demonstrates the effect of MSF-RS through field trail, where 

MSF-RS is implemented in Squid [SQI06], an open-source Web proxy package. 

Chapter 4.8 gives the summary. 

4.2 Problems on Using Class-based Fair Queuing 
Three problems would occur when the class-based FQ is used to schedule requests. 

The former two are related to the FQ discipline while the last is about the class-based 

policy.  

4.2.1 The Timing for Releasing Requests 

A FQ-based packet scheduler selects and sends the next packet right after the last 

packet has finished its transmission. The bandwidth of the link behind the scheduler 

would be totally consumed by the scheduled packets themselves. That is, each packet 

transmission can monopolize the link bandwidth. However, a FQ-based request 
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scheduler cannot send the next request immediately following the last request. The 

bottleneck downlink is consumed by responses, rather than scheduled requests. 

Releasing requests one-by-one may bring a large number of concurrent response 

transmissions at the bottleneck downlink, because the transmission time of a response, 

due to its size, is often longer than that of a request. Each transmission, under such a 

condition, only shares small bandwidth, resulting in the serious congestion or the long 

user-perceived latency. On the other hand, the request scheduling cannot just wait to 

send the next request till the preceding request completely gets its response, because 

such a waiting may waste the downlink bandwidth. After a request is sent out, until its 

response returns, the downlink bandwidth will be idle. Besides, even when the 

response is transmitting, the transmission may not run out the whole downlink 

bandwidth.  

Since requests cannot be sent out as packets, a mechanism is necessary to control 

the request releasing based on the bandwidth utilization, in order to avoid the 

downlink from congestion while keeping it on high utilization. 

4.2.2 The Determination of the Next Request 

A FQ-based packet scheduler selects the next packet which is the earliest one to be 

completely served, or say fully transmitted, in the fluid-based general processor 

sharing (GPS) model [PG93]. The order of service completion is easily determined 

when a packet arrives because the determination only involves two known parameters, 

packet arrival time and packet size. For two packets arriving at the same time, the 

packet size decides the order of service completion time. A smaller packet finishes 

service earlier. 

However, in a FQ-based request scheduler, although the arrival time of each 

request is known, the size of a request does not affect the service time of the request, 

which however is counted from releasing a request to receiving its whole response 

and mainly contributed by the transmission time of the response. Because the 

transmission time is determined by the response size and the available bandwidth in 

Internet, it is uncertain at the request-scheduling moment. Therefore, the completion 

time is uncertain too and the request scheduling cannot serve request simply by its 

completion order. Hence, the selection of the next request will be a problem when the 

FQ discipline is applied to request scheduling. 

4.2.3 The Class-based Fairness Policy 

The class-based fairness policy is originally proposed to provide differential QoS 
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for different service types of connections. For example, the real-time connections and 

the best-effort connections would be classified into two distinct classes. Then, 

according to the weights of these classes, each class is allocated with a fixed 

proportion of bandwidth. When the class-based policy is applied, to guarantee that 

each connection in a class gets enough bandwidth, controlling the number of the 

active connections in the class is necessary. Establishing new connections will be 

rejected when the number of active connections exceeds the expected value. 

However, when the class-based fairness policy is applied on providing differential 

QoS for different levels of users, it may expose undesirable characteristics for 

high-class users. For example, a high-class user may be rejected from getting service 

when the number of users now in the high class exceeds the expected value. Besides, 

if the number of users in the high class is much more than that in the low class, each 

high-class user may get lower bandwidth than the low-class user. Therefore, another 

policy may be necessary to always provide the high-class users more bandwidth 

particularly when more users are active in the high class than the low class. We call 

such a policy the user-based weighted fairness. The policy guarantees that the ratio of 

bandwidth allocated for each high-class user to that for each low-class user matches 

the ratio of their weights. 

4.3 A Request Scheduling Scheme for User-side 

Gateway 
The section proposes a minimum-service first request scheduling (MSF-RS) 

scheme, which is deployed at the user-side access gateway and can provide user-based 

weighed fairness, bandwidth sharing, full bandwidth utilization, and short 

user-perceived latency. As shown in Fig. 4.2, the MSF-RS scheme consists of a 

minimum-service order arbiter (MOA) and a window-based rate controller (WRC). 

The former decides which request is the next one while the latter determines the 

timing to release requests.  
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4.3.1 Minimum-service Order Arbiter (MOA) 

As shown in Fig. 4.2, MOA includes a request selector, a request receiver, and 

three groups of variables. Each class is allocated a queue Q, a user counter (UC), a 

service counter (SC), and a weight w. 

1) UC and SC: The UC of a class keeps the number of the active users now in 

the class, where the active user means an intranet user who has requests or 

outstanding responses in MSF-RS. The SC of a class keeps the amount of services 

which the class has received. Herein the service represents the received responses in 

bytes after normalized with w and UC. That is, every time when one class, say the 

class i, partially receives its response of length L, its SC, SCi, is updated as  

 new old
i i

i i

LSC SC
w UC

= +
×

. (4.1) 

By normalizing L with w during the SC update, the ratio of the responses received by 

any two classes with the same SC will match the ratio of their weights. Similarly, by 

normalizing L with UC, the ratio of the received responses of the two classes will 

match the ratio of their active users. That is, even when the number of active users in 

the high class is much more than that in the low class, the ratio of the responses got by 

one high-class user to that by one low-class user still matches the ratio of their 

pre-assigned weights. 

2) Next request selection: As shown in Fig. 2, when a request arrives, the 

classifier Cq forwards the request into the corresponding Qi. On the other hand, the 

Fig. 4.2. The internal architecture of MSF-RS
 

Cr

Q2

Qn

Cq

Requests

Response

request
selector

SC1

SCn

W

End of RI

U

W+

Minimum-Service First Request Scheduling (MSF-RS)

End of Rsp.

Minimum-service order 
arbiter (MOA)Q1

A changes BA B
A is referenced by BA B

Data flow

Window-based
rate controller (WRC)

request
receiver

UC1 UCn

request
releaser

w1 w3

SC: Service Counter
UC: User Counter
w:    Weight

Cr

Q2

Qn

Cq

Requests

Response

request
selector

SC1

SCn

W

End of RI

U

W+

Minimum-Service First Request Scheduling (MSF-RS)

End of Rsp.

Minimum-service order 
arbiter (MOA)Q1

A changes BA B
A is referenced by BA B

Data flow

Window-based
rate controller (WRC)

request
receiver

UC1 UCn

request
releaser

w1 w3

SC: Service Counter
UC: User Counter
w:    Weight



60 

request selector selects the head-of-line (HOL) request from the class queue with the 

minimum SC. A class with the smaller SC represents that it received less services than 

other classes. Selecting a request from such a class queue improves the fairness 

between classes, because it minimizes the difference of their SCs, i.e. on their 

received services. Besides, if multiple classes have the same SC, the request selector 

would select the class with the highest product of the weight and UC. 

An idle class represents that the class has no outstanding responses and its request 

queue is empty. When a class idles for a long period, its SC may be far smaller than 

the SCs of other classes with backlogged requests and response. Once the idle class 

has incoming requests, its far-small SC may cause the starvation of other classes. That 

is, until its SC is larger than any one SC of other classes, no request can be selected 

from other classes. Such a condition may be unfavorable. To avoid the condition, once 

the idle class becomes busy, its SC is updated to the minimal SC among all active 

classes. Such an update lets MOA follow the sharing concept used in the fair queuing 

discipline: the bandwidth freed from the idle classes would be shared by active classes, 

and these active classes will not get less bandwidth because of the sharing when the 

idle classes become active. Notably, if all classes are idle, all SCs will be reset to 0. 

3) Basic Procedures: Fig. 4.3 lists the pseudo codes for the two components in 

MOA. The request_selector picks the class queue with the minimum SC and releases 

the HOL request of this queue. The request_receiver classifies and en-queues all 

incoming requests. If the arrival request is classified into an idle class, i.e. the class’s 

UC is zero, the request receiver reset the SC of this class. Next, the request is put into 

the specific queue, according to its class. If the request comes from a user j who has 

no request waiting for service or being served, i.e. ReqFromUser[j]=0, then the UC of 

its class will be added one, implying one more user arrives in the class. If the system 

is idle, i.e. no responses are outstanding, the request_receiver actively asks the 

request_scheduler to release the just coming request immediately.   
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4.3.2 Window-based Rate Controller (WRC) 

As shown in Fig. 4.2, WRC controls the maximum of outstanding responses, W+, 

according to the bandwidth utilization of the link, denoted by U. The variable W is 

used to record the current number of outstanding responses. The U is updated by the 

expression 

 / ,k
k

S TU
C

=  (4.2) 

where Uk is the utilization between the kth and (k+1)th updates, C is the link capacity, T 

is the time interval between two updates, and Sk is the responses in bytes received 

during T. Next, once Uk is changed, WRC updates W+ by the equation 

 
1 min{ , }k k

k

UW K W
U

+
+ +
+ = × , (4.3) 

where 1kW +
+  is the maximum of outstanding responses allowed after the (k+1)th 

update and 0 1W + = . U+ is the expected utilization. When kU  is lower than U+, 1kW +
+  

will be set to a larger value so that more outstanding responses can use the bandwidth 

and then raise the utilization 1kU + . For example, if the current W+ is 6 and U is 60%, 

then the next W+ will be set to 10 when U+=99%. On the contrary, when kU  is 

Fig. 4.3. Two procedures in MOA: request selector and request receiver 

Array ReqFromUser[j] : # of requests now in MOA and 
coming from the jth user 

 
boolean Request_Selector // Called by Request_Receiver or WRC 
{ 
 // Select the queue with min SC among all active queues, 

// i.e. their corresponding classes’ PendingPpt are not zero. 
 // return null if no active queues. 
 Qi ← ActiveQ_with_minSC()  
 If (Qi = null)  
  return False  // imply there are no active classes 
 Else   
  SendHeadReq(Qi) 
  return True 
} 
Procedure Request_Receiver(Req)// Called when a request arrives 
{ 
 i  ← GetClassNo (Req) 
 j ← GetUserNo(Req) 
 If (UCi=0) 
  SCi=GetMinSC()   
 Enqueue(Req) 
 If (ReqFromUser[j]=0) 
  UCi= UCi+1 
 ReqFromUser[j]++; 
 If (W = 0) 
  Request_Selector () 
} 
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higher than U+, 1kW +
+  will be decreased so that fewer responses compete for the 

downlink bandwidth.  

The U+ is constant and should be smaller than 100% (U+ < 100%). Otherwise, 

when U+=100% and Uk=U+, it cannot be distinguished whether the bandwidth 

required by the responses is larger than or just equal to that of the link. K is a constant 

and assigned to 2 to avoid WRC from over-estimating the new W+ particularly when 

the old W+ is small. Notably, W+ should be recomputed only when W=W+. When W<W+, it 

is wrong to expect the raise of U by increasing W+, because the low U is caused by the 

insufficient arrival requests, but not the insufficient W. 

Fig. 4.4 lists the pseudo code of WRC. When WRC receives any part of a response, 

it looks for the class and the user which this response belongs to, and updates its 

class’s SC. Once the received data includes the last packet of a response, W is 

decreased by one to imply a request having been fully answered. Also, ReqFromUser 

of this user is decreased one. If this is the last request, UC of this class is decreased 

one also, because one user leaves the class. Next, the request_scheduler is invoked to 

release requests as more as possible, till W=W+ or all request queues are empty. 

 

4.4 Analysis for Delay and Fairness 
In the section, we first demonstrate that a MSF-RS gateway provides users 

shorter latency than an ordinary gateway on the average. An ordinary gateway means 

Fig. 4.4. Procedure of window-based service-rate controller (WRC) 

Procedure WRC // called when partial response returns 
{ 
 Data  ← GetData() 
 i    ← GetClassNo(Data) 
 j ← GetUserNo(Data) 
 Len  ← Size(Data) 
 SCi  ← SCi + Len / wi // update SC by (1) 
 
 If ( IsTail_of_Rsp(Data)) {  // ending event of a transaction 
  W ←W - 1 
  ReqFromUser[j] ←ReqFromUser[j]-1 
  If (ReqFromUser[j]=0) 
   UCi ← UCi-1 
 } 
 
 While (W < W+)  // imply more transactions are expected 
 { 
  If (Request_Scheduler()=False) // ask for releasing a request 
   Goto no_reqs // if all req queues are empty 
  W←W+1 
 } 
Label no_reqs: 
} 
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that it directly forwards the requests or responses once receiving them from client 

hosts or destination sites, respectively. Then, we analyze the delay and fairness 

provided by MSF-RS in the worse case.  

4.4.1. Short User-perceived Latency 

Two definitions are given for conveniently analyzing the user-perceived latency. 

Definition 4.1: A transaction includes a request and its corresponding response. 

Besides, a transaction queued in a gateway G means that the request of the transaction 

is queued in G. Moreover, a transaction being served by a gateway G represents that G 

forwards the request of the transaction to the destination site, and later receives its 

response from the destination site while forwarding it back to the client. Herein we 

assume that a gateway can receive a response from the destination site while 

forwarding it to the client host. Besides, the response of the transaction in serving is 

also called an outstanding response in this work. 

Definition 4.2: The active time of a transaction in a gateway G begins when G 

receives the request of the transaction and ends when G returns the whole response of 

the transaction back to the host. If Ta denotes such active time, then Ta consist of the 

queuing time (Tq) and the service time (Ts) of the transaction, according to Definition 

1. That is, Ta=Tq+Ts. Also, because Ts is dominated by the transmission time of the 

response, we simply define Ts is a function of L and b, where L is the length of the 

response and b is the average bandwidth used by the response during its transmission.  

 

The user-perceived latency of a request begins when the client host sends out the 

request and ends when it receives the whole responses of the request. That is, the 

latency includes the data transmission time between the client host and the gateway G, 

and between G and the destination site. However, the time in the former part is 

eliminated from the following comparison because it approximates a small constant 

no matter MSF-RS is deployed or not in the gateway. Therefore, we would show that 

a MSF-RS gateway could provide shorter time in the latter part than an ordinary 

gateway on average.  

According to Definition 4.2, Ta just represents the time in the latter part. The 

following compares the MSF-RS and ordinary gateways under a case that a batch of 

m requests arrives into the gateways. Assume MSF-RS has a fixed W+. Besides, the 

maximum bandwidth that W+ responses can use would approximate to the downlink 

bandwidth C, because if a MSF-RS gateway allows W+ responses concurrently 
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transmitting, then these responses are expected to completely occupy but not overload 

the downlink. Therefore, the maximum bandwidth of each response can be expressed 

as C/W+. 

Let us first consider the situation under an ordinary gateway. Because the 

ordinary gateway directly forwards any received requests, the Tq of these transactions 

is closed to zero, compared to their Ts. Besides, since the responses of the m requests 

will concurrently share the downlink bandwidth, the bandwidth got by each response 

can be written as C
m

. Therefore, the average Ta of transactions under an ordinary 

gateway is 

  ( ) 0ordinary
a

L mLavg T C C
m

= + =  (4.4). 

Next, consider the case under MSF-RS. The Tq’s of the first W + transactions are 

zero because their requests are forwarded immediately. Then, others transactions will 

be queued until any of the W+ transactions have been served. In the worst case, these 

transactions end concurrently. Thus, the Tq’s of the next W+ transactions would equal 

to the Ts of the first W+ transaction, i.e. W L
C

+
. Next, the Tq’s of the residual 

transactions could be derived from the same way. Thus, by summing up the Tq’s of 

W+ transactions in each round and considering the possibility that the number of 

transactions in the last round may be less than W+, the average Tq of the m requests 

could be expressed as 

 1( ) 0 1 2 ... max{ 1,0} (  mod  )MSF RS
q

m m W Lavg T W m W
m CW W

+
− + +

+ +

⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥= + + + + − +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
. (4.5) 

Similarly, the mean Ts of the m transactions could be expressed as 

  1 (  mod )( ) ( (  mod )) (  mod )MSF RS
s

W L m W Lavg T m m W m W
m C C

+ +
− + +⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

. (4.6) 

Therefore, we get the average Ta of transactions under a MSF-RS by summing up Eq. 

(4.5) and Eq. (4.6).  

To compare the average period of transactions over the two gateways, Fig 4.5 

plots the ratio of the MSF-RS gateway to an ordinary gateway on Ta over different m 

and W+. Fig. 4.5 shows that the ratio is smaller than 1 always, i.e. the average time to 

finish transactions under MSF-RS is no more than that under an ordinary gateway. For 

example, as plotted by the dotted line, MSF-RS can reduce 25% of Ta when the 
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number of arrival requests is two times of W+. These results demonstrates that 

MSF-RS does not cause additional delay on Ta through MSF-RS does queue requests, 

i.e prolong Tq, to provide differential services for different classes of users.  

 
4.4.2. Delay Bound 

Two models are introduced before the definition and analysis of delay bound. As 

shown in Fig. 4.6(a), we model MSF-RS as a multi-links fair queue to analyze the 

delay bound caused by MSF-RS in the worse case. Assume that W+ is fixed and each 

class has equal users in the residual analysis. The downlink with capacity C is 

conceptually divided into W+ sub-links and each sub-link has bandwidth c=C/W+. 

Besides the model for MSF-RS, we describe an ideal MSF-RS gateway, named 

MSF-RS*, as shown in Fig. 4.6(b). Under MSF-RS*, the downlink bandwidth C can 

be proportionally shared by N classes according to their weights. For example, if three 

classes of users receive their responses through the downlink and the ratio of their 

weights is 4:2:1, then the bandwidth C should be divided into 3 sub-links which 

bandwidth are 4/7C, 2/7C, and 1/7C, respectively. Besides, the bandwidth got by each 

class would be dynamically adjusted according to the number of non-empty class 

queues. 

 
Fig. 4.6. The downlink can be conceptually divided into multiple sub-links. 
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Definition 4.3: An active class represents that the class has transactions handled in 

the gateway. Also, an active period of Class i is the time during Class i is active. 

Definition 4.4: A backlogged class represents that the class has a non-empty queue of 

requests. 

Definition 4.5: The delay bound for a transaction in a MSF-RS gateway means 

Ta
MSF-RS-Ta

MSF-RS*, i.e. the additional time caused by MSF-RS, compared to an ideal 

MSF-RS gateway.  

Such a delay may be contributed from two parts. The first is the queuing time of 

requests in the MSF-RS gateway. For the first request queued in a class, its queuing 

time under a MSF-RS* gateway is zero because MSF-RS* has W+=n and thus the 

request must be immediately forwarded. However, the request may be delayed in 

MSF-RS when all sub-links are busy. Another source to contribute the delay is the 

additional transmission time of responses if lower downlink bandwidth is allocated 

for a class than its allocated bandwidth, which is possible in MSF-RS. Since a 

MSF-RS gateway only affects the allocation of downlink bandwidth by controlling 

the releasing of uplink requests, it cannot directly adjust the downlink bandwidth used 

by each class. 

Assume that ak denotes the time of a request k arriving at MSF-RS, bk denotes 

the time it departed from MSF-RS, and dk denotes the time that MSF-RS finished to 

return the whole response back to the client host. Similarly, *
kb , and *

kd  denotes the 

corresponding times at MSF-RS*. The denotation *
ka  is unnecessary since the arrival 

times at MSF-RS and MSF-RS* are equal. Next, assume the total length of the 

response is Lk and k
k k

L
d b

r
= +  where r represents the receiving rate of the response. 

Herein, the time between bk and receiving the first data of its response is ignored, 

since it is far smaller than the receiving time of the whole response. 

Theorem 4.1: The delay in MSF-RS has a bound equal to  

 2L
c

+
,  

where L+ is the maximum responses among all classes and c is the bandwidth of a 

sub-link. That is, for any request k, the time that MSF-RS finishes its transaction must 

not be 2L
c

+
 later than that under MSF-RS*, i.e. * 2

k k
Ld d
c

+
− ≤ . 

Proof: 
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Case 1: The request k arrives when W<W+. 

In this case, bk=ak because MSF-RS immediately sends out requests if W<W+. Then, 

k
k k

L
d a

c
= + . Besides, * k

k k
Ld a
C

≥ +  because the capacity C of a link is the maximum 

bandwidth that a transaction can use in MSF-RS*. Thus,  

 * 1 k
k k

LWd d
cW

+

+
−− ≤  (4.7) 

Case 2: The request k arrives when W=W+. 

Consider the transaction of the request k is the (m+1)th transaction in the same 

active period of Class i. Let us mark the transaction. Next, we calculate how many 

transactions will be served from other classes ahead of this marked transaction in the 

worst case. Assume n is the number of active classes now in the gateway and all W+ 

sub-links are serving transactions. Assume these transactions have responses of the 

largest size L+. That is, in the worst case the earliest time to release the next request 

from the gateway will be at k
La
c

+
+ . Next, for each Class j where j i≠ , it may 

receive a maximum i
j

i

mL r
r

+
×  of total responses, before their timestamps are assigned 

to a value equal to that of Class i, where Li
+ denotes the maximum response of Class i. 

Moreover, as mentioned in Chapter 4.3.1.2, when all classes have the same timestamp, 

MSF-RS forwards requests from the class with the highest weight. Thus, if Class i has 

the qth highest weight, then its request will be forwarded at the rank of q among all 

classes with the same timestamp. Therefore, the time at which the marked transaction 

will be finished is given by 

 
1 1

1

1 k n
i

k k j j
ij k m j

j i

LL q Ld a L m r
c r cW c W

− −+ +

+ +
= − =

≠

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎡ ⎤≤ + + + +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

∑ ∑ .  (4.8) 

However, under MSF-RS* the request k will be forwarded once no requests queued in 

Class i. Besides, because a class with the qth highest weight must get no more 

bandwidth than the classes with weight equal to or higher than it, it can get at most 

W c
q

+
 bandwidth. Therefore, the time at which the marked transaction will be finished 

under MSF-RS* is given by 



68 

 
1 1

*

1 1

1 k n
i

k k j j
ij k m j

j i

L Ld a L m r
rW c W c

q

− − +

+ +
= − + =

≠

⎛ ⎞
⎜ ⎟

≥ + + +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ . (4.9) 

Therefore, by subtracting Eq. (4.9) from Eq. (4.8) and considering Eq. (4.7), we get 

the delay bound under MSF-RS is given by 

 * 2
k k

L q q L Ld d
c c cW W

+ + +

+ +
⎛ ⎞⎡ ⎤− ≤ + − ≤⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

. 

 

4.4.3. Fairness 

The fairness parameter that we use is based on the definition presented by 

Golestani [GOL94] for the analysis of self-clocked fair queuing. The parameter is 

defined as the maximum difference of the service got by any two backlogged classes 

over arbitrary time intervals. A scheduling algorithm has a zero value of fairness if it 

always provides equal service for any two classes even in a short time interval. The 

fairness of MSF-RS* is zero since the downlink bandwidth can be concurrently shared 

by all non-backlogged classes anytime. The following analyzes the fairness of 

MSF-RS. 

 

Theorem 4.2. The fairness of MSF-RS is  

 
+

ji

i j

LW L
w w

++

+ ,  

where i and j could be the indexes of any two backlogged classes and ji

i j

LL
w w

++

≥ .  

Proof: We consider two classes, Class i and Class j, through the following analysis 

because the definition of fairness only concerns two classes. The existence of more 

active classes does not affect the difference of services got between two classes. 

Besides, let ji

i j

LL
w w

++

≥ , where wi and wj are the weights of Class i and j, respectively. As 

shown in Fig. 7, assume the MSF-RS is idle before the time t0, i.e. W=0. Then, at the 

time t0 more than W+ requests of Class i arrive. Let v denotes the timestamp of the 

first request of Class i, where timestamp represents the value in SCi when the request 

arrives into Class i. Upon these requests arrives, MSF-RS will forward the first W+ 

ones and W is set to W+. Let k be the (W++1)th request, i.e. it would be the first request 

in the queue of Class i after t0. Since W+ requests of Class i would be served before k, 
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k will have a timestamp v’ expressed by 

 '
1

1 W h i
ih

i i

W Lv v L v
w w

+ + +

=
= + ≤ +∑ .  

 
Assume that requests of Class j arrive right after the time t0, and the first request 

should have the timestamp v since the timestamp of the request latest released by the 

server is v. However, although the first request of Class j has timestamp v smaller than 
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Fig. 4.7. The difference of the service between Class i and Class j 
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4.5 Simulation Results 
This section verifies the effects of MSF-RS by ns-2 [NS06] in terms of the fairness 

and -bandwidth sharing, user-perceived latency, the relationship between U and W+, 

the effect of U+ on latency. 

 
4.5.1 Topology 

The HTTP/Cache in ns-2 acts as a web proxy cache, and sits between clients and 

web servers. It intercepts the requests sent from clients and forwards them to the 

remote servers if the requested data is not cached yet. This work disables the cache 

function and implements MSF-RS in HTTP/Cache. Fig. 4.8 shows the topology used 

in the simulation. The MSF-RS gateway provides three classes, Class 1, Class 2, and 

Class 3, with the weights, 4, 2, and 1, respectively. Each class involves four clients 

and each client repeatedly requests pages from the 12 remote web servers through the 

MSF-RS gateway. For each client, its time interval between two requests is an 

exponential distribution with mean equal to 5 seconds. The link between the MSF-RS 

gateway and every client is 10Mbps with 2ms propagation delay. The ISP router 

connects to twelve servers with twelve independent links. These servers are classified 

into two equal numbers of groups, representing overseas servers and domestic servers. 

Links between the gateway and these servers have a uniform distribution, as shown in 

Fig. 4.8. By the statistics from the real Internet [BC98], the web response size has a 

lognormal distribution with M=9.357 and S =1.318. The average response size is 
2 / 2M Se +  bytes, i.e. 27,656 bytes. The U+ in WRC is set to 98% and the time interval 

between two updates is set to 5 seconds. Chapter 4.5.6 would further reveal the effects 

of different U+’s on link utilization, but that of different update intervals are ignored 

Fig. 4.8. Simulation topology for three classes with service ratio 4:2:1 
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to show because of their insignificant effects. Besides, we use TCP SACK and assume 

no delayed acknowledgments. Over the simulation the packet size is 1000 bytes and 

the maximum congestion window of TCP is 200. The queues at the two gateways are 

managed by Drop-Tail and their sizes are 1.5 bandwidth-delay products. 

4.5.2 Weighted Fairness and Bandwidth Sharing 

First, we demonstrate that when all classes have the same users, MSF-RS provides 

weighted fairness between classes and the idle bandwidth is shared by active classes. 

Four phases are included in the simulation and the duration of each phase is 200 

seconds. In the first phase, all of the three classes have backlogged requests. In the 

next two phases, Class 1 and 2 stop requesting individually, and then both of them 

have backlogged requests again in the last phase. 

Fig. 4.9 shows the average throughput in each phase. During the first phase, the 

three classes get proportional bandwidth in ratio 3.96:1.98:1, which is close to the 

expected ratio 4:2:1. In the second phase, the idle bandwidth freed by Class 1 is 

shared by Class 2 and Class 3 proportionally. Both of the bandwidth obtained by 

Class 2 and Class 3 increase in this phase, and the usage ratio between them is still 2:1. 

After Class 2 stops requesting in the third phase, Class 3 occupies all bandwidth until 

the end of this phase. During the second and the third phases, Class 1 and Class 2 still 

obtain a bit of bandwidth separately due to their unfinished transactions at the 200th 

and 400th second, respectively. Once all idle classes have requests again in the last 

phase, the three classes obtain the bandwidth in the expected proportion, 4:2:1, again.  

 
As mentioned in Chapter 4.1, packet scheduling algorithms fail to allocate the 

Fig. 4.9. The average throughput of three classes over the four phases 
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downlink bandwidth at the user-side gateway, because the packets of responses have 

passed the bottleneck and can be immediately forwarded to the clients. Under the 

situation, a packet scheduling algorithm would degrade into a first-in-first-out 

scheduling. To demonstrate such degradation, we employ a deficit round robin (DRR) 

[SV96] instead of MSF-RQ at the user-side gateway. DRR is a widely used packet 

scheduling algorithm because it is easy to implement. Fig. 4.10 shows the bandwidth 

allocation managed by DRR. Obviously, over the four phases, Class 1 and Class 2 do 

not get higher bandwidth than Class 3, even though both classes have larger weights 

than Class 3. Further observation shows that the request queues of three classes in 

DRR are empty during the simulation, which verifies that requests will be forwarded 

upon their arrival, i.e. forwarded with a FIFO order. 

 
4.5.3 User-perceived Latency 

The simulation scenario here is the same as that used in the first phase in Chapter 

4.5.2. Fig. 4.11 illustrates the user-perceived latency for the three classes, the average 

latency of all classes, and the latency if no MSF-RS is deployed, denoted as 

non-MSF-RS. Also, the latency is decomposed into the queuing time and the service 

time of the transactions. 
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Fig. 4.10. The average throughput of three classes over the four phases under DRR 
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First, by comparing the left three bars, the three classes in MSF-RS experience the 

different user-perceived latencies, mainly caused from different queuing time since 

they have different weights. Second, by comparing the right two bars, the average 

latency (6.76 secs) in MSF-RS is shorter than that in non-MSF-RS (8.83 secs) by 

23.44%. It is because the average service time in MSF-RS (1.44 secs) is far shorter 

than that in non-MSF-RS (8.83 secs). The service time in MSF-RS is reduced because 

of the well-controlled number of concurrent outstanding responses. 
4.5.4 User-based Weighted Fairness 

 Next, we show the MSF-RS gateway provides the high-class users more 

bandwidth than the low-class users regardless of the number of users in the high class. 

The same testing scenario as that in Chapter 4.5.2 is used, but the number of users in 

Class 1 is increased in each test from 4 to 24. Also, all of the three classes have 

backlogged requests during the whole testing time, 800 seconds. Fig. 4.12(a) plots the 

difference of the average bandwidth allocated for the users in each class. When there 

are 4 users in Class 1, each user in this class owns 270Kbps, which is the two and four 

times of that allocated for the user in Class 2 and Class 3, respectively. The fixed ratio 

on the allocated bandwidth among the three classes is kept even when users in the 

first class are increased. Fig. 4.12(b) plots the result provided by the MSF-RS gateway 

without considering the number of users when updating SC, i.e. the L in Eq. (4.1) is 

not divided by the UC. Obviously, under such a gateway, the users in Class 1 cannot 

be ensured to get more bandwidth than that in other classes when more users are 

active in Class 1. 

 

Fig. 4.11. User-perceived latency comparison by decomposing time factors: queuing time and 
service time 
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4.5.5 Adjustment of Outstanding Responses  

The subsection observes the adjustment of W+ when the arrival of requests is not 

backlogged always, i.e. the scheduling server may be idle sometimes. In the 

1500-second test, clients in Class 1 and 2 send requests every 1 second while that in 

Class 3 send one every 10 second. Besides, during the middle 500 seconds, clients in 

Class 1 and 2 stop sending requests, which results in insufficient requests so that the 

MSF-RS gateway has no request to send out. Fig. 4.13 reveals the relation between U 

and W+. The utilization of access link stays around 0.98 as the expected U+ in the first 

and last 500-second periods because of sufficient arrival requests.  

 
In the 500th~1000th sec, the utilization falls apparently and the value of W+ keeps 

constant as described in Chapter 4.3.2. Increasing W+ for raising the utilization during 

the period is in vain because the low utilization results from the fact that the incoming 

Fig. 4.13. The size of W+ is fixed in the period with insufficient traffic (the 500th ~1000th seconds) 

0 

20 

40 

60 

80 

100 

0 200 400 600 800 1000 1200 1400
Time (sec)

Util(%) 

0

5

10

15

20

25

30
Win

U
W+

W

0

50

100

150

200

250

300

4 8 12 16 20 24

Hosts in Class 1

B
an

dw
id

th
 (K

bp
s)

C lass 1
Class 2
Class 3

0

50

100

150

200

250

300

4 8 12 16 20 24

Hosts in Class 1

B
an

dw
id

th
 (K

bp
s)

C lass 1
Class 2
Class 3

(a) (b)

Fig. 4.12. The difference on the bandwidth allocated for the high-class host between the host-based 
and class-based weighted fairness. 
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requests are too few to occupy all sub-links. Besides, the value of W varies with a 

wide range, determined by the dynamically arrival requests. During the period, any 

requests are forwarded immediately once they arrive, since there are always free 

sub-links. Notably, at the 1000th second, once the two stopped classes restart sending 

requests, all requests can be released soon and the utilization jumps to the expected 

value.   

4.5.6 Effect of Umax on Latency 

Fig. 4.14 depicts the user-perceived latency, the queuing time spent in the MSF-RS 

access gateway and in the ISP-side edge router when U+ is assigned from 0.65 to 0.99. 

Raising U+ follows shorter user-perceived latency, because more responses can be 

concurrently transmitted and the bandwidth can be more utilized. However, the raise 

also causes packets to be queued in the ISP-side router because of less free bandwidth 

for eliminating the queued packets as U+ is high. By the observation in Fig. 4.14, the 

value of U+ is suggested to be set to 98%. 

4.6 Affection of Exceptive Traffic 
MSF-RS is designed under the assumption that the uplink traffic comprises 

requests only and the downlink traffic comprises their corresponding responses only. 

However, the exceptive traffic does coexist with the assumed traffic in the real 

environment. We classify the exceptive traffic into three types and explain why they 

do not affect the fairness or link utilization provided by MSF-RS.  

1) Uplink exceptive traffic: The type of traffic may include the uplink responses 

and the packets actively sent from the internal users. If this traffic is heavy enough to 

turn the uplink to a bottleneck, a packet scheduler with the FQ discipline is suggested 

Fig. 4.14. The user-perceived latency, queuing time, and the number of packets queued in 
ISP-side router under different U+ 
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to be deployed at the access gateway first. MSF-RS can coexist with the uplink FQ 

discipline well, as shown in Fig. 4.15(a). Also, if the weighted fairness on uplink is 

not a concern, the combination of MSF-RS and priority queues is a simple solution, as 

shown in Fig. 4.15(b). The solution gives the request traffic higher priority since they 

are smaller than responses usually. 

 
2) Downlink exceptive traffic belonging to some classes: Such traffic is still the 

downlink responses, but their requests are not recognized by the implementation of 

MSF-RS. For example, POP3 mail traffic for someone’s host belongs to Class i. It is 

possible since only the web request is recognizable for the present implementation of 

MSF-RS.  

The MOA in MSF-RS regards these exceptive packets as the received service of 

classes. That is, when the packets not triggered by an (recognized) request arrive from 

the Internet, their sizes are accumulated into the SC of the class which the packets 

belong to, as other response packets triggered by requests. That is, if a user of Class i 

receives a crowd of such packets from the Internet, the sizes of packets would be 

accumulated into SCi. Although the additional value in SCi caused by these exceptive 

packets brings the fewer requests sent out from Class i by MSF-RS, it does not affect 

the weighted fairness between classes and the link utilization. 

3) Downlink exceptive traffic not belonging to any class: Exceptive traffic not 

belonging to any class may include requests from outside network for the responses 

provided by the internal servers, or the malicious attacks. The former case is possible 

for the enterprises having web servers for their customers. The exceptive traffic 

(a) The architecture providing weighted fairness  
between request traffic and exceptive traffic 

(b) The architecture giving the higher priority for request traffic 

Fig. 4.15. Two potential integrated architectures for handling the network when the uplink is a
bottleneck. 
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contributed from such requests is usually small, compared with other response traffic 

running on the downlink. The latter case may rudely and fully occupy the downlink, 

resulting in the failure for all transmissions. However, the latter case is a security 

problem and out of the scope of this work.  

Actually, this exceptive traffic could be considered as response traffic, when WRC 

monitors the utilization of the downlink to set W+. Such traffic would bring a smaller 

W+ than that in the case without the exceptive traffic. That is, WRC may think such a 

small W+ is enough to fully utilize the downlink bandwidth. Besides, when the 

exceptive traffic passed, because WRC would quickly adjust W+ according to the new 

U, the link utilization is not affected in this case.  

We use the following simulation to demonstrate that the utilization is not affected 

by the downlink exceptive traffic. The on-off CBR traffic not belonging to any classes 

with different rates during different periods are generated to demonstrate the 

responsiveness of WRC is fast enough to keep the high link utilization. Five on/off 

periods are tested: 40, 80, 160, 320, and 640 seconds. During the on-period, three 

rates of CBR traffic are tested individually: 20%, 40%, and 60% of the downlink 

capacity. Each test is run for 3000 seconds and the U+ is set to 98%. Fig. 4.16 shows 

the case where on/off period is 640 seconds and CBR rate is 40% of link capacity, i.e. 

0.8 Mbps. At 1280 and 2560, once the CBR traffic stops, WRC immediately resets W+ 

from 7 to 13 in order to release more requests. The bandwidth freed by CBR traffic is 

fully and fast occupied by the response traffic. In fact, the results in all tests, as shown 

in Table I, reveal that WRC keeps the utilization on 97.84% averagely, closing to the 

designed goal, 98%.  

 
Fig. 4.16. Fast-responsive W+ and full utilization of access link under oscillate CBR traffic 
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4.7 Field Trial 
We implemented MSF-RS in Squid [SQI06], which is an open source package of 

web proxy cache, and performed field trial in an open network environment. Fig. 4.17 

illustrates the test bed for evaluating the MSF-RS in Squid. An application-layer 

traffic generator named Avalanche [AVA06] is used to emulate the behaviors of 

multiple clients and send requests to the web servers in the Internet. Avalanche is 

imported with a URL list, a historical record logged by an enterprise in a couple of 

days.  

 
The access gateway installed with MSF-RS is configured as a transparent proxy 

with iptables [NET06]. All HTTP requests destined to port 80 are directed to port 

3128, the service port of Squid. A layer 3 switch is acted as the ISP-side gateway. The 

bandwidth of the access link between the access gateway and the layer 3 switch is 

limited to 2Mbps. As the configuration in simulation, three classes are provided with 

service ratio 4:2:1. Notably, the cache function is disabled to avoid getting responses 

directly from caches. The effects of MSF-RS Squid are observed in terms of weighted 

fairness, user-perceived latency, and CPU loading as follows.  

1) Weighted fairness: The amounts of bandwidth allocated to three classes for a 

200-second test are 1.03 Mbps, 0.52 Mbps, and 0.26 Mbps, respectively, when 

backlogged requests are applied. The result quite obeys the configured service ratio 

4:2:1.  

Fig. 4.17. The test bed for field trial in the Internet 
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TABLE 4.1. THE UTILIZATION OF LINK  
UNDER OSCILLATING CBR TRAFFIC (U+=98%) 

The Rate of CBR During On-period On/Off 
Period 0.4 Mbps 0.8 Mbps 1.2 Mbps 
40 sec 97.94% 97.91% 97.62% 
80 sec 97.90% 97.95% 97.77% 

160 sec 97.94% 97.92% 97.68% 
320 sec 97.83% 97.80% 97.76% 
640 sec 97.93% 97.83% 97.85% 
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2) User-perceived latency: Table 4.2 shows the latency provided by the original 

Squid and the MSF-RS Squid. The original-Squid case represents all requests are 

immediately released by the proxy. The MSF-RS Squid reduces (1686-1175)/1686, or 

30%, of the average user-perceived latency in the original Squid case, although the 

user-perceived latency in MSF-RS includes the additional queuing time, 515.5 ms.  

 
3) CPU loading: Table 4.3 shows the benchmark results on CPU time occupied by 

the MSF-RS Squid process and the original Squid process when both processes 

provide the same link-speed throughput during 200 seconds. As expected, the CPU 

time increases as the number of classes or the access link bandwidth increases. 

Notably, the time under MSF-RS is always lower than that under the original Squid. 

Under the original Squid, all requests are immediately released by the proxy, bringing 

great concurrent transactions. However, a proper number of concurrent transactions 

are allowed by MSF-RS. It is believed that the number of concurrent transactions 

dominates the cost of CPU computing.  

 

4.8 Summary 
Scheduling the uplink requests is a potential method to manage the bottlenecked 

downlink at the user-side access gateway. Because the class-based fair queuing (FQ) 

discipline is widely and maturely used in scheduling packets, we first investigate the 

possibility of applying the discipline to schedule requests. However, we found that 

three problems occur at applying the class-based FQ discipline to schedule requests: 

TABLE 4.3. COMPARISON BETWEEN MSF-RS AND THE 
ORIGINAL SQUID ON CPU TIME 

Link Capacity 
Case 

2 Mbps 10 Mbps 

MSF-RS Squid 
with 10 Classes 44.8 secs 56.34 secs 

MSF-RS Squid 
with 100 Classes 46.02 secs 58.04 secs 

Original Squid 63.22 secs 84.90 secs 

TABLE 4.2. USER-PERCEIVED LATENCY COMPARISONS 

Case 
Item 

Original 
Squid MSF-RS Squid 

User-perceived 
latency 

1686.1 
ms 

1174.9 ms 
(include queuing 
time 515.5 ms) 
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the timing and ordering to release requests and the suitability of class-based for 

user-level differentiation. Based on the investigation on the three problems, we 

propose the minimum-service first request scheduling (MSF-RS) scheme to manage 

the access link bandwidth at user-side access gateway. To achieve high bandwidth 

utilization while avoiding congesting the link, the window rate control module in 

MSF-RS determines the releasing rate of requests and the number of outstanding 

responses. To perform user-based weighted fairness and bandwidth sharing, the 

minimum-service arbiter module in MSF-RS always selects the request from the class 

receiving the least normalized responses.  

The analysis proves that MSF-RS shortens 25% of the user-perceived latency on 

average, compared with an ordinary gateway, because the number of concurrent 

transmissions is controlled, even though this control may queue requests in the 

MSF-RS gateway. Besides, the existence of bounds on delay and fairness represents 

that the MSF-RS gateway does provide the differential service among classes while 

avoiding the low-class users from long latency. The results in the simulation and the 

field trial show that the bandwidth usage between classes conforms to the targeted 

ratio and the idle bandwidth is proportionally shared by all active classes. Besides, 

MSF-RS reduces 23.44% and 30% of user-perceived latency in the simulation and the 

field trial, respectively. 
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Chapter 5 

Conclusions 
This dissertation investigates and proposes fairness control schemes respectively 

to solve the public and private unfair problems which currently existing solutions 

cannot handle at the end host or at the user-side gateway. To maintain the public 

fairness in the Internet without the sacrifice of media flows on their deserved 

bandwidth, we promote that a good end-to-end rate control scheme should be 

TCP-equivalent, i.e. use the same throughput as TCP in the steady state, but as 

aggressive and responsive as TCP in the transient state. Moreover, it should be TCP 

equal-share, i.e. using bandwidth equal to TCP flows in the same bottleneck. On the 

other hand, to solve the private fairness problem which packet schedulers fail at the 

user-side gateway, this dissertation considers a solution of scheduling uplink requests 

to manage the downlink bandwidth. 

We first exhibits that a TCP friendly scheme may have desirable 

TCP-equivalence and TCP equal-share to maintain public fairness, if it takes the 

rate-based fairness strategy, the historical/super-linear aggressiveness strategy, and the 

fixed history responsiveness strategy. Because no single existing scheme 

simultaneously takes the three recommended strategies to meet the public fairness, a 

window-averaging rate control (WARC) scheme is proposed based on the above 

observation and to be deployed in the end hosts. WARC averages the rate over a 

constant number of CWNDs, leading to its two inherent advantages: fairness under 

stationary conditions and fast aggressiveness. Besides, WARC employs the 

history-reset procedure to have fast responsiveness when the available bandwidth 

drops dramatically.  

Next, we investigates the possibility of scheduling requests by using the 

class-based fair queuing discipline for the private fairness, then identify the difficulty 

on the timing and ordering determination of releasing requests and discuss the 

suitability of the class-based policy for user-level differentiation. By the investigation, 

a minimum-service first request-scheduling (MSF-RS) scheme is proposed and to be 

deployed in the user-side access gateway. MSF-RS always selects the request from the 

class receiving the least normalized responses to perform user-based weighted 

fairness and bandwidth sharing. Also, MSF-RS determines the releasing rate of 
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requests and the number of outstanding responses to achieve high bandwidth 

utilization while avoiding congesting the link. 

The analysis and simulation results demonstrate that WARC does perform better 

TCP equivalence and TCP equal-share to maintain the public fairness than other 

TCP-friendly schemes, while WARC still provides the smoother rate than all of them. 

Besides, the analysis proves that MSF-RS has bounds on delay and fairness, 

representing that MSF-RS not only provides the differential service among classes for 

the private fairness but also avoids the low-class users from long latency, which are 

also demonstrated by the simulation and field trial. Besides, MSF-RS shortens 20%~30% 

of the user-perceived latency and 25% of CPU loading on average. 
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Appendix 1  

Smoothness Level of TCP-friendly Schemes 
The appendix displays the smooth level of the schemes to reveal (1) Except 

TFRCP, other schemes do have smoother throughput than TCP (<60% of CV of TCP 

throughput.) (2) Although the smooth levels among schemes are different, such 

differences do not affect our conclusions, that is, the suitable strategies and the 

recommendation for schemes.  

 

For the non-periodic loss scenario (Chapter 2.4.1), we measure the CV of 

throughput for each scheme under different CV[T], where T means the inter-loss time. 

Fig. A1.1 plots the CV of throughput, denoted as CV[R], for each scheme, normalized 

with that of TCP.  

TFRC and TEAR provide obviously smoother behavior under a less variant 

condition (CV[T]<0.5). They postpone the rate increase until the time escaped from 

the last loss is longer enough. Such a delay-beginning mechanism thus provides them 

better smoothness feature than others when the inter-loss time is regular. IIAD, SQRT, 

and AIAD/H provide smoother throughput even when the loss condition is variant, 

but they sacrifice their deserved throughput, as shown in Fig. 2.1(b) and (c). IIAD and 

AIAD/H have the strange values as CV[T]=1, since occasionally their CWND may 

decrease to zero and then take long time to recover. TFRCP, unexpectedly, has worse 

CV[R] than TCP under the testing, resulting from its non-historical/super-linear 

Fig. A1.1. The smooth level on the throughput of each scheme, relative to that of TCP, under different 
levels of variant-losses condition 

(b) (a)  
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increasing strategy. Its normalized CV[R] is larger than one once CV[T]>0.1, and 

linearly increases to 2.2 as CV[T]=1. 
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Appendix 2 
Analysis on WARC 

Herein we describe the increase function of WARC and sequentially analyze its 

smoothness, aggressiveness and responsiveness. 

A2.1 Increase Functions 

The increase function of a scheme describes how the scheme increases its rate 

between two consecutive packet losses. The rate means the number of packets sent in 

one RTT. The increase functions of several well-known schemes, such as AIMD, 

SIMD, and AIAD, are expressed in [JGM03]. Fig. A2.1 plots the increase curve of 

TCP, GAIMD(1/5,1/8), and WARC. 

 
The increase function of WARC is calculated from that of TCP as follows. 

Assume that TCP stays at the steady state with an average rate W before the time 0, 

and then a packet loss occurs at the time 0. Because a TCP with an average rate W 

implies that its CWND increases from 2 / 3W  to 4 / 3W  and then falls back to 2 / 3W  

once after a packet loss, the CWND in the TCP at the time 0 is 2 / 3W . Next, since TCP 

increases CWND one per RTT, the average CWND in TCP between the time 0~t 

would be 2 / 3 / 2W t+ . Recall that WARC gets the new rate by averaging the CWNDs 

of TCP over the latest s RTTs. Thus, before the time s ( t s≤ ), the rate of WARC can be 

averaged with weight from the mean rate before the time 0 and between the time 0 

and t, as written by the expression 
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Fig. A2.1 The increase curves of WARC, GAIMD, and TCP 
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where w(t) represents the rate of WARC at time t (in RTTs) elapsed since the last loss 

and w(0)=W. After the time s (t>s), the rate of WARC equals to the average CWNDs 

of TCP between t and t-s, as written by the expression 

 
1 2 2( ) ( ) ( )
2 3 3
2 .
3 2

w t W t s W t

sW t

⎛ ⎞= + − + +⎜ ⎟
⎝ ⎠

= + −

 (A2.2) 

From (A2.1) and (A2.2), the increase function of WARC is expressed as 
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A2.2 Smoothness 

The skill for the following analysis is derived from [JGM03]. Assume that x 

packets are sent between two losses by a flow with the mean rate W. Then, x/W will 

be the time between two losses, denoted as T. According to the increase function of 

WARC, the mean and variance of w between two losses, E[w] and Var[w] can be 

respectively expressed as 
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and  
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Herein we take the same assumption as that in [JGM03], x is i.i.d. exponential 

distributed with a mean 2W2/3. Next, we calculate the mean of Var[w] over different 

loss probabilities as 



87 

 ( )
( )
( )

3
22

2

3
22

2

3
22

2

0

3
20

3
1 20

3
2 2

[ [ ]] [ ] ( )

[ ]

[ ]

[ ] ,

W

W

W

x

W

sW x

W

x

WsW

E Var w Var w P T dT

Var w e dx

Var w e dx

Var w e dx

∞

∞ −

−

∞ −

=

=

=

+

∫

∫

∫

∫

 (A2.6) 

where Var1[w] and Var2[w] are the two expressions shown in (A2.5), respectively. 

Finally, the smoothness of WARC can be expressed as 

 
=

+
= 1 2

[ [ ]][ ]

( , ) ( , )

E Var wCV w
W

CV s W CV s W
W

 (A2.7) 
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Instead of showing the complex calculated result of (A2.8), we plot it in Fig. 3.5 to 

display the smoothness of WARC, comparing with SIMD and GAIMD. 

A2.3 Aggressiveness 

The aggressiveness, Aggr(m), means the inverse of the time that a scheme 

increases its rate from w(0) to (0)m w×  [JGM03]. Suppose that WARC achieves the 

steady state before the time 0 and has the average rate W, i.e. w(0)=W in (A1). Next, 

assume at the time T, WARC increases the rate to m W× , i.e. ( )w T m W= × . Then, by 

solving T in (A2.1), we get Aggr(m) of WARC, expressed as 
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A2.4 Responsiveness 

The responsiveness, Resp(m), means the inverse of the number of loss events 

required by a scheme to decrease the rate with a factor of 1/m. Since the 

responsiveness of WARC would be fixed to N when the history-reset procedure is 

invoked, we analyze the responsiveness provided by the basic control of WARC, 

denoted as Respbasic(m). Assume that the inter-loss time is m T×  RTTs before the 
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time 0, and it changes to T RTTs after the time 0. Suppose that WARC has a 

steady-state rate W before the time 0, where 1.5W m T= ×  which is the mean CWND 

that a TCP or TCP-equivalent flow should have under such an inter-loss time [ZDP01]. 

Fig. A2.2 plots the CWNDs of the potential TCP flow. The first start window w1 of 

the TCP flow at the time 0 is m T× . Then, its ith start window wi can be derived as 

 
1

1 ( 1)
2i iw m T T−= − + .  

Assume the 
iw  denotes the mean CWNDs between the ith and (i+1)th losses after the 

time 0, and then it can be expressed as 
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Since the packet rate in WARC is the average of the latest s CWNDs, the packet 

rate after n losses can be represented as 
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where s is supposed larger than n*T. Next, according to the definition of 

responsiveness, 1/Respbasic(m) is the number of received losses before WARC reduces 

its rate, expressed by (A2.10), to 1.5T. That is, 1/Respbasic(m) equals to the n satisfying 

 3
2( )R n T≤ . (A2.11) 

Finally, after T in (A2.10) and (A2.11) is replaced with 2
3
W
m

, by algebra we get 

that (A2.11) is true once if 
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3 2
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≥ + .  

Fig. A2.2. The decreasing of the CWNDs and the mean CWNDs of a TCP flow when the inter-loss 
time change to T seconds after the time m T× . 
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Next, we consider under what m the history-reset procedure would be invoked. 

According to the description in Section 3.2, the HR procedure would be invoked if the 

present sending rate of WARC is larger than K times of ( )TCPR N  where 

( ) 1.5TCPR N T= in this example based on (3.4) since ( )  (1 )X j T j n− = ≤ ≤ . That is, the HR 

procedure is invoked if the following equation is true. 

 3
2( ) ( )TCPR N K R N KT> = . (A2.12)  

From (A2.12) and (A2.10) we can say that the HR procedure will be invoked if  
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Appendix 3 
Unfairness of TFRCP and TEAR 

Here we prove the unfairness of TFRCP and TEAR under non-periodic loss 

model. A scheme following RTE represents that during the whole connection, it 

repeatedly estimates the TCP throughput and adjusts the packet rate to the estimated 

throughput. The long-term throughput of such a scheme can be expressed as 

 ( )
1 1

[ ] ( ) ( ) ( )RTE
n n

E T R n L n L n
∞ ∞

= =

= ×∑ ∑ , (A3.1) 

where L(n) is the length of the nth rate-adjusting interval and R(n) is the rate used in 

this interval. 

A3.1 Unfairness of TFRCP 

The rate-adjusting interval L in TFRCP is fixed. The packet rate in the nth 

interval, Rn, is set as the mean rate a TCP flow had during the last time interval Ln-1. 

To estimate the mean rate, TFRCP calculates the TCP throughput formula [PFT98], f, 

with the measured packet loss ratio pn-1 and RTT, where pn-1 is defined as the packet 

loss ratio in the last time interval Ln-1. The measurement on RTT is the same as that 

used in TCP. 

Next, we show that in the long term the mean rate of TFRCP, E[TTFRCP], is equal 

to or larger than that of TCP, E[TTCP]. Because Ln is fixed in TFRCP, E[TTFRCP] is a 

simplified form of Eq. (A3.1), 

 1

1
[ ] lim ( ) [ ( )]TFRCP vv n

E T R n E R n
ν

→∞ =

= =∑ . (A3.2) 

where R(n) in TFRCP is got by the TCP throughput formula f , pn-1, and RTT. By 

assuming that RTT is fixed during the connection, Eq (A3.2) can be rewritten as  

 1[ ] [ ( )] [ ( )]TFRCP n nE T E f p E f p−= = . (A3.3) 

However, according to [PKT99],  
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 E[TTCP]= f (E[pn]). .  

Thus,  

 [ ] [ ( )] [ [ ]] [ ]TFRCP n n TCPE T E f p f E p E T= ≥ =   

because of the convexity6 of f (p) [VB05]. 

TFRCP seems to assume that the loss condition measured in a fixed period 

represents the steady-state loss condition. That is, it expects that pn=E[pn]. The 

expression may be false particularity when pn is varied. When the expression is false, 

the adjusted rate in TFRCP, f(pn-1), will not equal to the mean rate of TCP averaged 

over a fixed period. However, WARC really averages the rate of TCP over a fixed 

period, so it can meet fairness even under the varied pn. 

A3.2 Unfairness of TEAR 

The rate-adjusting interval L in the basic form of TEAR is the length of an epoch. 

Different from TFRCP, the rate adjusted in the present interval, R(n), is not calculated 

with the TCP throughput formula. The R(n) is averaged directly from the CWNDs of 

the TCP flow emulated at the receiver. By the emulation, TEAR gets the CWND of a 

TCP flow in each round and computes the mean CWND, W , for each epoch at the 

end of each epoch. Next, TEAR sets R(n) to a weighted average of W , that is  
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1
( ) n jj

j
R n c W −

=

=∑  (A3.4) 

where { }jc  is a series of weights with sum equal to 1.  

Because the mean window in an epoch is the weighted average of the historical 

inter-loss time, i.e. 
8

1
n i n i

i
W u L −

=

=∑ , Eq. (A3.4) can be rewritten with L directly, shown 

as 
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6 A function f (x) is convex if for any two point x1 and x2, [ ] [ ]1 1

1 2 1 22 2( ) ( ) ( )f x x f x f x+ ≤ + .  
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where { }jc is a series of production with ci and ui and
16
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i
c

=

=∑  since 
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3
2i

i
u

=

=∑ . 

Next, we show that in the long term the mean rate of TEAR, E[TTEAR], is equal 

or smaller than that of TCP. By rewriting Eq. (A3.1) with Eq. (A3.5) and assuming 

that the distribution of the inter-loss time is i.i.d., we can get 
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 (A3.6) 

According to Eq. (A3.6), we conclude that E[TTEAR] would equal to E[TTCP] only if 

2 2[ ] [ ]n nE L E L= , that is the inter-loss time is fixed, or the loss arrives periodically. 

Otherwise, E[TTEAR] will smaller than E[TTCP]. 
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