

國 立 交 通 大 學

資訊工程學系

博 士 論 文

可證明安全的公開金鑰密碼系統與通行碼驗證金鑰

交換

Provably Secure Public Key Cryptosystems and Password

Authenticated Key Exchange Protocols

研 究 生：張庭毅

指導教授：楊維邦 教授

 黃明祥 教授

中 華 民 國 九 十 五 年 十 二 月

可證明安全的公開金鑰密碼系統與通行碼驗證金鑰交換

Provably Secure Public Key Cryptosystems and Password

Authenticated Key Exchange Protocols

研 究 生：張庭毅 Student：Ting-Yi Chang

指導教授：楊維邦 博士 Advisor：Dr. Wei-Pang Yang

 黃明祥 博士 Dr. Min-Shiang Hwang

國 立 交 通 大 學

資 訊 工 程 學 系

博 士 論 文

A Dissertation Submitted to

Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

December 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年十二月

���������	
��
Æ������	

��

������ ���	�
��
Æ

���
Æ

�����������������
Æ

!"

���������	
��
Æ����������������

�����

����������ElGamal �����!" �#$�%&'

#() p*�$�+,-./0)
12�3456
127+,8&

p�9:;56
12<�ElGamal ��Hwang=>?@6
A#BC

DEElGamal-like ����F#G� �H%$�*�IJKL��	

MN@�O�P��GQRS�TUVWX�ElGamal-like ���9O

YZ IND-CPA[� \�]^�_J`Labcd�

Eefg �H%$�*hHJKL��	?@6
i�Bj�M

YZ IND-CPA#ElGamal ���i�0�k`lm(jX�YZ IND-

CCA2�DEElGamal-extended ����Ee�$O�$�noEp�

� �]^qrs�
t)uGvw#��	xy6
A#vwYz�

DE IND-CPAPAIR�ElGamal-extended ���� \�]^��RS{

|o}~�#����7���# ���JKL�

����������������6�E����Ǳ6�E���

����>����#�����vw#�����_������P

i

_��� ��vw¡�#����	¢£N@¤¥?@#�����

����BC�¦§g¨©¡�ª«¬­®���¯°ª«}±C?²

³´µ¶·`��

�	<6¸?@6
¹º#�����������;D �G��

6
»¼rs½j�¾¿GM"�À#ÁÂÃ����#|ÄÅÇ�È

BC#vw�$�Bellare-Pointcheval-Rogawayvw(jÉX9ÊËÌS

#Diffie-HellmanÍ�GÎÏ#[|Ä½jEk`lm�Ð*��	<6

¸?@6
A#ÑÒ���Ó�Ôx��ÕBC����3Ö×ØÙÓ

������

ÚÛÜ�ÝÞµ#ßà��ª«�¡��ßà$�ª«�Diffie-

HellmanÍ��ßà��ª«�¨©¡�ª«�O�áâ������

O�ãä�­®���¯°�å·�������$vw������

����k`lm�

ii

Provably Secure Public Key Cryptosystems and
Password Authenticated Key Exchange Protocols

Student: Ting-Yi Chang Advisor: Dr. Wei-Pang Yang
Dr. Min-Shiang Hwang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

In this thesis, we focus on two topics: public key cryptosystems and pass-

word authenticated key exchange protocols.

Public Key Cryptosystems. In the ElGamal cryptosystem, when the plain-

text is lager than the modulus p, it should be divided into several pieces

which are smaller than p and then each piece is applied to ElGamal cryp-

tosystem one by one. Hwang et al. proposed an ElGamal-like cryptosystem

for encrypting a large plaintext efficiently. However, we show that their

scheme is insecure against IND-CPA whether the cryptosystem is operated

in the quadratic residue modulo p or not. Moreover, the encryption and/or

decryption in their scheme have the probability to be failed.

In order to encrypt a large plaintext efficiently, we present an efficient

conversion from IND-CPA secure ElGamal encryption scheme to a IND-CCA2

secure extension of the ElGamal encryption scheme in the random oracle

model, called the ElGamal-extension cryptosystem. To demonstrate that

the ElGamal-Extension cryptosystem is secure using only two random num-

bers no matter what the length of a plaintext, a new security notation IND-

CPAPAIR is constructed. The proposed scheme is more efficient than other

iii

cryptosystems in terms of computational complexity and the amount of

data transformation.

Password Authenticated Key Exchange Protocols. A password authen-

ticated key exchange (PAKE) protocol allows two parties (a client and a

server) to establish a session key when the secret key used for authentica-

tion is a human-memorable password. We show some (PAKE) schemes are

vulnerable to the forged authenticator attacks, off-line password guessing

attacks, and do not provide perfect forward secrecy.

We present a simple PAKE protocol which was conjectured secure when

the symmetric-encryption primitive is instantiated via a mask generation

function that is the product of the message with a hash of the password. This

protocol is secure in the Ballare-Poincheval-Rogaway security model under

the assumption that the computational Diffie-Hellman problem is hard and

that the hash functions closely behaves like a random oracle. At the same

time, we propose a new protected password change (PPC) protocol. The

PPC protocol offers users the freedom of changing passwords at will.

Keywords: Adaptive chosen-ciphertext attack, authentication, chosen-plaintext at-

tack, Diffie-Hellman problem, chosen-ciphertext attack, forged authenticator attack,

indistinguishable, key exchange, non-malleability, off-line password guessing at-

tack, one-wayness, password, provably secure, public key cryptosystem, random

oracle.

iv

���

��4æ¶ç³0�"èéêë�#�ìNaíîïðñíî}ò$ó

íî�O�Gôõ�öE>÷øù��;ús#ûüNa�ýþ���

ìNaíî#ÿ�X��úse\�p��ôõ�?²�������

3úsh�¶ç	4úì}úg�ôõ#
o}BC�9�ús�ú#

]^��êg�
��È�·�ìÆ�b���.#êë�

êë����ï�0íî¬��0íî¬�%�íî¬���¬�

y�íî}�� íî;&���O!Ní}?²����#����

È��"êë�

�#��"èéêë�$%¬&&�êë'>�(#)*�+,�

3�h�-¶#³0ú./3�4æ01&�#ôõ��È0Ç��#

'>23�

I would like to thank Dr. Wei-Pang Yang and Dr. Min-Shiang Hwang,

my supervisors, for their many suggestions and constant support during

this research.

In addition, I wish to thank the following: Professor C. C. Yang, Pro-

fessor T. C. Wu, Professor D. J. Guan, Professor G. Horng, Professor Y. S.

Yeh and Professor S. M. Yuan. They gave me many suggestions that make a

better perspective on my own results.

Of course, I am grateful to my mom and sister for their patience and love.

Without them this work would never have come into existence (literally). In

particular, my wife keep my family will, it makes me more concentrate my

mind in this research.

45�A6 789

Hsinchu, Taiwan Ting-Yi Chang

December, 2006

v

Contents

Abstract in Chinese i

Abstract in English iii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Cryptographic Schemes and Their Security 1

1.1.2 Scope of This Thesis . 6

1.2 Overview of Chapters . 7

1.2.1 Chapter 2: Background 7

1.2.2 Chapter 3: Security Analysis of ElGamal-Like Cryp-

tosystem . 8

1.2.3 Chapter 4: An ElGamal-Extension Cryptosystem . . . 9

1.2.4 Chapter 5: Password Authenticated Key Exchange Pro-

tocols . 9

1.2.5 Chapter 6: Simple Password Authenticated Key Ex-

change and Protected Password Change Protocols . . . 10

1.2.6 Chapter 7: Conclusions 10

2 Background 11

2.1 Introduction . 11

2.1.1 Public Key Cryptosystems 12

2.1.2 RSA Cryptosystem . 14

vi

2.1.3 ElGamal Cryptosystm 15

2.2 Computational Primitives . 16

2.3 Security Notations . 17

2.4 The Random Oracle Model . 24

2.5 Plaintext Awareness . 25

2.6 Related Work . 27

2.7 Definitions and Security Models 30

3 Security Analysis of ElGamal-Like Cryptosystem 37

3.1 Review of ElGamal Cryptosystem 37

3.2 Security Analysis . 38

3.3 Review of ElGamal-Like Cryptosystem 41

3.4 Security Analysis . 44

4 An ElGamal-Extension Cryptosystem 50

4.1 ElGamal-Extension Cryptosystem 50

4.2 Security Analysis . 53

4.3 Performance Analysis . 71

4.4 Discussions . 75

5 Password Authenticated Key Exchange Protocols 76

5.1 Introduction . 76

5.2 Related Work . 79

5.3 The Security Model . 83

5.4 Attacks on Some Password Authenticated Key Exchange Pro-

tocols . 88

6 Simple Password Authenticated Key Exchange and Protected Pass-
word Change Protocols 98

6.1 Password Authenticated Key Exchange Protocol 98

6.2 Protected Password Change Protocol 100

vii

6.3 Security Analysis . 102

7 Conclusions 121

7.1 Conclusions . 121

viii

List of Figures

1.1 Reduction approach . 3

2.1 Encryption and decryption in a public key cryptosystem . . . 13

2.2 Relations among GOAL-ATK . 21

2.3 A concept of IND-CCA2, C: cryptosystem, K: key generation

algorithm, Epk: encryption algorithm, Dsk: decryption algo-

rithm, A: adversary, B: flips a coin 23

2.4 A concept of PA, B: adversary, PE : plaintext extractor 27

6.1 An execution of the protocol PAKE 100

6.2 An execution of the protocol SPC 101

6.3 Specification of protocol initialization 103

6.4 Specification of protocol PAKE 104

6.5 Specification of protocol PPC 105

6.6 Simulation of the hash functions G,Hi 110

6.7 Simulation of protocol PAKE (1) 111

6.8 Simulation of protocol PAKE (2) 112

6.9 Simulation of the hash functions H′i 113

ix

List of Tables

2.1 Assumptions and security notations of some related schemes 29

4.1 Computational complexity, ciphertext size among three en-

cryption schemes . 74

5.1 Summary of related schemes in PAKE 82

x

Chapter 1

Introduction

1.1 Motivation

1.1.1 Cryptographic Schemes and Their Security

Numerous cryptographic schemes have been proposed to meet various de-

sirable security and performance requirements. It is very important to de-

sign robust and versatile cryptographic schemes which can serve as sound

security primitives. However, many schemes were subsequently found to

be flawed, and were then either modified to withstand the new attacks or

totally abandoned. The designers do all they can to think a lot of attacks

and fight for those attacks one by one. Baek [6] gives a good example is that

Bleichenbacher’s attack [17] on the RSA [69] encryption standard PKCS #1

which was implemented in the widely-used Secure Socket Layer (SSL) pro-

tocol. It seems the attacked PKCS #1 had been constructed through intuitive

heuristics rather than a rigorous analysis. Via that intuitive heuristics analy-

sis, we call those schemes are attack-response secure. Consequently, Bleichen-

1

bacher’s attack suggests that the heuristic approach to design cryptographic

schemes can be risky and the security of cryptographic schemes should be

evaluated very carefully before they are deployed.

How do we know that a cryptographic scheme be secure? A sound ap-

proach to evaluating the security of cryptographic schemes or protocols al-

ready exists. This approach is called “provable security” and stems from

Goldwasser and Micali’s [35] pioneering work on public key encryption

schemes that hides all partial information about plaintext. According to

Stinson [79], the provable security approach can be described as follows:

“This approach is to provide evidence of security by reducing the
security of the cryptosystem to some well-studied problem that
is thought to be difficult. For example, it may be able to prove a
statement of the type ‘a given cryptosystem is secure if a given
integer N cannot be factored.’ Cryptosystems of this type are
sometimes called provably secure.”

A reductionist approach to evaluate the security of cryptographic schemes

is popular. One shows with mathematical rigor that any attacker that can

break the cryptographic scheme can be transformed into an efficient algo-

rithm to solve the underlying well-studied problem, e.g., integer factoriza-

tion problem, discrete logarithm problem, that is widely believed to be very

hard. We call such assumption is the existence primitive cryptographic as-

sumptions. Are those assumptions are correct? The answer will give at least

until the famous P ?
=NP question is resolved. Unfortunately, the current

state of the art in the theory of computational complexity is such that one

cannot hope to prove the truth of these computational hardness assump-

tions [33].

2

Turning this logic around: Via the reduction, we have constructed an algo-

rithm that solves the underlying well-studied problem. However, we know

that the problem is difficult. We give an concept in Figure 1.1 as follows.

n = p · q �

Algorithm A1 :
1. · · · ;
2. Call Algorithm A2;
3. · · · ;

�p, q

Figure 1.1: Reduction approach

Algorithm A1: an algorithm for solving integer factorization problem,

Algorithm A2: an algorithm for braking cryptographic scheme.

A security proof in this style, in addition to the name reduction to contradic-

tion, is also called a reduction proof. Via that analysis, we call the scheme

is provably secure in the standard model [35, 79]. We give the notation in the

theory of computational complexity [56] as follows. A ≤p B: problem A is

reducible to B in a polynomial-time if (1) Given an instance IA of A we can

construct an instance IB of B such that the solution B(IB) can be converted

into the solution A(IA), and (2) Both the construction of the instance and the

conversion of the solutions can be done in polynomial time.

If A ≤p B, then problem A is no harder to solve than B. If A ≤p B and

B ≤p A, two problems are equal, denoted as A ≡p B. Back to the crypto-

graphic schemes, the notation in the theory of computational complexity is

as follows.

[Theorem]

3

primitive cryptographic assumptions ≤p breaking cryptographic scheme

[Proof]

If there is an algorithm A2 can break the cryptographic scheme, then we can con-

struct an algorithm A1 to break (solve) the primitive cryptographic assumption

(hardness problem).

To design a cryptographic scheme and prove it secure in this way is no easy

task, especially if one wants to have a practical cryptographic scheme. The

provable security approach was beginning to be applied to the analysis of

practical schemes, it was found that a major stumbling block to providing

security proofs for these schemes involved the modelling of one-way crypto-

graphic hash functions. Such functions were used in many schemes, i.e. for

the purpose of collision-resistant compression (hashing) of information be-

fore the application of a digital signature, for producing authentication, for

checking validity of chiphertexts, and other cryptographic values without

leaking information on the secret hashed value via the hash function out-

put. To make this task more manageable, an ideal hash function [12] named

random oracle is proposed. It is a powerful and imaginary function, which

is deterministic and efficient and has uniform output values. This result of

this approach is a reduction proof in the above sense, but the proof is only

valid in a parallel universe where random oracle exists. We call the scheme via

the above analysis is provably secure in the random oracle model.

[Theorem]

primitive cryptographic assumptions ∧ random oracle

≤p breaking cryptographic scheme

4

[Proof]

If there is an algorithm A2 can break the cryptographic scheme in the random or-

acle model, then we can construct an algorithm A1 to break (solve) the primitive

cryptographic assumption (hardness problem).

The existence of random oracle is not a hardness assumption like integer fac-

torization problem. In the real word, random oracles are replaced by hash

functions (or pseudo-random functions) using in schemes which are prov-

ably secure in the random oracle model. However, an random oracle model-

based technique for security proof is a useful test-bed and often gives a bet-

ter performance [7]; cryptographic schemes which do not perform well on

the test-bed should be dumped.

The following are two important properties for reduction to contradiction [55].

• The reduction should be efficient (in a polynomial-time). For example,

an algorithm A2 breaking the cryptographic scheme in 10−6 seconds

and the reduction is required 23 of the security parameter 1024-bit to

construct an algorithm A1 solving the hard problem. Then the time

complexity for the reduction is at the level of 10248 = 280. The time

complexity of A1 for solving the hard problem is 38 billion years.

• The assumptions which are required for a cryptographic scheme should

be as weak as possible. Weaker assumptions are easier to satisfy using

more practical and available cryptographic constructions, which pro-

vide a higher security confidence than those using stronger assump-

tions.

Since Goldwasser and Micali’s work, there have been a number of research

5

works taking this approach and it has become a paradigm of cryptographic

research. As a consequence, and possibly affected by the negative results on

the security of the past cryptographic standards, e.g, [1], [40], and [17], to-

day’s standard organizations such as ISO-IEC [73], P1363 [63], and NESSIE

[29] strongly recommend that a precise security analysis based on the prov-

able security approach should be included in a proposal of new crypto-

graphic schemes or protocols.

1.1.2 Scope of This Thesis

We have discuss the provable security approach above. It is not only im-

portant to analyze the security of a designed cryptographic scheme but also

helps to design new ones, with high level of security guarantee. In this the-

sis, we aim at two cryptographic schemes: public key cryptosystems and

password authenticated key exchange protocols.

PART I: Public Key Cryptosystem

1. We show that the ElGamal-like cryptosystem [44] for encrypting large

messages is insecure, which is attack-response secure. However, their

motivation is good, since the ElGamal cryptosystem [28] encrypts large

messages is inefficient.

2. In order to encrypt a large message efficiently in the ElGamal cryp-

tosystem, we propose a new cryptosystem, called ElGamal-extension

and prove its security in the random oracle model.

PART II: Password Authenticated Key Exchange Protocol

6

1. Many password authenticated key exchange PAKE protocols are pro-

posed. Most of them belong to attack-response secure. We show that

Tseng [81], Ku and Wang [49], Tseng, Jan and Chien [82], Hwang and

Yeh [43] schemes are insecure.

2. We present a simple PAKE protocol which was conjectured secure when

the symmetric-encryption primitive is instantiated via a mask genera-

tion function that is the product of the message with a hash of the pass-

word. This protocol is secure in the Ballare-Poincheval-Rogaway se-

curity model [10] under the assumption that the computational Diffie-

Hellman problem is hard and that the hash functions closely behaves

like a random oracle. At the same time, we propose a new protected

password change (PPC) protocol. The PPC protocol offers users the

freedom of changing passwords at will.

1.2 Overview of Chapters

1.2.1 Chapter 2: Background

In Chapter 2, we survey the background theory on which the subject matter

of the rest of the public key cryptosystem is based. First, we review the basic

of public key cryptosystem and some computational primitives such as inte-

ger factorization, discrete logarithm, various Diffie-Hellman problems. We

then study the important security notations for public key cryptosystems

by using the pair GOAL={OW, IND, CPA} and ATK={CPA, CCA1, CCA2}

[8]. We then study the random oracle model [12], which is somewhat con-

7

troversial but is an important ingredient of the practice-oriented probable

security paradigm in which one can design efficient probably-secure cryp-

tographic schemes [7]. A special security notation PA is introduced, which is

proposed in the random oracle model. PA has some properties, for example,

a cryptosystem meets PA and IND-CPA implies it meets IND-CCA2.

1.2.2 Chapter 3: Security Analysis of ElGamal-Like Cryp-

tosystem

In Chapter 3, we first give a brief review of the famous ElGamal cryptosys-

tem [28]. It has been proven to meet IND-CPA in the quadratic residue under

the Diffie-Hellman assumption [83]. In order to state our results clearly and

precisely in breaking the the ElGamal cryptosystem [44] in Section 3.3. We

first show that the ElGamal cryptosystem is insecure in the IND-CPA sense

if the operations are not in the quadratic residue in Section 3.2. In order to

efficiently encrypt a large message in the ElGamal cryptosystem, Hwang,

Chang, and Hwang [44] proposed an ElGamal-like cryptosytem and de-

clare that their scheme is secure in chosen-plaintext attacks. However, In

Section 3.4, we separately show that the ElGmal-like cryptosystem is inse-

cure in the IND-CPA sense no matter in the quadratic residue and not in the

quadratic residue.

8

1.2.3 Chapter 4: An ElGamal-Extension Cryptosystem

In Chapter 4, we propose a new ElGmal-extension cryptosystem and prove

it is secure in the IND-CCA2 sense in the random oracle model, which has

the following advantages:

• It is only necessary to generate two random numbers. The total num-

ber of modular exponentiations is 4/2 in the encryption/decryption,

which is not be increased by the number of plaintexts. Only some low

computational complexity operations such as random function opera-

tions and modular multiplications are needed.

• The size of ciphtertext is smaller when the plaintext is large enough.

• It is secure in the IND-CCA2 sense, which provides a higher secu-

rity level than that of IND-CPA achieved by the ElGamal encryption

scheme.

We then design a special security notation IND-CPAPAIR and show the pro-

posed scheme can achieve it. Then, we compare the computational com-

plexity and ciphertext size of our scheme with those of some cryptosystems,

which achieve the same security level IND-CCA2.

1.2.4 Chapter 5: Password Authenticated Key Exchange Pro-

tocols

In Chapter 5, we survey the background theory on which the subject mat-

ter of the rest of the password authenticated key exchange protocol is based.

9

We study the important security model [10] proposed by Bellare, Pointcheval,

and Rogaway for password authenticated key exchange protocols, which

defines the adversary’s capabilities such as passive attacks, active attacks,

known-key attacks, password guessing attacks, etc. and the goals such as

mutual authentication, authenticated key exchange semantic security.

we show that Tseng [81], Ku and Wang [49], Tseng, Jan and Chien [82],

Hwang and Yeh [43] password authenticated key exchange protocols are

insecure.

1.2.5 Chapter 6: Simple Password Authenticated Key Ex-

change and Protected Password Change Protocols

In Section 5.4, we shall present a simple password authenticated key ex-

change protocol by modifying the Yeh-Sun scheme [85]. At the same time,

we shall also present a new protected password change protocol which un-

like the previously proposed schemes [47, 49, 53, 70, 81, 85] where the parties

cannot arbitrarily change their own passwords, offers users the freedom of

changing passwords at will.

1.2.6 Chapter 7: Conclusions

Finally, the concluding remarks of this thesis will be made in Chapter 6.

10

Chapter 2

Background

2.1 Introduction

Cryptosystems are classified as symmertic cryptosystems and asymmertic

(public key) cryptosystems. In symmertic cryptosystems, , such as DES [76]

and Rijndael [23, 24, 25], use the common secret key to encrypt plaintext

and to decrypt ciphertext. This brings two difficulties as follows.

• To privately distribute the secret keys.

• To management a large number of secret keys. For example, if there

are n users who want exchange confident data, then
n(n− 1)

2
secret

keys are needed. This number increases rapidly as the number of user

grows.

In public key (asymmertic) cryptosystems, each user creates a pair of keys,

one of which is published in a public directory while the one is to be kept

secret. The publicized key, referred to as public key, is used as encryption key,

11

but the secret key, referred to as private (secret) key, is used as decryption key.

As a result, there is no key distribution problem and key sharing problem

as in symmertic key cryptosystem. However, it is time consuming when

encrypting large messages with asymmertic cryptosystems.

In this chapter, we first give an overview of public key cryptosystems and

its security notations in an informal way in and the following sections give

the definitions will be revisited in a formal way.

2.1.1 Public Key Cryptosystems

Here, we see that how to run public key cryptosystems, which are often

divided into three phases as follows.

- Key generation phase:

The receiver Bob creates his secret key skB and public key pkB.

- Encryption phase:

Anyone who wants to encrypt a confident message (plaintext x) to Bob

by using pkB .

- Decryption phase:

Upon receiving the corresponding ciphertext y, Bob uses her skB to

recover the plaintext x.

Figure 2.1 illustrates a schematic outline of a public key cryptosystem.

To reveal Bob’s secret key skB from the public key pkB is difficult. This

property is guaranteed by the trapdoor one-way function as follows [55]:

12

Bpk Bsk

x
y

x

Figure 2.1: Encryption and decryption in a public key cryptosystem

Trapdoor one-way function ft(x) : X → Y : It is easy to compute ft(x) for

all x ∈ X but difficult to invert for almost all values in Y . If the trapdoor

information t is used, then for all values y ∈ Y are easy to compute x ∈ X

such that y = ft(x).

Diffie and Hellman [27] constructed a trapdoor one-way function based

on modulo exponentiation. This function made it possible for distribut-

ing a common session key to be shared between two users to establish a

secret communication over an channel. This protocol is the famous “Diffie-

Hellman key agreement protocol”. However, the first practical realization

of public cryptosystem was accomplished by Revist, Shamir, and Adleman,

called RSA cryptosystem [69]. Later, ElGamal [28] constructed a new public

key cryptosystem based on Diffie-Hellman trapdoor one-way function.

Two typical primitives of the trapdoor one-way function are RSA [69] and

ElGamal [28] as described before. The difference between ElGamal function

and RSA function is that probabilistic, rather than deterministic. In a proba-

bilistic trapdoor one-way function, when encrypting a plaintext x twice, the

probability that we regain the same ciphertext y must be negligibly small.

In Section 2.1.2 and Section 2.1.3, we review RSA cryptoystem and ElGamal

cryptosystem, respectively.

13

2.1.2 RSA Cryptosystem

- Key generation phase:

The receiver Bob creates his secret key skB and public key pkB as fol-

lows.

1. Choose two large distinct primes p and q, and compute N = p · q

2. Choose e that is prime to ϕ(N) and pkB = (N, e), where ϕ(N) =

(p− 1) · (q − 1).

3. Choose d with e · d = 1 mod ϕ(N) and skB = (N, d).

- Encryption phase:

Anyone who wants to encrypt a plaintext x < N to Bob by using pkB

as follow.

y = xe mod N.

- Decryption phase:

Upon receiving the corresponding ciphertext y, Bob uses his skB to

recover the plaintext x as follows.

yd = (xe)d mod N

= x mod N.

The factorization of N can be reduced to an algorithm that computes d from

(N, e). However, there is an open question as to whether an efficient algo-

rithm for factoring can be derived from an efficient algorithm with inputs

(N, e) and y to invert RSA [26]. Note that d should be greater than n1/4; oth-

erwise, a polynomial-time algorithms to compute d can be constructed [84].

For choosing large prime, the readers can refer to [39] for more details.

14

2.1.3 ElGamal Cryptosystm

- Key generation phase:

The receiver Bob creates his secret key skB and public key pkB.

1. Choose a large prime p and a primitive root g ∈ Z∗p.

2. Choose an integer s at random with range 1 ≤ s ≤ p − 2 and

skB = (p, g, s).

3. Compute Y = gs mod p and pkB = (p, g, Y).

- Encryption phase:

Anyone who wants to encrypt a plaintext x to Bob by using pkB .

y = (y1, y2) = (gr mod p, x · Y r mod p),

where r is chosen at random with range 1 ≤ k ≤ p− 2.

- Decryption phase:

Upon receiving the corresponding ciphertext y, Bob uses his skB to

recover the plaintext x.

y2 · ((y1)
s)−1 = (x · Y r) · ((gr)s)−1 mod p

= x mod p.

The ElGamal cryptosystem has been proposed several years ago and is one

of the few probability encryption schemes. Until 1998, Tsiounis and Yung

[83] proved the security of the ElGamal cryptosystem (operations in the

quadratic residue) is actually equivalent to the decision Diffie-Hellman prob-

lem. However, we will further analysis the security for ElGamal cryptosys-

tem when operations are not in the quadratic residue in Chapter 3.

15

2.2 Computational Primitives

The secure core of a public key cryptosystem is relied on the hardness of

a certain computational problem. Though various computational problems

have been proposed so far, we only review the integer factorization and dis-

crete logarithm problems, which are the most widely-used computational

problems in the conventional cryptographic schemes.

Integer Factorization (IF) Problem: Given N = p · q where p and q are large

primes, find p and q.

Many public key cryptosystems based on IF-related problems are proposed,

which are RSA [69], Robin [67], Okamoto-Uchiyama [62], Pointcheval [66],

Paillier [64], etc.

There are several computational problems related the discrete logarithm

problem as follows.

Discrete Logarithm (DL) Problem: Given a finite cyclic G={ g1, g2, . . . , gp−1}

where g be a generator of G and p = |G| is the order of G, and a random

element r ∈ G, find the unique integer i ∈ Zp such that r = gi.

Computational Diffie-Hellman (CDH) problem: given a finite cyclic G={

g1, g2, . . . , gp−1} where where g be a generator of G and p = |G| is the prime

order of G, and ga, gb ∈ G for random integers a, b ∈ Zp, compute gab ∈ G.

Decisional Diffie-Hellman (DDH) problem: given a finite cyclic G={ g1, g2,

. . . , gp−1} where where g be a generator of G and p = |G| is the prime order

of G, and ga, gb, gc ∈ G for random integers a, b, c ∈ Zp, decide c = a · b ∈ Zp.

16

Relative to a fixed group G and generator g for G, it is obvious polynomial-

time reductions from the DDH problem to CDH problem, and from CDH

problem to DL problem (if one can solve the DL problem then he can solve

the CDH problem, and if one can solve the CDH problem then he can solve

the DDH problem),

DDH problem ≤p CDH problem ≤p DL problem

but reductions in the reverse direction are not know. In other words, if DDH

problem is hard then CDH problem is hard? and if CDH problem is hard

then DL problem is hard?

DL problem ≤p CDH problem ≤p DDH problem?

All three problems are widely conjectured to be hard, and have been used as

assumptions in proving the security of a variety of cryptographic schemes.

See [18, 19, 57] for more detailed on this issue. Shoup [71] gives a heuristic

evidence for the hardness of all there problem in a certain model, structured

model of computation.

2.3 Security Notations

As discussed in Chapter 1, provable security evaluates the security of a

given cryptographic scheme by presenting a reduction between the prop-

erly defined security notation for the scheme and the underlying primi-

tive which is known to be secure. When an exact definition of security

17

was not known at the time, Rabin [67], nevertheless, has given a scheme

where an eavesdropper’s ability to exact the complete plaintext when given

a ciphertext is computationally equivalent to factoring. This was the first

scheme in which security problem was reduced to some complexity as-

sumption. This presented a methodology of reducing the security property

to a well-defined complexity assumption which, in the absence of lower

bound proofs, has become the major one in cryptography.

Previously, what we have to face is that a passive attacker could break a

cryptosystem only in the all-or-nothing (one-wayness) sense. However, this

security notation which only deals with the case of passive attackers is not

strong enough. On the contrary, the attacker maybe more active rather than

passive; that is, she has more powerful capabilities to modify a ciphertext

or to calculate a plaintext in some unspecified ways. In many applications,

plaintexts may contain information which can be guessed easily such as in

a BUY/SELL instruction to a stock broker. The attack only need to know

a character (bit) of BUY/SELL instruction without decrypting the whole

plaintext BUY/SELL instruction. He has the ability to determine what in-

struction is sent by the victim.

For example, recall the RSA cryptosystem described in Section 2.1.1. As-

sume that one encrypts his instruction x to a stock using the stock’s public

key pk = (N, e) as follows.

y = xe mod N.

It seems a safe bet that if an eavesdropper sees a ciphertext y corresponding

to a random plaintext x, then it will impossible for that eavesdropper to fig-

ure out what x is. But when the plaintext is not random such as BUY/SELL

18

instruction in this example, the eavesdropper can easily to check what the

corresponding plaintext is as follows.{
(BUY)e mod N

?
= y,

(SELL)e mod N
?
= y.

Since the RSA encryption is deterministic, the eavesdropper only encrypts

the guessed plaintexts BUY/SELL and then checks its ciphertext is equal to

his interception.

For the same situation, what happens in the ElGamal cryptosystem in Sec-

tion 2.1.2? Note that there is a random integer r in the encryption phase

and this results in the ciphertext is different for the same plaintext. Obvi-

ously, the ElGamal cryptosytem can withstand the above attack. In many

applications of cryptosystems, it is often the case that user is required, upon

receipt of a challenge message, to perform a decryption operation using her

private key and send the decryption result back. If we give the power that

the adversary can arbitrarily generate the ciphertexts and obtain the corre-

sponding plaintexts. We can see the ElGamal cryptosystem cannot with-

stand the adversary with this power. For example, the adversary intercepts

the ciphertext y = (y1, y2) = (gr mod p, (BUY) · Y r mod p), which encrypts

the message BUY. How can the adversary know the plaintext is BUY? He

can generate a ciphertext as follows:

y′ = (y1, y2/2)

= (gr mod p, ((BUY) · Y r mod p)/2)

Then, he obtains the plaintext BUY/2 and it multiplied by 2. Obviously, the

corresponding plaintext to the intercepted ciphertext is BUY.

19

To capture the powerful attackers, the stronger security notations are nec-

essary and have been proposed. Bellare et al. [8] uses the pair goal (GOAL)

and adversary models (ATK) to define the security notations of public key

cryptosystems and describe the relations among them.

The goals GOAL={OW, IND, NM} are defined as follows.

One-wayness (OW): given the challenge ciphertext y, the adversary has no

ability to decrypt y to obtain the whole plaintext x.

Indistinguishability (IND): given the challenge ciphertext y, the adversary has

no ability to obtain any information about the plaintext x.

Non-malleability (NM): given the challenge ciphertext y, the adversary has no

ability to decrypt y to get a different ciphertext y′ and output a meaningful

relation to relate the corresponding plaintexts x and x′.

The adversary models ATK={CPA, CCA1, CCA2} are defined as follows.

Chosen-Plaintext Attack (CPA) [35]: the adversary is only given the public

key and she can obtain any ciphertext from any plaintext chosen by her. In

the public key cryptosystems, this attack cannot be avoided. It is considered

as a basic requirement for most provably secure public key cryptosystems.

Chosen-Ciphertext Attack (CCA1) [59]: not only given the public key, but also

the adversary has to access a decryption oracle before being given the chal-

lenge ciphertext. It has also been called a lunch-time or midnight attack.

Adaptive Chosen-Ciphertext Attack (CCA2) [68]: The adversary queries the de-

cryption before and after being challenged; her only restriction here is that

she may not feed the decryption oracle with the challenge ciphertext itself.

It has also been called a small-hours attack.

The following [8, 31] are the relations among those GOAL-ATK, shown in

20

Figure 2.2

NM-CPA ←− NM-CCA1
←−

NM-CCA1�−→↓ �↘ �↖ ↓ ↓ ↑
IND-CPA ←− IND-CCA1 ←− IND-CCA2
↓ ↓ ↓

OW-CPA ←− OW-CCA1 ←− OW-CCA2

Figure 2.2: Relations among GOAL-ATK

For A, B∈GOAL-ATK, “A→B” denotes A implies B, which means if a cryp-

tosystem is secure in the sense of A, it is also secure in the sense of B. “A�→B”

denotes A doesn’t imply B, which means if a cryptosystem is secure in the

sense of A, it is not always secure in the sense of B.

Bellare [7] explains precisely how to achieve provable security, which are

summarized in the following steps.

Step 1. Set up a GOAL, e.g. confidentiality via encryption;

Step 2. Construct a ATK and define what it means for a cryptographic scheme

be secure;

Step 3. Show by a reduction that the only way to break the security notation

GOAL-ATK of cryptographic schemes is to solve computationally hard

problems or break other primitives.

primitive cryptographic assumptions ≤p the proposed cryptosystem

is secure in the GOAL-ATK sense

Actually, setting up security goals and constructing relevant attack mod-

els, in other words, formulating right definitions for the security of crypto-

graphic schemes is important by itself. In the following, we survey some

21

important notations widely used in public key cryptography. We begin by

describing the IND-ATK scenario, which is usually described in terms of the

following game.

Stage 1. The public key pk and secure key sk is generated in the key genera-

tion algorithm with inputting a security parameter κ. The adversary

obtains pk but not sk.

Stage 2. The adversary makes a number of arbitrary queries to a decryption

oracle. Each query is a ciphertext that is decrypted by the decryption

oracle, making use of sk of the cryptosytem. The corresponding plain-

text is given to the adversary. The adversary is free to construct the ci-

phertexts in an arbitrary way without using the encryption algorithm.

Stage 3. The adversary arbitrarily chooses two plaintexts x0 and x1 with the

same length |x0| = |x1| and gives these to an encryption oracle. Upon

receiving x0, x1, the encryption oracle chooses a coin b ∈ {0, 1} at ran-

dom, encrypt xb and give the resulting “challenge” ciphertext y to the

adversary.

Stage 4. The adversary continues to submit ciphertexts to the decryption ora-

cle, subject to the restriction that the submitted ciphertexts are not the

same as the challenge ciphertext y.

Stage 5. The adversary outputs b′ ∈ {0, 1}, representing its “guess” of b.

- If Stage 2 and Stage 4 are omitted from the above, then ATK=CPA;

- If Stage 2 is omitted from the above, then ATK=CCA1;

- If no stage is omitted from the above, then ATK=CCA2.

22

The adversary’s advantage in this attack scenario is defined to be

|Pr[b′ = b]− 1

2
|

A cryptosystem is defined to be secure in the IND-ATK sense if for any ad-

versary, its advantage is negligible. A concept of IND-CCA2 is present in

Figure 2.3 and an exact definition is in Section 2.7.

C
A Dsk

�

κ

�
b = b′?

K

B

Epk

�κ
�
pk, sk

�pk

�
x0, x1

�
b

�xb
�

y
�y

�
b′

�y
�

...
�

�
x

�y
�

...
�

�
x

Figure 2.3: A concept of IND-CCA2, C: cryptosystem, K: key generation

algorithm, Epk: encryption algorithm, Dsk: decryption algorithm, A: adver-

sary, B: flips a coin

Recently, Phan and Pointcheval [65] defined different levels for indistin-

guishability and non-malleability, and it leads to a stricter and more com-

plex hierarchy for security notations in the public key cryptosystem. That is,

an adversary can ask at most i queries before receiving the challenge and at

most j queries after receiving the challenge, denotes as (i, j)-level IND/NM.

23

2.4 The Random Oracle Model

After formulating security notations, we shall show give the reduction from

GOAL-ATK to the proposed cryptosystem. However, this is not always easy

unless hash functions used in the construction of cryptosystem are assumed

to behave as completely random functions. In order to introduce the ran-

dom oracle model, we first recall the definitions of collision resistant hash

functions and universal one-way hash function [79].

Collision Resistant Hash Functions. The definition of a collision resistant

hash function is as follows. We say H is (t, ε)-collision resistant if for any

algorithm A running in time at most t we have:

Pr[(x, y)← A : H(x) = H(y) ∧ x �= y] ≤ ε.

That is, the algorithmA outputs two distinct values x and y such thatH(x) =

H(y) with at most ε.

Universal One-Way Functions. A different from the collision resistant hash

functions is that [58], the algorithm does not get to choose both x and y in-

stead, the algorithm is given a random value x and must find a different

value y such that H(x) = H(y). Let H : {0, 1}m → {0, 1}n be a hash func-

tion, we say this function is (t, ε)-universal one-way if for all algorithms A

running in time t we have:

Pr[x← {0, 1}m; y ← A(x) : H(x) = H(y) ∧ x �= y] ≤ ε.

This makes the adversary’s job harder, meaning that the universal one-way

functions are weaker than the collision-resistant hash functions. The uni-

24

versal one-way function families are also called target collision resistant.

See [15] for recent results and further discussion.

Random Oracle Model. The random oracle model was first appeared in

[30] and popularized by Bellare and Rogaway [12], gives a mathematical

model if such ideal hash functions. In this model, a hash function H is a

map from {0, 1}a to {0, 1}b for some special values a and b. Security proofs

in this model treat the hash functions as oracles, that is, one can only query

oracles to get the hash results. For each new query, the oracles respond by

producing a truly random value. That is, for x ∈ {0, 1}a and y ∈ {0, 1}b, we

have the probability Pr[H(x) = y] =
1

|y| . For repeated queries, the oracles

respond the corresponding answer again.

However, a problem of the random oracle is that the behavior of the ran-

dom oracles is so ideal so that no realization is possible. In the real world

for implementation, one can do is to replace the random oracles by the con-

ventional hash functions such as SHA-2 [61].

2.5 Plaintext Awareness

In the random oracle model, there is a special notation “plaintext awareness

(PA)”, that was suggested in [12] (calls it PA-BR) and later enhanced in [8]

(calls it PA-BDPR). The idea is that an adversary has no ability to create

a ciphertext y without knowing its underlying plaintext x. To capture PA-

BDPR, we give a scenario as follows. Let B be an adversary and PE be the

plaintext (knowledge) exactor.

25

Stage 1. B is given a public key pk, access to the random oracle H, and an en-

cryption oracle EHpk with pk and its random oracle access. B outputs

a ciphertext y, where y is not in the results of receiving answers by

querying EHpk.

Stage 2. PE could output the corresponding plaintext x (equal to DHsk’s output)

just by looking at pk, B’s H-queries and the answers to them, and the

answers to B’s queries to EHpk.

The existence of PE is, intuitively, what it means for the encryption scheme

to be plaintext awareness. Obviously, B can do whatever PE was doing

since, undenyable, she has access to the same things which PE does. Doing

this, B would know the cleartext for any ciphertext she produces. The dif-

ferent between PA-BDPR and PA-BR is that PA-BR does not provide EHpk to

B. This resists the ability of the adversary to obtain ciphertexts via eaves-

dropping on communications made to the receiver. We refer PA-BDPR as

PA. A concept of PA is present in Figure 2.4 and an exact definition is in

Section 2.7.

The following results are proven [8].

Proposition 1. PA-BR∧IND-CPA→IND-CCA1 in the random oracle model.

Proposition 2. PA∧IND-CPA→IND-CCA2 in the random oracle model.

Indeed, PA is designed for the random oracle model. We can see that if a

scheme does not use the random oracle for which an exactor as above exists

then the exactor is essentially a decryption box. [8] leaves an open question

to find an analogous but achievable formulation of plaintext awareness for

the standard model.

26

K

B

PE

DHsk

EHpk

H

�
κ

�

pkx1, . . . , xqE

C = {y1, . . . , yqE
}

�� ... ��

�ΛH, C, pk

ΛH �� ... ��
�

y

�
y �∈ C

�
x

�
x

?
=

Figure 2.4: A concept of PA, B: adversary, PE : plaintext extractor

Herzog et al. [41] first proposed a PA without the random oracle model via

the key registration. Later, Bellare and Palacio [9] removed the burden of

key registration. The readers can refer [9, 41] for more details.

2.6 Related Work

Many various public key cryptosystems [64, 66, 74] have been proposed,

which aim at to be secure in the stronger notations. The general method-

ology for formally provable security is to reduce an alleged attack on an

encryption scheme to a solution of an intractable problem.

Tsiouns and Yung [83] showed that the IND-CPA of the ElGamal cryptosys-

27

tem operated in the quadratic residue modulo p is actually equivalent to the

Decision Diffie-Hellman (DDH) problem. At the same time, they also pro-

posed an enhanced ElGamal cryptosystem is secure in the IND-CCA2 sense

under the Random Oracle (RO) model and the decision Diffie-Hellman as-

sumption. The random oracle is assumed be an ideally random function when

proving the security and it is replaced by a practical random-like function

such as one-way hash function [12].

On the other hand, Cramer and Shoup [22] proposed a new public key cryp-

tosystem based on the ElGamal cryptosystem, which is the first practical

IND-CCA2 secure only under decision Diffie-Hellman assumption and the

universal one-way hash functions, i.e., in the standard model (without the

use of random oracles).

Most schemes are specified, they cannot be adopted by other schemes. There

are two major conversions to convert existed trap-door one-way permuta-

tions to achieve IND-CCA2. Bellare-Rogaway conversion [13] faces on the

deterministic trap-door one-way permutations such as RSA and a comment

[72] revealed a flaw in that proof. Later, Fujisaki et al. [31] find a way to

rescue Bellare-Rogaway conversion for the trap-door partial-domain one-

way permutations being the partial-domain. On the other hand, Fujisaki-

Okamoto conversion faces on the probabilistic trap-door one-way functions

such as ElGamal. Both conversions are under the random oracle model and

trap-door one-way function assumption.

Table 2.1 shows the different assumptions and GOAL-ATK among some re-

lated schemes. As we realize it is not pratical to implement the security

proof in the RO-based technique since this kind of proof is heuristic only.

28

Table 2.1: Assumptions and security notations of some related schemes

Schemes Assumptions GOAL-ATK

ElGamal in QRp [83] DDH problem IND-CPA

Tsiouns-Yung [83] DDH problem, RO IND-CCA2

Shoup-Gennaro [74] DDH problem, RO IND-CCA2

Cramer-Shoup [22] DDH problem, UOWHF IND-CCA2

Pointcheval [66] DRSA problem, RO IND-CCA2

Paillier-Pointcheval [64] DCR problem, DPDL problem, RO IND-CCA2

Hwang et al. [44] DDH problem IND-CPA

Bellare-Rogaway [13] deterministic trap-door partial-domain IND-CCA2

one-way permutations, RO

Fujisaki-Okamoto [31] probabilistic trap-door one-way IND-CCA2

functions ,RO

universal one-way hash function (UOWHF), dependent-RSA (DRSA) prob-

lem, decision composite residuosity (DCR) problem, decision partial dis-

crete logarithm (DPDL) problem

29

However, the RO model usually has better efficiency and is still a useful

test-bed to prove the security.

Hwang, Chang, and Hwang [44] consider a situation in the ElGamal cryp-

tosystem. When the plaintext x is larger than the modulus p, it should be

divided into several pieces x1, x2, · · · , xn and the length of each xi (for i = 1

to n) is smaller than p. Then we would need n times to apply ElGamal en-

cryption to obtain n ciphertexts yi’s. According n ciphertexts yi’s, we also

need to apply n times ElGamal decryption. This is due to withstand the

known-plaintext attacks. In the known-plaintext attacks, the attacker has

the ability to obtain plaintext-ciphertext pairs and uses these pair to decrypt

a cipher for which she does not have the plaintext. To withstand the re-

duce the computational complexity and the amount of data transformation

as compared to the ElGamal cryptosystem, they proposed an ElGamal-like

cryptosystem for encrypting large messages and declared that the resulting

scheme is in the IND-CPA sense under decision Diffie-Hellman assumption.

However, we will show that their scheme is insecure in the IND-CPA sense

in Section 3.3.

2.7 Definitions and Security Models

In this section, we give some definitions using in this thesis as follows.

Definition 1. Let x ∈ Z∗n, x is said to be a quadratic residue modulo n, denoted by

QRn.

QRn = {x ∈ Z
∗
n| There is a y ∈ Z

∗
n with x = y2 mod n},

QNRn = Z
∗
n −QRn.

30

Definition 2. Let p be a prime > 2, and let x ∈ Z be prime to p.

(
x

p

)
=

⎧⎪⎨⎪⎩ +1, if [x] ∈ QRp,

−1, if [x] ∈ QNRp,

is called the Legendre symbol of x mod p.

Definition 3. A function ε(k) is negligible if for every positive polynomial P (k) ∈

Z[X], there is k0, such that for every k ≥ k0, ε(k) < 1/P (k)

Definition 4. Let A be a probabilistic algorithm and let A(a1, a2, . . . ; r) be the

result of running A on input a1, a2, . . . and coins r. We let y ← A(a1, a2, . . .)

denote the experiment of choosing r at random and letting y be A(a1, a2, . . . ; r). If

S is a finite set, let a←R S be the operation of choosing a at random and uniformly

from S. For probability spaces S, T, . . ., the notation Pr[a1 ← S; a2 ← T ; . . . :

p(a1, a2, . . .)] denotes the probability that predicate p(a1, a2, . . .) is true after the

ordered execution of the algorithms a1 ← S, a2 ← T,

Definition 5 (Computational Diffie-Hellman (CDH) problem). Let G be a

group of large prime q and g be the generator of G. An algorithm algorithm A is

said to (t, ε)-solve the CDH problem in group G if T runs in no more than time t

and furthermore

Pr[x, y ←R Zq : A(g, gx, gy) = gxy] ≥ ε

We say that CDH problem is hard if there is no such polynomial-time algorithmA.

Definition 6 (Decisional Diffie-Hellman (DDH) problem). A distinguishing

algorithm T is said to (t, ε)-solve the DDH problem in group G if T runs in no

more than time t and furthermore

|Pr[r, s, z ←R Zq : T (g, gr, gs, gz) = 1]− Pr[r, s←R Zq : T (g, gr, gs, grs) = 1]| ≥ ε

We say that DDH problem is hard if there is no such polynomial-time algorithm T .

31

Definition 7 (Probabilistic Public-Key Encryption Scheme). Let a triple of

algorithm Π = (K, E ,D) be a probabilistic public key encryption scheme.

- The key generation algorithm K, is a probabilistic algorithm which on input

1k, where k is the security parameter, outputs a pair (pk, sk) of matching

public and secret key.

- The encryption algorithm E , is a probabilistic algorithm which on input a

plaintext x and public key pk, outputs a ciphertext y.

- The decryption algorithm D, is a deterministic algorithm which on input

ciphertext y and the secret key sk, outputs the plaintext x.

Definition 8 (Random Oracle Model). Let Ω be the set of all maps from the set

{0, 1}∗ of finite strings to the set {0, 1}∞ of infinite strings. H ← Ω denotes as we

chose mapH from a set of an appropriate finite length {0, 1}a to a set of an appropri-

ate finite length of {0, 1}b, from Ω at random and uniformly, restricting the domain

to {0, 1}a and the range to the first b bits of output. By the assumption made in the

random oracle model, for fix x ∈ {0, 1}a and y ∈ {0, 1}b, then Pr[H(x) = y] =
1

2b
.

Π = (K, EH,DH) denotes the E and D in public key cryptosystem are allowed to

access such identical map H, and we call this encryption scheme is defined in the

random oracle model.

Definition 9 (IND-ATK). Let A = (A1,A2) be a pair of probabilistic algorithms

for adversary, Π = (K, E ,D). For ATK={CPA,CCA1,CCA2} and k ∈ N, denote

the success event of A for Π by

SuccIND−ATK
A,Π (k) = [(pk, sk)← K(1k); (x0, x1, state)← AO1

1 (pk); b←R {0, 1};

y ← Epk(xb) : AO2
2 (x0, x1, state, y) = b],

32

where the first two components of a triple (x0, x1, state) are the plaintexts with the

same length |x0| = |x1|, and the last is state information (including the public key

pk) and some information to be preserved. Here,O1(·),O2(·) are defined as follows:

- If ATK=CPA then O1(·)=null and O2(·)=null;

- If ATK=CCA1 then O1(·) = Dsk(·) and O2(·)=null;

- If ATK=CCA2 then O1(·) = Dsk(·) and O2(·) = Dsk(·).

In the case of IND-CCA2, A2 does not ask its oracle to decrypt y.

We denote the advantage of A for Π as

AdvIND−ATK
A,Π (k) = 2 · Pr[SuccIND−ATK

A,Π (k)]− 1.

We say that Π is secure in the IND-ATK sense if for any adversaryA being polynomial-

time in k, AdvIND−ATK
A,Π (k) is negligible in k.

If we insist that A = (A1,A2) is allowed to access to a random oracle H in the

random oracle model, we rewrite SuccIND−ATK
A,Π (k) as follows:

SuccIND−ATK
A,Π (k) = [H ← Ω; (pk, sk)← K(1k); (x0, x1, state)← AO1,H

1 (pk);

b←R {0, 1}; y ← EHpk(xb) : AO2,H
2 (x0, x1, state, y) = b].

On the other hand, when we insist on the random oracle model, we rewrite DHsk
instead of Dsk.

Definition 10 (NM-ATK). Let A = (A1,A2) be a pair of probabilistic algorithms

for adversary, Π = (K, E ,D). For ATK={CPA,CCA1,CCA2} and k ∈ N, denote

the advantage of A for Π by

AdvNM−ATK
A,Π (k) = |Pr[SuccNM−ATK

A,Π (k)]− Pr[SuccNM−ATK
A,Π,$ (k)]|,

where

SuccNM−ATK
A,Π (k) = [(pk, sk)← K(1k); (M, state)← AO1

1 ; x, x′ ←M ; y ← Epk(x)

(R, y)← AO2
2 (M, state, y); x← Dsk(y) : (y �∈ y) ∧ (null �∈ x) ∧R(x, x)]

33

and

SuccNM−ATK
A,Π,$ (k) = [(pk, sk)← K(1k); (M, state)← AO1

1 ; x, x′ ←M ; y ← Epk(x)

(R, y)← AO2
2 (M, state, y); x← Dsk(y) : (y �∈ y) ∧ (null �∈ x) ∧R(x′, x)].

Here, O1, O2 are defined as before in Definition 9. In the case of IND-CCA2, A2

does not ask its oracle to decrypt y.

We say that M is valid if |x| = |x′| for any x, x′ that are given non-zero probability

in the message space M .

We say that Π is secure in the NM-ATK sense if for any adversaryA being polynomial-

time in k outputs a valid message space M samplable in polynomial in k and a

relation R computable in polynomial in k, then AdvNM−ATK
A,Π (k) is negligible in k.

If we insist that A = (A1,A2) is allowed to access to a random oracle H in the

random oracle model, we rewrite SuccNM−ATK
A,Π (k) and SuccNM−ATK

A,Π,$ (k) as follows:

SuccNM−ATK
A,Π (k) = [H ← Ω; (pk, sk)← K(1k); (M, state)← AO1,H

1 ; x, x′ ← M ; y ← EHpk(x)

(R, y)← AO2,H
2 (M, state, y); x← Dsk(y) : (y �∈ y) ∧ (null �∈ x) ∧R(x, x)]

and

SuccNM−ATK
A,Π,$ (k) = [H ← Ω; (pk, sk)← K(1k); (M, state)← AO1,H

1 ; x, x′ ← M ; y ← EHpk(x)

(R, y)← AO2,H
2 (M, state, y); x← Dsk(y) : (y �∈ y) ∧ (null �∈ x) ∧R(x′, x)].

On the other hand, when we insist on the random oracle model, we rewrite DHsk
instead of Dsk.

Definition 11 (PA). Let Π = (K, E ,D) be a public key encryption scheme, let B

be an adversary, let PE be an polynomial-time plaintext extractor. For any k ∈ N

34

define

SuccPA
PE,B,Π(k) = Pr[H ← Ω; (pk, sk)← K(1k); (ΛH, C, y)← run BH,EHpk(pk) :

PE(ΛH, C, y, pk) = DHsk(y)],

where ΛH = {(h1, H1), . . . , (hqH
, HqH

)}, C = {y1, . . . , yqE
}, and y �∈ C.

(ΛH, C, y) ← run BH,EHpk(pk) denotes run B on input pk, oracles H, and EHpk,

recording B’s interaction with its oracles. ΛH denotes the set of all B’s queries

and the corresponding answers of H. C denotes the set of all answers received as

the result of EHpk. Here, C does not include the the corresponding queries from B.

Finally, B outputs y.

We say that PE is a (t, λ(k))-plaintext extractor if SuccPA
PE,B,Π(k) ≥ λ(k) and PE

runs within at most running time t.

We say that Π is secure in the sense of PA if Π is secure in the sense of IND-CPA

and there exists a (t, λ(k))-plaintext extractor PE where t is polynomial in k and

λ(k) is overwhelming in k.

To demonstrate that the ElGamal-Extension scheme is secure using only

two random numbers, a new pair GOAL and ATK are constructed called

IND-CPAPAIR. The difference from IND-CPA is that, we also provide the ad-

versary with the knowledge of a pair of plaintext-ciphertext. Intuitively,

this pair does not provide any help for the adversary, since the adversary

has ability to generate any pair she wants by herself in the public key en-

cryption scheme. This is the refinement presented here and its purpose is

explained later in Chapter 4.

Definition 12 (IND-CPAPAIR). Let A = (A1,A2) be a pair of probabilistic algo-

35

rithms for adversary, Π = (K, E ,D). For k ∈ N, denote the success event of A for

Π by

SuccIND−CPAPAIR
A,Π (k) = [(pk, sk)← K(1k); (x∗, x0, x1, state)← A1(pk); b←R {0, 1};

y ← Epk(xb); y
∗ ← Epk(x

∗) : A2(x0, x1, x
∗ � y∗, state, y) = b].

We describe a supplementary explanation: A1 outputs (x∗, x0, x1, state) is defined

as before in Definition 9 and an additional plaintext x∗, where |x∗| = |x0| = |x1|.

The encryption oracle encrypts xb to obtain y according to a coin flipping b. It also

encrypts x∗ to obtain a ciphertext y∗. A2 additionally has the input x∗ � y∗, where

x∗ � y∗ denotes x∗ as the corresponding plaintext of the ciphertext y∗.

We denote the advantage of A for Π as

AdvIND−CPAPAIR
A,Π (k) = 2 · Pr[SuccIND−CPAPAIR

A,Π (k)]− 1.

We say that Π is secure in the IND-CPAPAIR sense if for any adversary A being

polynomial-time in k, AdvIND−CPAPAIR
A,Π (k) is negligible in k.

36

Chapter 3

Security Analysis of ElGamal-Like
Cryptosystem

3.1 Review of ElGamal Cryptosystem

Though the ElGamal cryptosystem operated in the quadratic residue mod-

ulo p has been showed that is secure in the IND-CPA sense under the Diffie-

Hellman assumption [83]. In order to state our results clearly and precisely

in breaking the ElGamal-like cryptosystem [44] in Section 3.3, we begin

with a review of the ElGamal cryptosystem which is not operated in the

quadratic residue modulo p and then show that is insecure against IND-

CPA.

Let Π = (K, E ,D) be the ElGamal cryptosystem.

- Key generation algorithm K : (pk, sk)← K(1k), pk = (p, g, Y) and sk =

(p, g, s), where Y = gs mod p, |p| = k, 1 ≤ s ≤ p − 2, and # < g >= p.

Let Gp be a group of prime order p of the multiplicative group Z∗p.

37

- Encryption algorithm E :

(y1, y3) = Epk(x, r) = (gr mod p, x · Y r mod p),

where message x ∈ {0, 1}k, x < p, and r ←R {0, 1}k.

- Decryption algorithm D:

x = Dsk(y1, y3) = y3 · (ys
1)
−1 mod p.

3.2 Security Analysis

We can see that g is a primitive root of Gp by employing the key generation

algorithm K in Seciton 3.1. Below, we first give the following lemmas [26]

and then show that encryption scheme is not secure in the IND-CPA sense.

Lemma 1. Let p be a prime> 2 and g be a primitive root of Z∗p. Let [x] ∈ Z∗p. Then

x ∈ QRp if and only if x = gα mod p some even number α, 0 ≤ α < p− 1.

Lemma 2. The Legendre symbol is multiplicative in x(
xy

p

)
=

(
x

p

) (
y

p

)
It means [xy] ∈ QRp if and only if either both [x], [y] ∈ QRp or both [x], [y] ∈

QNRp.

Theorem 1. Let Π = (K, E ,D) be the ElGamal cryptosystem described in Sec-

tion 3.1. An adversaryA is a (t′, ε′)-breaker for Π(1k) in IND-CPA if AdvCPA
A,Π(k) ≥

ε′ and A runs within at most running time t, where

ε′ = 1 and t′ ≤ t1 + 3 · tQR.

38

Proof. We construct a breaking algorithm A = (A1,A2) for Π = (K, E ,D) as

follows.

Adversary: A1(pk)
Obtain {x0, x1}, where x0 ∈QRp and x1 ∈QNRp

Return (x0, x1, state)
End.

Encryption oracle: OEN(x0, x1, pk)
r ←R Zq

b←R {0, 1}
(y1, y3)← Epk(xb, r)
Return (y1, y3)

End.

Adversary: A2(x0, x1, state, (y1, y3))
CASE 1: Y ∈QRp and y1 ∈{QRp, QNRp}

If y3 ∈QRp, then outputs 0
If y3 ∈QNRp, then outputs 1

CASE 2: y1 ∈QRp and Y ∈QNRp

If y3 ∈QRp, then outputs 0
If y3 ∈QNRp, then outputs 1

CASE 3: Y ∈QNRp, y1 ∈QNRp

If y3 ∈QNRp, then outputs 0
If y3 ∈QRp, then outputs 1

End.

We now analyze the successful probability of adversary A = (A1,A2). We

define the following events.

E1 be the event (Y ∈QRp)∧(y1 ∈{QRp, QNRp}),

E2 be the event (y1 ∈QRp)∧(Y ∈QNRp),

E3 be the event (Y ∈QNRp)∧(y1 ∈QNRp).

Let b′ be the output of A2. For CASE 1, Y = gs ∈QRp. By Lemma 1, s is

even, no matter what y1 ∈QRp, or y1 ∈QNRp, we know that Y r = gsr ∈QRp.

39

We see that A2 will output the correct b′=0 (b′=1) if and only if y3 ∈QRp

(y3 ∈QNRp). This is due to the multiplicative property of Legendre symbol

in Lemma 2 as follows. (
y3

p

)
=

(
xb

p

) (
Y r

p

)
Therefore, the condition probability Pr[b = b′|E1]=1 and the probability Pr[E1]

= 1/2. For the same reason, in CASE 2, the condition probability Pr[b =

b′|E2]=1. Note that (y1 ∈QRp)∧(Y ∈QRp) is included in the event E1 and

the probability Pr[E1] = 1/4. For CASE 3, Y ∈QNRp and y1 ∈QNRp, by

Lemma 1, s and r are odd, Y r = gsr ∈QNRp. A2 will output the correct

b′=0 (b′=1) if and only if y3 ∈QRp (y3 ∈QNRp). Thus, the condition proba-

bility Pr[b = b′|E3] = 1 and the probability Pr[E3] = 1/4. By the law of total

probability,

Pr[SuccCPA
A,Π(k)] = Pr[b = b′]

=
3∑

i=1

Pr[b = b′|Ei] · Pr[Ei]

= 1 · 1
2

+ 1 · 1
4

+ 1 · 1
4

= 1,

we have AdvCPA
A,Π(k) = 2 · Pr[SuccCPA

A,Π(k)]− 1 = 1.

Thus, we have the ability to distinguish the distinct plaintext x0 and x1. To

secure against IND-CPA, for security parameter k, primes p and q are chosen

such that p = 2q+1 (q is called a Sophie-Germain prime if p is also a prime),

where |p| = k and |q| = k − 1. Then a unique subgroup Gq of prime order q

of the multiplicative group Z∗p and g of Gq are defined. In other words, the

key generation algorithm K should be modified as K̂.

- Key generation algorithm K̂: (pk, sk) ← K̂(1k), pk = (p, g, Y) and sk =

40

(p, g, s), where Y = gs mod p, |p| = k, p = 2q + 1, # < h >= p, g = h2 mod p,

s ∈ Zq , and # < g >= q.

We can see that g generates all the quadratic residues in Gq = QRp. In order

to make all the ciphertexts are in QRp (the algorithm A cannot determine

which message x0 ∈ QRp/x1 ∈ QNRp is the corresponding plaintext accord-

ing the ciphertext), there two are simple methods to achieve it:

Method 1. The messages for encrypting are always in QRp.

Method 2. If the message x is in QRp, then we are done. Otherwise, x is replaced

by −x = p− x ∈ QRp. Since

(−1)(p−1)/2 = (−1)q = −1 mod p, where q is an odd number,

we have

(−x)(p−1)/2 = (−1)(p−1)/2 · (x)(p−1)/2 = (−1) · (−1) = 1 mod p.

A value is determined whether it is in QRp or not can be computed effi-

ciently by Euler’s criterion in a polynomial-time. Let tQR be the time of

determining whether a value is in QRp or not. Let t1 be the time of choos-

ing two messages x0 ∈QRp and x1 ∈QNRp. Then, from the specification of

A = (A1,A2), it runs within at most 3 times tQR in CASE 2 or CASE 3. Hence,

t ≤ t1 + 3 · tQR and it is in a polynomial-time.

3.3 Review of ElGamal-Like Cryptosystem

The ElGamal cryptosystem should employ the key generation algorithm K̂

and choose messages from the subgroup Gq to ensure that the IND-CPA

41

sense. The security had been proven [83] is actually equivalent to the DDH

problem.

Recall the ElGamal cryptosystem in Section 3.1. If the plaintext x is larger

than modulus p, it should be divided into x1, x2, · · · , xn and the length of

each xi is smaller than |p|. After dividing x, each xi is fed into the encryption

algorithm E :

Epk(y1,i, y3,i) = Epk(xi, ri) = (yri mod p, x · Y ri mod p).

Note that ri �= rj(i �= j), otherwise the cryptosystem is broken by the

CPA. For example, the adversary chooses the plaintext x1, and then she feds

x1 into the encryption algorithm E . With the knowledge of the plaintext-

chiphertext (x1, (y1,1, y3,1)), she can obtain Y r1 mod p by computing y3,1 ·

(x1)
−1 mod p without the secret key s. Then, she can easily reveal other

plaintexts x2, · · · , xn by computing xi = y3,i · (ys
1,1)
−1 mod p, for i = 2 to

n. In other words, if ri = rj(i �= j), the cryptosystem is insecure in the

OW-CPA sense.

For encrypting a large message with efficient, Hwang et al. [44] modified

some parts in the ElGamal cryptosystem, called the ElGamal-like cryptosys-

tem. However, in this section, we will show that even if the ElGamal-like

cryptosystem are given the same repair in Section 3.2, it is still insecure in

the IND-CPA sense.

Let Π′ = (K, E ′,D′) be the ElGamal-like cryptosystem.

- Key generation algorithm K : (pk, sk) ← K(1k), pk = (p, g, Y) and

sk = (p, g, s), where Y = gs mod p, |p| = k, s ∈ Z∗p, and # < g >= p.

42

- Encryption algorithm E ′:

(y1, y2, y3,i) = E ′pk(xi, r1, r2) = (gr1 mod p, gr2 mod p, xi · (Y r1 ⊕ (Y r2)2i

) mod p),

where message x ∈ {0, 1}>k, x is divided into x1, x2, · · · , xn (|x1| =

|x2| = · · · = |xn−1|, n = �|x|/k�, |xn| = |x| mod k, and each xi < p)

and r1, r2 ←R Zq. The notation ⊕ denotes as the bit-wise exclusive-or

operation.

- Decryption algorithm D′:

xi = D′sk(y1, y2, y3,i) = y3,i · (ys
1 ⊕ (ys

2)
2i

)−1 mod p,

x = x1x2 · · ·xn.

This scheme is designed for encrypting large messages, which will more

efficient than the ElGamal cryptosystem. Here, we consider the same situa-

tion in the ElGamal cryptosytem where the message x < p is for encrypting

as follows.

- Encryption algorithm E ′:

(y1, y2, y3) = E ′pk(x, r1, r2) = (gr1 mod p, gr2 mod p, x · (Y r1 ⊕ (Y r2)2) mod p),

where message x ∈ {0, 1}k, x < p, and r1, r2 ←R {0, 1}k.

- Decryption algorithm D′:

x = D′sk(y1, y2, y3) = y3 · (ys
1 ⊕ (ys

2)
2)−1 mod p.

43

3.4 Security Analysis

In the following theorem, we prove that the ElGamal-like cryptosystem in

Section 3.3 is insure in the CPA sense and has the probability to make that

cryptosystem failed.

Theorem 2. Let Π′ = (K, E ′,D′) be the ElGamal-like cryptosystem described

in Section 3.3. An adversary A′ is a (t′, ε′)-breaker for Π′(1k) in IND-CPA if

AdvCPA
A′,Π′(k) ≥ ε′ with the event Fail it does not occur, and A′ runs within at most

running time t′, where

ε′ = 1 and t′ ≤ t1 + 3 · tQR.

Proof. We give a simple example and then analyze the results as follows. In

the key generation algorithm K, for p = 7, we select a generator g = 5 of

Z∗p and thus QRp = {1, 2, 4} and QNRp = {3, 5, 6}. By Lemma 1, (Y r2)2 mod

p ∈QRp. We consider the following situations.

SITUATION 1: Y r1 mod p ∈QRp

The values of computing Y r1 ⊕ (Y r2)2 mod p are in the set S1 = {1 ⊕ 1 mod

7, 1⊕2 mod 7, 1⊕4 mod 7, 2⊕1 mod 7, 2⊕2 mod 7, 2⊕4 mod 7, 4⊕1 mod 7, 4⊕

2 mod 7, 4⊕ 4 mod 7} = {0, 3, 5, 3, 0, 6, 5, 6, 0}.

SITUATION 2: Y r1 mod p ∈QNRp

The values of computing Y r1 ⊕ (Y r2)2 mod p are in the set S2 = {1 ⊕ 3 mod

7, 1⊕5 mod 7, 1⊕6 mod 7, 2⊕3 mod 7, 2⊕5 mod 7, 2⊕6 mod 7, 4⊕3 mod 7, 4⊕

5 mod 7, 4⊕ 6 mod 7} = {2, 4, 0, 1, 0, 4, 0, 1, 2}.

We can see that the values of Y r1 ⊕ (Y r2)2 mod p has the probability to be

0, no matter what plaintext x is input to encrypt algorithm E′, the value of

44

y3 = x · (Y r1 ⊕ (Y r2)2) mod p is equal to 0. The encrypt algorithm E ′ is failed,

together with the decrypt algorithm D′. We first analyze the probability of

Π′ = (K, E ′,D′) crashed. Let Fail, Y r1 ⊕ (Y r2)2 mod p = 0, be the event that

Π′ = (K, E ′,D′) crashed. By lemma 1, if the value Y r1 = gsr1 mod p ∈QRp,

then s ·r1 is even; that either r1 or s are even, which happen with probability

Pr[Y r1 ∈ QRp] = 3/4 and the complement Pr[Y r1 ∈ QNRp] = 1/4. We can

obtain the probability of Fail as follows.

Pr[Fail] = Pr[Fail|Y r1 ∈ QRp] · Pr[Y r1 ∈ QRp]

+Pr[Fail|Y r1 ∈ QNRp] · Pr[Y r1 ∈ QNRp]

=
3

9
· 3
4

+
3

9
· 1
4

=
1

3
.

If the encryption algorithm E ′ chooses r1 or r2 ←R {0, 1}k again to avoid

the case Y r1 ⊕ (Y r2)2 mod p = 0, we still can construct a breaking algorithm

A′ = (A′1,A′2) in the IND-CPA sense for Π′ = (K, E ′,D′).

Adversary: A′1(pk)
Obtain {x0, x1}, where x0 ∈QRp and x1 ∈QNRp

Return (x0, x1, state)
End.

Encryption oracle: OEN(x0, x1, pk)
r1, r2 ←R Zq

b←R {0, 1}
(y1, y2, y3) = E ′pk(xb, r1, r2)
= (gr1 mod p, gr2 mod p, xb · (Y r1 ⊕ (Y r2)2) mod p)
Return (y1, y2, y3)

End.

45

Adversary: A′2(x0, x1, state, (y1, y2, y3))
CASE 1: Y ∈QRp and y1 ∈{QRp, QNRp} //Y r1 ⊕ (Y r2)2 mod p ∈QRp

If y3 ∈QRp, then outputs 0
If y3 ∈QNRp, then outputs 1

CASE 2: y1 ∈QRp and Y ∈QRp

If y3 ∈QRp, then outputs 0
If y3 ∈QNRp, then outputs 1

CASE 3: Y ∈QNRp, y1 ∈QNRp //Y r1 ⊕ (Y r2)2 mod p ∈QNRp

If y3 ∈QNRp, then outputs 0
If y3 ∈QRp, then outputs 1

End.

The successful probability of adversary A′ = (A′1,A′2) is similar to A =

(A1,A2) in Section 3.2 if Π′ = (K, E ′,D′) is not crashed, i.e., Fail does not

occur. By the multiplicative property of Legendre symbol,(
y3

p

)
=

(
xb

p

) (
Y r1 ⊕ (Y r2)2

p

)
,

the conditional probability Pr[AdvCPA
A′,Π′(k)|¬Fail] is equal to 1 and AdvCPA

A′,Π′(k) =

2 ·Pr[SuccCPA
A′,Π′(k)|¬Fail]−1 = 1. For the same reason, from the specification

of A′, it runs within at most t′ ≤ t1 + 3 · tQR.

If we attempt to repair this scheme Π′ = (K, E ′,D′) as the same fashion in

Section 3.2, the key generation algorithm K is replaced as K̂, and then the

cryptosystem becomes Π′′ = (K̂, E ′,D′). The following theorem will show

that Π′′ = (K̂, E ′,D′) is still insecure in the IND-CPA sense.

Theorem 3. Let Π′′ = (K̂, E ′,D′) be the ElGamal-like cryptosystem operated in

QRp. An adversaryA′′ is a (t′′, ε′′)-breaker for Π′′(1k) in IND-CPA if AdvCPA
A′′,Π′′(k) ≥

ε′′ with the event Fail does not occur, and A′′ runs within at most running time t′′,

where

ε′′ = 1 and t′′ ≤ t1 + tQR.

46

Proof. We also give an example for the key generation algorithm K̂, where

q = 3, p = 2q+1 = 7, h = 5, g = h2 mod p = 4. Obviously, g ∈QRp, therefore,

the group is in QRp, where QRp = {1, 2, 4}. The value of Y r1 ⊕ (Y r2)2 mod p

are in the set S1 as the same as in SITUATION 1 of Theorem 2. Π′′ = (K̂, E ′,D′)

has the probability to fail as follows:

Pr[Fail] = Pr[Fail|Y r1 ∈ QRp] · Pr[Y r1 ∈ QRp]

=
3

9
· 1

=
1

3
.

A breaking algorithmA′′ =: (A′′1,A′′2) in the IND-CPA sense for Π′′ = (K̂, E ′,D′)

is as follows:

Adversary: A′′1(pk)
Obtain {x0, x1}, where x0 ∈QRp and x1 ∈QNRp

Return (x0, x1, state)
End.

Encryption oracle: OEN(x0, x1, pk)
r1, r2 ←R Zq

b←R {0, 1}
(y1, y2, y3) = E ′pk(xb, r1, r2)
= (gr1 mod p, gr2 mod p, xb · (Y r1 ⊕ (Y r2)2) mod p)
Return (y1, y2, y3)

End.

Adversary: A′′2(x0, x1, state, (y1, y2, y3))
CASE 1: If y3 ∈QRp, then outputs 1
CASE 2: If y3 ∈QNRp, then outputs 0

End.

Except the values when Y r1 ⊕ (Y r2)2 mod p = 0, the Legendre symbol of

47

Y r1 ⊕ (Y r2)2 mod p is (
Y r1 ⊕ (Y r2)2

p

)
= −1,

By the multiplicative property of Legendre symbol,(
y3

p

)
=

(
xb

p

) (
Y r1 ⊕ (Y r2)2

p

)
,

we can determine xb is x0 ∈QRp or x1 ∈QNRp, according to the Legendre

symbol
(
y3

p

)
. This forms CASE 1 and CASE 2 of A′′2, respectively. The ad-

vantage of A′′ for Π′′ is AdvCPA
A′′,Π′′(k) = 2 · Pr[SuccCPA

A′′,Π′′(k)|¬Fail]− 1 = 1.

From the specification of A′′, it runs within at most t′′ ≤ t1 + tQR. Obviously,

the both breaking algorithms A′ = (A′1,A′2) and A′′ = (A′′1,A′′2) are in a

polynomial time in Theorem 2 and Theorem 3, respectively.

We can see that no matter what the ElGamal-like cryptosystem employs K

or K̂, the scheme is insecure in the IND-CPA sense, even the cryptosystem

will be failed to encrypt and/or decrypt. Though the probability of event

Fail will decrease when we chose a large prime q or p (the security parameter

k), for both cryptosystems Π′ = (K, E ′,D′) and Π′′ = (K̂, E ′,D′), the values

after exclusive-or operation may not in the group Gp and Gq , respectively.

This results in their scheme is insecure in the IND-CPA sense.

The ElGamal cryptosystem has been proven to be secure in the IND-CPA

sense in the standard model if the operation is in QRp [83]. The IND-CPA

sense is considered as a basic requirement for most provably secure public

public key cryptosystems. In many applications, plaintexts may informa-

tion which can be guessed easily such as in a BUY/SELL instruction to a

stock broker.

48

In this chapter, we precisely show that the ElGamal cryptosystem is insecure

in the IND-CPA sense if the operation is in not QRp. For the ElGamal-like

cryptosystem, we give two simple examples to prove it is insecure in the

IND-CPA sense either operated in QRp or not (employ the key generation

K or K̂). Besides, the cryptosystem has the probability to be crashed when

Y r1 ⊕ (Y r2)2 mod p = 0. Since the exclusive-or operation is not suitable for

the group operation, the computed values cannot be expected in that group.

However, the motivation for encrypting large messages in public public key

cryptosystem is practical, since they have bad compared to symmetric cryp-

tosystems. Attempt to propose a public key cryptosystem for encrypting

large messages and proven GOAL-ATK security in the RO or standard model

is exhilaratingly.

In the next chapter, an efficient conversion from the semantically secure

ElGamal encryption scheme against chosen-plaintext attacks to a seman-

tically secure extension of the ElGamal encryption scheme against adaptive

chosen-ciphertext attacks in the random oracle model is presented. In the

encryption algorithm of the converted scheme, only two random numbers

are generated for each encryption. The result of the converted version of the

ElGamal encryption scheme not only provides a higher security level but

also is more efficient than the ElGamal encryption scheme when encrypting

a large plaintext. An analyses of the modified encryption scheme is given to

demonstrate its enhanced security.

49

Chapter 4

An ElGamal-Extension
Cryptosystem

4.1 ElGamal-Extension Cryptosystem

Here, we again briefly review the ElGamal encryption scheme (this is the

same as in Section 3.1 but we change some parameters for easy-to-read) and

show that how to extend the the ElGamal encryption scheme for encrypting

a large plaintext.

ElGamal Encryption Scheme Π = (K, E ,D)

Let Π = (K, E ,D) be the ElGamal encryption scheme, which is secure in the

IND-CPA sense [83].

- Key generation algorithm K: (pk, sk) ← K(1k0+2k1+l), pk = (p, q, g, Y)

and sk = (p, q, g, s), where Y = gs mod p, |p| = k = k0 + 2k1 + l,

s ∈ Z/qZ, q|p− 1, and # < g >= q.

50

- Encryption algorithm E :

(y1, y3) = Epk(x, r) = (gr mod p, x · Y r mod p),

where the plaintext x ∈ {0, 1}k (the plaintext should be chosen from a

subgroup [83], however, to simply the notation, we release this restric-

tion.) and r ∈R Zq.

- Decryption algorithm D:

x = Dsk(y1, y3) = y3 · (ys
1)
−1 mod p.

If the plaintext x > p (|x| > k), it should be divided into several pieces, says

x1, . . . , xn, where xi < p (|xi| < k). For each xi, the random number r should

be chosen distinct in the encryption algorithm.

ElGamal-Extension Encryption Scheme Π = (K, E ,D)

Let Π = (K, E ,D) be the ElGamal-Extension encryption scheme.

- Key generation algorithm K: (pk, sk)← K(1k) = K(1k).

The key generation algorithm K is the same as in K.

- Hash functions H and J :

H : {0, 1}k0+2k1 → {0, 1}l, J : {0, 1}k → {0, 1}k.

- Encryption algorithm E :

A large plaintext x is divided into x1, x2, · · · , xn subtexts.

(y′1, y
′
2, y
′
3,i) = Epk(xi, r1, r2),

1. ConcatenateXi = xi||r1||r2, where xi ∈ {0, 1}k0, r1, r2 ∈R {0, 1}k1 ∈

Zq, and || denotes concatenation.

51

2. Compute Ji = J (i · Y r2 mod p).

3. Compute (y1, y3) = Epk(Xi||H(Xi), r1) = (gr1 mod p, (Xi||H(Xi)) ·

Y r1 mod p).

4. Compute (y′1, y
′
2, y
′
3,i) = (y1, g

r2 mod p, y3 · Ji mod p).

- Decryption algorithm D:

xi = Dsk(y
′
1, y
′
2, y
′
3,i),

1. Compute Ji = J (i · y′s2 mod p).

2. Compute Wi = Dsk(y
′
1, y
′
3,i · J−1

i mod p).

3. Output {
[Wi]

k0 , if H([Wi]
k0+2k1) = [Wi]l

null, otherwise

The notations of [Wi]
a and [Wi]b denote the first a-bit and the last

b-bit of Wi, respectively

Finally, the whole plaintext x can be concatenated as x1|| · · · ||xn.

To understand what the ElGamal-Extension encryption scheme can achieve

consider the following. The ElGamal encryption scheme is long and in-

volved and there is an additional random value Ji for each xi. Even if

there are only two random numbers r1 and r2, the hash value Ji still makes

the encryption scheme probabilistic. If the adversary can obtain the hash

value J (i · Y r2 mod p), she is still faced with the of breaking the ElGamal

encryption scheme, i.e. Dsk(y
′
1, y
′
3 · J−1

i mod p) = Wi. It already knows

the ElGamal encryption scheme is IND-CPA secure [83] under the DDH as-

sumption, in which the adversary cannot obtain any bit about the plaintext

Wi = xi||r1||r2||H(Xi).

52

Furthermore, to compute the hash value J (i · Y r2 mod p) with the knowl-

edge of the public key Y and the value y′2 is equivalent to solve the Compu-

tational Diffie-Hellman (CDH) assumption in Definition 5, which is weaker

than the DDH assumption in the same group [71]. If the DDH assumption

is held in the group, then the CDH assumption must be held in that group.

Therefore, the security of the proposed scheme can be solely based on the

DDH assumption.

To reveal other plaintext xj ’s, the adversary cannot compute Jj (∀j �= i) un-

der the assumption of hash function J (·), since the values of Ji and Jj are

nonlinearly related. To meet IND-CCA2, the plaintext xi is protected under

the hash function H(·) to ensure the data integrity and has a data integrity

validating step in the decryption algorithm. Without this validating step,

the adversary could trivially generate ciphertext for which the correspond-

ing plaintext is unknown. To do this, she just outputs the random strings.

In the next section, we give the analyses of the reduction for proving its

securities.

4.2 Security Analysis

In this section, our first goal is to show that the ElGamal-Extension encryp-

tion scheme is secure in the IND-CCA2 sense via Proposition 2. Theorem 4

and Theorem 5 shows that there is a plaintext extractor in the ElGamal-

Extension encryption and is secure in the IND-CPA sense, respectively. Here,

we only consider that the plaintext x is smaller than p. The sequence num-

ber i of xi presented in the ElGamal-Extension encryption scheme is omit-

53

ted. The sequence number is involved in the ElGamal-Extension encryption

scheme to show how the security notation IND-CPAPAIR is achieved when

using only two random numbers.

Theorem 4 (Plaintext extractor PE of Π). If there exists a (t, qH, qJ)-adversary

B, then there exists a constant c and a (t′, λ(k))-plaintext extractor PE such that

t′ = t+ qJ qH(tEpk
+ c) and λ(k) = 1− (qJ · 2−k + |Hs| · 2−l).

tEpk
denotes the computational running time of the encryption algorithm Epk and

|Hs| denotes the number of pairs (h,Hv) in the setHs such that (y′1, y
′
3·(Y [[hv]2k1

]k1)−1 mod

p) = Epk(h||Hv, [[h]2k1]
k1) in the following specification of PE .

Proof. We construct a plaintext extractor PE as follows:

Extractor: PE(ΛH,ΛJ , C, (y′1, y′2, y′3), pk)
For u = 1, · · · , qJ do

For v = 1, · · · , qH do
(y1, y3)← (y′1, y

′
3 · J−1

u mod p)
If (y1, y3) == Epk(hv||Hv, [[hv]2k1]

k1)
If ju == Y [[hv]2k1

]k1 mod p
then x← [hv]

k0 and break
Else x← null

Return x
End.

Let c be the computation time of comparing two strings is equal or not, and

some overhead. From the specification ofPE , it runs within t+qJ qH(tEpk
+c).

Since there exists an additional random oracle J (·), ΛJ = {(j1, J1) , . . . ,

(jqJ , JqJ))} denotes the set of all B’s queries and the corresponding an-

swers of J (·). Intuitionally, the plaintext x together with the random num-

bers r1, r2 are inputs to the random oracle H(·). Moreover, all the answers

54

to queries should be obtained by the random oracles in the random ora-

cle model. Furthermore, those queries and the corresponding answers are

recorded in the lists ΛH and ΛJ . Any generation of valid ciphertext should

be obtained via that step. Hence, upon input of the valid ciphertext, PE can

find out the corresponding plaintext by watching the lists ΛH and ΛJ .

Now the probability that PE correctly outputs the plaintext x, that is x =

Dsk(y
′
1, y
′
2, y
′
3). Consider the following events.

Con1∧Con2: the product of events Con1 and Con2, which is assigned to

be true if there exists (j, J) in the list ΛJ and (h,H) in the list ΛH such that

the conditions (y1, y3) == Epk(hv||Hv, [[hv]2k1]
k1) and ju == Y [[hv]2k1

]k1 mod p

in the specification of PE hold. Two conditions are separately denoted as

Con1 and Con2.

Fail: an event assigned to be true if x �= Dsk(y
′
1, y
′
2, y
′
3).

We now bound the failure probability as follows:

Pr[Fail] = Pr[Fail|Con1 ∧ Con2] · Pr[Con1 ∧ Con2] +

Pr[Fail|Con1 ∧ ¬Con2] · Pr[Con1 ∧ ¬Con2] +

Pr[Fail|¬Con1] · Pr[¬Con1]

≤ Pr[Fail|Con1 ∧ Con2] + Pr[Con1 ∧ ¬Con2]

Pr[Fail|¬Con1]

In the following, we upper bound Pr[Fail|Con1∧Con2], Pr[Con1∧¬Con2],

and Pr[Fail|¬Con1], respectively.

The specification of PE is as follows. If Con1∧Con2 is true then PE never

fails to guess the plaintext x and hence Pr[Fail|Con1 ∧Con2] = 0.

55

We further upper bound Pr[Con1 ∧ ¬Con2] as follows:

Pr[Con1 ∧ ¬Con2] ≤ Pr[Con1|¬Con2]

When ¬Con2 is true, there is a Ju in the list ΛJ such that (y′1, y
′
3 · J−1

u mod

p) == Epk(hv||Hv, [[hv]2k1]
k1). Under the random oracle model assumption

in Definition 8, the probability of such Ju is 2−k. The conditional probability

Pr[Con1|¬Con2] is qJ · 2−k.

For Pr[Fail|¬Con1], ¬Con1 is true and PE outputs null. That is, it guesses

(y′1, y
′
2, y
′
3) is a invalid ciphertext. Therefore, Fail is true implies B outputs the

valid ciphertext (y′1, y
′
2, y
′
3). For a fixed (y′1, y

′
2, y
′
3) and J = J (Y [[hv]2k1

]k1 mod

p), letHs be the set of (h,Hv) such that (y′1, y
′
3·J−1 mod p) = Epk(h||Hv, [[h]2k1]

k1).

Then since (y′1, y
′
2, y
′
3) �∈ C = {(y′1, y′2, y′3)1, · · · , (y′1, y′2, y′3)qE

} and henceDsk((y
′
1, y
′
3·

J−1 mod p)i) �= h||H(h) for every (y′1, y
′
2, y
′
3)i ∈ C. For a fixed (y′1, y

′
2, y
′
3) and

a fixed h, since B doesn’t ask query h to oracle H(·),

Pr[Fail|¬Con1] = Pr
H←Ω

[H(h) ∈ Hs] = |Hs| · 2−l,

where |Hs| denotes the number of pairs in Hs. Obviously, |Hs| is small.

We conclude that Pr[Fail] ≤ qJ · 2−k + |Hs| · 2−l. Hence, λ(k) = 1−Pr[Fail] =

1− (qJ · 2−k + |Hs| · 2−l).

Theorem 5 (Π: IND-CPA). If there exists a (t, qH, qJ , ε)-breakerA = (A1,A2) for

Π in the IND-CPA sense in the random oracle model, then there exists a constants

c and a (t′, 0, 0, ε′)-breaker A′ = (A′1,A′2) for Π in the IND-CPA sense in the

standard model, where

t′ = t+ qH · c+ qJ · c and ε′ = ε− qH · 2−(2k1−2).

56

Proof. We construct a breaking algorithm A′ = (A′1,A′2) in the IND-CPA and

standard model setting by using A = (A1,A2) as an oracle.

Firstly, A′ initiates two lists ΛH and ΛJ , to empty. Basically, when A asks

query h and j, A′ simulates two random oraclesH(·) and J (·) as follows: If

h has not been asked in the list ΛH,A′ provides a random string H of length

l-bit, and adds an entry (h,H) to the list ΛH. Similarly, if j has not been

asked in the list ΛJ , A′ provides a random string J of length k-bit, and adds

an entry (j, J) to the list ΛJ . When A1 halts and outputs (x0, x1, state), A′1
outputs (x0||γ0||β0, x1||γ1||β1, state) where γ0, γ1 are (2k1)-bit random strings

and β0, β1 are l-bit random strings.

Adversary: A′1(pk)
ΛH, ΛJ←empty
Run A1(pk)

Do while A1 does not makeH-query h and J -query j
If A1 makes J -query j

If j �∈ ΛJ
J ←R {0, 1}k
Put (j, J) on ΛJ
Answer J to A1

Else j ∈ ΛJ
Answer J to A1 such that (j, J) ∈ ΛJ

Else if A1 makesH-query h
If h �∈ ΛH
H ←R {0, 1}l
Put (h,H) on ΛH
Answer H to A1

Else h ∈ ΛH
Answer H to A1 such that (h,H) ∈ ΛH

A1 outputs (x0, x1, state)
γ0, γ1←R {0, 1}2k1

β0, β1←R {0, 1}l
Return (x0||γ0||β0, x1||γ1||β1, state)

End.

57

Then, outside of A′, the ciphertext (y1, y3) = Epk(xb||γb||βb, R) is computed

by the encryption oracle OEN , where b ∈ {0, 1} is a random bit and R ∈ Zq

is a random string. Finally, (x0, x1, state, (y1, y3)) is input to A2.

Encryption oracle: OEN(x0||γ0||β0, x1||γ1||β1, pk)
R←R Zq

b←R {0, 1}
(y1, y3)← Epk(xb||γb||βb, R)
Return (y1, y3)

End.

A′2 chooses a random string r2 ∈ Zq and k-bit random string J∗. Then it sets

y′1 = y1, y′2 = gr2 mod p, and y′3 = y3 ·J∗ mod p. Note that (y′1, y
′
2, y
′
3) is treated

as the ciphertext of xb.

58

Adversary: A′2(x0||γ0||β0, x1||γ1||β1, state, (y1, y3))
r2 ←R Zq ; J∗ ←R {0, 1}k
y′1 ← y1; y′2 ← gr2 mod p; y′3 ← y3 · J∗ mod p
Run A2(x0, x1, state, (y

′
1, y
′
2, y
′
3))

Do while A2 does not makeH-query h and J -query j
Askj ←false
If A1 makes J -query j

If j = Y r2 mod p
Answer J∗ to A2

Put (j, J∗) on ΛJ
Askj ←true

Else if j �∈ ΛJ
J ←R {0, 1}k
Answer J to A2

Else j ∈ ΛJ
Answer J to A2 such that (j, J) ∈ ΛJ

Else if A1 makesH-query h
If Askj =true and h = xb||γb

Stop A2 and output b
Else if h �∈ ΛH
H ←R {0, 1}l
Put (h,H) on ΛH
Answer H to A2

Else h ∈ ΛH
Answer H to A2 such that (h,H) ∈ ΛH

A2 outputs b
Return b

End.

The argument behind the proof is as follows: When A2 asks the query j =

Y r2 mod p, A′2 answers J∗ and Askj is set be true. Since the random string

r2 is chosen by A′2, it has the ability to check whether the query j is equal

to Y r2 mod p or not. Once Askj is true and A2 asks a query h = xb||γb, it is

almost equivalent to Dsk(y1, y3) = Dsk(y
′
1, y
′
3 · (J∗)−1 mod p), since A2 has no

clue to γb̄ where b̄ is the complement of bit b. The probability to ask h = xb̄||γb̄

is 2−(2k1) which is negligible. Under the condition Askj=true, A′2 can expect

that it will output a correct bit b if A2 asks either h = x0||γ0 or h = x1||γ1. If

A2 asks neither of them, A′2 can expect that A2 cannot distinguish (y′1, y
′
2, y
′
3)

59

from a correct ciphertext.

To analyze the success probability of A′ = (A′1,A′2), we recall the defini-

tions of success probabilities of A′ = (A′1,A′2) and A = (A1,A2) in Defini-

tion 9. Consider the follows events to capture the success probabilities of

A = (A1,A2) and A′ = (A′1,A′2)

Askj: is true if a J -query j = Y r2 mod p was made by A2.

Askb: is true if aH-query h = xb||γb was made by A2.

Askb̄: is true if aH-query h = xb̄||γb̄ was made by A2.

The probability of SuccIND-CPA
A′,Π (k) can be obtained by considering the condi-

tions of the product of events Askj∧Askb and its complement. Then,

Pr[SuccIND-CPA
A′,Π (k)] = Pr[SuccIND-CPA

A′,Π (k)|Askj ∧ Askb] · Pr[Askj ∧ Askb] +

Pr[SuccIND-CPA
A′,Π (k)|¬Askj ∨ ¬Askb] · Pr[¬Askj ∨ ¬Askb].

The probability of ¬Askj ∨ ¬Askb can be written as,

Pr[¬Askj ∨ ¬Askb] = Pr[(¬Askj ∨ ¬Askb) ∧ Askb̄] + Pr[(¬Askj ∨ ¬Askb) ∧ ¬Askb̄].

Then,

Pr[SuccIND-CPA
A′,Π (k)] = Pr[SuccIND-CPA

A′,Π (k)|Askj ∧ Askb] · Pr[Askj ∧ Askb] +

Pr[SuccIND-CPA
A′,Π (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄] · Pr[(¬Askj ∨ ¬Askb) ∧ Askb̄] +

Pr[SuccIND-CPA
A′,Π (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄] · Pr[(¬Askj ∨ ¬Askb) ∧ ¬Askb̄].(4.1)

Similarly,

Pr[SuccIND-CPA
A,Π (k)] = Pr[SuccIND-CPA

A,Π (k)|Askj ∧ Askb] · Pr[Askj ∧ Askb] +

Pr[SuccIND-CPA
A,Π (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄] · Pr[(¬Askj ∨ ¬Askb) ∧ Askb̄] +

Pr[SuccIND-CPA
A,Π (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄] · Pr[(¬Askj ∨ ¬Askb) ∧ ¬Askb̄].(4.2)

60

From the specification of A′, we have the following equations,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pr[SuccIND-CPA
A,Π (k)|Askj ∧ Askb] = 1,

Pr[SuccIND-CPA
A,Π (k)|(¬Askj ∨ ¬Askb) ∧ Askb̄] = 0

Pr[SuccIND-CPA
A,Π (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄] =

Pr[SuccIND-CPA
A′,Π (k)|(¬Askj ∨ ¬Askb) ∧ ¬Askb̄]

Equation (4.1) and Equation (4.2) are computed as follows.

Pr[SuccIND-CPA
A′,Π (k)]− Pr[SuccIND-CPA

A,Π (k)]

= (1− Pr[SuccCPA
A,Π(k)|Askj ∧ Askb]) · Pr[Askj ∧ Askb]−

Pr[SuccCPA
A,Π(k)|(¬Askj ∨ ¬Askb) ∧ Askb̄] · Pr[(¬Askj ∨ ¬Askb) ∧ Askb̄]

≥ −Pr[(¬Askj ∨ ¬Askb) ∧ Askb̄]

= −Pr[(¬Askj ∧ Askb̄) ∨ (¬Askb) ∧ Askb̄)]

≥ −(Pr[¬Askj ∧ Askb̄] + Pr[¬Askb ∧ Askb̄]).

Since γb̄ is a uniform random string over {0, 1}2k1, we have Pr[¬Askj ∧

Askb̄] ≤ qH · 2−2k1 and Pr[¬Askb ∧ Askb̄] ≤ qH · 2−2k1 . Thus,

Pr[SuccIND-CPA
A′,Π (k)] ≥ Pr[SuccIND-CPA

A,Π (k)]− (Pr[¬Askj ∧ Askb̄] + Pr[¬Askb ∧ Askb̄])

≥ ε+ 1

2
− qH

22k1−1
. (4.3)

and we obtain that ε′ = ε− qH · 2−(2k1−2).

The running time of A′ is at most time t+ qH · c + qJ · c.

Theorem 4 and Theorem 5 show that the encryption scheme is secure in

the PA sense. Intuitively, PE can simulate the decryption oracle in the IND-

CCA2 sense with an overwhelming probability. Via Proposition 1, we can

prove Π is secure in the IND-CCA2 sense in Theorem 6.

61

Theorem 6 (Π: IND-CCA2). If there exists a (t, qH, qJ , qD, ε)-breakerA = (A1,A2)

for Π in the sense of IND-CCA2 in the random oracle model, then there exist a con-

stant c and a (t′, 0, 0, 0, ε′)-breaker A′ = (A′1,A′2) for Π in the sense of IND-CPA

in the standard model where

t′ = t+ qHqJ (TEpk
+ c) + qHc+ qJ c and ε′ = (ε− qH · 2−(2k1−2)) · λ(k)qD .

Proof. From the result of Theorem 6, it is found out that the encryption

scheme Π is secure in the IND-CCA2. The proof is omitted since it is clear

from the following specification of adversary A′ combined with the proofs

in Theorem 4 and Theorem 5.

62

Adversary: A′1(pk)
ΛH, ΛJ←empty
Run ADsk,H,J

1 (pk)
Do while A1 does not makeH-query h, J -query j,
D-query (y1, y2, y3)

′

If A1 makes J -query j
If j �∈ ΛJ
j ←R {0, 1}k
Put (j, J) on ΛJ
Answer J to A1

Else j ∈ ΛJ
Answer J to A1 such that (j, J) ∈ ΛJ

Else if A1 makesH-query h
If h �∈ ΛH
H ←R {0, 1}l
Put (h,H) on ΛH
Answer H to A1

Else h ∈ ΛH
Answer H to A1 such that (h,H) ∈ ΛH

Else if A1 makes D-query (y1, y2, y3)
′

Run PE(ΛH,ΛJ , C, (y1, y2, y3)
′, pk)

PE outputs x′

Answer x′ to A1

A1 outputs (x0, x1, state)
γ0, γ1←R {0, 1}2k1

β0, β1←R {0, 1}l
Return (x0||γ0||β0, x1||γ1||β1, state)

End.

Encryption oracle: OEN(x0||γ0||β0, x1||γ1||β1, pk)
b←R {0, 1}
(y1, y3)← Epk(xb||γb||βb, R)
Return (y1, y3)

End.

63

Adversary: A′2(x0||γ0||β0, x1||γ1||β1, state, (y1, y3))
r2 ←R Zq ; J∗ ←R {0, 1}k
y′1 ← y1; y′2 ← gr2 mod p; y′3 ← y3 · J∗ mod p
Run ADsk,H,J

2 (x0, x1, state, (y
′
1, y
′
2, y
′
3))

C ← (y′1, y
′
2, y
′
3)

Do while A2 does not makeH-query h and J -query j
D-query (y1, y2, y3)

′

Askj ←false
If A1 makes J -query j

If j = Y r2 mod p
Answer J∗ to A2

Put (j, J∗) on ΛJ
Askj ←true

Else if j �∈ ΛJ
J ←R {0, 1}k
Answer J to A2

Else j ∈ ΛJ
Answer J to A2 such that (j, J) ∈ ΛJ

Else if A1 makesH-query h
If Askj =true and h = xb||γb

Stop A2 and output b
Else if h �∈ ΛH
H ←R {0, 1}l
Put (h,H) on ΛH
Answer H to A2

Else h ∈ ΛH
Answer H to A2 such that (h,H) ∈ ΛH

Else if A1 makes D-query (y1, y2, y3)
′

Run PE(ΛH,ΛJ , C, (y1, y2, y3)
′, pk)

PE outputs x′

Answer x′ to A1

A2 outputs b
Return b

End.

Now, we have to consider whether the ElGamal-Extension encryption scheme

Π is secure when using only two random numbers r1, r2 for each piece xi.

We first show that when using only one random number r in the ElGamal

encryption scheme Π, what the advantage of the adversary A = (A1,A2) is

in the IND-CPAPAIR sense in Definition 12.

64

Basically, A1 with the input pk arbitrarily outputs three plaintexts x∗, x0, x1

with the same length |x∗| = |x0| = |x1|.

Adversary: A1(pk)
Return (x∗, x0, x1, state)

End.

Then, the ciphertexts (y∗1, y
∗
3) = Epk(x

∗, r) and (y1, y3) = Epk(xb, r) computed

by the encryption oracle OEN , where b ∈ {0, 1} is a random bit and r ∈ Zq is

a random string.

Encryption oracle: OEN(x∗, x0, x1, pk)
r ←R Zq

(y∗1, y
∗
3)← Epk(x

∗, r)
b←R {0, 1}
(y1, y3)← Epk(xb, r)
Return (x∗ � (y∗1, y

∗
3), (y1, y3))

End.

Finally, (x0, x1, state, x
∗ � (y∗1, y

∗
3), (y1, y3)) are inputted toA2. The aim ofA2

is to output the correct b.

Adversary: A2(x0, x1, state, x
∗ � (y∗1, y

∗
3), (y1, y3))

Y r ← y∗3 · (x∗)−1 mod p
If y3 · (Y r)−1 mod p == x0

Return 0
Else

Return 1
End.

From the specification of A2, since y∗3 = x∗ · Y r mod p and x∗ � (y∗1, y
∗
3),

the value of Y r is easily revealed by computing y∗3(x∗)−1 mod p. Then, since

65

y3 = xb ·Y r mod p, A2 can determine if y3 · (Y r)−1 mod p is equal to x0. If it is

then outputs 0 otherwise output 1. Thus,A2 always correctly outputs b, that

is, Pr[SuccIND-CPAPAIR
A,Π (k)] = 1 and AdvIND-CPAPAIR

A,Π (k) = 2 ·Pr[SuccIND-CPAPAIR
A,Π (k)]−

1 = 1.

The pair of plaintext-ciphertext x∗ � (y∗1, y
∗
3) is the “cryptanalysis training”

for the adversary. Here, the reason for giving the pair x∗ � (y∗1, y
∗
3) from

OEN not generated by the adversary herself is that the adversary cannot

generate the pair x∗ � (y∗1, y
∗
3) using the same random number r. Hence,

the training is provided by OEN .

Obviously, if the encryption oracle chooses a different r, this training does

not give any help to the adversary and the scheme is secure in the IND-

CPAPAIR sense. In the following theorem, we show only two random num-

bers r1, r2 in the ElGamal-Extension encryption scheme is secure in the IND-

CPAPAIR sense.

Theorem 7 (Π: IND-CPAPAIR). If there exists a (t, qH, qJ , ε)-breakerA = (A1,A2)

for Π in the IND-CPAPAIR sense in the random oracle model and the probability

Pr[¬SuccPAIR
A,Π

(k)] is non-negligible, then there exists a constant c and a (t′, 0, 0, ε′)-

breaker A′ = (A′1,A′2) for Π in the IND-CPAPAIR sense in the standard model,

where

t′ = t+ qH · c+ qJ · c and ε′ = (ε− qH
22k1−2

) · Pr[¬SuccPAIR
A,Π

(k)]− Pr[SuccPAIR
A,Π

(k)].

Proof. The event SuccPAIR
A,Π (k) will be defined later. Basically, A′1 calls A1

as a subroutine. The answers for H-query and J -query are the same as

in Theorem 5. When A1 halts and outputs (x∗, x0, x1, state), A′1 outputs

(x∗||γ∗||β∗, x0||γ0||β0, x1||γ1||β1, state) where γ∗, γ0, γ1 are (2k1)-bit random

66

strings and β∗, β0, β1 are l-bit random strings.

Adversary: A′1(pk)
ΛH, ΛJ←empty
Run A1(pk)

Do while A1 does not makeH-query h and J -query j
If A1 makes J -query j

If j �∈ ΛJ
j ←R {0, 1}k
Put (j, J) on ΛJ
Answer J to A1

Else j ∈ ΛJ
Answer J to A1 such that (j, J) ∈ ΛJ

Else if A1 makesH-query h
If h �∈ ΛH
H ←R {0, 1}l
Put (h,H) on ΛH
Answer H to A1

Else h ∈ ΛH
Answer H to A1 such that (h,H) ∈ ΛH

A1 outputs (x∗, x0, x1, state)
γ∗, γ0, γ1←R {0, 1}2k1

β∗, β0, β1←R {0, 1}l
Return (x∗||γ∗||β∗, x0||γ0||β0, x1||γ1||β1, state)

End.

The ciphertexts (y∗1, y
∗
3) = Epk(x

∗||γ∗||β∗, R∗) and (y1, y3) = Epk(xb||γb||βb, R1)

are computed by the encryption oracle OEN , where b ∈ {0, 1} is a random

bit and R∗, R1 ∈ Zq are random strings.

Encryption oracle: OEN(x∗||γ∗||β∗, x0||γ0||β0, x1||γ1||β1, pk)
R∗, R1 ←R Zq

(y∗1, y
∗
3)← Epk(x

∗||γ∗||β∗, R∗)
b←R {0, 1}
(y1, y3)← Epk(xb||γb||βb, R1)
Return (x∗ � (y∗1, y

∗
3), (y1, y3))

End.

67

The algorithm A′2 is similar to Theorem 5. The difference is that it sets

y∗1 = y′1, y
∗
2 = y′2 = gr2, and y∗3 = α, where α is a k-bit random string.

Note that x∗ � (y∗1, y
∗
2, y
∗
3) is treated as a pair of plaintext-ciphertext.

Adversary: A′2(x0||γ0||β0, x1||γ1||β1, x
∗||γ∗||β∗ � (y∗1, y

∗
3), state, (y1, y3))

r2 ←R Zq ; J∗ ←R {0, 1}k
y∗1, y

′
1 ← y1; y∗2, y

′
2 ← gr2 mod p; y′3 ← y3 · J∗ mod p

α←R {0, 1}k; y∗3 ← α
Run A2(x0, x1, x

∗ � (y∗1, y
∗
2, y
∗
3), state, (y

′
1, y
′
2, y
′
3))

Do while A2 does not makeH-query h and J -query j
Askj ←false
If A1 makes J -query j

If j = 2 · Y r2 mod p
Answer J∗ to A2

Put (j, J∗) on ΛJ
Askj ←true

Else if j �∈ ΛJ
J ←R {0, 1}k
Answer J to A2

Else j ∈ ΛJ
Answer J to A2 such that (j, J) ∈ ΛJ

Else if A1 makesH-query h
If Askj =true and h = xb||γb

Stop A2 and output b
Else if h �∈ ΛH
H ←R {0, 1}l
Put (h,H) on ΛH
Answer H to A2

Else h ∈ ΛH
Answer H to A2 such that (h,H) ∈ ΛH

A2 outputs b
Return b

End.

From the specification of A′2, it simulates the encryption oracle OEN to gen-

erate a pair x∗ � (y∗1, y
∗
2, y
∗
3) for the cryptanalysis training. If A2 detects

that pair is not valid, the simulation fails. Thus, A′2 cannot make full use

of the A2’s ability to get non-negligible advantage. Let SuccPAIR
A,Π (k) be the

68

event that A2 detects that pair is not valid. We can rewrite the probabil-

ity of SuccIND-CPA
A′,Π (k) in the inequality (4.3) as the conditional probability of

SuccIND-CPA
A′,Π (k) given ¬SuccIND-CPA

A′,Π (k).

Pr[SuccIND-CPA
A′,Π (k)|¬SuccPAIR

A,Π (k)] ≥ ε+ 1

2
− qH

22k1−1
. (4.4)

By the law of total probability,

Pr[SuccIND-CPA
A′,Π (k)] = Pr[SuccIND-CPA

A′,Π (k)|SuccPAIR
A,Π (k)] · Pr[SuccPAIR

A,Π (k)] +

Pr[SuccIND-CPA
A′,Π (k)|¬SuccPAIR

A,Π (k)] · Pr[¬SuccPAIR
A,Π (k)].

From the specification of A′, we know that

Pr[SuccIND-CPA
A′,Π (k)|SuccPAIR

A,Π (k)] = 0 (4.5)

Via Inequality (4.4) and Equation (4.5), we obtain

Pr[SuccIND-CPA
A′,Π (k)] ≥ (

ε+ 1

2
− qH

22k1−1
) · Pr[¬SuccPAIR

A,Π (k)].

To calculate the advantage of A′,

AdvIND-CPA
A′,Π (k) = 2 · Pr[SuccIND-CPA

A′,Π (k)]− 1

≥ 2 ·
(

(
ε+ 1

2
− qH

22k1−1
) · Pr[¬SuccPAIR

A,Π (k)]

)
− 1

= (ε+ 1− qH
22k1−2

) · Pr[¬SuccPAIR
A,Π (k)]− 1

= (ε− qH
22k1−2

) · Pr[¬SuccPAIR
A,Π (k)]− (1− Pr[¬SuccPAIR

A,Π (k)])

= (ε− qH
22k1−2

) · Pr[¬SuccPAIR
A,Π (k)]− Pr[SuccPAIR

A,Π (k)]

Finally, it should be determined if the probability Pr[¬SuccPAIR
A,Π (k)] is negli-

gible or not. Obviously, if Pr[¬SuccPAIR
A,Π (k)] is non-negligible, then the proof

is concluded. For the running time of A′, it is similar to that in Theorem 5.

To show that Pr[¬SuccPAIR
A,Π (k)] is non-negligible consider the following.

69

We claim that the adversary can distinguish whether a pair of plaintext-

ciphertext is at least as hard as the DDH problem. Here, we construct a

game, called PAIR. PAIR is defined via the following game played by the

adversary A = (A1,A2).

First, the encryption scheme’s key generation algorithm is run, with a secu-

rity parameter as input. Next, the adversary A1 chooses a plaintext x∗ and

sends it to an encryption oracle. The encryption oracle encrypts x∗ to obtain

the ciphertext c0 and chooses a random string c1 with the same length as c0

(|c0| = |c1|). The encryption oracle chooses a bit b at random and give a pair

x∗ � cb to the adversary A2.

After receiving the pair from the encryption oracle, the adversary A2 deter-

mines if the pair x∗ � cb is correct or not. At the end of the game, the adver-

saryA2 outputs “Yes” if she thinks the pair is correct; otherwise, she outputs

“No”. If the probability that the answer is correct, Pr[SuccPAIR
A,Π (k)] =

1

2
+
ε

2
,

then the adversary’s advantage is defined to be ε. Recall the proof in Theo-

rem 4, once the adversary has the ability to ask J -query j = 2 · Y r2 mod p,

she also can ask J -query j = Y r2 mod p. Assume that she can ask j =

Y r2 mod p. We can see that the game PAIR is in the original ElGamal en-

cryption scheme. The following theorem shows that PAIR in the ElGamal

encryption is at least as hard as the DDH problem.

Theorem 8 (PAIR of Π as least as hard as the DDH). If there exists a (t, ε)-

breaker A = (A1,A2) for Π in the PAIR sense in the standard model, then there

exists constants c and a (t′, ε′)-translator T solves the DDH problem with over-

whelming probability, where

ε′ > ε and t′ = t+ c.

70

and c denotes the time of a coin flipping and some overhead.

Proof. We construct a translator T to solve an instance (g,X, Y, Z) of the

DDH problem in Definition 6 as follows.

Translator: T (g,X, Y, Z)
Run A1(pk)
A1 outputs x∗

c0 ← x∗ · Z
c1 ←R {0, 1}k
b←R {0, 1}
Output 1 if A2(x

∗ � (X, cb)) =Yes
End.

Let p1 = Pr[T (g, gr, gs, grs) = 1] and p2 = Pr[T (g, gr, gs, gz) = 1]. By the

assumption of A, p1 ≥
1

2
+
ε

2
. If z ←R Zq , x∗ · gz and c1 are both uniformly

distributed over Zp, then we have p2 =
1

2
. Thus, T solves the DDH problem

with advantage
ε′

2
= |p1−p2| >

ε

2
. From the specification of T , it runs within

time t+ c.

4.3 Performance Analysis

In this section, we shall compare the computational complexity and cipher-

text size of the ElGamal-Extension encryption scheme with those of the El-

Gamal encryption scheme and Fujisaki-Okamoto’s conversion of the ElGa-

mal encryption scheme [31]. We first define the following notations.

71

TEXP the time for computing modular exponentiation.
TMUL the time for computing modular multiplication.
TINV the time for computing modular inversion.
TH the time for computing the adoptedH(·).
TJ the time for computing the adopted J (·).
TEQU the time for comparing two strings are equal or not.

Assume that the whole plaintext x with length n · k is divided into x1, x2,

· · · , xn and the length of each xi is k. To encrypt xi, the ElGamal en-

cryption scheme requires 2TEXP + TMUL and the corresponding ciphertext

(y1, y3) has the length 2 · k. To derive the plaintext xi, it requires TEXP +

TMUL + TINV. Hence, the total computational complexity of encrypting x re-

quires n · (2TEXP + TMUL), the total length of the corresponding ciphertexts

is n · 2 · k, and the total computational complexity of decrypting requires

n · (TEXP + TMUL + TINV).

For the same plaintext x with the length n · k in the ElGamal-Extension en-

cryption scheme, the maximal length of plaintext is limited by k0. The num-

ber of divisions is
n · k
k0

= n+ �n · (2k1 + l)

k0
�. Let n′ = n+ �n · (2k1 + l)

k0
�. To

encrypt x1, the ElGamal-Extension scheme requires 4TEXP+3TMUL+TH +TJ

and the corresponding ciphertext (y1, y2, y3,1) has the length 3 · k. To derive

the plaintext x1, it requires 2TEXP + 3TMUL + TH + TJ + TINV + TEQU. Note

that, to encrypt other n′− 1 plaintexts x2, · · · , xn′ , it is not necessary to com-

pute the values y1 = gr1 mod p, y2 = gr2 mod p, Y r1 mod p, and Y r2 mod p

again. Hence, the time 4TEXP is only needed for x1. The total computational

complexity of encrypting x requires 4TEXP + n′ · (3TMUL + TH + TJ). The

ciphertext (y1, y2, y3,1, · · · , y3,n′) has the length 2 · k + n′ · k. To decrypt other

n′−1 ciphertexts (y3,2, · · · , y3,n′), the values ys
1 mod p and ys

2 mod p have also

been computed. The total computational complexity of decrypting requires

72

2TEXP + n′ · (3TMUL + TH + TJ + TINV + TEQU).

For the same plaintext x with the length n · k in Fujisaki-Okamoto’s con-

version of the ElGamal encryption scheme, the maximal length of plaintext

is limited by k0 + k1 + l. Let n′′ =
n · k

k0 + k1 + l
=
n · (k0 + k1 + l) + n · k1

k0 + k1 + l
=

n + � n · k0

k0 + k1 + l
� be number of pieces. For each encryption and decryption,

which only require additional one random function operation in the ElGa-

mal encryption scheme. Here, we directly show the computational com-

plexity of their scheme in Table 4.1. Please see [31] for more details.

According to Table 4.1, under the same length n · k of plaintext, it is obvi-

ous that the ElGamal-Extension encryption scheme is more efficient than

the ElGamal encryption scheme. As we know, to compute gc mod p by

repeatedly squaring and multiplying requires an average of 240 1024-bit

modular multiplications, i.e., TEXP = 240TMUL. For the computational com-

plexity of encryption and decryption in the ElGamal encryption scheme

and Fujisaki-Okamoto’s scheme, the number of TEXP is dependent on n

and n′′, respectively. But it is fixed in the ElGamal-Eextension encryption

scheme. For the ciphertext size, it is 2n times of k in the ElGamal encryp-

tion scheme and Fujisaki-Okamoto’s scheme. In the ElGamal-Extendsion

encryption scheme, it is 2 + n′ times of k. The ElGamal-extension encryp-

tion scheme has less ciphertext size if n′ < 2 · (n − 1). On the other hand,

the ElGamal-Extension encryption scheme provide the same highest level

of security given IND-CCA2 notation as in Fujisaki-Okamoto’s scheme.

73

Ta
bl

e
4.

1:
C

om
pu

ta
ti

on
al

co
m

pl
ex

it
y,

ci
ph

er
te

xt
si

ze
am

on
g

th
re

e
en

cr
yp

ti
on

sc
he

m
es

E
nc

ry
pt

io
n

D
ec

ry
pt

io
n

C
ip

he
rt

ex
ts

iz
e

G
O

A
L-

AT
K

E
lG

am
al

sc
he

m
e

n
·(

2T
E

X
P

+
T

M
U

L
)

n
·(
T

E
X

P
+
T

M
U

L
+
T

IN
V
)

n
·2
·k

IN
D

-C
PA

Fu
jis

ak
i-

O
ka

m
ot

o
sc

he
m

e
n
′′
·(

2T
E

X
P

+
T

M
U

L
+
T

J
)

n
′′
·(
T

E
X

P
+
T

M
U

L
+
T

IN
V

n
·2
·k

IN
D

-C
C

A
2

+
T

J
+
T

E
Q

U
)

E
lG

am
al

-e
xt

en
si

on
sc

he
m

e
2T

E
X

P
+
n
′ ·

(3
T

M
U

L
+
T

H
+
T

J
)

2T
E

X
P

+
n
′ ·

(3
T

M
U

L
+
T

H
2
·k

+
n
′ ·
k

IN
D

-C
C

A
2

+
T

J
+
T

IN
V

+
T

E
Q

U
)

∗
w

it
h

th
e

sa
m

e
si

ze
n
·k

of
a

pl
ai

nt
ex

tx
.

74

4.4 Discussions

In this Chapter, we have proposed an efficient ElGamal-Extension encryp-

tion scheme and showed it is secure in the IND-CCA2 sense in the random

oracle model. Not only does the proposed scheme provides higher secure

level, but also the computational complexities of encryption and decryp-

tion in the proposed scheme are more efficient than those in the ElGamal

encryption scheme and Fujisaki-Okamoto’s scheme when the plaintext is

large enough.

Furthermore, we design a new IND-CPAPAIR to demonstrate the security of

the ElGamal-Extension encryption scheme when using only two random

numbers. There is a question as to whether IND-CPAPAIR accurately demon-

strate the security. There maybe a more suitable pair goal and adversary

model for demonstrating the security. It is conjectured that involvement of

the decryption oracle in providing the adversary with plaintext-ciphertext

cryptanalysis training in IND-CCA and IND-CCA2 (says IND-CCAPAIR and

IND-CCA2PAIR) do not provide the adversary with any undue advantage.

If we give the decryption oracle a different position in IND-CCAPAIR and

IND-CCA2PAIR, the results and advantage given to the adversary may be

different. For example, if the decryption oracle is lain in after the adversary

obtain the plaintext-ciphertext pair and before she sends x0, x1, what are the

effects? Future work will undertake to answer these and other questions.

75

Chapter 5

Password Authenticated Key
Exchange Protocols

5.1 Introduction

The rapid growth of networks in both number and size encourages more

and more computers to link together for sharing various kinds of data and

exchanging huge amounts of information. Two parties need to encrypt and

authenticate their message in order to protect the privacy and authentic-

ity of these messages. One way of doing so is to use public key encryp-

tion and signatures, but which need the support of the Public Key Infras-

tructure (PKI). The cost associated with these primitives may be too high

for certain applications. Furthermore, Law et al. [51] proposed the MQV

protocol, which is still protected under the PKI. Smart [75] and Yi [86] fur-

ther proposed identity-based authenticated key exchange protocols based

on Weil pairing to obtain lower communication overhead and less compu-

tation complexity. However, the involved certification management, cryp-

tography calculation, and the additional communication overhead caused

76

by the digital signature.

Another way of addressing this problem is for users to first establish a com-

ment secret key via a key exchange protocol such as the Diffie-Hellman key

exchange protocol and then use this key to derive keys for symmetric en-

cryption and message authentication schemes. However, the secret key

established from the key exchange protocol should be authenticated first.

Otherwise, the channel between the users is not safe. For example, Diffie-

Hellman key exchange protocol suffers from the Man-in-the-Middle attack.

There are many types of key exchange protocols currently in use. They all

have their own strengths and weaknesses. One of the most popular pro-

tocols is the 3-party Kerberos authentication system [77]. The Internet Key

Exchange (IKE) protocol uses the 2-party SIGMA protocol [48] as a standard

for signature-based modes. Password based protocols are another type of

key exchange system that have received attention recently.

PASSWORD-BASED AUTHENTICATED KEY EXCHANGE. Password-based au-

thenticated key exchange (PAKE) protocols are the most widely used meth-

ods. They assume a more realistic scenario in which two parties share a

common secret key are not uniformly distributed over a large space, but

rather chosen from a small set of possible values (a four-digit pin, for exam-

ple). It is more convenient since human-memorable passwords are simpler

to use without any additional cryptographic devices. In practice, people

hardly find long random string passwords easy to use and remember. It

would be much more user-friendly if the password is a meaningful string

that people can recognize easily such as a natural language phrase. How-

ever, the human-memorable passwords narrow down the possibilities and

77

make it easier for adversary to succeed guessing the passwords with a non-

negligible chance, so-called dictionary (password guessing) attacks. Dictio-

nary attacks are attacks in which an adversary tries to break the security of

a scheme by a brute-force method, in which it tries all possible combina-

tions of passwords in a given a small set of values (i.e., the dictionary). The

dictionary attacks are usually divided in two categories: off-line and on-line

dictionary attacks.

The goal of password-based key exchange protocols is to restrict the ad-

versary’s success to on-line dictionary attacks only. In these attacks, the

adversary must be present and interact with the system in order to be able

to verify whether its guess is correct. The system can detect on-line guess-

ing by counting the failed trials. If a certain number of failed attempts has

occurred, the use of a password is invalidated or blocked.

PASSWORD-BASED AUTHENTICATED KEY EXCHANGE IN THE 3-PARTY SET-

TING. In large-scale communication environments, similar to the disadvan-

tage of symmetric cryptosystem in Section 2.1, password management can

be a tough task. Assume that a communication network has n users, and

any two of them exchange a key via the 2-party key exchange protocol.

Therefore, there will be
n(n− 1)

2
passwords to be shared, and all those pass-

words have to be stored securely. Many works [37, 38, 50, 78] have extended

the 2-party key exchange protocol into the 3-party applications, in which a

trusted server S exists to mediate between the two communication parties

A and B to allow their mutual authentication. In this way, any user only

needs to share a password with the server. It is particularly well suited for

large-scale communication environments.

78

A nature generic construction of a 3-party PAKE protocol from any 2-party

PAKE protocol presented by Abdalla, Fouque, and Ponitcheval [4]. In this

thesis, we focus on the 2-party PAKE and present a protect password change

(PPC) protocol. If the use of password has a certain number of failed at-

tempts, the users can via the PPC protocol to arbitrarily change their pass-

words.

5.2 Related Work

Password-based authenticated key exchange (PAKE) has been extensively

studied in the last few year. The seminal work in this area is the encrypted

key exchange protocol proposed by Bellovin and Merritt [16], where two

users in this area is the encrypted version of the Diffie-Hellman key ex-

change protocol. In their protocol, each flow is encrypted using the pass-

word shared between these two users as the symmetric key.

On the other hand, by using a pre-shared password technique along with

the Diffie-Hellman scheme, Seo and Sweeney [70] proposed a PAKE pro-

tocol without any symmetric cryptosystems or asymmetric cryptosystems.

Two parties (a client C and a server S) online can use a pre-shared password

technique to authenticate each other and apply the Diffie-Hellman scheme

to establish a session key. Sun [80], Tseng [81] and Lu, Lee, and Hwang

[54] separately showed that the Seo-Sweeney PAKE protocol is insecure un-

der the threat of the replay attack and off-line dictionary attack. At the

same time, Lin, Chang, and Hwang [53] and Tseng [81] separately proposed

an improvement on the Seo-Sweeney PAKE protocol to withstand these at-

79

tacks. However, Hsieh, Sun, and Hwang [42] have pointed out that the Lin-

Chang-Hwang scheme is still vulnerable to the off-line dictionary attack.

On the other hand, Ku and Wang [49] have also shown that Tseng’s scheme

is vulnerable to the backward replay attack [36] and forged authenticator

attack, and they gave an improvement on Tseng’s scheme in the meantime.

Unfortunately, the above schemes or improved schemes lack a proper se-

curity model. The first security model for 2-party authenticated key ex-

change protocol was introduced by Bellare and Rogaway [11]. Later, Bellare

et al. [10] and Boyko et al. [20] separately extended the security model

to the password-based setting, with security analyses of the above 2-party

password-based key exchange, under idealized assumptions, such as the

random oracle and the ideal cipher models. Furthermore, some 2-party

PAKE protocols [32, 34, 46] are provably secure in the standard model. For

the 3-party setting, the first work in this area is the protocol of Needham

and Schroeder [60], which inspired the Kerberos distributed system. Later,

Bellare and Rogaway [14] introduced a formal security model in this sce-

nario along with a construction of the first provably secure symmetric-key-

based key distribution scheme. Recently, the first provably secure 3-party

PAKE protocol was proposed Abdalla, Fouque, and Ponitcheval [4], which

define a new notation called key privacy. That is even though the server’s

help is required to establish a session key between two users in the system,

the server should not be able to gain any information on the value of that

session key. In [4], they called their new and stronger model as the Real-

Or-Random (ROR) model and Bellare et al.’s model as the Find-Then-Guess

(FTG) model. It is worth pointing out that, as proven in [4], any scheme that

is proven in the ROR model is also secure in the FTG model. The converse,

80

however, is not necessarily true due to the non-tightness of the security re-

duction.

In Section 5.4, we examine some PAKE-related schemes [49, 53, 70, 81] and

mounted a forged authenticator attack on those schemes to successfully

cheat the two parties into believing in the wrong session key. Table 5.1

below is a summary table of the security of all those schemes. Recently,

Yeh and Sun [85], and Kobara and Imai [47] have also combined the pre-

shared password technique and the Diffie-Hellman scheme to achieve the

same purpose the PAKE protocol intends to, respectively. Both schemes can

withstand those attacks shown in Table 5.1 and provide perfect forward se-

crecy [45]. Lee et al. [52] further proposed the parallel version of the Yeh-

Sun scheme. Two parties in their scheme compute the message during the

protocol simultaneously. In fact, the scheme still need that one of two par-

ties to send out the request message first and then another one knows to

prepare the reply message. Hence, the protocol is not real parallel.

On the other hand, some schemes additionally provides the protected pass-

word change (PPC) protocols, which allow a client changes its password

freely. However, we point out that the Tseng-Jan-Chien [82] and the Hwang-

Yeh [43] schemes are vulnerable to the forged authenticated; that is, any

adversary can intercept the request for changing passwords sent by a legal

client and modify it with a wrong password along with a forged authenti-

cator.

In Chapter 6, we shall present a simpler authenticated key exchange pro-

tocol by modifying the Yeh-Sun scheme [85]. This scheme is proven secure

when the symmetric-encryption primitive is instantiated via a mask genera-

81

Ta
bl

e
5.

1:
Su

m
m

ar
y

of
re

la
te

d
sc

he
m

es
in

PA
K

E

Se
o-

Sw
ee

ne
y

[7
0]

Ts
en

g
[8

1]
L

in
et

al
.[

53
]

K
u-

W
an

g
[4

9]

W
it

hs
ta

nd
M

an
-i

n-
M

id
d

le
A

tt
ac

k
Ye

s
Ye

s
Ye

s
Ye

s

W
it

hs
ta

nd
D

ic
ti

on
ar

y
A

tt
ac

k
*N

o
[5

4,
80

]
*N

o
[S

ec
ti

on
5.

4]
*N

o
[4

2]
*N

o
[S

ec
ti

on
5.

4]

W
it

hs
ta

nd
R

ep
la

y
A

tt
ac

k
*N

o
[8

1]
Ye

s
Ye

s
Ye

s

W
it

hs
ta

nd
B

ac
kw

ar
d

R
ep

la
y

A
tt

ac
k

*N
o

[4
9]

*N
o

[4
9]

Ye
s

Ye
s

W
it

hs
ta

nd
Fo

rg
ed

A
ut

he
nt

ic
at

or
A

tt
ac

k
*N

o
[S

ec
ti

on
5.

4]
*N

o
[4

9]
,[

Se
ct

io
n

5.
4]

*N
o

[S
ec

ti
on

5.
4]

*N
o

[S
ec

ti
on

5.
4]

Pr
ov

id
e

Pe
rf

ec
tF

or
w

ar
d

Se
cr

ec
y

*N
o

[8
0]

Ye
s

Ye
s

*N
o

[S
ec

ti
on

5.
4]

*N
o

[r
ef

er
en

ce
]:

[r
ef

er
en

ce
]p

oi
nt

s
ou

tt
ha

tt
he

sc
he

m
e

ca
nn

ot
w

it
hs

ta
nd

/
ac

hi
ev

e
th

e
at

ta
ck

/
pe

rf
ec

tf
or

w
ar

d
se

cr
ec

y.

82

tion function that is the product of the message with a hash of the password.

At the same time, we shall also present a new protected password change

protocol which unlike the previously proposed schemes [47, 49, 53, 70, 81,

85] where the parties cannot arbitrarily change their own passwords, offers

users the freedom of changing passwords at will. The proposed PAKE and

PPC schemes are formally proven using Ballare, Poincheval and Rogaway’s

security model [10].

5.3 The Security Model

In this section, we recall the security model of Bellare, Pointcheval, and Ro-

gaway (FTG model) [10], which is principally used formally as follows.

(1) Define the Characteristics of Participating Entities

PROTOCOL PARTICIPANTS. We denote by C and S two parties that can par-

ticipate in the key exchange protocol P . A party may have several instances,

called oracles, involved in distinct concurrent executions of P . We denote Ui

as the instance i of a participant U , which is either a client or a server.

LONG-LIVED KEYS. Each client C ∈ client holds a low-entropy pwC . Each

server S ∈ server holds a value pwS[C]. The value pwS[C] is denoted a

derived password. Schemes where pwS[C] = pwC are called symmetric; in

general, pwS[C] may differ from pwC , i.e. S employ a hash G and stores pwC

as G(pwC). We call pwC and pwS[C] as the long-lived keys and assume that

the password is drawn from the dictionary Dict according to the distribution

Dpw. Dpw(q) denotes as the probability to be in the most probable set of q

83

passwords as follows:

Dpw(q) = max
ρ⊆Dict

{
Pr

pw∈Dpw

[pw ∈ ρ|#ρ ≤ q]

}
.

Note that if we denote by UN the uniform distribution among N passwords,

UN (q) = q/N .

SESSION IDENTITY AND PARTNER IDENTITY. The session identity SID is

used to uniquely name the ensuing session. SID(U i) is the concatenation of

all flows with the oracle U i. PID(U i)=U ′, denoted as U i, is the communica-

tion with another participant U ′. Both SID and PID are publicly available.

ACCEPTING AND TERMINATING. There are two states, ACC(U i) and TERM(U i),

for an oracle U i. ACC(U i)=true denotes that U i has enough information to

compute a session key SK. At any time an oracle can accept messages right

away. As soon as U i is accepted, SK(U i), SID(U i) and PID(U i) are defined.

When an oracle sends or receives the last message of the protocol, receives

an invalid message, or misses an expected message, the state of TERM(Ui)

is set to true. As long as U i is terminated, no message will be sent out.

(2) Define an Adversary’s Capabilities

The adversaryA has an endless supply of oracles and models various queries

to them. Each query models a capability of the adversary, such as forward

secrecy, know-key security, etc. The six queries and their responses are listed

below.

• Send(U i, m): This query models A sending a message m to U i. A gets

back from his query the response which Ui would have generated in

processing message m and updates SID, PID, and its state. A in the

84

form Send(Ui, start) initiates an execution of the protocol.

• Execute(Ci, Sj): This query models A obtaining an honest execution

of the protocol in the middle of two oracles Ci and Sj . Execute(Ci, Sj)

models A obtaining an honest execution of the protocols between two

oracles Ci and Sj .

• Reveal(U i): This query models A obtaining a session key SK with an

unconditional return by Ui. The query is for dealing with know-key

security. The Reveal query is only available if the state ACC(Ui)=true.

• Corrupt(U): This query models A obtaining a long-lived key pw with

an unconditional return by U . The query is for dealing with forward

secrecy. As in [10], we assume the weak corruption model in which

the internal states of all instances of that user are not returned to A.

• Hash(q): In the ideal hash model,A gets hash results by making queries

to a random oracle. After receiving this query, the random oracle will

check whether q has been queried. If so, it returns the result previously

generated to A; otherwise it generates a random number r and sends

it toA, and stores (q, r) into the hash list ΛH, which is a record set used

to record all previous Hash queries.

• Test(U i): This query models the semantic security of the session key

SK (the indistinguishability between the real session key and a random

string). During an execution of the protocol, A can make any of the

above queries, and at once, asks for a Test query. Then, U i flips a coin

b and returns SK if b = 1 or a random string with length |SK| if b = 0.

The query is only available if U i is fresh. A outputs a bit b′ and wins the

game of breaking the protocol if b = b′.

85

Execute-query may at first seem useless since A already can carry out an

honest execution among oracles. Yet, the query is essential for properly

dealing with password guessing attacks. The number qs of Send-queries

directly asked by the adversary does not take into account the number of

Execute-queries. Therefore, qs represents the number of flows the adversary

has built by itself, and the therefore the number of passwords it would have

tried.

(3) Definitions of Security

FRESHNESS. An oracle U is identified as fresh (or holds a fresh SK) if the

following three conditions are satisfied. (1) Ui has been accepted, (2) No

oracle has been asked for a Corrupt-query before Ui is accepted, and (3)

Neither U i nor its partner has been asked for a Reveal-query.

PARTNERING. We say two oracles Ci and Sj are partnered if the following

conditions are satisfied. (1)Ci and Sj have been accepted, (2) SK(Ci)=SK(Sj),

(3) SID(Ci)∩SID(Sj)�=0, (4) PID(Ci)=S and PID(Sj)=C, and (5) No other or-

acle accepts SK=SK(Ci)=SK(Sj).

AKE SEMANTIC SECURITY. AKE referred to as Authenticated Key Exchange.

Consider an execution of the protocol P by the adversary A, in which the

latter is given to access to the Execute, Send, and Test oracles and asks at

most one Test query to a fresh instance U i. Let b′ be his output. Such an ad-

versary is said to win the experiment defining the sematic security if b′ = b,

where b is the hidden bit used by the Test-query. Let Succ denote the event

which the adversary wins this game.

The advantage of A in violating the AKE sematic security of the protocol

86

P and the advantage function of the protocol P , when passwords are draw

from a dictionary Dict, are defined, respectively, as follows:

AdvAKE
P,Dict(A) = 2 · Pr[Succ]− 1,

AdvAKE
P,Dict(t, R) = max

A

{
AdvAKE

P,Dict(A)
}
,

where maximum is over all A with time-complexity at most t and using re-

sources at most R (such as the number of oracle queries). The definition of

time-complexity is the usual one, which includes the maximum of all exe-

cution times in the experiments defining the security plus the code size [2].

The probability rescaling was added to make the advantage of an adversary

that simply guesses the bit b equal to 0.

MUTUAL AUTHENTICATION. A protocol is said to achieve mutual authen-

tication if each party can be ensured that it has established a session key

with the players it intended to. The above property of AKE semantic secu-

rity means that only legitimate participants can obtain the secret session key,

and any adversary cannot learn information about the key. This is also know

as implicit authentication. In the context of password-based schemes, authen-

tication between the players is often done through authenticators. An au-

thenticator is only can computed withe the knowledge of a secret password.

We denote by SuccauthS

P,Dict(A) the success probability of an adversary A trying

to impersonate the server in the protocol P . This is the probability with

which a client instance accepts without having a server partner. Similarly,

SuccauthC

P,Dict(A) denotes the success probability of an adversaryA trying to im-

personate the client in the protocol P . We denote the probability of violating

mutual authentication by SuccMA
P,Dict(A). It is trivial that

SuccMA
P,Dict(A) = SuccauthS

P,Dict(A) + SuccauthC

P,Dict(A).

87

We say the protocol P is MA-secure if SuccMA
P,Dict(A) is negligible.

5.4 Attacks on Some Password Authenticated Key

Exchange Protocols

Here, we give the following notations whichthrough this chapter.

κ Let κ be the cryptographic security parameter.
G Let G denote a finite cyclic group of order q, where

|q| = κ. Let g be a generator of G and assume it is
included in the description of G.

C, S The communication parties between a client C and a
sever S.

idC C’s identity, which should to be unique to index the
verified table stored in the server’s database.

idS S’s identity, which should to be unique to index the server.
pw C’s password secretly shared with S.⊕

The exclusive operator.
A→ B :< m > The message m sent from A to B.
SK The session key SK.
G(·),H(·) Two secure one-way hash functions.

In the following, we show some password authenticated key exchange pro-

tocols are insecure, which only give attack-response analyses.

The Tseng Scheme

We review the Tseng scheme [81] as follows. The scheme has a predeter-

mined way to generate the two integers Q ∈ Zq and Q−1 ∈ Zq from the

password pw and secretly shared between C and S. It is similar to employ

a hash function G with an input pw and maps to Zq, i.e. Q = G(pw). The

protocol is composed of two phases, the key establishment phase and the

88

key verification phase, as follows:

key Establishment Phase

Step 1. C → S: < idC , X1 >

C chooses an integer a ∈R Zq and computes X1 = gaQ. Then, C sends

idC and X1 to S.

Step 2. S → C: < idS, Y1 >

After receiving C’s message, S chooses an integer b ∈R Zq to compute

Y1 = gbQ. Then, S sends idS and Y1 to C.

Step 3. After receiving S’s message, C computes Y = Y Q−1

1 = gb and SKC =

Y a = gab.

Step 4. After receiving C’s message, S computes X = XQ−1

1 = ga and SKS =

Xb = gab.

key Verification Phase

Step 5. C → S: < idC , Y >

C sends idC and X1 to S.

Step 6. S → C: < idS, X >

S sends idS and X to C.

Step 7. C and S check whether X = ga and Y = gb hold or not, respectively.

If they hold, C and S are sure that they have the common session key

SK = gab.

89

Ku and Wang [49] have shown that the Tseng scheme is vulnerable to the

backward replay attack and forged authenticator attack. They proposed

an improved version of the Seo-Sweeny scheme [70]. However, we will

present another forged authenticator attack on the Tseng scheme, and it will

still successfully break the Ku-Wang scheme as well as the others [53, 70].

On the other hand, we will show that the Tseng scheme and the Ku-Wang

scheme are also weak in front of the off-line dictionary attack.

FORGED AUTHENTICATOR ATTACK. An adversary A tries to fool C and

S into believing a wrong session key in the Tseng scheme. A first prepares

a value e ∈ Zq and its inversion e−1 ∈ Zq. In the key establishment phase,

upon seeing X1 sent by C in Step 1, A replaces it with X ′1 = (X1)
e = gaQe.

Then, C performs Step 3 and S performs Steps 2 and 4. C and S will sepa-

rately obtain the session keys SKC = Y a = gab and SKS = Xb = gabe, where

Y = (Y1)
Q−1

= gb and X = (X ′1)
Q−1

= gae. Next, they separately verify

the validity of the session keys SKC and SKS . After receiving Y in Step 5,

the check equation Y = gb will hold in Step 7 on S’s side, so S will believe

that it and C have agreed on a common session key. Upon seeing X is sent

by S in Step 6, A replaces it with X ′ = (X)e−1
= ga. The check equation

X ′ = ga mod p will hold in Step 7 on C’s side, and C will too believe that

it and S have agreed on a common session key. However, SKC = gab is not

equal to SKS = gabe.

OFF-LINE DICTIONARY ATTACK. A tries to reveal the secret values Q and

Q−1 shared between C and S by mounting the off-line dictionary attack. A

first intercepts X1 = gaQ sent by C in Step 1 and masquerades as S to send

Y1 = ge in Step 2. C computes Y = Y Q−1

1 = geQ−1 and SKC = Y a = geQ−1a. In

90

Step 5, C sends Y to S. After intercepting Y , A can verify the correctness of

the guessing password by checking whether Y Q = ge holds or not because

Y Q = Y Q−1Q
1 = ge.

The Ku-Wang Scheme

We have presented another forged authenticator attack in the Tseng scheme,

which also threatens the security of the Ku-Wang scheme. Furthermore, the

off-line dictionary attack is still successful in their scheme. The key estab-

lishment phase in the Ku-Wang scheme is the same as that in the Tseng

scheme. We only briefly review the key verification phase of the Ku-Wang

scheme that makes a difference.

key Verification Phase

Step 5. C → S: < idC , KC >

C computes KC = (SKC)Q = gabQ. Then, C sends idC and KC to S.

Step 6. S → C: < idS, X >

When KC is received, S checks whether KS = (SKS)Q−1 . If it holds,

S believes that it has obtained the correct X1 and C has obtained the

correct Y1. Then, S sends idS and X to C.

Step 7. When X is received, C checks whether X = ga. If it holds, C believes

that it has obtained the correct Y1 and S has obtained the correct X1.

FORGED AUTHENTICATOR ATTACK. A performs the same work in the key

establishment phase, described in the above. In the key verification phase,

upon seeing KC is sent by C in Step 5, A replaces it with K′C = (KC)e =

(gabQ)e. The check equation SKS = (K ′1)
Q−1

= gabe in Step 6 will hold. S will

91

believe that it has obtained the correct X1 and C has obtained the correct Y1.

Then, S sends X = gae to C. A replaces it with X ′ = (X)e−1
= ga. The check

equation X ′1 = ga mod p in Step 7 will hold, which will make C believe that

it has obtained the correct Y1 and S has obtained the correct X1. However,

SKC = gab is not equal to SKS = gabe.

As a matter of fact, the forged authenticator attack can easily be mounted

to break the existing password-related methods [53, 70]. Because all the

schemes have the common weakness, any adversary can use some value to

replace the original value sent by C in the key establishment phase and then

use its inversion to make S return to the original value sent to C in the key

verification phase. This will make C and S believe the wrong session key.

OFF-LINE DICTIONARY ATTACK. For the same reason, in the Ku-Wang

scheme, A performs the same work in the key establishment phase. In the

key verification phase, C computes KC = (SKC)Q = gae and sends it to S in

Step 5. After intercepting KC , A can verify the correctness of the guessing

password by checking whether KC = (X1)
Q−1 holds or not because KC =

(X1)
Q−1

= gae.

In both schemes, if the password pw is poorly chosen, the adversary can de-

termine Q or Q−1 by using the equations to verify if the guessing password

is correct. On the other hand, in the Ku-Wang scheme, when a password

is compromised, the old session key SKC can be recovered by computing

(KC)Q−1
= SKC = gab. Therefore, their scheme cannot provide perfect for-

ward secrecy.

We have presented the forged authenticator attack and the off-line dictio-

92

nary attack to subvert the security of the Tseng scheme and the Ku-Wang

scheme. As we have proved, the Ku-Wang scheme is weak against the

forged authenticator attack and the off-line dictionary attack; moreover,

the forged authenticator attack can be used to break all the existing PAKE-

related schemes.

The Tseng-Jan-Chien Scheme

We shall first briefly review the Tseng-Jan-Chien protected password change

protocol [82] and then show how the forged authenticator attack can work

on their scheme. In the system, the server stores a client C’s idC and pw as

v idpw = H(idC , pw) in the database.

The protected password changing scheme works as follows:

Step 1. C → S: < idC , C idpw >

C chooses a random number c ∈R Zq and computes rc = gc mod p.

Then, it computes C idpw = H(idC , pw) ⊕ rc and sends it along with

idC to S.

Step 2. S → C: < idS, S idpw, S auth token >

S first recovers rc from C idpw by computing C idpw digest⊕v idpw.

Then, S chooses a random number s ∈R Zq and computes rs = gs

and rcs = (rc)s = gcs. Next, S computes S idpw = v idpw ⊕ rs and

S auth token = H(v idpw, rcs, rc), and then it sends them and idS to

C.

Step 3. C → S: < idC , C auth token, C new idpw >

C first recovers rs from S idpw by computing S idpw ⊕ H(idC , pw).

93

Then it computes rcs = (rs)c = gsc and uses it together with its own

H(idC , pw) and rc to compute H(H(idC , pw), rcs, rc), which is then

compared with the received S auth token from S. If they match, C

computes C auth token = H(H(idC , pw), rcs, rs). Then, C chooses a

new password new pw and computes

C new idpw = H(idC , new pw)⊕H(H(idC , pw), rcs).

Finally, C sends < idC , C auth token, C new idpw > to S.

Step 4. S uses its own v idpw, rcs and rs to compute H(v idpw, rcs, rs) and

compares it with the received C auth token. If they match, S recovers

H(idC , new pw) from C new idpw by computing

H(idC , new pw) = C new idpw ⊕H(v idpw, rcs)

and then stores v idpw = H(idC , new pw) in the database.

The difference between the protected password transmission scheme and

protected password changing scheme is thatC additionally sendsC new idpw

to S for changing passwords in the latter scheme. In the following, we point

out Tseng-Jan-Chien protected password changing scheme is vulnerable to

the forged authenticator attack; that is, any adversary can intercept the re-

quest for changing passwords sent by a legal client and modify it with a

wrong password.

FORGED AUTHENTICATOR ATTACK. Note thatC sends< idC , C auth token

, C new idpw > in Step 3 to S, and the messagesC auth token andC new idpw

are used to enable the server to authenticate the client and to obtain H(idC

, new pw), respectively. However, because the two messages are separated,

94

the adversary can replace C new idpw with a random number ra. After re-

ceiving < idC , C auth token, ra >, S checks the validity of C auth token.

Since C auth token is generated by the legal client, S will accept it. Then, S

computes ra ⊕H(v idpw, rcs) and stores v idpw=ra⊕H(v idpw, rcs) in the

database.

Unfortunately, the client is mistakenly convinced that it has successfully

changed from the old password pw to a new password new pw. When the

client tries to login the server the next time, the server will reject the client’s

login request because the client cannot recover rs from S idpw by comput-

ing S idpw ⊕ H(idC, new pw) and therefore cannot compute C auth token

correctly. As a result, the server will conclude that the client is illegal, and

the client will not be able to change its password successfully.

The Hwang-Yeh Scheme

The different from the Tseng scheme and the Ku-Wang scheme is that the

Hwang-Yeh scheme [43] employs the public key cryptosystem. However,

there are still some security flaws in the Hwang-Yeh password change scheme.

Any adversary can intercept the request for changing passwords sent by a

legal user and modify it with a wrong password. As a result, the user will

not be able to successfully login the server next time.

The main difference between Hwang-Yeh password transmission scheme

and password change scheme is that in the latter the client sends a password

change request to the server. In the system, the server stores v pw = H(pw)

instead of pw for each client in the database. Here, we only present the

password transmission scheme.

95

Step 1. C → S: < idC , C cipher >

C encrypts the random number rc and along with pw with the server’s

public key PKS denoted as C cipher = EPKS
(rc, pw) and send it with

idC as a login request to S.

Step 2. S → C: < idS, S auth token, S rs >

S decrypts C cipher to obtain rc and pw by using its private key. Then,

it computes the hash value H(pw) and checks whether H(pw) = v pw

holds or not. If it holds, S chooses a random number rs and com-

putes S auth token = rs ⊕ rc and S rs = H(rs). Then, S sends

< idS, S auth token, S rs > to C.

Step 3. C → S: < idC , C auth token, C new pw >

C retrieves rs by computing S auth token ⊕ rc and then verifies the

consistency between the retrieved rs and the received S rs. If the

result is positive, C chooses a new password new pw and computes

C auth token = H(rc, rs) and C new pw = H(new pw)⊕H(rc+1, rs).

Finally, C sends < idC , C auth token, C new pw > to S.

Step 4. S → C: access granted or access denied

S computes the hash value H(rc, rs) and checks whether H(rc, rs) =

C auth token holds or not. If it holds, S can obtain H(new pw) by

computing C new pw⊕H(rc+1, rs) and then store v pw = H(new pw)

in the database.

Obviously, by employing the public key cryptosystem on the server’s side to

protect the transmitted password, Hwang and Yeh have effectively avoided

the guessing attack and server spoofing that treated the Peyravian-Zunic

schemes. However, we show that the Hwang-Yeh scheme is also vulnerable

96

to the forged authenticator attack as follows.

FORGED AUTHENTICATOR ATTACK. Upon seeing < idC , C auth token,

C new pw > sent by C in Step 3, the adversary A replaces C new pw with a

random number ra. After receiving < idC , C auth token, rc >, S first com-

putes the hash valueH(rc, rs) and checks whetherH(rc, rs) = C auth token

holds or not. Since C auth token is computed by C, the equationH(rc, rs) =

C auth token checked by the server will turn out positive. Then, S com-

putes ra ⊕ H(rc + 1, rs) and stores v pw = ra ⊕ H(rc + 1, rs) in place of

H(pw) in the database.

However, C is under the impression that it has successfully changed from

an old password pw to a new password new pw. Once the client logins to

S the next time, it sends < idC , C cipher = EPKS
(rc, new pw) > to S in

Step 1. In Step 2, S decrypts the message to obtain rc and new pw with

its private key. Then, S computes the hash value H(new pw) and check

whetherH(new pw) = v pw holds or not. However,H(new pw) is not equal

to v pw because v pw = ra⊕H(rc+ 1, rs). The server will reject the client’s

login request.

97

Chapter 6

Simple Password Authenticated
Key Exchange and Protected
Password Change Protocols

6.1 Password Authenticated Key Exchange Proto-

col

In this chapter, we shall present a simple password authenticated key ex-

change (PAKE) protocol by modifying the Yeh-Sun scheme [85]. This scheme

is proven secure when the symmetric-encryption primitive is instantiated

via a mask generation function that is the product of the message with

a hash of the password. At the same time, we shall also present a new

protected password change (PPC) protocol which unlike the previously

proposed schemes [47, 49, 53, 70, 81, 85] where the parties cannot arbi-

trarily change their own passwords, offers users the freedom of changing

passwords at will. The proposed PAKE protocol is formally proven using

the Ballare-Poincheval-Rogaway security model. The provable security is

98

demonstrated by reduction. Here, we give the following notations which

through this chapter.

G Let G denote a finite cyclic group of order q, where
|q| = κ. Let g be a generator of G and assume it is
included in the description of G.

C, S The communication parties between a client C and a
sever S.

idC C’s identity, which should to be unique to index the
verified table stored in the server’s database.

idS S’s identity, which should to be unique to index the server.
pw C’s password secretly shared with S.
A→ B :< m > The message m sent from A to B.
SK The session key SK.
G A full-domain hash from {0, 1}∗ into G.
Hi Two hash functions from {0, 1}∗ to {0, 1}κ, for i = 0, 1.

The parties initially share a low-quality password pw. The password au-

thenticated key exchange protocol then runs as in Figure 6.1 and described

as follows.

Step 1. C → S: < idC , R
∗
C >

C chooses a random number c ∈R Zq , computes RC = gc and R∗C =

RC × PW, where PW = G(pw). Then C sends < idC , R
∗
C > to S,

Step 2. S → C: < idS, RS,AuthS >

After receiving < idC , R
∗
C >, S recovers RC by computing R∗C/PW.

Then S chooses a random number s ∈R Zq , computes RS = gs, KS =

(RC)s = gcs, AuthS = H1(KS, RC) and sends < idS, RS,AuthS > to C.

Step 3. C → S: < idC ,AuthC >

After receiving < idS, RS,AuthS >, C computes KC = (RS)c = gsc and

verifies whether the received AuthS is equal toH1(KC , RC) or not. If it

is, C computes AuthC = H1(KC , RS) and sends it to S.

99

Client C Server S
initialization

pw ∈ Dict,PW = G(pw) ∈ G

ACC←TERM← false ACC←TERM← false
c

R← Zq, RC ← gc

R∗C ← RC × PW
idC , R

∗
C �

RC ← R∗C/PW
s

R← Zq, Rs ← gs

KS = (RC)s,AuthS = H1(KS, RC)idS, RS,AuthS�
KC ← (RS)c

AuthS
?
= H1(KC , RC)

If yes, ACC← true
AuthC = H1(KC , RS)
SK = H0(KC)
TERM← true idC ,AuthC �

AuthC
?
= H1(KS, RS)

If yes, ACC← true
SK = H0(KS)
TERM← true

Figure 6.1: An execution of the protocol PAKE

After receiving AuthC , S verifies whether it is equal to H1(KS, RS) or not. If

it is, S and C agree on the common session key SK = H0(KC) = H0(KS) =

H0(g
cs).

6.2 Protected Password Change Protocol

Assume that C wants to change it’s old password pw to a new password

newpw, C needs to follow these steps and illustrated in Figure 6.2.

Step 1*. C → S: < idC , R
∗
C , R

†
C >

C chooses a random number c ∈R Zq , computes RC = gc, R∗C = RC ×

100

Client C Server S
initialization

pw ∈ Dict,PW = G(pw) ∈ G

ACC←TERM← false ACC←TERM← false
c

R← Zq, RC ← gc

R∗C ← RC × PW
NPW← G(newpw)
R†C ← RC × NPW idC , R

∗
C , R

†
C �

RC ← R∗C/PW
NPW← R†C/RC

s
R← Zq, Rs ← gs

KS = (RC)s,AuthS = H1(KS, RC ,NPW)idS, RS,AuthS�KC ← (RS)c

AuthS
?
= H1(KC , RC ,NPW)

If yes, ACC← true
AuthC = H1(KC , RS)
SK = H0(KC)
TERM← true

idC ,AuthC �AuthC
?
= H1(KS, RS)

If yes, ACC← true
NPW← PW
SK = H0(KS)
TERM← true

Figure 6.2: An execution of the protocol SPC

PW and R†C = RC × NPW, where NPW = G(newpw). Then C sends

< idC , R
∗
C , R

†
C > to S.

Step 2*. S → C: < idS, RS,AuthS) >

After receiving < idC , R
∗
C , R

†
C >, S recovers RC by computing R∗C/PW

and uses the recoveredRC to obtain NPW by computing R†C/RC . Then

S chooses a random number s ∈R Zq , computes RS = gs , KS =

(RC)s = gcs, and AuthS = H1(KS, RC ,NPW). Then S sends< idS, RS,AuthS) >

to C.

Step 3*. C → S: < idC ,AuthC >

101

After receiving < idS, RS,AuthS >, C computes KC = (RS)c = gsc and

verifies whether the received AuthS is equal to H1(KC , RC ,NPW) or

not. If it holds, C computes AuthC = H1(KC , RS) and sends it to S.

After receiving < idC ,AuthC >, S verifies whether the recovered AuthC is

equal to H1(KS, RS) or not. If it is, C has successfully changed its old pass-

word pw to the new password newpw and S has successfully updated its PW

to NPW in its database. At the same time, S and C agree on the common

session key SK = H0(KS) = H0(KC).

6.3 Security Analysis

In this section, we show the scheme is provable security in the random ora-

cle model. We shall employ and simplify the security model [10] to formally

prove the security of PAKE and PPC in the random oracle model. The PAKE

protocol distributes session keys that are semantically secure and provide

mutual authentication. Figure 6.3 shows the initialization of both protocols.

Figures 6.4 and 6.5 separately show how instances in the PAKE and PPC

protocols behave in response to messages (runs the PAKE and PPC proto-

cols).

Before putting the protocols to work, each oracle sets ACC(Ui)←TERM(U i)←

false; and SK(U i)←SID(U i)← PID(U i)← null;.

AKE Security. We separately denote the AKE advantage of A in attack-

ing PAKE and PPC as AdvAKE
PAKE,Dict(A) and AdvAKE

PPC,Dict(A); the advantages are

taken over all bit tosses. The advantage of A distinguishing the session key

102

Initialize(1κ)

- Select a finite cyclic group G of prime order q with g as a generator,
where |q| = κ.

- Hash functions.
Hi : {0, 1}∗ → {0, 1}κ for i = 0, 1, G : {0, 1}∗ → G.

- A client C ∈ client holds a password pw.
pw ← Dict.

- A server S ∈ server holds the hash values PW of pw.
PW← G(pw).

Figure 6.3: Specification of protocol initialization

is given by

AdvAKE
PAKE,Dict(A) = 2 · Pr[Succ]− 1,

AdvAKE
PPC,Dict(A) = 2 · Pr[Succ]− 1.

Protocols PAKE and PPC are AKE-secure if AdvAKE
PAKE,Dict(A) and AdvAKE

PPC,Dict(A)

are negligible, respectively.

Computational Diffie-Hellman Assumption. A (t, ε)-CDHg,G attacker, in

finite cyclic group G of prime order q with g as a generator, is a probabilistic

machine ∆ running in time t such that its success probability SuccCDH
g,G (∆),

given random elements gx and gy to output gxy, is greater than ε:

SuccCDH
g,G (∆) = Pr[∆(gx, gy) = gxy] ≥ ε.

We denote by SuccCDH
g,G (t) the maximal success probability over every ad-

versaries running time within time t. The computational Diffie-Hellman

assumption states that SuccCDH
g,G (t) ≤ ε for ant t/ε not too large.

Theorem 9. LetA be an adversary against the AKE-security of the PAKE protocol

103

Execute-queries

Execute(Ci, Sj)
1. Send1(C

i, start)
c

R← Zq, RC ← gc, R∗C ← RC × PW,msg-out1 ←< idC , R
∗
C >,

internal-statei
C ←< c,RC >

return msg-out1
2. Send2(S

j, m1)
< IDI , α >← m1, RC ← α/PW, s

R← Zq, RS ← gs, KS ← Rs
C ,

AuthS ←H1(KS, RC),msg-out2 ←< idS, RS,AuthS >
internal-statej

S ←< RS, KS >
return msg-out2

3. Send3(C
i, m2), where m2 �= start

< IDI , RS,AuthS >← m2, < c, RC >← internal-statei
C , KC ← Rc

S

ifH1(KC , RC) = AuthS

AuthC = H1(KC , RS),msg-out3 ←< idC ,AuthC >
SK(Ci)← H0(KC),SID(Ci)←< msg-out1, m2,msg-out3 >
PID(Ci)← idS,ACC(Ci)← TERM(Ci)← true

else msg-out3 ← ∗
return msg-out3

4. Send4(S
j, m3)

< IDI ,AuthC >← m3, < RB, KS >← internal-statej
S

ifH1(KS, RS) = AuthC

SK(Sj)←H0(KS),SID(Sj)←< m1,msg-out2 >
PID(Sj)← idC ,ACC(Sj)← TERM(Sj)← true

return null

Figure 6.4: Specification of protocol PAKE

104

Execute-queries

Execute(Ci, Sj)
1. Send1(C

i, start)
c

R← Zq, RC ← gc, R∗C ← RC × PW,NPW← G(newpw),
R†C ← RC × NPW,msg-out1 ←< idC , R

∗
C , R

†
C >,

internal-statei
C ←< c,RC ,NPW >

return msg-out1
2. Send2(S

j, m1)
< IDI , α, β >← m1, RC ← α/PW,NPW← β/RC , s

R← Zq,
RS ← gs, KS ← Rs

C ,AuthS ←H1(KS, RC ,NPW),
msg-out2 ←< idS, RS,AuthS >, internal-statej

S ←< RC , KS,NPW >
return msg-out2

3. Send3(C
i, m2), where m2 �= start

< IDI , RS,AuthS >← m2, < c, RC ,NPW >← internal-statei
C , KC ← Rc

S

ifH1(KC , RC ,NPW) = AuthS

AuthC = H1(KC , RS),msg-out3 ←< idC ,AuthC >
SK(Ci)← H0(KC),SID(Ci)←< msg-out1, m2,msg-out3 >
PID(Ci)← idS,ACC(Ci)← TERM(Ci)← true

else msg-out3 ← ∗
return msg-out3

4. Send4(S
j, m3)

< IDI ,AuthC >← m3, < RB, KS >← internal-statej
S

ifH1(KS, RS) = AuthC

PW← NPW
SK(Sj)←H0(KS),SID(Sj)←< m1,msg-out2 >
PID(Sj)← idC ,ACC(Sj)← TERM(Sj)← true

return null

Figure 6.5: Specification of protocol PPC

105

within a time bound t, after qs and qh. Then we have:

AdvAKE
PAKE,Dict(t, qs, qh) ≤ Dpw(qs) + qs × qh × SuccCDH

g,G (t1) +
qs
2κ
,

where t1 is the running time of SuccCDH
g,G .

Proof. There are two ways that might lead to A successfully attacking the

AKE-security of the PAKE protocol. First, Amight obtain the long-lived key

and impersonate C or S by mounting the password guessing attack. Sec-

ond, A might directly obtain the session key by solving the CDH problem.

In the following, we shall analyze the probability of the two situations one

by one. To analyze a situation, the others are assumed to be under some

known probability.

Dictionary Attacks: C and S separately chooses c ∈R Zq and s ∈R Zq at

random, which impliesRC andRS are random numbers. Hence,A observes

that the message R∗C = RC × PW returned from Send1 is independent of

other messages. Therefore, the adversary gets no advantage for the off-line

dictionary attack. The probability of the on-line dictionary attack making

way is bounded by Dpw(qs) as follows:

λ ≤ Dpw(qs)

The on-line guessing attack can be prevented by letting the server take the

appropriate intervals between trials. Furthermore, we also provide the PPC

protocol to allow clients to change their own passwords.

CDH Attack (Session key): B plays the role of a simulator for indistinguisha-

bility. It uses the PAKE protocol to respond to all A’s queries and deal with

the CDH problem. B sets up the long-lived key pw, picks a random number

106

i from [1, qs1], and sets a counter cnt = 0. With the challenge ψ = (gx, gy),

B tries to output gxy. When A makes Send1, B answers according to the

protocol to return msg-out1 to Send1 and increases cnt by 1. However, if

cnt = i, B answers using the element gx from the challenge ψ. When A

makes a Send2 query, B answers what the protocol says to. However, if the

input is the flow corresponding to the challenge ψ i.e. < idC , g
x × PW >,

B answers with < idS, g
y,H1(random, g

x) > by using the element gy from

the challenge (gx, gy), where random is a random number over Zq. When A

makes a Send3 query, B answers what the protocol says to. If the input is

the flow corresponding to the challenge (gx, gy) i.e. < idS,H1(random, g
x) >,

B answers with < idC ,H1(random, g
y) > by using the element gy from the

challenge ψ. If not, B answers with msg-out3 to Send3. When A makes a

Send4 query, B answers what the protocol says to.

WhenAmakes a Reveal(Ci) or Reveal(Sj), B checks whether the oracle has

been accepted and is fresh. If so, B answers by using the session key SK.

However, if the session key has to be constructed from the challenge ψ, B

halts. WhenAmakes a Corrupt(C), Corrupt(S), Execute(Ci, Sj), or Hash(m),

B answers in a straightforward way. When A makes a single Test query, B

answers in a straightforward way. However, if the session key has to be

constructed from the challenge ψ, B answers with a random string for the

Test(C i) or Test(Sj).

This simulation is perfectly indistinguishable from any execution of the real

PAKE protocol except for one execution in which the challenge ψ is in-

volved. The probability α of B correctly guessing the session key A will

107

use Test(U i) is the probability of cnt = i. Then, we have:

α =
1

qs1

≥ 1

qs

Assume that A has broken the CDH problem (A, outputting b′ after the Test

query, wins), then at least one of the Hash queries equals SK. The probability

of B correctly choosing among the possible Hash queries is:

β ≥ 1

qh

From the above description, the probability SuccCDH
g,G (B) that B outputs gxy

from the challengeψ is the probability ε thatA breaks the AKE-secure scheme

multiplied by the probability α that B correctly guesses the moment at which

A breaks the AKE-secure scheme multiplied by the probability β that B cor-

rectly chooses among the possible Hash queries:

SuccCDH
g,G (B) = ε× α× β ≥ ε× 1

qs
× 1

qh

Theorem 10. LetA be an adversary against the AKE-security of the PPC protocol

within a time bound t, after qs and qh. Then we have:

AdvAKE
PPC,Dict(t, qs, qh) ≤ Dpw(qs) + qs × qh × SuccCDH

g,G (t1) +
qs
2κ
,

where t1 is the running time of SuccCDH
g,G .

Proof. This proof is similar to the analysis of PAKE. We omit it here.

Recently, some PAKE schemes [3, 5, 21] are also proven in Ballare, Poincheval

and Rogaway’s security model. They incrementally define a sequence of

108

games and use Shoup’s lemma [72] to exactly bound the probability of each

event in these games. In the following Theorem 11, we starting at the real

game G0 and ending up at G5 and use Shoup’s lemma to bound the proba-

bility of each event in these games.

Theorem 11. Consider the protocol PAKE, over a group G of prime order q, where

Dict is a dictionary equipped the distribution Dpw. Let A be an adversary against

the AKE-security and UA-security of the PAKE protocol within a time bound t,

with less than qs active interactions with the parties (Send-queries) and qp passive

interactions (Execute-queries), and asking qG and gH to G and anyHi respectively,

AdvAKE
PAKE,Dict(A) ≤ 2×

(
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) + SuccAuthS

PAKE,Dict(A)
)

SuccAuthS
PAKE,Dict(A) ≤

q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

qs
2κ

where τe denotes the computational time for an exponentiation in G.

Proof. We are interested in the event S, which occurs if the adversary cor-

rectly guess the bit b involved in the Test(Ci)-queries. Consider the server

unilateral authentication (UA) in Figure 6.1, if the authenticator AuthS checked

by C is correct, C will accepts and set the session key. Let A be an event if a

client accepts without any server partner. In any game Gn below, we study

the event An, and restricted event SAn = Sn ∧ ¬An which means the adver-

sary guess the bit b without breaking authentication.

109

Game G0: This is the real protocol, in the random oracle model:⎧⎪⎨⎪⎩ AdvAKE
PAKE,Dict(A) = 2 · Pr[S0]− 1,

SuccAuthS

PAKE,Dict(A) = Pr[A0].
(6.1)

Game G1: We simulate the hash oracles G,H0, andH1 by maintaining hash

lists ΛG and ΛH, illustrated in Figure 6.6. We also simulate all the instances,

as the real players would do, for the Send (illustrated in Figure 6.7), Exe-

cute, Reveal and Test queries (illustrated in Figure 6.8).

G andHi oracles
For a hash-query Hi(q)
- If a record (i, q, r) appears in ΛH, the answer is r.
- Otherwise, choose a random element r ∈ {0, 1}κ, answer with it,

and add the record (i, q, r) to ΛH.
For a hash-query G(q)
- If a record (q, r,−) appears in ΛG , the answer is r.
- Otherwise, the answer is r according to the following rule:

� Rule G(1).
- Chose a random element r ∈ G, and adds the record (q, r,−) to

ΛG.

The third element of the records (q, r,−) in ΛG will be used in G4.

Figure 6.6: Simulation of the hash functions G,Hi

From this simulation, we easily see that the game is perfectly indistinguish-

able from the real protocol. We have the following equations.⎧⎪⎨⎪⎩ Pr[S1] = Pr[S0],

Pr[SA1] = Pr[SA0].
(6.2)

Game G2: We cancel games in which some collisions appear:

• Collisions on the partial transcripts ((idC , R
∗
C), (idS, RS)), where at least

110

Send-queries to C
We answer to Send-queries to Ci as follows:

For a Send(Ci, start)-query to Ci is according the following rule:
� Rule C1(1)

- Choose a random number α ∈ Zq, compute RC = gα and R∗C = RC × PW.
- Answer (idC , R

∗
C).

For a Send(Ci, (idS, RS,AuthS))-query is according the following rule:
� Rule C2(1)

- Compute KC = Rα
S .

� Rule C3(1)

- Check the authenticator AuthS.
• Compute Auth′S = H1(KC , RC).
• If AuthS = Auth′S , then ACC(Ci) = ture, SK(Ci) = H0(KC), and

compute AuthC = H1(KC , RS) and answer (idC ,AuthC).
• Else ACC(Ci) = false.
• In any case, TERM(C i) = false.

Send-queries to S
We answer to Send-queries to Sj as follows:

For a Send(Sj , (idC , R
∗
C))-query to Sj is according the following rule:

� Rule S1(1)

- Choose a random number β ∈ Zq, compute RS = gβ.
� Rule S2(1)

- Compute RC = R∗C/PW, KS = Rβ
C .

� Rule S3(1)

- Compute AuthS = H1(KS, RC).
- Answer (idS, RS,AuthS).

For a Send(Sj , (idC ,AuthC))-query is according the following rule:
� Rule S4(1)

- Check the authenticator AuthC .
• Compute Auth′C = H1(KS, RS).
• If AuthC = Auth′C , then ACC(Sj) = ture, SK(Sj) = H0(KS), and

TERM(Sj) = true.

Figure 6.7: Simulation of protocol PAKE (1)

111

Other queries
An Execute(Ci, Sj)-query is processed using successively the above
simulations of the Send-queries to output ((idC , R

∗
C), (idS, RS,AuthS),

(idC ,AuthC)).

An Reveal(U)-query returns the session key if U accpets.

An Test(U)-query first get SK from Reveal(U), and flip a coin b. If b = 1,
return SK; otherwise, return a random number from {0, 1}κ.

Figure 6.8: Simulation of protocol PAKE (2)

one element of each transcript is generated by an honest party. In other

words, at least one of them in each of the qs active attacks, and all of

them in the qp passive attacks. Thus one ofR∗C orRS is truly uniformly

distributed.

• Collisions on the output of G.

• Collision on the output of Hi.

All probabilities are bounded by the birthday paradox as follows:

Pr[Coll2] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
.

We have the following inequalities:⎧⎪⎪⎨⎪⎪⎩
|Pr[A1]− Pr[A2]| ≤

q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
,

|Pr[SA1]− Pr[SA2]| ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
.

(6.3)

Game G3: We simulate the private hash oracle H′i : {0, 1}∗ → {0, 1}κ for

i = 0, 1 as usual by maintaining the hash list ΛH′ , illustrated in Figure 6.9.

112

H′i oracle
For a hash-query H′i(q)
- If a record (i, q, r) appears in ΛH′ , the answer is r.
- Otherwise, choose a random element r ∈ {0, 1}κ, answer with it,

and adds the record (i, q, r) to ΛH′ .

Figure 6.9: Simulation of the hash functions H′i

We compute the authenticator AuthS and the session key SK using the pri-

vate oracleH′1 andH′0, respectively.

� Rule S3(3)

- Compute AuthS = H′1(R∗C).
- Answer (idS, RS,AuthS).

� Rule C3(3)

- Check the authenticator AuthS

• Compute Auth′S = H′1(R∗C).
• If AuthS = Auth′S , then ACC(Ci) = ture, SK(Ci) = H′0(R∗C , RS), and

compute AuthC = H1(KC , RS) and answer (idC ,AuthC).
• Else ACC(Ci) = false.
• In any case, TERM(C i) = false

� Rule S4(3)

- Check the authenticator AuthC .
• Compute Auth′C = H1(KS, RS).
• If AuthC = Auth′C , then ACC(Sj) = ture, SK(Sj) = H′0(R∗C , RS), and

TERM(Sj) = true.

Since we do no longer need to compute the values KC and KS , we can sim-

ply the following rules:

� Rule S2/C2(3)

Do nothing.

113

� Rule C1(3)

- Choose a random number c ∈ Zq and compute R∗C = gc

- Answer (idC , R
∗
C).

Let AskH13 be the event that A queries H1(KC , RS) or H1(KS, RC). Let

AskH0w13 be the event thatA queriesH0(KC) orH0(KS), where some party

has accepted, but event AskH13 did not happens. Thus, the event AskH3 =

AskH13 ∨ AskH0w13 occurs, A can distinguish the games G3 and G2.⎧⎪⎨⎪⎩ |Pr[A2]− Pr[A3]| ≤ Pr[AskH3],

|Pr[SA2]− Pr[SA3]| ≤ Pr[AskH3].
(6.4)

The authenticator AuthS is computed with the simulator’s private random

oracleH′1, then it can not be guessed byA, better than at random for each at-

tempt, unless the same transcript ((idC , R
∗
C), (idS, RS)) appeared in another

session with a real instance Sj . G2 has already excluded this case. For the

same reason, SK is computed with the simulator’s private oracle H′0, the

probability of A guessing the bit b is
1

2
. We have the following inequality

and equation: ⎧⎪⎨⎪⎩
Pr[A3] ≤

qs
2κ
,

Pr[SA3] =
1

2
.

(6.5)

Now, consider the probability of event AskH13, since the collisions of par-

tial transcripts have been excluded, the event AskH13 can be split in three

disjoint sub-cases:

1. AskH1-Passive3: the transcript ((idC , R
∗
C), (idS, RS)) come from an ex-

ecution between instances of C and S. This means that both R∗C and

RS have been simulated.

114

2. AskH1-WithC3: the execution involved an instance ofC, butRS has not

been sent by any instance of S. This means thatR∗C has been simulated,

but RS has been produced by A.

3. AskH1-WithS3: the execution involved an instance of S, but R∗C has

not been sent by any instance of C. This means that RS has been sim-

ulated, but R∗C has been produced by A.

Thus, we have the following equation:

Pr[AskH] = Pr[AskH1-Passive] + Pr[AskH1-WithC] +

Pr[AskH1-WithS] + Pr[AskH0w1] (6.6)

Game G4: To evaluate the probability of the event AskH, we introduce a

random Diffie-Hellman instance (X, Y). We first modify the simulation of

the oracle G, involving the element X as follows:

� Rule G(4)

- Choose a random number γ ∈ Zq, compute r = X−γ , and the record
(q, r, γ) is added to ΛG.

The other part Y of the Diffie-Hellman instance in the simulation of the

party S.

� Rule S1(4)

- Choose a random number δ ∈ Zq, compute RS = Y δ.

We excluded that case PW = 1 or RS = 1, which are separately denoted

events eventPW and eventRS .

Pr[eventPW ∨ eventRS] ≤ qG
q

+
qs + qp
q

.

We have the following inequality:

|Pr[AskH4]− Pr[AskH3]| ≤
qG
q

+
qs + qp
q

. (6.7)

115

Game G5: It is now possible to evaluate the probability of the event AskH.

We cancel a few more games, wherein for some pairs (R∗C , RS), RS is gen-

erated by an instance Sj and R∗C is generated by either A or an instance

Ci, there are two distinct elements PW such that the tuple (CDHg,G(R∗C/PW,

RS), R∗C/PW) is in ΛH. This denotes as the event CollH5.

|Pr[AskH5]− Pr[AskH4]| ≤ Pr[CollH5]. (6.8)

We set the upper-bounded of CollH5 in the following lemma:

Lemma 3. If for some pair (R∗C , RS), involved in a communication with an in-

stance Sj, there are two distinct elements PW0 and PW1 such that (Zi, R
∗
C/PWi)

are in ΛH with Zi = CDHg,G(R∗C/PW, RS), one can solve the computational Diffie-

Hellman problem CDHg,G(X, Y):

Pr[CollH5] ≤ q2
H × SuccCDH

g,G (t, τe) (6.9)

Proof. There exists such elements (R∗C , RS = Y δ), PW0 = X−γ0 , and PW1 =

X−γ1 .

Zi = CDHg,G(R∗C/PW, RS)

= CDHg,G(R∗C ×Xγi , RS)

= CDHg,G(R∗C , RS)× CDHg,G(X,RS)γi

= CDHg,G(R∗C , RS)× CDHg,G(X, Y)δγi

As a consequence, Z0/Z1 = CDHg,G(X, Y)δ(γ0−γ1), and thus CDHg,G(X, Y) =

(Z0/Z1)
−δ(γ0−γ1). We have excluded the cases PW = 1 and RS = 1 in G4,

thus γ0 �= 0, γ1 �= 0 and δ �= 0. And since PW0 �= PW1, we have γ0 �= γ1. Let

116

CDH be the event that solving the computational Diffie-Hellman problem.

If CollH5 occurs, we can choose the two queries in ΛH to make CDH occurs.

The conditional probability of CDH given CollH5 is as follows:

Pr[CDH|CollH5] =
1

q2
H
,

Pr[CollH5] ≤ q2
H × Pr[CDH].

The probability of CDH is defined as SuccCDH
g,G (t, τe) with one exponentiation

computation in G. �

We consider the three sub-cases AskH1-Passive, AskH1-WithC, AskH1-WithS

of AskH1 and then AskH0w1 as follows:

1. AskH1-Passive: Both R∗C and RS have been simulated. We set the

upper-bounded of AskH1-Passive in the following lemma:

Lemma 4. If for some pair (R∗C , RS), involved in a communication with the

instancesC i and Sj , such that (Z,R∗C/PW) are in ΛH withZ = CDHg,G(R∗C/PW, RS),

one can solve the computational Diffie-Hellman problem CDHg,G(P,Q):

Pr[AskH1 − Passive5] ≤ qH × SuccCDH
g,G (t, 2τe) (6.10)

Proof. There exists such elements (R∗C = gc, RS = Y δ) and PW = Xγ .

Z = CDHg,G(R∗C , RS)×CDHg,G(X,RS)γ

= Y cδ × CDHg,G(X, Y)δγ .

As a consequence, CDHg,G(X, Y) = (Z/Y cδ)δγ . Since the cases δ = 0

and γ = 0 have been excluded. If AskH1-Passive occurs, we can solve

the computational Diffie-Hellman problem by choosing the query in

ΛH. It is similar to Lemma 3 to conclude the proof. �

117

2. AskH1-WithC: R∗C has been simulated and RS has been produced by

A. This event corresponds to an attack whereA tries to impersonate S

to C. But each authenticator AuthS sent by A has been computed with

at most one PW value. Without any G-collision (we have excluded in

G2), it corresponds to at most one pw:

Pr[AskH1-WithA5] ≤ Dpw(qs). (6.11)

3. AskH1-WithS: RS has been simulated and R∗C has been produced by

A. Assume that A guesses the password as pw′, chooses a number

a ∈ Zq and compute R∗C = ga × G(pw′). If AskH1-WithS occurs, there

is at most one element pw such that for PW = G(pw) = G(pw′) and a

query (Ra
S, RC) in ΛH. From Lemma 3, when applied to games where

the event CollH5 did not occur and without G-collision. We have,

Pr[AskH1-WithS5] ≤ Dpw(qs). (6.12)

For AskH0w1, the the above events did not occur, it means only the execu-

tion with instances Ci and Sj may lead acceptation. It is the same as that

analysis in AskH1-Passive, we have,

Pr[AskH0w15] ≤ qH × SuccCDH
g,G (t, 2τe). (6.13)

Now, we conclude the proof. Combining equations and inequalities (6.6),

(6.10), (6.11), (6.12), and (6.13), we have:

Pr[AskH5] ≤ 2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe). (6.14)

Combining inequalities (6.7), (6.8), and (6.9), we have:

|Pr[AskH5]− Pr[AskH3]| ≤
qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe). (6.15)

118

Combining inequalities (6.14) and (6.15), we have:

Pr[AskH3] ≤
qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe)

+2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe). (6.16)

Combining equations and inequalities (6.2), (6.3), (6.4), and (6.5), we have:⎧⎪⎪⎨⎪⎪⎩
Pr[A0] ≤

q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+ Pr[AskH3] +

qs
2κ

Pr[SA0] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+ Pr[AskH3] +

1

2

(6.17)

Combining inequalities (6.16) and (6.17), we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr[A0] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe)+

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

qs
2κ

Pr[SA0] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe)+

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

1

2

(6.18)

From equation (6.1), we can conclude SuccAuthS

PAKE,Dict(A):

SuccAuthS

PAKE,Dict(A) ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

qs
2κ

119

See Pr[SA0] in inequality (6.18), we can rewrite as follows:

Pr[SA0] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

1

2

Pr[S0]− Pr[S0 ∧ A0] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

1

2

Pr[S0] ≤
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) +

1

2
+ Pr[A0]

From equation (6.1), we can conclude AdvAKE
PAKE,Dict(A):

AdvAKE
PAKE,Dict(A) ≤ 2×

(
q2
p

2q2
+
q2
s

2q
+
q2
G

2q
+

q2
H

2κ+1
+

qG
q

+
qs + qp
q

+ q2
H × SuccCDH

g,G (t, τe) +

2×Dpw(qs) + 2× qH × SuccCDH
g,G (t, 2τe) + SuccAuthS

PAKE,Dict(A)
)

On the other hand, the evaluation of SuccAuthC

PAKE,Dict can be done similarly to

SuccAuthS

PAKE,Dict and then SuccMA
PAKE,Dict = SuccAuthS

PAKE,Dict + SuccAuthC

PAKE,Dict can be cal-

culated.

120

Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we focus on two topics: public key cryptosystems and pass-

word authenticated key exchange protocols.

Public Key Cryptosystems. The ElGamal cryptosystem has been proven

to be secure in the IND-CPA sense in the standard model if the operation

is in QRp [83]. As we know, the IND-CPA sense is considered as a basic re-

quirement for most provably secure public key cryptosystems. We precisely

show that the ElGamal cryptosystem is insecure in the IND-CPA sense if the

operation is in not QRp. For the ElGamal-like cryptosystem [44], we give

two simple examples to prove it is insecure in the IND-CPA sense either op-

erated in QRp or not (employ the key generation K or K̂). Besides, the cryp-

tosystem has the probability to be crashed when Y r1 ⊕ (Y r2)2i
mod p = 0.

121

Since the exclusive-or operation is not suitable for the group operation, the

computed values cannot be expected in that group.

However, the motivation for encrypting large messages in public key cryp-

tosystem is practical, since they have bad performance as compared to sym-

metric cryptosystems. We present an efficient conversion from IND-CPA se-

cure ElGamal encryption scheme to a IND-CCA2 secure extension of the El-

Gamal encryption scheme in the random oracle model, called the ElGamal-

extension cryptosystem. To demonstrate that the ElGamal-Extension scheme

is secure using only two random numbers, a new pair GOAL and ATK are

constructed called IND-CPAPAIR. We also prove the proposed scheme is se-

cure in the IND-CPAPAIR sense.

Password Authenticated Key Exchange Protocols. The authenticated key

exchange protocols are essential for user authentication and session key es-

tablishment. Among techniques used for authenticating users, allowing

users to choose possibly weak passwords as their own secrets is the most

convenient for users. We have broken some PAKE protocols, which only be

analyzed in the response-attack. We also proposed a simple PAKE and to-

gether with a new PPC protocol, where the parties cannot arbitrarily change

their own passwords, offers users the freedom of changing passwords at

will. The proposed PAKE protocol is formally proven using the Ballare-

Poincheval-Rogaway security model.

122

Bibliography

[1] A. Shamir A. Biryukov and D. Wagner, “Real-time cryptanalisis of

A5/1 on a PC,” in Proceedings of Fast Software Encryption 2000 (FSE

2000), pp. 77–86, 1978 of LNCS, 2000.

[2] Michel Abdalla, Mihir Bellare, and Phillip Rogaway, “The oracle

Diffie-Hellman assumptions and an analysis of DHIES,” in Topics in

Cryptology-CT-RSA 2001, Lecture Notes in Computer Science 2020,

pp. 8–12, 2001.

[3] Michel Adballa, Emmanuel Bresson, Olivier Chevassut, Bodo Möller,

and David Pointcheval, “Provably secure password-based authentica-

tion in TLS,” in Proceedings of 2006 ACM Symposium on Information, com-

puter and communications security (AsiaCCS’06), pp. 35–45, 2006.

[4] Michel Adballa, Pierre-Alain Fouque, and David Pointcheval,

“Password-based authenticated key exchange in the three-party set-

ting,” in PKC 2005, pp. 65–84, Lecture Notes in Computer Science 3386,

2005.

[5] Michel Adballa and David Pointcheval, “Simple password-based en-

crypted key exchange protocols,” in CT-RSA 2005, pp. 191–208, Lecture

Notes in Computer Science 3376, 2005.

123

[6] Joonsang Baek. Construction and Formal Security Analysis of Crypto-

graphic Schemes in the Public Key Setting. PhD thesis, Monash University,

Jan. 2004.

[7] M. Bellare, “Practice-oriented provable-security,” in Lectures on Data

Security (Modern Cryptology in Theory and Practice), pp. 1–15, Lecture

Notes in Computer Science 1561, 1999.

[8] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations

among notations of security for public-key encryption schemes,” in Ad-

vances in Cryptology, CRYPTO’98, pp. 26–45, Lecture Notes in Computer

Science 1462, 1998.

[9] M. Bellare and A. Palacio, “Towards plaintext-aware public-key en-

cryption without random oracles,” in Advances in Cryptology, ASI-

ACRYPT’04, pp. 48–62, Lecture Notes in Computer Science 3329, 1998.

[10] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-

change secure against dictionary attack,” in Advances in Cryptology, EU-

ROCRYPT’00, pp. 122–138, Lecture Notes in Computer Science 1807,

2000.

[11] M. Bellare and P. Rogaway, “Entity authentication and key distribu-

tion,” Advances in Cryptology - CRYPTO ’93, pp. 232–249, Aug. 1993.

[12] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm

for designing efficient protocols,” in 1st annual Conference on Computer

and Communications Security,, ACM, pp. 62–73, 1993.

124

[13] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” in Ad-

vances in Cryptology, EUROCRYPT’94, pp. 92–111, Lecture Notes in

Computer Science 950, 1994.

[14] M. Bellare and P. Rogaway, “Provably secure session key distribution

- the three party case,” in In 28th Annual ACM Symposium on Theory of

Computing, pp. 57–66, 1996.

[15] M. Bellare and P. Rogaway, “Collision-resistant hashing: towards

making UOWHFs practical,” in Advances in Cryptology, CRYPTO’97,

pp. 470–484, Lecture Notes in Computer Science 1294, 1997.

[16] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-

based protocols secure against dictionary attacks,” in In 1992 IEEE Sym-

posium on Security and Privacy, pp. 72–84, 1992.

[17] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based

on the RSA encryption standard PKCS #1,” in Advances in Cryptology,

CRYPTO’98, pp. 1–12, Lecture Notes in Computer Science 1462, 1998.

[18] D. Boneh, “The decision Diffie-Hellman problem, algorithmic num-

ber theory symposium,” in Proceedings of ANTS’98, pp. 48–63, Lecture

Notes in Computer Science 1423, 1998.

[19] D. Boneh and R. Venkatesan, “Hardness of computing the most signif-

icant bits of secret keys in Diffie-Hellman and related schemes,” in Ad-

vances in Cryptology, CRYPTO’96, pp. 129–142, Lecture Notes in Com-

puter Science 1109, 1996.

[20] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-

authenticated key exchange using Diffie-Hellman,” in Advances in

125

Cryptology - EUROCRYPT’00, pp. 156–171, Lecture Notes in Computer

Science 1807, 2000.

[21] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval, “New

security results on encrypted key exchange,” in PKC 2004, pp. 145–158,

Lecture Notes in Computer Science 2947, 2004.

[22] R. Cramer and V. Shoup, “A practical public key cryptosystem prov-

ably secure against adaptive chosen ciphertext attack,” in Advances in

Cryptology, CRYPTO’98, pp. 13–25, Lecture Notes in Computer Science

1462, 1998.

[23] J. Daemen and V. Rijmen. “AES Proposal: Rijndael,”. tech. rep., Na-

tional Institution Standard Technology, USA, March 1999. Document

Version 2.

[24] J. Daemen and V. Rijmen, “The block cipher Rijndael,” in Smart Card

Research and Applications, vol. LNCS 1820, pp. 288–296, 2000.

[25] J. Daemen and V. Rijmen, “Rijndael, the advanced encryption stan-

dard,” Dr. Dobb’s Journal, vol. 26, no. 3, pp. 137–139, 2001.

[26] Hans Delfs and Helmut Knebl, Introduction to Cryptography: Principles

and Applications, Springer, 2002.

[27] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE

Transactions on Information Theory, vol. IT-22, pp. 644–654, Nov. 1976.

[28] T. ElGamal, “A public-key cryptosystem and a signature scheme based

on discrete logarithms,” IEEE Transactions on Information Theory, vol. IT-

31, pp. 469–472, July 1985.

126

[29] B. Preneel et al., “Security evaluation of NESSIE first phase, new eu-

ropean schemes for signature,” Integrity and Encryption (NESSIE)

project report (IST-1999-12324).

[30] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions

to identification and signature problems,” in Advances in Cryptology,

CRYPTO’86, pp. 186–194, Lecture Notes in Computer Science 263, 1986.

[31] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, “RSA-OAEP

is secure under the RSA assumption,” in Advances in Cryptology,

CRYPTO’01, pp. 260–274, Lecture Notes in Computer Science 2139,

2001.

[32] R. Gennaro and Y. Lindell, “A framework for password-based au-

thenticated key exchange,” in Advances in Cryptology, EUROCRYPT’03,

pp. 524–543, Lecture Notes in Computer Science 2656, 2003.

[33] O. Goldreich, “On the foundations of modern cryptography,” in Ad-

vances in Cryptology, CRYPTO’97, pp. 46–74, Lecture Notes in Computer

Science 1294, 1997.

[34] O. Goldreich and Y. Lindell, “Session-key generation using human

password only,” in Advances in Cryptology, CRYPTO’01, pp. 408–432,

Lecture Notes in Computer Science 2139, 2001.

[35] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Com-

puter and System Sciences, vol. 28, no. 2, pp. 270–299, 1984.

[36] L. Gong, “Variations on the themes of message freshness and replay,”

Proc. IEEE Computer Security Foundations Workshop VI, pp. 131–136,

1993.

127

[37] L. Gong, “Optimal authentication protocols resistant to password

guessing attacks,” Proceedings of 8th IEEE Computer Security Foundation

Workshop, pp. 24–29, 1995.

[38] L. Gong, M. Lomas, R. Needham, and J. Saltzer, “Protecting poorly

choosen secrets from guessing attacks,” IEEE Journal on Selected Areas

in Communications, vol. 11, no. 5, pp. 648–656, 1993.

[39] J. A. Gordon, “Strong primes are easy to find,” in Advances in Cryptol-

ogy, EUROCRYPT’84, pp. 216–223, Lecture Notes in Computer Science

209, 1984.

[40] F. Grieu, “A chosen messages attack on the iso/iec 9796-1 signature

scheme,” in Advances in Cryptology, EUROCRYPT’00, pp. 70–80, Lec-

ture Notes in Computer Science 1807, 2000.

[41] J. Herzog, M. Liskov, and S. Micali, “Plaintext awareness via key regis-

teration,” in Advances in Cryptology, CRYPTO’03, pp. 548–564, Lecture

Notes in Computer Science 2729, 2003.

[42] Bin-Tsan Hsieh, Hung-Min Sun, and Tzonelih Hwang, “Cryptanalysis

of enhancement for simple authenticated key agreement algorithm,”

IEE Electronic Letters, vol. 38, no. 1, pp. 20–21, 2002.

[43] Jing-Jang Hwang and Tzu-Chang Yeh, “Improvement on Peyravian-

Zunic’s password authentication schemes,” IEICE Trans. on Communi-

cations, vol. E85-B, pp. 823–825, 2002.

[44] Min-Shiang Hwang, Chin-Chen Chang, and Kuo-Feng Hwang, “An

ElGamal-like cryptosystem for enciphering large messages,” IEEE

128

Transactions on Knowledge and Data Engineering, vol. 14, no. 2, pp. 445–

446, 2002.

[45] D. P. Jablon, “Strong password only authenticated key exchange,” Com-

puter Communication Review, vol. 26, pp. 5–26, Oct. 1996.

[46] J. Katz, R. Ostrovsky, and M. Yung, “Efficient password-authenticated

key exchange using human-memorable passwords,” in Advances in

Cryptology, EUROCRYPT’01, pp. 475–494, Lecture Notes in Computer

Science 2045, 2001.

[47] Kazukuni Kobara and Hideki Imai, “Pretty-simple password-

authenticated key-exchange protocol proven to be secure in the stan-

dard model,” IEICE Transactions on Fundamentals, vol. E85-A, no. 10,

pp. 2229–2237, 2002.

[48] H. Krawczyk, “SIGMA: The “SIGn-and-MAc” approach to authenti-

cated Diffie-Hellman and its use in the IKE protocols,” in Advances in

Cryptology, CRYPTO’03, pp. 400–425, Lecture Notes in Computer Sci-

ence 2729, 2003.

[49] Wei-Chi Ku and Sheng-De Wang, “Cryptanalysis of modified authen-

ticated key agreement protocol,” IEE Electronics Letters, vol. 36, no. 21,

pp. 1770–1771, 2000.

[50] T. Kwon, M. Kang, S. Jung, and J. Song, “An improvement of the

password-based authentication protocol K1P on security against re-

play attacks,” IEICE Transactions on Communications, vol. E82-B, no. 7,

pp. 991–997, 1999.

129

[51] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “Security of

authenticated multiple-key,” Technical report CORR 9805, Department of

C&O, University of Waterloo, 1998.

[52] Sung-Woon Lee, Woo-Hun Kim, Hyun-Sung Kim, and Kee-Young

Yoo, “Parallizable simple authenticated key agreement protocol,” ACM

SIGOPS Operating Systems Review, vol. 37, no. 3, pp. 17–22, 2003.

[53] Iuon-Chang Lin, Chin-Chen Chang, and Min-Shiang Hwang, “Security

enhancement for the simple authentication key agreement algorithm,”

in The Twenty-Fourth Annual International Computer Software and Appli-

cations Conference(COMPSAC)’2000, pp. 113–115, 2000.

[54] Eric Jui-Lin Lu, Cheng-Chi Lee, and Min-Shiang Hwang, “Cryptanaly-

sis of some authenticated key agreement protocols,” International Jour-

nal of Computational and Numerical Analysis and Applications, pp. 151–

157, Apr. 2003.

[55] W. Mao, Modern Cryptography: Theory & Practice, Prentice Hall, 2004.

[56] John C. Martin, Introduction to Languages and the Theory of Computation,

McGraw Hill, 1997.

[57] U. Maurer, “Towards proving the equivalence of breaking the Diffie-

Hellman protocol and computing discrete logarithms,” in Advances in

Cryptology, CRYPTO’94, pp. 271–281, Lecture Notes in Computer Sci-

ence 839, 1994.

[58] M. Naor and M. Yung, “Universal one-way hash functions and their

cryptographic applications,” in Proc. of the 21st STOC, pp. 33–43, 1989.

130

[59] M. Naor and M. Yung, “Public-key cryptosystems provably secure

against chosen ciphertext attack,” in Proc. of the 22st STOC, pp. 427–43,

1990.

[60] R. M. Needham and M. D. Schroeder, “Using encryption for authenti-

cation in large networks of computers,” Communications of the Associa-

tion for Computing Machinery, vol. 21, no. 21, pp. 993–999, 1978.

[61] National Institute of Standards and Technology, “Federal information

processing standards (FIPS) publication 180-2, secure hash standard

(SHS),” 2004.

[62] T. Okamoto and S. Uchiyama, “A new public-key cryptosystemas as se-

cure as factoring,” in Advances in Cryptology, EUROCRYPT ’98, pp. 308–

318, Lecture Notes in Computer Science 1403, 1998.

[63] IEEE P1363, “Standard specifications for public key cryptography,”

2000.

[64] P. Paillier and David Pointcheval, “Efficient public-key cryptosystems

provaly secure against active adversaries,” in Advances in Cryptology,

ASIACRYPT’99, pp. 165–179, Lecture Notes in Computer Science 1716,

1999.

[65] Duong Hieu Phan and David Pointcheval, “On the security notions for

public-key encryption schemes,” in 4th conference on Security in Com-

munication Networks’04, pp. 33–46, Lecture Notes in Computer Science

3352, 2005.

131

[66] D. Pointcheval, “New public key cryptosystems based on the

dependent-RSA problems,” in Advances in Cryptology, EUROCRYPT’99,

pp. 239–254, Lecture Notes in Computer Science 1592, 1999.

[67] M.O. Rabin, “Digitalized signatures and public-key functions as in-

tractable as factorization,” Technical Report, MIT/LCS/TR212, MIT Lab.,

Computer Science Cambridge, MA, USA, January 1979.

[68] C. Rackoff and D. Simon, “Non-interactive zero-knowledge proof of

knowledge and chosen ciphertext attack,” in Advances in Cryptology,

CRYPTO’91, pp. 433–444, Lecture Notes in Computer Science 576, 1991.

[69] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-

ital signatures and public key cryptosystems,” Communications of the

ACM, vol. 21, pp. 120–126, Feb. 1978.

[70] D. Seo and P. Sweeney, “Simple authenticated key agreement algo-

rithm,” IEE Electronics Letters, vol. 35, no. 13, pp. 1073–1074, 1999.

[71] V. Shoup, “Lower bounds for discrete logarithms and related prob-

lems,” in Advances in Cryptology, EUROCRYPT’97, pp. 256–266, Lecture

Notes in Computer Science 1233, 1997.

[72] V. Shoup, “OAEP reconsidered,” in Advances in Cryptology,

CRYPTO’01, pp. 239–259, Lecture Notes in Computer Science 2139,

2001.

[73] V. Shoup, “A proposal for an ISO standard for public key encryption

(version 2.1),” ISO/IEC JTC 1/SC 27, 2001.

132

[74] V. Shoup and R. Gennaro, “Securing threhshold cryptosystem against

chosen ciphertext attack,” in Advances in Cryptology, EUROCRYPT’98,

pp. 1–16, Lecture Notes in Computer Science 1403, 1998.

[75] N. P. Smart, “Identity-based authenticated key agreement protocol

based on Weil pairing,” Electronics Letters, vol. 38, no. 13, pp. 630–632,

2002.

[76] M. E. Smid and D. K. Branstad, “The data encryption standard: Past

and future,” Proc. of the IEEE, vol. 76, pp. 550–559, May 1988.

[77] J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: An authenti-

cation service for open network system,” in Usenix Conference, pp. 191–

201, Feb. 1988.

[78] M. Steiner, G. Tsudik, and M. Waidner, “Refinement and extension of

encrypted key exchange,” ACM Operating Systems Review, vol. 29, no. 3,

pp. 22–30, 1995.

[79] D. Stinson, Cryptography: Theory and Practice, Chapman & Hall/CRC,

second edition, 2002.

[80] H. Sun, “On the security of simple authenticated key agreement algo-

rithm,” in Proceedings of the Management Theory Workshop’2000, 2000.

[81] Yuh-Min Tseng, “Weakness in simple authenticated key agreement

protocol,” IEE Electronics Letters, vol. 36, no. 1, pp. 48–49, 2000.

[82] Yuh-Min Tseng, Jinn-Ke Jan, and Hung-Yu Chien, “On the security of

methods for protecting password transmission,” International Journal of

Informatica, vol. 12, no. 2, pp. 1–8, 2001.

133

[83] Y. Tsiounis and M. Yung, “On the security of ElGamal based encryp-

tion,” in PKC’98, pp. 117–134, Lecture Notes in Computer Science,

1998.

[84] M. J. Wiener, “Cryptanalysis of short RSA secret exponents,” IEEE

Transactions on Information Theory, vol. 36, no. 3, pp. 553–558, 1990.

[85] Her-Tyan Yeh and Hung-Min Sun, “Simple authenticated key agree-

ment protocol resisant to password guessing attacks,” ACM SIGOPS

Operating Systems Review, vol. 36, no. 4, pp. 14–22, 2002.

[86] Xun Yi, “Efficient ID-based key agreement from Weil pairing,” Electron-

ics Letters, vol. 39, no. 2, pp. 206–208, 2003.

134

