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摘要 

 

在無線環境中，網路的效能會高度受到底層的拓撲所影響。而一個稀疏的拓

撲具有減少多餘流量的特性，因此可提升網路擴增性。然而一個稀疏拓撲經常會

犧牲許多重要的網路線段，這些線段有可能是型成要能源有效路由的必經路徑。

因此，在拓撲的能源有效性和稀疏度之間存在了相互牽制的議題。 

 在這篇論文中，我們將提出以幾合圖型為基礎的拓撲控制方法，這個方法

可透過參數的設定達到在能源有效性和稀疏度之間調整的彈性，理論結果證明此

方法可保證拓撲的連通性、平行性，和對稱性。更重要的是，每一個節點利用區

域內所收集的資訊即可建構出所需的拓撲。 

為了解決節點的移動性，我們以前面的圖型方法為基礎，提出了一個可適性

的拓撲控制協定，此協定具有在保有節點能源和改進整體耗能之間動態調整的能

力。數據及摸擬結果提出，我們的方法可有效減少能源消耗，特別是對高度行動

的網路有明顯的改進。 
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Abstract 

The wireless ad hoc network is convenient to many applications, such as 

conferences, hospitals, battlefields, and etc. In these environments, the network 

performance heavily relies on the underlying topology. Especially, keeping the 

topology sparser enhances network scalability. However, a sparse topology may 

sacrifice some routes that consume less power. Therefore, a tradeoff is between the 

sparseness and the energy efficiency of the topology.  

In this dissertation, we propose a geometric structure, named the r-neighborhood 

graph, to control the topology. The structure allows the flexibility to be adjusted 

between energy efficiency and node’s degree through a parameter r, 0 ≤ r ≤ 1. 

Theoretic results show that it can always result in a connected planar topology with 

symmetric edges. More importantly, the structure can be constructed in localized 

fashion using only 1-hop information.  

To cope with node’s mobility, we investigate an adaptive protocol, based on a 

generalized version of the r-neighborhood graph. In this protocol, the parameter r can 

be adjusted distributively by each node according to the overall energy efficiency. To 

reduce the construction power, we further incorporate the protocol with a shrinking 

power mechanism for the topology maintenance. Simulation and numeric results show 

that the proposed approaches can significantly improve the energy consumption, 

especially in high mobility environment. 
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Chapter 1 

Introduction  
 

The continuing growing of techniques in mobile ad hoc network (MANETs) 

have led to many available applications in such as commercial, hospitals, military, 

search and rescue teams, education, etc. In MANETs, all transmissions are carried on 

wireless links without any wired connection, which enhances the conventional 

deployment of communicating environments. However, unlike a wired network, 

mobile devices are usually powered by limited energy supplies, where a continuing 

replacing or recharging could be hardly attainable. Hence, a substantial body of 

research has been devoted to improve the energy efficiency [34].  

Due to the severe path loss in wireless links, the power required to transmit from 

one end to another will be exponentially grown by their distance. Thus, instead of a 

single long-distance transmission, relaying message through multiple hops with 

shorter distances usually consume less energy [24]. During the relaying process, each 

participating node has to consume energy to transmit or/and receive messages. Thus 

the total power required for a communication will be crucially influenced by the 

choice of relaying path. This motivates the recent research efforts on designing the 

energy-efficient communication protocols [35].  

To compute the energy-efficient route, the global view of the network topology is 

required. However, the information is typically invisible to an individual node in 
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wireless environments. Thus, if without addition information, such as the position of 

destination, enormous control packets have to be flooded all over the entire network 

to find out the route. The incurred overhead will quickly drain out node’s energy.  

In order to achieve the energy-efficient routing with less overhead, one 

promising way is by controlling the topology. Generally speaking, the basic idea is to 

keep the underlying topology as sparse as possible, while still preserve the 

energy-efficient route that consume less power for communications. A sparser 

topology can significantly mitigate the excessive flow flooded by nodes.  

To reduce the communication overhead, one promising way is to control the 

underlying topology as sparse as possible to avoid excessive messages, while still 

preserve the energy-efficient route for any nodes pair. This is the so called 

energy-efficient communication topology control problem. The topology control 

problem in wireless ad hoc networks has been widely studied in recent years [3, 15, 

18, 19, 20, 23, 29, 32]. Generally speaking, the core of this problem is to determine 

set of wireless links such that the composed topology is able to achieve certain goals 

[23]. These goals would be variant depending upon the circumstances and could be 

either qualitative features or quantitative objectives.  

In general, the current effort on mobile topology control is mainly focused on 

reducing the transmission power required for each node to maintain the network 

connectivity. This objective is most appealing when the energy consumption of an 

individual node is crucial. However, to support an energy-efficient communication, 

the quality of routes preserved in the underlying topology is also important. Overall, 

the two goals are equally important in regard to deign an energy-efficient topology 

control: The former avoids exhausting individual node that in turn causes network 

partition and the later declines the per-packet energy consumption.  
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However, there is usually a tradeoff between the two desires: In order to 

constitute an energy-efficient route, a node may connect itself with a neighbor that is 

farther than the least requirement for connectivity. Contrarily, lowering down a node’ 

transmission power may instead increase the total relaying power. See the example in 

Figure 1.1 (a), the communicate power between u and v is 5, while the least power of 

u to achieve connectivity is 3. In contrast, in Figure 1.1 (b), u’s transmission power is 

minimal, while the total relaying power (4 + 4 = 8) is now worse.  

 

        
Figure 1.1: (a) Preserving energy-efficient route; (b) Reducing transmission power. 

In this dissertation, our ultimate goal is to design an adaptive topology control 

protocol for mobile nodes. In this protocol, each node can adaptively change its way 

to contribute to the overall energy efficiency: if a node has sufficient energy, it will 

aggressively participate in supporting the energy-efficient communication; and when 

the deposited energy downs to a relatively low level, the node will turn to conserve its 

own energy.  

The main idea is based on a geometric structure, named the r-neighborhood 

graph. The structure consists of several theoretic properties that can be exploited for 

designing the mobile topology control with the adaptive goal. Most importantly, based 

on such structure, each node can decide its neighbors in a fully distributive and 

localized way. We will also extend the structure to several generalized versions. These 
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extensions enable an elegant self-configuration process on each node 

On the other hand, to keep the design clean and compatible with the IEEE 802.11 

DCF, we let each node periodically announce its current position using beacon 

message. However, such maintenance power could be considerable, especially when 

the broadcasting range is large. For this reason, we incorporate the protocol with a 

shrinking power mechanism. It can reduce the topology maintenance power 

significantly.  

Furthermore, our protocol can simultaneously achieve the following desirable 

features without additional control message.  

1. Symmetric: A topology is symmetric if the presence of an edge uv implies that its 

inverse vu exists. If without the symmetricity, the implementations of many network 

primitives, such as ACK in link-layer, will be much complicated [21]. Our protocol 

ensures this property for any resulted topology. 

2. Connected: Connectivity is unquestionably the most essential prerequisite in any 

communicable topology [23]. Two nodes u and v are strongly connected if there is a 

directed path from u to v and vice versa. A directed topology is strongly connected if 

all pairs of nodes are strongly connected. If the links are symmetric, we should aim at 

the connectivity of an undirected topology.  

3. Sparse: Numerous distributed and localized routing protocols are based on 

flooding [13]; however this may burden networks with unavoidable redundant 

messages. Thus, keeping a sparse topology, consisting of linear number of links [15], 

would be an ingenious way to shrink the expenditure from network operations.  

4. Bounded Maximum node degree: For some nodes with overly-large degrees, the 

network flows will concentrate on them and rapidly draw out their energy. Besides, a 

larger node degree means tighter dependency among nodes, which is not expected 
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when wireless nodes move frequently. Therefore, the maximum node degree over a 

topology should be bounded from above by some constant.  

5. Planar: A graph is planar if it has no crossed links inside. It is helpful for many 

geometric problems: The shortest path (least energy unicast route) can be quickly 

found in linear time when the underlying topology is planar [12]; Besides, in many 

position-based routing algorithms, the successful delivery can be guaranteed only if 

the underlying topology is a planar [2, 11]. 

  In addition, in wireless ad hoc networks, due to the absence of a central 

arbitrator and the limited sensing range, a centralized approach for controlling the 

topology is rarely attainable [3, 30]. Therefore, a variety of distributed approaches 

were proposed [17, 19, 29]. A distributed protocol passes messages hop-by-hop. This 

however may cause considerable overhead through the entire network. So, a localized 

approach is more preferred. According to the definition given by Stojmenovic and Lin 

[27], a localized topology control approach allows each node to determine its 

neighbors using only constant hop information. However, in some localized 

approaches [15, 16, 18, 27], the operations should recursively depend upon the 

computed status or partial results from nearby nodes, which may hurt their 

practicability. Therefore, in the following we define a new type of mythology for 

more practicability.    

DEFINITION 1.1: An algorithm L is purely localized if it is localized and all operations 

depend upon only the information inherent1 in nodes, available before any execution 

of L. 

A purely localized topology control algorithm is more useful to large scale and high 

mobility environments, since the operation of a node is completely isolated from any 

                                                 
1The node’s position and id are usually assumed to be inherited in nodes. See Chapter 2 for more 
explanation. 
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execution of other nodes. Further, we say that a structure is purely localizable if we 

can construct it by a purely localized algorithm. One of our goals is to investigate a 

purely localizable structure so that all desired features mentioned above can achieve. 

The rest of this dissertation is organized as follows. Chapter 2 specifies the 

network model and formally describes the problem under study. In Chapter 3, we 

review and summarize the related works. The main geometric structures, components, 

and their theoretical results are presented in Chapter 4. In Chapter 5, we suggest a 

localized algorithm for stationery nodes and a shrinking power mechanism to 

constitute the skeleton of the desired protocol. In Chapter 6, we present the theoretic 

definition, properties, and algorithms of the self-configured process in mobile 

environment. Extensive simulation and numeric studies are conduced in Chapter 7. 

Finally, concluding remarks and some worth directions for the further research are 

given in the last Chapter. Detailed derivations are given in Appendix. 

 

 



 
 
 

Chapter 2 

Background and Related Works 
 

In this chapter, the network model studied in this dissertation will be formally 

described. Then, we will review some related works in the literature. According to the 

assumption of node mobility, existing works for stationary and mobile nodes will be 

discussed, respectively, in Chapter 2.2 and Chapter 2.3. 

  

2.1 Network Model 

The wireless ad hoc network concerned in this paper consists of a set V of n 

wireless nodes distributed on a deployment region ℵ, which is a subset of the 

two-dimension plane ℜ2. We assume that each node is equipped with an 

omnidirectional antenna and can change its transmission range by adjusting the 

transmitting power at any level. The maximum transmission ranges are equal among 

all nodes. In other words, we can normalize the maximum transmission ranges of all 

nodes to be 1 for simplicity. In addition, each node u can obtain its location Loc(u) 

through a lower-power GPS or some other ways [14], and an unique id(u) is also 

available to each node u.  

This network can be modeled as a unit disk graph, UDG(V). In this graph, an 

edge uv exists if and only if the Euclidean distance between u and v, denoted as ||uv||, 

is at most 1.  

 7



The least power required to transmit immediately between u and v is modeled as 

p(u, v) = ||uv||α, where α is typically taken on a value between 2 and 4, depending on 

the attenuation strength of the communication environment [5]. To measure the power 

efficiency of a topology, Li et al. [15] defined a well-formed measure, named power 

stretch factor. We reintroduce it as below.  

Let π(u, v) = v0v1…vh-1vh be a unicast path connecting nodes u and v, where v0 = u and 

vh = v. The total transmission power consumed by path π(u, v) is defined as  

∑
=

−=
h

i
ii vvpvup

1
1 ),()),((π . 

Let  be the least-energy path connecting u and v in graph G(V). Given a 

controlled topology S(V) of UDG(V), tthe power stretch factor of S(V) with respect to 

UDG(V) is defined as,  

),(*
)( vuVGπ

( )
( )),(

),(
max))(( *

)(

*
)(

, vup
vup

VS
VUDG

VS

Vvu π
π

ρ
∈

= . 

This factor indicates the worst ratio of the least energy required to relay on S(V) in 

compared to that of a uncontrolled topology for all possible communication pairs. 

Clearly, a smaller ratio is preferable. On the other hand, the maximum node degree of 

the topology S(V) is defined as  

))((max))((max VGdVSd uVu∈
= , 

where du(S(V)) is the degree of node u in S(V). 
In addition, the following symbols will be used throughout this article.  

 D(u, d): the closed disk centered at Loc(u) with radius d.  

 C(u, d): the circled centered at Loc(u) with radius d. 

 ))(( VG : the set of neighbor of u in a graph G(V). Nu
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2.2 Stationery Topology Control  

In the field of topology control for stationary nodes, a majority of researches 

were conducted by designing the proximate graph. A proximate graph is a geometric 

structure in which each node determines its neighbors based on the positions of nodes 

in its province. In other words, a topology approach based on such structure can be 

carried out in a fully distributed and localized way. A number of instances can be 

found in the literature [15, 16, 18, 26]. These works are diverse in their sparseness and 

the energy efficiency of preserved routes. We discuss the most well-know structures 

below. Most of them or their extensions are purely localizable: 

 The constrained Relative Neighborhood Graph [28], denoted by RNG(V), has an 

edge uv if and only if ||uv|| ≤ 1 and the intersection of two open disks1 centered at 

u, v with radius ||uv|| contains no node w ∈V, see Figure 2.1 (a),  

 The constrained Gabriel Graph [6], denoted by GG(V), has an edge uv if and 

only if ||uv|| ≤ 1 and the open disk using ||uv|| as diameter contains no node w ∈V, 

see Figure 2.1 (b). 

 The constrained Yao Graph [33] with a parameter k ≥ 6, denoted by )(VYGk  is 

constructed as follows. For each node u, define k equal cones by k 

equal-separated rays originated at u. At each cone, a directed edge uv exists, if 

||uv|| ≤ 1 and the cone contains no vertex w ∈V such that ||uw|| < ||uv||. Ties are 

broken arbitrarily. YGk(V) is denoted as the underlying undirected graph of 

)(VYGk , see Figure 2.1 (c).  

 A Delaunay Triangulation, denoted by Del(V), is a triangulation of V in which 

the interior of the circumcircle of each Δuvw contains no node w ∈ V. The unit 

                                                 
1 An open disk centered at point x with radius d is the collection of points with distance less than d 
from Loc(x). 
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Delaunay Triangulation, denoted by UDel(V), has all edges of Del(V) except 

those longer than 1 [8, 18], see Figure 2.1 (d).  

 

 

(a) 

 

(b) 

 

(c)  

(d) 
Figure 2.1: (a) RNG(V) (b) GG(V) (c) YGk(V), k = 8 (d) UDel(V). 

Let us discuss the properties of these structures and their extensions. We say a 

objective f(.) of a structure S(V) is bounded if there is a constant C such that f(S(V)) ≤ 

C, for any set V of n nodes. Li et al. [15] showed that dmax(RNG(V)) is unbounded if 

there is a node u ∈ V having an unbounded number of neighbors adjacent to u at 

exactly the same distance in the underlying UDG(V). To overcome this problem, 

Wattenhofer and Zollinger [32] proposed an algorithm to find a structure, denoted by 

XTC(V). They showed that that XTC(V) is a subgraph of RNG(V) and the dmax(XTC(V)) 

is at most 6. Especially, if there is no node having two or more neighbors at exactly 
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the same distance in V, XTC(V) is identical to RNG(V) [24]. Their results infer the 

following theorem.  

THEOREM 2.1: Given a set V of nodes on ℜ2, if there is no node having two or more 

neighbors at exactly the same distance, then dmax(RNG(V)) ≤ 6.  

We denote the condition in Theorem 2.1 as assumption AS. That is,  

AS : There is no node in V having two or more neighbors at exactly the same distance. 

This theorem reveals that even RNG(V) has no constant bound on its node degree, it is 

still useful since the distances of nodes in real world are rarely exactly the same. The 

constrained Gabriel Graph GG(V) has the least power stretch factor 1, in comparison 

with the unbounded power stretch factor n – 1 of RNG(V) [15]. However, dmax(GG(V)) 

could be as large as n – 1. An extended structure, Enclosure graph [16, 14, 24], 

denoted by EG(V) is generalized from GG(V). It can always result in a subgraph of 

GG(V) [16]. Even so, its maximum node degree is still unbounded [20, 24].  

To overcome the tradeoff between the maximum node degree and the power 

stretch factor, an adjustable structure, having the flexibility to be adjusted between the 

two objectives, becomes more attractive. )(VYGk is an adjustable structure. It can be 

adjusted through a parameter k such that for any given k, the maximum out-degree is 

at most k, and the power stretch factor is at most ( )( )απ k/sin211 −  [15]. We say an 

objective f(.) of an adjustable structure Sk(V) with parameter k is partially bounded if 

there is at least one k0 such that  is bounded. According this definition, the 

maximum out-degree and power stretch factor of 

))((
0

VSf k

)(VYGk  are partially bounded 

since for some ranges of k, k and ( )( )απ k/sin211 −  are constants. However, the 

asymmetric edges of )(VYGk  may lead to large in-degrees even when k is very small 

[15]. So,  can be neither bounded nor partially bounded. To improve 

this, an extension of 

))((max VYGd k

)(VYGk , named Yao and Sink, was proposed [15, 17, 29]. It can 
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limit the maximum node degree in (k +1)2 – 1 and result symmetric edges. 

Unfortunately, in this structure the neighbors of some node should be recursively 

determined by one another so that it can not be purely localizable. The unit Delaunay 

triangulation UDel(V) has bounded power stretch factor. However, neither Del(V) nor 

UDel(V) can be computed locally. So, Li et al. [18] suggested a localized version of 

the Delaunay graph, denoted by LDel(h)(V), where h means that each node uses at 

most k-hop information. The power stretch factor of LDel(k)(V) is bounded for all k ≥ 1. 

Even so, its maximum node degree is not bounded for any h.  

The relations among these structures were studied in several papers [7, 10, 16, 22, 

24, 33]. We summarize them on Figure 2.2, where EMST(V) is the Euclidean 

minimum spanning tree of UDG(V). With these relations, their connectivity can 

planarity can be easily inferred. 
 

                 
Figure 2.2: The relations of the pure localizable structures and their extensions.  

 

Regarding the connectivity: we know that EMST(V) is connected if UDG(V) is 

itself a connected component of V. Therefore, when UDG(V) is connected, all graph 

containing EMST(V) are connected. That is, RNG(V), GG(V), EG(V), UDel(V), 
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LDe(k)l(V), YGk(V) are all connected. The connectivity of XTC(X) was proven by 

different way [24]. 

Regarding the planarity: LDel(k)(V) is planar for any k ≥ 2 [18]. Therefore, all 

subgraphs of LDel(2)(V) are planar. That is, UDel(V), GG(V), EG(V), RNG(V), XTC(V), 

EMST(V) are all planar. On the contrary, )(VYGk , and LDe(1)l(V) can not avoid 

producing the crossed link, so they are not planar [15, 18]. Table 2.1 summarizes 

above discussion.  

From above table, we can see that no presented structure can bound or even 

partially bound the two objectives. Besides to the best of our knowledge, no other 

structure can be purely localizable and achieve this goal. Therefore, we will propose 

the first purely localizable structure, named r-Neighborhood Graph, to fill this gap. 

This structure is adjustable and can always result in a connected planar with 

symmetric edges. In addition, we can show that our structure is a generation of both 

GG(V) and RNG(V). 
 

Table 2.1: The properties of the four main purely localizable structures. 

 Power stretch factor Maximum node degree Planar Symmetric Connected 

RNG(V) Unbounded 
Bounded (with AS) 

Unbounded (without AS) Yes Yes Yes 

GG(V) Bounded Unbounded Yes Yes Yes 

)(VYGk  Partially bounded Unbounded No No Yes 

LDel(k)(V) Partially bounded Unbounded 
No ( k = 1)

Yes ( k ≥ 2) Yes Yes 

 

Apart from the purely localizable structures, several composite methods, based 

on combining two or more existent structures, were investigated in the last few years 

[17, 19, 25, 31]. Conceptually, the main idea is to use the virtue of one structure to 
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patch up the fault in the other structures. For examples, the ordered Yao structure, 

denoted as OrdYao(V) [1], is a variation of . It has the partially bounded 

maximum node degree and length stretch factor. However, the planarity can not be 

guaranteed. Therefore, Wang and Li [19, 31] applied OrdYao(V) onto LDel(2)(V) to 

avoid the crossed edges produced by OrdYao(V); Song et al. [25] improves it by 

applying the OrdYao(V) on GG(V), using only one-hop information. Their Result are 

summary in Table 2.2. However, the construction of OrdYao(Y) requires exchanging 

the computed status as well as partial results between nodes. Consequently, none of 

them is purely localized or purely localizable.  

)(* VYGk

 

Table 2.2: The properties of representative adjustable structures. 

 Parameter Power stretch factor Maximum node degree 

YGk
*  k = 6, …, n-1 

k
πsin21

1

−

 
απ
⎟
⎠
⎞

⎜
⎝
⎛−

k
sin21

1  

OrYaoGG k = 7, …, n-1 βπ )/sin2(1
1

k−
 k + 5 

SYaoGG k = 9, …, n-1 
β

β

π )/sin22(1
2

k−
k 

 

2.3 Mobile Topology Control Protocols 

Distributed protocols for proximate graphs can be also found in the literature 

[34]. However, existent results are all applied to stationary network only. There is no 

approach explicitly designed for mobile nodes based on such structure. The reason is 

probably that the construction depends on node positions, so that even a slight change 

in nodes placement could trigger a reconstruction process to handle the broken link or 
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deteriorated link quality.  

There are relatively fewer works considering nodes mobility. The LINT (and its 

extension LILT) is perhaps the first topology control protocol explicitly designed for 

mobile network [36, 37]. In this protocol, each node continually adjusts its 

transmission power such that the number of covered neighbors is within a lower and 

high threshold. Accordingly, the energy can be saved by declining the high threshold, 

and the network connectivity can be achieved by uplifting the low threshold. It 

however has no guarantee on connectivity if the low threshold is underestimated. To 

improve that, Blough et al [38] proposed a similar approach, named the K-NEIGH. 

The protocol connects each node with its k-closest neighbors and removes all 

asymmetric links, where k is a predefined parameter. The most interesting result is 

that if n nodes are uniformly distributed at random and k is taken as Θ(logn), then the 

connectivity can be held with high probability. These protocols are called the 

neighbor-based approach, since a node’s construction relays on the ability of ordering 

or measuring distances of nodes in its province [34]. The direction-based approach is 

another stem. It uses the angles among nodes for the construction. An example is the 

Cone Based Topology Control (CBTC) [39]. The basic idea is to let each node 

transmits with the minimum power that covers at least one neighbor in every cone of 

an angle ρ centered at it. The authors show that ρ ≤ 2π/3 is a sufficient condition to 

ensure connectivity. Li et al. [40] proposed a reconfiguration procedure to deal with 

node mobility by detecting changing events from received beacons. 

The most important features of these protocols are that their constructions are 

based on either nodes distance or nodes directions. Compared with the proximate 

graph, both the neighbor-based and direction-based approaches can be more 

accommodating to nodes movement. The reason is that the changing on nodes 
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distances or directions will be relatively small with respect to nodes positions. 

Therefore, by using either of the two less precise information, a fewer number of 

topology reconstruction will be required when nodes move.   

Even thought our protocols are based on a proximate graph. We will show that 

such disadvantage can be easily mitigated in an elegant way. In addition, Compared 

with K-NEIGH, LINT (LILT) and CBTC, our protocol guarantees the network 

connectivity in any stabilized status, without any assumption on nodes distribution, or 

parameter setting. Furthermore, both CBTC and K-NEIGH attend symmetricity by 

exchanging linking status among nodes. This will incur additional control overhead. 

Our protocol ensures that any established link is inherently bidirectional.  
 



 
 
 

Chapter 3 

Graphic Structures 
 

In this chapter, we will introduce a new adjustable structure, called the 

r-neighbor graph. It can be adjusted between the maximum node degree and power 

stretch factor through the parameter r. The structure can also produce connected 

planar with symmetric edges. However, its maximum node degree will be unbounded 

in certain cases. To comprehend the theoretic property, we will then propose an 

enhanced version, called the extended r-neighborhood graph to deal with the special 

circumstance.  

To apply the proposed structure to our mobile protocol, extensive investigations 

on the r-neighborhood graph will be given. First of all, we define a generalized 

structure, called the (r, α)-neighborhood graph. The generalization can gain better 

quantitative results. Next, an equivalent structure, called the (r, α)-Enclosed graph 

will be given. Its diverse representation enables the design of a shrinking power 

mechanism in Chapter 4. Then, we further generalized the structure such that each 

node having its own r, named the (fr, α)-neighborhood Graph. This graph provides 

essential properties for the self-configuration process in Chapter 6. 
 

3.1 r-Neighborhood Graph  

In this section, we introduce the adjustable structure. First, we define a region on 
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ℜ2. It will be used to compose our structure.  

DEFINITION 3.1: Given a nodes pair (u, v) on ℵ, the r-neighborhood region of (u, v), 

denoted as NRr(u, v), is defined as:  

),(),(),(),( uvuvr lmDuvvDuvuDvuNR ∩∩= , 

where muv is the middle point on uv, luv = (||uv||/2)(1 + 2r2)1/2, and 0 ≤ r ≤ 1. 
 

 
Figure 3.1: The r-neighborhood region of nodes u and v. 

 

When no confused, we use m and l instead of muv and luv respectively. In Figure 3.1, 

the shaded region intersected by the three open disks sketches an example of the 

r-neighborhood region. This region is obviously equivalent to the following point set: 

} , ,|)({),( 2 lmxuvvxuvuxxLocvuNRr <<<ℜ∈=  (3.1) 

For any node w located on NRr(u, v), this region limits the power consumed by path 

uwv. This property is shown in Lemma 3.1 and derived in Appendix.  

LEMMA 3.1: Given two nodes u and v on ℵ, for any node w such that Loc(w) ∈ NRr(u, 

v), p(uwv) < ||uv||α(2 + rα), for all α ≥ 2.  

This lemma explains why we call such plane a neighborhood region: For any node w 

located in the region NRr(u, v), it should be an alternative neighbor for u with respect 

to v, in the sense that the power required for relaying from u to v through w is no 

greater than 1 + rα times of the immediate transmission. Based on this region, we 

structure is defined below.  
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DEFINITION 3.2: Given a set V of nodes on ℵ, the r-neighborhood graph of V, 

denoted as NGr(V), has of an edge uv if and only if ||uv|| ≤ 1 and NRr(u, v) contains no 

node w ∈ V, where 0 ≤ r ≤ 1. 

By Definition 3.2, if edge uv is not in UDG(V) or a node w is inside NRr(u, v), there is 

no direct link connecting u and v in NGr(V), which mean that all transmissions 

between u and v should be relied through some other node(s) in NGr(V). Now, we 

explore the desired properties in our structure. Before this, we shall discussion the 

following relations.  

LEMMA 3.2: For any set V of nodes on ℵ, RNG(V) ⊆ NGr(V) ⊆ GG(V), for all 0≤ r≤1. 

Proof. Consider the open disk D(m, ||uv||/2), defining GG(V). Suppose uv ∈ NGr(V), 

the region NRr(u, v) has no node inside. Since D(m, ||uv||/2) is obviously a subregion 

of NRr(u, v), for any 0 ≤ r ≤ 1, there is also no node in D(m, ||uv||/2). Therefore, 

according to the definition of GG(V), we get uv ∈ GG(V). On the other hand, consider 

the two open disks D(u, ||uv||) and D(v, ||uv||), defining RNG(V). Suppose uv ∈ 

RNG(V), no node is inside the intersection of D(u, ||uv||) and D(v, ||uv||), which 

obviously covers the region NRr(u, v), for any 0 ≤ r ≤ 1. Therefore, no node can be 

inside NRr(u, v) and we get uv ∈ NGr(V).  □ 

Specifically, as r = 0, NR0(u, v) ≡ D(m, ||uv||/2), which is the disk defining GG(V). On 

the contrary, as r = 1, NR1(u, v) ≡ D(m, ||uv||), which is the disk defining RNG(V). 

Therefore, GG(V) ≡ NG0(V) and RNG(V) ≡ NG1(V). So, we can conclude the 

following theorem.  

THEOREM 3.1: The r-neighborhood graph is a generalized structure of both the 

restricted Gabriel graph and the restricted relative neighborhood graph.  

Since a subgraph of a planar graph is always planar, and a supergraph of a connected 

graph is always connected, with the planarity of GG(V) and connectivity of RNG(V), 
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we can infer the following two theorems.  

THEOREM 3.2: For any set V of nodes on ℵ, NGr(V) is planar, for all 0 ≤ r ≤ 1. 

THEOREM 3.3: For any set V of nodes on ℵ, if the underlying UDG(V) is connected, 

NGr(V) is connected, for all 0 ≤ r ≤ 1. 

Now we consider the energy efficiency and node degree of NGr(V). We will 

show that the upper bound of ρ(NGr(V)) is increased by r and contrarily the upper 

bound of dmax(NGr(V)) is decreased by r. In other words, the r-neighborhood graph is 

adjustable to the two objectives through the parameter r. With these results, we can 

further show that the power stretch factor and maximum node degree are partially 

bounded in our structure. Before these, a property proposed by Li et al.[15] shall be 

mentioned first. It can be used to simplify our proof. 

LEMMA 3.3 [15]: Given a subgraph G’(V) ⊆ UDG(V) and a constant C, ρ(G’(V)) ≤ C 

if and only if for any edge uv in G(V), there is a path π(u, v) in G’(V) such that 
αuvCvup VG ≤),()(' . 

This lemma indicates that to derive an upper bound for ρ(NGr(V)), it is sufficient to 

the consider only those nodes pairs having direct links in UDG(V). So, we aim to 

derive a strictly decreasing function F(r), such that for any uv in UDG(V), a path 

),( vuπ  is in NGr(V) such that ( )),( vup π  ≤ F(r)||uv||α. To achieve this, we investigate 

an algorithm EXPANSION with an input of any two nodes (u, v) and outputs subgraph S 

of NGr(V) related to (u, v). Let P(S) be the total transmission power of edges in S. i.e. 

P(S) = ∑st∈Sp(s, t). We can show that there is some path in S connecting (u, v) and P(S) 

≤ F(r)||uv||α.  

In this algorithm, S’ is a set of nodes pairs, in which an edge st in NGr(V) can be a part 

of S only if its two ends (s, t) are in S’ as described at step 3. So, to determine S, we 

have discuss the S’ first. Initially, S’ contains only (u, v). Then, it will be recursively 
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expanded as follows: for each (s, t) in S’, if a node w is in NRr(s, t) and not considered 

before, replace (s, t) with (s, w) and (w, t); if a node w is in NRr(s, t) but considered 

before, replace (s, t) with (s, w); Otherwise, keep (s, t) unchanged. We use the set Q to 

record the considered nodes.  
 

ALGORITHM EXPANSION 

Input: A nodes pair (u, v) in V  

Output: A subgraph S and a positive value P.  

Step 1: S = {}, S’ ={(u, v)}, Q = {u, v}, P = ||uv||α; 

Step 2: When some node pair (s, t) is in S such that a node w ∈ NRr(s, t) 

S’ = S’ – (s, t); 

If w ∉ Q then  

S’ = S’ ∪ (s, w) ∪ (w, t);  

Q = Q ∪{w};  

P = P + (||st||r)α;  

Otherwise,  

S’ = S’ ∪ (s, w);  

Step 3: S = {xy ∈ NGr(V) | (x, y) ∈ S’};  

Step 4: Stop and output E and P. 
 

When some (s, t) is in S’ such that a node w ∈ NRr(s, t), no matter w is 

considered or not, by (4.1), the replaced nodes pair(s) must be shorter than ||st||. i.e. 

||sw|| < ||st|| and ||wt|| < ||st||. Thus after finite iterations, each node pair in S’ can be 

replaced by another node pair with shortest distance. So, the algorithm is terminable. 

Now we show that (u, v) is connected by some path in the subgraph S when 

termination.  
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LEMMA 3.4: Given any set V of node on ℵ, for any two nodes u and v in V, if edge uv 

is in UDG(V) and UDG(V) is connected, there is some path in S connecting (u, v). 

Proof: Since Q includes u and v, we can prove this lemma by showing that all nodes 

in the Q are connected in S. For each expansion of S’, we define a dummy graph S” in 

which an edge st exists if and only if (s, t) is in S’ (Note that any edge in S” is not 

necessarily in either UDG(V) or NGr(V)). First, we show that at any iteration, all 

considered nodes in Q are connected by S”. Initially, Q is connected by S”, since S’ = 

{(u, v)} and Q ={u, v}. We assume for induction that all nodes in Q are connected by 

S” at k-th iteration. Then, we show that it is true for the next iteration. At k+1-th 

iteration, if there is no pair in S’ satisfies the entrance condition of step 2, the claim is 

correct, since Q and S” are unchanged; Otherwise, a node pair (s, t) ∈ S’ is expended. 

In this case, if the chosen w ∉ Q, w is connected with all nodes in Q via dummy edges 

sw and wt; otherwise, w ∈ Q, which implies all nodes in Q are still connected by S” as 

the previous iteration. As described above, the distance of any expended nodes pair is 

no longer than the previous one. So, if uv is in UDG(V), all edges in S” are also in 

UDG(V). Then, as the algorithm processes to step 3, no nodes can be in the 

r-neighborhood region of any nodes pair in S’. With these two facts, all dummy edges 

in S” are also in NGr(V) when termination. So S is equivalent to the last S”. 

Consequently, if UDG(V) is connected, by Theorem 4.4, all nodes in the last Q are 

connected S.      □ 

Then we derive a strictly decreasing function F(r) using the value P in this algorithm.  

LEMMA 3.4: Given any set V of n nodes on ℵ, for any two nodes u and v in V, 
αuvrFSP )()( ≤  and  αrnrF )2(1)( −+=

for all 0 ≤ r ≤ 1 and α ≥ 2.  

Proof: Let P(S’) = ∑(s,t)∈S’p(s, t). We show that P(S’) ≤ P at each iteration of step 2. 
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Initially, S’ = {(u,v)}. We can get P(S’) = ||uv||α = P. Then at the first iteration, if no 

node w is in NRr(u, v), the claim remains true since neither P nor S is changed; 

Otherwise, a node w is in NRr(u, v). Besides, any chosen w can not be in Q, since no 

nodes except u and v are in Q so far. So, uv is replaced by vw and wv. By Lemma 4.1, 

P(vw)+P(wu) ≤ P(uv)(1+rα) = P + (||uv||r)α. Consequently the new P remains a upper 

bound of P(S’) . We assume for induction that P(S’) ≤ P at k-th iteration. Then we 

prove the claim is true at the next iteration. If the entrance condition of step 2 is not 

satisfied or the chosen w ∉ Q, it can be proved by the same reasons as in the first 

iteration. Otherwise, assume (s, t) is taken, st is replaced by only sw. By (4.1), P(vw) ≤ 

P(uv), which implies that the unchanged P is still an upper bound of P(S’). Besides, 

(4.1) further implies that all distance of two nodes in E are no greater than ||uv||. So, 

another upper bound P’ can be get by replacing P = P + (||st||r)α by P’ = P’ + (||uv||r)α. 

Moreover, we can observe that the situation that as a w is chosen from some NGr(s, t) 

is not in Q never happens over n – 2 times, since in this case the size of Q must be 

increased 1. Consequently, P(S’) ≤ P ≤ P’ ≤ P(uv) + P(uv)rα(n – 2) . Finally, we get 

F(r) = (1+rα)(n – 2).  □ 

With lemmas 3.3, 3.4 and 3.5, we can conclude the following theorem.  

THEOREM 3.4: For any set V of n nodes on ℜ, for all 0 ≤ r ≤ 1 and α ≥ 2, 
)()2(1))(( rFnrVNGr =−+≤ αρ . 

Although this bound is related to the node size n so that ρ (NGr(V)) can not be 

bounded, it can still be constant when r is 0 or some sufficiently small. i.e. ρ (NGr(V)) 

is bounded in some range of r. So, we can make the following conclusion.  

COROLLARY 3.1: The power stretch factor of the r-neighborhood graph is partially 

bounded. 

Consider the maximum node degree of the r-neighborhood graph. Since NGr(V) 

consists of all edges in RNG(V), the maximum node degree of NGr(V) is no less than 
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that of RNG(V). In Chapter 2, we know that dmax(RNG(V)) is not always bounded in 

any case of V. Thus, dmax(NGr(V)) is also unbounded. Fortunately, Theorem 2.1 

indicates that dmax(RNG(V)) is bounded in most cases of V, where AS is assumed. 

Therefore, in the following theorem, we analyze the maximum node degree of the 

r-neighborhood graph under assumption AS.  

THEOREM 3.5: For any set V of nodes on ℵ with assumption AS, for all 0 ≤ r ≤ 1,  

⎡ ⎤)2/(sin/))(( 1
max rVNGd r

−≤ π . 

Proof. To prove this statement, it is sufficient to show that in , there are no 

adjacent edges enclosing an angle less than 2sin-1(r/2). Assume for contradiction that 

two edges uv and uw in  enclose an angle θ < 2sin-1(r/2) at node u, where w, 

v ∈ V. Without a loss of generality, we assume that ||uw|| < ||uv||. With assumption AS, 

all nodes are placed on different positions. i.e. Loc(x) ≠ Loc(y), for any two nodes x, y 

∈ V; Consider the length of vw: If ∠uwv is obtuse, it is clear that ||vw|| < ||uv|| (note 

that ||vw|| can not be equal to ||uv||, since Loc(u) ≠ Loc(w)), see Figure 3.2 (b); 

Otherwise, if ∠uwv is not obtuse, ||vw|| is less ||vw’||, where ||uw’|| = ||uv||, see Figure 

3.2 (a). By the law of cosine, we have  

)(VNGr

)(VNGr

θcos'2'' 222 uvuwuvuwvw −+=   

θcos22 22 uvuv −=   

( )( )2/sin2cos22 122 ruvuv −−<  (3.2) 

Let , we get ( 2/sin2' 1 r−=θ ) ( ) 2/2/'sin r=θ  . Then one of the corresponding 

right-angled triangles is as shown in Figure 4.2 (c). In this case, . 

Thus we can get that 

2/)2('cos 2r−=θ

( ) ( )2/)/sin2 21 rr −− 2(cos'2 == −θ . Consequently,  

 (3.2) ( )( )( )2/2coscos22 222 ruvuv −−= −  

( )( )2/222 222 ruvuv −−= 22 ruv=  (3.3) 

Consequently, we have that for any case of ∠uwv, 
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{ } uvuvruvvw =< ,max  (3.4) 

Consider the length of um: if ∠uwm is obtuse, ||wm|| < ||uv||/2 see Figure 3.2 (b); 

Otherwise, ||mw|| is less ||mw’||, see Figure 3.2 (b). By the law of cosine, we have 

θcos''2''' 222 umuwumuwmw −+= . 

θcos4/ 222 uvuvuv −+<  

( )( )2/24/5 222 ruvuv −−< ( )( )4/21 22 ruv +=  (3.6) 

Similarly, we have for any case of ∠uwm 

{ } luvruvmw =+< 2/,2/21max 2 . (3.6) 

By (3.4), (3.6) and the assumption of ||uw|| < ||uv||, w is included in the set of points 

specified in (3.1). Therefore, P(w) ∈ NRr(u, v). It however contradicts the assumption 

that uv is in NGr(V). Thus we conclude this theorem.  □ 
 

 

(a) 

 

 

 
(b)              

 

 

 

(c) 

Figure 3.2: (a) ∠uwv and ∠uwm are not obtuse; (b) ∠uwv and ∠uwm are obtuse; (c) a right-angled 
triangle with angle .  ( )2/sin2 r−=θ

 

However, for those instances of V without AS, Theorem 3.5 can not hold 

anymore. See the instance in Figure 3.3, all nodes except vi are placed on the outlier 

of NRr(vi, v1). This will result n – 1 neighbors adjacent to vi in NGr(V). So, in the next 

section, we propose an extended version the r-neighborhood graph. As the readers 

will see, the extended structure has the partially bounded maximum node degree for 
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all cases of V and inherits almost all desired features in NGr(V). 
 

 

Figure 3.3: dmax(NGr(V)) is not bounded if assumption AS does not hold. 

 

3.2 Extended r-Neighborhood Graph  

In this section, an extended structure of the r-neighborhood graph is given. The 

main goal is to avoid the unbounded maximum node degree in NGr(V). In this 

extension, assumption AS is not required anymore. Instead, a unique identifier id(u) is 

available to each node u in V. The structure is defined as follows.  

DEFINITION 3.3: Given a set V of nodes ℵ, the extended r-neighborhood graph of V, 

denoted as , has an edge uv if and only if ||uv|| ≤ 1 and there exists no node w 

∈ V satisfying one of the following three conditions:  

)(* VNGr

D1: ; ),()( vuNRwLoc r∈

D2: )()( and ),(),()( widuiduvvClmDwLoc uvuv >∩∈ ; 

D3: )()( and ),(),()( widviduvuClmDwLoc uvuv >∩∈ .  
 

Without D2 and D3,  is clearly equivalent to the original r-neighborhood 

graph. In conditions D2 and D3, the two sub-regions of D(muv, luv) intersected by C(v, 

||uv||) and C(u, ||uv||) are, as depicted in Figure 3.4, the solid left arc and right arc 

along the outlier of NRr(u, v), respectively. When a node w is located in these two arcs, 

the existence of edge uv should be further determined by their identifiers.  

)(* VNGr
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Hereafter, we say that a node w ∈ V blocks an edge uv in UDG(V) if and only if w 

satisfies one of the three conditions in Definition 3.3. 
 

 

Figure 3.4: The r-neighbor region of nodes u and v, and the two intersections defined in D2 and D3. 
 

In , an edge uv of UDG(V) will not only be blocked by some node w 

in , but may also be blocked when either D2 or D3 happens. Therefore, 

 constitutes a subgraph of NGr(V), which means that the maximum node 

degree of  is no worse than its original version. In the following theorem, 

we show that the upper bound of  in Theorem 3.5 remains correct in 

, and the correctness is for any case of V, not subject to assumption AS. 

)(* VNGr

),vu

)

(* VNGr

))(* Vr

(NRr

(* VNGr

(max NG

)

))((max VNGd r

d

THEOREM 3.6: For any set V of nodes on ℵ, for all 0 ≤ r ≤ 1,  

⎥
⎥

⎤
⎢
⎢

⎡
≤ − )2/(sin

))(( 1
*

max r
VNGd r

π . 

Proof. Using the same argument as Theorem 3.5, we assume for contradiction that 

two edges uv and uw in  enclose an angle  at node u. 

Without loss of generality, we assume that 

)(* VNGr )2/(sin2' 1 r−<θ

uvuw ≤ . If uvuw < , the argument 

of Theorem 3.5 has proved the contradiction. Consider uvuw = : Let  be a 

point crossed by C(u, ||uv||) and the outlier of D(muv, luv), as shown in Figure 3.5. The 

two edges  and uv enclose an angle 

'w

uw' 'θ . By the law of cosine, we have 
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( )
uvuw

wmuvuw uv

'
'2/'

'cos
222 −+

=θ
( )

uvuv
luvuv uv

2222 2/ −+
= 2/1 2r+=  

Then one corresponding right-angle triangulation is as Figure 3.2 (c). In this case, 

( ) 2/2/'sin r=θ . Thus, we can get that . Since )2/(sin2' 1 r−=< θθ uvuw = , both 

Loc(w) and Loc(v) are on C(u, ||uv||). The fact that 'θθ <  further limits Loc(w) on 

the arc intersected by D(muv, luv). Similarly, Loc(v) is limited on the arc intersected by 

D(muw, luw) for the same reason. Therefore, Loc(w) and Loc(v) are on the regions 

defined in D2, with respect to edges uw and uv, respectively.   

Next, the existence of uv and uw should be determined by their identifiers. If id(v) 

> id(w), uv is blocked by w. Otherwise, if id(v) < id(w), uw is blocked by v. As a 

sequel, no matter what the values of id(v) and id(w) are, at least one of the edges 

enclosing θ’ can not be in . Thus we proved this theorem.     □ )(* VNGr

 

 

Figure 3.5: If θ < 2sin-1(r/2) and ||uw|| = ||uv||, either uw or uv can not be in  )(* VNGr

 

From Theorem 3.6, we can see that  is constant when r is sufficiently 

large. Therefore, there has some setting of r such that  is bounded by 

some constant, for any set V of n nodes. So, we reach the following conclusion. 

))(( *
max VNGd r

))(( *
max VNGd r
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COROLLARY 3.2: The maximum node degree of the extended r-neighborhood graph 

is partially bounded.  

In the rest part, we show that  inherits all desired properties achieved 

by NGr(V), except the generality for RNG(V). The fact that  

confirms the planarity of , since NGr(V) is planar for any r. Moreover, when 

r = 0, the two arcs defined in D2 and D3 are empty. Thus whether an edge is in 

 is solely depending on D1, which means that . 

Therefore, remains a general structure of GG(V).  

)(* VNGr

)()(* VNGVNG rr ⊆

)()(0 VGGVNG ≡≡

)(* VNGr

)(* VNGr )(*
0 VNG

)(* VNGr

However, as shown Theorem 3.6, some adjacent edges having the same length in 

RNG(V) would be avoided in . Thus RNG(V) is not always a subgraph of 

. This means that  is not essentially equivalent to RNG(V). Even 

more, could be a subgraph of RNG(V). Therefore,  is no longer a 

general structure of RNG(V).  

)(* VNGr

)(*
1 V)(* VNGr

NG

NG

)(*
1 V )(* VNGr

 About the connectivity, because RNG(V) is not always a subgraph of , 

we cannot ensure the connectivity of  directly from that of RNG(V). 

Therefore, we apply an entirely different logic to prove this property. The idea is 

based on comparing the lexicography orders of nodes pairs. This idea has been 

successfully used to prove the connectivity of XTC(V) [32], another subgraph of 

RNG(V).  

)(* VNGr

)(* VNGr

We define a three-field tuple (||uv||, id(u), id(v)) for each nodes pair (u, v). The 

lexicographic order of (u, v) is smaller than that of another nodes pair (s, t) if one of 

the following three cases happens: 1) ||uv|| <||st||; 2) ||uv|| =||st|| and id(u) < id(s); 3) 

||uv|| =||st|| , id(u) = id(s) and id(v) < id(t). Now, we prove the connectivity of  

in Theorem 3.7. 

)(* VNGr

THEOREM 3.7: For any set V of nodes on ℵ, if the underlying UDG(V) is connected, 
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)(* VNGr  is connected, for all 0 ≤ r ≤ 1. 

Proof. Suppose UDG(V) is connected. Let U(V) be the set of unconnected nodes pairs 

in . We assume for contradiction that some nodes pairs in  are not 

connected. i.e., U(V) is not empty. Let (u, v) be the node pair with smallest 

lexicographic order in U(V).  

)(* VNGr )(* VNGr

Assume that edge uv is not in UDG(V), i.e. ||uv|| > 1. Since UDG(V) is connected, 

there must be some path longer than one hop connecting u and v. Let π(u, v) be such 

path in UDG(V). Since ||uv|| > 1, the lengths of each edge on π(u, v) is less than ||uv||. 

When this path is mapped to , there is some nodes pairs on π(u, v) 

unconnected in . Thus some unconnected node pair on π(u, v) has length 

shorter than ||uv||, which however contradicts that (u, v) has the smallest lexicographic 

order in U(V). Therefore, edge uv must be in UDG(V).  

)(* VNGr

)(* VNGr

Since edge uv is in UDG(V) and not in , there must be some node w satisfying 

one of the three conditions in Definition 3.3. Besides, either (u, w) or (w, v) is in U(V), 

otherwise (u, v) can be connected by path uwv. We consider the three cases:  

)(* VNGr

1) If D1 happens, Loc(w) ∈ NRr(u, v). So, we has ||uw|| < ||uv|| and ||wv|| < ||uv||, which 

means that the lexicographic orders of (u, w) and (w, v) are less than that of (u, v).  

2) If D2 happens, we have ||wv|| = ||uv|| and id(u) > id(w), which means that the 

lexicographic order of (w, v) is less than that of (u, v);  

3) If D3 happens, we have ||uw|| = ||uv|| and id(v) > id(w), which means that the 

lexicographic order of (u, w) is less than that of (u, v).  

Therefore, we cannot find any nodes pair in U(V) having the smallest lexicographic 

order. In other words, U(V) is empty, which however is a contradiction. Thus, we 

proved this. □ 

Due to the fact that , there may has some paths in  )()(* VNGVNG rr ⊆ )(VNGr
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not in . Therefore,  is no better or even worse than )(* VNGr ))(( * VNGrρ ))(( VNGrρ . 

Even so, the upper bound of  can be as good as that proved in Theorem 

3.4; we briefly explain this: All arguments in Theorem 3.4 are not related to the two 

additional conditions D2 and D3, except those referred from Lemma 3.1. Whatever D1, 

D2 or D3 happens, ||uw|| ≤ ||uv||, ||vw|| = ||uv|| and ||mv|| < l, which means that all 

inequalities in the proof of Lemma 3.1 are unchanged. Consequently, Theorem 3.4 is 

still correct, even if all conditions of Definition 3.3 are considered. So,  

is also partially bounded.  

))

rα

(( * VNGrρ

1+

))(( * VNGrρ

))V

Below, we show that the bound  in Theorem 3.4 is not only correct, 

but also asymptotically tight to the worst possible value of . In other 

words, it is very hard to find another upper bound of  better than ours. 

We apply the same argument as that used to verify the tightness of the length stretch 

factor [3] and the power stretch factor [15] of RNG(V) 

)2( −n

(( *NGrρ

))(V( *NGrρ

THEOREM 3.8: For any n ≥ 2 and 0 ≤ r ≤ 1, there is a set V of n nodes such that   

εα −−+
=

)2(1sup nr
nV
ρ >))(( * VNGr ,  

for any sufficient small 0>ε . 

Proof. Let θ1 = 2sin–1(r/2) – 2λ and θ2 = π/2 – sin–1(r/2) + λ, where λ > 0. We 

construct a set V = {v1, v2, …,v2m–1,v2m,…, vn}of n nodes, where n ≥ 2 is even and m = 

n/2 , as follows:  

, for i = 2, 3,…, 2m – 1; 1) 121 ≤vv  and vv ii 211 vv=+

2) ∠vivi+1vi+2 = θ1, for i = 1, 2,…, 2m – 2; 

3) ∠vi+2vivi+1 = ∠vivi+2vi+1 = θ2, for i = 1, 2,…, 2m – 2; 

4) id(vi) = n – i + 1, for i = 1, 2,…, n; 

One corresponding UDG(V) is as shown in Figure 3.6. For i = 1, 2,…, 2m – 2, since 

∠vivi+1vi+2 = θ1 < 2sin-1(r/2) and 211 +++ = iiii vvvv , by the argument in Theorem 7, we 
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get . That is,  is in the regions with 

respect to edge vivi+1, defined in D2. Moreover, . Thus, edge vivi+1 is 

not in . Then, the remaining edges are exactly a path (spanning tree) 

v1v3v5…v2m–3v2m–1 v2mv2m–2…v6v4v2 of V, connecting all nodes, as the bold links in 

Figure 3.6 (a). Therefore, we can get that  

),(),()(
1112 ++

∩∈ ++ iiii vvvviii lmCvvDvP

)(* VNGr

)( 2+ivP

() >i idv )( 2+ivid

( ) ∑
−

=
−+ +=

22

1
2122)

m

i
mmii vvvvr ααα

21
*

)( ,(* VNG vvp
r

π

0→

 

As , , which implies that )2/(sin2 1
1 r−→θλ 2122 vvrvvrvv iiii =→ ++ , 

according to (3.3). Consequently, as 0 , we get that  →λ

∑
−

=
−+ +

22

1
2122

m

i
mmii vvvvr ααα  

∑
−

=

+→
22

2
2121

h

i
vvvvr ααα  

( )1)2(21 +−= αα rnvv  

On the other than, since 121 ≤vv , we get ( ) απ uvvup VUDG =),(*
)( . Therefore, as 

0→λ , . That is, )2(1))( −+→ nrVUDG α()(VNGr
ρ

ερ α −−+>= )2(1))((sup *
|| nrVNGrnV , 

for any sufficient 0>ε . For any odd n ≥2, the result can be obtained by applying the 

same argument to the instance as shown in Figure 3.6 (b). So, we proved this it. □ 

Actually, an equivalent structure of , without a original version like 

NGr(V), was mentioned in our previous paper

)(* VNGr

2 [9]. In that preliminary work, however 

only qualitative results were given. To prove the quantitative results, we separate 

NGr(V) from  in this paper, because NGr(V) has a clearer form in definition 

that can be used to highlight the main tricky in our derivations. Besides, all qualitative 

results in [9] are re-evaluated here using different arguments. 

)(* VrNG

                                                 
2 The term “r-neighborhood graph” in [9], is not refereed to the original version in Definition 3, but the 
extended version in Definition 4. In this paper, we reuse the same term to name the original version and 
rename the previous structure in [9] the extended version 
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(a)  
 

(b) 

Figure 4.6: A worst-case instance V of n nodes in : (a) n is even; (b) n is odd. )(* VNGr

 

3.3 (r, α)-Neighborhood Graph 

In [7], we showed that for any point x∈ NRr(u, v), ||ux||α + ||xv||α < ||uv||α (1 + rα). 

This result combined with Definition 3.2 indicates that if an edge uv of UDG(V) is not 

in NGr(V), there must be a node w located in NGr(u, v), such that p(u, w) + p(w, v) < 

p(u, v)(1 + rα). In other words, for any uv ∈ UDG(V), if there is no node w such that 

p(u, w) + p(w, v) < p(u, v)(1 + rα), then uv ∈ NGr(V). The upper bound of the power 

stretch factor in Theorem 3.4 is then an inductive consequence of this fact. This 

argument implies the following lemma,  

LEMMA 3.6: For any graph S(V), if it contains an edge uv, whenever there is no other 

node w such that p(u, w) + p(w, v) < p(u, v)(1 + rα), then ρ(S(V)) ≤1 + rα(n – 2). 

According to this lemma, a structure that has the same upper bound on the power 

stretch factor of NGr(V) is defined as follows.  

DEFINITION 3.3: Given two nodes u and v on ℵ, a parameter r, 0 ≤ r ≤ 1, and a 

constant α ≥ 2, the (r, α)-neighborhood region, is defined by 

{ })1)(,(),(),(,,|),( αα rvupvxpxupuvvxuvuxxvuNRr +<+<<ℵ∈= . 
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DEFINITION 3.5: Given a set V of nodes on ℵ, the (r, α)-neighborhood graph, denote 

as , has an edge uv if and only if ||uv|| ≤ 1 and there is no other node w 

located in .  

)(VNGr
α

NR ),( vur
α

  
Figure 3.7: NRr(u, v) vs. NRr

α(u, v).  

Their relationships are as follows. We can see that  is actually a general 

structure of NGr(V). Notably, it achieves the same upper bound on the power stretch 

using equal or less edges.  

)(VNGr
α

PROPERTY 3.1: For any two nodes u and v on ℵ, 0 ≤ r ≤ 1, and α ≥ 2 

(i) ; )()( VNGVNG rr ⊆α

(ii) . )()(2 VNGVNG rr ≡

Proof: Consider an edge . By definition, there is no node w such that  

, which implies that uv ∈ NGr(V).  

)(VNGuv r
α∈

)1)( αr+,(),(),( vupvwpwup <+

Consider an edge . There is no nodes w such that ||mw|| < (||uv|| / 

2)(1 + 2r2)1/2. Consider a point x. From simple derivation, we get  

)(VNGuv r∈

2222 22\ xmuvvxux +=+ . 

Combining these two facts, )1(222 αruvvxux +<+ . So, .  � )(VNGuv r
α∈

Furthermore, the properties below indicate that the number of links could be 
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even lower as the environmental attenuation factor α is strengthened. Both properties 

can be easily verified by inspecting the last condition in . We omit the 

proofs.  

),( vuNRr
α

PROPERTY 3.2: For any set of n nodes on ℵ, 

(i) , )()( 21 VNGVNG rr
αα ⊇ 212 αα ≤≤ ;  

(ii) , )()(
21

VNGVNG rr
αα ⊇ 10 21 ≤≤≤ rr ;  

 

3.4 (r, α)-Enclosed Graph 

In this part, we present an equivalent structure of the (r, α)-neighborhood graph, 

called the (r, α)-Enclosed Graph. The idea is mainly borrowed from the Enclosed 

Graph, proposed by Rodoplu et al. [24]. We briefly reintroduce it below. For any two 

nodes u and v, there is space, named the relaying region, RR(u, w), in which any node 

fall in the region can be reached from u with less power by relaying through v. The 

enclosed region, ) , is a subspace merged from of the complement of relaying 

regions of all surrounding v’s of u. The enclosed graph, EG(V), is a graph in which a 

node v is adjacent to u if and only if v is in the enclosed region of u. This graph has 

the optimal power stretch factor 1. Actually, as the receiving cost is neglected, it is an 

equivalent representation of GG(V).  

(uER

 The following, we generalize this idea to the (r, α)-neighborhood graph (recall 

that  is a generalized from NGr which is further a general structure of 

GG(V)).  

)(VNGr
α

DEFINITION 3.6: Given two nodes u and w on ℵ, the (r, α)-relaying region, denoted 

as , is defined as  ),( wuRRr
α

{ })1)(,(),(),(,,|),( 2 αα rxupxwpwupuxwxuxuwxwuRRr +<+<<ℜ∈= .  
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Consider three nodes u, v and w, according definitions 3.4 and 3.6, we can observe 

that no matter  or , the following three conditions are 

satisfied: 

),( wuRRv r
α∈ ),( vuNRw r

α∈

uvuw < , uvwv < , and .  (3.6) )1)(,(),(),( αrvupvwpwup +<+

In other words, for any three nodes u, v and w,  

),(),( vuNRwwuRRv rr
αα ∈⇔∈ . (3.7) 

The different is in their representation.  consists of all points where may 

have a relaying node w satisfying (3.6) for the two fixed nodes u and v, while 

 is composed by all points on which a node satisfies (3.7) if it receives 

relaying from u through w.  

),( vuNRr
α

),( wuRRr
α

Now compare the two regions on the same node pair (s, t)3. If the two regions are 

overlapped, then there will be some point x such that the two facts  

)1)(,(),(),( αrtsptxpxsp +<+  and  )1)(,(),(),( αrxspxtptsp +<+

are satisfied at the same time, which is conflicted. Therefore, the two regions must be 

disjoint, i.e. (see Figure 3.8) 

φαα =∩ ),(),( tsNRtsRR rr  (3.8) 

Compared to different parameters setting, see Figure 3.8, we can get that  

),(),( 21 wuRRwuRR rr
αα ⊆ , 212 αα ≤≤ ; (3.9) 

),(),(
21

wuRRwuRR rr
αα ⊆ , 10 21 ≤≤≤ rr ;  (3.10) 

These observations can be easily validated by inspecting their definitions. We omit the 

proof.    

                                                 
3 to avoid the confusion if reusing u, v, w. 
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The region enclosed by the complements of the relaying regions of nodes 

surrounding to u is defined below.  

DEFINITION 3.7: Given a node u on ℵ, the (r, α)-enclosed region of u, denoted as 

, is defined as  )(uERr
α

( )I
)(

),()1,()(
VUDGuw

c
rr wuRRuDuER

∈

−∩ℵ=α .  

According to (3.9) and (3.10), see Figure 3.9, we have 

)()( 21 uERuER rr
αα ⊇ , 212 αα ≤≤ ; (3.11) 

)()(
21

uERuER rr
αα ⊇ , 10 21 ≤≤≤ rr ; (3.12) 

(a) α = 2, r = 0.0,  (b) α = 2, , r = 0.5 (c) α = 2, r = 1.0 

(d) α = 3, c = 0, r = 0.5 (e) α = 4, r = 0.5 (f) α = 5, r = 0.5 

Figure 3.8: (r, α)-relaying region vs. (r, α)-neighborhood region.   
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Based on this merged region, the graph is defined below for each node u.  

DEFINITION 3.8: Given a set of nodes on ℵ, the (r, α)-enclosed graph, denoted as 

, has an edge uv if and only if  )(VEGr
α )(uERv r

α∈

 

(a) α = 2, r =0 (a) α = 2, r =0.5 (a) α = 2, r =1 

 

(a) α = 3, r =0.5 (a) α = 4, r =0.5 (a) α = 5, r =0.5 

Figure 3.9: (r, α)-enclosed region. 

 

The equivalence between  and  is shown below.  )(VNGr
α )(VEGr

α

PROPERTY 3.3: For any set V of nodes on ℵ, α ≥ 2, and 0 ≤ r ≤ 1,  

)()( VEGVNG rr
αα ≡ .  

Proof: Consider an edge . We know that there is no w such that 

. In other words, for any w, ||uw|| ≥ ||uv||, ||vw|| ≥ ||uv||, and p(u, w) 

+ p(w, v) ≥ p(u, v)(1 + rα), which equivalent to say that for any , 

. So, we get , and thus . In 

opposition, if , by definition, . Thus, for any w where ||uw|| 

)(VNGuv r
α∈

(Loc

)

),()( vuNRwLoc r
α∈

),()( wuRRvLoc r
α∉

uv∈

))(( VUDGNw u∈

)(VEGuv r
α∈)() uERv r

α∈

(uERv r
α∈(VEGr

α )
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≤ Tmax, ||uw|| ≥ ||uv||, ||vw|| ≥ ||uv|| and p(u, w) + p(w, v) ≥ p(u, v)(1 + rα), which implies 

that for any , . So, we get  � )(uNw UDG∈

(VNGr
α

),( vuNRw r
α∉

)

)(VNGuv r
α∈

)(VNG
rf
α

) uvr

Cleary, similar to , each node u can distributively decide it neighbors in 

 using local information. α
rEG

 

3.5 (fr, α)-Neighborhood Graph 

 In above structures, the parameters among nodes are all identical. This 

consideration simplifies the theoretical discussion. However, to be applied on a 

distributed environment, a more flexible structure is required. The following, we 

define an more general structure of the (r, α)-neighborhood graph. It allows each node 

possessing its own parameters, while still preserves to several desired features.  

DEFINITION 3.9: Given a set V of nodes on ℵ, a parameter set fr: {rv1, rv2, …, rvn}, and 

α ≥ 2, the (fr, α)-neighborhood graph, denoted as , has an edge uv if and 

only if ||uv|| ≤ 1 and there is no w ∈ V in , where ,v(uNR
uvr
α },max{ vu rr  and =

max{uv }, vu ααα =  
 

vv' u

,(),( vuNRvuNR
uvu rr )≡

),( vuNR
vr)',( vuNR

ur

)',()',(
'

vuNRvuNR
uvv rr ≡

 
Figure 3.10: (fr, fα)- neighborhood graph 

 

An example of  is illustrated in Figure 3.10. We can see that for any two 

nodes, their neighbor regions are determined by the smaller one. Let 

 and 

)(VNG
rf
α

{ }Vv∈|rr v= minmin { }Vvrr v ∈= |maxmax . The graph has the following 
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quantitative results.  

PROPERTY 3.4: For any set V of nodes on ℵ, parameter set fr, and α ≥ 2, 
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)   (i) ( ⎥
⎥

⎤
⎢
⎢

⎡
−

≤ − 2/1cos
))(( 1 α

α π

u
fu r

VNGd
r

, ∀ u ∈ V; 

   (ii)  ))(())((
minmaxmax VNGdVNGd rf r

αα ≤

   (iii)  ααρ max)2(1))(( rnVNG
rf −+≤

Proof: Consider (i). For any , by definition, , which means that no 

matter what the value of rv is, . So, if there is a node v’ such 

that ∠vuv’ ≤ 

UDGuv∈

,(uNR
uvr
α

uuv rr ≥

),() vuNRv
ur
α⊆

( )2

)(V

/1cos2 1 α
ur−−

)(
max

NGV rf r

αα ⊇

, then either  or . (ii) is a 

direct result of (i). (iii) follows from the fact that , which 

means that . So  

)V

),( vuruv

α

(NGuv
rf
α∉

NR

)(' VNGuv
rf
α∉

),(
max

vuNGr
α⊆

NG
ααα ρρ max)2(1))(())((

max
rnVNGVNG rf r

−+≤≤ . � 

Notably, the generalization still preserves all qualitative properties in , which is 

the most primitive version.  

rNG

PROPERTY 3.5: The (fr, α)-neighborhood graph is connected planar with symmetric 

edges.  

Proof: The graph is symmetric since for any two nodes u and v, the presences of both 

uv and vu are based one the same ruv. The connectivity and planarity are due to the 

facts that . � )()()(
minmax

VNGVNGVNG rfr r

ααα ⊆⊆

 



 
 
 

Chapter 4 

Energy-Efficient Construction 
 

 In this chapter, we design energy-efficient algorithms as well as protocol for the 

structures proposed in the preview chapter. First, a purely localized algorithm will be 

presented. In this algorithm, each node start its transmission power from a small level, 

and then incrementally increasing the power, until certain criteria are satisfied. It can 

avoid a long distance construction power if the increment can stop earlier before the 

maximum power is reached.  

However, such incremental approach typically requires several iterations to 

complete. The incurred latency would not be tolerable to mobile nodes. In addition, it 

is not adapt to the periodic beacon. To construct and maintain the proximate graph in 

mobile environment, a node can periodically announce its current position to its 

neighbors. However, such periodic transmission would consume considerable power, 

especially when nodes are highly moved where an intensive update is required. 

Therefore, we will investigate a shrink power mechanism for the periodic beacon. 
 

4.1 Localized Algorithm for Stationary Nodes 

In this section, we propose an efficient purely localized algorithm, named PLA, 

to construct the r-neighborhood graph. This algorithm consists of two main 

procedures, GETINF and FINDNB. First, GETINF collects a set of nodes’ information 
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within one-hop distance, denoted as INu. Then, the collected information will be fed 

into FINDNB to determine a set of neighbors in NGr(V), denoted as NBu.  
 

ALGORITHM PLA 
Input: A ratio 0 ≤ r ≤ 1. 

Output: A set of neighbors adjacent to u. 

Step 1: INu := GETINF(u, r); 

Step 2: NBu := FINDNB(u, r, INu); 

Step 3: Stop and output NBu; 

 

To collect the one-hop information, the simplest way is to let each node 

broadcast its information at the maximum transmission range 1 and gather the 

information from others. However, the severe path loss and the frequent change in 

topology may cause considerable power in such transmission. Therefore, in GETINF 

we aim to reduce the transmission range during construction. The main idea is to 

incrementally raise the transmission power from a small range and then use some rule 

to stop the increment earlier before the transmission range 1 is reached. The detail 

steps are explained as follows: the transmission range is initiated at a small distance d0, 

and then it will be incrementally raised for several rounds. Let d1 and d2 be the 

previous and the current transmission ranges of a round respectively. In each round, a 

node broadcasts a request to distance d2, and waits for the responses from receiving 

nodes to gather the nodes’ information. To avoid replying to a node for the second 

times, the request of a node u contains the position Loc(u) and the previous distance 

d1. As a node v receives this request, it calculates the Euclidean distance ||uv||. Then, if 

||uv|| > d1, v responses its information, Loc(v), to u at distance ||uv||, otherwise, just 

neglects the request. In each round, the range is increased by multiplying α 2 , which 

means the transmission power is multiplied by 2 each time. The process is continued 
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until the following stopping criterion is satisfied. Let v1 and v2 be two crossed points 

intersected by C(u, ||uv||) and C(m, l), see Figure 4.1 (a). We define SC(u, v) to be the 

semicircle enclosed by uv1 and uv2 with radius ε, where ε > 0 is a small value less than 

the distance between any pair of nodes in V. Then, given a distance d, a semicircle χ 

(u, d) is defined as follows  

U
duv

vuSCdu
≤

= ),(),(χ . 

We can prove that if χ (u, d) is exactly the circle C(u, ε), like Figure 4.1 (b), then a 

disk centered at u with d radius can cover all neighbors of u in NGr(V). In other words, 

GETINF can be halted as χ (u, d2) ≡ C(u, ε). Let Nu(G(V)) be the set of neighbors of 

node u in a graph G(V). This property is proven in Lemma 4.1.  

 

 
(a) 

 
(b) 

Figure 4.1: (a) the semicircle SC(u, v); (b) the χ(u, d) is the union of all SC(u, v) where v is within 

distance d. 

 

LEMMA 4.1: Given a node u ∈ V and distance d ∈ ℜ, if ),(),( εχ uCdu ≡ ,   

{ }),()(|))(( duDvLocVvVNGN ru ∈∈⊆ . 

Proof. We assume for contradiction that some node s in Nu(NGr(V)) is not in 

. Since ε is less than the distance between any pair of nodes { ),()(| duDvLocVv ∈∈ }
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in V, we get ||us|| > ε. Thus, edge us intersects a point on the circle C(u, ε). Do the fact 

that ),(),( εχ uCdu ≡

()(| DvLocVv ∈∈

221( 21 ++++ L

, us must intersect at least one semicircle that composes χ(u, d), 

see Figure 4.1 (b). Let SC(u, v) be one of the semicircles intersected by us. Then, us is 

enclosed by uv1 and uv2 in SC(u, v). In other words, ∠ suv ≤ ∠ v1uv or ∠ suv ≤ ∠ vuv2. 

According to the argument in Theorem 3.6, we can get that ∠ v1uv = ∠ vuv2 = 

2sin–1(r/2). Therefore, we have ∠ suv ≤ 2sin–1(r/2). Moreover, since s is not 

in{ , s must be farer than v from u. So, Loc(v) ∈ NRr(u, s). 

According to Definition 3.3, us in not in NGr(V), which however contradicts that s is a 

neighbor of u in NGr(V). Thus, we concluded this lemma. □  

}),du

)20
Iα

The total transmission power used by GETINF could be as large as 

, where I is the number of rounds. This result could be worse 

than the maximum transmission power 1 as I is large. Fortunately, when n is large, 

nodes are closer to and evenly surrounded by each other so that χ (u, d) has more 

change to be quickly shaped as C(u, ε) . So we can gain benefit from GETINF in higher 

probability as the number of nodes increases.  

d

The steps of GETINF are described below. Neglecting the communication 

overhead at step 2, the execution time of GETINF is dominated by the union operation 

at step 4. This step can be implemented by some search-and-merge algorithm. Thus, 

the time complexity of GETINF is O(nlogn).  

Now we discuss the communication cost of GETINF. As d0 is multiplied by α 2  

over αlog2(1/d0) times, it is larger than 1. Therefore, the number of rounds to increase 

the transmission range d2 is dominated by αlog2(1/d0) + 1. Assume a node’s position 

can be encoded by log2n bits. Each node has to broadcast at most (log2n)( αlog2(1/d0) 

+ 1) bits for the request messages. In addition, a node will reply to same node no more 

than once. Thus, a node needs at most (log2n)(n – 1) bit to reply all requests. 
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Combining these results, communication cost of a node is no more than 

(log2n)(αlog2(1/d0) + n) bits.  
 

GETINF(u, r) 

Step 1: d1:= 0, d2 := d0, IN: = φ, χ(u, d2): = φ; 

Step 2: Broadcast a request (Loc(u), d1) to distance d2 and gather a 

set R of responses from nodes within d1 and d2; 

Step 3: For each Loc(v) ∈ R do  

   ),(),(:),( 22 vuSCdudu ∪= χχ ; 

Step 4: IN: = IN ∪ R; 

Step 5: If d2 ≤ 1 and χ(u, d2) is not the circle C(u, ε) do 

d1 = d2; 

d2 := d2 × 21/α; 

Return to step 2; 

Step 6: Stop and output IN; 
 

Once the information INu is collected, node u can start to determine its neighbors 

in NGr(V). One institutive way is to apply Definition 2 on INu directly, as the follows 

procedure.  

 

Step 1: N := INu; 

Step 2: For each node v in N do 

    For each node w ∈ INu do  

     If P(w) ∈ NRr(u, v) do  

          N := N – {v};  

Step 3: Output N and stop; 
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In this procedure, the existence of a neighbor v in INu is determined by checking 

whether some node w is located in NRr(u, v). The correctness is obvious, while in the 

worst case it should take O(n2) time on each node. This time is usually not tolerable 

when topology changes frequently. Therefore, we aim to reduce time complexity in 

this part. In FINDNB, the main idea is to reverse the original procedure. That is, 

instead of checking whether some node w can block an edge uv, for each uv, we check 

whether some edge uv can be blocked by a node w, for each w. The procedure is 

below.  

This checking is begun from the farthest to the closet nodes in INu. So, we index all 

elements of INu in non-decreasing order of ||uw|| in step 2. The set NB contains all 

candidates that could be a neighbor of u during the process. As a node w is given, we 

remove from NB all fail candidates that that are already blocked by w. After that, w is 

added into NB to be an new candidate of Nu(NGr(V)). The process continues until all 

w’s in INu were considered. Now, we prove the correctness of FINDNB.  

 
FINDNB(u, r, INu) 

Step 1: NB := φ; 

Step 2: Index the elements of INu in non-increasing order of ||uw||; 

 

Step 3: For each node w ∈ INu with smallest index do  

    For each node Loc(v) ∈ NB do  

      If Loc(w) ∈ NRr(u,v) do  

         NB := NB – {v};  

   NB := NB + {w};

Step 4: Stop and output NB; 
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THEOREM 4.1: For any set V of nodes on ℜ2, NBu = Nu(NGr(V)), for any u∈ V.  

Proof. We prove this by showing that for any v ∈V, v ∈ NBu if and only if edge uv is 

in NGr(V). Suppose an edge uv is in NGr(V). By Definition 3.1, there is no w 

∈Nu(UDG(V)) such that Loc(w) ∈ NRr(u, v). This implies that once v is added in NB, 

there is also no w ∈ INu such that v can be removed at step 3. Since v ∈ Nu(NGr(V)) ⊆ 

INu and each node in INu can be added to NB, v must be in NB at least one time. So, 

we can get that v is in the final output of NBu. Contrarily, we suppose uv ∉ NGr(V). 

Some node w ∈ Nu(UDG(V)) is located in NRr(u, v). If v ∉ INu, the result clearly 

follows by Lemma 4.1. Otherwise, v ∈ INu. In this case, all nodes blocking uv are in 

INu. Besides, every node w blocking uv is always considered after v in GETNB. 

Therefore, even if v can be added to NB, there must be a node w ∈ INu such that v can 

be removed from NB at the successive iteration. So we get v ∉ INu. □ 

Lemma 4.1 also implies that if uv ∈ NGr(V), then v ∈ Nu and u ∈ Nv and that if uv ∈ 

NGr(V), then v ∉ Nu and u ∉ Nv. So, the neighbors (links) determined by GETNB are 

symmetric. 

COROLLARY 4.1: Any topology resulted by PLA is symmetric.  

Consider the time complexity of FINDNB. Step 2 can be done by some sorting 

algorithm in O(nlogn). Before a node w ∈ INu is added to NB, any v ∈ IN blocked by 

w is removed from NB. Therefore, for any two nodes in NB, none of them can be 

blocked by each other. Let s and t be two nodes in NB. The argument of Theorems 3.5 

indicates that if ∠sut < 2sin–1(r/2), then either s blocks t or t block s. Since neither s 

blocks t nor t blocks s, we get that ∠sut ≥ 2sin–1(r/2). Therefore, during the process, 

the size of NB can be never greater than dmax(NGr(V)). Consequently, FINDNB can be 

done in O( ) time. We can observe that this time complexity 

depends on the parameter r. When r equals or closes to 0 (the worst cases), the time 

complexity of FINDNB is still O(n2). However, when r is sufficiently large such that 

{ )(,logmax max rNGdnn }
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dmax(NGr(V)) is a constant, FINDNB can be done in O(nlogn).  

With a slight modification, PLA can be easily applied on the extended r-neighbors 

graph and all results can be preserved. We omit the detail explanation here. 

 

4.2 Shrinking Power mechanism for Mobile Nodes 

In this section, we propose an energy-efficient construction of the proposed 

proximate graph for mobile nodes. For simplicity, we first discussion the (r, 

α)-neighborhood graph for mobile nodes, where r is identical among nodes . This 

construction provides the skeleton of the mobile protocol in the next Chapter. 

The basic idea is borrowed from a distributed protocol of the primitive enclosed 

graph [20, 24], though we confront more challenges when designing for our structure, 

discussed below. This mechanism is based on the characteristic the (r, α)-enclosed 

graph. Recall that this graph has been shown to be equivalent to the (r, 

α)-neighborhood graph. Hence the following the two structures will be used 

interchanged when necessary.  

Consider a node u. Let  denote the set of information collected by u from its 

neighboring nodes during a period of time According to Definition 3.7, we define 

 as the enclosed region of u based on the set of collected information , i.e.  

uS

uER uS

( )I
uSw ru wuRRuDER

∈
−∩ℵ= ),()1,( α  (4.1) 

Since  must be a subset of , by Definition 3.7, we have  uS ))(( VUDGNu

ur ERuER ⊆)(α . (4.2) 

So, if a node v is not in , it is also not . Consequently, by Definition 3.8, 

it is no possible that v is a neighbor of u in . This fact points out that to let 

all neighbors of u in  be aware of the existence of u, it is sufficient for u to 

uER

(Vr
α

)(uERr
α

(VNGr
α )

)NG
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broadcast using the least radius that covers the all points in . We denote such 

radius as λu, i.e.  

uER

},|max{ ℵ∈∈= xERxux uuλ . (4.3) 

Note that in (4.3) only considers points in deployment region ℵ. The transmission 

radius in (4.3) ensures that each node will aware its neighbors in . Hence, all )(Vr
α

.   

NG

links in can be preserved using possibly less construction powerα
rNG  

 
(a) 

 

(b) 

Figure 4.2: (a) the shrunk power λ e enlarge power (r = 1, α = 2). w; (b) th
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In the a ufficient to 

inclu

used, w 

bovementioned, we discuss how reduce the power that is s

de all necessary neighbors. To construct the desired graph, we need to further 

ensure that all non-neighbor nodes will be blocked. However, the shrunk power may 

prevent nodes from be aware of some non-neighbor nodes that are necessary to block 

other non-neighbor nodes. See the example in Figure 4.2, where r = 1 and α = 2. 

There is only one node ),( vuERw α∈ . By definition, the edge uv does not exist in 

)(VNGα  due to the pres owever, when the shrunken power of (4.3) is 

will be enclosed by its surrounding nodes s1, s2 and s3, which leads to the 

transmission radius of w shorter than its distances to u and v. Thus, both u and v will 

be no longer being able to find w. In other words,  

Sw

r

ence of w. Hr

u∉  and w uS∉ . 

This in turn causes that  and uERv ∈ uv ER , s∈ ince  

 (4.4) 

Consequently, both uv and vu exists. It however are not allowed in the de

||uw|| ≤ ||uv|| and ||uw|| ≤ ||uv||, 

which mean that the transmission radiuses of both u r w. So, w must be 

),()(( wuERvocuNRLo rr
αα ∈),)( Lvwc ⇔∈

sired graph.  

 To fix this problem, a simplest way is to enlarge w’s power such that both u and v 

can be aware of w, while the prerequisite is that w should be able to be aware of both 

u and v first. Fortunately, this prerequisite can be self-contained, since if ),( vuERw α∈ , 

by definition 3.3,  

r

 and v will cove

able to overhear the existences of u and v. In other word, there must be  

Su u∈  and Sv u∈ . 

From this observation, for each node u sure t all links which should be , to en tha

blocked by u will not exist, it is sufficient for u to transmit to all nodes that have been 

received by u. We denote such transmission radius as 'χ , i.e.   u
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},max{'
u vuv ∈=χ .  uS (4.5) 

The transmission radius in (4.5) ensures that all links that are belong to 

s is now

ermined by u. Consider a node w. By 

)(VαNGr  

will be removed. Nevertheless, the readers may node notice that the radiu  

enlarged, which may counteract the original benefit from (4.3). Therefore, below we 

attempt to further shrink the radius of (4.5).  

 Let Nu denote the set of neighbors det

Definition 3.4, a link uv will be blocked by w only if ||uw|| ≤ ||uv|| and v ∈ Nu. In other 

words, let ηu denote the least radius cover all node in Nu, i.e.  

{ }uu Nvuv ∈= |maxη ,  (4.6) 

if the distance between u and v is larger than ηu, then there is no link adjacen  t to u

should be blocked by w. So, if uuv η> , it is not necessary for w to transmit to u. 

More generally, consider a node u Bu to be the set of nodes where , define uuv η≤ ,  

{ }vuu SuuvB ∈≤= |max η ,  7) (4.

So, from (4.5), the following radius χu is sufficient to covering all nodes in Bu 

},max{ uu Bvuv ∈=χ .  (4.8) 

Compared with (4.5), since Bu is a subset of Su, the radius required by  mu  '
uχ

e 

st be

equal to or even less than that of χu. Summarily, to construction th )(VEGr
α  

correctly using less using less power, it is sufficient to broadcast using the following 

transmission radius  

{ }',max uuuT χλ= .  (4.9) 

 

.3 Neighborhood Graph based Topology Control Protocol 4

Based on above discussion, a distributed protocol that constructs the(r, 
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α)-

n

orrection is directly followed from the meaning of each variable. We omit 

the p

u is 

ses, by (3.12), the region will be smaller, which leads to a 

ations on the NGT

proto

n see that 

neighborhood graph for mobile nodes is now presented here. In this protocol, each 

ode will periodically broadcast a message in every T time interval using the shrunken 

radius Tu. Each message will consist of the current position and the radius ηu. As a 

message is received from a node v, it will include v in the collecting set Su. In addition, 

if the node observes that the distance to v is shorter than the received radius ηu, it 

includes v into Bu such that χu will be sufficiently large whenever there are some links 

of v that should be block by u. On the other hand, if u do not received from v over an 

beacon interval, then u discard v’s information. Upon a message is either received or 

expired, the reconstruction process will proceed. Then, before sending the next 

beacon, related variables mentioned above will be recalculated based upon the 

information collected in the previous interval. The protocol is summarized below. We 

named it the Neighborhood Graph based Topology Control Protocol, abbreviated as 

NGTC.  

The c

roof. Now we show an interest feature of this protocol below.  

PROPERTY 4.1: For any set of nodes, the construction radius Tu of each node 

decreased by r.  

Proof: As r increa )(uERr
α

lower λu. The same observation is on χu. By Property 3.2 (ii), the node degree of each 

node v will be strictly decreased as r goes up. So, by (4.6), a large r leads to a smaller 

ηv, which in turn declines the size of Bu for any u received v. As a sequel, by (4.8), 
'
uχ  can be lower. Combining these two facts, we provide this.  � 

The rest of this subsection, we discuss additional observ C 

col. 

1) We ca  and  are the sufficient conditions for u to '
uuT χ≥uuT λ≥
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preserve all necessary links and block all unnecessary links, respectively. However, 

we have to admit that there is a potential wasting on Tu. It occurs when Tu > λu but 

there is no v ∈ Bu such that u ∈ NR(v, s) for some s ∈ Nv. In other words, u 

enlarges its r to cover Bu but there is no additional blocked by u, see Figure 4.2 (b). 

So, the radius Tu is not the minimum. 

NGTC Protocol 

1 Nu = {}; Su = {}; Bu = {}; 

2 For every T time  

3    { }ℵ∈∈ xERx uu , ;  

4    

= ux |maxλ

{ }uu Bvuv ∈= |maxχ ;  

5    { }uuuT χλ ,max= ;  

6    { }uu Nvuv ∈|= maxη ;  

roadcast (Loc ius Tu; 

 a node v,  

 = Bu + {v}, otherwise, Bu = Bu – {v};  

r T time),  

pired  

7    B (u),  ηu) in rad

8 Upon received a message (Loc(v),  ηv) from

9    Su = Su + {v}; 

10    If ||uv|| ≤ ηv, Bu

11 Upon a message received from some v in Su is expired (ove

12    Su = Su – {v}; Bu = Bu – {v}; 

13 Upon a message is received or ex

14    ( )I
uSw ru uRRTuDER

∈
−∩ℵ= (),( max

α w), ; 

15    };|{ uuu ERuSuN ∈∈=  

 

 53



Since λu λu ≥ ηu, by sending  instead of ηu in the message, it is also sufficient to 

lock all unnecessary neighbors. However, whether sending λu or ηu is better? See the 

foll

 

 

As nodes placement changes, each node u would maintain a new set of neighbor 

us Tu. However, due to the recursive dependency among 

node

t – T, t), i.e. ∃v ∈ V , and there is no 

chan +

hronous (time slot

lay and computatio

 

b

owing discussion: if u sends λu, since λu ≥ ηu, a node v covered by u would 

include u into Bv even if ||uv|| > ηu. So, the radius '
uχ  which supports blocking other 

links increases. But by receiving information from some node farther than the farthest 

neighbor in Nu, the coverage of ER(u) is more possibly to be shrunk down and thus 

lead to a lower χu. In other words, if u sends λu, the radius Tu of u itself could be 

lower (at least one larger), while its neighbor’s radiuses would be increased, and vice 

versa. So, there is a tradeoff between sending λu or ηu. We will give our suggestion in 

the later part. 

4.4 Convergency 

Nu and recalculate the radi

s, such as χu depends on Bu and Bu further depends on ηv, some variable (radius 

or set) may require several iterations to recover from the change. In this section, we 

show that the topology as well as construction power of NGTC can converge in a 

constant time.  

Consider a node u. Suppose the current timer of u is at t and some topological 

change occurs during [ , )()(1 vLocvLoc tt ≠−

+ge after t. i.e. ∀v ∈ V, c ∈ Z , )()( vLocvLoc cTtt =  (note: the change may be 

caused by u itself). Assume the network is sync  is aligned among 

each node), and the propagation de n time are negligible with 

respect to the interval T.  
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Table 4.1: The sufficient status of each variable. 

λu Su )(, VNGuvSv ru
α∈∀∈  )(, VNGuvuv ru

αλ ∈∀≤   

),()( ,) vsNRuLocV ∈  B  , vBv ∀∈(, NGvsuv ru ∉∀≤ αχ uχu )(, VNGuvN ruu
α∉∈  

ηu )(,, VNGuvNvuv ruu
αη ∉∈∀≤  ERu )(,)( VNGvERvLoc ru

α∈∀∈  

Tu Both λu and  are sufficient u '
uχ N  )(, VNGvNv ru

α∈∀∈  

 

We define three statuses for each variable in NGTC:  

 Stale: it is neither of the following two statuses;  

 4.1;  

means the radius can not be 

  

Sufficient: it is sufficient for its functionality, see Table 

 Converge: it will change any more (For Tu, it 

shrunken any more and for Nu, it means NVNGN ≡))(( α ).uru

For a variable X, we denote tX  as the status at time t. We have the following 

property. 

PRO

et Nu of neighbors can converge in 4T and the radius Tu can converge in and 

es with updated positions is gathered. By Definition 3.6, a point cons

PERTY 4.2: In a synchronous network, if each node u sends (Loc(u), λu) every T 

time, the s

6T.  

Proof: Consider a node u. Without loss of generality, we set T = 1. At time t: a set tS  

of nod

u

ist of a 

 toneighbor of u only if it is not blocked by any node in tS . So, tER  is sufficient  

cover all logical neighbors. At time t+1: 1+tλ  is now sufficient due to the sufficiency 

of tER . In turn, 1+tS  is sufficient, since 

u u

u

u u )(,11 VuvT tt αλ ∀≥≥ ++ . Because 

of the sufficiency of 1+tS  and tER , tN  now sufficient to include all neighbors. 

At t+2: 2+tη iciency of 
1+tN . Accordingly, and B are sufficient since a node v should be blocked 

only if 

NG∈uv rv

covers all nodes that should be blocked due to the suff

v

1+  isu

3+  

u

2+t
u  

u

time u  
t
uχu

2+t
vη≤uv . Thus, 3+tT  is sufficient large to cover all neighbors as well as u
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wil

a e can see that 

blocking nodes. Since 3+t
uS  l be no longer expended, 3+t

uER  is converged, which 

in turn implies that 3  is now converged. At time : 4+t
uλ  and 4+t

uη  are 

converged since 3+t
uER d 3+t

uN  are stable. So, 4+t
uB  is will longer change, 

since 4+t
vη  is now d. At  t +5: 5+t

uχ  conv s to cover the fixed 4+t
uB . 

Therefore, 5+t
uT  will no longer change.  

The statuses hese variables are summ d 

+t
uN

 an

xe

 t +4

W

no 

 fi time erge

 Figure 4.3. 

�

an of t rized in Nu 

Tu converge at the beginning of the fourth and fifth intervals after the change 

occurred.   
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col can converge even faster. 

Property 4.3: In a synchronous net

time, the neighborhood set Nu can converge in 3T and the radius Tu can converge in 

and 5T. 



 
 
 

Chapter 5 

Mobile Topology Control Protocol 
 

 In this Chapter, we present our mobile topology control protocol. The protocol is 

based the most general version, where each node is allowed having its own r. So, first 

we extend the shrink power mechanism to the (fr, α)-neighborhood graph. Then, the 

protocol is presented. We will discuss how automatically configure parameter to adapt 

to changing. Lastly, we discuss how efficiently perform the protocol and the 

corresponding time complexity. 

 

5.1 Extending on Shrinking Power mechanism  

Now we extend the shrink power mechanism such that all links of  will be 

preserved and all links not belong to  will be blocked. Before that, we should 

extend the (r, α)-enclosed region to the (fr, α)-neighborhood graph. 

α
uvrNG

α
uvrNG

Definition 5.1: Given a set V of nodes on ℵ, the (fr, α)-enclosed graph, denoted as 

, has an edge uv if and only if , where )(VEG
rf
α )(uERv

uvr
α∈ },max{ vuuv rrr = .  

The equivalence between  and  is obvious. We can see that only 

different is the identical r which is not replaced by ruv. Institutively, it seems that the 

mechanism can be applied to  based on  directly. However, there 

is one difficulty: The enclosed region of u is now depending on not only ru but also rv. 

It means that the least radius where λu covers a possible neighbor v would be variant 

)(VEG
rf
α

NG
rf
α

)(VNG
rf
α

)(V )(VEG
rf
α
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by rv, which however is uncertain before acquiring a message from v.  

Fortunately, there is an upper bound that can be calculated using a node’s own r. 

Recall that in (3.11), for any 10 21 ≤≤≤ rr , . Since ruv ≤ ru, we get )()(
21

uERuER rr
αα ⊇

)()( uERuER
uuv rr
αα ⊆ . 

Further, similar to (4.3), we redefine  

( )I
u uu Sw

c
rr wuRRuDER

∈
−∩ℵ= ),()1,( ,α  (5.1) 

Using the same argument of (11), we have  

urr ERuER ⊆)(α  

So the following radius 
ur

λ , redefined from (4.3), is sufficient to cover all possible 

neighbors. 

{ }ℵ∈∈= xERxux
uu rr ,|maxλ .  (5.2) 

On the other hand, let  

( )I
u vuuv Sw

c
rr wuRRTuDER

∈
−∩ℵ= ),(),( ,

max
α . (5.3) 

As a message is received from v, we have to now check whether  is in , 

instead of , such that all unnecessary uv can be blocked. Finally, for any v ∈ Nu, 

λu is sufficiently large to cover all points in , which means that u can still 

receive from all w’s that block uv. So, ηu, Bu, χu, Tu are still corrected here. 

v
uvrER

ur
ER

),( vuNR
uvr
α

 

5.2 Adaptive Mobile Topology Control Protocol  

The main idea of this protocol is based on adjusting the parameter ru for each u. 

Thus we start with a series of analyses how the parameter ru of each node u influence 

the overall energy-efficiency from the following three dimensions: 

1) Energy efficiency of routes vs. operation time of individual node:  

Consider a node u. Given a ratio r0, 0 ≤ r0 ≤ 1, we denote  to be the (fr, )(
0| VNG rrf ur

α
=
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α)-neighborhood graph where ru is fixed on r0. We have the following observations. 

For any 0 ≤ r1 ≤ r2 ≤ 1, by (3), we have . So, for 

any node w, where , it must be . 

This implies that an edge only if . In other words, 

),(),( },max{},max{ 21
vuNRvuNR

vv rrrr ⊆α

),vu )( ,max{ 1
NRwLoc r

α∉

α
1| rrf ur

NGuv =∈

)(
1| VNG rrf ur

α
=⊆

))(())
1| VNGV rrf ur

αρ =≥

))(())(
1| VNGdV rrfu ur

α
=≤

()( },max{ 2
NRwLoc

vrr∉

α
2| rrf ur

NGuv =∈

)(
2| VNG rrf ur

α
=

((
2|NG rrf ur

αρ =

(
2|NGd rrfu ur

α
=

),(} vu
vr

. (5.4) 

Therefore, we can get that  

, (5.5) 

and  

.  (5.6) 

Based pm these properties, we can observe that for each node u, no matter what the 

parameters of other nodes are taken, a smaller ru will strictly lead to an overall better 

energy efficiency communication routes (at least on worse), and on the other hands, a 

smaller ru can reduce the adjacency of u to its neighboring nodes. A smaller node 

degree can help prolong the operation time of an individual node in two reasons:  

 Broadcasting power: Since the relationship in (5.4), a smaller degree implies that 

the farther selected neighbor is closer. So, for broadcasting operation, the node 

can spend less power to cover all neighbors.  

 Traffic Load: A node with more links will let more traffic flow (both flooding and 

unicasting) pass through it, which may draw out its energy rapidly for those 

transmissions. Thus a smeller degree can help release the node’ traffic.  

2) High mobility vs. low mobility:  

Consider how node mobility effects the energy consumption. As a node has high 

mobility. It will cause its surrounding nodes changing the links status (establish or 

remove a link) to itself frequently, which will in turn triggers more route 

reconstruction at the upper layer. More reconstruction implies extra energy wasting on 
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flooding route discovery packets. To alleviate such undesirable circumstance, a highly 

moving node can reduce the adjacency to its neighboring. In other words, a large ru 

which leads to a lower node degree on u is preferable as u is in high mobility.  

3) Topology maintenance Power:   

Addition consideration is from the topology maintenance power. Recall in Property 

3.4, a larger r will cause a smaller Tu. It means the energy consumption of u can be 

reduced as a large ru is used, which is surprisingly consist with the tendency of ru 

toward the residual energy in the first consideration.  

Combining the above considerations, a configuration rule for the parameter ru is 

characterized as follows.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Max

u

Full

u
u Mobility

Mobility
Energy
Energyr 1 ,  (5.7) 

where Energyu and Mobilityu are the current residual energy and mobility level of 

node u, and EnergyFull and MobilityMax are the full power level and the maximum node 

mobility. The formulation in (5.7) can completely consist with all observation and 

anticipation in above considerations. We can see that the rule is extremely simple and 

can be carried out automatically by each node relied on only inherent statuses of itself. 

In addition, the configuration can be conducted independently by each node without 

additional control message to negotiate the symmetric, connectivity and planarity, 

since theoretically all these properties are preserved, see properties 3.4 and 3.5. For 

these reasons, the protocol will be very practical. More importantly, by reducing node 

dependency according mobility, the drawback of using nodes position in proximate 

graph can elegantly alleviated, since a node with lower degree will now trigger less 

reconstruction. The overall conceptions are depicted in Figure 5.1.   

In practice, each node u can set its ru = 0 at the initial stage, and then configure ru 
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periodically according to several distinct energy levels and mobility. The node 

mobility can be measured by node speed or remaining pause time, i.e. as a node stops 

moving and anticipates that it will stay on the place for a relatively long period of 

time, it can turn up its ru to allow more neighbors accessing to it.   
 

 

Figure 5.1: The relationship among the considerations, effects, and the configure process.  

 

The final version of the mobile topology control protocol is given below. We 

named it the Adaptive NGTC Protocol, abbreviated as ANGTC. To save page space, 

we only highlight the different parts, in comparison with NGTC. The other part 

encapsulated from line 1 to 13 here is the same except that ERu is no replaced by .  
ur

ER
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ANGTC Protocol 

1 Nu = {}, Su = {}; Bu = {}, ru = 0.  

The procedure from lines 2 to 13 are the same of the NGTC protocol;  

14    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Max

u

Full

u
u Mobility

Mobility
Energy
Energyr 1  

15    ( )I
u uu Sw rr wuRRuDER

∈
−∩ℵ= ),()1,( α ; 

16    ( )I
u uvuv Sw rr wuRRuDER

∈
−∩ℵ= ),()1,( α  

17    };
uvr  |{ uu ERuSuN ∈∈=

 

5.3 Efficient Calculation and Time Complexity  

In the rest part of this section, we discuss the complexity issues and suggest some 

efficient way for calculation the related variables.  

1) Calculation on Nu:  

If there are relatively smaller number of point on ℵ, each node requires only O(|V|) to 

compute its neighbors in  by set operation. However, if the there are infinite 

number of points on ℵ, each node can turn to determine its neighbors in  in 

O(|V|2).  

uvrEG

)(VNG
rf
α

2) 2) Calculation on λu:  

The radius λu covers ERu. Let x be a point on boundary of ERu with longest distance to 

u. Clearly, ||ux|| ≥ ||uy||, for any point y ∈ ERu. So, we will derive the distance of ||ux||. 

In the following, we just consider α = 2 for two reasons: First, there is no simple root 

function for ||ux|| when α > 2. Second, the radius λu covering  is sufficiently )(2 uERr
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large for any α > 2, since .  )()(2 uERuER rr
α⊇

≤ 2, )(2 uERr  

x is crossed by the outers of 

Obviously, when |Su| can not be enclosed. When |Su| > 2, There are 

two cases: In the first case,  and 

  

),( wuRRr
α )',( wuRRr

α , 

for some w, w' ∈ Su. In this case, x is crossed by one of the equations from 

(i) uvux = , (ii) vxux = , or (iii) εααα vxuvrux +=+ )1( ,  

and another one of the equations from 
εααα xvuvrux '')1( +=+ . (iv) 'uvux = , (v) xvux = ' , or (vi) 

Let θ and ote the an f ∠wuw’ an ely. By the law of cosine,  y den gles o d ∠wux, respectiv

)cos('2''

cos2222 yuxuwuwwxux −−=
222 yuxuwuwxwux −−−= θ

 (5.8) 

Consider four subcases:  

v), then If x satisfies either (i) or (i uvux =  or 'uvux = , respectively.  

If x satisfies (ii) and (v), we get  

θsin2
'vv

ux = .  (5.9) 

If x satisfies (ii) and (vi), or (iii) and (v), we get respectively  

θ
θ32

2 4cos2' uvuvuv −−
2sin'4

8'
uv

uvuv
ux

+
=  (5.10) 

and  

θ
θ
2

32
2

sin4
'84cos'2'

uv
uvuvuvuvuv

ux
+−−

=  (5.11) 

Otherwise, if x satisfies (iii) and (vi), we get 
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a
acbbux

2
42

2 −±−
= , (5.12) 

where , 242 CrBa −= )1(42 222 ruvCABb −−= , 422 4 uvCAc −= , 

and ( ) 2cos' ruvuvB θ−= , 322 4'2cos'2 uxuvuvuvuvA −+= θ , θsin'uvC = .  

In the second case, x is on the outer of some , where w ∈ Nu. Again, if x 

satisfies (i), then 

),( wuRRr
α

uvux = ; otherwise, if x satisfies either (ii) and (iii), the farthest 

point will finally be crossed by another w’ ∈ Su. As a sequel, it is sufficient to 

consider the first case.  

Let d1, d2, d3, d4, denote the distances obtained by (5.9) to (5.12). We get  

{ }4321' ,,,,,max ffffddux uvuv= .  (5.13) 

In addition, in the second and third subcases,  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∠ −

ux
uv

wux
2

cos 1 ,  (5.14) 

and in the fourth subcase 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
=∠ −

uvux
uvrux

wux
2

2
cos

222
1 . (5.15) 

Let pw, ' denote the point crossed by RR2(u, w) and RR2(u, w’); We can get  w

wuwuvxuv ∠±∠=∠  and xuvuvwxuvwxvx ∠−+= cos2222  

Since x is itself a point in ER(u), the longest distance can be obtained by  

{ }uuu SvwuNRvSwux ∈∀∉∈= ),,( and ,|maxλ . (5.16) 
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Chapter 6 

Experiments  
 
 

 In this chapter, a series experiments will be conducted to evaluate the 

observations on theoretic results as well as the protocol designs.  

 

6.1 Evaluations on Graph Structures 
First of all, we evaluate the theoretic properties shown in Chapter 4. Recall that 

for any α ≥ 2, the power stretch of the r-neighborhood graph is bounded from above 

by an increasing function of r and conversely, the upper bound of the maximum node 

degree is decreased by r. Figure 6.1 draws the two theoretic functions for n = 100 and 

α = 2. We can see that NGr(V) indeed has the flexibility to be adjusted between the 

two metrics through the parameter r. 
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Figure 6.1: The upper bounds on the power stretch factor and maximum node degree of NGr. 
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The topologies of NGr(V) of 3 different levels r are depicted in Figure 6.2. We 

can see that NGr(V) can construct any immediate structure between RNG and GG. A 

sparser topology can be constructed using a larger r, and contrarily, more routes will 

be preserved as a smaller r is applied.  

 

   
(a) NG1(V) ≡ RNG(V)                     (b) NG0.5(V) 

 
(c) NG0 ≡ GG(V) 

Figure 6.2: The topologies for 3 different levels of r. 

 
 The results shown in Theorem 3.4 and Theorem 3.5 are the worst upper bound. 

Actually, the average values will be much better. See figures 6.3 and 6.4. The results 

are averaged from in 100 test cases for each parameter setting. Note that for a density 
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ration d, 0 ≤ d ≤ 1 it has the following means: As the nodes placements are created, 

we sort every nodes pair (u, v) according to their distance ||uv|| in non-decreasing 

order. Then we set the maximum transmission range Tmax as the d×100% percent 

shortest distance. It means that given a density ratio d, in the underlying UDG(V), 

there will be at least d×100% of nodes can transmit to their neighbor using the directly 

a directly transmission.  
 

 
Figure 6.3: The power stretch factor of the  
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We can observe that when n is 100, the maximum value of ρ(NGr(V)) is still 

within two times to the optimal value 1 in the most case, and the minimal relaying 

power among any nodes pair is almost closed to the optimal. The same observation is 

also on the node degree. The average and maximum node degrees are all limited 

within 4 and 8 respectively.  

 
Figure 6.3: The power stretch factor and maximum node degree 

 

Moreover, figures 6.3 and 6.4 also provide the results for the (r, α)-neighbor 
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graph. The curves indicate the when the environment antennae factor α become worse 

(larger), both matrices decline significantly. This confirms our argument that a 

generalized structure of the r-neighborhood can gain better quantity results. The 

observation also tells use that our structure can adaptive well in a highly interference 

or obstacle environment. Therefore, the generalization is worth.   

 

6.2 Evaluations on Shrinking Power Mechanisms 

 Next, we evaluate the shrink power mechanism for the (r, α)-neighborhood 

graph.  The results of 100 test cases for 50 and 100 nodes are summarized below, 

where dist and pwr denote the remaining percent of radius and power of Tu in 

compared with the maximum radius Tmax. We can see the both dist and pwr can be 

strictly declined as r goes large. Such tendency does consist with the results proven in 

Property 5.1.  
 

Table 6.1: The shrunken radius and power. (n = 50) 
   r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1.0 
α density dist pwr dist pwr dist Pwr dist pwr dist pwr 

0.1 93.61% 87.68% 92.37% 85.37% 89.08% 79.42% 85.90% 73.87% 84.69% 71.80% 
0.2 80.42% 64.76% 77.11% 59.55% 70.63% 49.95% 65.46% 42.91% 63.90% 40.89% 2 
0.3 67.15% 45.18% 63.55% 40.45% 57.31% 32.90% 52.71% 27.84% 51.38% 26.46% 
0.1 89.86% 72.71% 89.60% 72.10% 88.11% 68.59% 85.78% 63.34% 84.69% 60.95% 
0.2 72.06% 37.57% 71.59% 36.84% 68.88% 32.81% 65.29% 27.96% 63.90% 26.20% 3 
0.3 58.62% 20.25% 58.20% 19.82% 55.73% 17.41% 52.57% 14.62% 51.38% 13.66% 
0.1 87.96% 60.19% 87.93% 60.10% 87.33% 58.51% 85.66% 54.23% 84.69% 51.81% 
0.2 68.62% 22.36% 68.55% 22.26% 67.53% 20.96% 65.13% 18.15% 63.90% 16.82% 4 
0.3 55.51% 9.60% 55.45% 9.56% 54.52% 8.94% 52.44% 7.65% 51.38% 7.07% 

 

 On the other hand, as the network density, network size, or attenuate factor 

increase, this mechanism can perform even better. This phenomenon is due the fact 

that both influences will cause each node u confronting to more neighboring nodes, 

which in turn means that the (α, r)-enclosed region of u will be smaller. A smaller 

 implies a smaller λu. As a result, the node can transmit using a smaller Tu. )(uERr
α
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For this reason, the shrink power mechanism can perform well in a large scale as well 

as worse condition network.  
 

Table 6.2: The shrunken radius and power. (n = 200) 
   r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1.0 
α density dist pwr dist pwr dist pwr dist pwr dist pwr 

0.1 61.84% 38.27% 58.07% 33.75% 52.47% 27.55% 48.56% 23.59% 47.42% 22.50% 
0.2 42.43% 18.02% 39.77% 15.83% 35.87% 12.87% 33.17% 11.01% 32.38% 10.49% 2 
0.3 33.40% 11.17% 31.31% 9.81% 28.24% 7.98% 26.12% 6.83% 25.49% 6.50% 
0.1 53.49% 15.33% 53.17% 15.06% 51.00% 13.29% 48.41% 11.37% 47.42% 10.68% 
0.2 36.57% 4.90% 36.35% 4.81% 34.85% 4.24% 33.07% 3.62% 32.38% 3.40% 3 
0.3 28.79% 2.39% 28.62% 2.35% 27.44% 2.07% 26.04% 1.77% 25.49% 1.66% 
0.1 50.71% 6.63% 50.65% 6.60% 49.99% 6.26% 48.32% 5.47% 47.42% 5.07% 
0.2 34.64% 1.45% 34.61% 1.44% 34.15% 1.37% 33.00% 1.19% 32.38% 1.10% 4 
0.3 27.27% 0.56% 27.24% 0.55% 26.89% 0.52% 25.98% 0.46% 25.49% 0.42% 

 

6.3 Evaluations on the Mobile Protocol 

In the last section, we conduct simulation study to emulate the really 

performance. This experiment was conducted by ns2 simulator [41]. The IEEE 802.11 

distributed coordination function has been implemented in ns2 kernel. It uses 

RTS/CTS/DATA/ACK pattern for all unicast packets and simply sends out DATA for 

all broadcast packets. The implementation uses both physical and virtual carrier sense. 

The two-ray ground reflection model is chosen as radio propagation model. The initial 

energy of each node is 0.5 joules. Each node can choose a power level to transmit a 

packet according to distance to the next hop. We modified the route protocol DSDV 

[42] to find the least-energy path instead of the shortest path. That is, the transmission 

ranges are allowed to be adjusted: For unicasting traffic, the range is adjusted exactly 

to the next hop, and for broadcasting, the range is adjusted to the farthest neighbors 

determined by the underlying topology. Received packets will be dropped if there is 

no edge from the sender. This consideration ensures that packets are always 

transported on the constructed topology. There are 100 nodes uniformly distributed in 

a 1000 square meters field. The CBR traffics will be generated from 20% of nodes. 
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For other non-source or no-destination nodes, they will be responsible for relaying 

traffic. Each node will transmit in the best effort on 802.11b, i.e. data rate is 11Mbype. 

The maximum transmission radius is taken as 250 meters for all nodes. The mobility 

pattern is according to the Random Waypoint model. If not specific, the default node 

speed and pause time will be randomly taken from the intervals of [0, 20] m/s and [0, 

10] s, respectively. For each test case, the observed results are averaged from 10 

instances (a set of nodes). Each instance will be simulated over 200 sections.  

First we evaluate the shrink power mechanism for variant r’s. To simulate the 

real circumstance, we allow each node configure its own r according to the adjusting 

rule in Chapter 6. The result is given in Figure 5. It shows that the construction power 

for the period beacon in a fully distributed circumstance can be reduced at a range 

from 20 % to 35% according the parameter. The conserved energy will be 

considerable especially when the beacon interval is intensive.  
 

 
Figure 6.5: The shrinking power mechanism for variant r’s.    
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 The simulation is for our mobile topology control protocol. As we mentioned 

before, the overall energy-consumption would be influenced by many factors. 

However, for any communication network, like the MANET, the ultimate graph is to 

support transmission between send and receiver. Therefore, the overall energy 

efficient here is measured by the total energy required for each communication. In 

other words, we hope the average consumed power for each successful packet to be as 

low as possible. In Figure 6.6, we compare ANGTC protocol, the traditional proximate 

graphs GG and RNG, and an identical-r version, according to this measurement. The 

results show that the mobile protocol can imprecisely imrove in overall energy 

efficiency in comparison with other structures, especially when node mobility 

increases. The improvement is mainly due to the self-configure process in Chapter 6.  

 

Figure 6.6: The comparison of the overall energy-efficient.  
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Chapter 7 

Conclusions  
 

In this dissertation, we proposed a purely localized structure to control the 

topology in wireless networks. We showed the worst case of the power stretch factor 

is an increasing function of r and the worst cast of the maximum node degree is 

contrarily a decreasing function of r. So, the two objectives can be adjusted in our 

structure. Although the power stretch factor is related to n so that our structure is not 

really a spanner, ρ(NGr(V)) can still be bounded for some range of r. Therefore, the 

power stretch is partially bounded in our structure. About the maximum node degree, 

we proposed an upper bound derived for dmax(NGr(V)). However, this result is correct 

only no node having two or more neighbors at exactly distance. For this reason, an 

extended structure  was given to comprehend this theorem.  )(* VNGr

Besides, the proposed structure can always result connected topology with 

symmetric edges. Any resulting topology is always a planar. The relations between the 

r-neighborhood graph and existent structures are summarized as follows. Specially, 

NGr(V) is a general structure of both GG(V) and RNG(V).  

To construct our structure, we proposed a 1-hop purely localized algorithm, PLA. 

It can avoid long-distance transmission when collecting information and can be 

efficiently done in O(nlogn) time when dmax(NGr(V)) is constant.  
 

 73



 
Figure 7.1: The relationships of NGr(V), , GG(V) and RNG(V).  )(* VNGr

  

To cope with the mobile environment, we further proposed an adaptive topology 

control protocol, based on a generalized version. In this protocol, each node can 

self-configure it parameter to improve the overall energy efficiency, using only 

inherent status. We also incorporated the protocol with shrink power mechanism to 

reduce the topology construction power for periodic beacons.   

For the further research, a localized topology control approach enables the design 

of localized routing protocols. For instance, the greedy route discovery in CFG [26] 

and GPSR [11] are based on GG. We anticipate that r-neighborhood graph could 

provide a concrete basis for many interesting extensions due to the sound theoretical 

results. Moreover, the parameter r can be turned to find the best settings for different 

scenarios. Another interesting issue for the possible further work is to evaluate the 

stability of the proposed structure when perfect position (range) information is not 

available or when the accuracy of position information differs from node to nodes. 

In addition, implementation issues for the mobile protocol, such as mobility 

prediction, fault tolerance, using imprecise information, are the worth directions for 

the further research.  
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Appendix 
 

The proof of Lemma 4.2: Without a loss of generality, we assume that ||uw|| ≤ ||vw||. 

Let y be the projection of w on uv so that yw is perpendicular to uv. We can derive that  
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Then, power consumed by path uwv is as follows 
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