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Discriminative Training Methods for Speaker Verification

Student : Yi-Hsiang Chao Advisors : Dr. Hsin-Min Wang
Dr. Ruei-Chuan Chang

Department of Computer Science
National Chiao Tung University

ABSTRACT

Speaker verification is usually formulated as a-statistical hypothesis testing problem and solved
by a likelihood ratio (LR) test. A speaker verification system’s performance is highly dependent on
modeling the target speaker’s voice (the null.hypothesis)-and characterizing non-target speakers’
voices (the alternative hypothesis). However, since the alternative hypothesis involves unknown
impostors, it is usually difficult to characterize a priori. In this dissertation, we propose a framework
to better characterize the alternative hypothesis with the goal of optimally distinguishing the target
speaker from impostors. The proposed framework is built on a weighted arithmetic combination
(WAC) or a weighted geometric combination (WGC) of useful information extracted from a set of
pre-trained background models. The parameters associated with WAC or WGC are then optimized
using two discriminative training methods, namely the minimum verification error (MVE) training
method and the proposed evolutionary MVE (EMVE) training method, such that both the false
acceptance probability and the false rejection probability are minimized. Moreover, we also propose
two new decision functions based on WGC and WAC, which can be regarded as nonlinear

discriminant classifiers. To solve the weight vector w, we propose using two kernel-based



discriminant techniques, namely the Kernel Fisher Discriminant (KFD) and Support Vector Machine
(SVM), because of their ability to separate samples of target speakers from those of non-target

speakers efficiently.

In recent years, the GMM-UBM system is the predominant approach for the text-independent
speaker verification task. The advantage of the approach is that both the target speaker model and
the impostor model (UBM) have generalization ability. However, since both models are trained
according to separate criteria, the optimization procedure can not distinguish a target speaker from
background speakers optimally. To improve the GMM-UBM approach, we propose a discriminative
feedback adaptation (DFA) framework that allows generalization and discrimination to be
considered jointly. The framework not only preserves the generalization ability of the GMM-UBM
approach, but also reinforces the discriminability between the target speaker model and the UBM.
Under DFA, rather than use a unified UBM, we construct a.discriminative anti-model exclusively for

each target speaker.

The results of speaker-verification experiments-conducted-on three speech corpora, the Extended
M2VTS Database (XM2VTSDB), the ISCSLP2006-SRE ‘database and the NIST2001-SRE database,

show that the proposed methods outperform all of the conventional LR-based approaches.
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Chapter 1

Introduction

In many practical pattern recognition applications, it is necessary to make a binary decision,
such as “yes/no” or “accept/reject”, with respect to an uncertain hypothesis that can only be
validated through its observable consequences. In a statistical framework, the problem is
generally formulated as a test thatiinvelvesi.a null hypothesis, Hy, and an alternative
hypothesis, H;, regarding some décision function L(-) for a given observation X:

H o LX) =8

H, LX) <0 (.1

where 6 is the decision threshold. Depending on the application, various decision functions
can be designed. The most popular decision function computes the ratio of possibilities

between the null hypothesis and the alternative hypothesis as follows:

L, (X) [>6 acceptH,
L(X)=——1+ , : (1.2)
L, (X) (<@ acceptH, (ie.,rejectH,),
where L, (X), i=0,1, denotes a certain possibility measure of X with respect to the

hypothesis Hi. For example, L, (X) could be the likelihood probability p(X |[H;) that

hypothesis H; gives X, and the resulting L(-) represents a so-called likelihood ratio (LR)
function. If we represent the observation X as a sequence of r—dimensional feature vectors

{0,,...,0;} and assume that the feature vector sequence of X is independent and identically

-1-



distributed (i.i.d.), the likelihood of the observation X given the hypothesis Hi, i = 0 or 1, can

be computed by

.
p(X|Hi)=t1]1p(0t | H). (1.3)

In the implementation, Hy and H; can be characterized by some parametric models, which are
usually denoted as A (the null hypothesis model or target model) and A (the alternative
hypothesis model or anti-model). Suppose both A and A are characterized by Gaussian

mixture models (GMMs) [Reynolds 1995, 2000], the probability density functions (pdf) of

each feature vector 0; given Hy and H; can be respectively defined as

M,
p(o, | Hy) = p(o, |2) =D pap(o, | g5) (1.4)
m=l
and
" o 1 1
p(o, [ H, )= p(o, 'X):mep(ot | 8m); (1.5)
m=l
where prin, i=0or 1, m=L.,M,, is the mixture weight that satisfies the constraint

Z:\:zl pl =1; g ~N(@u,,X,) is the m-th Gaussian mixture component of the target model A

(i = 0) or the alternative hypothesis model A (i = 1) with the rx1 mean vector uim and the

rxr covariance matrix X ;and p(o, |gl ) is the Gaussian density function that is expressed

as

P )= expl -3 0,y (22 (@ -4 . 16

1
(27[)r/2 |Z:n |1/2

However, in most real applications, the alternative hypothesis model A is usually

ill-defined and difficult to characterize a priori. For example, in speaker verification [Bimbot
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2004; Faundez-Zanuy 2005; Fauve 2007; Przybocki 2007; Van Leeuwen 2006], the problem of
determining if a speaker is who he or she claims to be is normally formulated as follows: given
an unknown utterance U, determine whether

Ho: U is from the target speaker, or

H;: U is not from the target speaker.

Though Hy can be modeled straightforwardly using speech utterances from the target speaker,
H, does not involve any specific speaker, and hence lacks explicit data for modeling. As a
result, various approaches have placed special emphasis on better characterization of H;. One
popular approach pools all the speech data from a large number of background speakers and
trains a single speaker-independent GMM Q, called the world model or the universal
background model (UBM) [Reynolds 2000]. During a test, the logarithmic LR measure that

an unknown utterance U was spoken by the,claimed speaker can be evaluated by
Ly (U) =logpU {2)=logpU | ), (1.7)

where A is the target speaker GMM trained using speech from the claimed speaker. The larger
the value of Lygm(U), the more likely it is that the utterance U was spoken by the claimed
speaker. Due to the good generalization ability of the UBM, Lygm(U) (usually called the
GMM-UBM method [Reynolds 2000] is considered as a current state-of-the-art solution to

the text-independent speaker verification problem.

Instead of using a single model, an alternative approach is to train a set of GMMs {A,,
A2,..., Mg} using speech from several representative speakers, called a cohort [Rosenberg 1992],
which simulates potential impostors. This leads to the following possible logarithmic LR

measures, where the alternative hypothesis can be characterized by:
(1) the likelihood of the most competitive cohort model [Liu 1996], i.e.,
Ly (U) =log p(U [21) —maxlog p(U [2;), (1.8)

-
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(i1) the arithmetic mean of the likelihoods of the B cohort models [Reynolds 1995], i.e.,
1 B
L,i(U)=1logpU !X)—IOg{EZ pU |2, )}, (1.9)
i=l
(ii1) the geometric mean of the likelihoods of the B cohort models [Liu 1996], i.e.,

Lo (U) =log PU )2 log pU |1, (1.10)

i=1

In a well-known score normalization method called T-norm [Auckenthaler 2000; Sturim
2005], Lgeo(V) is divided by the standard deviation of the log-likelihoods of the B cohort

models.

The LR measures in Egs. (1.7) — (1.10) can be collectively expressed in the following

general form [Reynolds 2000]:

B 12)
L) , L.11
O G MpU i O (1) b

where W(-) denotes a certain function of the likelihoods computed for a set of so-called
background models {A, A,,..., An}. For example, if the background model set is generated
from a cohort, letting ¥(-) be the maximum function gives Lyax(U), while the arithmetic mean
gives La;i(U), and the geometric mean gives Lgeo(U). When W(+) is an identity function, N =1,

and A; = Q, Eq. (1.11) becomes Lygm(U).

However, there is no theoretical evidence to indicate which method of characterizing H;
is optimal, and the selection of ¥(-) is usually application and training data dependent. More
specifically, a simple function, such as the arithmetic mean, the maximum, or the geometric
mean, is a heuristic that does not involve any optimization process. Thus, the resulting system
is far from optimal in terms of verification accuracy. Although the GMM-UBM method is a

current state-of-the-art solution to the text-independent speaker verification problem, there is



no optimization process of characterizing H; to support its discriminability.

Before the presentation of the proposed frameworks for speaker verification problems,

we introduce some backgrounds about the current GMM-based speaker recognition methods.

1.1. Background

Over the past several years, GMM has become the dominant modeling approach in speaker
recognition applications. Speaker recognition can be classified into identification and
verification. In speaker identification, the system has trained models for a certain amount of
speakers and the task is to determine which one of these models best matches the current
speaker. In verification, the identity of thereurrent speaker is somehow transmitted to the
system beforehand and the task is*to determine whether the current speaker is the claimed one
or not. Speaker recognition methods can also be divided into text-dependent and
text-independent methods. The former'requires the speaker to say keywords or sentences
having the same text for both training and recognition trials, while the latter does not rely on a

specific text being spoken.

Fig. 1.1 shows the block diagrams of the speaker identification and verification systems.
The process of feature extraction is to transform the speech signal into a set of feature vectors,
and the goal is to obtain a new representation which is more compact, less redundant, and
more suitable for statistical modeling and the calculation of a distance or any other kind of
score. In recent years, Mel-scale frequency cepstral coefficient (MFCC) [Huang 2001] is the
most popular feature vector used in speech and speaker recognition systems. The mel-scale
cepstrum is the discrete cosine transform (DCT) of the log-spectral energies of the speech
segment. The spectral energies are calculated over logarithmically spaced filters with
increasing bandwidths (mel-filters). MFCC-based GMMs [Reynolds 1995] have been

-5-



successfully applied to speaker recognition systems recently. In the following, we introduce

two commonly-used statistical modeling methods for estimating the parameters of GMMs.

Reference speakers

r-— - |

| [ Speaker |

| 7| model 1 |
|

SP€€Ch [ .| Speaker !

signal Feature | | | "l model 2 ! |, Select | Identified
extraction | | Max speaker

|

| |

| |

| | Speaker |

| "|  model S |

- - — -

(a) Identification system.

Target
Speech »|  speaker
- onal model +
Sl&» Feature ||
extraction —> L
Alternative )
»| hypothesis L>6 accept
model L <6 reject

(b) Verification system.

Fig. 1.1. Speaker recognition systems.

1.1.1. Maximum Likelihood (ML) Estimation Technique

Given the training speech data from a speaker, U={0,,...,0;}, the goal of maximum

likelihood (ML) estimation is to find the parameters of the GMM, A, which maximize the

likelihood of the GMM:



p(U | %) =1Tp(0, [4). (1.12)

Eq. (1.12) is a nonlinear function of the GMM parameters and direct maximization is
infeasible. However, the ML parameter estimation can be achieved iteratively via the

expectation-maximization (EM) algorithm [Huang 2001].
The basic idea of the EM algorithm is, beginning with an initial model A, to estimate a

new model A, such that pU | 71) > p(U | A). The new model then becomes the initial model
for the next iteration and the process is repeated until some convergence condition is reached.
This is the same basic technique used for estimating hidden Markov model (HMM)

parameters via the Baum-Welch re-estimation algorithm [Huang 2001].

In each EM iteration, the following;.re-estimation formulae, which guarantee a

monotonic increase in the model’s:likelihood value, are used:

Mixture Weights:

T

Zp(mlot,k) (1.13)

s 1
T

Mean vectors:

Y p(m]o,Ap,
Ry =" :
37 p(mlo,n)

(1.14)

Covariance matrices:

Z P(m [0, )0, ~ )@ — )
Z p(m|o,2)

(1.15)

We usually assume that all covariance matrices X of the GMM, m=1,..., M, are diagonal,

and the variance vector ¢’ =diag(X ). The a posteriori probability for the m-th Gaussian



mixture component g is given by

Pn P, |€n)
Z:\il p;p(o, [ g;)

p(m|o,,A) = (1.16)

where p,, is the original mixture weight and p(0, |g,) is the Gaussian density function

defined in Eq. (1.6).

Selecting the order M of the mixture and initializing the model parameters prior to the
EM algorithm are two critical factors in training a GMM. There are no good theoretical means
to guide one in either of these selections, so they are best experimentally determined for a

given task.

1.1.2. Maximum A Posteriori(MAP) Estimation Technique

Conventional GMMs trained from the EM algorithm perform well only when a large amount
of training data is available to characterize the characteristics of the speaker. For each speaker,
this approach needs a large amount of training data to train a GMM so as to cover all the
possible pronunciations of this speaker, in particular when the speaker recognition is
conducted under the text-independent mode. Due to this characteristic, the performance of
GMM deteriorates drastically when the training data are sparse. However, client speakers
definitely prefer to enroll with as little speech as possible. To solve this problem, speaker

adaptation approaches have been investigated in recent years.

One successful adaptation approach, namely the UBM-MAP approach, has been widely
used in text-independent speaker verification tasks. This approach first pools all speech data
from a large number of background speakers to train a universal background model (UBM)
via the EM algorithm. Unlike the standard approach of maximum likelihood training of the

speaker model independently of the UBM, this approach then adapts the well-trained UBM to

_8-



a speaker model A using this speaker’s training speech via the maximum a posteriori (MAP)
estimation technique. The adapted GMM A is effective because its generalization ability

allows A to handle acoustic patterns not covered by the limited training data of the speaker.

The specifics of the adaptation are as follows. Given a UBM, Q, and training vectors

from the target speaker, U={0,,...,0;}, we first computer the a posteriori probability

p(m|o,,Q) for the m-th Gaussian mixture component g, m=1,..., M, of the UBM:

P, PO, |g,)

p(m ’ OUQ) = M s
ZH p;p(o, | g;)

(1.17)

Then, we use pP(M|0,,€2) and 0; to compute the sufficient statistics for the mixture weight,

mean, and variance parameters: *

.
N, = pm{ 0, ), (1.18)
t=1
1 T
Em(0)=n—2p(m|0t,f2)ot, (1.19)
m t=1
N )
E,(0%)=—>" p(m|o,Q)0;. (1.20)
m t=l

This is the same as the expectation step in the EM algorithm.

Finally, these new sufficient statistics from the training data are used to update the old
UBM sufficient statistics from the m-th mixture to create the adapted parameters for the m-th

mixture with the equations:

I’jm :[gmnm /T+(l_gm)pm]ca (121)

* x? is shorthand for diag (xx").



By, =&,En(0)+(1— &)1y, (1.22)
and
65 = E,En(0°) +(1—&,)(on +10) —in, (1.23)

where the scale factor € is computed over all adapted mixture weights to ensure that they sum

to 1 and the adaptation coefficients &, controlling the balance between old and new estimates

is defined as

£ =—"—, (1.24)

where r is a fixed relevance factor. After adaptation, the mixture components of the adapted

GMM retain a correspondence with the mixtures of the UBM.

1.2. The Approaches of-This Dissertation

In speaker recognition tasks, as the ML or MAP estimation technique has become the
standard modeling method for characterizing the target speaker (the null hypothesis), this
dissertation focuses on two issues: the improvement of the characterization of the alternative

hypothesis and the improvement of the current state-of-the-art GMM-UBM method.

1.2.1. Using Minimum Verification Error Training

To handle the speaker-verification problem more effectively, it is necessary to design a
trainable mechanism for Y(-) defined in Eq. (1.11). We therefore propose a framework to
better characterize the alternative hypothesis with the goal of optimally distinguishing the

target speaker from impostors. The proposed framework is built on a weighted arithmetic

-10-



combination (WAC) or a weighted geometric combination (WGC) of useful information
extracted from a set of pre-trained background models. The parameters associated with WAC
or WGC are then optimized using two discriminative training methods, namely, the minimum
verification error (MVE) training method [Chou 2003; Rosenberg 1998] and the proposed
evolutionary MVE (EMVE) training method, such that both the false acceptance probability
and the false rejection probability are minimized. The results of speaker verification
experiments conducted on the Extended M2VTS Database (XM2VTSDB) [Messer 1999]
demonstrate that the proposed frameworks along with the MVE or EMVE training outperform

conventional LR-based approaches.

1.2.2. Using Kernel Discriminant Analysis

In contrast to the MVE training methodsswith the goal of minimizing both the false
acceptance probability and the” false rejection probability, we further propose two new
decision functions based on WGC and“WAC, which can be regarded as nonlinear
discriminant classifiers. To obtain a reliable 'set of weights, the goal here is to separate the
target speaker from imposters optimally. Thus, we apply kernel-based techniques, namely the
Kernel Fisher Discriminant (KFD) [Mika 1999, 2002] and Support Vector Machine (SVM)
[Burges 1998], to solve the weights, by virtue of their good discrimination ability. Our
proposed approaches have two advantages over existing methods. The first is that they embed
a trainable mechanism in the decision functions. The second is that they convert
variable-length utterances into fixed-dimension characteristic vectors, which are easily
processed by kernel discriminant analysis. The results of experiments conducted on both the
XM2VTSDB and the ISCSLP2006-SRE database show that the proposed kernel-based

decision functions outperform all of the conventional approaches.
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1.2.3. Using Discriminative Feedback Adaptation

The GMM-UBM system [Reynolds 2000] is the predominant approach for text-independent
speaker verification because both the target speaker model and the impostor model (UBM)
have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM
uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in
rejecting impostors’ voices that are similar to the target speaker’s voice. To overcome this
limitation, we propose a discriminative feedback adaptation (DFA) framework that reinforces
the discriminability between the target speaker model and the anti-model, while preserving
the generalization ability of the GMM-UBM approach. This is achieved by adapting the UBM
to a target speaker dependent anti-model based on a minimum verification squared-error
criterion, rather than estimating the model from scratch by applying the conventional
discriminative training schemes. The resultsrof-@xperiments conducted on the NIST2001-SRE
database show that DFA substantially improves the performance of the conventional

GMM-UBM approach.

1.3. The Organization of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 and 3 describe,
respectively, the MVE training methods and the kernel discriminant analysis techniques used
to improve the characterization of the alternative hypothesis. Chapter 4 introduces the
proposed DFA framework for improving the GMM-UBM method. Then, in Chapter 5, we

present our conclusions.
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Chapter 2

Improving the Characterization of the
Alternative Hypothesis via Minimum

Verification Error Training

To handle the speaker-verification problem:more effectively, we propose a framework that
characterizes the alternative hypothesis-by-exploiting. information available from background
models, such that the utterances:of the impostors can-be more effectively distinguished from
those of the target speaker. The framework is ‘built on either a weighted geometric
combination (WGC) or a weighted arithmetic combination (WAC) of the likelihoods
computed for background models. In contrast to the geometric mean in Lgeo(U) defined in Eq.
(1.6) or the arithmetic mean in La,(U) defined in Eq. (1.5), both of which are independent of
the system training, our combination scheme treats the background models unequally
according to how close each individual is to the target speaker model, and quantifies the
unequal nature of the background models by a set of weights optimized in the training phase.
The optimization is carried out with the minimum verification error (MVE) criterion [Chou
2003; Rosenberg 1998], which minimizes both the false acceptance probability and the false
rejection probability. Since the characterization of the alternative hypothesis is closely related
to the verification accuracy, the resulting system is expected to be more effective and robust

than those of conventional methods.
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The concept of MVE training stems from minimum classification error (MCE) training
[Juang 1997; Siohan 1998; McDermott 2007; Ma 2003], where the former could be a special
case of the latter when the classes to be distinguished are binary. Although MVE training has
been extensively studied in the literature [Chou 2003; Rosenberg 1998; Sukkar 1996, 1998;
Rahim 1997; Kuo 2003; Siu 2006], most studies focus on better estimating the parameters of
the target model. In contrast, we try to improve the characterization of the alternative
hypothesis by applying MVE training to optimize the parameters associated with the
combinations of the likelihoods from a set of background models. Traditionally, MVE
training has been realized by the gradient descent algorithms, e.g., the generalized probability
descent (GPD) [Chou 2003], but the approach only guarantees to converge to a local optimum.
To overcome such a limitation, we propose a new MVE training method, called evolutionary
MVE (EMVE) training, for learning the parameters.associated with WAC and WGC based on
a genetic algorithm (GA) [Eiben.2003]. "It has. been shown in many applications that
GA-based optimization is superior to. gradient-based optimization, because of GA’s global
scope and parallel searching power: To facilitate the EMVE training, we designed a new
mutation operator, called the one-step gradient descent operator (GDO), for the genetic
algorithm. The results of speaker verification experiments conducted on the Extended
M2VTS Database (XM2VTSDB) [Messer 1999] demonstrate that the proposed methods

outperform conventional LR-based approaches.

The remainder of this chapter is organized as follows. Section 2.1 presents the proposed
methods for characterizing the alternative hypothesis. Sections 2.2 and 2.3 describe,
respectively, the gradient-based MVE training and the EMVE training used to optimize our

methods. Section 2.4 contains the experiment results.
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2.1. Characterization of the Alternative Hypothesis

To characterize the alternative hypothesis, we generate a set of background models using data
that does not belong to the target speaker. Instead of using the heuristic arithmetic mean or
geometric mean, our goal is to design a function W(-) that optimally exploits the information
available from background models. In this section, we present our approach, which is based
on either the weighted arithmetic combination (WAC) or the weighted geometric combination
(WGC) of the useful information available. Moreover, the LR measure based on WAC or
WGC can be viewed as a generalized and trainable version of Lygm(U) in Eq. (1.3), Lyax(U)

in Eq. (1.4), La«(U) in Eq. (1.5), or Lgeo(U) in Eq. (1.6).

2.1.1. The Weighted Arithmetic Combination (WAC)

First, we define the function W(+) in Eq.(1.7) based on the weighted arithmetic combination

as

pUIN) =¥ (PWU )y pU [1y)) =D w,p(U |1,), 2.1

i=l
where w; is the weight of the likelihood p(U | A;) subject to zzl w, =1. This function assigns

different weights to N background models to indicate their individual contribution to the
alternative hypothesis. Suppose all the N background models are Gaussian Mixture Models
(GMMs); then, Eq. (2.1) can be viewed as a mixture of Gaussian mixture density functions.
From this perspective, the alternative hypothesis model A can be viewed as a GMM with
two layers of mixture weights, where one layer represents each background model and the

other represents the combination of background models.
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2.1.2. The Weighted Geometric Combination (WGC)

Alternatively, we can define the function W(-) in Eq. (1.7) from the perspective of the

weighted geometric combination as
— N
pUIN=F(pU[N)..... (U [Ay)) =L p(U [A)" . (2.2)

Similar to the weighted arithmetic combination, Eq. (2.2) considers the individual
contribution of a background model to the alternative hypothesis by assigning a weight to
each likelihood value. One additional advantage of WGC is that it avoids the problem where
p(U|X) = 0. The problem can arise with the heuristic geometric mean because some values
of the likelihood may be rather small when the background models A; are irrelevant to an
input utterance U, i.e., p(U] A;) — 0. However, if a weight is attached to each background
model, Y(-) defined in Eq. (2.2):should be less. sensitive to a tiny value of the likelihood;

hence, it should be more robust and reliable than the heuristic geometric mean.

2.1.3. Relation to Conventional LR Measures

We observe that Eq. (2.1) and Eq. (2.2) are equivalent to the arithmetic mean and the
geometric mean, respectively, when w; = 1/N, i = 1,2,..., N, in other words, all the background
models are assumed to contribute equally. It is also clear that both Eq. (2.1) and Eq. (2.2) will
degenerate to a maximum function if we set w, =1, where *=argmax,__, p(U|},), and
w; = 0, Vi=#i*. Furthermore, the logarithmic LR measure based on Eq. (2.1) or Eq. (2.2)

will degenerate to Lygm(U) in Eq. (1.3) if only a UBM Q is used as the background model.

Thus, both WAC- and WGC-based logarithmic LR measures can be viewed as generalized
and trainable versions of Lygm(U) in Eq. (1.3), Lmax(U) in Eq. (1.4), La+#(U) in Eq. (1.5), or

Lgeo(U) in Eq. (1.6).
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In the WAC method, we refer to the alternative hypothesis model A defined in Eq. (2.1)
as a 2-layer GMM (GMM?2), since it involves both inner and outer mixture weights. GMM?2
differs from the UBM Q in that it characterizes the relationship between individual
background models through the outer mixture weights, rather than simply pooling all the
available data and training a single background model represented by a GMM. Note that the
inner and outer mixture weights are trained by different algorithms. Specifically, the inner
mixture weights are estimated using the standard expectation-maximization (EM) algorithm
[Huang 2001], while the outer mixture weights are estimated using minimum verification
error (MVE) training or evolutionary MVE (EMVE) training, which we will discuss in Sec.
2.2 and Sec. 2.3, respectively. In other words, GMM?2 integrates the Bayesian learning and
discriminative training algorithms. The objective is to optimize the LR measure by

considering the null hypothesis and:the alternative hypothesis jointly.

2.1.4. Background Model Selection

In general, the more speakers that are used as background models, the better the
characterization of the alternative hypothesis will be. However, it has been found [Reynolds
1995; Rosenberg 1992; Liu 1996; Higgins 1991; Auckenthaler 2000; Sturim 2005] that using
a set of pre-selected representative models usually makes the system more effective and
efficient than using the entire collection of available speakers. For this reason, we present two
approaches for selecting background models to strengthen our WAC- and WGC-based

methods.

A. Combining cohort models and the world model

Our first approach selects B+1 background models, comprised of B cohort models used in

Lyvax(U), Lasi(U), and Lgeo(U), and one world model used in Lygm(U), for WAC in Eq. (2.1)

-17-



and WGC in Eq. (2.2). Depending on the definition of a cohort, we consider two
commonly-used methods [Reynolds 1995]. One selects the B closest speaker models {Acs 1,
Aest2, ---» Acst} fOr each target speaker; and the other selects the B/2 closest speaker models
{Acst 15 Aest2, ---» Aest B2}, plus the B/2 farthest speaker models {Agt1, Asst2, ..., Astsr}, for each

target speaker. Here, the degree of closeness is measured in terms of the pairwise distance

defined in [Reynolds 1995]:

vy U, |\,
p(Ut|;\‘z)+lo p( ]| J)

d(k;,h;)=log g ,
’ p(Ui | )‘(;) p(Uj | Xi)

2.3)

where A; and A; are speaker models trained using the i-th speaker’s utterances U; and the j-th
speaker’s utterances U, respectively. As a result, each target speaker has a sequence of
baCkground models, {Qa kcst 1, 7\'cst2, e 7"cstB} or {Qa kcst 1o ey 7\‘cst B/2, 7\ffst 1y eees kfst B/Z}a for

Egs. (1.7), (2.1), and (2.2).

B. Combining multiple types of-anti=models

As shown in Egs. (1.3) — (1.6), various types of anti-models have been studied for
conventional LR measures. However, none of the LR measures developed thus far has proved
to be absolutely superior to any other. Usually, Lysm(U) tends to be weak in rejecting
impostors with voices similar to the target speaker’s voice, while Lyax(U) is prone to falsely
rejecting a target speaker; Lai(U) and Lgeo(U) are between these two extremes. The
advantages and disadvantages of different LR measures motivate us to combine them into a
unified LR measure because of the complementary information that each anti-model can

contribute.

Consider K different LR measures L{U), each with an anti-model X,' ,i=12,.. K If
we treat each anti-model Xl. as a background model, the function W(-) in Eq. (1.7) can be

rewritten as,
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PU R =¥(pWU 1), pU |1y pU 1)), (2.4)
Using WAC or WGC to realize Eq. (2.4), we can form a trainable version of the conventional
LR measures in Eqgs. (1.3) — (1.6), where each anti-model Xi , i = 1,...,4, is computed,

respectively, by

pU|L)=pU|Q), (2.5)

pWU [%y) = max p(U |A,), (2.6)

p<U|Xg>=§Zp(U ), @.7)
and

p - ey I 8)

As a result, for Eq. (1.7), each+-target speaker has the following sequence of background

models, {A,,A,,A;,A,}. We denote systems that combine multiple anti-models as hybrid

anti-model systems.

2.2. Gradient-based Minimum Verification Error Training

After representing ¥(+) as a trainable combination of likelihoods, the task becomes a matter of
solving the associated weights. To obtain an optimal set of weights, we propose using

minimum verification error (MVE) training [Chou 2003, Rosenberg 1998].

The concept of MVE training stems from MCE training, where the former could be a

special case of the latter when the classes to be distinguished are binary. To be specific,
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consider a set of class discriminant functions g(U), i = 0,1,..., M - 1. The misclassification

measure in the MCE method [Juang 1997] is defined as

T g

d;(U)=-g;(U)+ log{ﬁ D explg; (U)U]} , 2.9)

where 77 1s a positive number. [f M =2, n=1, and

logp(U |A) ifi=0
g,U)= —_— (2.10)
logp(U | M) ifi=1,
then d,(U) is reduced to the mis-verification measure defined in the MVE method:
dU) = 4W)=-L0) ?fUEHO (2.11)
dU)=LU) ifUeH,

where L(U) is the logarithmic LR. We further express L(U) as the following equivalent test

=0 ‘dccept H,
<0 ‘accept H,,

L(U) =log p(U | 1) -log p(U | X)—a{ (2.12)

so that the decision threshold € canalso-be-included in the optimization process. Then, the

mis-verification measure is converted into a value between 0 and 1 using a sigmoid function

1

B = e d@y)

(2.13)

where ¢ is a slope of the sigmoid function sg(-).

Next, we define the loss of each hypothesis as the average of the mis-verification

measures of the training samples

(. = L > sgdU)), (2.14)

i UeH,;

where ¢y denotes the loss associated with false rejection errors, ¢, denotes the loss associated

with false acceptance errors, and Ny and N, are the numbers of utterances from true speakers
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and impostors, respectively. Finally, we define the overall expected loss as
D=x,l,+x/,, (2.15)
where xy and x; indicate which type of error is of greater concern in a practical application.

Accordingly, our goal is to find the weights w; in Eq. (2.1) and Eq. (2.2) such that Eq.

(2.15) can be minimized. This can be achieved by using the gradient descent algorithm [Chou

2003]. To ensure that the weights satisfy ZZIWZ. =1, we solve w; by means of an

intermediate parameter ¢;, where

__oXp@) (2.16)

N b
> exp(a,)
j=1

i

which is similar to the strategy used in [Juang 1997]. Parameter ¢; is iteratively optimized

using
o R L (2.17)

where o is the step size, and

oD ol, o,
=X, +Xx,
oa. oa. oa.

1 1 1

ol, Osg od OL iy ol, Osg od oL

x — —_—
“Osg 0d OL da, ~'asg od OL Oa,

| o (2.18)
=X 3 > {a - sg(~LU))1 - sg(~LU ))]-K— aj}

0 UeH,

i

1 oL
X D {a -sg(LU)I - Sg(L(U))]‘a—a} :

1 UeH, i

where

J

.M2

oL (oL ow ) foL
oa, “S\ow, oo, | ow,

J= i J

w.a—L}. (2.19)

J
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If WAC is used, then

;W—L:%log[ZWp(UM ] AL, (2.20)
B S, pWUIA,)

If WGC is used, then

a _- (Zw log p(U |, J —log p(U | &,). (2.21)

aw 8w =

The threshold @1in Eq. (2.12) can be estimated using

o =" — 58—D (2.22)
00

where

ob _ol, Osg od 8L+ oty Osg.70d oL

50 osg od oL 06 ' &g lod oL 08
- T asgLON S UON 5, <= Y ase (WO -se L)),

0 Uetl, Y UeH,
(2.23)
In our implementation, the overall expected loss is set as
D=C, xlyx P Target + Crusentarm < 1 X (1= aréet) (2.24)
Eq. (2.24) simulates the Detection Cost Function (DCF) [Van Leeuwen 2006]
Coer = Cuiss X Putiss X Prarger + Crassestam X Prassestarm X 1= Prarger ) (2.25)

where Cy, denotes the cost of the miss (false rejection) error; Cruisesiarm denotes the cost of

the false alarm (false acceptance) error; Py = /o is the miss (false rejection) probability;

Praiseaiarm = ?1 1s the false alarm (false acceptance) probability; and Pruge 1s the a priori

probability of the target speaker.
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2.3. Evolutionary Minimum Verification Error Training

As the gradient descent approach may converge to an inferior local optimum, we propose an
evolutionary MVE (EMVE) training method that uses a genetic algorithm (GA) to train the
weights w; and the threshold € in WAC- and WGC-based LR measures. It has been shown in
many applications that GA-based optimization is superior to gradient-based optimization,

because of GA’s global scope and parallel searching power.

Genetic algorithms belong to a particular class of evolutionary algorithms inspired by the
process of natural evolution [Eiben 2003]. As shown in Fig. 2.1, the operators involved in the
evolutionary process are: encoding, parent selection, crossover, mutation, and survivor
selection. GAs maintain a population of candidate solutions and perform parallel searches in

the search space via the evolution of these candidate solutions.

To accommodate GA to EMVE training, the -fitness function of GA is set as the

reciprocal of the overall expected-loss P defined in Eq. (2.15), where x,=C,,, %P, and

Target

X, = Croontam X (A= Py,....) . The details of the GA operations in EMVE training are described

arget

in the following.

Parent selection
»  Parents

Initialization
Crossover
L )
Population
Mutation
\j
Termination \J
. : Offspring
Survivor selection

Fig. 2.1. The general scheme of a GA.
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1) Encoding: Each chromosome is a string {a,,,,...,a,,0} of length N + 1, which is the

concatenation of all intermediate parameters ¢; in Eq. (2.16) and the threshold fin Eq. (2.12).

Chromosomes are initialized by randomly assigning a real value to each gene.

2) Parent selection: Five chromosomes are randomly selected from the population with
replacement, and the one with the best fitness value (i.e., with the smallest overall expected
loss) is selected as a parent. The procedure is repeated iteratively until a pre-defined number
(which is the same as the population size in this study) of parents is selected. This is known as

tournament selection [Eiben 2003].

3) Crossover: We use the N-point crossover [Eiben 2003] in this work. Two chromosomes
are randomly selected from the parent population with replacement. The chromosomes can
interchange each pair of their ,genes in_the same positions according to a crossover

probability pc.

4) Mutation: In most cases, the function of the mutation operator is to change the allele of the
gene randomly in the chromosomes. For example, while mutating a gene of a chromosome,
we can simply draw a number from a normal distribution at random, and add it to the allele of
the gene. However, the method does not guarantee that the fitness will improve steadily. We
therefore designed a new mutation operator, called the one-step gradient descent operator
(GDO). The concept of the GDO is similar to that of the one-step K-means operator (KMO)
[Krishna 1999; Lu 2004; Cheng 2006], which guarantees to improve the fitness function after

mutation by performing one iteration of the K-means algorithm.

The GDO performs one gradient descent iteration to update the parameters ¢, i = 1,

2, ..., N as follows:

a =a’ -6—, (2.26)



ld

new
i

where " and o are, respectively, the parameter ¢; in a chromosome after and before

mutation; o is the step size ; and S—Dis computed by Eq. (2.18). Similarly, the GDO for
.

1

the threshold @1is computed by

9" =" —5—, (2.27)

where 6" and 0°“ are, respectively, the threshold @ in a chromosome after and before

mutation; and Z_I; is computed by Eq. (2.23).

5) Survivor selection: We adopt the generational model [Eiben 2003] in which the whole

population is replaced by its offspring.

The process of fitness evaluation, parent. selection, crossover, mutation, and survivor
selection is repeated following-the principle of sutvival of the fittest to produce better
approximations of the optimal solution. Accordingly, it is hoped that the verification errors
will decrease from generation to generation. When the maximum number of generations is

reached, the best chromosome in the final population is taken as the solution of the weights.

As the proposed EMVE training method searches for the solution in a global manner, it
is expected that its computational complexity is higher than that of the gradient-based MVE
training. Assume that the population size of GA is P, while the numbers of iterations (or
generations) of gradient-based MVE training and EMVE training are k; and k», respectively.
The computational complexity of EMVE training is about Pky/k; times that of gradient-based
MVE training. In our experiments (as shown in Fig. 2.2), the number of generations required
for the convergence of EMVE training is roughly equal to the number of iterations required

for the convergence of gradient-based MVE training; hence, the EMVE training roughly
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requires P times consumption of the gradient-based MVE training.

2.4. Experiments and Analysis

We evaluated the proposed approaches via speaker verification experiments conducted on
speech data extracted from the Extended M2VTS Database (XM2VTSDB) [Messer 1999].
The first set of experiments followed Configuration II of XM2VTSDB, as defined in [Luettin
1998]. The second set of experiments followed a configuration that was modified from
Configuration II of XM2VTSDB to conform to NIST Speaker Recognition Evaluation (NIST

SRE) [Przybocki 2007; Van Leeuwen 2006].

In the experiments, the population size of the GA was set to 50, the maximum number of
generations was set to 100, and-the crossover probability pc was set to 0.5 for the EMVE
training; the gradient-based MVE training-for-the WAC and WGC methods was initialized
with an equal weight, w;, and the threshold @was set to 0. For the DCF in Eq. (2.25), the costs
Chuiss and Cruiseiarm Were both set to 1, and the a priori probability Pr,.q., was set to 0.5. This
special case of DCF is known as the Half Total Error Rate (HTER) [Lindberg 1998]. All the
experiments were conducted on a 3.2 GHz Intel Pentium IV computer with 1.5 GB of RAM,

running Windows XP.

2.4.1. Evaluation based on Configuration Il

In accordance with Configuration II of XM2VTSDB, the database was divided into three

subsets: “Training”, “Evaluation”™, and “Test”. We used the “Training” subset to build each

" This is usually called the “Development” set by the speech recognition community. We use “Evaluation” in

accordance with the configuration of XM2VTSDB.
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target speaker’s model and the background models. The “Evaluation” subset was used to
optimize the weights w; in Eq. (2.1) or Eq. (2.2), along with the threshold &. Then, the speaker
verification performance was evaluated on the “Test” subset. As shown in Table 2.1, a total of
293 speakers’ in the database were divided into 199 clients (target speakers), 25 “evaluation
impostors”, and 69 “test impostors”. Each speaker participated in four recording sessions at
about one-month intervals, and each recording session consisted of two shots. In each shot,

the speaker was prompted to utter three sentences:

a) “0123456789”.
b) “5069281374”.

c) “Joe took father’s green shoe bench out”.

Table 2.1.  Configuration IT of XM2VTSDB.

Session | Shot+ 199 clients| 25 impostors | 69 impostors
1 1
2 Training
1
2 2
Evaluation Test
1 .
3 5 Evaluation
4 ! Test
2

Each utterance, sampled at 32 kHz, was converted into a stream of 24-order feature vectors by
a 32-ms Hamming-windowed frame with 10-ms shifts; and each vector consisted of 12

Mel-scale frequency cepstral coefficients [Huang 2001] and their first time derivatives.

We used 12 (2x2x3) utterances/client from sessions 1 and 2 to train each client model,

" We omitted 2 speakers (ID numbers 313 and 342) because of partial data corruption.
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represented by a GMM with 64 mixture components. For each client, we used the utterances
of the other 198 clients in sessions 1 and 2 to generate the world model, represented by a
GMM with 512 mixture components. We then chose B speakers from those 198 clients as the
cohort. In the experiments, B was set to 50, and each cohort model was also represented by a
GMM with 64 mixture components. Table 2.2 summarizes all the parametric models used in

each system.

To optimize the weights, w;, and the threshold, &, we used 6 utterances/client from
session 3 and 24 (4x2x3) utterances/evaluation-impostor over the four sessions, which
yielded 1,194 (6x199) client samples and 119,400 (24x25x199) impostor samples. To speed
up the gradient-based MVE and EMVE training processes, only 2,250 impostor samples
randomly selected from the total of 119,400 samples were used. In the performance
evaluation, we tested 6 utterances/client ifi'session 4.and 24 utterances/test-impostor over the

four sessions, which involved 1,194 (6x199) client trials and 329,544 (24x69x199) impostor

trials.
Table 2.2. A summary of the parametric models used in each system.
Hy H,
System a 64-mixture client GMM | a 512-mixture world model B 64-mixture cohort
GMMs

Lusm V \
LMax \/ \/
Lasi V \
ALCko V N
WGC v v v
WAC v v N

A. Experiment results

First, we compared the learning ability of gradient-based MVE training and EMVE training in
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the proposed WGC- and WAC-based LR measures. The background models comprised either
(1) the world model and the 50 closest cohort models (“w_50c¢”), or (ii) the world model and
the 25 closest cohort models, plus the 25 farthest cohort models (“w_25c¢ 25f”). The WGC-

and WAC-based LR systems were implemented in four ways:

a) Using gradient-based MVE training and “w 50¢” (“WGC _MVE w 50c”;
“WAC_MVE w_50c¢”),

b) Using gradient-based MVE training and “w 25c¢ 25" (“WGC_MVE w_25c 25f”;
“WAC _MVE w_25c 25f),

¢) Using EMVE training and “w_50c¢” (“WGC_EMVE w_50¢”; “WAC_EMVE w_50c¢”),
and

d) Using EMVE training and “w,25c 2517 (“WGC_EMVE w 25c 25f7;

“WAC_EMVE w 25¢_25f).

Figs. 2.2(a) and 2.2(b) show the learning curves of different MVE training methods for WGC
and WAC on the “Evaluation” subset, respectively, where
“WGC_EMVE w 50c¢_withoutGDO” and “WGC_EMVE w 25c¢ 25f withoutGDO” denote
the EMVE training algorithms that use the conventional mutation operator, which changes the
allele of the gene in a chromosome at random, while the others are based on the GDO
mutation. From Fig. 2.2, we observe that the GDO-based EMVE training method reduces the
overall expected loss more effectively and steadily than the EMVE training method without

GDO and the gradient-based MVE training method.

For the performance comparison, we used the following LR systems as our baselines:

a) Lupm(U) (“Lubm”),

b) Lamax(U) with the 50 closest cohort models (“Lmax_50c”),
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¢) Lgeo(U) with the 50 closest cohort models (“Lgeo_50c”),
d) Lgeo(U) with the 25 closest cohort models and the 25 farthest cohort models

(“Lgeo_25c 25f7),

WEC_MWWVE_w S0c
WEC MVE w_25c_ 25 u
WiEC EMVE w S0c
WEC EMVE _w S0c_withoutGDO i
WIEC_EMVE_w 260 25f

WIEC_EMYE_w_25¢c 251 withautGDO

LEREES

averall expected loss

nurmber of generations or iterations

(a) WGC methods

0.095 | —&— WAL _MVE_w &0c i
WAL MVE w 25c 25(

—— WAL _EMVE_w_50c

0.09 b B WAL _EMVE_w_25c_25f |4

0.085

0.05

0.075"H

averall expected loss

0.07

0.085

0 5 0 15 20 25 30 3540 5 =0
number of generations or iterations
(b) WAC methods

Fig. 2.2. The learning curves of gradient-based MVE and EMVE for the “Evaluation” subset

in Configuration II.
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e) La:i(U) with the 50 closest cohort models (“Lari_50c¢”), and
f) Lai(U) with the 25 closest cohort models and the 25 farthest cohort models

(“Lari_25¢_25f).

Fig. 2.3 shows the Detection Error Tradeoff (DET) curves [Martin 1997] obtained by
evaluating the above systems using the “Test” subset, where Fig. 2.3(a) compares the
WGC-based approach and the geometric mean approach, while Fig. 2.3(b) compares the
WAC-based approach and the arithmetic mean approach. From the figure, we observe that all
the WGC-based LR systems outperform the baseline LR systems “Lubm”, “Lmax 50c¢”,
“Lgeo 50c”, and “Lgeo 25c¢ 25f”, while all the WAC-based LR systems outperform the
baseline LR systems “Lubm”, “Lari_50c”, and “Lari_25c 25f”. From Fig. 2.3(a), we observe
that “Lgeo 25c¢ 25f” yields the poorest performance. This is because the heuristic geometric
mean can produce some singulat scores if any. cohort model A; is poorly matched with the
input utterance U, i.e., p(U| A;) = 0. In‘contrast, the results show that the WGC-based LR
systems sidestep this problem with“the.aid of the ‘weighted strategy. Figs. 2.3(a) and 2.3(b)
also show  that “WGC_EMVE w_50c¢”, “WGC_EMVE w 25¢ 2517, and
“WAC_EMVE w 25c¢ 25f” outperform “WGC MVE w 50c¢”, “WGC_MVE w_25c 2517,
and “WAC_MVE w 25c¢ 25f”, respectively. However, there is no significant difference

between “WAC MVE w_50c¢” and “WAC_EMVE w_50c”.

In addition to the above systems, we also evaluated the WAC- and WGC-based LR
measures using the hybrid anti-model defined in Eq. (2.4). The hybrid anti-model comprised
five conventional anti-models extracted from “Lubm”, “Lmax 50c¢”, “Lgeo 50c”,
“Lari_50c”, and “Lari 25c 25f”. Note that the anti-model of “Lgeo 25c¢ 25f” was not
included because of its poor performance. The hybrid anti-model systems were implemented

in the following ways:
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a) Using WAC and gradient-based MVE training (“WAC_MVE 5anti”),
b) Using WGC and gradient-based MVE training (“WGC_MVE 5anti”),
¢) Using WAC and EMVE training (“WAC_EMVE _5anti”), and

d) Using WGC and EMVE training (“WGC_EMVE S5anti”).

Fig. 2.4 compares the performance of the hybrid anti-model systems with all the baselines
systems, evaluated on the “Test” subset in DET curves. Clearly, all the hybrid anti-model

systems using either WAC or WGC methods outperform any baseline LR system with a

single anti-model.

Speaker Verification Pedformance
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(a) Geometric mean versus WGC
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Fig. 2.3. DET curves for the “Test”subset in Configuration II.
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Fig. 2.4. Hybrid anti-model systems versus all baselines: DET curves for the “Test” subset in

Configuration II.
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B. Discussion

Table 2.3 summarizes the above experiment results in terms of the DCF, which reflects the
performance at a specific operating point on the DET curve. For each baseline system, the
value of the decision threshold & was carefully tuned to minimize the DCF in the
“Evaluation” subset, and then applied to the “Test” subset. However, the decision thresholds
of the proposed WAC- and WGC-based LR measures were optimized automatically using the

“Evaluation” subset, and then applied to the “Test” subset.

Table 2.3.  DCFs for the “Evaluation” and “Test” subsets in Configuration II.

System min DCF for “Evaluation” DCF for “Test”
Lubm 0.0651 0.0545
Lmax 50c 0.0762 0.0575
Lari 50c 0.0677 0.0526
Lari 25c¢ 25f 0.0587 0.0496
Lgeo 50c 0.0749 0.0542
WGC _MVE w 50c 0.0576 0.0450
WGC_EMVE w_50c 0:0488 0.0417
WGC _MVE w 25c¢ 25f 0.0633 0.0478
WGC EMVE w 25c 25f 0.0493 0.0429
WAC MVE w 50c 0.0576 0.0460
WAC _EMVE w_ 50c 0.0571 0.0443
WAC MVE w 25c¢ 25f 0.0573 0.0462
WAC EMVE w 25c 25f 0.0543 0.0444
WGC _MVE Santi 0.0588 0.0475
WGC_EMVE S5anti 0.0568 0.0460
WAC _MVE Santi 0.0634 0.0480
WAC EMVE S5anti 0.0597 0.0469

Several conclusions can be drawn from Table 2.3. First, all the proposed WAC- and
WGC-based LR systems with either the hybrid anti-model or the background model set (the
world model plus a cohort) outperform all the baseline LR systems. Second, the performances
of the proposed systems using the background model set are slightly better than those

achieved using the hybrid anti-model. Third, the performances of the WAC- and WGC-based
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LR systems are similar. Fourth, EMVE training is better than MVE training. Among the
systems, “WGC_EMVE w_50c” achieves the best performance with a 15.93% relative
improvement in terms of the DCF for the “Test” subset, compared to the best baseline system

“Lari_25c 25f”.

2.4.2. Evaluation based on the NIST SRE-like Configuration

To conform to NIST SRE [Przybocki 2007; Van Leeuwen 2006], we conducted another series
of experiments on XM2VTSDB, which was re-configured as shown Table 2.4. The 293
speakers in XM2VTSDB were divided into 100 clients (target speakers), 100 background
speakers, 24 “development impostors”, and 69 “test impostors”. As shown in the table, the
“Development” set comprised twoSubsets: “Development training” and “Development test”.
In the “Development training” subset, we pooled the utterances of 100 background speakers
from sessions 1 and 2 to buildia worldsmodely (UBM), represented by a GMM with 512
mixture components. For each’/ background speaker, we used 12 (2x2x3)
utterances/background-speaker from sessions 1 and 2 to generate his/her model. The cohort
for each background speaker was selected from the other 99 background speakers. In the
“Development test” subset, to estimate the weights w; and the threshold 6 we used 12
(2x2x3) utterances/background-speaker from sessions 3 and 4 as well as 24 (4x2x3)
utterances/development-impostor over the four sessions. This yielded 1,200 (12x100) client
samples and 57,600 (24x24x100) impostor samples. To speed up the gradient-based MVE
and EMVE training processes, only 5,760 impostor samples randomly selected from the total

of 57,600 samples were used.

For each client (target speaker), we used 12 (2x2x3) utterances/client from sessions 1
and 2 to generate the client GMM. The cohort models for each client were selected from the
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GMMs of the 100 background speakers in the “Development training” subset. The parametric
models used in each system were the same as those in Table 2.2. In addition, we implemented
two current state-of-the-art systems in the text-independent speaker verification task, namely
T-norm [Auckenthaler 2000] and “Lubm_MAP”. “Lubm_MAP” is based on the UBM-MAP
adaptation method [Reynolds 2000]; each client model with 512 mixture Gaussian
components was adapted from the UBM via the maximum a posteriori (MAP) estimation
[Gauvain 1994] according to the speaker’s 12 (2x2x3) “Training” utterances from sessions 1

and 2.

In the performance evaluation, we tested 12 (2x2x3) utterances/client from sessions 3
and 4, and 24 (4x2x3) utterances/test-impostor over the four sessions, which involved 1,200

(12x100) client trials and 165,600 (24x69x100) impostor trials, respectively.

Table 2.4. The NIST;SRE-like configuration of XM2VTSDB.

Session | Shot| 100 clients |100 background speakers| 24 impostors | 69 impostors

1

! 2 Training Development training

) 1 |(client models) (UBM, a cohort) Development
2
1 test Test

3 2 Test Development test (wiand 6)
1 (w;and 0)

4 2

A. Experiment results

As in Section 2.4.1, we implemented four WGC-based LR systems: “WGC_MVE w_50c”,
“WGC_EMVE w 50c¢”, “WGC_MVE w_25c¢ 25f’, and “WGC_EMVE w_25c 25f”; four
WAC-based LR systems: “WAC _MVE w 50c”, “WAC _EMVE w 50c”,

“WAC MVE w 25c¢ 25f°, and “WAC _EMVE w 25c¢ 25f’; and four hybrid anti-model
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systems:  “WAC _MVE Santi”, “WAC EMVE 5Santi”, “WGC MVE 5anti”, and
“WGC_EMVE S5anti”. For the performance comparison, we used five conventional LR
systems: “Lubm”, “Lmax 50c”, “Lgeo 50c”, “Lari 50c”, and “Lari 25c¢ 25f”, plus two
state-of-the-art systems: “Lubm_MAP” and the T-norm system with the 50 closest cohort

models (“Tnorm_50c”), as our baselines.

Since the experiment results in Section 2.4.1 show that the performance of the proposed
WGC- and WAC-based LR systems using EMVE training is better than that of the systems
using gradient-based MVE training, Fig. 2.5 only compares the performance of the proposed
WGC- and WAC-based LR systems using EMVE training with two state-of-the-art systems
and two best baseline systems in Section 2.4.1, namely “Lubm” and “Lari 25c 25f”,
evaluated on the “Test” subset in DET curves. From the figure, we observe that all the
proposed WGC- and WAC-based LR _systems using EMVE training outperform
“Lubm_MAP”, “Tnorm_ 50c”, =‘LLubm”, and“Lari-25c 25f”. Interestingly, the baseline
system “Lubm” outperforms “Lubm MAP? “hich'is widely recognized as a state-of-the-art
method for the text-independent speaker yerification task. This may be because the training

and test utterances in XM2VTSDB have the same content.

Table 2.5 summarizes the experiment results for all systems in terms of the DCF. For
each baseline system, the decision threshold & was tuned to minimize the DCF on the
“Development test” subset, and then applied to the “Test” subset. The decision thresholds of
the proposed methods were optimized automatically using the “Development test” subset, and
then applied to the “Test” subset. From Table 2.5, it is clear that all the proposed WGC- and
WAC-based LR systems using either gradient-based MVE training or EMVE training
outperform all the conventional LR systems “Lubm”, “Lmax_50c¢”, “Lgeo 50c”, “Lari_50c”,
and “Lari 25c 25f”, and two state-of-the-art systems “Lubm_ MAP” and “Tnorm_50c”. The

DCFs for the “Test” subset demonstrate that “WGC_EMVE w_50c¢” achieved a 13.01%
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relative improvement over “Tnorm_50c” — the best baseline system.

Speaker Yerification Peformance
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Fig. 2.5. DET curves for:the“Test” subset in the NIST SRE-like configuration.

We also evaluated the training and verification time of the above systems. In the offline
training phase, in addition to training 100 background speaker models and a UBM, the
proposed WAC and WGC methods need to train the weight w;. From the fourth column of
Table 2.5, we observe that the EMVE training is slower than the gradient-based MVE training
and the training time of WGC is slightly faster than that of WAC. The computational cost in
gradient-based MVE or EMVE training mainly comes from the calculation of the likelihoods
of each training utterance with respect to the background speaker models and the UBM and
the selection of the cohort models for each background speaker. The fifth column of Table 2.5
shows the training time for enrolling a new target speaker. “Lubm_ MAP” and “Lubm” need
less enrollment time than the other systems because they need not select the cohort models for

the new target speaker. The last column of Table 2.5 shows the verification time for an input
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test utterance. The average duration of the test utterances is around 1.5 sec. As expected,
“Lubm_MAP” is the fastest method, since only one background model (i.e., UBM) is
involved and the fast scoring scheme [Reynolds 2000] is used. Although the proposed
systems are slightly slower than the baseline systems because both the cohort models and the

UBM are involved, they are still capable of supporting a real-time response.

Table 2.5. DCFs for the “Development test” and “Test” subsets, together with the running

time evaluation in the NIST SRE-like configuration.

min DCF for Training time for the Training time for Verification

« DCF for . . . . .
System Development “Test” weights w; in enrolling a target time for an input

test” WAC/WGC (offline)  speaker test utterance
Lubm_ MAP 0.0704 0.0601 5.79sec 0.08sec
Lubm 0.0575 0.0573 7.87sec 0.12sec
Tnorm_50c 0.0607 0.0569 27.46sec 0.75sec
Lmax_50c 0.0732 00734 27.46sec 0.75sec
Lari 50c¢ 0.0653 0.0600 27.46sec 0.75sec
Lari 25¢ 25f 0.0611 0:0588 27.46sec 0.75sec
Lgeo 50c 0.0758 0.0692 27.46sec 0.75sec
WGC _MVE w 50c 0.0578 0.0529 3hr 06min 22.31sec 27.46sec 0.86sec
WGC _EMVE w 50c 0.0479 0,0495 3hr 22min 15.38sec 27.46sec 0.86sec
WGC_MVE w_25c¢ 25f 0.0610 0,0570 3hr 06min 22.31sec 27.46sec 0.86sec
WGC EMVE w 25c¢ 25f  0.0485 0.0509 3hr:22min 15.40sec 27.46sec 0.86sec
WAC MVE w 50c 0.0575 0.0546 3hr 06min 25.09sec 27.46sec 0.86sec
WAC _EMVE w 50c 0.0556 0.0533 3hr 24min 50.14sec 27.46sec 0.86sec
WAC _MVE w 25c¢ 25f 0.0564 0.0549 3hr 06min 25.09sec 27.46sec 0.86sec
WAC EMVE w 25c 25f  0.0543 0.0527 3hr 24min 50.15sec 27.46sec 0.86sec
WGC _MVE Santi 0.0583 0.0541 3hr 06min 15.58sec 27.46sec 0.86sec
WGC _EMVE Santi 0.0576 0.0514 3hr 09min 54.53sec 27.46sec 0.86sec
WAC_MVE S5anti 0.0610 0.0556 3hr 06min 15.72sec 27.46sec 0.86sec
WAC EMVE S5anti 0.0587 0.0566 3hr 10min 15.70sec 27.46sec 0.86sec
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Chapter 3

Improving the Characterization of the
Alternative Hypothesis Using Kernel

Discriminant Analysis

In this chapter, we further propose simproving the characterization of the alternative
hypothesis by designing two decision;functions based on WAC and WGC. We can regard the
proposed decision functions as nonlinear discriminant classifiers. The parameters associated
with the classifiers are then optimized using two _kernel discriminant analysis techniques,
namely, the Kernel Fisher Discriminant (KFD) [Mika 1999, 2002] and Support Vector
Machine (SVM) [Burges 1998]. The proposed approaches have two advantages over existing
methods. The first is that they embed a trainable mechanism in the decision functions. The
second is that they convert variable-length utterances into fixed-dimension characteristic

vectors, which are easily processed by kernel discriminant analysis.

In recent years, a number of SVM-based speaker verification techniques have been
developed [Campbell 2006, 2007; Bengio 2001; Wan 2005]. One of the main issues with
using SVMs for speaker verification is that the number of training samples represented by
frames is usually too large to handle efficiently. For this reason, the concept of a sequence
kernel [Campbell 2006, 2007; Bengio 2001; Wan 2005] was proposed to compare speech
utterances at the sequence level instead of the frame level. However, constructing a proper
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sequence kernel for utterance-based SVMs is an issue that requires further investigation. In
this work, as the proposed WGC and WAC methods convert variable-length utterances into
fixed-dimension characteristic vectors, the derived kernel processes play the same role as the
sequence kernel method, but they have the advantage of not having to specifically design the

kernel functions.

In addition, most existing SVM-based speaker verification approaches only use a single
background model, i.e., the world model, instead of multiple background models, to
characterize the alternative hypothesis. For example, Bengio et al. [Bengio 2001] proposed

the following decision function:
Lpengio ) =2, log p(U | 1) —a, log p(U | Q) +a,, (3.1

where a;, &, and a; are adjustablesparameters.estimated using SVM. The input to SVM

comprises the two-dimensional ¥ector [logpU | 1) -log p(U |Q)]'. An extended version of

Eq. (3.1) using the Fisher kernel and, the”ER score-space kernel for SVM was investigated in
[Wan 2005]. In contrast, our framéwerk integrates more available information from multiple
background models into a characteristic vector as the input to SVM, which makes it easier to
distinguish one hypothesis from another. The results of speaker verification experiments
conducted on both the XM2VTSDB and the ISCSLP2006-SRE database show that the

proposed kernel-based methods outperform all of the conventional approaches.

The remainder of this chapter is organized as follows. Section 3.1 introduces the design
of the decision function used in our methods. Section 3.2 presents the kernel discriminant
analysis techniques that we use to find the weight vector. Sections 3.3 describe the concepts

related to the characteristic vector. Then, in Section 3.4, we detail the experiment results.
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3.1. The Proposed Decision Functions

To handle the speaker-verification problem more effectively, it is necessary to devise a
decision function with a trainable mechanism, such that one hypothesis can be optimally
separated from another. To this end, we formulate the characterization of the alternative
hypothesis as a problem of optimally combining the discriminative information derived from
a set of pre-trained background models, and design the decision function based on two
perspectives: a weighted geometric combination (WGC) and a weighted arithmetic

combination (WAC) of the likelihoods of the background models.

We begin by rewriting the function ¥(:) in Eq. (2.2) in terms of WGC as

N T/(Wy+Wsy +.. AWy )
Y(pU [4,)),..., pU IKN))=[H pU |}\’i)WiJ (3.2)
il
By substituting Eq. (3.2) into Eq. (1.7), and taking the logarithmic form, we obtain
N R THW, +Wy+. Wy )
pU |2}
Lycc(U) =10 —
waecU) g(l:[( pU | 1)
_ i p(U |2) [=log8 accept 53
W +W, +...+ W T p(U |X) |<log@ reject, '
| =6, accept
=w'x .
<0 reject,

where w=[w,w,..w,] 1s an N x 1 weight vector, the new threshold

60, = (W, + W, +...+W,)logd, and x is an N x 1 vector in the space R" expressed as

PU %) EpU R T E U k)

I (3.4)

The implicit idea in Eq. (3.4) is that the input utterance U can be represented by a

characteristic vector x.
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Alternatively, we can also rewrite the function W(+) in Eq. (2.1) in terms of WAC as

U 1) PU [ ) = > pU [ ), (3.5)

By substituting Eq. (3.5) into Eq. (1.7) and reversing Eq. (1.7), we obtain

LypeU)=—— = 1 §hy BULR) [<1/0 accept
WAC LU) W +W, +...+W, 55 " pU L) |>1/0 reject, 5o
.| <6, accept .
=w'x
> 6, reject,

where w=[w,w,..w,] is an N x 1 weight vector, the new threshold

0, = (W, +W, +...+W,)/6, and x is an N x 1 characteristic vector in the space R" , expressed

by

pUIA) DD, pU [2,)
p@d)- U R = pU )

x=

T. (3.7)

3.2. Kernel Discriminant Analysis

The process of representing an utterance U as a characteristic vector x in Eq. (3.4) or Eq. (3.7)
can be regarded as x = ®(U), where ®(-)" is a nonlinear mapping function. If we replace the
threshold 6, in Eq. (3.3) or 6, in Eq. (3.6) with a bias W, the decision functions in Egs.

(3.3) and (3.6) can be rewritten as
LU)=woU)+w,, (3.8)

where L(U) forms a nonlinear discriminant classifier for U. The classifier translates the goal

of solving an LR test problem into one of optimizing w and Wy, such that the utterances of
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target speakers and non-target speakers can be separated. To realize this classifier, we need
three distinct data sets: one for generating each target speaker’s model, one for generating the
background models, and one for optimizing w and Wy. Since the bias W, plays the same role as
the decision threshold & of the LR test, which can be determined through a tradeoff between

the false acceptance and the false rejection rates, our main goal here is to find w.

To solve the weight vector w, we propose using two kernel-based discriminant
techniques, namely the Kernel Fisher Discriminant (KFD) and Support Vector Machine
(SVM), because of their ability to separate samples of target speakers from those of

non-target speakers efficiently.

3.2.1. Kernel Fisher Discriminant (KFD)

Suppose that we have N; training-utterances {U;,..,U :li} for hypothesis Hj, i = 0 or 1. The goal

of KFD is to locate the weight.vector w-that maximizes the between-class scatter, while
minimizing the within-class scatter. According to [Mika 1999], the solution of w must lie in the

span of all mapped training utterances; therefore, we can represent w as
w=27,0U)), (3.9)

where {Uj, 1 <j < J} = {U,U),. Ul U U, ULy, J =g + ny, and p; is the

combination coefficient. Substituting Eq. (3.9) into Eq. (3.8), we obtain
J J
LU) =D 7,®U,YOU)+wW, = > 7 kU, ,U)+W,, (3.10)
j=l j=1

where the inner product of two vectors ®(U;) and ®(U) is expressed by a kernel function k(U;,

' More precisely, ®(U) should be denoted by ®(U; A; Ay, Ay, ..., An).
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U). Such a kernel function is also called the sequence kernel [Campbell 2006], because it
takes two utterance sequences, Uj and U, as inputs. The goal therefore changes from finding w

to finding y =[y, 7, ...7,] , which maximizes

[(a)= My, (3.11)
TNy
M and N are computed by
M =(m, —n)(n, -n,) (3.12)
and
N=>K({d,-1)K;, (3.13)

i=0,1
respectively, where n; is an Jx1 vector with €lement (n;), =(1/ ni)Z?‘zlk(Us,U}); K is an

Jxn; matrix with element (Ki)sj = k(US,U}); Ini 1S-an-n;xn; identity matrix; and 1n, is an njxn;

matrix in which all elements are equalto 1/n;. Eollowing [Mika 2002], the solution to y, which

maximizes I'(y) defined in Eq. (3.11), is‘takenas the leading eigenvector of N"'M.

3.2.2. Support Vector Machine (SVM)

The weight vector w can also be solved with SVM. In this case, the goal is to find a
separating hyperplane that maximizes the margin between the classes. Following [Burges

1998], w can be expressed as
J
j=l1

which yields
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LU) =Dy AkU,U) +w, (3.15)
j=1

where each training utterance Uj, j = 1, 2,..., J, is labeled by either y ; =1 (a null hypothesis)
or y;=-1 (an alternative hypothesis). The optimal coefficients B =[5 B,... 5] can be

determined by maximizing the objective function

QB =2 5,5 XN AFKUL), (3.16)
j=1

i=1 j=1
subject to the constraints z;yj B;=0 and 0<pB;<C,, V], where C, is a penalty

parameter [Burges 1998]. This process can be performed with quadratic programming
techniques [Vapnik 1998]. Note that most elements of 3 are equal to zero, and training
samples associated with non-zero fare called support vectors. A few support vectors play a

key role in deciding the optimal margin between classes in SVM.

3.2.3. Mercer Kernels

The effectiveness of the above KFD or SVM approaches depends essentially on how the
kernel function K(-) is designed. A kernel function must be symmetric, positive definite, and
conform to Mercer’s condition [Herbrich 2002]. There are a number of kernel functions
[Herbrich 2002]. However, since we have converted speech utterances into characteristic

vectors, the kernel function takes the form
kU,,U,)=0U,)0U,) =x/'x, =k (x,,X,). (3.17)

Eq. (3.17) indicates that the sequence kernel function with two input utterances, U; and U,,
forms a dot product kernel with two input characteristic vectors, X; and x,. Alternatively, if

we use the closure property of Mercer kernels [Herbrich 2002] to form a kernel function
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(3.18)

KU,U,) = exp(_ k(U,,U))+k(U,,U,) —2k(U1,U2)j |

262

where ¢ is a tunable parameter, then kA(Ul,Uz) is equivalent to the following Radial Basis

Function (RBF) kernel with two inputs x; and xu:

20

_ _ 2
K, (x,,X,) = exp[”xl—j‘”j . (3.19)

3.3. Concepts Related to the Characteristic Vector

In this section, we compare the proposed classifiers with several approaches related to the
characteristic vector. It is worth noting'that the.major advantage of our classifiers lies in a
trainable mechanism, which tries to optimally exploit useful information from background

models, rather than make an ad hoc modification or use a combination of existing approaches.

3.3.1. Direct Fusion of Multiple LRs

The most intuitive way to improve the conventional LR-based speaker verification method
would be to fuse multiple LR measures directly. Similar to the fusion approaches in

[Ben-Yacoub 1999; Cheng 2005], we define a fusion-based LR as

, | =6 accept
Lrusion(U) = Wymnbumm(U) + Wy Ly W) + Wi Ly (U) + W L (U) = Wk . (3.20)
<0 reject,
where W = [Wypy Wy Wo W, ] and
x=[LypuU) Ly, U) L,;U) L, )] (3.21)

As with WGC and WAC, the weight vector w can be trained using KFD or SVM. A

preliminary result reported in [Chao 2006] shows that, compared to approaches that use a
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single LR, such a fusion scheme improves speaker verification performance noticeably.
However, we found that direct fusion is often dominated by one particular LR, or it is limited

by some inferior LRs.

3.3.2. Relation to the Anchor Modeling Approach

The concept of our methods is similar to that of the anchor modeling approach [Sturim 2001,
Mami 2006] used in speaker indexing and speaker identification applications. The objective of
the anchor modeling approach is to construct a speaker space based on a set of pre-trained
representative models {Aj,A,,...,An}, called anchor models. Then, any speech utterance U can

be projected into the space, and represented as a characteristic vector x [Sturim 2001],
x = [p(U [A1) p(U, jAs) s p(U [AN)]'. (3.22)

The speaker of an unknown uttetance U ¢an be identified by computing the distance between
the characteristic vector x and the typical 'vectors of the target speakers. The characteristic
vector defined in Eq. (3.22) is similar.to the characteristic vector used in this study. However,
to find the location of a target speaker in the speaker space, the anchor modeling approach only
considers the projection of the speech utterance from the target speaker, which is different from
the proposed discriminative framework. More specifically, the decision functions based on
WGC and WAC characterize a target speaker by locating the boundary that optimally separates
the characteristic vectors of a target speaker from those of non-target speakers; hence, the

proposed methods are expected to be more effective than the anchor modeling approach.
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3.4. Experiments and Analysis

We conducted the speaker-verification experiments on two databases: the XM2VTSDB and

the ISCSLP2006 speaker recognition evaluation (ISCSLP2006-SRE) database [Zheng 2006].

3.4.1. Evaluation on the XM2VTSDB

The first set of experiments was conducted on XM2VTSDB following Configuration II. We
built the world model with 256 Gaussian mixture components. The cohort size B was set to 20.
The remaining experiment setup was same as that in Section 2.4.1. Because a kernel-based
technique can be intractable when a large number of training samples are involved, we also

reduced the number of evaluation-impostor samples from 119,400 to 2,250 for estimating w.

A. Weighted Geometric Combination versus Geometric Mean

The first experiment evaluated the proposed weighted geometric combination of background
models, i.e., Lwgc(U) defined in Eq. (3.3). The set of background models was comprised of (1)
the world model and the 20 closest cohort models (“w_20c¢”), or (i1) the world model and the
10 closest cohort models, plus the 10 farthest cohort models (“w_10c_10f”). The weight
vector was optimized by kernel-based discrimination solutions (KFD or SVM). We derived

the following eight WGC-based systems:

a) KFD with k;(-) defined in Eq. (3.17) and “w_20c¢” (“WGC _dot KFD w_20c”),
b) KFD with k;(-) defined in Eq. (3.17) and “w_10c_10f” (“WGC_dot KFD w_10c_10f"),
¢) SVM with k;(+) defined in Eq. (3.17) and “w_20c¢” (“WGC_dot SVM_w_20c¢”),
d) SVM with k;(-) defined in Eq. (3.17) and “w_10c_10f” (“WGC _dot SVM_w_10c_10f),

e) KFD with kj(-) defined in Eq. (3.19) and “w_20c¢” (“WGC_RBF_KFD w 20c”),
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f) KFD with ky(+) defined in Eq. (3.19) and “w_10c_10f” (“WGC_RBF_KFD w_10c_10f"),
g) SVM with kj(+) defined in Eq. (3.19) and “w_20c¢” (“WGC_RBF_SVM_w_20c”), and

h) SVM with ka(-) defined in Eq. (3.19) and “w_10c_10f* (“WGC_RBF SVM w 10c_10f?).

Both SVM and KFD used an RBF kernel function ky(-) with 6 = 5. We used the SSVM tool

[Lee 2001] to implement the SVM experiments, where the parameter C, of SVM was set to

1.

For the performance comparison, we used three systems as our baselines:

a) LUBM(U) (“GMM—UBM”),
b) Lgeo(U) with the 20 closest cohort models (“Geo_20c”), and
¢) Lgeo(U) with the 10 closest cohortymodels plus the 10 farthest cohort models

(“Geo_10c_10f).

Fig. 3.1 shows the speaker vérification results of the above systems evaluated on the
XM2VTSDB “Test” subset in terms of Detection Etror Tradeoff (DET) curves [Martin 1997].
Figures 3.1(a) and 3.1(b) compare the DET curves derived by KFD-based systems and

SVM-based systems, respectively.

From Fig. 3.1, we observe that all the WGC-based systems with kernel functions k() or
ko(-) outperform the baseline systems “GMM-UBM”, “Geo 20c”, and “Geo 10c 10f". We
also observe that “Geo 10c_10f” in Fig. 3.1(a) yields the poorest performance. In addition,
both Fig. 3.1(a) and Fig. 3.1(b) show that the WGC-based systems with ky(-) outperform the
WGC-based systems with kj(-). Thus, in the subsequent experiments, we focused on
investigating the performance achieved by the kernel-based discrimination solutions using the

kernel function k().
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B. Weighted Arithmetic Combination versus Arithmetic Mean

The second experiment evaluated the proposed weighted arithmetic combination of
background models, i.e., Lwac(U) defined in Eq. (3.6). We implemented the WAC-based

systems using the kernel-based discrimination solution in four ways:

a) KFD with “w _20¢” (“WAC_RBF KFD w 20c”),
b) KFD with “w_10c_10f’ (“WAC_RBF KFD w 10c_10f”),
¢) SVM with “w_20¢” (“WAC_RBF _SVM_w 20¢”), and

d) SVM with “w_10c_10f* (“WAC_RBF_SVM_w_10c_10f”).

In the above cases, SVM and KFD used an RBF kernel function ky(-) with ¢ = 60. For the

performance comparison, we used three systems as our baselines:

a) LUBM(U) (“GMM-UBM”),
b) La:i(U) with the 20 closest cohort models (“Ari 20¢”), and
¢) La(U) with the 10 closest’.cohort models’ plus the 10 farthest cohort models

(“Ari_10c_10f).

Fig. 3.2 shows the results of the above systems evaluated on the XM2VTSDB “Test” subset
in terms of DET curves. Clearly, all the WAC-based systems based on either KFD or SVM
outperform the baseline systems “GMM-UBM?”, “Ari_20c¢”, and “Ari_10c_10f". We also

observe that the performances of SVM and KFD are similar.
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Fig. 3.2. Arithmetic Mean versus WAC: DET curves for the “Test” subset in XM2VTSDB.

C. Discussion

An analysis of the experiment results based on®the DCF with C,, =1, C, =1, and

Prarger =0.5 1s given in Table 3.1. In addition to the above systems, we evaluated four related

systems:

a) Lyax(U) with the 20 closest cohort models (“Max_20c”);

b) Lgengio(U) using an RBF kernel function with 6 = 10 (“GMM-UBM/SVM”);

¢) Lrusion(U) with a fusion of five baseline LR measures, namely, “GMM-UBM”, “Max_20c”,
“Ari_20c”, “Ari_10c_10f”, and “Geo_20c”, by KFD (“Fusion_KFD”); and

d) Lrusion(U) with a fusion of five baseline LR measures, namely, “GMM-UBM”, “Max_20c”,

“Ari_20c”, “Ari_10c_10f”, and “Geo_20c”, by SVM (“Fusion_ SVM”).
In the fusion systems, KFD and SVM used an RBF kernel function with ¢ = 5. For each
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approach, the decision threshold was carefully tuned to minimize the DCF using the

“Evaluation” subset, and then applied to the “Test” subset.

Table 3.1. DCFs for the “Evaluation” and “Test” subsets in the XM2VTS database

System min DCF for “Evaluation” actual DCF for “Test”
GMM-UBM 0.0633 0.0519
Max_20c 0.0776 0.0635
Ari_20c 0.0676 0.0535
Ari_10c_10f 0.0589 0.0515
Geo 20c 0.0734 0.0583
GMM-UBM/SVM 0.0590 0.0508
Fusion KFD 0.0496 0.0475
Fusion SVM 0.0505 0.0469
WGC_RBF KFD w_20c 0.0247 0.0357
WGC RBF KFD w_10c_10f 0.0232 0.0389
WGC_RBF SVM_w_20c 0.0320 0.0414
WGC RBF SVM w 10c 10f 0.0310 0.0417
WAC RBF KFD w 20c 0.0462 0.0443
WAC RBF KFD w_10c_10f 0.0469 0.0445
WAC RBF SVM w 20c 0.0460 0.0454
WAC RBF SVM w 10c=10f 0.0479 0.0450

Several conclusions can be drawn from Table 3.1. First, the two direct fusion systems,
“Fusion_KFD” and “Fusion_SVM”, as well as “GMM-UBM/SVM?”, outperform the baseline
LR systems. Second, the proposed WGC- and WAC-based systems not only outperform all
the baseline LR systems, “GMM-UBM”, “Max 20c”, “Ari_20c”, “Ari 10c_10f’, and
“Geo_20c”, they are also better than the fusion systems and the “GMM-UBM/SVM” system.
The WGC- and WAC-based SVM systems are better than the “GMM-UBM/SVM” system
because they consider multiple background models (including the world model), whereas the
“GMM-UBM/SVM?” system only considers the world model. Third, the WGC-based systems
slightly outperform the WAC-based systems. Fourth, both KFD and SVM perform well in
terms of finding nonlinear discrimination solutions. From the actual DCF for the “Test”
subset, we observe that “WGC _RBF _KFD w 20c” achieved a 30.68% relative improvement
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compared to “Ari 10c 10f” — the best baseline LR system. Table 3.2 compares the
correlation of correct and incorrect decisions between “WGC RBF KFD w 20c¢” and
“Ari_10c_10f” for the actual DCF [Van Leeuwen 2006]. Based on McNemar’s test [Gillick
1989] with a significance level = 0.001, we can conclude that “WGC RBF KFD w 20c”

performs significantly better than “Ari_10c_10f”, since the resulting P-value < 0.001.

Table 3.2. Comparison of errors made by “WGC_RBF _KFD w_20c¢” and “Ari_10c_10f,”
where P and N denote the number of positive (target speaker) trials and the number of

negative (impostor) trials, respectively. There are 1,194 P and 329,544 N in total.

) Ari 10c 10f
Trial counts =
Correct Incorrect
Cofrect 1,107P + 315,200N 32P +6,019N
WGC RBF KFD w 20c¢
- - - - Incorrect 5P + 3,056N 50P + 5,269N

3.4.2. Evaluation on the ISCSLP2006-SRE Database

We also evaluated the proposed methods on a text-independent single-channel speaker
verification task conforming to the ISCSLP2006 Speaker Recognition Evaluation
(ISCSLP2006-SRE) Plan [Chinese Corpus Consortium 2006]. Unlike the XM2VTSDB task,
the ISCSLP2006-SRE database was divided into two subsets: a “Development Data Set” and
an “Evaluation Data Set”. The “Development Data Set” contained 300 speakers. Each speaker
made two utterances, each of which was cut into one long segment, which was longer than 30
seconds, and several short segments. In the experiments, we collected each speaker’s two long
segments to build a UBM with 1,024 Gaussian mixture components, and used the two long
segments per speaker to train each speaker’s 1024-mixture GMM through UBM-MAP

adaptation. For each speaker, B speakers’ GMMs were chosen from the other 299 speakers as
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the cohort models. The remaining short segments of all the speakers were used to estimate 6,
w, and Wo. In the implementation, each short segment served as a positive sample for its
associated speaker, but acted as a negative sample for each of the 20 randomly-selected
speakers from the remaining 299 speakers. This yielded 1,551 positive samples and 31,020
(1,551x20) negative samples for estimating € or wWy. Moreover, we used 1,551 positive
samples and 1,551 randomly-selected negative samples to estimate w in the proposed

systems.

The “Evaluation Data Set” contained 800 target speakers that did not overlap with the
speakers in the “Development Data Set”. Each target speaker made one long training
utterance, ranging in duration from 21 to 85 seconds, with an average length of 37.06
seconds. This was used to generate the speaker’s 1024-mixture GMM through UBM-MAP
adaptation. For each target speaker; B speakers’»GMMs were chosen from the 300 speakers in
the “Development Data Set” as'the cohort models. In addition, there were 5,933 test
utterances (trials) in the “Evaluation-DataSet”, each of which ranged in duration from 5
seconds to 54 seconds, with an average length of 15.66 seconds. Each test utterance was
associated with the claimed speaker’s ID, and the task involved judging whether it was true or

false. The answer sheet was released after the evaluation finished.

The acoustic feature extraction process was same as that applied in the XM2VTSDB

task.

A. Experiment results

The GMM-UBM and T-norm systems are the current state-of-the-art approaches for the
text-independent speaker verification task. Thus, in this part, we focus on the performance
improvement of our methods over these two baseline systems. As with the GMM-UBM
system, we used the fast scoring method [Reynolds 2000] for likelihood ratio computation in
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the proposed methods. Both the target speaker model A and the B cohort models were adapted
from the UBM Q. Because the mixture indices were retained after UBM-MAP adaptation,
each element of the characteristic vector x was computed approximately by only considering
the C mixture components corresponding to the top C scoring mixtures in the UBM

[Reynolds 2000]. In our experiments, C was set to 5, and B was set to 20.

The experiment results of the XM2VTSDB task showed that there was no significant
performance difference between the two cohort selection methods used to construct the
characteristic vector Xx. Thus, in the following experiments, we only used one type of
characteristic vector, i.e., the vector associated with the UBM and the 20 closest cohort
models (“w_20c”), to compute WGC- and WAC-based decision functions. This yielded the

following four systems:

a) Lwac(U) using SVM with ky(-)-and “w_20e” (“WGC_RBF_SVM_w_20c”),
b) Lwac(U) using KFD with Ka(-):and “w-20¢” (“WGC _RBF_KFD_w_20c”),
¢) Lwac(U) using SVM with ky(-) and #w..20¢” (“WAC_RBF_SVM_w_20c”), and

d) Lwac(U) using KFD with ky(-) and “w_20¢” (“WAC_RBF_KFD w_20c”).

We compared the proposed systems with the GMM-UBM system, the T-norm system with
the 50 closest cohort models (“Tnorm 50c”), and Bengio et al.’s system
(“GMM-UBM/SVM?”). The kernel parameters for SVM and KFD were same as those used in
the XM2VTSDB task. Following the ISCSLP2006-SRE Plan, the performance was measured

by the DCF with C, =10, C., =1, and P,

rarger = 0-05 . In each system, the decision
threshold was tuned to minimize the DCF using the (1,551 + 31,020) samples in the
“Development Data Set”, and then applied to the “Evaluation Data Set”. Table 3.3

summarizes the minimum DCFs and the actual DCFs derived from 5,933 trials in the

“Evaluation Data Set”, and Fig. 3.3 shows the experiment results for all systems in terms of
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DET curves. It is clear that all the proposed systems outperform “GMM-UBM?”,
“Tnorm_50c”, and “GMM-UBM/SVM.” The actual DCFs in Table 3.3 show that
“WGC _RBF KFD w 20c¢” achieved a 52.72% relative improvement over “Tnorm_ 50c”.
Table 3.4 compares the correlation of correct and incorrect decisions between
“WGC_RBF KFD w 20c¢” and “Tnorm_50c¢” for the actual DCF. Based on McNemar’s test
with a significance level = 0.001, we can conclude that “WGC_RBF KFD w 20c” performs

significantly better than “Tnorm_50c”, since the resulting P-value < 0.001.

Table 3.3. Minimum DCFs and actual DCFs for the ISCSLP2006-SRE “Evaluation Data

Set”

Minimum DCFs Actual DCFs

GMM-UBM 0.0184 0.0228
Tnorm_50c¢ 0.0151 0.0184
GMM-UBM/SVM 0.0143 0.0146
WGC_RBF KFD w 20¢ 0.0081 0.0087
WAC RBF KFD-w 20¢ 0.0087 0.0112
WGC_RBF SVM w 20c 0.0091 0.0105
WAC RBF SVM w20¢ 0.0093 0.0105

Table 3.4. Comparison of errors made by “WGC_RBF KFD w 20c¢” and “ Tnorm_50c”,
where P and N denote the number of positive (target speaker) trials and the number of

negative (impostor) trials, respectively. There are 347 P and 5,586 N in total.

. Tnorm 50c¢
Trial counts =
Correct Incorrect
Correct 342P + 5,508N 2P + 52N
WGC RBF KFD w 20c
- - - = Incorrect 0P + 12N 3P + 14N
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Chapter 4

Improving GMM-UBM Speaker
Verification Using Discriminative

Feedback Adaptation

In this chapter, we focus on the disecussion of the current state-of-the-art GMM-UBM
approach [Reynolds 2000] for text-independent speaker verification that uses the UBM-MAP
technique to generate the target model A and the anti-model A . This approach pools all speech
data from a large number of background speakers to form a universal background model
(UBM) as A via the expectation-maximization (EM) algorithm. It then adapts the UBM to A
via the maximum a posteriori (MAP) estimation technique. GMM-UBM s effective because
its generalization ability allows A to handle acoustic patterns not covered by the limited
training data of the target speaker. However, since A and A are trained according to separate
criteria, the optimization procedure can not distinguish a target speaker from background
speakers optimally. In particular, since GMM-UBM uses a common UBM A for all target
speakers, it tends to be weak in rejecting impostors’ voices that are similar to the target
speaker’s voice. Moreover, as A is derived from A, both models may correspond to a similar

probability distribution.
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One possible way to improve the performance of GMM-UBM is to use discriminative
training methods, such as the minimum classification error (MCE) method [Juang 1997] and
the maximum mutual information (MMI) method [Ma 2003]. In [Rosenberg 1998], a
minimum verification error (MVE) training method is developed by adapting MCE training to
the binary classification problem, in which the parameters of A and A are estimated using
the generalized probabilistic descent (GPD) approach [Chou 2003]. However, as the MVE
training method requires a large number of positive and negative samples to estimate a
model’s parameters, it tends to over-train the model if the amount of training data is
insufficient. In addition, it is difficult to select the optimal stopping point in GPD-based

training.

To resolve the limitation of MVE training, we propose a framework called
discriminative feedback adaptation (DFA);-which: improves the discrimination ability of
GMM-UBM while preserving its generalization ability. The rationale behind DFA is that only
mis-verified training samples are‘considered-in.the discriminative training process, rather than
all the training samples used in the conventional MVE method. More specifically, DFA
regards the UBM and the target speaker model obtained by the GMM-UBM approach as
initial models, and then reinforces the discriminability between the models by using the
mis-verified training samples. Since the reinforcement is based on model adaptation rather
than training from scratch, it does not destroy the generalization ability of the two models,
even if they are updated iteratively until convergence. However, recognizing that a small
number of mis-verified training samples may not be able to adapt a large number of model
parameters, to implement DFA, we propose two adaptation techniques: a linear
regression-based minimum verification squared-error (LR-MVSE) adaptation method and an
eigenspace-based minimum verification squared-error (E-MVSE) adaptation method.

LR-MVSE is motivated by the minimum classification error linear regression (MCELR)
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techniques [Chengalvarayan 1998; Wu 2002; He 2003], which have been studied in the
context of automatic speech recognition; while E-MVSE is motivated by the MCE/eigenvoice

technique [Valente 2003], which has been studied in the context of speaker identification.

The remainder of this chapter is organized as follows. In Section 4.1, we introduce the
proposed DFA framework. Sections 4.2 and 4.3 describe, respectively, the proposed
LR-MVSE and E-MVSE adaptation techniques used to implement DFA. Section 4.4 presents
simplified versions of LR-MVSE and E-MVSE. Then, in Section 4.5, we detail the

experiment results.

4.1. Discriminative Feedback Adaptation

Fig. 4.1 shows a block diagramof the proposed discriminative feedback adaptation (DFA)
framework, which is divided into two, phases. The first phase, indicated by the dotted line,
utilizes the conventional GMM-UBM. approach. The initial target speaker model and the UBM
obtained in the first phase serve as the initial models for DFA in the second phase. The basic
strategy of DFA is to reinforce the discriminability between the initial target speaker model and
the UBM for ambiguous data that is mis-verified by the GMM-UBM approach. The
reinforcement strategy is based on two concepts. First, since the GMM-UBM approach uses a
single anti-model, UBM, for all target speakers, it tends to be weak in rejecting impostors’
voices that are similar to the target speaker’s voice. To resolve this problem, DFA tries to
generate a discriminative anti-model exclusively for each target speaker by using the negative
samples from the cohort [Rosenberg 1992] of each target speaker to adapt both A and A. Since
the models may affect each other, the DFA framework also uses the positive samples to avoid

increasing the miss probability while reducing the false alarm probability. The resulting A and
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A are then updated iteratively. Second, since the DFA framework only uses mis-verified
training samples as adaptation data in each iteration, it actually fine-tunes the model’s
parameters based on a small amount of adaptation data. It thus preserves the generalization
ability of the GMM-UBM approach while reinforcing the discrimination between Hy and H;.

To implement the above concepts, we developed the following algorithms.

77 - - "= =-""—=""=—=- ~
S !
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I UBM speaker data | selection

|
I |  Cohort data Target
I I speaker
: v I l model
|  Target Initial target| | |
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\ — o e ey _,’ model

Fig. 4.1. The proposed’discriminative feedback adaptation framework.

4.1.1. Minimum Verification Squared-Error (MVSE) adaptation strategy

We modify the minimum verification error (MVE) training method [Rosenberg 1998] to fit
our requirement that only mis-verified training samples should be considered. This is called
the minimum verification squared-error (MVSE) adaptation strategy. The goal of DFA is to

minimize the overall expected loss D, defined as
D=x%,0,+X/,, 4.1)

where Xy and X; reflect which type of error is of more concern in a practical application; and /;

is a loss function that describes the average false rejection loss (i = 0) or false acceptance loss
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(i=1), defined as

(= Nl D s(dU)), (4.2)

i UeH;

where Ny and N, are the numbers of training utterances from the target speaker and the cohort,

respectively; and d(U) is a mis-verification measure defined as

-LU) ifUeH
au)—{ 9 et (43)
LU) ifUeH,,
where L(U) is the logarithmic LR defined as
L) =log pU | 1) -log pU | ), (4.4)

where A is the target speaker model; and A is the anti-model.

To reflect the requirement that-only mis-verified training utterances should be considered,
we define a new function S(-) instead of the sigmoid function used in the function ¢;, which

represents the verification error as-an adjustable-quantity as follows:

a(dU)-b)> ifdU)>b
0 ifdU)<h,

s(d(U)) ={ (4.5)

where a is a scalar and b is a bias for controlling the convergence speed of DFA. The input
utterance U is considered incorrectly verified if d(U) > b. Therefore, s(d(U)) is a response
squared-error value. Fig. 4.2 contrasts the curve of the s function with that of the well-known
sigmoid function. If d(U) < b, the response value s(d(U)) = 0, i.e., the utterance U is verified
correctly; hence, it will not be used for model adaptation. If d(U) > b, the steeper slope of the
s function for a larger value of d(U) results in a larger gradient to update the model’s
parameters. In contrast, as the value of d(U) increases, the sigmoid function used in MVE
[Rosenberg 1998] will become flat, and the obtained gradient will approximate zero. As a

result, the mis-verified utterance U will not contribute to model adaptation. Another
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difference between the proposed DFA framework and the conventional MVE training method
is that the latter always updates the model’s parameters if the value of the sigmoid function is
not 0 or 1; thus, it may over-train the well-trained models obtained from the GMM-UBM

method with the correctly-verified input training utterances.

s(d(U)) sigmoid(d(U))

......... —

b0 dU) 0 d(v)

(a) s function (b) sigmoid function

Fig. 4.2. The s function compared to the sigmoid function.

4.1.2. Fast scoring for DFA

To speed up DFA, we use a fast scoring approach [Reynolds 2000] to compute the

logarithmic LR. Given an utterance U ={0,,...,0;}, the computation of the logarithmic LR for

a GMM with M Gaussian mixture components can be written as

t=1 m=1 m=1

1T M M -
LU) :?Z(logz P PO, |g,)—log> P, P, | gm)j
(4.6)
13 c c B
r ?Z(logz Pe. o) p(o, | 8cm )— logz Pe, o) p(o, | gc, (t))ja
t=1 i=1

i=1

where g, and g, are the m-th Gaussian mixture components of the target speaker model

and the anti-model, respectively; and py, is the mixture weight, m = 1,..., M. Note that the
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target speaker model has the same mixture weights as the anti-model. For each frame 0, we
determine the top C scoring mixture indices, Ci(t), i = 1,..., C, in the UBM, where C << M;
hence, it requires M + C Gaussian computations in the first iteration, and 2C Gaussian

computations per iteration thereafter. In this study, the value of C is set at 5 [Reynolds 2000].

4.2. Linear regression-based MVSE (LR-MVSE) adaptation

Recognizing that a small amount of adaptation data selected from the mis-verified training
samples may not be able to adapt a large number of model parameters, we propose using a
linear regression method to implement MVSE adaptation. We call it linear regression-based
MVSE (LR-MVSE) adaptation. Our strategy is motivated by the minimum classification error
linear regression (MCELR) techniques [€hengalvarayan 1998; Wu 2002; He 2003], which
have been studied in the context of automatic speech recognition. We assume that the initial
target speaker model A and antismodel“ X have M Gaussian mixtures g ~N(u”,X )

and gV ~N@Y,X ), respectively, where p!”

and p.’ are r-dimensional mean vectors
obtained with the GMM-UBM method; and X is an rxr covariance matrix of the UBM, m

= 1,..., M. Note that, in this study, we only adapt the mean vectors of GMMs. After
adaptation, the new mean vectors of the target speaker model and the anti-model take the
following respective forms:

Ry = WEY (4.7)
and

By, = WEY (4.8)

m 2

where W and W are rx(r+1) transformation matrices; and &Y =[1 p'7 and
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EY =11 m"7. Given initial transformation matrices W®= W= [0 I], where 0 is an rx]

zero vector and I is an rxr identity matrix, the parameters W and W can be iteratively

optimized using

k+ k oD
wh = w® _5aw<k> 4.9)
and
WED Wk _ 5 a%:zk) , (4.10)

respectively, where the superscript “(K)” denotes the k-th iteration, and ¢ is the step size. In

addition,
oD o, as(dV)) adU) 8L@J)+X o,  os(dV)) adV) o)
oWe as(d(U)) adU)  oL@) oWl - asdU)) adU) aLu) ew®
L L =by.| )
=X, N, UEHO,ZMUM{M (L) b)( aw“)j} 4.11)

STD) {2a-<L(U>—b>-aL(U)}

k
1 UeH,,L{U)>b oW

and
D _ 0, sdU) d) V) o sd) adl) aLu)
WY T asdU) adU) aLU) WP oasdU)) adU)  aLU) oWw®
Ly L ay) 4.12
Xo N, UeHO;(U)>b{2a (-LU) - b)[ ij} (4.12)
LIS {Za (LU)—b)- aL(l(Jk))}
1 UeH,,LU)>b
where
oLu) 14 c op(o, | gty
W T |0(o|x<k’)(Z Pao owe “.13)
and
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oLU) 14 c p(o, | 8c)
&)y Sp , 4.14
oW T & p(o, |7v(k))£ P, oW (4.14)

t=1

where the target speaker model A with mixtures g! and the anti-model A with

mixtures g, m=1,..., M, are obtained by LR-MVSE adaptation in K iterations, and

p(o, | ge ) § ,

o= b0 8 520~ W KL, @15
and

op(o, | 8y _ ,

(;Tkim p(o, | (ck()t))zc (t)( W(k)géo()t) gi)zt) . (4.16)

If we assume that all covariance matrices X of the UBM, m = 1,..., M, are diagonal, Egs.

(4.15) and (4.16) can be rewritten as

POy 18Cy,) POy 25y
GW(k)(rl, r) O-é,(t)(rl)

)
[ () - ZW‘k)(rl, 1)3% t)(J)jé‘c")(t)(rz) (4.17)

and

p(0, 125) PO, |8 e )L
- SO 0,(n) =Y. WO, DED, (1) B (1), (4.18)
oWHR(r,r)  og, ()

respectively, where o, (I,) is the ri-th diagonal element of X_; 0,(r,) is the ri-th element
of o E¥(r,) and &Y(r)) are, respectively, the r,-th elements of & and & ; and

W®(r,r,) and W®(r,r,) are, respectively, the ri-th row and r,-th column elements of

W and W, ri=1,..,r,andr,=1,..., (r+1).
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4.3. Eigenspace-based MVSE (E-MVSE) adaptation

Alternatively, we can use the eigenspace method to implement MVSE adaptation. We call it
eigenspace-based MVSE (E-MVSE) adaptation. E-MVSE is motivated by the
MCE/eigenvoice technique [Valente 2003], which has been studied in the context of speaker
identification. In this case, we also assume that only the mean vectors of GMMs are adapted.
Let u” and u® be (rM)xl supervectors [Kuhn 2000; Thyes 2000] obtained by
concatenating all the mean vectors of the initial target speaker model A'” and anti-model (a

clone of the UBM) A”, where

O _yy©@r O
ut = p

T (4.19)
and

a <t (.20

Following the eigenvoice approach, we usetheprincipal component analysis (PCA) technique
[Duda 2001] to construct a speaker eigenspace E = span{e;, e,..., ez} based on R

supervectors derived from R pre-trained background speaker GMMs, where Z <R-1.

According to the orthogonality principle [Strang 2005], we can decompose u'” and u'®
into
VA
u@=q+> %, +flle (4.21)
z=1
and
Z -_— -
u” =q+) %, + e, (4.22)
z=1

respectively, where n is the sample mean vector of R supervectors. The second terms in Egs.

4.21) and (4.22) represent the results of projecting (u'® —m) and (W' —n) onto the
P proj g n n
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eigenspace E. Note that, in most cases, (u'” -n)and (u'” -n) ¢ E, since the initial target
speaker model and anti-model are not included in the background speaker model set. The

coordinates, f'” and f*,z=1,.,Z, are computed by

f%=e,/(u” —n) (4.23)
and

fO =e, @”-n), (4.24)

respectively. The third terms in Eqs. (4.21) and (4.22) represent the residuals after the

(0)

projection. If the residuals are not zero, we can define f,” and %)

+1 as

Z
£ =lu® -n- z f Ve (4.25)
z=1
and
p— Z .
fo = ==t el (4.26)
z=1
and define e* and e* as
Z
u® —q— Z fOe
e = el (4.27)
u® —q— Z fOe
z=1
and
Z p—
T _q— z f e,
e = S . (4.28)

Z
() £(0)
u —n—E f, e,
z=1

(0)

Since both e and & are orthogonal to E, u'” and u” can be represented, respectively,
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by the initial coordinates [f,” V... £ £27 and [f© ... 97 in a target
speaker space E, with an orthonormal basis {e), ..., ez, ¢ } and an anti-model space E
with an orthonormal basis {es, €2,..., ez, € }.If /2 =0 and f,” =0, both e ande* are
zero vectors, and the (Z+1)-th weight is not included in a coordinate vector € E, =E; =E
with a basis {ey, e»,..., ez}. Our goal is to find the best coordinates [f, f,...f, f, ] in E,
and [f, f,...f, f,.,] in E- such that the reconstructed models can optimally distinguish

the target speaker’s voice from the non-target speakers’ voices. The reconstructed mean

vectors of the target speaker model and the anti-model take the following respective forms:

A
um = nm +Z fzez,m + fZ+1e$ (429)
z=1
and
S £ 1
oMy =2 e, + fae, (4.30)
7=
where m,, e,,, €,, and €, represent! the'm-th subvectors of m, e,, e, and €,

respectively, and correspond to the mean vector of the m-th Gaussian mixture component of

the target speaker model and the anti-model, m = 1,..., M. The coordinates, f, and f,,z=
1,.., Z+1, can be iteratively optimized using

f i = £ —5% (4.31)
and

R R a?;Dk) , (4.32)

respectively, where J'is the step size. In addition,
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oD of,  os(dU) ) av) - of  sdV)) adl) Ll

&9 VadU) dU) av) &P adu) dU) am) ad
1 oL
=%, 2 CLu)- b)( ((ku))J (4.33)
Ny uer, Tuyb of,
1 oL
+Xo— D {2a~(L(U)—b)- af%)}
1 UeH,,LU)>b z
and
D _ o, BEAU) dU) AV) o V) V) V)
FP 7 VadU) dU) AU) a0 adU) dU) au) oo
1 oLU
VLI o {2a( LU)- b)( ((k))} (4.34)
No UeH,,-L(U)>b afz
LSS {Za (LU)—b)- a"((uk))}
1 UeH,,LU)>b afz
where
oLu) 14 g ép(o gt
T T2 |x‘k’)(Z G o (33
and
LU) 14 c op(o, | 8 l)
of sz(o |}L(k))(; e, 1 PG ==, (4.36)
where the Gaussian mixture components, g* and g, m=1,...,M,of 1% and A% are

the results of the k-th iteration, and

p(o, | gety) { p(o, |g(cl?zt))(° u(Ckzt))’ZEil(t)eéi(t) ifz=7Z+1

. ) (4.37)
and
(o, | 8ew) _ | P08 (0,-BY), )5d ety ifz=2+1 s
of p(o, |g((:k()t) (0 llék()t))'za(t)ez,q(t) otherwise,
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where

Z
© ) ()l
He. = Mew +Z fivecn* fziecw (4.39)
]
and
(k S (k) F ()
— —1
Hew = Meo +Z fiejcm+ faec - (4.40)
j:

If we assume that all covariance matrices X of the UBM, m=1,..., M, are diagonal, Egs.

(4.37) - (4.40) can be rewritten, respectively, as

r (Ot (r1) - ll(cfft)(ﬁ))eéi(t) (r1)

p(. |get,) ifz=2+1
op(o |gely) |00 Zl o2 o (1) wan)
al r (o, (r) —pd), (r r '
’ p(o, |g§;|%))z( ((5) ucizm( 1))ez’cim( ) otherwise,
I n=1 Obﬂn(n)
r ==(k) 1
o o gy SRS © g
ap(o, | 8EY) e o2 (1)
sGm7 =1 e\ (4.42)
of ®© c 10/(r) =i (e, r
: . 1) TR Y
S| obmo(n)
k S k)L
u(Cizt)(rl) =M, (H)+ z fj( )ej,Ci(t)(rl) + fZ(+1)eCi(t)(r1): (4.43)
i1
and
k o Fk F o=l
ﬁéi()t)(rl) =M, (H)+ z fj( )eiji(t)(rl) + fz(+1)eci(t)(r1), (4.44)
=

where 1,,(r), e, (1), e;(r),and €,(r),m=1,...,M,r=1,..,r, represent the ri-th

elements of the m-th subvectors m,,, e,,, €,,and €, respectively.

z,m>
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4.4. Simplified Versions of LR-MVSE and E-MVSE

As far as reliability is concerned, a target speaker model trained with the GMM-UBM
approach may be effective in characterizing the target speaker’s voice. In contrast, a UBM
generated from a number of background speakers may not be able to represent the imposters
with respect to each specific target speaker. In other words, it may not be able to distinguish
between imposters and the target speaker. Thus, it is more important to reinforce
discriminability in the UBM than in the target speaker model. Moreover, in our experience,
the training samples of target speakers are seldom mis-verified; i.e., nearly all the mis-verified
training samples are from the cohort. Accordingly, to adapt the UBM to the target speaker
dependent anti-model, it might be sufficient to use only negative training samples in our DFA

framework. In this case, the training-goal can be simplified to one of minimizing the average

false acceptance (false alarm) Hdoss 7;. For ILR-MVSE adaptation, the parameter W is

iteratively optimized using

W =whls a%}k) : (4.45)
where
o, or, os(dU)) adU) oLU) 1 { GL(U)}
— = . . —l = 2a-(LU)-b)-—+=+, 4.46
oW os(dU)) adU) oLU) oW N]UeHl,zL:‘Upb (LE)=D) oW® (1:40)

and % 1s computed by Eq. (4.14). For E-MVSE adaptation, the coordinates fz ,2=1,.,

Z+1, are iteratively optimized using

Fh _ f00_ 5 ot

z £ (k)2
of

(4.47)

where
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or, o, as(dU)) adU) aLU) 1 3
o osdU)) adU) aLU) P N, e

{2&-(LGJ )—b)-_—}, (4.48)

oLU)
and W

z

is computed by Eq. (4.36). When Ny = Ni, the training times of the simplified

versions of LR-MVSE and E-MVSE are about one-quarter of the training times of the

respective original versions.

4.5. Experiments and Analysis

A. Experiment setup

In our experiments, we used the NIST 2001 cellular speaker recognition evaluation
(NIST2001-SRE) database, and :dividedsit..into’ two subsets: an evaluation set and a
development set. The evaluation:set contained 74 male and 100 female speakers. On average,
each speaker had approximately "2 minutes of training utterances and 10 test segments. The
development set contained 38 males and 22 females as background speakers that did not
overlap with the speakers in the evaluation set. To scale up the number of background
speakers, we also included 139 male and 191 female speakers extracted from the
NIST2002-SRE corpus. Thus, we collected the training utterances of 177 male and 213
female background speakers to build two gender-dependent UBMs, each containing 1,024
mixture components. To train each target speaker’s GMM, we only adapted the mean vectors
from the speaker’s corresponding gender-dependent UBM in the GMM-UBM method. Then,
for each male or female target speaker, we chose the B closest speakers from the 177 male or
213 female background speakers, respectively, as a cohort based on the degree of closeness
measured in terms of the pairwise distance defined in Eq. (2.3). For each cohort speaker, we

extracted J 3-second speech segments from his/her training utterances as negative samples of
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a target speaker. Thus, each target speaker had JxB negative samples in total. All the 3-second

segments extracted from each target speaker’s training utterances served as positive samples

in LR-MVSE or E-MVSE adaptation.

To remove silence/noise frames, we processed all the speech data with a Voice Activity
Detector (VAD). Then, using a 32-ms Hamming-windowed frame with 10-ms shifts, we
converted each utterance into a stream of 30-dimensional feature vectors, each consisting of
15 Mel-scale frequency cepstral coefficients (MFCCs) and their first time derivatives. To
compensate for channel mismatch effects, we applied feature warping [Pelecanos 2001] after

MFCC extraction.

In the experiments, a and b in the s function defined in Eq. (4.1) were set at 3 and 0.01,
respectively. For E-MVSE adaptation, .we .generated two gender-dependent Z-dimensional
eigenspaces using the GMMs of the . 177 male and 213 female background speakers,
respectively, with Z set to 70 or 140. The LR-MVSE and E-MVSE adaptation procedures
were trained until they almost converged, i.e., until the number of mis-verified training
samples approximated zero. For the overall expected loss D, Xo and X; were set as Cuiss ¥
Prarget and Craisealarm X (1 - Prarget), respectively, according to the NIST Detection Cost
Function (DCF) in Eq. (2.25). Following the NIST2001-SRE protocol, Cwiss, Craiseatarm, and

Prarget were set at 10, 1, and 0.01, respectively.

B. Experiment results

To evaluate the performance of the DFA framework, we used the Detection Error Tradeoff
(DET) curve and the NIST DCF; the latter reflects the performance at a single operating point

on the former. We implemented the proposed DFA framework in three ways:

a) LR-MVSE adaptation (“MAP + LR-MVSE”),
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b) E-MVSE adaptation with the first 70 eigenvectors (“MAP + E-MVSE70”), and

c) E-MVSE adaptation with the first 140 eigenvectors (“MAP + E-MVSE140”).

For the performance comparison, we used two baseline systems:

a) GMM-UBM (“MAP”) and

b) conventional MVE (MCE) training with the sigmoid function (“MAP + MVE”).

The target speaker GMM and the UBM obtained from the GMM-UBM method served as the

initial models for the proposed DFA-related methods and the conventional MVE method.

Fig. 4.3 plots the minimum DCFs against the total number of negative training samples
per target speaker for each adaptation method. The experiments involved 2,038 target speaker
trials and 20,380 impostor trials of the'evaluation set. We considered different numbers of
negative samples, but not different numbers of. positive samples because the same target
speaker data had been used to train the initial target speaker model in the GMM-UBM method.
From the figure, we observe that “MAP + E-MVSE70” achieves the lowest minDCF in cases
where the adaptation data only includes 6 or 12 negative training samples per target speaker;
while “MAP + LR-MVSE” achieves the lowest minDCF in cases where the adaptation data
includes 36 or 60 negative training samples per target speaker. As expected, a small amount
of adaptation data favors the methods in which a smaller number of model parameters must
be estimated. Note that the larger the number of negative training samples used, the lower the

minDCEF that can be achieved.
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Fig. 4.3. The minimum DCFs versus the number (JxB) of 3-second negative training samples

per target speaker.

Fig. 4.4 shows the DET curves obtained by evaluating the above systems for the case with
60 negative training samples per target speaker. Itis clear that the performances of the three
proposed methods, “MAP + LR-MVSE”, “MAP + E-MVSE70”, and “MAP + E-MVSE140”,
are comparable; and they all outperform the conventional methods “MAP” and “MAP + MVE”.
Interestingly, the performance of “MAP + MVE” is not always better than that of “MAP”. This
is because MVE tends to over-train the models obtained from the GMM-UBM method, and it

is difficult to select the optimal stopping point in MVE training.
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Speaker Verification Performance
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Fig. 4.4. Experiment results in DET: curves.. The circles indicate the minimum DCFs.

In the above experiments, we found that nearly all the mis-verified training samples in
each adaptation iteration were negative training samples. Thus, we further compared the
simplified versions of the LR-MVSE and E-MVSE methods with the respective original
versions. Fig. 4.5 shows the DET curves for the case of 60 negative training samples per
target speaker. It is clear that the simplified versions perform comparably to the respective
original versions. This confirms our assumption that reinforcing the discriminability in the

UBM is more beneficial than reinforcing the discriminability in the target speaker model.

Table 4.1 summarizes the minimum DCFs of each system shown in Figs. 4.4 and 4.5.
We observe that “MAP + LR-MVSE” achieves a 14.35% relative DCF reduction over the
baseline GMM-UBM system (“MAP”) and a 9.22% relative DCF reduction over the “MAP +
MVE” method. In fact, “MAP + simLR-MVSE” even performs slightly better than the

original version “MAP + LR-MVSE”.
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Speaker Yerification Performance
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Table 4.1. Summary of the minimum DCFs in Figs. 4.4 and 4.5.

Methods minDCF
MAP 0.0460
MAP + MVE 0.0434

MAP + LR-MVSE 0.0394
MAP + E-MVSE70 0.0413
MAP + E-MVSE140  0.0415
MAP + simLR-MVSE  0.0390
MAP + simE-MVSE70  0.0420
MAP + simE-MVSE140 0.0416
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Chapter 5

Conclusions

In this dissertation, we have proposed a framework to improve the characterization of the
alternative hypothesis for speaker verification. The framework is built on either a weighted
arithmetic combination (WAC) or a weighted geometric combination (WGC) of useful
information extracted from a set.of pre-trained background models. The proposed
combinations are more effectivezand robust:than. the: simple geometric mean and arithmetic
mean used in conventional approaches. The parameters associated with WAC or WGC are
then optimized using the minimum-yverification errar (MVE) criterion, such that both the false
acceptance probability and the false rejection probability are minimized. In addition to
applying the conventional gradient-based MVE training method to this problem, we also
proposed an evolutionary MVE (EMVE) training scheme to further reduce the verification
errors. The results of our speaker verification experiments conducted on the Extended
M2VTS Database (XM2VTSDB) demonstrate that the proposed systems along with the MVE
or EMVE training achieve higher verification accuracy than conventional LR-based
approaches. Although they need more training time than conventional LR-based approaches
in the offline training phase, the increase of the training time for enrolling a new target
speaker or the verification time for an input test utterance is negligible. The proposed systems

are still capable of supporting a real-time response.



Alternatively, we have also presented two novel WGC- and WAC-based decision
functions for solving the speaker-verification problem. The new decision functions are treated
as nonlinear discriminant classifiers that can be solved by using kernel-based techniques, such
as the Kernel Fisher Discriminant and Support Vector Machine, to optimally separate samples
of the null hypothesis from those of the alternative hypothesis. The proposed approaches have
two advantages over existing methods. The first is that they embed a trainable mechanism in
the decision functions. The second is that they convert variable-length utterances into
fixed-dimension characteristic vectors, which are easily processed by kernel discriminant
analysis. The results of experiments on two speaker verification tasks, the XM2VTSDB and
ISCSLP2006-SRE tasks, show notable improvements in performance over classical
approaches. It is worth noting that although we only consider the speaker verification problem
in this dissertation, the above propesed approach is not limited to this application. It can be

applied to other types of data and-hypothesis testing problems.

Finally, we have proposed‘a discriminative feedback adaptation (DFA) framework to
improve the state of the art GMM-UBM speaker verification approach. The framework not
only preserves the generalization ability of the GMM-UBM approach, but also reinforces the
discrimination between Hy and Hj;. Our method is based on the minimum verification
squared-error (MVSE) adaptation strategy, which is modified from the MVE training method
so that only mis-verified training utterances are considered. Because a small number of
mis-verified training samples may not be able to adapt a large number of model parameters, to
implement DFA, we developed two adaptation techniques: the linear regression-based
minimum verification squared-error (LR-MVSE) method and the eigenspace-based minimum
verification squared-error (E-MVSE) method. In addition, we use a fast LR scoring approach
and the simplified version of LR-MVSE or E-MVSE to improve the efficiency and

effectiveness of the DFA framework. The results of experiments conducted on the



NIST2001-SRE database show that the proposed DFA framework can substantially improve

the performance of the conventional GMM-UBM approach.
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