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Adaptive Topology Control in Mobile Ad Hoc Networks

Student: An-Kai Jeng Advisor: Dr. Rong-Hong Jan

Department of Computer Science,
National Chiao Tung University

Abstract

The wireless ad hoc network is convenient to many applications, such as
conferences, hospitals, battlefields, and etc. In these environments, the network
performance heavily relies on the underlying topology. Especially, keeping the
topology sparser enhances network scalability. However, a sparse topology may
sacrifice some routes that consume®less power. Therefore, a tradeoff is between the
sparseness and the energy efficiency of the topalogy.

In this dissertation, we propose a geemetric structure, named the r-neighborhood
graph, to control the topology. The structure allows the flexibility to be adjusted
between energy efficiency and node’s degree through a parameter r, 0 < r < 1.
Theoretic results show that it can always result in a connected planar topology with
symmetric edges. More importantly, the structure can be constructed in localized
fashion using only 1-hop information.

To cope with node’s mobility, we investigate an adaptive protocol, based on a
generalized version of the r-neighborhood graph. In this protocol, the parameter r can
be adjusted distributively by each node according to the overall energy efficiency. To
reduce the construction power, we further incorporate the protocol with a shrinking
power mechanism for the topology maintenance. Simulation and numeric results show
that the proposed approaches can significantly improve the energy consumption,

especially in high mobility environment.
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Chapter 1

Introduction

The continuing growing of techniques in mobile ad hoc network (MANETS)
have led to many available applications in such as commercial, hospitals, military,
search and rescue teams, education, etc. In MANETS, all transmissions are carried on
wireless links without any wired connection, which enhances the conventional
deployment of communicating envirenments. However, unlike a wired network,
mobile devices are usually powered. by.limited energy supplies, where a continuing
replacing or recharging could:be hardly attainable: Hence, a substantial body of
research has been devoted to improve theenergy efficiency [34].

Due to the severe path loss in wireless links, the power required to transmit from
one end to another will be exponentially grown by their distance. Thus, instead of a
single long-distance transmission, relaying message through multiple hops with
shorter distances usually consume less energy [24]. During the relaying process, each
participating node has to consume energy to transmit or/and receive messages. Thus
the total power required for a communication will be crucially influenced by the
choice of relaying path. This motivates the recent research efforts on designing the
energy-efficient communication protocols [35].

To compute the energy-efficient route, the global view of the network topology is

required. However, the information is typically invisible to an individual node in



wireless environments. Thus, if without addition information, such as the position of
destination, enormous control packets have to be flooded all over the entire network
to find out the route. The incurred overhead will quickly drain out node’s energy.

In order to achieve the energy-efficient routing with less overhead, one
promising way is by controlling the topology. Generally speaking, the basic idea is to
keep the underlying topology as sparse as possible, while still preserve the
energy-efficient route that consume less power for communications. A sparser
topology can significantly mitigate the excessive flow flooded by nodes.

To reduce the communication overhead, one promising way is to control the
underlying topology as sparse as possible to avoid excessive messages, while still
preserve the energy-efficient route for any nodes pair. This is the so called
energy-efficient communication topolegy recentrol problem. The topology control
problem in wireless ad hoc networks has'heen:widely studied in recent years [3, 15,
18, 19, 20, 23, 29, 32]. Generally speaking; the core: of this problem is to determine
set of wireless links such that the composed-topology is able to achieve certain goals
[23]. These goals would be variant depending upon the circumstances and could be
either qualitative features or quantitative objectives.

In general, the current effort on mobile topology control is mainly focused on
reducing the transmission power required for each node to maintain the network
connectivity. This objective is most appealing when the energy consumption of an
individual node is crucial. However, to support an energy-efficient communication,
the quality of routes preserved in the underlying topology is also important. Overall,
the two goals are equally important in regard to deign an energy-efficient topology
control: The former avoids exhausting individual node that in turn causes network

partition and the later declines the per-packet energy consumption.



However, there is usually a tradeoff between the two desires: In order to
constitute an energy-efficient route, a node may connect itself with a neighbor that is
farther than the least requirement for connectivity. Contrarily, lowering down a node’
transmission power may instead increase the total relaying power. See the example in
Figure 1.1 (a), the communicate power between u and v is 5, while the least power of
u to achieve connectivity is 3. In contrast, in Figure 1.1 (b), u’s transmission power is

minimal, while the total relaying power (4 + 4 = 8) is now worse.

Figure 1.1: (a) Preserving energy-efficient route; (b) Reducing transmission power.

In this dissertation, our ultimate goal~isito design an adaptive topology control
protocol for mobile nodes. In this protecol,.each node can adaptively change its way
to contribute to the overall energy efficiency: if a node has sufficient energy, it will
aggressively participate in supporting the energy-efficient communication; and when
the deposited energy downs to a relatively low level, the node will turn to conserve its
own energy.

The main idea is based on a geometric structure, named the r-neighborhood
graph. The structure consists of several theoretic properties that can be exploited for
designing the mobile topology control with the adaptive goal. Most importantly, based
on such structure, each node can decide its neighbors in a fully distributive and

localized way. We will also extend the structure to several generalized versions. These



extensions enable an elegant self-configuration process on each node

On the other hand, to keep the design clean and compatible with the IEEE 802.11
DCF, we let each node periodically announce its current position using beacon
message. However, such maintenance power could be considerable, especially when
the broadcasting range is large. For this reason, we incorporate the protocol with a
shrinking power mechanism. It can reduce the topology maintenance power
significantly.

Furthermore, our protocol can simultaneously achieve the following desirable
features without additional control message.
1. Symmetric: A topology is symmetric if the presence of an edge uv implies that its
inverse vu exists. If without the symmetricity, the implementations of many network
primitives, such as ACK in link-layerswill be. much complicated [21]. Our protocol
ensures this property for any resulted topology:
2. Connected: Connectivity is:unquestionably the most essential prerequisite in any
communicable topology [23]. Two nodes trand'v are strongly connected if there is a
directed path from u to v and vice versa..A.directed topology is strongly connected if
all pairs of nodes are strongly connected. If the links are symmetric, we should aim at
the connectivity of an undirected topology.
3. Sparse: Numerous distributed and localized routing protocols are based on
flooding [13]; however this may burden networks with unavoidable redundant
messages. Thus, keeping a sparse topology, consisting of linear number of links [15],
would be an ingenious way to shrink the expenditure from network operations.
4. Bounded Maximum node degree: For some nodes with overly-large degrees, the
network flows will concentrate on them and rapidly draw out their energy. Besides, a

larger node degree means tighter dependency among nodes, which is not expected



when wireless nodes move frequently. Therefore, the maximum node degree over a
topology should be bounded from above by some constant.

5. Planar: A graph is planar if it has no crossed links inside. It is helpful for many
geometric problems: The shortest path (least energy unicast route) can be quickly
found in linear time when the underlying topology is planar [12]; Besides, in many
position-based routing algorithms, the successful delivery can be guaranteed only if
the underlying topology is a planar [2, 11].

In addition, in wireless ad hoc networks, due to the absence of a central
arbitrator and the limited sensing range, a centralized approach for controlling the
topology is rarely attainable [3, 30]. Therefore, a variety of distributed approaches
were proposed [17, 19, 29]. A distributed protocol passes messages hop-by-hop. This
however may cause considerable overhead through the entire network. So, a localized
approach is more preferred. According tothe definition given by Stojmenovic and Lin
[27], a localized topology control approach allows each node to determine its
neighbors using only constant hop-information. However, in some localized
approaches [15, 16, 18, 27], the ‘operations should recursively depend upon the
computed status or partial results from nearby nodes, which may hurt their
practicability. Therefore, in the following we define a new type of mythology for
more practicability.

DEFINITION 1.1: An algorithm L is purely localized if it is localized and all operations
depend upon only the information inherent® in nodes, available before any execution
of L.

A purely localized topology control algorithm is more useful to large scale and high

mobility environments, since the operation of a node is completely isolated from any

"The node’s position and id are usually assumed to be inherited in nodes. See Chapter 2 for more
explanation.



execution of other nodes. Further, we say that a structure is purely localizable if we
can construct it by a purely localized algorithm. One of our goals is to investigate a
purely localizable structure so that all desired features mentioned above can achieve.
The rest of this dissertation is organized as follows. Chapter 2 specifies the
network model and formally describes the problem under study. In Chapter 3, we
review and summarize the related works. The main geometric structures, components,
and their theoretical results are presented in Chapter 4. In Chapter 5, we suggest a
localized algorithm for stationery nodes and a shrinking power mechanism to
constitute the skeleton of the desired protocol. In Chapter 6, we present the theoretic
definition, properties, and algorithms of the self-configured process in mobile
environment. Extensive simulation and numeric studies are conduced in Chapter 7.
Finally, concluding remarks and some. worth directions for the further research are

given in the last Chapter. Detailed derivationsare given in Appendix.



Chapter 2
Background and Related Works

In this chapter, the network model studied in this dissertation will be formally
described. Then, we will review some related works in the literature. According to the
assumption of node mobility, existing works for stationary and mobile nodes will be

discussed, respectively, in Chapter 2.2 and Chapter 2.3.

2.1 Network Model

The wireless ad hoc network concerned .in this paper consists of a set V of n
wireless nodes distributed on a“.deployment region X, which is a subset of the
two-dimension plane R%. We assume' that each node is equipped with an
omnidirectional antenna and can change its transmission range by adjusting the
transmitting power at any level. The maximum transmission ranges are equal among
all nodes. In other words, we can normalize the maximum transmission ranges of all
nodes to be 1 for simplicity. In addition, each node u can obtain its location Loc(u)
through a lower-power GPS or some other ways [14], and an unique id(u) is also
available to each node u.

This network can be modeled as a unit disk graph, UDG(V). In this graph, an
edge uv exists if and only if the Euclidean distance between u and v, denoted as ||uv],

is at most 1.



The least power required to transmit immediately between u and v is modeled as
p(u, v) = ||uv|| where « is typically taken on a value between 2 and 4, depending on
the attenuation strength of the communication environment [5]. To measure the power
efficiency of a topology, Li et al. [15] defined a well-formed measure, named power
stretch factor. We reintroduce it as below.
Let #(u, V) = VgV1...Vh-1Vh be a unicast path connecting nodes u and v, where vy = u and

vy = V. The total transmission power consumed by path 7z(u, v) is defined as
h
p(z(u,v)) = z P(Vi, Vi)
i=1

Let ﬂg(v)(u,v) be the least-energy path connecting u and v in graph G(V). Given a
controlled topology S(V) of UDG(V), tthe power stretch factor of S(V) with respect to
UDG(V) is defined as,

p(”;(V) (U1V))
S = 3 .
PEFY m’g\)/( p(ﬂUDG(V)(u’V))

This factor indicates the worst ratiosof the least energy required to relay on S(V) in
compared to that of a uncontrolled topology for-all possible communication pairs.
Clearly, a smaller ratio is preferable. On the other hand, the maximum node degree of

the topology S(V) is defined as
Urax (S(V)) = maxd, (G(V)) ,

where dy(S(V)) is the degree of node u in S(V).
In addition, the following symbols will be used throughout this article.

® D(u, d): the closed disk centered at Loc(u) with radius d.
® C(u, d): the circled centered at Loc(u) with radius d.

® N, (G(V)):the set of neighbor of u in a graph G(V).



2.2 Stationery Topology Control

In the field of topology control for stationary nodes, a majority of researches

were conducted by designing the proximate graph. A proximate graph is a geometric

structure in which each node determines its neighbors based on the positions of nodes

in its province. In other words, a topology approach based on such structure can be

carried out in a fully distributed and localized way. A number of instances can be

found in the literature [15, 16, 18, 26]. These works are diverse in their sparseness and

the energy efficiency of preserved routes. We discuss the most well-know structures

below. Most of them or their extensions are purely localizable:

The constrained Relative Neighborhood Graph [28], denoted by RNG(V), has an
edge uv if and only if ||uv|| < 1 and the intersection of two open disks® centered at
u, v with radius ||uv|| contains,no node w €V,see Figure 2.1 (a),

The constrained Gabriel Graph [6]; denoted 'by GG(V), has an edge uv if and
only if |juv|| < 1 and the open disk using ||uv|| as diameter contains no node w €V,
see Figure 2.1 (b).

The constrained Yao Graph [33] with a parameter k > 6, denoted by YG« V) is
constructed as follows. For each node u, define k equal cones by k
equal-separated rays originated at u. At each cone, a directed edge uv exists, if
|luv|] < 1 and the cone contains no vertex w €V such that |juw|| < [|uv||. Ties are
broken arbitrarily. YG(V) is denoted as the underlying undirected graph of
YGi (V), see Figure 2.1 (c).

A Delaunay Triangulation, denoted by Del(V), is a triangulation of V in which

the interior of the circumcircle of each Auvw contains no node w e V. The unit

1 An open disk centered at point x with radius d is the collection of points with distance less than d
from Loc(x).



Delaunay Triangulation, denoted by UDel(V), has all edges of Del(V) except
those longer than 1 [8, 18], see Figure 2.1 (d).

(d)
Figure 2.1: (a) RNG(V) (b) GG(V) (c) YGK(V), k = 8 (d) UDel(V).

Let us discuss the properties of these structures and their extensions. We say a
objective f(.) of a structure S(V) is bounded if there is a constant C such that f(S(V)) <
C, for any set V of n nodes. Li et al. [15] showed that dmax(RNG(V)) is unbounded if
there is a node u € V having an unbounded number of neighbors adjacent to u at
exactly the same distance in the underlying UDG(V). To overcome this problem,
Wattenhofer and Zollinger [32] proposed an algorithm to find a structure, denoted by
XTC(V). They showed that that XTC(V) is a subgraph of RNG(V) and the dmax(XTC(V))

is at most 6. Especially, if there is no node having two or more neighbors at exactly

10



the same distance in V, XTC(V) is identical to RNG(V) [24]. Their results infer the
following theorem.

THEOREM 2.1: Given a set V of nodes on 2, if there is no node having two or more
neighbors at exactly the same distance, then dmax(RNG(V)) < 6.

We denote the condition in Theorem 2.1 as assumption AS. That is,

AS : There is no node in V having two or more neighbors at exactly the same distance.
This theorem reveals that even RNG(V) has no constant bound on its node degree, it is
still useful since the distances of nodes in real world are rarely exactly the same. The
constrained Gabriel Graph GG(V) has the least power stretch factor 1, in comparison
with the unbounded power stretch factor n — 1 of RNG(V) [15]. However, dmax(GG(V))
could be as large as n — 1. An extended structure, Enclosure graph [16, 14, 24],
denoted by EG(V) is generalized fromyGG(V). It can always result in a subgraph of
GG(V) [16]. Even so, its maximum node degree.is still unbounded [20, 24].

To overcome the tradeoff:-between the maximom node degree and the power
stretch factor, an adjustable structure, having-the flexibility to be adjusted between the
two objectives, becomes more attractive. YGr (V9 is an adjustable structure. It can be
adjusted through a parameter k such that for any given k, the maximum out-degree is
at most k, and the power stretch factor is at most ]/ (1—(25in 7l k)“) [15]. We say an
objective f(.) of an adjustable structure Si(V) with parameter k is partially bounded if
there is at least one ko such that f (S, (V)) is bounded. According this definition, the
maximum out-degree and power stretch factor of \@k(\/ ) are partially bounded
since for some ranges of k, k and 1/(1—(25in ﬂ/k)“) are constants. However, the
asymmetric edges of YGi (V) may lead to large in-degrees even when Kk is very small
[15]. So, d,., (YG,(V)) can be neither bounded nor partially bounded. To improve

max

this, an extension of YGx (V), named Yao and Sink, was proposed [15, 17, 29]. It can

11



limit the maximum node degree in (k +1)> — 1 and result symmetric edges.
Unfortunately, in this structure the neighbors of some node should be recursively
determined by one another so that it can not be purely localizable. The unit Delaunay
triangulation UDel(V) has bounded power stretch factor. However, neither Del(V) nor
UDel(V) can be computed locally. So, Li et al. [18] suggested a localized version of
the Delaunay graph, denoted by LDel™(V), where h means that each node uses at
most k-hop information. The power stretch factor of LDel®(V) is bounded for all k > 1.
Even so, its maximum node degree is not bounded for any h.

The relations among these structures were studied in several papers [7, 10, 16, 22,
24, 33]. We summarize them on Figure 2.2, where EMST(V) is the Euclidean
minimum spanning tree of UDG(V). With these relations, their connectivity can

planarity can be easily inferred.

(=
| X is a subgraph of Y
YG,. | X I
! Some immediate
i structures is between
XandY

UDel

| EG > GG |
*
[ XTC | RNG |

Figure 2.2: The relations of the pure localizable structures and their extensions.

Regarding the connectivity: we know that EMST(V) is connected if UDG(V) is
itself a connected component of V. Therefore, when UDG(V) is connected, all graph

containing EMST(V) are connected. That is, RNG(V), GG(V), EG(V), UDel(V),



LDe®I(V), YG(V) are all connected. The connectivity of XTC(X) was proven by
different way [24].

Regarding the planarity: LDel®(V) is planar for any k > 2 [18]. Therefore, all
subgraphs of LDel®(V) are planar. That is, UDel(V), GG(V), EG(V), RNG(V), XTC(V),
EMST(V) are all planar. On the contrary, YG V), and LDe™I(V) can not avoid
producing the crossed link, so they are not planar [15, 18]. Table 2.1 summarizes
above discussion.

From above table, we can see that no presented structure can bound or even
partially bound the two objectives. Besides to the best of our knowledge, no other
structure can be purely localizable and achieve this goal. Therefore, we will propose
the first purely localizable structure, named r-Neighborhood Graph, to fill this gap.
This structure is adjustable and can.:always, result in a connected planar with
symmetric edges. In addition, we can show that our structure is a generation of both

GG(V) and RNG(V).

Table 2.1: The properties.of the four main-purely localizable structures.

Powver stretch factor ~ Maximum node degree Planar ~ Symmetric Connected
Bounded (with AS)
RNG(V) Unbounded Unbounded (without AS) Yes Yes Yes
GG(V) Bounded Unbounded Yes Yes Yes
YG, (V) Partially bounded Unbounded No No Yes
No (k=1)
® ;
LDel®(V) Partially bounded Unbounded Yes (k>2) Yes Yes

Apart from the purely localizable structures, several composite methods, based
on combining two or more existent structures, were investigated in the last few years

[17, 19, 25, 31]. Conceptually, the main idea is to use the virtue of one structure to

13



patch up the fault in the other structures. For examples, the ordered Yao structure,
denoted as OrdYao(V) [1], is a variation of YG, (V). It has the partially bounded
maximum node degree and length stretch factor. However, the planarity can not be
guaranteed. Therefore, Wang and Li [19, 31] applied OrdYao(V) onto LDel®(V) to
avoid the crossed edges produced by OrdYao(V); Song et al. [25] improves it by
applying the OrdYao(V) on GG(V), using only one-hop information. Their Result are
summary in Table 2.2. However, the construction of OrdYao(Y) requires exchanging
the computed status as well as partial results between nodes. Consequently, none of

them is purely localized or purely localizable.

Table 2.2: The properties of representative adjustable structures.

Parameter Power stretch factor Maximum node degree
1 1
el k= s P
k k

OrYaoGG k=7 1 i k+5

rrao = 1= @sinzlk)?

J2”

SYaoGG k=9, ..,n-1 k

1—(2+/2sin 7 /k)”

2.3 Mobile Topology Control Protocols

Distributed protocols for proximate graphs can be also found in the literature
[34]. However, existent results are all applied to stationary network only. There is no
approach explicitly designed for mobile nodes based on such structure. The reason is
probably that the construction depends on node positions, so that even a slight change

in nodes placement could trigger a reconstruction process to handle the broken link or
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deteriorated link quality.

There are relatively fewer works considering nodes mobility. The LINT (and its
extension LILT) is perhaps the first topology control protocol explicitly designed for
mobile network [36, 37]. In this protocol, each node continually adjusts its
transmission power such that the number of covered neighbors is within a lower and
high threshold. Accordingly, the energy can be saved by declining the high threshold,
and the network connectivity can be achieved by uplifting the low threshold. It
however has no guarantee on connectivity if the low threshold is underestimated. To
improve that, Blough et al [38] proposed a similar approach, named the K-NEIGH.
The protocol connects each node with its k-closest neighbors and removes all
asymmetric links, where k is a predefined parameter. The most interesting result is
that if n nodes are uniformly distributedsat random and k is taken as &(logn), then the
connectivity can be held with:high-probability.- These protocols are called the
neighbor-based approach, since:a' node’s construction: relays on the ability of ordering
or measuring distances of nodes-in its‘province [34]. The direction-based approach is
another stem. It uses the angles among-nodes for the construction. An example is the
Cone Based Topology Control (CBTC) [39]. The basic idea is to let each node
transmits with the minimum power that covers at least one neighbor in every cone of
an angle p centered at it. The authors show that p < 2r/3 is a sufficient condition to
ensure connectivity. Li et al. [40] proposed a reconfiguration procedure to deal with
node mobility by detecting changing events from received beacons.

The most important features of these protocols are that their constructions are
based on either nodes distance or nodes directions. Compared with the proximate
graph, both the neighbor-based and direction-based approaches can be more

accommodating to nodes movement. The reason is that the changing on nodes
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distances or directions will be relatively small with respect to nodes positions.
Therefore, by using either of the two less precise information, a fewer number of
topology reconstruction will be required when nodes move.

Even thought our protocols are based on a proximate graph. We will show that
such disadvantage can be easily mitigated in an elegant way. In addition, Compared
with K-NEIGH, LINT (LILT) and CBTC, our protocol guarantees the network
connectivity in any stabilized status, without any assumption on nodes distribution, or
parameter setting. Furthermore, both CBTC and K-NEIGH attend symmetricity by
exchanging linking status among nodes. This will incur additional control overhead.

Our protocol ensures that any established link is inherently bidirectional.
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Chapter 3

Graphic Structures

In this chapter, we will introduce a new adjustable structure, called the
r-neighbor graph. It can be adjusted between the maximum node degree and power
stretch factor through the parameter r. The structure can also produce connected
planar with symmetric edges. However, its maximum node degree will be unbounded
in certain cases. To comprehend thestheoretic property, we will then propose an
enhanced version, called the extended r-neighborhood graph to deal with the special
circumstance.

To apply the proposed structure torourmabile protocol, extensive investigations
on the r-neighborhood graph will“be.given: First of all, we define a generalized
structure, called the (r, @)-neighborhood graph. The generalization can gain better
quantitative results. Next, an equivalent structure, called the (r, a)-Enclosed graph
will be given. Its diverse representation enables the design of a shrinking power
mechanism in Chapter 4. Then, we further generalized the structure such that each
node having its own r, named the (f;, &)-neighborhood Graph. This graph provides

essential properties for the self-configuration process in Chapter 6.

3.1 r-Neighborhood Graph

In this section, we introduce the adjustable structure. First, we define a region on
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R2. 1t will be used to compose our structure.
DEFINITION 3.1: Given a nodes pair (u, v) on N, the r-neighborhood region of (u, v),
denoted as NR((u, v), is defined as:

NR, (u,v) = D(u, |uv[) ~ D(v, |uv[) » D(m,, 1),

where my, is the middle point on uv, l,, = (|Juv]|[/2)(1 + 2r>)*? and 0 < r < 1.

D_f.m J’v )

Figure 3.1: The r-neighborhood region of nodes u and v.

When no confused, we use m and | instead:of my, and l,, respectively. In Figure 3.1,
the shaded region intersected by the three open disks sketches an example of the
r-neighborhood region. This region is obviously equivalent to the following point set:
NR, (u,v) ={Loc(x) € R*|ux]| < |uv]|, [vx| <|uv], Jmx| <1}  (3.1)
For any node w located on NR(u, V), this region limits the power consumed by path
uwv. This property is shown in Lemma 3.1 and derived in Appendix.
LEMMA 3.1: Given two nodes u and v on N, for any node w such that Loc(w) € NR(u,
V), p(uwv) < |juv||*(2 + r%), for all a> 2.
This lemma explains why we call such plane a neighborhood region: For any node w
located in the region NR(u, v), it should be an alternative neighbor for u with respect
to v, in the sense that the power required for relaying from u to v through w is no
greater than 1 + r” times of the immediate transmission. Based on this region, we

structure is defined below.
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DEFINITION 3.2: Given a set V of nodes on N, the r-neighborhood graph of V,
denoted as NG((V), has of an edge uv if and only if ||uv|| < 1 and NR(u, v) contains no
nodew € V, where 0 <r<1.

By Definition 3.2, if edge uv is not in UDG(V) or a node w is inside NR(u, v), there is
no direct link connecting u and v in NG.(V), which mean that all transmissions
between u and v should be relied through some other node(s) in NG.(V). Now, we
explore the desired properties in our structure. Before this, we shall discussion the
following relations.

LEMMA 3.2: For any set V of nodes on N, RNG(V) < NG((V) < GG(V), for all 0< r<1.
Proof. Consider the open disk D(m, ||uv||[/2), defining GG(V). Suppose uv € NG(V),
the region NR((u, v) has no node inside. Since D(m, ||uv||/2) is obviously a subregion
of NR((u, v), for any 0 < r < 1, theresis also .no node in D(m, |[uv||/2). Therefore,
according to the definition of GG(V); we'get uv.e GG(V). On the other hand, consider
the two open disks D(u, ||uv|}) and D(v, {juv|]), defining RNG(V). Suppose uv €
RNG(V), no node is inside the intersectionof D(u, [|uv|]) and D(v, [juv|]), which
obviously covers the region NR(u,*v);for.any 0'< r < 1. Therefore, no node can be
inside NR(u, v) and we get uv € NG(V). L]
Specifically, as r = 0, NRq(u, v) = D(m, [|uv||[/2), which is the disk defining GG(V). On
the contrary, as r = 1, NRy(u, v) = D(m, ||uv||), which is the disk defining RNG(V).
Therefore, GG(V) = NGy(V) and RNG(V) = NGy(V). So, we can conclude the
following theorem.

THEOREM 3.1: The r-neighborhood graph is a generalized structure of both the
restricted Gabriel graph and the restricted relative neighborhood graph.

Since a subgraph of a planar graph is always planar, and a supergraph of a connected

graph is always connected, with the planarity of GG(V) and connectivity of RNG(V),

19



we can infer the following two theorems.

THEOREM 3.2: For any set V of nodes on &, NG(V) is planar, forall 0 <r < 1.
THEOREM 3.3: For any set V of nodes on &, if the underlying UDG(V) is connected,
NG(V) is connected, forall 0 <r < 1.

Now we consider the energy efficiency and node degree of NG.(V). We will
show that the upper bound of po(NG(V)) is increased by r and contrarily the upper
bound of dnax(NG((v)) is decreased by r. In other words, the r-neighborhood graph is
adjustable to the two objectives through the parameter r. With these results, we can
further show that the power stretch factor and maximum node degree are partially
bounded in our structure. Before these, a property proposed by Li et al.[15] shall be
mentioned first. It can be used to simplify our proof.

LEMMA 3.3 [15]: Given a subgraph G’(V)ic UDG(V) and a constant C, p(G’(V)) < C
if and only if for any edge uv in G(V), there.is & path 7(u, v) in G’(V) such that
Py (U, V) < Clluv|”.

This lemma indicates that to derive an-upperrbound for o(NG(V)), it is sufficient to
the consider only those nodes pairs:having.direct links in UDG(V). So, we aim to
derive a strictly decreasing function F(r), such that for any uv in UDG(V), a path
7z(u,v) isin NG(V) such that p(;r(u,v)) < F(r)||uv||*. To achieve this, we investigate
an algorithm ExPANSION with an input of any two nodes (u, v) and outputs subgraph S
of NG(V) related to (u, v). Let P(S) be the total transmission power of edges in S. i.e.
P(S) = 2stesp(s, t). We can show that there is some path in S connecting (u, v) and P(S)
< F(n)|juv]|“

In this algorithm, S’ is a set of nodes pairs, in which an edge st in NG(V) can be a part
of S only if its two ends (s, t) are in S” as described at step 3. So, to determine S, we

have discuss the S’ first. Initially, S’ contains only (u, v). Then, it will be recursively
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expanded as follows: for each (s, t) in S°, if a node w is in NR((s, t) and not considered
before, replace (s, t) with (s, w) and (w, t); if a node w is in NR(s, t) but considered
before, replace (s, t) with (s, w); Otherwise, keep (s, t) unchanged. We use the set Q to

record the considered nodes.

ALGORITHM EXPANSION

Input: A nodes pair (u, v) inV
Output: A subgraph S and a positive value P.
Step 1: S={}, S ={(u, )} Q ={u, v}, P = Jluv||*;
Step 2: When some node pair (s, t) is in S such that a node w € NR(s, t)
=8 - (s, 1);
Ifw ¢ Q then
=S U (s, w) U (W, 1);
Q=Qu{w};
P=P+([stln%
Otherwise,
S’=S" U (s, w);
Step 3: S={xy e NG(V) | (x,y) € S’};
Step 4: Stop and output E and P.

When some (s, t) is in S” such that a node w € NR((s, t), no matter w is
considered or not, by (4.1), the replaced nodes pair(s) must be shorter than ||st||. i.e.
llsw|| < |st|| and |jwt|| < ||st]|. Thus after finite iterations, each node pair in S’ can be
replaced by another node pair with shortest distance. So, the algorithm is terminable.
Now we show that (u, v) is connected by some path in the subgraph S when

termination.
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LEMMA 3.4: Given any set V of node on N, for any two nodes u and v in V, if edge uv
is in UDG(V) and UDG(V) is connected, there is some path in S connecting (u, v).
Proof: Since Q includes u and v, we can prove this lemma by showing that all nodes
in the Q are connected in S. For each expansion of S’, we define a dummy graph S” in
which an edge st exists if and only if (s, t) is in S’ (Note that any edge in S” is not
necessarily in either UDG(V) or NG(V)). First, we show that at any iteration, all
considered nodes in Q are connected by S”. Initially, Q is connected by S”, since S’ =
{(u, v)} and Q ={u, v}. We assume for induction that all nodes in Q are connected by
S” at k-th iteration. Then, we show that it is true for the next iteration. At k+1-th
iteration, if there is no pair in S’ satisfies the entrance condition of step 2, the claim is
correct, since Q and S” are unchanged; Otherwise, a node pair (s, t) € S’ is expended.
In this case, if the chosen w ¢ Q, w is.connected with all nodes in Q via dummy edges
sw and wt; otherwise, w € Q, which impliesall .nodes in Q are still connected by S” as
the previous iteration. As described above, the distance of any expended nodes pair is
no longer than the previous one. So, if-uv-isiin UDG(V), all edges in S” are also in
UDG(V). Then, as the algorithm<processes to step 3, no nodes can be in the
r-neighborhood region of any nodes pair in S’. With these two facts, all dummy edges
in S” are also in NG,(V) when termination. So S is equivalent to the last S”.
Consequently, if UDG(V) is connected, by Theorem 4.4, all nodes in the last Q are
connected S. L]
Then we derive a strictly decreasing function F(r) using the value P in this algorithm.
LEMMA 3.4: Given any set V of n nodes on N, for any two nodes u and vin V,

P(S) < F(n|uv|” and F(r)=1+(n-2)r*
forall0<r<land a>2.

Proof: Let P(S’) = 2 sesP(S, t). We show that P(S”) < P at each iteration of step 2.
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Initially, S* = {(u,v)}. We can get P(S’) = ||uv||* = P. Then at the first iteration, if no
node w is in NR((u, v), the claim remains true since neither P nor S is changed;
Otherwise, a node w is in NR((u, v). Besides, any chosen w can not be in Q, since no
nodes except u and v are in Q so far. So, uv is replaced by vw and wv. By Lemma 4.1,
P(vw)+P(wu) < P(uv)(1+r%) = P + (|luv||r)* Consequently the new P remains a upper
bound of P(S’) . We assume for induction that P(S’) < P at k-th iteration. Then we
prove the claim is true at the next iteration. If the entrance condition of step 2 is not
satisfied or the chosen w ¢ Q, it can be proved by the same reasons as in the first
iteration. Otherwise, assume (s, t) is taken, st is replaced by only sw. By (4.1), P(vw) <
P(uv), which implies that the unchanged P is still an upper bound of P(S’). Besides,
(4.1) further implies that all distance of two nodes in E are no greater than ||uv||. So,
another upper bound P’ can be get by replacing.P = P + (||st||r)* by P” = P” + (||uv||r)“.
Moreover, we can observe that the situation that as'a w is chosen from some NG(s, t)
is not in Q never happens over-n = 2 times; since in;this case the size of Q must be
increased 1. Consequently, P(S™) £ P.<P =:P(uv) + P(uv)r“(n — 2) . Finally, we get
F(r) = (1+r)(n - 2). ]
With lemmas 3.3, 3.4 and 3.5, we can conclude the following theorem.

THEOREM 3.4: Forany setVofnnodeson R, forall0<r<1and a> 2,
(NG, (V) <1+r“(n-2)=F(r).

Although this bound is related to the node size n so that o (NG,(V)) can not be
bounded, it can still be constant when r is 0 or some sufficiently small. i.e. p (NG((V))
is bounded in some range of r. So, we can make the following conclusion.
COROLLARY 3.1: The power stretch factor of the r-neighborhood graph is partially
bounded.

Consider the maximum node degree of the r-neighborhood graph. Since NG(V)

consists of all edges in RNG(V), the maximum node degree of NG,(V) is no less than
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that of RNG(V). In Chapter 2, we know that dmax(RNG(V)) is not always bounded in
any case of V. Thus, dmax(NG(V)) is also unbounded. Fortunately, Theorem 2.1
indicates that dmax(RNG(V)) is bounded in most cases of V, where AS is assumed.
Therefore, in the following theorem, we analyze the maximum node degree of the
r-neighborhood graph under assumption AS.
THEOREM 3.5: For any set V of nodes on & with assumption AS, forall 0 <r <1,
d,. (NG, (V) <|z/sin(r/2)|.

Proof. To prove this statement, it is sufficient to show that in NG, (V), there are no
adjacent edges enclosing an angle less than 2sin™(r/2). Assume for contradiction that
two edges uv and uw in NG, (V) enclose an angle #< 2sin™(r/2) at node u, where w,
v € V. Without a loss of generality, we assume that |juw|| < |luv||. With assumption AS,
all nodes are placed on different positions.ii.es Loc(x) = Loc(y), for any two nodes X, y
€ V; Consider the length of vw::If Luwwis obtuse; it is clear that |[vw|| < ||uv|| (note
that |lvw|| can not be equal to ||uv||, since Loc(u) » Loc(w)), see Figure 3.2 (b);
Otherwise, if Zuwv is not obtuse, |vwi|jisitess|jvw’|, where |luw’|| = |juv||, see Figure
3.2 (a). By the law of cosine, we have

o = + o ~ 2uwvcos

= 2Juv|* —2Juv]" cos 6

< 2Juv] - 2Juv]? cos(2sin(r /2)) 3.2)
Let &'=2sin(r/2), we get sin(¢'/2)=r/2 . Then one of the corresponding
right-angled triangles is as shown in Figure 4.2 (c). In this case, cos&'=(2-r%)/2.
Thus we can get that 2sin™(r/2)=6'= cos’((2 -r?)/ 2). Consequently,

(3.2) =2Juv|f - 2Juv| cos(cos ((2-r?)2))
= 2o 2o (2-r7)12) = ol r? 33)

Consequently, we have that for any case of Zuwv,
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o] < . o]} = ] (34
Consider the length of um: if Zuwm is obtuse, |[wm|| < [juv|[/2 see Figure 3.2 (b);
Otherwise, ||mw]| is less |[mw’||, see Figure 3.2 (b). By the law of cosine, we have
= Juw + Jum - 2Juwfjumeoso.

< ||uv||2 +||uv||2 / 4—||uv||2 cosd

<BJuv| /4 —[uv*(2-r2)r2) = Juv (L +2r2)4) (3.6)
Similarly, we have for any case of Zuwm
Jmw] < max{uvVT+ 2r% /2, Juv]/ 2}=1. (3.6)

By (3.4), (3.6) and the assumption of |juw|| < |luv||, w is included in the set of points
specified in (3.1). Therefore, P(w) € NR((u, v). It however contradicts the assumption

that uv is in NG(V). Thus we conclude this theorem. L]

W
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Figure 3.2: (a) Zuwv and Zuwm are not obtuse; (b) Zuwv and Zuwm are obtuse; (c) a right-angled

triangle with angle g = 2sin(r/2).

However, for those instances of V without AS, Theorem 3.5 can not hold
anymore. See the instance in Figure 3.3, all nodes except v; are placed on the outlier
of NRy(vi, v1). This will result n — 1 neighbors adjacent to v; in NG.(V). So, in the next
section, we propose an extended version the r-neighborhood graph. As the readers

will see, the extended structure has the partially bounded maximum node degree for
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all cases of V and inherits almost all desired features in NG.(V).

Figure 3.3: dnax(NG,(V)) is not bounded if assumption AS does not hold.

3.2 Extended r-Neighborhood Graph

In this section, an extended structure of the r-neighborhood graph is given. The
main goal is to avoid the unbounded maximum node degree in NG(V). In this
extension, assumption AS is not requifed-anymore. Instead, a unique identifier id(u) is
available to each node u in V. The structure is defined as follows.

DEerINITION 3.3: Given a set V:0f nodes %, the extended r-neighborhood graph of V,
denoted as NG’ (V), has an edge uv if:and-only if {juv|| < 1 and there exists no node w
€ V satisfying one of the following three conditions:

Di: Loc(w) € NR, (u,V);
l,,) NC(v,|uv]) andid (u) > id (w) ;
l,,) NC(u, |uv]) and id (v) > id (w) .

D,: Loc(w) e D(m

uv?

Ds: Loc(w) e D(m

uv?

Without D, and D3, NG (V) is clearly equivalent to the original r-neighborhood
graph. In conditions D, and D3, the two sub-regions of D(my,, lu) intersected by C(v,
|luv]) and C(u, ||uv||) are, as depicted in Figure 3.4, the solid left arc and right arc
along the outlier of NR(u, v), respectively. When a node w is located in these two arcs,

the existence of edge uv should be further determined by their identifiers.
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Hereafter, we say that a node w € V blocks an edge uv in UDG(V) if and only if w

satisfies one of the three conditions in Definition 3.3.

Figure 3.4: The r-neighbor region of nodes u and v, and the two intersections defined in D, and Ds.

In NG, (V), an edge uv of UDG(V) will not only be blocked by some node w
INNR, (u,v), but may also be blocked when either D, or D3 happens. Therefore,
NG, (V) constitutes a subgraph.of NG,(\), which means that the maximum node
degree of NG, (V) is no worse than its original-version. In the following theorem,
we show that the upper bound ©f d (NG _(\/)) in Theorem 3.5 remains correct in
d,... (NG, (V)), and the correctness:is.for any case'of V, not subject to assumption AS.

THEOREM 3.6: For any set V of nodes on &, forall 0 <r<1,

. ps
Jpnax (NG, (V) < Lln‘l—(rIZ)—l :

Proof. Using the same argument as Theorem 3.5, we assume for contradiction that
two edges uv and uw in NG (V) enclose an angle &'<2sin"'(r/2) at node u.
Without loss of generality, we assume that [uw|<|uv]. If uw|<][uv|, the argument
of Theorem 3.5 has proved the contradiction. Consider [uw|=|uv|: Let w' be a
point crossed by C(u, |luv||) and the outlier of D(myy, lw), as shown in Figure 3.5. The

two edges w'u and uv enclose an angle &'. By the law of cosine, we have
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Then one corresponding right-angle triangulation is as Figure 3.2 (c). In this case,
sin(9'/2)=r/2. Thus, we can get that 6 <&'= 2sin"*(r/2). Since |uw] = |uv], both
Loc(w) and Loc(v) are on C(u, [|uv|]). The fact that & < &' further limits Loc(w) on
the arc intersected by D(my,, lw). Similarly, Loc(v) is limited on the arc intersected by
D(myw, luw) for the same reason. Therefore, Loc(w) and Loc(v) are on the regions
defined in D,, with respect to edges uw and uv, respectively.

Next, the existence of uv and uw should be determined by their identifiers. If id(v)
> id(w), uv is blocked by w. Otherwise, if id(v) < id(w), uw is blocked by v. As a
sequel, no matter what the values of id(v) and id(w) are, at least one of the edges

enclosing & can not be in NG’ (V) ..Thus We proved this theorem. L]

— NR (u.v) _-

Figure 3.5: If @< 2sin™(r/2) and |juw]|| = [|uv]|, either uw or uv can not be in NG, (V)

From Theorem 3.6, we can see that d__ (NG (V)) is constant when r is sufficiently

(NG, (V)) is bounded by

max

large. Therefore, there has some setting of r such that d

max

some constant, for any set V of n nodes. So, we reach the following conclusion.
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COROLLARY 3.2: The maximum node degree of the extended r-neighborhood graph
is partially bounded.

In the rest part, we show that NG, (V) inherits all desired properties achieved
by NG((V), except the generality for RNG(V). The fact that NG, (V)< NG, (V)
confirms the planarity of NG’ (V), since NG((V) is planar for any r. Moreover, when
r = 0, the two arcs defined in D, and D3 are empty. Thus whether an edge is in
NG, (V) is solely depending on D;, which means that NG, (V)= NG,(V)=GG(V).
Therefore, NG, (V) remains a general structure of GG(V).

However, as shown Theorem 3.6, some adjacent edges having the same length in
RNG(V) would be avoided in NG (V). Thus RNG(V) is not always a subgraph of
NG, (V). This means that NG, (V) is not essentially equivalent to RNG(V). Even
more, NG, (V) could be a subgraph_of RNG(V). Therefore, NG (V) is no longer a
general structure of RNG(V).

About the connectivity, becatise RNG(V) is not-always a subgraph of NG (V),
we cannot ensure the connectivity: of ING (V)  directly from that of RNG(V).
Therefore, we apply an entirely different logic to prove this property. The idea is
based on comparing the lexicography orders of nodes pairs. This idea has been
successfully used to prove the connectivity of XTC(V) [32], another subgraph of
RNG(V).

We define a three-field tuple (||uv||, id(u), id(v)) for each nodes pair (u, v). The
lexicographic order of (u, v) is smaller than that of another nodes pair (s, t) if one of
the following three cases happens: 1) |luv|| <[Ist||; 2) [luv]| =||st|| and id(u) < id(s); 3)
lluv|| =|Ist|| , id(u) = id(s) and id(v) < id(t). Now, we prove the connectivity of NG’ (V)
in Theorem 3.7.

THEOREM 3.7: For any set V of nodes on &, if the underlying UDG(V) is connected,
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NG, (V) is connected, forall0<r<1.

Proof. Suppose UDG(V) is connected. Let U(V) be the set of unconnected nodes pairs
inNG, (V). We assume for contradiction that some nodes pairs inNG (V) are not
connected. i.e., U(V) is not empty. Let (u, v) be the node pair with smallest
lexicographic order in U(V).

Assume that edge uv is not in UDG(V), i.e. |luv|| > 1. Since UDG(V) is connected,
there must be some path longer than one hop connecting u and v. Let z(u, v) be such
path in UDG(V). Since ||uv|| > 1, the lengths of each edge on z(u, v) is less than |Juv]|.
When this path is mapped to NG (V), there is some nodes pairs on z(u, V)
unconnected in NG, (V). Thus some unconnected node pair on z(u, v) has length
shorter than ||uv||, which however contradicts that (u, v) has the smallest lexicographic
order in U(V). Therefore, edge uv must-be intUDG(V).

Since edge uv is in UDG(V) and not in NG (V2);. there must be some node w satisfying

one of the three conditions in Definition 3.3, Besides,either (u, w) or (w, v) is in U(V),

otherwise (u, v) can be connected by pathruwv:-We consider the three cases:

1) If Dy happens, Loc(w) € NRy(u, v): So, wehas |luw|| < |[uv|| and |jwv|| < ||uv||, which
means that the lexicographic orders of (u, w) and (w, v) are less than that of (u, v).

2) If D, happens, we have |lwv|| = |luv|]| and id(u) > id(w), which means that the
lexicographic order of (w, v) is less than that of (u, v);

3) If D3 happens, we have |juw|| = |juv|| and id(v) > id(w), which means that the
lexicographic order of (u, w) is less than that of (u, v).

Therefore, we cannot find any nodes pair in U(V) having the smallest lexicographic

order. In other words, U(V) is empty, which however is a contradiction. Thus, we

proved this. L]

Due to the fact that NG, (V) < NG, (V), there may has some paths in NG, (V)
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not in NG, (V). Therefore, p(NG. (V)) is no better or even worse than p(NG, (V)).
Even so, the upper bound of p(NG. (V)) can be as good as that proved in Theorem
3.4; we briefly explain this: All arguments in Theorem 3.4 are not related to the two
additional conditions D, and D3, except those referred from Lemma 3.1. Whatever D;,
D, or D3 happens, |juw| < |juv|], |[vw|| = |juv|| and ||mv|| < I, which means that all
inequalities in the proof of Lemma 3.1 are unchanged. Consequently, Theorem 3.4 is
still correct, even if all conditions of Definition 3.3 are considered. So, p(NG (V))
is also partially bounded.

Below, we show that the bound 1+r“(n—2) in Theorem 3.4 is not only correct,
but also asymptotically tight to the worst possible value of p(NG (V)). In other
words, it is very hard to find another upper bound of o(NG, (V)) better than ours.
We apply the same argument as that_usedito verify the tightness of the length stretch
factor [3] and the power stretch factor [15] of RNG(V)

THEOREM 3.8: Foranyn>2and 0 <r <1, there is aset V of n nodes such that
sup p(NG ((V))>1++¢ (n=2) - ¢,

[V[=n

for any sufficient small¢ > 0.
Proof. Let & = 2sin”™'(r/2) — 24 and & = 42 — sin"(r/2) + A, where A > 0. We
construct a set V = {vi, V2, ...,Vom-1,Vom, ..., Vn }OF N nodes, where n > 2 is even and m =
n/2 , as follows:

1) vy <1 and vy, | =|vy,|, fori=2,3,..., 2m-1;

2) AVVisviee = 6, fori=1,2,...,2m-2;

3)  AVisViVisr = LViVieaVisn = G, fori=1,2,..., 2m - 2;

4)  id(vi)=n-i+1fori=1,2,...,n;
One corresponding UDG(V) is as shown in Figure 3.6. Fori =1, 2,..., 2m — 2, since

LViVisVisz = Oy < 2sin™(r/2) and Vv, =|Vi1Vi.| » by the argument in Theorem 7, we

i+1
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get P(v.,)eD(v,v;,)nC(m,, I, ). That is, P(v;,) is in the regions with
respect to edge vivi.1, defined in D,. Moreover, id(v;)>id(v,,,). Thus, edge Vivis1 is
not in NG (V). Then, the remaining edges are exactly a path (spanning tree)
V1V3Vs...Vom-3Vom-1 VoamVam—2...VeVaV2 OF V, connecting all nodes, as the bold links in

Figure 3.6 (a). Therefore, we can get that

VRS ) i i VIV et VR

As A—0, 6 —2sin"(r/2), which implies that [v,v,,|—> r|viVi,|=rvv,| .

according to (3.3). Consequently, as 4 — 0, we get that

m-
2 T Mvical + Vo avan |
i=1

2h-2 " o «
= 2 v v
i=2

S AA K ((n —)r* ¥ 1)
On the other than, since |v,vy|/<1, we| get p(ﬂJDG(\,)(u,v)): luv|”. Therefore, as
A0, pysvyUDG(V)) =141 (n+2). That is,
sUpy_, PING, (V) >1+r%n-2) - ¢,

for any sufficient &> 0. For any odd n =2, the result can be obtained by applying the
same argument to the instance as shown in Figure 3.6 (b). So, we proved thisit. [ ]

Actually, an equivalent structure of NG’ (V), without a original version like
NG,(V), was mentioned in our previous paper? [9]. In that preliminary work, however
only qualitative results were given. To prove the quantitative results, we separate
NG(V) from NG, (V) in this paper, because NG(V) has a clearer form in definition
that can be used to highlight the main tricky in our derivations. Besides, all qualitative

results in [9] are re-evaluated here using different arguments.

2 The term “r-neighborhood graph” in [9], is not refereed to the original version in Definition 3, but the
extended version in Definition 4. In this paper, we reuse the same term to name the original version and
rename the previous structure in [9] the extended version
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id(v)y=n : - id(va)=n-1

@ (b)

Figure 4.6: A worst-case instance V of n nodes in NG/ (V) : (a) n is even; (b) n is odd.

id(va)=n-2

3.3 (r, a)-Neighborhood Graph

In [7], we showed that for any point xe NR(u, v), [[ux||* + [|xv||* < [Juv]|* (1 + r?).
This result combined with Definition 3.2 indicates that if an edge uv of UDG(V) is not
in NG(V), there must be a node:w located in NG, (u;:v), such that p(u, w) + p(w, v) <
p(u, V)(1 + r%). In other words, for any uv-€ UDG(V), if there is no node w such that
p(u, w) + p(w, v) < p(u, v)(1 + r%, then uv € NG((V). The upper bound of the power
stretch factor in Theorem 3.4 is then an inductive consequence of this fact. This
argument implies the following lemma,

LEMMA 3.6: For any graph S(V), if it contains an edge uv, whenever there is no other
node w such that p(u, w) + p(w, v) < p(u, v)(1 + r%), then p(S(V)) <1 + r%n - 2).

According to this lemma, a structure that has the same upper bound on the power
stretch factor of NG(V) is defined as follows.

DEFINITION 3.3: Given two nodes u and v on N, a parameter r, 0 <r <1, and a

constant & > 2, the (r, «)-neighborhood region, is defined by

NR“(u,v) = {x e N Jux| < uv]) vx| < Juv], pu,x) + p(x,v) < p(u,v)@+ r"’)}.
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DEFINITION 3.5: Given a set V of nodes on &', the (r, a)-neighborhood graph, denote
as NG/ (V), has an edge uv if and only if |juv|| < 1 and there is no other node w

located in NR/(u,v).

Figure 3.7: NR(u, v) vs. NR/*(u, v).

Their relationships are as follows. We can see that NG/ (V) is actually a general
structure of NG((V). Notably, it achieves.the same upper bound on the power stretch
using equal or less edges.
PROPERTY 3.1: For any two nodes'uand von 8, 0<r<1,and a>2

() NG? (V) = NGV);

(i) NG?(V) = NG, (V)"
Proof: Consider an edge uve NG/ (V). By definition, there is no node w such that
p(u,w) + p(w,Vv) < p(u,v)(L+r”), which implies that uv € NG,(V).

Consider an edge uve NG, (V). There is no nodes w such that ||mw|| < (|Juv|| /

2)(1 + 2r)2. Consider a point x. From simple derivation, we get
x| + x| = Juv] \ 2+ 2]xm]
Combining these two facts, ux| +|vx|* <|uv|"@+r“). So, uve NGZ(V). O

Furthermore, the properties below indicate that the number of links could be
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even lower as the environmental attenuation factor « is strengthened. Both properties
can be easily verified by inspecting the last condition in NR”(u,v). We omit the
proofs.

PROPERTY 3.2: For any set of n nodes on ),

(ING=(V)2NG=(V), 2<a, <ay;

(i)NGZ(V) 2 NGZ(V), 0<r<r,<L;

3.4 (r, a)-Enclosed Graph

In this part, we present an equivalent structure of the (r, «)-neighborhood graph,
called the (r, «)-Enclosed Graph. The idea is mainly borrowed from the Enclosed
Graph, proposed by Rodoplu et al. [24]: We:briefly reintroduce it below. For any two
nodes u and v, there is space, named,the rélaying region, RR(u, w), in which any node
fall in the region can be reached from u withless power by relaying through v. The
enclosed region, ER(u), is a subspace-merged from of the complement of relaying
regions of all surrounding v’s of u. The.enclesed graph, EG(V), is a graph in which a
node v is adjacent to u if and only if v is in the enclosed region of u. This graph has
the optimal power stretch factor 1. Actually, as the receiving cost is neglected, it is an
equivalent representation of GG(V).

The following, we generalize this idea to the (r, «)-neighborhood graph (recall
that NG (V) is a generalized from NG, which is further a general structure of
GG(V)).

DEFINITION 3.6: Given two nodes u and w on &', the (r, «)-relaying region, denoted

as RR/(u,w), is defined as

RR? () = b e 90w < o Joe <o, ps w0+ DO ) < )L+ 1))
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Consider three nodes u, v and w, according definitions 3.4 and 3.6, we can observe
that no matter ve RR”(u,w) or we NR/(u,v), the following three conditions are

satisfied:
Jluw < uv], [wv] <[uv|, and p(u,w)+ p(w,v) < p(u,v)@+r®). (3.6)

In other words, for any three nodes u, v and w,

veRR/(u,w) < we NR”(u,v). (3.7)
The different is in their representation. NR/(u,v) consists of all points where may
have a relaying node w satisfying (3.6) for the two fixed nodes u and v, while
RR/ (u,w) is composed by all points on which a node satisfies (3.7) if it receives
relaying from u through w.
Now compare the two regions on:the same node.pair (s, t)%. If the two regions are
overlapped, then there will be seme.point x'such that the two facts

p(s,x) + p(x,t) < p(sit)@+r=)-and p(s,t) + p(t,x) < p(s,x)@+r*)

are satisfied at the same time, which is-conflicted. Therefore, the two regions must be
disjoint, i.e. (see Figure 3.8)

RR”(s,t) " NRZ(s,t) = ¢ (3.8)
Compared to different parameters setting, see Figure 3.8, we can get that

RR(u,w) c RR?(u,w), 2<a, <a,; (3.9

RR; (u,w) € RR (u,w), 0<r, <r, <1; (3.10)

These observations can be easily validated by inspecting their definitions. We omit the

proof.

® to avoid the confusion if reusing u, v, w.
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The region enclosed by the complements of the relaying regions of nodes
surrounding to u is defined below.

DEFINITION 3.7: Given a node u on &', the (r, @)-enclosed region of u, denoted as
ER/ (u), is defined as

ER(u)= (NN DD -RRU,W)).

uweUDG (V)

According to (3.9) and (3.10), see Figure 3.9, we have

ER“(U) 2 ER™(U), 2< o, <a,; (3.11)

ERZ(u) 2 ER? (), O<r <r,<1; (3.12)

() @=2,,r=05

(d a=3,c=0,r=05 (e) a=4,r=05 (f)a=5r=05

Figure 3.8: (r, @)-relaying region vs. (r, @)-neighborhood region.
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Based on this merged region, the graph is defined below for each node u.
DEFINITION 3.8: Given a set of nodes on &, the (r, @)-enclosed graph, denoted as

EG/ (V), has an edge uv if and only if ve ER/(u)

000

@ a=2,r=0 @ a=2,r=0.5 @ a=2,r=1
(@ a=3,r=05 @Q)«=4,1r=0.5 (@) a=5,r

Figure 3.9:(r, @)=enclosed region.

The equivalence between NG/ (V) and EG/ (V) isshown below.

PROPERTY 3.3: For any set V of nodeson &, «>2,and0<r<1,

NG? (V)= EG (V).
Proof: Consider an edge uve NG/ (V). We know that there is no w such that
Loc(w) € NR/ (u,v) . In other words, for any w, |juw|| > |juv|, |[vw|| = [juv||, and p(u, w)
+ p(w, v) > p(u, v)(1 + r*), which equivalent to say that for any we N,(UDG(V)),
Loc(v) ¢ RR(u,w) . So, we get Loc(v)e ER’(u), and thus uve EG/(V). In

opposition, if uve EG/(V), by definition, ve ER/(u). Thus, for any w where |juw||

38



< Trmaxs [Jluw]] > [Juvl], [[vw| > [Juv]| and p(u, w) + p(w, v) > p(u, v)(1 + r*), which implies
that forany we N ;(u), we NR/(u,v). So, we get uve NG/ (V) 0

Cleary, similar to NG/ (V), each node u can distributively decide it neighbors in

EG,;” using local information.

3.5 (f;, @)-Neighborhood Graph

In above structures, the parameters among nodes are all identical. This
consideration simplifies the theoretical discussion. However, to be applied on a
distributed environment, a more flexible structure is required. The following, we
define an more general structure of the (r, «)-neighborhood graph. It allows each node
possessing its own parameters, while still preserves to several desired features.
DEFINITION 3.9: Given a set V of podes on ', a parameter set f.: {r1, re, ..., fw}, and
a 2 2, the (fr, a)-neighborhood graph, denoted as NG{ (V), has an edge uv if and
only if |luv]| <1 and there is now e Vzin NR? (u,V), where r, =max{r,,r,} and
a, =max{a,,a,}

NR, (U,v) = NR_ (u,V)
NR, Eu{v"‘) E\NSQ“ (u,v)

V' NR, (u,V) ‘V,u NR, (u,v) \

e

s

Figure 3.10: (f;, f,)- neighborhood graph

An example of NGY (V) is illustrated in Figure 3.10. We can see that for any two
nodes, their neighbor regions are determined by the smaller one. Let

r, =min{r,|[veV} and r, =max{r,|[veV}. The graph has the following

m
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quantitative results.

PROPERTY 3.4: For any set V of nodes on 4, parameter set f, and o> 2,

. . 7 .
(l) du(NGfr (\/)) < {W)—I ) YUe V,

(ii) Ay (NG (V) <, (NGE, (V)

min

(i) p(NGY (V) <1+(n-2)rr,

Proof: Consider (i). For anyuv e UDG, by definition, r, >r,, which means that no

matter what the value of r, is, NR? (u,v) = NR?(u,v). So, if there is a node v’ such
that Zvuv’ < Zcos’l(l— ry /2), then either uv e NG{ (V) or uv'e NG (V). (i) is a
direct result of (i). (iii) follows from the fact that NR® (u,v) = NG/ (u,v), which
means that NG{ (V) o2 NG/ (V). So

P(NGEWV)) < INGEL(V)) <1+ (n-D)rs, . 0
Notably, the generalization still-preserves all qualitative properties in NG, , which is
the most primitive version.
PROPERTY 3.5: The (f;, a)-neighborhoad graph is connected planar with symmetric
edges.
Proof: The graph is symmetric since for any two nodes u and v, the presences of both

uv and vu are based one the same ry,. The connectivity and planarity are due to the

factsthat NG/ (V)<= NG (V)= NG? (V). 0
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Chapter 4

Energy-Efficient Construction

In this chapter, we design energy-efficient algorithms as well as protocol for the
structures proposed in the preview chapter. First, a purely localized algorithm will be
presented. In this algorithm, each node start its transmission power from a small level,
and then incrementally increasing the power, until certain criteria are satisfied. It can
avoid a long distance construction power if the,increment can stop earlier before the
maximum power is reached.

However, such incremental “approach  typically requires several iterations to
complete. The incurred latency would not be tolerable to mobile nodes. In addition, it
IS not adapt to the periodic beacon. To construct and maintain the proximate graph in
mobile environment, a node can periodically announce its current position to its
neighbors. However, such periodic transmission would consume considerable power,
especially when nodes are highly moved where an intensive update is required.

Therefore, we will investigate a shrink power mechanism for the periodic beacon.

4.1 Localized Algorithm for Stationary Nodes

In this section, we propose an efficient purely localized algorithm, named PLA,
to construct the r-neighborhood graph. This algorithm consists of two main

procedures, GETINF and FINDNB. First, GETINF collects a set of nodes’ information
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within one-hop distance, denoted as IN,. Then, the collected information will be fed

into FINDNB to determine a set of neighbors in NG(V), denoted as NB,.

ALGORITHM PLA
Input: Aratio0 <r < 1.

Output: A set of neighbors adjacent to u.
Step 1: INy := GETINF(u, r);

Step 2: NB, := FINDNB(u, r, IN);

Step 3: Stop and output NB,;

To collect the one-hop information, the simplest way is to let each node
broadcast its information at the maximum transmission range 1 and gather the
information from others. However, the severe path loss and the frequent change in
topology may cause considerablespower in such transmission. Therefore, in GETINF
we aim to reduce the transmission. range during, construction. The main idea is to
incrementally raise the transmission power from a small range and then use some rule
to stop the increment earlier before the transmission range 1 is reached. The detail
steps are explained as follows: the transmission range is initiated at a small distance do,
and then it will be incrementally raised for several rounds. Let d; and d, be the
previous and the current transmission ranges of a round respectively. In each round, a
node broadcasts a request to distance d,, and waits for the responses from receiving
nodes to gather the nodes’ information. To avoid replying to a node for the second
times, the request of a node u contains the position Loc(u) and the previous distance
d;. As a node v receives this request, it calculates the Euclidean distance |juv||. Then, if
|luv|]| > di, v responses its information, Loc(v), to u at distance ||luv||, otherwise, just
neglects the request. In each round, the range is increased by multiplying §/2, which

means the transmission power is multiplied by 2 each time. The process is continued
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until the following stopping criterion is satisfied. Let v; and v, be two crossed points
intersected by C(u, ||uv||) and C(m, I), see Figure 4.1 (a). We define SC(u, v) to be the
semicircle enclosed by uv; and uv, with radius & where > 0 is a small value less than
the distance between any pair of nodes in V. Then, given a distance d, a semicircle y

(u, d) is defined as follows
2@, d)= [ JSC(u,v).

fod<d

We can prove that if y (u, d) is exactly the circle C(u, &), like Figure 4.1 (b), then a
disk centered at u with d radius can cover all neighbors of u in NG,(V). In other words,
GETINF can be halted as y (u, d;) = C(u, ¢). Let Ny(G(V)) be the set of neighbors of

node u in a graph G(V). This property is proven in Lemma 4.1.

SC(u,v)

=

e
y

(a) (b)

Figure 4.1: (a) the semicircle SC(u, v); (b) the x(u, d) is the union of all SC(u, v) where v is within

distance d.

LEMMA4.1: Given anode u € V and distance d € R, if y(u,d)=C(u,¢),
N, (NG, (V)) c {veV | Loc(v) e D(u,d)}.
Proof. We assume for contradiction that some node s in Ny(NG((V)) is not in

{v eV |Loc(v) e D(u,d)}. Since ¢ is less than the distance between any pair of nodes
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in V, we get |lus|| > & Thus, edge us intersects a point on the circle C(u, &). Do the fact
that y(u,d) =C(u, &), us must intersect at least one semicircle that composes y(u, d),
see Figure 4.1 (b). Let SC(u, v) be one of the semicircles intersected by us. Then, us is
enclosed by uv; and uv; in SC(u, v). In other words, £ suv < £ viuv or Z suv < £ vuvy,
According to the argument in Theorem 3.6, we can get that £/ viuv = £ vuv, =
2sin"(r/2). Therefore, we have / suv < 2sin”'(r/2). Moreover, since s is not
in{v eV |Loc(v) e D(u,d)}, s must be farer than v from u. So, Loc(v) € NR(u, s).
According to Definition 3.3, us in not in NG(V), which however contradicts that s is a
neighbor of u in NG(V). Thus, we concluded this lemma. L]
The total transmission power used by GETINF could be as large as
dg@+2"+2%+---+2"), where | is the number of rounds. This result could be worse
than the maximum transmission powerslias d.is large. Fortunately, when n is large,
nodes are closer to and evenly surrounded by:.each other so that y (u, d) has more
change to be quickly shaped as €(u, &) . So we can gain benefit from GETINF in higher
probability as the number of nodes increases:

The steps of GETINF are described. below. Neglecting the communication
overhead at step 2, the execution time of GETINF is dominated by the union operation
at step 4. This step can be implemented by some search-and-merge algorithm. Thus,
the time complexity of GETINF is O(nlogn).

Now we discuss the communication cost of GETINF. As do is multiplied by <2
over alogy(1/dy) times, it is larger than 1. Therefore, the number of rounds to increase
the transmission range d, is dominated by alog,(1/do) + 1. Assume a node’s position
can be encoded by log.n bits. Each node has to broadcast at most (log.n)( adog,(1/do)
+ 1) bits for the request messages. In addition, a node will reply to same node no more

than once. Thus, a node needs at most (log.n)(n — 1) bit to reply all requests.
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Combining these results, communication cost of a node is no more than

(logzn)(adoga(L/dg) + n) bits.

GETINFE(u, 1)
Step 1: d1:=0, dz :=do, IN: = ¢, y(u, dp): = ¢;

Step 2: Broadcast a request (Loc(u), d;) to distance d, and gather a
set R of responses from nodes within d; and dy;
Step 3: For each Loc(v) € R do
x(u,d,) = y(u,d,)USC(u,v);
Step4: IN: =INUR;
Step 5: If d, < 1 and g(u, dy) is not the circle C(u, &) do
d; = dy;
dy ;= dy x 2Y%
Return to step 2;

Step 6: Stop and output IN;

Once the information IN, is collected, node u can start to determine its neighbors
in NG(V). One institutive way is to apply Definition 2 on IN, directly, as the follows

procedure.

Step 1: N := INy;
Step 2: For each node v in N do
For each node w € IN, do
If P(W) € NR((u, v) do
N:=N-{v};
Step 3: Output N and stop;
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In this procedure, the existence of a neighbor v in IN, is determined by checking
whether some node w is located in NR(u, v). The correctness is obvious, while in the
worst case it should take O(n®) time on each node. This time is usually not tolerable
when topology changes frequently. Therefore, we aim to reduce time complexity in
this part. In FINDNB, the main idea is to reverse the original procedure. That is,
instead of checking whether some node w can block an edge uv, for each uv, we check
whether some edge uv can be blocked by a node w, for each w. The procedure is
below.

This checking is begun from the farthest to the closet nodes in INy. So, we index all
elements of IN, in non-decreasing order of ||uw|| in step 2. The set NB contains all
candidates that could be a neighbor of u during the process. As a node w is given, we
remove from NB all fail candidates that that are already blocked by w. After that, w is
added into NB to be an new candidate of Nu(NG(V)). The process continues until all

w’s in IN, were considered. Now, we prove the correctness of FINDNB.

FINDNB(u, r, IN,)

Step 1: NB := ¢;
Step 2: Index the elements of IN, in non-increasing order of ||uw]|;
Step 3: For each node w e IN, with smallest index do
For each node Loc(v) € NB do
If Loc(w) e NR((u,v) do
NB := NB - {v};
NB := NB + {w};

Step 4: Stop and output NB;
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THEOREM 4.1: For any set V of nodes on )2, NB, = Ny(NG,(V)), for any ue V.

Proof. We prove this by showing that for any v €V, v e NB, if and only if edge uv is
in NG((V). Suppose an edge uv is in NG((V). By Definition 3.1, there is no w
eNy(UDG(V)) such that Loc(w) € NR(u, v). This implies that once v is added in NB,
there is also no w € IN, such that v can be removed at step 3. Since v e Ny(NG(V)) <
INy and each node in IN, can be added to NB, v must be in NB at least one time. So,
we can get that v is in the final output of NB,. Contrarily, we suppose uv ¢ NG(V).
Some node w € Ny(UDG(V)) is located in NRy(u, V). If v ¢ INy, the result clearly
follows by Lemma 4.1. Otherwise, v € IN,. In this case, all nodes blocking uv are in
INy. Besides, every node w blocking uv is always considered after v in GETNB.
Therefore, even if v can be added to NB, there must be a node w € IN, such that v can
be removed from NB at the successive,iteration. So we get v ¢ IN,. L]
Lemma 4.1 also implies that if uv e NGy(V),thenv-e N, and u € N,and that if uv
NG((V), thenv ¢ N, and u ¢ Ny. So, the neighbors (links) determined by GETNB are
symmetric.

COROLLARY 4.1: Any topology resulted.by. PLAIs symmetric.

Consider the time complexity of FINDNB. Step 2 can be done by some sorting
algorithm in O(nlogn). Before a node w < IN, is added to NB, any v € IN blocked by
w is removed from NB. Therefore, for any two nodes in NB, none of them can be
blocked by each other. Let s and t be two nodes in NB. The argument of Theorems 3.5
indicates that if Zsut < 2sin™(r/2), then either s blocks t or t block s. Since neither s
blocks t nor t blocks s, we get that Zsut > 2sin*(r/2). Therefore, during the process,
the size of NB can be never greater than dmax(NGr(V)). Consequently, FINDNB can be
done in O(nmax{log n,dmax(NGr)}) time. We can observe that this time complexity
depends on the parameter r. When r equals or closes to 0 (the worst cases), the time

complexity of FINDNB is still O(n?). However, when r is sufficiently large such that
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dmax(NG((V)) is a constant, FINDNB can be done in O(nlogn).
With a slight modification, PLA can be easily applied on the extended r-neighbors

graph and all results can be preserved. We omit the detail explanation here.

4.2 Shrinking Power mechanism for Mobile Nodes

In this section, we propose an energy-efficient construction of the proposed
proximate graph for mobile nodes. For simplicity, we first discussion the (r,
a)-neighborhood graph for mobile nodes, where r is identical among nodes . This
construction provides the skeleton of the mobile protocol in the next Chapter.

The basic idea is borrowed from a distributed protocol of the primitive enclosed
graph [20, 24], though we confront more challenges when designing for our structure,
discussed below. This mechanismzis based on the characteristic the (r, «)-enclosed
graph. Recall that this graph has been shown. to be equivalent to the (r,
a)-neighborhood graph. Hence the  following the two structures will be used

interchanged when necessary.

Consider a node u. Let S, denote'the set of information collected by u from its
neighboring nodes during a period of time According to Definition 3.7, we define
ER, as the enclosed region of u based on the set of collected information S, i.e.

ER, = X~ D(u,) - RR” (U, W) (4.1)
u ﬂWeSU ( )

Since S, must be a subset of N,(UDG(V)), by Definition 3.7, we have

ER” (u) c ER,. 4.2)
So, ifanodevisnotin ER,, itisalsonot ER/(u).Consequently, by Definition 3.8,
it is no possible that v is a neighbor of u in NG/ (V). This fact points out that to let

all neighbors of uin NG/ (V) be aware of the existence of u, it is sufficient for u to
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broadcast using the least radius that covers the all points in ER,. We denote such

radius as A, i.e.

A, =max{Jux| | x € ER,, x & N}. (4.3)

Note that in (4.3) only considers points in deployment region &. The transmission
radius in (4.3) ensures that each node will aware its neighbors in NG/ (V) . Hence, all

links in NG/ can be preserved using possibly less construction power.

(b)
Figure 4.2: (a) the shrunk power A,; (b) the enlarge power (r = 1, a = 2).

49



In the abovementioned, we discuss how reduce the power that is sufficient to
include all necessary neighbors. To construct the desired graph, we need to further
ensure that all non-neighbor nodes will be blocked. However, the shrunk power may
prevent nodes from be aware of some non-neighbor nodes that are necessary to block
other non-neighbor nodes. See the example in Figure 4.2, where r = 1 and a = 2.
There is only one node we ER/(u,v). By definition, the edge uv does not exist in
NG/ (V) due to the presence of w. However, when the shrunken power of (4.3) is
used, w will be enclosed by its surrounding nodes si, S; and s3, which leads to the
transmission radius of w shorter than its distances to u and v. Thus, both u and v will
be no longer being able to find w. In other words,

wegS, and wes,.
This in turn causes that v e ER, and ,ve ER;,since
Loc(w) e NR*(u,v) & Loc(v) € ER/ (u,w) (4.4
Consequently, both uv and vu exists. It however are not allowed in the desired graph.

To fix this problem, a simplest way isita-enlarge w’s power such that both u and v
can be aware of w, while the prerequisite.is.that-w should be able to be aware of both
u and v first. Fortunately, this prerequisite can be self-contained, since ifw e ER/ (u,Vv),
by definition 3.3,

[Juwl[| < [luv]] and [luw]| < [Juv]],
which mean that the transmission radiuses of both u and v will cover w. So, w must be
able to overhear the existences of u and v. In other word, there must be
ueS, and veS§,.
From this observation, for each node u, to ensure that all links which should be
blocked by u will not exist, it is sufficient for u to transmit to all nodes that have been

received by u. We denote such transmission radius as y,, i.e.
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2o =max{Juv|,ves,}. (4.5)

The transmission radius in (4.5) ensures that all links that are belong to NG/ (V)
will be removed. Nevertheless, the readers may node notice that the radius is now
enlarged, which may counteract the original benefit from (4.3). Therefore, below we
attempt to further shrink the radius of (4.5).

Let Ny denote the set of neighbors determined by u. Consider a node w. By
Definition 3.4, a link uv will be blocked by w only if |juw|| <||uv|| and v € N,. In other

words, let 7, denote the least radius cover all node in Ny, i.e.

7, =max{juv||ve N, }, (4.6)

if the distance between u and v is larger than 7, then there is no link adjacent to u
should be blocked by w. So, if |uv| >mitis not necessary for w to transmit to u.

More generally, consider a node u; define’By to'be the set of nodes where |uv|<7,,

B, = max{luv| < s lues, ), (4.7)

So, from (4.5), the following radius y, is sufficient to covering all nodes in B,

2o = max{juv|,v e B} (4.8)

Compared with (4.5), since B, is a subset of S, the radius required by y, must be
equal to or even less than that of x, Summarily, to construction the EG/ (V)
correctly using less using less power, it is sufficient to broadcast using the following

transmission radius

T, =max{4,, 7. |- (4.9)

4.3 Neighborhood Graph based Topology Control Protocol

Based on above discussion, a distributed protocol that constructs the(r,
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a)-neighborhood graph for mobile nodes is now presented here. In this protocol, each
node will periodically broadcast a message in every T time interval using the shrunken
radius T,. Each message will consist of the current position and the radius 7,. As a
message is received from a node v, it will include v in the collecting set S,. In addition,
if the node observes that the distance to v is shorter than the received radius 7, it
includes v into By such that y, will be sufficiently large whenever there are some links
of v that should be block by u. On the other hand, if u do not received from v over an
beacon interval, then u discard v’s information. Upon a message is either received or
expired, the reconstruction process will proceed. Then, before sending the next
beacon, related variables mentioned above will be recalculated based upon the
information collected in the previous interval. The protocol is summarized below. We
named it the Neighborhood Graph based Tepology Control Protocol, abbreviated as
NGTC.

The correction is directly followed from the meaning of each variable. We omit

the proof. Now we show an interest feature of this protocol below.

PROPERTY 4.1: For any set of nodes; the construction radius T, of each node u is
decreased by r.
Proof: As r increases, by (3.12), the region ER/ (u)will be smaller, which leads to a
lower A,. The same observation is on y,. By Property 3.2 (ii), the node degree of each
node v will be strictly decreased as r goes up. So, by (4.6), a large r leads to a smaller
v, Which in turn declines the size of B, for any u received v. As a sequel, by (4.8),
7. can be lower. Combining these two facts, we provide this. O
The rest of this subsection, we discuss additional observations on the NGTC
protocol.

1) We can see that T, >4, and T,>y, are the sufficient conditions for u to
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preserve all necessary links and block all unnecessary links, respectively. However,
we have to admit that there is a potential wasting on T,. It occurs when T, > A4, but
there is no v € By such that u € NR(v, s) for some s € N,. In other words, u
enlarges its r to cover B, but there is no additional blocked by u, see Figure 4.2 (b).

So, the radius T, is not the minimum.

NGTC Protocol

N

w

S

(o]

10

11

12

13

14

15

Nu={} Su={}; Bu=1{};

For every T time

A, = maxﬂ|ux|| |xeER,,x¢€ N};

1. = maxﬂ|uv|| lveB,};
Tu = max{ﬂ’u 1 Au }’
7, =max{juv|veN,};

Broadcast (Loc(u), 7,) inradiusTy;
Upon received a message (Loc(v), . m)-froma node v,
Su=Su+{v};
If ||uv|| < mv, By = By + {Vv}, otherwise, B, = B, — {v};
Upon a message received from some v in Sy is expired (over T time),
Su=Su—-{v}; B.=By,—-{v};
Upon a message is received or expired

) — R (u,w));

max

ER, =(),.. KD,

N,={ueS,|lueER};
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Since Ay > ny, by sending A, instead of 7, in the message, it is also sufficient to
block all unnecessary neighbors. However, whether sending A, or 7, is better? See the
following discussion: if u sends A, since A, > n,, a node v covered by u would
include u into By even if |luv|| > 7. So, the radius y, which supports blocking other
links increases. But by receiving information from some node farther than the farthest
neighbor in Ny, the coverage of ER(u) is more possibly to be shrunk down and thus
lead to a lower g,. In other words, if u sends A, the radius T, of u itself could be
lower (at least one larger), while its neighbor’s radiuses would be increased, and vice
versa. So, there is a tradeoff between sending A, or 7,. We will give our suggestion in

the later part.

4.4 Convergency

As nodes placement changes, each node u would maintain a new set of neighbor
N, and recalculate the radius Ty. However, due to the recursive dependency among
nodes, such as y, depends on B, and By further depends on 7, some variable (radius
or set) may require several iterations to recover from the change. In this section, we
show that the topology as well as construction power of NGTC can converge in a

constant time.
Consider a node u. Suppose the current timer of u is at t and some topological
change occurs during [t = T, t), i.e. 3v € V, Loc"™"(v)# Loc'(v), and there is no

change after t. i.e. Vv € V, ¢ € Z*, Loc'(v) = Loc"

(v) (note: the change may be
caused by u itself). Assume the network is synchronous (time slot is aligned among
each node), and the propagation delay and computation time are negligible with

respect to the interval T.
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Table 4.1: The sufficient status of each variable.

A | Juv| <4, Yuve NGf (V) S. | veS,,Yuve NG*(V)

2o | |uv| < .. Vvs € NG/ (V), Loc(u) e NR(s,v) | B, |veB,, vWeN,uveNG (V)

7 | Juv]<m,, WveN, uve NG (V) ER, | Loc(v) € ER,,Vve NG (V)

T, | Both 4, and ;(u are sufficient Ny | veN,,VveNG/ (V)

We define three statuses for each variable in NGTC:
® Stale: it is neither of the following two statuses;
® Sufficient: it is sufficient for its functionality, see Table 4.1;
® Converge: it will change any more (For T,, it means the radius can not be

shrunken any more and for Ny, it means N,(NG/(V))=N,).

For a variable X, we denote X' as the status at time t. We have the following
property.
PROPERTY 4.2: In a synchronous network, if‘each node u sends (Loc(u), A,) every T
time, the set N, of neighbors can converge-in-4-T-and the radius T, can converge in and
6T.
Proof: Consider a node u. Without loss of generality, we set T = 1. At time t: aset S|
of nodes with updated positions is gathered. By Definition 3.6, a point consist of a
neighbor of u only if it is not blocked by any node in S!. So, ER; is sufficient to
cover all logical neighbors. At time t+1: A" is now sufficient due to the sufficiency
of ER}.Inturn, S;* is sufficient, since T, >4, >|uv|, Vuv e NG/ (V). Because
of the sufficiency of S{* and ER'!, N!™ is now sufficient to include all neighbors.
At time t+2: 7' covers all nodes that should be blocked due to the sufficiency of

u

N:™. Accordingly, 7. and B! are sufficient since a node v should be blocked

u

only if |luv|<n?. Thus, T,;*° is sufficient large to cover all neighbors as well as
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blocking nodes. SinceS!™ will be no longer expended, ER!™ is converged, which

in turn implies that N{* is now converged. At time t +4: A™ and 7™ are

u

converged since ER!™ and N!* are stable. So, B." is will no longer change,

t+4
v

is now fixed. At time t +5: y'™ converges to cover the fixed B™.

since 7
Therefore, T!* will no longer change. O
The statuses of these variables are summarized in Figure 4.3. We can see that N, and

T, converge at the beginning of the fourth and fifth intervals after the change

occurred.
t—1 t t+1 +2 t+3 t+4 t+5
1 N daaaaasg A | | — Stale
| | | .
T - . [EzZASufficient
1 1 l
e - [=—=Converged
| |
s i |
Su T 4 I
- A | |
ER, zz { { i
N, %1 I T |
PRy | 1 1 |
changes

Figure 4.3: The statues of each variable over time intervals.

For the alternative where sending A, instead of 7, in the beacon message, the
protocol can converge even faster.
Property 4.3: In a synchronous network, if each node u sends (Loc(u), A,) every T
time, the neighborhood set N, can converge in 3T and the radius T, can converge in

and 5T.
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Chapter 5
Mobile Topology Control Protocol

In this Chapter, we present our mobile topology control protocol. The protocol is
based the most general version, where each node is allowed having its own r. So, first
we extend the shrink power mechanism to the (f,, &)-neighborhood graph. Then, the
protocol is presented. We will discuss how automatically configure parameter to adapt
to changing. Lastly, we discuss how: iefficiently perform the protocol and the

corresponding time complexity.

5.1 Extending on Shrinking Power mechanism

Now we extend the shrink power mechanism such that all links of NG/ will be
preserved and all links not belong to NG/ will be blocked. Before that, we should
extend the (r, a)-enclosed region to the (f;, a)-neighborhood graph.

Definition 5.1: Given a set V of nodes on &', the (f;, a)-enclosed graph, denoted as
EG{ (V), has an edge uv if and only if ve ER? (u), where r,, =max{r,,r,}.

The equivalence between EG{ (V) and NGf (V) is obvious. We can see that only
different is the identical r which is not replaced by ry,. Institutively, it seems that the
mechanism can be applied to NG{ (V) based on EG{ (V) directly. However, there
is one difficulty: The enclosed region of u is now depending on not only r, but also .

It means that the least radius where A, covers a possible neighbor v would be variant
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by r,, which however is uncertain before acquiring a message from v.

Fortunately, there is an upper bound that can be calculated using a node’s own r.
Recall that in (3.11), forany O<r <r, <1, ER/(u) 2 ER? (u). Since ru < ry, we get
ERY (u) < ERY(u).

Further, similar to (4.3), we redefine

ER, =[,os. (N DU - RR™ (u, ) (5.1)

Using the same argument of (11), we have
ER"(u) C ER,
So the following radius 4, , redefined from (4.3), is sufficient to cover all possible
neighbors.
A, = max{“ux” |x€ER,,xe N}. (5.2)
On the other hand, let
ER,, =), (NADMUIT,.0—RR“ (U, w)). (5.3)

As a message is received from v, we havetto now check whether v is in ER,
instead of ER, , such that all unnecessary uv-can be blocked. Finally, for any v € N,
Ay is sufficiently large to cover all points inNR? (u,v) , which means that u can still

receive from all w’s that block uv. So, 7y, By, zu, Ty are still corrected here.

5.2 Adaptive Mobile Topology Control Protocol

The main idea of this protocol is based on adjusting the parameter r, for each u.
Thus we start with a series of analyses how the parameter r, of each node u influence
the overall energy-efficiency from the following three dimensions:

1) Energy efficiency of routes vs. operation time of individual node:

Consider a node u. Given a ratio ro, 0 < rg <1, we denote NG, _ (V) to be the (f;,

filn=r
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a)-neighborhood graph where ry is fixed on ro. We have the following observations.
Forany 0 <r; <r, <1, by (3), we have NRT,..  3(UV) = NR . .;(u,v). So, for

any node w, where Loc(w) & NR .. .;(U,V), it must be Loc(w) & NRT,.. ;(U,v).

This implies that an edge uve NG¢, _ only if uve NG{, _, . In other words,

NG, ., (V) = NG, (V). (5.4)
Therefore, we can get that

pING{ ., (V)2 p(NG, _, (V)), (5.5)
and

d,(NG?, (V) <d, (NG, _, (V). (5.6)

Based pm these properties, we can observe that for each node u, no matter what the
parameters of other nodes are taken, a smaller ry will strictly lead to an overall better
energy efficiency communication routes:(at least on worse), and on the other hands, a
smaller r, can reduce the adjacency of ui[to<its neighboring nodes. A smaller node
degree can help prolong the operation time of an individual node in two reasons:

B Broadcasting power: Since-the relationship in(5.4), a smaller degree implies that
the farther selected neighbor is ¢leser..So, for broadcasting operation, the node
can spend less power to cover all neighbors.

B Traffic Load: A node with more links will let more traffic flow (both flooding and
unicasting) pass through it, which may draw out its energy rapidly for those
transmissions. Thus a smeller degree can help release the node’ traffic.

2) High mobility vs. low mobility:

Consider how node mobility effects the energy consumption. As a node has high

mobility. It will cause its surrounding nodes changing the links status (establish or

remove a link) to itself frequently, which will in turn triggers more route

reconstruction at the upper layer. More reconstruction implies extra energy wasting on
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flooding route discovery packets. To alleviate such undesirable circumstance, a highly
moving node can reduce the adjacency to its neighboring. In other words, a large ry
which leads to a lower node degree on u is preferable as u is in high mobility.
3) Topology maintenance Power:
Addition consideration is from the topology maintenance power. Recall in Property
3.4, a larger r will cause a smaller T,. It means the energy consumption of u can be
reduced as a large ry is used, which is surprisingly consist with the tendency of ry
toward the residual energy in the first consideration.

Combining the above considerations, a configuration rule for the parameter ry is

characterized as follows.

¢ =|1- Energy, y MOk-JI-lltyu , 5.7)
Energyeu Mobility,,.,

where Energy, and Mobility, are the current residual energy and mobility level of
node u, and Energyg, and Mobilityuax are the full power level and the maximum node
mobility. The formulation in (5:7). can completely-consist with all observation and
anticipation in above considerations."We can see that the rule is extremely simple and
can be carried out automatically by each node relied on only inherent statuses of itself.
In addition, the configuration can be conducted independently by each node without
additional control message to negotiate the symmetric, connectivity and planarity,
since theoretically all these properties are preserved, see properties 3.4 and 3.5. For
these reasons, the protocol will be very practical. More importantly, by reducing node
dependency according mobility, the drawback of using nodes position in proximate
graph can elegantly alleviated, since a node with lower degree will now trigger less
reconstruction. The overall conceptions are depicted in Figure 5.1.

In practice, each node u can set its r, = 0 at the initial stage, and then configure r,
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periodically according to several distinct energy levels and mobility. The node
mobility can be measured by node speed or remaining pause time, i.e. as a node stops
moving and anticipates that it will stay on the place for a relatively long period of

time, it can turn up its r, to allow more neighbors accessing to it.

Internal statues & Configuration v

o Bresaner e By

:Insufﬁcienti—b Residual Energy |« Sufficient !

| < é » 0

High —» Mobility <«--- Low

v External Effects \ 4

Bad |Energy efficiency of routes|_y. 'Goodi

Low <«—— Broadest power ——  High
Low <«———Trafficload ——»  High
Low «—T7C maintain powre —  High

v

Rare  <«——Route reconstruction—»  More
iq€

Long; 4—-Opemtionvtime of node—»  Short

.......

Figure 5.1: The relationship among the considerations, effects, and the configure process.

The final version of the mobile topology control protocol is given below. We
named it the Adaptive NGTC Protocol, abbreviated as ANGTC. To save page space,
we only highlight the different parts, in comparison with NGTC. The other part

encapsulated from line 1 to 13 here is the same except that ER, is no replaced by ER, .
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ANGTC Protocol

1 N={} Su={}:Bu={} ru=0.

The procedure from lines 2 to 13 are the same of the NGTC protocol;

14 rn=|1- Energy, | (_Mobility,
Energye,, Mobility,,.,

15  ER =[)_. (RADUD-RRUwW));
16 ER_ =) (NnDUD-RR? (uw))

17 N, ={ueS,|ueER ¥}

5.3 Efficient Calculation.and Time Complexity

In the rest part of this section, we-discuss the complexity issues and suggest some
efficient way for calculation therelated variables.
1) Calculation on Ny:
If there are relatively smaller number of point'on ', each node requires only O(]V|) to
compute its neighbors in EG, by set operation. However, if the there are infinite
number of points on ', each node can turn to determine its neighbors in NG (V) in
O(IVP).
2) 2) Calculation on Ay:
The radius A, covers ER,. Let x be a point on boundary of ER, with longest distance to
u. Clearly, |lux|| > |Juy]||, for any pointy € ER,. So, we will derive the distance of ||ux||.

In the following, we just consider « = 2 for two reasons: First, there is no simple root

function for ||lux|| when « > 2. Second, the radius A, covering ER?(u) is sufficiently
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large for any o> 2, since ER’(u) 2 ER*(u).
Obviously, when |S| <2, ER’(u) can not be enclosed. When |S,| > 2, There are
two cases: In the first case, x is crossed by the outers of RR/(u,w) and RR/(u,w'),

for some w, w' € S,. In this case, x is crossed by one of the equations from

P

(i) Jux|=[uv], (i) ux|=[vx], or (i) [ux|*@+re)=|uv]”+|vx]|",

and another one of the equations from

r

(iv) ||ux||:||uv'||,(v) ||ux||:||v'x||,or (vi) ||ux||“(1+ r”‘):||uv'||“+||v'x .

Let #and y denote the angles of Zwuw’ and Zwux, respectively. By the law of cosine,

Jo]” = x|~ luw" - 2Juwfuux]cos y

(5.8)
Jux|| = w " ~ juw]” ~ 2Juwlux]cos(6 - y)
Consider four subcases:
If x satisfies either (i) or (iv), then yfux|=|uvji-or |uxi=|uv], respectively.
If x satisfies (ii) and (v), we get
w
4= 2sin@ 9
If x satisfies (ii) and (vi), or (iii) and (v), we get respectively
o = v =2 coso— o] e
4luv]sin?
and
o Tl -2 coso g ijo]

4||uv||sin2 0

Otherwise, if x satisfies (iii) and (vi), we get
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b++/b?—4ac

o
o =222

(5.12)
where a=B?-r‘C?* bz2AB—4C2||uv||2(l—r2) , c:A2—4C2||uv||4

and B = (Juv| - Juv]coso)r?, A= 2Juv|’Juv]|cos &+ 2uv|uvi —4jux|’,C = uv{sine.

In the second case, x is on the outer of some RR/(u,w), where w € Ny. Again, if X
satisfies (i), then |ux|=|uv||; otherwise, if x satisfies either (ii) and (iii), the farthest
point will finally be crossed by another w’ e Sy. As a sequel, it is sufficient to

consider the first case.

Let dj, dz, ds, d4, denote the distances obtained by (5.9) to (5.12). We get
|lux]| = max{d,,.d,,, f,, f,, f;, f,}. (5.13)

In addition, in the second and third:subcases,

ZWUX = COS™ M (5.14)
2Jux| )
and in the fourth subcase
ZWUX = cos™* o = 2Ju] : (5.15)
2Jux(luvi

Let pww denote the point crossed by RR,(u, w) and RR(u, w’); We can get
ZXuV = Zwuv + Zwu and ||vx||2 = ||Wx||2 + ||uv||2 — 2| wx|Juv|cos £xuv
Since x is itself a point in ER(u), the longest distance can be obtained by

A, = max{“ux|| lweS,,and v e NR(u,w), Vv e Su}. (5.16)
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Chapter 6

Experiments

In this chapter, a series experiments will be conducted to evaluate the

observations on theoretic results as well as the protocol designs.

6.1 Evaluations on Graph Structures

First of all, we evaluate the theoretic properties shown in Chapter 4. Recall that
for any a > 2, the power stretch of the r-neighborhood graph is bounded from above
by an increasing function of » and conversely, the upper bound of the maximum node
degree is decreased by r. Figure 6,1 draws the two theoretic functions for » = 100 and
a = 2. We can see that NG,(V) indeed has the flexibility to be adjusted between the

two metrics through the parameter r.

Power stretch factor Maximum node degree
120 70

100 60
“ 50
10 F
60
40

30 |
20 F
2 / 10 F
0 ‘ ‘ ‘ 0

0 01 02 03 04 OfS 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

Figure 6.1: The upper bounds on the power stretch factor and maximum node degree of NG,.
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The topologies of NG(V) of 3 different levels r are depicted in Figure 6.2. We
can see that NG (V) can construct any immediate structure between RNG and GG. A
sparser topology can be constructed using a larger », and contrarily, more routes will

be preserved as a smaller  is applied.

(c) NGo= GG(V)
Figure 6.2: The topologies for 3 different levels of 7.

The results shown in Theorem 3.4 and Theorem 3.5 are the worst upper bound.
Actually, the average values will be much better. See figures 6.3 and 6.4. The results

are averaged from in 100 test cases for each parameter setting. Note that for a density
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ration d, 0 < d < 1 it has the following means: As the nodes placements are created,
we sort every nodes pair (u, v) according to their distance ||juv|| in non-decreasing
order. Then we set the maximum transmission range 7Tua.x as the dx100% percent
shortest distance. It means that given a density ratio d, in the underlying UDG(V),
there will be at least dx100% of nodes can transmit to their neighbor using the directly

a directly transmission.

Density = 0.3

—=—a=2,n=450

Average power stretch factor

Density = 0.3
T

2.2 T T T

Maximum power streteh factor

Figure 6.3: The power stretch factor of the

67



We can observe that when n is 100, the maximum value of po(NG(V)) is still
within two times to the optimal value 1 in the most case, and the minimal relaying
power among any nodes pair is almost closed to the optimal. The same observation is
also on the node degree. The average and maximum node degrees are all limited

within 4 and 8 respectively.

Density = 0.3

—=—a=2 n=50

Average node degree

Density = 0.3

—=—a=2 n=50

Maximum node degree

Figure 6.3: The power stretch factor and maximum node degree

Moreover, figures 6.3 and 6.4 also provide the results for the (», «)-neighbor
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graph. The curves indicate the when the environment antennae factor o become worse
(larger), both matrices decline significantly. This confirms our argument that a
generalized structure of the r-neighborhood can gain better quantity results. The
observation also tells use that our structure can adaptive well in a highly interference

or obstacle environment. Therefore, the generalization is worth.

6.2 Evaluations on Shrinking Power Mechanisms

Next, we evaluate the shrink power mechanism for the (», «)-neighborhood
graph. The results of 100 test cases for 50 and 100 nodes are summarized below,
where dist and pwr denote the remaining percent of radius and power of 7, in
compared with the maximum radius 7Ti.x. We can see the both dist and pwr can be

strictly declined as  goes large. Such tendency does consist with the results proven in

Property 5.1.
Table 6.1: The shrunkeén radius and power. (n = 50)
r=0 r=0.25 r=0.5 r=0.75 r=1.0
o |density| dist  pwr dist  pwr, dist " Pwr dist  pwr dist  pwr
0.1 193.61% 87.68%|92.37% 85.37%|89.08% 79.42%|85.90% 73.87%84.69% 71.80%
2] 0.2 |(80.42% 64.76%)|77.11% 59.55%|70.63% 49.95%|65.46% 42.91%]63.90% 40.89%
0.3 167.15% 45.18%]|63.55% 40.45%|57.31% 32.90%|52.71% 27.84%|51.38% 26.46%
0.1 [89.86% 72.71%|89.60% 72.10%|88.11% 68.59%|85.78% 63.34%84.69% 60.95%
31 0.2 |72.06% 37.57%]|71.59% 36.84%68.88% 32.81%|65.29% 27.96%63.90% 26.20%
0.3 [58.62% 20.25%|58.20% 19.82%|55.73% 17.41%|52.57% 14.62%|51.38% 13.66%
0.1 [87.96% 60.19%|87.93% 60.10%87.33% 58.51%|85.66% 54.23%84.69% 51.81%
4] 0.2 [68.62% 22.36%|68.55% 22.26%(67.53% 20.96%|65.13% 18.15%|63.90% 16.82%
0.3 [55.51% 9.60%]|55.45% 9.56%|54.52% 8.94%|52.44% 7.65%|51.38% 7.07%

On the other hand, as the network density, network size, or attenuate factor
increase, this mechanism can perform even better. This phenomenon is due the fact
that both influences will cause each node u confronting to more neighboring nodes,
which in turn means that the (a, r)-enclosed region of u will be smaller. A smaller

ER?(u) implies a smaller 4,. As a result, the node can transmit using a smaller T,,.
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For this reason, the shrink power mechanism can perform well in a large scale as well

as worse condition network.

Table 6.2: The shrunken radius and power. (n = 200)

r=0 r=0.25 r=0.5 r=0.75 r=1.0

o |density| dist  pwr dist  pwr dist  pwr dist  pwr dist  pwr
0.1 |61.84% 38.27%|58.07% 33.75%|52.47% 27.55%|48.56% 23.59%47.42% 22.50%
2| 0.2 (42.43% 18.02%|39.77% 15.83%35.87% 12.87%33.17% 11.01%|32.38% 10.49%
0.3 |33.40% 11.17%|31.31% 9.81%|28.24% 7.98%|26.12% 6.83%|25.49% 6.50%
0.1 |53.49% 15.33%]53.17% 15.06%|51.00% 13.29%|48.41% 11.37%|47.42% 10.68%
31 0.2 [36.57% 4.90%]|36.35% 4.81%(34.85% 4.24%|33.07% 3.62%|32.38% 3.40%
0.3 [28.79% 2.39%28.62% 2.35%|27.44% 2.07%|26.04% 1.77%|25.49% 1.66%
0.1 |[50.71% 6.63%]|50.65% 6.60%(49.99% 6.26%|48.32% 5.47%|47.42% 5.07%
4| 0.2 |34.64% 1.45%|34.61% 1.44%]34.15% 1.37%|33.00% 1.19%)|32.38% 1.10%
0.3 |27.27% 0.56%|27.24% 0.55%|26.89% 0.52%|25.98% 0.46%|25.49% 0.42%

6.3 Evaluations on the Mobile Protocol

In the last section, we conduct simulation study to emulate the really
performance. This experiment was conducted by ns2-simulator [41]. The IEEE 802.11
distributed coordination function has.beéen implemented in ns2 kernel. It uses
RTS/CTS/DATA/ACK pattern fof.all unicast packets and simply sends out DATA for
all broadcast packets. The implementation uses both physical and virtual carrier sense.
The two-ray ground reflection model is chosen as radio propagation model. The initial
energy of each node is 0.5 joules. Each node can choose a power level to transmit a
packet according to distance to the next hop. We modified the route protocol DSDV
[42] to find the least-energy path instead of the shortest path. That is, the transmission
ranges are allowed to be adjusted: For unicasting traffic, the range is adjusted exactly
to the next hop, and for broadcasting, the range is adjusted to the farthest neighbors
determined by the underlying topology. Received packets will be dropped if there is
no edge from the sender. This consideration ensures that packets are always
transported on the constructed topology. There are 100 nodes uniformly distributed in

a 1000 square meters field. The CBR traffics will be generated from 20% of nodes.
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For other non-source or no-destination nodes, they will be responsible for relaying
traffic. Each node will transmit in the best effort on 802.11b, i.e. data rate is 11Mbype.
The maximum transmission radius is taken as 250 meters for all nodes. The mobility
pattern is according to the Random Waypoint model. If not specific, the default node
speed and pause time will be randomly taken from the intervals of [0, 20] m/s and [0,
10] s, respectively. For each test case, the observed results are averaged from 10
instances (a set of nodes). Each instance will be simulated over 200 sections.

First we evaluate the shrink power mechanism for variant »’s. To simulate the
real circumstance, we allow each node configure its own r according to the adjusting
rule in Chapter 6. The result is given in Figure 5. It shows that the construction power
for the period beacon in a fully distributed circumstance can be reduced at a range
from 20 % to 35% according thesparameter. The conserved energy will be

considerable especially when the:beacon interval is intensive.

—6— using shrunken power
—S— using max power

The consumed energy of per hello message (Joule)

75 1 1 1 1 1 1 1 1 1

Figure 6.5: The shrinking power mechanism for variant r 5.
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The simulation is for our mobile topology control protocol. As we mentioned
before, the overall energy-consumption would be influenced by many factors.
However, for any communication network, like the MANET, the ultimate graph is to
support transmission between send and receiver. Therefore, the overall energy
efficient here is measured by the total energy required for each communication. In
other words, we hope the average consumed power for each successful packet to be as
low as possible. In Figure 6.6, we compare ANGTC protocol, the traditional proximate
graphs GG and RNG, and an identical-» version, according to this measurement. The
results show that the mobile protocol can imprecisely imrove in overall energy
efficiency in comparison with other structures, especially when node mobility

increases. The improvement is mainly due to the self-configure process in Chapter 6.
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Figure 6.6: The comparison of the overall energy-efficient.

72



Chapter 7

Conclusions

In this dissertation, we proposed a purely localized structure to control the
topology in wireless networks. We showed the worst case of the power stretch factor
is an increasing function of r and the worst cast of the maximum node degree is
contrarily a decreasing function of r. So, the two objectives can be adjusted in our
structure. Although the power stretch factor:s related to n so that our structure is not
really a spanner, p(NG(V)) can sttll, be bounded for some range of r. Therefore, the
power stretch is partially bounded'in our structure. About the maximum node degree,
we proposed an upper bound derived for dmax(NG(V)). However, this result is correct
only no node having two or more neighbors-at-exactly distance. For this reason, an
extended structure NG (V) was given to comprehend this theorem.

Besides, the proposed structure can always result connected topology with
symmetric edges. Any resulting topology is always a planar. The relations between the
r-neighborhood graph and existent structures are summarized as follows. Specially,
NGr(V) is a general structure of both GG(V) and RNG(V).

To construct our structure, we proposed a 1-hop purely localized algorithm, PLA.
It can avoid long-distance transmission when collecting information and can be

efficiently done in O(nlogn) time when dmax(NG((V)) is constant.
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Figure 7.1: The relationships of NG(V), NG, (V), GG(V) and RNG(V).

To cope with the mobile environment, we further proposed an adaptive topology
control protocol, based on a generalized version. In this protocol, each node can
self-configure it parameter to improverthesoverall energy efficiency, using only
inherent status. We also incorporated the pretocol with shrink power mechanism to
reduce the topology construction power for periodic beacons.

For the further research, a localizedtopology control approach enables the design
of localized routing protocols. For instance;.the greedy route discovery in CFG [26]
and GPSR [11] are based on GG. We anticipate that r-neighborhood graph could
provide a concrete basis for many interesting extensions due to the sound theoretical
results. Moreover, the parameter r can be turned to find the best settings for different
scenarios. Another interesting issue for the possible further work is to evaluate the
stability of the proposed structure when perfect position (range) information is not
available or when the accuracy of position information differs from node to nodes.

In addition, implementation issues for the mobile protocol, such as mobility
prediction, fault tolerance, using imprecise information, are the worth directions for

the further research.
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Appendix

The proof of Lemma 4.2: Without a loss of generality, we assume that |juw|| < [jvw]|.

Let y be the projection of w on uv so that yw is perpendicular to uv. We can derive that

2
N L J”WV”z (et )

ym| =
Iyl =2~ 2~ 2 Zmd 2] * 2

Thus,
Juw]® = ] + (jum] = lym])’ = jwy] + (jmv] - [ymi])

2 2
o (nwvnz o ||mv||] {snmvn i ||wm||2}

Zmv] - 2fmv 42 2 2mv| " 2my]

= 2Jmv]” ~ " + 2w
Then, power consumed by path uwy is-as folfows

p(aw) = uw]” + A 2]yl — o + 2w -+ o
From (4.1) we get |wm| < I =[uv|v1+2r? /2=|mv|v1+2r? and |vw| < |uv], so
(2]~ vw? + 2w + o
< {(a-+ ar?Y|mvf = )2 + "

(4+4r?) 2
<[ [ o

(24
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Thus, we have that p(UWV)S”W”a(Hra) []
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