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鑑別式訓練法於語者驗證之研究

學生：趙怡翔 

 

指導教授：王新民 博士 

        張瑞川 博士 

 

國立交通大學資訊科學與工程研究所 

摘 要       

語者驗證(speaker verification)常被表示成統計上的假說測定(hypothesis testing)問題，用似然

比例 (likelihood ratio, LR)檢定的方法來解。一個語者驗證系統性能的好壞高度依賴於目標語

者聲音的模型化(空假說)與非目標語者聲音的描述(替代假說)。然而，替代假說因為包含未知

的冒充者，通常很難被事先描述地好。在這篇論文，我們提出一個描述替代假說的較佳架構，

其目標是希望將目標語者與冒充者做最佳化的鑑別。該架構是建構在一群事先訓練好的背景語

者的可用資訊的加權算術組合 (weighted arithmetic combination, WAC)或加權幾何組合

(weighted geometric combination, WGC)上。我們提出使用二種鑑別式訓練法來最佳化 WAC 或

WGC 的相關參數，分別是最小驗證誤差(minimum verification error, MVE)訓練法與演化式最小

驗證誤差(evolutionary minimum verification error, EMVE)訓練法，希望使得錯誤接受(false 

acceptance)機率與錯誤拒絕(false rejection)機率都能最小。此外，我們也提出二種基於 WAC 與

WGC 的新的決策函數 (decision functions)，其可以被視為非線性鑑別分類器 (nonlinear 

discriminant classifiers)。為了求解加權向量 w，我們提出使用二種基於核心的鑑別技術

(kernel-based discriminant techniques)，分別是基於核心的費氏鑑別器(Kernel Fisher Discriminant, 

KFD)與支持向量機器(Support Vector Machine, SVM)，因為它們擁有能將目標語者與非目標語

者的樣本(samples)有效分開的能力。 
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在內文不相依(text-independent)語者驗證技術中，GMM-UBM 系統是最常被使用的主流方

法。其優點是目標語者模型與通用背景模型(universal background model, UBM) 都具有概括性

(generalization)的能力。然而，因為這二種模型是分別根據不同的訓練準則所求出，訓練過程

皆沒有考慮到目標語者模型與 UBM 之間的鑑別性(discriminability)。為了改進 GMM-UBM 方

法，我們提出一個鑑別式反饋調適(discriminative feedback adaptation, DFA)架構，希望可以同

時兼顧概括性與鑑別性。此架構不但保留了原本 GMM-UBM 方法的概括性能力，而且再強化

了目標語者模型與 UBM 之間的鑑別性能力。在 DFA 架構下，我們不是使用一個統一的通用

背景模型，而是建構一個具鑑別性的特定目標語者反模型(anti-model)。 

在我們的實驗中，我們共使用 XM2VTSDB、ISCSLP2006-SRE 與 NIST2001-SRE 這三套語

者驗證資料庫(database)，實驗結果顯示我們所提出的方法優於所有傳統上基於 LR 的語者驗證

技術。  
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ABSTRACT 

Speaker verification is usually formulated as a statistical hypothesis testing problem and solved 

by a likelihood ratio (LR) test. A speaker verification system’s performance is highly dependent on 

modeling the target speaker’s voice (the null hypothesis) and characterizing non-target speakers’ 

voices (the alternative hypothesis). However, since the alternative hypothesis involves unknown 

impostors, it is usually difficult to characterize a priori. In this dissertation, we propose a framework 

to better characterize the alternative hypothesis with the goal of optimally distinguishing the target 

speaker from impostors. The proposed framework is built on a weighted arithmetic combination 

(WAC) or a weighted geometric combination (WGC) of useful information extracted from a set of 

pre-trained background models. The parameters associated with WAC or WGC are then optimized 

using two discriminative training methods, namely the minimum verification error (MVE) training 

method and the proposed evolutionary MVE (EMVE) training method, such that both the false 

acceptance probability and the false rejection probability are minimized. Moreover, we also propose 

two new decision functions based on WGC and WAC, which can be regarded as nonlinear 

discriminant classifiers. To solve the weight vector w, we propose using two kernel-based 
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discriminant techniques, namely the Kernel Fisher Discriminant (KFD) and Support Vector Machine 

(SVM), because of their ability to separate samples of target speakers from those of non-target 

speakers efficiently. 

In recent years, the GMM-UBM system is the predominant approach for the text-independent 

speaker verification task. The advantage of the approach is that both the target speaker model and 

the impostor model (UBM) have generalization ability. However, since both models are trained 

according to separate criteria, the optimization procedure can not distinguish a target speaker from 

background speakers optimally. To improve the GMM-UBM approach, we propose a discriminative 

feedback adaptation (DFA) framework that allows generalization and discrimination to be 

considered jointly. The framework not only preserves the generalization ability of the GMM-UBM 

approach, but also reinforces the discriminability between the target speaker model and the UBM. 

Under DFA, rather than use a unified UBM, we construct a discriminative anti-model exclusively for 

each target speaker.  

The results of speaker-verification experiments conducted on three speech corpora, the Extended 

M2VTS Database (XM2VTSDB), the ISCSLP2006-SRE database and the NIST2001-SRE database, 

show that the proposed methods outperform all of the conventional LR-based approaches.  
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Chapter 1  

Introduction 

 

In many practical pattern recognition applications, it is necessary to make a binary decision, 

such as “yes/no” or “accept/reject”, with respect to an uncertain hypothesis that can only be 

validated through its observable consequences. In a statistical framework, the problem is 

generally formulated as a test that involves a null hypothesis, H0, and an alternative 

hypothesis, H1, regarding some decision function L(⋅) for a given observation X: 

, )(  :  
 )(  : 

1

0

θ
θ

<
≥

XLH
XLH

                    (1.1) 

where θ is the decision threshold. Depending on the application, various decision functions 

can be designed. The most popular decision function computes the ratio of possibilities 

between the null hypothesis and the alternative hypothesis as follows:  
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where  denotes a certain possibility measure of X with respect to the 

hypothesis Hi. For example,  could be the likelihood probability  that 

hypothesis Hi gives X, and the resulting L(⋅) represents a so-called likelihood ratio (LR) 

function. If we represent the observation X as a sequence of r–dimensional feature vectors 

 and assume that the feature vector sequence of X is independent and identically 

0,1,  ),( =iXL
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distributed (i.i.d.), the likelihood of the observation X given the hypothesis Hi, i = 0 or 1, can 

be computed by 
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∏=                              (1.3) 

In the implementation, H0 and H1 can be characterized by some parametric models, which are 

usually denoted as λ (the null hypothesis model or target model) and λ  (the alternative 

hypothesis model or anti-model). Suppose both λ and λ  are characterized by Gaussian 

mixture models (GMMs) [Reynolds 1995, 2000], the probability density functions (pdf) of 

each feature vector ot given H0 and H1 can be respectively defined as 
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where , i = 0 or 1, , is the mixture weight that satisfies the constraint 

;  is the m-th Gaussian mixture component of the target model λ 

(i = 0) or the alternative hypothesis model 
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However, in most real applications, the alternative hypothesis model λ  is usually 

ill-defined and difficult to characterize a priori. For example, in speaker verification [Bimbot 
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2004; Faundez-Zanuy 2005; Fauve 2007; Przybocki 2007; Van Leeuwen 2006], the problem of 

determining if a speaker is who he or she claims to be is normally formulated as follows: given 

an unknown utterance U, determine whether 

H0: U is from the target speaker, or 

H1: U is not from the target speaker. 

Though H0 can be modeled straightforwardly using speech utterances from the target speaker, 

H1 does not involve any specific speaker, and hence lacks explicit data for modeling. As a 

result, various approaches have placed special emphasis on better characterization of H1. One 

popular approach pools all the speech data from a large number of background speakers and 

trains a single speaker-independent GMM Ω, called the world model or the universal 

background model (UBM) [Reynolds 2000]. During a test, the logarithmic LR measure that 

an unknown utterance U was spoken by the claimed speaker can be evaluated by 

),|(log)λ|(log)(UBM −= UpUpUL Ω                         (1.7) 

where λ is the target speaker GMM trained using speech from the claimed speaker. The larger 

the value of LUBM(U), the more likely it is that the utterance U was spoken by the claimed 

speaker. Due to the good generalization ability of the UBM, LUBM(U) (usually called the 

GMM-UBM method [Reynolds 2000] is considered as a current state-of-the-art solution to 

the text-independent speaker verification problem. 

Instead of using a single model, an alternative approach is to train a set of GMMs {λ1, 

λ2,…, λB} using speech from several representative speakers, called a cohort [Rosenberg 1992], 

which simulates potential impostors. This leads to the following possible logarithmic LR 

measures, where the alternative hypothesis can be characterized by: 

(i) the likelihood of the most competitive cohort model [Liu 1996], i.e., 

),λ|(logmax)λ|(log)(
1Max iBi

UpUpUL
≤≤

−=             (1.8) 
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(ii) the arithmetic mean of the likelihoods of the B cohort models [Reynolds 1995], i.e., 
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(iii) the geometric mean of the likelihoods of the B cohort models [Liu 1996], i.e., 
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i
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B
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In a well-known score normalization method called T-norm [Auckenthaler 2000; Sturim 

2005], LGeo(U) is divided by the standard deviation of the log-likelihoods of the B cohort 

models. 

The LR measures in Eqs. (1.7) – (1.10) can be collectively expressed in the following 

general form [Reynolds 2000]: 

( ) ,)λ|( ),...,λ|(),λ|(
)λ|()(

21 NUpUpUp
UpUL

Ψ
=             (1.11) 

where Ψ(⋅) denotes a certain function of the likelihoods computed for a set of so-called 

background models {λ1, λ2,…, λN}. For example, if the background model set is generated 

from a cohort, letting Ψ(⋅) be the maximum function gives LMax(U), while the arithmetic mean 

gives LAri(U), and the geometric mean gives LGeo(U). When Ψ(⋅) is an identity function, N = 1, 

and λ1 = Ω, Eq. (1.11) becomes LUBM(U). 

However, there is no theoretical evidence to indicate which method of characterizing H1 

is optimal, and the selection of Ψ(⋅) is usually application and training data dependent. More 

specifically, a simple function, such as the arithmetic mean, the maximum, or the geometric 

mean, is a heuristic that does not involve any optimization process. Thus, the resulting system 

is far from optimal in terms of verification accuracy. Although the GMM-UBM method is a 

current state-of-the-art solution to the text-independent speaker verification problem, there is 
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no optimization process of characterizing H1 to support its discriminability.  

Before the presentation of the proposed frameworks for speaker verification problems, 

we introduce some backgrounds about the current GMM-based speaker recognition methods. 

 

 

1.1. Background 

 
Over the past several years, GMM has become the dominant modeling approach in speaker 

recognition applications. Speaker recognition can be classified into identification and 

verification. In speaker identification, the system has trained models for a certain amount of 

speakers and the task is to determine which one of these models best matches the current 

speaker. In verification, the identity of the current speaker is somehow transmitted to the 

system beforehand and the task is to determine whether the current speaker is the claimed one 

or not. Speaker recognition methods can also be divided into text-dependent and 

text-independent methods. The former requires the speaker to say keywords or sentences 

having the same text for both training and recognition trials, while the latter does not rely on a 

specific text being spoken.  

Fig. 1.1 shows the block diagrams of the speaker identification and verification systems. 

The process of feature extraction is to transform the speech signal into a set of feature vectors, 

and the goal is to obtain a new representation which is more compact, less redundant, and 

more suitable for statistical modeling and the calculation of a distance or any other kind of 

score. In recent years, Mel-scale frequency cepstral coefficient (MFCC) [Huang 2001] is the 

most popular feature vector used in speech and speaker recognition systems. The mel-scale 

cepstrum is the discrete cosine transform (DCT) of the log-spectral energies of the speech 

segment. The spectral energies are calculated over logarithmically spaced filters with 

increasing bandwidths (mel-filters). MFCC-based GMMs [Reynolds 1995] have been 
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successfully applied to speaker recognition systems recently. In the following, we introduce 

two commonly-used statistical modeling methods for estimating the parameters of GMMs.  

Feature

extraction

Speaker

model 1

Speaker

model 2

Speaker

model S

 

 (a) Identification system. 

 

Feature
extraction

Target
speaker
model

Alternative
hypothesis

model

Speech 
signal

 Σ

+

-

θ
<θ
≥ accept

reject
 

(b) Verification system. 

Fig. 1.1. Speaker recognition systems. 

 

 

1.1.1. Maximum Likelihood (ML) Estimation Technique 

Given the training speech data from a speaker, } ,,{ 1 TooU K= , the goal of maximum 

likelihood (ML) estimation is to find the parameters of the GMM, λ, which maximize the 

likelihood of the GMM: 
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Eq. (1.12) is a nonlinear function of the GMM parameters and direct maximization is 

infeasible. However, the ML parameter estimation can be achieved iteratively via the 

expectation-maximization (EM) algorithm [Huang 2001]. 

The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a 

new model λ̂ , such that . The new model then becomes the initial model 

for the next iteration and the process is repeated until some convergence condition is reached. 

This is the same basic technique used for estimating hidden Markov model (HMM) 

parameters via the Baum-Welch re-estimation algorithm [Huang 2001]. 

)λ|()λ̂|( UpUp ≥

In each EM iteration, the following re-estimation formulae, which guarantee a 

monotonic increase in the model’s likelihood value, are used: 
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Covariance matrices: 
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We usually assume that all covariance matrices  of the GMM, m = 1,…, M, are diagonal, 

and the variance vector . The a posteriori probability for the m-th Gaussian 

mΣ

)(diag2
mm Σσ =
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mixture component  is given by mg
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where  is the original mixture weight and  is the Gaussian density function 

defined in Eq. (1.6). 

mp )|( mtop g

Selecting the order M of the mixture and initializing the model parameters prior to the 

EM algorithm are two critical factors in training a GMM. There are no good theoretical means 

to guide one in either of these selections, so they are best experimentally determined for a 

given task. 

 

1.1.2. Maximum A Posteriori (MAP) Estimation Technique 

Conventional GMMs trained from the EM algorithm perform well only when a large amount 

of training data is available to characterize the characteristics of the speaker. For each speaker, 

this approach needs a large amount of training data to train a GMM so as to cover all the 

possible pronunciations of this speaker, in particular when the speaker recognition is 

conducted under the text-independent mode. Due to this characteristic, the performance of 

GMM deteriorates drastically when the training data are sparse. However, client speakers 

definitely prefer to enroll with as little speech as possible. To solve this problem, speaker 

adaptation approaches have been investigated in recent years. 

One successful adaptation approach, namely the UBM-MAP approach, has been widely 

used in text-independent speaker verification tasks. This approach first pools all speech data 

from a large number of background speakers to train a universal background model (UBM) 

via the EM algorithm. Unlike the standard approach of maximum likelihood training of the 

speaker model independently of the UBM, this approach then adapts the well-trained UBM to 
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a speaker model λ using this speaker’s training speech via the maximum a posteriori (MAP) 

estimation technique. The adapted GMM λ is effective because its generalization ability 

allows λ to handle acoustic patterns not covered by the limited training data of the speaker. 

The specifics of the adaptation are as follows. Given a UBM, Ω, and training vectors 

from the target speaker, , we first computer the a posteriori probability 

 for the m-th Gaussian mixture component , m = 1,…, M, of the UBM: 

} ,,{ 1 TooU K=
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Then, we use  and ot to compute the sufficient statistics for the mixture weight, 

mean, and variance parameters: 

),|( Ωtomp

‡ 

,),|(
1
∑
=

Ω=
T

t
tm ompn                              (1.18) 

,),|(1)(
1
∑
=

Ω=
T

t
tt

m
m oomp

n
oE                             (1.19) 

.),|(1)(
1

22 ∑
=

Ω=
T

t
tt

m
m oomp

n
oE                             (1.20) 

This is the same as the expectation step in the EM algorithm. 

Finally, these new sufficient statistics from the training data are used to update the old 

UBM sufficient statistics from the m-th mixture to create the adapted parameters for the m-th 

mixture with the equations: 

,])1(/[ˆ cpTnp mmmmm εε −+=                              (1.21) 

                                                 
‡ x2 is shorthand for diag (xx’). 
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,)1()(ˆ mmmmm oE μμ εε −+=                                (1.22) 

and 

,ˆ))(1()(ˆ 22222
mmmmmmm oE μμσσ −+−+= εε                     (1.23) 

where the scale factor c is computed over all adapted mixture weights to ensure that they sum 

to 1 and the adaptation coefficients mε  controlling the balance between old and new estimates 

is defined as 

,
rn

n

m

m
m +
=ε                                     (1.24) 

where r is a fixed relevance factor. After adaptation, the mixture components of the adapted 

GMM retain a correspondence with the mixtures of the UBM. 

 

 

1.2. The Approaches of This Dissertation 

 
In speaker recognition tasks, as the ML or MAP estimation technique has become the 

standard modeling method for characterizing the target speaker (the null hypothesis), this 

dissertation focuses on two issues: the improvement of the characterization of the alternative 

hypothesis and the improvement of the current state-of-the-art GMM-UBM method. 

  

1.2.1. Using Minimum Verification Error Training 

To handle the speaker-verification problem more effectively, it is necessary to design a 

trainable mechanism for Ψ(⋅) defined in Eq. (1.11). We therefore propose a framework to 

better characterize the alternative hypothesis with the goal of optimally distinguishing the 

target speaker from impostors. The proposed framework is built on a weighted arithmetic 
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combination (WAC) or a weighted geometric combination (WGC) of useful information 

extracted from a set of pre-trained background models. The parameters associated with WAC 

or WGC are then optimized using two discriminative training methods, namely, the minimum 

verification error (MVE) training method [Chou 2003; Rosenberg 1998] and the proposed 

evolutionary MVE (EMVE) training method, such that both the false acceptance probability 

and the false rejection probability are minimized. The results of speaker verification 

experiments conducted on the Extended M2VTS Database (XM2VTSDB) [Messer 1999] 

demonstrate that the proposed frameworks along with the MVE or EMVE training outperform 

conventional LR-based approaches.  

 

1.2.2. Using Kernel Discriminant Analysis 

In contrast to the MVE training methods with the goal of minimizing both the false 

acceptance probability and the false rejection probability, we further propose two new 

decision functions based on WGC and WAC, which can be regarded as nonlinear 

discriminant classifiers. To obtain a reliable set of weights, the goal here is to separate the 

target speaker from imposters optimally. Thus, we apply kernel-based techniques, namely the 

Kernel Fisher Discriminant (KFD) [Mika 1999, 2002] and Support Vector Machine (SVM) 

[Burges 1998], to solve the weights, by virtue of their good discrimination ability. Our 

proposed approaches have two advantages over existing methods. The first is that they embed 

a trainable mechanism in the decision functions. The second is that they convert 

variable-length utterances into fixed-dimension characteristic vectors, which are easily 

processed by kernel discriminant analysis. The results of experiments conducted on both the 

XM2VTSDB and the ISCSLP2006-SRE database show that the proposed kernel-based 

decision functions outperform all of the conventional approaches. 
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1.2.3. Using Discriminative Feedback Adaptation 

The GMM-UBM system [Reynolds 2000] is the predominant approach for text-independent 

speaker verification because both the target speaker model and the impostor model (UBM) 

have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM 

uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in 

rejecting impostors’ voices that are similar to the target speaker’s voice. To overcome this 

limitation, we propose a discriminative feedback adaptation (DFA) framework that reinforces 

the discriminability between the target speaker model and the anti-model, while preserving 

the generalization ability of the GMM-UBM approach. This is achieved by adapting the UBM 

to a target speaker dependent anti-model based on a minimum verification squared-error 

criterion, rather than estimating the model from scratch by applying the conventional 

discriminative training schemes. The results of experiments conducted on the NIST2001-SRE 

database show that DFA substantially improves the performance of the conventional 

GMM-UBM approach.  

 

 

1.3. The Organization of This Dissertation 

 
The remainder of this dissertation is organized as follows. Chapter 2 and 3 describe, 

respectively, the MVE training methods and the kernel discriminant analysis techniques used 

to improve the characterization of the alternative hypothesis. Chapter 4 introduces the 

proposed DFA framework for improving the GMM-UBM method. Then, in Chapter 5, we 

present our conclusions. 

 



 

 

Chapter 2  

Improving the Characterization of the 

Alternative Hypothesis via Minimum 

Verification Error Training 
 

To handle the speaker-verification problem more effectively, we propose a framework that 

characterizes the alternative hypothesis by exploiting information available from background 

models, such that the utterances of the impostors can be more effectively distinguished from 

those of the target speaker. The framework is built on either a weighted geometric 

combination (WGC) or a weighted arithmetic combination (WAC) of the likelihoods 

computed for background models. In contrast to the geometric mean in LGeo(U) defined in Eq. 

(1.6) or the arithmetic mean in LAri(U) defined in Eq. (1.5), both of which are independent of 

the system training, our combination scheme treats the background models unequally 

according to how close each individual is to the target speaker model, and quantifies the 

unequal nature of the background models by a set of weights optimized in the training phase. 

The optimization is carried out with the minimum verification error (MVE) criterion [Chou 

2003; Rosenberg 1998], which minimizes both the false acceptance probability and the false 

rejection probability. Since the characterization of the alternative hypothesis is closely related 

to the verification accuracy, the resulting system is expected to be more effective and robust 

than those of conventional methods. 
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The concept of MVE training stems from minimum classification error (MCE) training 

[Juang 1997; Siohan 1998; McDermott 2007; Ma 2003], where the former could be a special 

case of the latter when the classes to be distinguished are binary. Although MVE training has 

been extensively studied in the literature [Chou 2003; Rosenberg 1998; Sukkar 1996, 1998; 

Rahim 1997; Kuo 2003; Siu 2006], most studies focus on better estimating the parameters of 

the target model. In contrast, we try to improve the characterization of the alternative 

hypothesis by applying MVE training to optimize the parameters associated with the 

combinations of the likelihoods from a set of background models. Traditionally, MVE 

training has been realized by the gradient descent algorithms, e.g., the generalized probability 

descent (GPD) [Chou 2003], but the approach only guarantees to converge to a local optimum. 

To overcome such a limitation, we propose a new MVE training method, called evolutionary 

MVE (EMVE) training, for learning the parameters associated with WAC and WGC based on 

a genetic algorithm (GA) [Eiben 2003]. It has been shown in many applications that 

GA-based optimization is superior to gradient-based optimization, because of GA’s global 

scope and parallel searching power. To facilitate the EMVE training, we designed a new 

mutation operator, called the one-step gradient descent operator (GDO), for the genetic 

algorithm. The results of speaker verification experiments conducted on the Extended 

M2VTS Database (XM2VTSDB) [Messer 1999] demonstrate that the proposed methods 

outperform conventional LR-based approaches. 

The remainder of this chapter is organized as follows. Section 2.1 presents the proposed 

methods for characterizing the alternative hypothesis. Sections 2.2 and 2.3 describe, 

respectively, the gradient-based MVE training and the EMVE training used to optimize our 

methods. Section 2.4 contains the experiment results. 
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2.1. Characterization of the Alternative Hypothesis 

 
To characterize the alternative hypothesis, we generate a set of background models using data 

that does not belong to the target speaker. Instead of using the heuristic arithmetic mean or 

geometric mean, our goal is to design a function Ψ(⋅) that optimally exploits the information 

available from background models. In this section, we present our approach, which is based 

on either the weighted arithmetic combination (WAC) or the weighted geometric combination 

(WGC) of the useful information available. Moreover, the LR measure based on WAC or 

WGC can be viewed as a generalized and trainable version of LUBM(U) in Eq. (1.3), LMax(U) 

in Eq. (1.4), LAri(U) in Eq. (1.5), or LGeo(U) in Eq. (1.6). 

 

 

2.1.1. The Weighted Arithmetic Combination (WAC) 

First, we define the function Ψ(⋅) in Eq. (1.7) based on the weighted arithmetic combination 

as 

,)λ|())λ|( ),...,λ|(()λ|(
1

1 ∑
=

=Ψ=
N

i
iiN UpwUpUpUp                   (2.1) 

where wi is the weight of the likelihood p(U | λi) subject to ∑=
=

N

i iw
1

1. This function assigns 

different weights to N background models to indicate their individual contribution to the 

alternative hypothesis. Suppose all the N background models are Gaussian Mixture Models 

(GMMs); then, Eq. (2.1) can be viewed as a mixture of Gaussian mixture density functions. 

From this perspective, the alternative hypothesis model λ  can be viewed as a GMM with 

two layers of mixture weights, where one layer represents each background model and the 

other represents the combination of background models.  
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2.1.2. The Weighted Geometric Combination (WGC) 

Alternatively, we can define the function Ψ(⋅) in Eq. (1.7) from the perspective of the 

weighted geometric combination as 

. )λ|())λ|( ),...,λ|(()λ|(
1

1
iw

i

N

i
N UpUpUpUp

=
∏=Ψ=                  (2.2) 

Similar to the weighted arithmetic combination, Eq. (2.2) considers the individual 

contribution of a background model to the alternative hypothesis by assigning a weight to 

each likelihood value. One additional advantage of WGC is that it avoids the problem where 

0)λ|( →Up . The problem can arise with the heuristic geometric mean because some values 

of the likelihood may be rather small when the background models λi are irrelevant to an 

input utterance U, i.e., p(U| λi) → 0. However, if a weight is attached to each background 

model, Ψ(⋅) defined in Eq. (2.2) should be less sensitive to a tiny value of the likelihood; 

hence, it should be more robust and reliable than the heuristic geometric mean.  

 

2.1.3. Relation to Conventional LR Measures 

We observe that Eq. (2.1) and Eq. (2.2) are equivalent to the arithmetic mean and the 

geometric mean, respectively, when wi = 1/N, i = 1,2,…, N; in other words, all the background 

models are assumed to contribute equally. It is also clear that both Eq. (2.1) and Eq. (2.2) will 

degenerate to a maximum function if we set 1* =iw , where )λ|(maxarg* 1 iNi Upi ≤≤= , and 

wi = 0, . Furthermore, the logarithmic LR measure based on Eq. (2.1) or Eq. (2.2) 

will degenerate to LUBM(U) in Eq. (1.3) if only a UBM Ω is used as the background model. 

Thus, both WAC- and WGC-based logarithmic LR measures can be viewed as generalized 

and trainable versions of LUBM(U) in Eq. (1.3), LMax(U) in Eq. (1.4), LAri(U) in Eq. (1.5), or 

LGeo(U) in Eq. (1.6).  

*ii ≠∀
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In the WAC method, we refer to the alternative hypothesis model λ  defined in Eq. (2.1) 

as a 2-layer GMM (GMM2), since it involves both inner and outer mixture weights. GMM2 

differs from the UBM Ω in that it characterizes the relationship between individual 

background models through the outer mixture weights, rather than simply pooling all the 

available data and training a single background model represented by a GMM. Note that the 

inner and outer mixture weights are trained by different algorithms. Specifically, the inner 

mixture weights are estimated using the standard expectation-maximization (EM) algorithm 

[Huang 2001], while the outer mixture weights are estimated using minimum verification 

error (MVE) training or evolutionary MVE (EMVE) training, which we will discuss in Sec. 

2.2 and Sec. 2.3, respectively. In other words, GMM2 integrates the Bayesian learning and 

discriminative training algorithms. The objective is to optimize the LR measure by 

considering the null hypothesis and the alternative hypothesis jointly. 

 

2.1.4. Background Model Selection 

In general, the more speakers that are used as background models, the better the 

characterization of the alternative hypothesis will be. However, it has been found [Reynolds 

1995; Rosenberg 1992; Liu 1996; Higgins 1991; Auckenthaler 2000; Sturim 2005] that using 

a set of pre-selected representative models usually makes the system more effective and 

efficient than using the entire collection of available speakers. For this reason, we present two 

approaches for selecting background models to strengthen our WAC- and WGC-based 

methods. 

 
A. Combining cohort models and the world model 

Our first approach selects B+1 background models, comprised of B cohort models used in 

LMax(U), LAri(U), and LGeo(U), and one world model used in LUBM(U), for WAC in Eq. (2.1) 
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and WGC in Eq. (2.2). Depending on the definition of a cohort, we consider two 

commonly-used methods [Reynolds 1995]. One selects the B closest speaker models {λcst 1, 

λcst 2, …, λcst B} for each target speaker; and the other selects the B/2 closest speaker models 

{λcst 1, λcst 2, …, λcst B/2}, plus the B/2 farthest speaker models {λfst 1, λfst 2, …, λfst B/2}, for each 

target speaker. Here, the degree of closeness is measured in terms of the pairwise distance 

defined in [Reynolds 1995]: 

,
)λ|(
)λ|(

log
)λ|(
)λ|(log)λ,λ(

ij

jj

ji

ii
ji Up

Up
Up
Upd +=                        (2.3) 

where λi and λj are speaker models trained using the i-th speaker’s utterances Ui and the j-th 

speaker’s utterances Uj, respectively. As a result, each target speaker has a sequence of 

background models, {Ω, λcst 1, λcst 2, …, λcst B} or {Ω, λcst 1, …, λcst B/2, λfst 1, …, λfst B/2}, for 

Eqs. (1.7), (2.1), and (2.2). 

 
B. Combining multiple types of anti-models 

As shown in Eqs. (1.3) – (1.6), various types of anti-models have been studied for 

conventional LR measures. However, none of the LR measures developed thus far has proved 

to be absolutely superior to any other. Usually, LUBM(U) tends to be weak in rejecting 

impostors with voices similar to the target speaker’s voice, while LMax(U) is prone to falsely 

rejecting a target speaker; LAri(U) and LGeo(U) are between these two extremes. The 

advantages and disadvantages of different LR measures motivate us to combine them into a 

unified LR measure because of the complementary information that each anti-model can 

contribute. 

Consider K different LR measures Li(U), each with an anti-model iλ , i = 1,2,…, K. If 

we treat each anti-model iλ  as a background model, the function Ψ(⋅) in Eq. (1.7) can be 

rewritten as, 
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( ). )λ|( )...,λ|(),λ|()λ|( 21 KUpUpUpUp Ψ=                    (2.4) 

Using WAC or WGC to realize Eq. (2.4), we can form a trainable version of the conventional 

LR measures in Eqs. (1.3) – (1.6), where each anti-model iλ , i = 1,…,4, is computed, 

respectively, by 

),|()λ|( 1 Ω= UpUp                                   (2.5) 

),λ|(max)λ|(
12 iBi

UpUp
≤≤

=                              (2.6) 
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and 
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UpUp ⎟

⎠
⎞

⎜
⎝
⎛∏=

=
                            (2.8) 

As a result, for Eq. (1.7), each target speaker has the following sequence of background 

models, { 4321 λ,λ,λ,λ }. We denote systems that combine multiple anti-models as hybrid 

anti-model systems.  

 

 

2.2. Gradient-based Minimum Verification Error Training 

 
After representing Ψ(⋅) as a trainable combination of likelihoods, the task becomes a matter of 

solving the associated weights. To obtain an optimal set of weights, we propose using 

minimum verification error (MVE) training [Chou 2003, Rosenberg 1998].  

The concept of MVE training stems from MCE training, where the former could be a 

special case of the latter when the classes to be distinguished are binary. To be specific, 
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consider a set of class discriminant functions gi(U), i = 0,1,…, M - 1. The misclassification 

measure in the MCE method [Juang 1997] is defined as 
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where η is a positive number. If M = 2, η = 1, and 
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then di(U) is reduced to the mis-verification measure defined in the MVE method: 
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where L(U) is the logarithmic LR. We further express L(U) as the following equivalent test 
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so that the decision threshold θ can also be included in the optimization process. Then, the 

mis-verification measure is converted into a value between 0 and 1 using a sigmoid function 

))(exp(1
1))((

Ud
Udsg

⋅−+
=

ε
 ,                        (2.13) 

where ε  is a slope of the sigmoid function sg(⋅). 

Next, we define the loss of each hypothesis as the average of the mis-verification 

measures of the training samples 

,))((1 ∑
∈

=
iHUi

i Udsg
N

l                             (2.14) 

where l0 denotes the loss associated with false rejection errors, l1 denotes the loss associated 

with false acceptance errors, and N0 and N1 are the numbers of utterances from true speakers 
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and impostors, respectively. Finally, we define the overall expected loss as 

                               (2.15) ,1100 ll xxD = +

where x0 and x1 indicate which type of error is of greater concern in a practical application. 

Accordingly, our goal is to find the weights wi in Eq. (2.1) and Eq. (2.2) such that Eq. 

(2.15) can be minimized. This can be achieved by using the gradient descent algorithm [Chou 

2003]. To ensure that the weights satisfy ∑=
=

N

i iw
1

1 , we solve wi by means of an 

intermediate parameter αi, where 
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which is similar to the strategy used in [Juang 1997]. Parameter αi is iteratively optimized 

using 
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where δ  is the step size, and 
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If WAC is used, then 
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If WGC is used, then 
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The threshold θ in Eq. (2.12) can be estimated using  
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In our implementation, the overall expected loss is set as 

. )1(10 TargetFalseAlarmTargetMiss PCPCD −××+××= ll                   (2.24) 

Eq. (2.24) simulates the Detection Cost Function (DCF) [Van Leeuwen 2006] 

),1( TargetFalseAlarmFalseAlarmTargetMissMissDET PPCPPCC −××+××=             (2.25) 

where CMiss denotes the cost of the miss (false rejection) error; CFalseAlarm denotes the cost of 

the false alarm (false acceptance) error; PMiss ≈ l0 is the miss (false rejection) probability; 

PFalseAlarm ≈ l1 is the false alarm (false acceptance) probability; and PTarget is the a priori 

probability of the target speaker.  
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2.3. Evolutionary Minimum Verification Error Training 

 
As the gradient descent approach may converge to an inferior local optimum, we propose an 

evolutionary MVE (EMVE) training method that uses a genetic algorithm (GA) to train the 

weights wi and the threshold θ in WAC- and WGC-based LR measures. It has been shown in 

many applications that GA-based optimization is superior to gradient-based optimization, 

because of GA’s global scope and parallel searching power. 

Genetic algorithms belong to a particular class of evolutionary algorithms inspired by the 

process of natural evolution [Eiben 2003]. As shown in Fig. 2.1, the operators involved in the 

evolutionary process are: encoding, parent selection, crossover, mutation, and survivor 

selection. GAs maintain a population of candidate solutions and perform parallel searches in 

the search space via the evolution of these candidate solutions. 

To accommodate GA to EMVE training, the fitness function of GA is set as the 

reciprocal of the overall expected loss D defined in Eq. (2.15), where  and 

. The details of the GA operations in EMVE training are described 

in the following. 

TargetMiss PCx ×=0

)1(1 TargetFalseAlarm PCx −×=

 

Population

Parents

Offspring

Initialization

Termination

Parent selection

Survivor selection

Crossover

Mutation

 

Fig. 2.1. The general scheme of a GA. 
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1) Encoding: Each chromosome is a string },,...,,{ 21 θααα N  of length N + 1, which is the 

concatenation of all intermediate parameters αi in Eq. (2.16) and the threshold θ in Eq. (2.12). 

Chromosomes are initialized by randomly assigning a real value to each gene. 

 
2) Parent selection: Five chromosomes are randomly selected from the population with 

replacement, and the one with the best fitness value (i.e., with the smallest overall expected 

loss) is selected as a parent. The procedure is repeated iteratively until a pre-defined number 

(which is the same as the population size in this study) of parents is selected. This is known as 

tournament selection [Eiben 2003]. 

 
3) Crossover: We use the N-point crossover [Eiben 2003] in this work. Two chromosomes 

are randomly selected from the parent population with replacement. The chromosomes can 

interchange each pair of their genes in the same positions according to a crossover 

probability pc. 

 
4) Mutation: In most cases, the function of the mutation operator is to change the allele of the 

gene randomly in the chromosomes. For example, while mutating a gene of a chromosome, 

we can simply draw a number from a normal distribution at random, and add it to the allele of 

the gene. However, the method does not guarantee that the fitness will improve steadily. We 

therefore designed a new mutation operator, called the one-step gradient descent operator 

(GDO). The concept of the GDO is similar to that of the one-step K-means operator (KMO) 

[Krishna 1999; Lu 2004; Cheng 2006], which guarantees to improve the fitness function after 

mutation by performing one iteration of the K-means algorithm.  

The GDO performs one gradient descent iteration to update the parameters αi, i = 1, 

2, …, N as follows: 
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where  and  are, respectively, the parameter αi in a chromosome after and before 

mutation; 

new
iα

old
iα

δ  is the step size ; and 
i

D
α∂
∂ is computed by Eq. (2.18). Similarly, the GDO for 

the threshold θ is computed by 

,
θ

δθθ
∂
∂

−=
Doldnew                               (2.27) 

where  and  are, respectively, the threshold θ in a chromosome after and before 

mutation; and 

newθ oldθ

θ
D
∂
∂  is computed by Eq. (2.23). 

 
5) Survivor selection: We adopt the generational model [Eiben 2003] in which the whole 

population is replaced by its offspring. 

 
The process of fitness evaluation, parent selection, crossover, mutation, and survivor 

selection is repeated following the principle of survival of the fittest to produce better 

approximations of the optimal solution. Accordingly, it is hoped that the verification errors 

will decrease from generation to generation. When the maximum number of generations is 

reached, the best chromosome in the final population is taken as the solution of the weights.  

As the proposed EMVE training method searches for the solution in a global manner, it 

is expected that its computational complexity is higher than that of the gradient-based MVE 

training. Assume that the population size of GA is P, while the numbers of iterations (or 

generations) of gradient-based MVE training and EMVE training are k1 and k2, respectively. 

The computational complexity of EMVE training is about Pk2/k1 times that of gradient-based 

MVE training. In our experiments (as shown in Fig. 2.2), the number of generations required 

for the convergence of EMVE training is roughly equal to the number of iterations required 

for the convergence of gradient-based MVE training; hence, the EMVE training roughly 
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requires P times consumption of the gradient-based MVE training. 

.4. Experiments and Analysis 

 

o NIST Speaker Recognition Evaluation (NIST 

SRE

ucted on a 3.2 GHz Intel Pentium IV computer with 1.5 GB of RAM, 

running Windows XP. 

                                                

 

 

2

We evaluated the proposed approaches via speaker verification experiments conducted on 

speech data extracted from the Extended M2VTS Database (XM2VTSDB) [Messer 1999]. 

The first set of experiments followed Configuration II of XM2VTSDB, as defined in [Luettin 

1998]. The second set of experiments followed a configuration that was modified from 

Configuration II of XM2VTSDB to conform t

) [Przybocki 2007; Van Leeuwen 2006]. 

In the experiments, the population size of the GA was set to 50, the maximum number of 

generations was set to 100, and the crossover probability pc was set to 0.5 for the EMVE 

training; the gradient-based MVE training for the WAC and WGC methods was initialized 

with an equal weight, wi, and the threshold θ was set to 0. For the DCF in Eq. (2.25), the costs 

CMiss and CFalseAlarm were both set to 1, and the a priori probability PTarget was set to 0.5. This 

special case of DCF is known as the Half Total Error Rate (HTER) [Lindberg 1998]. All the 

experiments were cond

 

2.4.1. Evaluation based on Configuration II 

In accordance with Configuration II of XM2VTSDB, the database was divided into three 

subsets: “Training”, “Evaluation*”, and “Test”. We used the “Training” subset to build each 

 
* This is usually called the “Development” set by the speech recognition community. We use “Evaluation” in 

accordance with the configuration of XM2VTSDB. 
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target speaker’s model and the background models. The “Evaluation” subset was used to 

optimize the weights wi in Eq. (2.1) or Eq. (2.2), along with the threshold θ. Then, the speaker 

verification performance was evaluated on the “Test” subset. As shown in Table 2.1, a total of 

293 speakers† in the database were divided into 199 clients (target speakers), 25 “evaluation 

impostors”, and 69 “test impostors”. Each speaker participated in four recording sessions at 

about one-month intervals, and each recording session consisted of two shots. In each shot, 

 to utter three sentences: 

)  “Joe took father’s green shoe bench out”. 

 

2

Session Shot 199 clients 25 impostors 69 impostors 

the speaker was prompted

a)  “0 1 2 3 4 5 6 7 8 9”. 

b)  “5 0 6 9 2 8 1 3 7 4”. 

c

 

Table 2.1.  Configuration II of XM VTSDB. 

1 1 

Training

Evaluation Test 

2 

2 1 
2 

3 1 Evaluation2 

4 1 Test 2 
 

 

Each utterance, sampled at 32 kHz, was converted into a stream of 24-order feature vectors by 

a 32-ms Hamming-windowed frame with 10-ms shifts; and each vector consisted of 12 

Mel-

                                                

scale frequency cepstral coefficients [Huang 2001] and their first time derivatives.  

We used 12 (2×2×3) utterances/client from sessions 1 and 2 to train each client model, 

 
† We omitted 2 speakers (ID numbers 313 and 342) because of partial data corruption. 
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represented by a GMM with 64 mixture components. For each client, we used the utterances 

of the other 198 clients in sessions 1 and 2 to generate the world model, represented by a 

GMM with 512 mixture components. We then chose B speakers from those 198 clients as the 

cohort. In the experiments, B was set to 50, and each cohort model was also represented by a 

GMM with 64 mixture components. Table 2.2 summarizes all the parametric models used in 

each

ssions, which involved 1,194 (6×199) client trials and 329,544 (24×69×199) impostor 

trials

 

Table 2.2 ary of the parametric models used in each system. 

System 
1 

 system. 

To optimize the weights, wi, and the threshold, θ, we used 6 utterances/client from 

session 3 and 24 (4×2×3) utterances/evaluation-impostor over the four sessions, which 

yielded 1,194 (6×199) client samples and 119,400 (24×25×199) impostor samples. To speed 

up the gradient-based MVE and EMVE training processes, only 2,250 impostor samples 

randomly selected from the total of 119,400 samples were used. In the performance 

evaluation, we tested 6 utterances/client in session 4 and 24 utterances/test-impostor over the 

four se

. 

 

.  A summ

H0 H

a 64-mixture client GMM a 512-mixture world model B 64-mixture cohort 
GMMs 

LUBM √ √  
LMax √  √ 
LAri √  √ 
LGeo √  √ 

WG  √ C √ √ 
WAC √ √ √ 

 

 

A. Experiment results 

First, we compared the learning ability of gradient-based MVE training and EMVE training in 
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the proposed WGC- and WAC-based LR measures. The background models comprised either 

(i) the world model and the 50 closest cohort models (“w_50c”), or (ii) the world model and 

the 25 closest cohort models, plus the 25 farthest cohort models (“w_25c_25f”). The WGC- 

nd WAC-based LR systems were implemented in four ways: 

MVE training and “w_50c” (“WGC_MVE_w_50c”;   

 training and “w_25c_25f” (“WGC_MVE_w_25c_25f”; 

g EMVE training and “w_50c” (“WGC_EMVE_w_50c”; “WAC_EMVE_w_50c”), 

and “w_25c_25f” (“WGC_EMVE_w_25c_25f”; 

“WAC_EMVE_w_25c_25f”). 

 

an the EMVE training method without 

DO and the gradient-based MVE training method.  

 
For the performance comparison, we used the following LR systems as our baselines: 

 

 

a

 
a) Using gradient-based 

“WAC_MVE_w_50c”), 

b) Using gradient-based MVE

“WAC_MVE_w_25c_25f”), 

c) Usin

and 

d) Using EMVE training 

Figs. 2.2(a) and 2.2(b) show the learning curves of different MVE training methods for WGC 

and WAC on the “Evaluation” subset, respectively, where 

“WGC_EMVE_w_50c_withoutGDO” and “WGC_EMVE_w_25c_25f_withoutGDO” denote 

the EMVE training algorithms that use the conventional mutation operator, which changes the 

allele of the gene in a chromosome at random, while the others are based on the GDO 

mutation. From Fig. 2.2, we observe that the GDO-based EMVE training method reduces the 

overall expected loss more effectively and steadily th

G

a) LUBM(U) (“Lubm”),  

b) LMax(U) with the 50 closest cohort models (“Lmax_50c”), 
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c) LGeo(U) with the 50 closest cohort models (“Lgeo_50c”),  

d) LGeo(U) with the 25 closest cohort models and the 25 farthest cohort models 

(“Lgeo_25c_25f”),  

 
 

 

(a) WGC methods 

 

(b) WAC methods 

Fig. 2.2. The learning curves of gradient-based MVE and EMVE for the “Evaluation” subset 

 Configuration II. in
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e) LAri(U) with the 50 closest cohort models (“Lari_50c”), and  

f) LAri(U) with the 25 closest cohort models and the 25 farthest cohort models 

(“Lari_25c_25f”).  

e is no significant difference 

betw

oor performance. The hybrid anti-model systems were implemented 

 the following ways:  

 

Fig. 2.3 shows the Detection Error Tradeoff (DET) curves [Martin 1997] obtained by 

evaluating the above systems using the “Test” subset, where Fig. 2.3(a) compares the 

WGC-based approach and the geometric mean approach, while Fig. 2.3(b) compares the 

WAC-based approach and the arithmetic mean approach. From the figure, we observe that all 

the WGC-based LR systems outperform the baseline LR systems “Lubm”, “Lmax_50c”, 

“Lgeo_50c”, and “Lgeo_25c_25f”, while all the WAC-based LR systems outperform the 

baseline LR systems “Lubm”, “Lari_50c”, and “Lari_25c_25f”. From Fig. 2.3(a), we observe 

that “Lgeo_25c_25f” yields the poorest performance. This is because the heuristic geometric 

mean can produce some singular scores if any cohort model λi is poorly matched with the 

input utterance U, i.e., p(U| λi) → 0. In contrast, the results show that the WGC-based LR 

systems sidestep this problem with the aid of the weighted strategy. Figs. 2.3(a) and 2.3(b) 

also show that “WGC_EMVE_w_50c”, “WGC_EMVE_w_25c_25f”, and 

“WAC_EMVE_w_25c_25f” outperform “WGC_MVE_w_50c”, “WGC_MVE_w_25c_25f”, 

and “WAC_MVE_w_25c_25f”, respectively. However, ther

een “WAC_MVE_w_50c” and “WAC_EMVE_w_50c”. 

In addition to the above systems, we also evaluated the WAC- and WGC-based LR 

measures using the hybrid anti-model defined in Eq. (2.4). The hybrid anti-model comprised 

five conventional anti-models extracted from “Lubm”, “Lmax_50c”, “Lgeo_50c”, 

“Lari_50c”, and “Lari_25c_25f”. Note that the anti-model of “Lgeo_25c_25f” was not 

included because of its p

in
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a) Using WAC and gradient-based MVE training (“WAC_MVE_5anti”), 

b) Using WGC and gradient-based MVE training (“WGC_MVE_5anti”), 

c) Using WAC and EMVE training (“WAC_EMVE_5anti”), and 

DET curves. Clearly, all the hybrid anti-model 

s using either WAC or WGC methods outperform any baseline LR system with a 

ngle anti-model. 

 

 
 

d) Using WGC and EMVE training (“WGC_EMVE_5anti”). 

 
Fig. 2.4 compares the performance of the hybrid anti-model systems with all the baselines 

systems, evaluated on the “Test” subset in 

system

si

 

(a) Geometric mean versus WGC 
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(b) Arithmetic mean versus WAC 

Fig. 2.3. DET curves for the “Test” subset in Configuration II. 

 

 

Fig. 2.4. Hybrid anti-model systems versus all baselines: DET curves for the “Test” subset in 

Configuration II. 
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B. Discussion 

Table 2.3 summarizes the above experiment results in terms of the DCF, which reflects the 

performance at a specific operating point on the DET curve. For each baseline system, the 

value of the decision threshold θ was carefully tuned to minimize the DCF in the 

“Evaluation” subset, and then applied to the “Test” subset. However, the decision thresholds 

of the proposed WAC- and WGC-based LR measures were optimized automatically using the 

“Evaluation” subset, and then applied to the “Test” subset.  

 

Table 2.3.  DCFs for the “Evaluation” and “Test” subsets in Configuration II. 

System min DCF for “Evaluation” DCF for “Test” 
Lubm 0.0651 0.0545 

Lmax_50c 0.0762 0.0575 
Lari_50c 0.0677 0.0526 

Lari_25c_25f 0.0587 0.0496 
Lgeo_50c 0.0749 0.0542 

WGC_MVE_w_50c 0.0576 0.0450 
WGC_EMVE_w_50c 0.0488 0.0417 

WGC_MVE_w_25c_25f 0.0633 0.0478 
WGC_EMVE_w_25c_25f 0.0493 0.0429 

WAC_MVE_w_50c 0.0576 0.0460 
WAC_EMVE_w_50c 0.0571 0.0443 

WAC_MVE_w_25c_25f 0.0573 0.0462 
WAC_EMVE_w_25c_25f 0.0543 0.0444 

WGC_MVE_5anti 0.0588 0.0475 
WGC_EMVE_5anti 0.0568 0.0460 
WAC_MVE_5anti 0.0634 0.0480 

WAC_EMVE_5anti 0.0597 0.0469 

 

 

Several conclusions can be drawn from Table 2.3. First, all the proposed WAC- and 

WGC-based LR systems with either the hybrid anti-model or the background model set (the 

world model plus a cohort) outperform all the baseline LR systems. Second, the performances 

of the proposed systems using the background model set are slightly better than those 

achieved using the hybrid anti-model. Third, the performances of the WAC- and WGC-based 
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LR systems are similar. Fourth, EMVE training is better than MVE training. Among the 

systems, “WGC_EMVE_w_50c” achieves the best performance with a 15.93% relative 

improvement in terms of the DCF for the “Test” subset, compared to the best baseline system 

“Lari_25c_25f”. 

 

 

2.4.2. Evaluation based on the NIST SRE-like Configuration 

To conform to NIST SRE [Przybocki 2007; Van Leeuwen 2006], we conducted another series 

of experiments on XM2VTSDB, which was re-configured as shown Table 2.4. The 293 

speakers in XM2VTSDB were divided into 100 clients (target speakers), 100 background 

speakers, 24 “development impostors”, and 69 “test impostors”. As shown in the table, the 

“Development” set comprised two subsets: “Development training” and “Development test”. 

In the “Development training” subset, we pooled the utterances of 100 background speakers 

from sessions 1 and 2 to build a world model (UBM), represented by a GMM with 512 

mixture components. For each background speaker, we used 12 (2×2×3) 

utterances/background-speaker from sessions 1 and 2 to generate his/her model. The cohort 

for each background speaker was selected from the other 99 background speakers. In the 

“Development test” subset, to estimate the weights wi and the threshold θ, we used 12 

(2×2×3) utterances/background-speaker from sessions 3 and 4 as well as 24 (4×2×3) 

utterances/development-impostor over the four sessions. This yielded 1,200 (12×100) client 

samples and 57,600 (24×24×100) impostor samples. To speed up the gradient-based MVE 

and EMVE training processes, only 5,760 impostor samples randomly selected from the total 

of 57,600 samples were used.  

For each client (target speaker), we used 12 (2×2×3) utterances/client from sessions 1 

and 2 to generate the client GMM. The cohort models for each client were selected from the 
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GMMs of the 100 background speakers in the “Development training” subset. The parametric 

models used in each system were the same as those in Table 2.2. In addition, we implemented 

two current state-of-the-art systems in the text-independent speaker verification task, namely 

T-norm [Auckenthaler 2000] and “Lubm_MAP”. “Lubm_MAP” is based on the UBM-MAP 

adaptation method [Reynolds 2000]; each client model with 512 mixture Gaussian 

components was adapted from the UBM via the maximum a posteriori (MAP) estimation 

[Gauvain 1994] according to the speaker’s 12 (2×2×3) “Training” utterances from sessions 1 

and 2.  

In the performance evaluation, we tested 12 (2×2×3) utterances/client from sessions 3 

and 4, and 24 (4×2×3) utterances/test-impostor over the four sessions, which involved 1,200 

(12×100) client trials and 165,600 (24×69×100) impostor trials, respectively. 

 

 

Table 2.4.  The NIST SRE-like configuration of XM2VTSDB. 

Session Shot 100 clients 100 background speakers 24 impostors 69 impostors

1 1 
Training 

(client models) 
Development training 

(UBM, a cohort) Development 
test 

( wi and θ ) 
Test 

2 

2 1 
2 

3 1 

Test Development test 
( wi and θ ) 

2 

4 1 
2 

 

 

A. Experiment results 

As in Section 2.4.1, we implemented four WGC-based LR systems: “WGC_MVE_w_50c”, 

“WGC_EMVE_w_50c”, “WGC_MVE_w_25c_25f”, and “WGC_EMVE_w_25c_25f”; four 

WAC-based LR systems: “WAC_MVE_w_50c”, “WAC_EMVE_w_50c”, 

“WAC_MVE_w_25c_25f”, and “WAC_EMVE_w_25c_25f”; and four hybrid anti-model 
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systems: “WAC_MVE_5anti”, “WAC_EMVE_5anti”, “WGC_MVE_5anti”, and 

“WGC_EMVE_5anti”. For the performance comparison, we used five conventional LR 

systems: “Lubm”, “Lmax_50c”, “Lgeo_50c”, “Lari_50c”, and “Lari_25c_25f”, plus two 

state-of-the-art systems: “Lubm_MAP” and the T-norm system with the 50 closest cohort 

models (“Tnorm_50c”), as our baselines. 

Since the experiment results in Section 2.4.1 show that the performance of the proposed 

WGC- and WAC-based LR systems using EMVE training is better than that of the systems 

using gradient-based MVE training, Fig. 2.5 only compares the performance of the proposed 

WGC- and WAC-based LR systems using EMVE training with two state-of-the-art systems 

and two best baseline systems in Section 2.4.1, namely “Lubm” and “Lari_25c_25f”, 

evaluated on the “Test” subset in DET curves. From the figure, we observe that all the 

proposed WGC- and WAC-based LR systems using EMVE training outperform 

“Lubm_MAP”, “Tnorm_50c”, “Lubm”, and “Lari_25c_25f”. Interestingly, the baseline 

system “Lubm” outperforms “Lubm_MAP”, which is widely recognized as a state-of-the-art 

method for the text-independent speaker verification task. This may be because the training 

and test utterances in XM2VTSDB have the same content. 

Table 2.5 summarizes the experiment results for all systems in terms of the DCF. For 

each baseline system, the decision threshold θ was tuned to minimize the DCF on the 

“Development test” subset, and then applied to the “Test” subset. The decision thresholds of 

the proposed methods were optimized automatically using the “Development test” subset, and 

then applied to the “Test” subset. From Table 2.5, it is clear that all the proposed WGC- and 

WAC-based LR systems using either gradient-based MVE training or EMVE training 

outperform all the conventional LR systems “Lubm”, “Lmax_50c”, “Lgeo_50c”, “Lari_50c”, 

and “Lari_25c_25f”, and two state-of-the-art systems “Lubm_MAP” and “Tnorm_50c”. The 

DCFs for the “Test” subset demonstrate that “WGC_EMVE_w_50c” achieved a 13.01% 
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relative improvement over “Tnorm_50c” – the best baseline system. 

 

 

Fig. 2.5. DET curves for the “Test” subset in the NIST SRE-like configuration. 

 

We also evaluated the training and verification time of the above systems. In the offline 

training phase, in addition to training 100 background speaker models and a UBM, the 

proposed WAC and WGC methods need to train the weight wi. From the fourth column of 

Table 2.5, we observe that the EMVE training is slower than the gradient-based MVE training 

and the training time of WGC is slightly faster than that of WAC. The computational cost in 

gradient-based MVE or EMVE training mainly comes from the calculation of the likelihoods 

of each training utterance with respect to the background speaker models and the UBM and 

the selection of the cohort models for each background speaker. The fifth column of Table 2.5 

shows the training time for enrolling a new target speaker. “Lubm_MAP” and “Lubm” need 

less enrollment time than the other systems because they need not select the cohort models for 

the new target speaker. The last column of Table 2.5 shows the verification time for an input 
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test utterance. The average duration of the test utterances is around 1.5 sec. As expected, 

“Lubm_MAP” is the fastest method, since only one background model (i.e., UBM) is 

involved and the fast scoring scheme [Reynolds 2000] is used. Although the proposed 

systems are slightly slower than the baseline systems because both the cohort models and the 

UBM are involved, they are still capable of supporting a real-time response.  

 

Table 2.5.  DCFs for the “Development test” and “Test” subsets, together with the running 

time evaluation in the NIST SRE-like configuration. 

System 
min DCF for 
“Development 
test” 

DCF for 
“Test” 

Training time for the 
weights wi in 
WAC/WGC (offline) 

Training time for 
enrolling a target 
speaker  

Verification 
time for an input 
test utterance  

Lubm_MAP 0.0704 0.0601 

 

5.79sec 0.08sec 
Lubm 0.0575 0.0573 7.87sec 0.12sec 
Tnorm_50c 0.0607 0.0569 27.46sec 0.75sec 
Lmax_50c 0.0732 0.0734 27.46sec 0.75sec 
Lari_50c 0.0653 0.0600 27.46sec 0.75sec 
Lari_25c_25f 0.0611 0.0588 27.46sec 0.75sec 
Lgeo_50c 0.0758 0.0692 27.46sec 0.75sec 
WGC_MVE_w_50c 0.0578 0.0529 3hr 06min 22.31sec 27.46sec 0.86sec 
WGC_EMVE_w_50c 0.0479 0.0495 3hr 22min 15.38sec 27.46sec 0.86sec 
WGC_MVE_w_25c_25f 0.0610 0.0570 3hr 06min 22.31sec 27.46sec 0.86sec 
WGC_EMVE_w_25c_25f 0.0485 0.0509 3hr 22min 15.40sec 27.46sec 0.86sec 
WAC_MVE_w_50c 0.0575 0.0546 3hr 06min 25.09sec 27.46sec 0.86sec 
WAC_EMVE_w_50c 0.0556 0.0533 3hr 24min 50.14sec 27.46sec 0.86sec 
WAC_MVE_w_25c_25f 0.0564 0.0549 3hr 06min 25.09sec 27.46sec 0.86sec 
WAC_EMVE_w_25c_25f 0.0543 0.0527 3hr 24min 50.15sec 27.46sec 0.86sec 
WGC_MVE_5anti 0.0583 0.0541 3hr 06min 15.58sec 27.46sec 0.86sec 
WGC_EMVE_5anti 0.0576 0.0514 3hr 09min 54.53sec 27.46sec 0.86sec 
WAC_MVE_5anti 0.0610 0.0556 3hr 06min 15.72sec 27.46sec 0.86sec 
WAC_EMVE_5anti 0.0587 0.0566 3hr 10min 15.70sec 27.46sec 0.86sec 

 

 



 

 

Chapter 3  

Improving the Characterization of the 

Alternative Hypothesis Using Kernel 

Discriminant Analysis 
 

In this chapter, we further propose improving the characterization of the alternative 

hypothesis by designing two decision functions based on WAC and WGC. We can regard the 

proposed decision functions as nonlinear discriminant classifiers. The parameters associated 

with the classifiers are then optimized using two kernel discriminant analysis techniques, 

namely, the Kernel Fisher Discriminant (KFD) [Mika 1999, 2002] and Support Vector 

Machine (SVM) [Burges 1998]. The proposed approaches have two advantages over existing 

methods. The first is that they embed a trainable mechanism in the decision functions. The 

second is that they convert variable-length utterances into fixed-dimension characteristic 

vectors, which are easily processed by kernel discriminant analysis. 

In recent years, a number of SVM-based speaker verification techniques have been 

developed [Campbell 2006, 2007; Bengio 2001; Wan 2005]. One of the main issues with 

using SVMs for speaker verification is that the number of training samples represented by 

frames is usually too large to handle efficiently. For this reason, the concept of a sequence 

kernel [Campbell 2006, 2007; Bengio 2001; Wan 2005] was proposed to compare speech 

utterances at the sequence level instead of the frame level. However, constructing a proper 
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sequence kernel for utterance-based SVMs is an issue that requires further investigation. In 

this work, as the proposed WGC and WAC methods convert variable-length utterances into 

fixed-dimension characteristic vectors, the derived kernel processes play the same role as the 

sequence kernel method, but they have the advantage of not having to specifically design the 

kernel functions. 

In addition, most existing SVM-based speaker verification approaches only use a single 

background model, i.e., the world model, instead of multiple background models, to 

characterize the alternative hypothesis. For example, Bengio et al. [Bengio 2001] proposed 

the following decision function: 

,)|(log)λ|(log)( 321Bengio aUpaUpaUL +Ω−=        (3.1) 

where a1, a2, and a3 are adjustable parameters estimated using SVM. The input to SVM 

comprises the two-dimensional vector ′Ω)]|(log-  )λ|([log UpUp . An extended version of 

Eq. (3.1) using the Fisher kernel and the LR score-space kernel for SVM was investigated in 

[Wan 2005]. In contrast, our framework integrates more available information from multiple 

background models into a characteristic vector as the input to SVM, which makes it easier to 

distinguish one hypothesis from another. The results of speaker verification experiments 

conducted on both the XM2VTSDB and the ISCSLP2006-SRE database show that the 

proposed kernel-based methods outperform all of the conventional approaches. 

The remainder of this chapter is organized as follows. Section 3.1 introduces the design 

of the decision function used in our methods. Section 3.2 presents the kernel discriminant 

analysis techniques that we use to find the weight vector. Sections 3.3 describe the concepts 

related to the characteristic vector. Then, in Section 3.4, we detail the experiment results. 
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3.1. The Proposed Decision Functions  

 
To handle the speaker-verification problem more effectively, it is necessary to devise a 

decision function with a trainable mechanism, such that one hypothesis can be optimally 

separated from another. To this end, we formulate the characterization of the alternative 

hypothesis as a problem of optimally combining the discriminative information derived from 

a set of pre-trained background models, and design the decision function based on two 

perspectives: a weighted geometric combination (WGC) and a weighted arithmetic 

combination (WAC) of the likelihoods of the background models. 

We begin by rewriting the function Ψ(⋅) in Eq. (2.2) in terms of WGC as   
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By substituting Eq. (3.2) into Eq. (1.7), and taking the logarithmic form, we obtain 
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where  is an N × 1 weight vector, the new threshold ′= ] ...  [ 21 Nwwww

θθ log)...2 Nww +++( 11 w= , and x is an N × 1 vector in the space RN expressed as 
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Upx               (3.4) 

The implicit idea in Eq. (3.4) is that the input utterance U can be represented by a 

characteristic vector x. 
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Alternatively, we can also rewrite the function Ψ(⋅) in Eq. (2.1) in terms of WAC as 
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                (3.5) 

By substituting Eq. (3.5) into Eq. (1.7) and reversing Eq. (1.7), we obtain  
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where  is an N × 1 weight vector, the new threshold ′= ] ...  [ 21 Nwwww

θθ /)...2 Nww +++( 12 w= , and x is an N × 1 characteristic vector in the space RN , expressed 

by 
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Up Nx         (3.7) 

 

 

3.2. Kernel Discriminant Analysis  

 
The process of representing an utterance U as a characteristic vector x in Eq. (3.4) or Eq. (3.7) 

can be regarded as x = Φ(U), where Φ(⋅)1 is a nonlinear mapping function. If we replace the 

threshold 1θ  in Eq. (3.3) or 2θ  in Eq. (3.6) with a bias w0, the decision functions in Eqs. 

(3.3) and (3.6) can be rewritten as 

0 )(Φ )( wUUL +′= w ,                            (3.8) 

where L(U) forms a nonlinear discriminant classifier for U. The classifier translates the goal 

of solving an LR test problem into one of optimizing w and w0, such that the utterances of 
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target speakers and non-target speakers can be separated. To realize this classifier, we need 

three distinct data sets: one for generating each target speaker’s model, one for generating the 

background models, and one for optimizing w and w0. Since the bias w0 plays the same role as 

the decision threshold θ  of the LR test, which can be determined through a tradeoff between 

the false acceptance and the false rejection rates, our main goal here is to find w.  

To solve the weight vector w, we propose using two kernel-based discriminant 

techn

.2.1. Kernel Fisher Discriminant (KFD) 

i  for hypothesis Hi, i = 0 or 1. The goal 

axim

                            (3.9) 

where {Uj, 1 ≤ j ≤ J} = , J = n0 + n1, and 

iques, namely the Kernel Fisher Discriminant (KFD) and Support Vector Machine 

(SVM), because of their ability to separate samples of target speakers from those of 

non-target speakers efficiently. 

 

 

3

Suppose that we have N  training utterances i },..,{ 1
i
ni

UU

of KFD is to locate the weight vector w that m izes the between-class scatter, while 

minimizing the within-class scatter. According to [Mika 1999], the solution of w must lie in the 

span of all mapped training utterances; therefore, we can represent w as 

J
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∑
=

=
j

jj Uγw
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00
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1 10 nn UUUUUU ∪ jγ  is the 

ituting Eq. (3.9) into Eq. (3.8)

                (3.10) 

where the inner product of two vectors Φ(Uj) and Φ(U) is expressed by a kernel function k(Uj, 

combination coefficient. Subst , we obtain 

JJ

0
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0
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),()(Φ)(Φ)( wUUkwUUUL
j

jj
j

jj +=+′= ∑∑
==

γγ ,

                                                                                                                                                         
1 More precisely, Φ(U) should be denoted by Φ(U; λ; λ1, λ2, ..., λN). 
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U). Such a kernel function is also called the sequence kernel [Campbell 2006], because it 

takes two utterance sequences, Uj and U, as inputs. The goal therefore changes from finding w 

to finding ′= ] ...  [ 21 Jγ γ γγ , which maximizes 

.)(
Nγγ
Mγγα
′
′

=Γ                                  (3.11) 

M and N are computed by 

′−−= ))(( 1010 ηηηηM                          (3.12) 

and 

∑
= 1,0i

respectively, where ηi is an  element 

′−= )( inni ii
K1IKN ,                         (3.13) 

J×1 vector with ∑ =
=

j sisi UUkn
1

),()/1( ; Ki is an 

J×ni matrix with element ),()(K i
jssji UUk= ; Ini is an ni×ni identity matrix; and 1ni is an ni×ni 

matrix in which all elements are equal to 1/ni. Following [Mika 2002], the solution 

in i
j)(η

to γ, which 

aximizes Γ(γ) defined in Eq. (3.11), is taken as the leading eigenvector of N-1M. 

aximizes the margin between the classes. Following [Burges 

1998], w can be expressed as 

                              (3.14) 

which yields 

m

 

 

3.2.2. Support Vector Machine (SVM) 

The weight vector w can also be solved with SVM. In this case, the goal is to find a 

separating hyperplane that m

,)(Φ
1
∑
=

=
J

j
jjj Uy βw
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where each training utterance U , j = 1, 2,…, J, is labeled by either  (a null hypothesis) 

 (an alternative hypothesis). The optimal coefficients

1=jy

 or 1−=jy ′= [ ] ...  21 Jββββ  can be 

determined by maximizing the objective function 

∑ ∑∑
J J

iyQ(β                   (3.16) 

subject to the constraints 0
1

=∑ =j jjy β  and ,  ,0 jCj

= = =

−=
J

j i j
jijijj UUky

1 1 1

),(
2
1) βββ ,

J
∀≤≤ ββ  where βC  is a penalty 

parameter [Burges 1998]. This process can be performed with quadratic programming 

techniques [Vapnik 1998]. Note that most elements of β are equal to zero, and training 

mples associated with non-zero βj are called support vectors. A few support vectors play a 

ey role in deciding the optimal margin between classes in SVM. 

 2002]. There are a number of kernel functions 

[Herbrich 2002]. However, since we have converted speec

vectors, the kernel function takes the form 

sa

k

 

 

3.2.3. Mercer Kernels 

The effectiveness of the above KFD or SVM approaches depends essentially on how the 

kernel function k(⋅) is designed. A kernel function must be symmetric, positive definite, and 

conform to Mercer’s condition [Herbrich

h utterances into characteristic 

),()(Φ)(Φ),( 211212121 xxxx kUUUUk =′=′= .                   (3.17) 

Eq. (3.17) indicates that the sequence kernel function with two input utterances, U1 and U2, 

forms a dot product kernel with two input characteristic vectors, x1 and x2. Alternatively, if 

we use the closure property of Mercer kernels [Herbrich 2002] to form a kernel function  
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Function (RBF) kernel with two inputs x1 and x2: 
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ainable mechanism, which tries to optimally exploit useful information from background 

n or use a combination of existing approaches. 

 

eaker verification method 

would be to fuse multiple LR measures directly. Similar to the fusion approaches in 

[Ben-Yacoub 1999; Cheng 2005], we define a fusion-based LR as 

 (3.20) 

where , and 

 

 

3.3. Concepts Related to the Characteristic Vector 

In this section, we compare the proposed classifiers with several approaches related to the 

characteristic vector. It is worth noting that the major advantage of our classifiers lies in a 

tr

models, rather than make an ad hoc modificatio

3.3.1. Direct Fusion of Multiple LRs  

The most intuitive way to improve the conventional LR-based sp

⎩
⎨
⎧
<
≥

′=+++=
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accept   
)()())()( GeoGeoAriAriMaxMaxUBMUBMFusion θ

θ
xwULwULwwULwU (ULL

]   [ GeoAriMaxUBM ′= wwwww

.])(  )(  )(  )([ GeoAriMaxUBM ′= ULULULULx                    (3.21) 

preliminary result reported in [Chao 2006] shows that, compared to approaches that use a 

As with WGC and WAC, the weight vector w can be trained using KFD or SVM. A 
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single LR, such a fusion scheme improves speaker verification performance noticeably. 

However, we found that direct fusion is often dominated by one particular LR, or it is limited 

y some inferior LRs.  

e U can 

be projected into t

e, the 

proposed methods are expected to be more effective than the anchor modeling approach. 

b

 

3.3.2. Relation to the Anchor Modeling Approach 

The concept of our methods is similar to that of the anchor modeling approach [Sturim 2001; 

Mami 2006] used in speaker indexing and speaker identification applications. The objective of 

the anchor modeling approach is to construct a speaker space based on a set of pre-trained 

representative models {A1,A2,…,AN}, called anchor models. Then, any speech utteranc

he space, and represented as a characteristic vector x [Sturim 2001], 

x = [p(U |A1) p(U |A2) … p(U |AN)]′.               (3.22) 

The speaker of an unknown utterance U can be identified by computing the distance between 

the characteristic vector x and the typical vectors of the target speakers. The characteristic 

vector defined in Eq. (3.22) is similar to the characteristic vector used in this study. However, 

to find the location of a target speaker in the speaker space, the anchor modeling approach only 

considers the projection of the speech utterance from the target speaker, which is different from 

the proposed discriminative framework. More specifically, the decision functions based on 

WGC and WAC characterize a target speaker by locating the boundary that optimally separates 

the characteristic vectors of a target speaker from those of non-target speakers; henc
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3.4. Experiments and Analysis 

 
We conducted the speaker-verification experiments on two databases: the XM2VTSDB and 

 (ISCSLP2006-SRE) database [Zheng 2006].  

 

3.4.1. Evaluation on the XM2VTSDB 

technique can be intractable when a large number of training samples are involved, we also 

0 to 2,250 for estimating w.  

thest cohort models (“w_10c_10f”). The weight 

ector was optimized by kernel-based discrimination solutions (KFD or SVM). We derived 

the ISCSLP2006 speaker recognition evaluation

The first set of experiments was conducted on XM2VTSDB following Configuration II. We 

built the world model with 256 Gaussian mixture components. The cohort size B was set to 20. 

The remaining experiment setup was same as that in Section 2.4.1. Because a kernel-based 

reduced the number of evaluation-impostor samples from 119,40

 

A. Weighted Geometric Combination versus Geometric Mean 

The first experiment evaluated the proposed weighted geometric combination of background 

models, i.e., LWGC(U) defined in Eq. (3.3). The set of background models was comprised of (i) 

the world model and the 20 closest cohort models (“w_20c”), or (ii) the world model and the 

10 closest cohort models, plus the 10 far

v

the following eight WGC-based systems:  

 
a) KFD with k1(⋅) defined in Eq. (3.17) and “w_20c” (“WGC_dot_KFD_w_20c”),  

b) KFD with k1(⋅) defined in Eq. (3.17) and “w_10c_10f” (“WGC_dot_KFD_w_10c_10f”),  

c) SVM with k1(⋅) defined in Eq. (3.17) and “w_20c” (“WGC_dot_SVM_w_20c”),  

d) SVM with k1(⋅) defined in Eq. (3.17) and “w_10c_10f” (“WGC_dot_SVM_w_10c_10f”),  

e) KFD with k2(⋅) defined in Eq. (3.19) and “w_20c” (“WGC_RBF_KFD_w_20c”),  
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f) KFD with k2(⋅) defined in Eq. (3.19) and “w_10c_10f” (“WGC_RBF_KFD_w_10c_10f”),  

g) SVM with k2(⋅) defined in Eq. (3.19) and “w_20c” (“WGC_RBF_SVM_w_20c”), and  

h) SVM with k2(⋅) defined in Eq. (3.19) and “w_10c_10f” (“WGC_RBF_SVM_w_10c_10f”).  

 
th SVM and KFD used an RBF kernel function k2(⋅) with σ = 5. We used the SSVM tool 

[Lee M was set to 

:  

losest cohort models (“Geo_20c”), and  

) L (U) with the 10 closest cohort models plus the 10 farthest cohort models 

of Detection Error Tradeoff (DET) curves [Martin 1997]. 

Figu

 with k1(⋅). Thus, in the subsequent experiments, we focused on 

vestigating the performance achieved by the kernel-based discrimination solutions using the 

kernel function k2(⋅). 

 

Bo

 2001] to implement the SVM experiments, where the parameter βC  of SV

1. 

For the performance comparison, we used three systems as our baselines

 
a) LUBM(U) (“GMM-UBM”),  

b) LGeo(U) with the 20 c

c  Geo

(“Geo_10c_10f”).  

 
Fig. 3.1 shows the speaker verification results of the above systems evaluated on the 

XM2VTSDB “Test” subset in terms 

res 3.1(a) and 3.1(b) compare the DET curves derived by KFD-based systems and 

SVM-based systems, respectively.  

From Fig. 3.1, we observe that all the WGC-based systems with kernel functions k1(⋅) or 

k2(⋅) outperform the baseline systems “GMM-UBM”, “Geo_20c”, and “Geo_10c_10f”. We 

also observe that “Geo_10c_10f” in Fig. 3.1(a) yields the poorest performance. In addition, 

both Fig. 3.1(a) and Fig. 3.1(b) show that the WGC-based systems with k2(⋅) outperform the 

WGC-based systems

in
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(a) 

 

 (b) 

Fig. 3.1. Geometric Mean versus WGC: DET curves for the “Test” subset in XM2VTSDB. 
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B. Weighted Arithmetic Combination versus Arithmetic Mean 

The second experiment evaluated the proposed weighted arithmetic combination of 

background models, i.e., LWAC(U) defined in Eq. (3.6). We implemented the WAC-based 

 

),  

k2(⋅) with σ = 60. For the 

orm three systems as our baselines:  

c) e 10 closest cohort models plus the 10 farthest cohort models 

, and “Ari_10c_10f”. We also 

bserve that the performances of SVM and KFD are similar. 

 

systems using the kernel-based discrimination solution in four ways: 

 
a) KFD with “w_20c” (“WAC_RBF_KFD_w_20c”),  

b) KFD with “w_10c_10f” (“WAC_RBF_KFD_w_10c_10f”

c) SVM with “w_20c” (“WAC_RBF_SVM_w_20c”), and  

d) SVM with “w_10c_10f” (“WAC_RBF_SVM_w_10c_10f”).  

 
In the above cases, SVM and KFD used an RBF kernel function 

perf ance comparison, we used 

 
a) LUBM(U) (“GMM-UBM”),  

b) LAri(U) with the 20 closest cohort models (“Ari_20c”), and  

LAri(U) with th

(“Ari_10c_10f”). 

 
Fig. 3.2 shows the results of the above systems evaluated on the XM2VTSDB “Test” subset 

in terms of DET curves. Clearly, all the WAC-based systems based on either KFD or SVM 

outperform the baseline systems “GMM-UBM”, “Ari_20c”

o
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Fig. 3.2. Arithmetic Mean versus WAC: DET curves for the “Test” subset in XM2VTSDB. 

 

 

C. Discussion 

An analysis of the experiment results based on the DCF with , 1=MissC 1=FaC , and 

 is given in Table 3.1. In addition to the above systems, we evaluated four related 

systems:  

5.0=TargetP

 
a) LMax(U) with the 20 closest cohort models (“Max_20c”);  

b) LBengio(U) using an RBF kernel function with σ = 10 (“GMM-UBM/SVM”); 

c) LFusion(U) with a fusion of five baseline LR measures, namely, “GMM-UBM”, “Max_20c”, 

“Ari_20c”, “Ari_10c_10f”, and “Geo_20c”, by KFD (“Fusion_KFD”); and  

d) LFusion(U) with a fusion of five baseline LR measures, namely, “GMM-UBM”, “Max_20c”, 

“Ari_20c”, “Ari_10c_10f”, and “Geo_20c”, by SVM (“Fusion_SVM”). 

 
In the fusion systems, KFD and SVM used an RBF kernel function with σ = 5. For each 
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approach, the decision threshold was carefully tuned to minimize the DCF using the 

“Evaluation” subset, and then applied to the “Test” subset.  

 

 

Table 3.1.  DCFs for the “Evaluation” and “Test” subsets in the XM2VTS database 

System min DCF for “Evaluation” actual DCF for “Test”
GMM-UBM 0.0633 0.0519 

Max_20c 0.0776 0.0635 
Ari_20c 0.0676 0.0535 

Ari_10c_10f 0.0589 0.0515 
Geo_20c 0.0734 0.0583 

GMM-UBM/SVM 0.0590 0.0508 
Fusion_KFD 0.0496 0.0475 
Fusion_SVM 0.0505 0.0469 

WGC_RBF_KFD_w_20c 0.0247 0.0357 
WGC_RBF_KFD_w_10c_10f 0.0232 0.0389 

WGC_RBF_SVM_w_20c 0.0320 0.0414 
WGC_RBF_SVM_w_10c_10f 0.0310 0.0417 

WAC_RBF_KFD_w_20c 0.0462 0.0443 
WAC_RBF_KFD_w_10c_10f 0.0469 0.0445 

WAC_RBF_SVM_w_20c 0.0460 0.0454 
WAC_RBF_SVM_w_10c_10f 0.0479 0.0450 

 

 

Several conclusions can be drawn from Table 3.1. First, the two direct fusion systems, 

“Fusion_KFD” and “Fusion_SVM”, as well as “GMM-UBM/SVM”, outperform the baseline 

LR systems. Second, the proposed WGC- and WAC-based systems not only outperform all 

the baseline LR systems, “GMM-UBM”, “Max_20c”, “Ari_20c”, “Ari_10c_10f”, and 

“Geo_20c”, they are also better than the fusion systems and the “GMM-UBM/SVM” system. 

The WGC- and WAC-based SVM systems are better than the “GMM-UBM/SVM” system 

because they consider multiple background models (including the world model), whereas the 

“GMM-UBM/SVM” system only considers the world model. Third, the WGC-based systems 

slightly outperform the WAC-based systems. Fourth, both KFD and SVM perform well in 

terms of finding nonlinear discrimination solutions. From the actual DCF for the “Test” 

subset, we observe that “WGC_RBF_KFD_w_20c” achieved a 30.68% relative improvement 
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compared to “Ari_10c_10f” – the best baseline LR system. Table 3.2 compares the 

correlation of correct and incorrect decisions between “WGC_RBF_KFD_w_20c” and 

“Ari_10c_10f” for the actual DCF [Van Leeuwen 2006]. Based on McNemar’s test [Gillick 

1989] with a significance level = 0.001, we can conclude that “WGC_RBF_KFD_w_20c” 

performs significantly better than “Ari_10c_10f”, since the resulting P-value < 0.001.  

 

 

Table 3.2.  Comparison of errors made by “WGC_RBF_KFD_w_20c” and “Ari_10c_10f,” 

where P and N denote the number of positive (target speaker) trials and the number of 

negative (impostor) trials, respectively. There are 1,194 P and 329,544 N in total. 

Trial counts 
Ari_10c_10f 

Correct Incorrect 

WGC_RBF_KFD_w_20c 
Correct 1,107P + 315,200N 32P + 6,019N 

Incorrect 5P + 3,056N 50P + 5,269N 
 

 

3.4.2. Evaluation on the ISCSLP2006-SRE Database 

We also evaluated the proposed methods on a text-independent single-channel speaker 

verification task conforming to the ISCSLP2006 Speaker Recognition Evaluation 

(ISCSLP2006-SRE) Plan [Chinese Corpus Consortium 2006]. Unlike the XM2VTSDB task, 

the ISCSLP2006-SRE database was divided into two subsets: a “Development Data Set” and 

an “Evaluation Data Set”. The “Development Data Set” contained 300 speakers. Each speaker 

made two utterances, each of which was cut into one long segment, which was longer than 30 

seconds, and several short segments. In the experiments, we collected each speaker’s two long 

segments to build a UBM with 1,024 Gaussian mixture components, and used the two long 

segments per speaker to train each speaker’s 1024-mixture GMM through UBM-MAP 

adaptation. For each speaker, B speakers’ GMMs were chosen from the other 299 speakers as 
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the cohort models. The remaining short segments of all the speakers were used to estimate θ, 

w, and w0. In the implementation, each short segment served as a positive sample for its 

associated speaker, but acted as a negative sample for each of the 20 randomly-selected 

speakers from the remaining 299 speakers. This yielded 1,551 positive samples and 31,020 

(1,551×20) negative samples for estimating θ or w0. Moreover, we used 1,551 positive 

samples and 1,551 randomly-selected negative samples to estimate w in the proposed 

systems. 

The “Evaluation Data Set” contained 800 target speakers that did not overlap with the 

speakers in the “Development Data Set”. Each target speaker made one long training 

utterance, ranging in duration from 21 to 85 seconds, with an average length of 37.06 

seconds. This was used to generate the speaker’s 1024-mixture GMM through UBM-MAP 

adaptation. For each target speaker, B speakers’ GMMs were chosen from the 300 speakers in 

the “Development Data Set” as the cohort models. In addition, there were 5,933 test 

utterances (trials) in the “Evaluation Data Set”, each of which ranged in duration from 5 

seconds to 54 seconds, with an average length of 15.66 seconds. Each test utterance was 

associated with the claimed speaker’s ID, and the task involved judging whether it was true or 

false. The answer sheet was released after the evaluation finished.  

The acoustic feature extraction process was same as that applied in the XM2VTSDB 

task.  

 

A. Experiment results 

The GMM-UBM and T-norm systems are the current state-of-the-art approaches for the 

text-independent speaker verification task. Thus, in this part, we focus on the performance 

improvement of our methods over these two baseline systems. As with the GMM-UBM 

system, we used the fast scoring method [Reynolds 2000] for likelihood ratio computation in 
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the proposed methods. Both the target speaker model λ and the B cohort models were adapted 

from the UBM Ω. Because the mixture indices were retained after UBM-MAP adaptation, 

each element of the characteristic vector x was computed approximately by only considering 

the C mixture components corresponding to the top C scoring mixtures in the UBM 

[Reynolds 2000]. In our experiments, C was set to 5, and B was set to 20. 

The experiment results of the XM2VTSDB task showed that there was no significant 

performance difference between the two cohort selection methods used to construct the 

characteristic vector x. Thus, in the following experiments, we only used one type of 

characteristic vector, i.e., the vector associated with the UBM and the 20 closest cohort 

models (“w_20c”), to compute WGC- and WAC-based decision functions. This yielded the 

following four systems: 

 
a) LWGC(U) using SVM with k2(⋅) and “w_20c” (“WGC_RBF_SVM_w_20c”),  

b) LWGC(U) using KFD with k2(⋅) and “w_20c” (“WGC_RBF_KFD_w_20c”),  

c) LWAC(U) using SVM with k2(⋅) and “w_20c” (“WAC_RBF_SVM_w_20c”), and  

d) LWAC(U) using KFD with k2(⋅) and “w_20c” (“WAC_RBF_KFD_w_20c”). 

 
We compared the proposed systems with the GMM-UBM system, the T-norm system with 

the 50 closest cohort models (“Tnorm_50c”), and Bengio et al.’s system 

(“GMM-UBM/SVM”). The kernel parameters for SVM and KFD were same as those used in 

the XM2VTSDB task. Following the ISCSLP2006-SRE Plan, the performance was measured 

by the DCF with , 10=MissC 1=FaC , and 05.0=TargetP . In each system, the decision 

threshold was tuned to minimize the DCF using the (1,551 + 31,020) samples in the 

“Development Data Set”, and then applied to the “Evaluation Data Set”. Table 3.3 

summarizes the minimum DCFs and the actual DCFs derived from 5,933 trials in the 

“Evaluation Data Set”, and Fig. 3.3 shows the experiment results for all systems in terms of 
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DET curves. It is clear that all the proposed systems outperform “GMM-UBM”, 

“Tnorm_50c”, and “GMM-UBM/SVM.” The actual DCFs in Table 3.3 show that 

“WGC_RBF_KFD_w_20c” achieved a 52.72% relative improvement over “Tnorm_50c”. 

Table 3.4 compares the correlation of correct and incorrect decisions between 

“WGC_RBF_KFD_w_20c” and “Tnorm_50c” for the actual DCF. Based on McNemar’s test 

with a significance level = 0.001, we can conclude that “WGC_RBF_KFD_w_20c” performs 

significantly better than “Tnorm_50c”, since the resulting P-value < 0.001. 

 

 

Table 3.3.  Minimum DCFs and actual DCFs for the ISCSLP2006-SRE “Evaluation Data 

Set” 

 Minimum DCFs Actual DCFs 
GMM-UBM 0.0184 0.0228 
Tnorm_50c 0.0151 0.0184 

GMM-UBM/SVM 0.0143 0.0146 
WGC_RBF_KFD_w_20c 0.0081 0.0087 
WAC_RBF_KFD_w_20c 0.0087 0.0112 
WGC_RBF_SVM_w_20c 0.0091 0.0105 
WAC_RBF_SVM_w_20c 0.0093 0.0105 

 

 

Table 3.4.  Comparison of errors made by “WGC_RBF_KFD_w_20c” and “ Tnorm_50c”, 

where P and N denote the number of positive (target speaker) trials and the number of 

negative (impostor) trials, respectively. There are 347 P and 5,586 N in total. 

Trial counts 
Tnorm_50c 

Correct Incorrect 

WGC_RBF_KFD_w_20c
Correct 342P + 5,508N 2P + 52N 

Incorrect 0P + 12N 3P + 14N 
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Fig. 3.3. Baseline systems versus WAC and WGC: DET curves for the ISCSLP2006-SRE 

“Evaluation Data Set”. The stars and circles indicate the actual and minimum DCFs, 

respectively. 
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Chapter 4  

Improving GMM-UBM Speaker 

Verification Using Discriminative 

Feedback Adaptation 
 

In this chapter, we focus on the discussion of the current state-of-the-art GMM-UBM 

approach [Reynolds 2000] for text-independent speaker verification that uses the UBM-MAP 

technique to generate the target model λ and the anti-model λ . This approach pools all speech 

data from a large number of background speakers to form a universal background model 

(UBM) as λ  via the expectation-maximization (EM) algorithm. It then adapts the UBM to λ 

via the maximum a posteriori (MAP) estimation technique. GMM-UBM is effective because 

its generalization ability allows λ to handle acoustic patterns not covered by the limited 

training data of the target speaker. However, since λ and λ  are trained according to separate 

criteria, the optimization procedure can not distinguish a target speaker from background 

speakers optimally. In particular, since GMM-UBM uses a common UBM λ  for all target 

speakers, it tends to be weak in rejecting impostors’ voices that are similar to the target 

speaker’s voice. Moreover, as λ is derived from λ , both models may correspond to a similar 

probability distribution.  
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One possible way to improve the performance of GMM-UBM is to use discriminative 

training methods, such as the minimum classification error (MCE) method [Juang 1997] and 

the maximum mutual information (MMI) method [Ma 2003]. In [Rosenberg 1998], a 

minimum verification error (MVE) training method is developed by adapting MCE training to 

the binary classification problem, in which the parameters of λ and λ  are estimated using 

the generalized probabilistic descent (GPD) approach [Chou 2003]. However, as the MVE 

training method requires a large number of positive and negative samples to estimate a 

model’s parameters, it tends to over-train the model if the amount of training data is 

insufficient. In addition, it is difficult to select the optimal stopping point in GPD-based 

training. 

To resolve the limitation of MVE training, we propose a framework called 

discriminative feedback adaptation (DFA), which improves the discrimination ability of 

GMM-UBM while preserving its generalization ability. The rationale behind DFA is that only 

mis-verified training samples are considered in the discriminative training process, rather than 

all the training samples used in the conventional MVE method. More specifically, DFA 

regards the UBM and the target speaker model obtained by the GMM-UBM approach as 

initial models, and then reinforces the discriminability between the models by using the 

mis-verified training samples. Since the reinforcement is based on model adaptation rather 

than training from scratch, it does not destroy the generalization ability of the two models, 

even if they are updated iteratively until convergence. However, recognizing that a small 

number of mis-verified training samples may not be able to adapt a large number of model 

parameters, to implement DFA, we propose two adaptation techniques: a linear 

regression-based minimum verification squared-error (LR-MVSE) adaptation method and an 

eigenspace-based minimum verification squared-error (E-MVSE) adaptation method. 

LR-MVSE is motivated by the minimum classification error linear regression (MCELR) 
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techniques [Chengalvarayan 1998; Wu 2002; He 2003], which have been studied in the 

context of automatic speech recognition; while E-MVSE is motivated by the MCE/eigenvoice 

technique [Valente 2003], which has been studied in the context of speaker identification. 

The remainder of this chapter is organized as follows. In Section 4.1, we introduce the 

proposed DFA framework. Sections 4.2 and 4.3 describe, respectively, the proposed 

LR-MVSE and E-MVSE adaptation techniques used to implement DFA. Section 4.4 presents 

simplified versions of LR-MVSE and E-MVSE. Then, in Section 4.5, we detail the 

experiment results. 

 

 

4.1. Discriminative Feedback Adaptation 

 
Fig. 4.1 shows a block diagram of the proposed discriminative feedback adaptation (DFA) 

framework, which is divided into two phases. The first phase, indicated by the dotted line, 

utilizes the conventional GMM-UBM approach. The initial target speaker model and the UBM 

obtained in the first phase serve as the initial models for DFA in the second phase. The basic 

strategy of DFA is to reinforce the discriminability between the initial target speaker model and 

the UBM for ambiguous data that is mis-verified by the GMM-UBM approach. The 

reinforcement strategy is based on two concepts. First, since the GMM-UBM approach uses a 

single anti-model, UBM, for all target speakers, it tends to be weak in rejecting impostors’ 

voices that are similar to the target speaker’s voice. To resolve this problem, DFA tries to 

generate a discriminative anti-model exclusively for each target speaker by using the negative 

samples from the cohort [Rosenberg 1992] of each target speaker to adapt both λ and λ . Since 

the models may affect each other, the DFA framework also uses the positive samples to avoid 

increasing the miss probability while reducing the false alarm probability. The resulting λ and 
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λ  are then updated iteratively. Second, since the DFA framework only uses mis-verified 

training samples as adaptation data in each iteration, it actually fine-tunes the model’s 

parameters based on a small amount of adaptation data. It thus preserves the generalization 

ability of the GMM-UBM approach while reinforcing the discrimination between H0 and H1. 

To implement the above concepts, we developed the following algorithms. 

 

 

UBM

MAP
Initial target

speaker

model

Target

speaker

model

Anti-

model

Target

speaker data

Background

speaker data

Cohort data

DFA

EM
Cohort

selection

 

Fig. 4.1. The proposed discriminative feedback adaptation framework. 

 

 

4.1.1. Minimum Verification Squared-Error (MVSE) adaptation strategy 

We modify the minimum verification error (MVE) training method [Rosenberg 1998] to fit 

our requirement that only mis-verified training samples should be considered. This is called 

the minimum verification squared-error (MVSE) adaptation strategy. The goal of DFA is to 

minimize the overall expected loss D, defined as 

,1100 ll xxD +=                                   (4.1) 

where x0 and x1 reflect which type of error is of more concern in a practical application; and li 

is a loss function that describes the average false rejection loss (i = 0) or false acceptance loss 

-63- 



(i = 1), defined as 

,))((∑
∈

=
iHUi

i Uds
N

l
1                                 (4.2) 

where N0 and N1 are the numbers of training utterances from the target speaker and the cohort, 

respectively; and d(U) is a mis-verification measure defined as 
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Ud                            (4.3) 

where L(U) is the logarithmic LR defined as 

, )λ|(log)λ|(log)( UpUpUL −=             (4.4) 

where λ is the target speaker model; and λ  is the anti-model.  

To reflect the requirement that only mis-verified training utterances should be considered, 

we define a new function s(⋅) instead of the sigmoid function used in the function li, which 

represents the verification error as an adjustable quantity as follows:  

 
,)( if             0         

)( if  ))((
))((

2

⎩
⎨
⎧

≤
>−

=
bUd
bUdbUda

Uds                      (4.5) 

where a is a scalar and b is a bias for controlling the convergence speed of DFA. The input 

utterance U is considered incorrectly verified if d(U) > b. Therefore, s(d(U)) is a response 

squared-error value. Fig. 4.2 contrasts the curve of the s function with that of the well-known 

sigmoid function. If d(U)  b, the response value s(d(U)) = 0, i.e., the utterance U is verified 

correctly; hence, it will not be used for model adaptation. If d(U) > b, the steeper slope of the 

s function for a larger value of d(U) results in a larger gradient to update the model’s 

parameters. In contrast, as the value of d(U) increases, the sigmoid function used in MVE 

[Rosenberg 1998] will become flat, and the obtained gradient will approximate zero. As a 

result, the mis-verified utterance U will not contribute to model adaptation. Another 

≤
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difference between the proposed DFA framework and the conventional MVE training method 

is that the latter always updates the model’s parameters if the value of the sigmoid function is 

not 0 or 1; thus, it may over-train the well-trained models obtained from the GMM-UBM 

method with the correctly-verified input training utterances. 
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    (a) s function              (b) sigmoid function 

Fig. 4.2. The s function compared to the sigmoid function. 

 

 

4.1.2. Fast scoring for DFA 

To speed up DFA, we use a fast scoring approach [Reynolds 2000] to compute the 

logarithmic LR. Given an utterance , the computation of the logarithmic LR for 

a GMM with M Gaussian mixture components can be written as 
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where  and mg mg  are the m-th Gaussian mixture components of the target speaker model 

and the anti-model, respectively; and pm is the mixture weight, m = 1,…, M. Note that the 
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target speaker model has the same mixture weights as the anti-model. For each frame ot, we 

determine the top C scoring mixture indices, Ci(t), i = 1,…, C, in the UBM, where C << M; 

hence, it requires M + C  Gaussian computations in the first iteration, and 2C Gaussian 

computations per iteration thereafter. In this study, the value of C is set at 5 [Reynolds 2000]. 

 

 

4.2. Linear regression-based MVSE (LR-MVSE) adaptation 

 
Recognizing that a small amount of adaptation data selected from the mis-verified training 

samples may not be able to adapt a large number of model parameters, we propose using a 

linear regression method to implement MVSE adaptation. We call it linear regression-based 

MVSE (LR-MVSE) adaptation. Our strategy is motivated by the minimum classification error 

linear regression (MCELR) techniques [Chengalvarayan 1998; Wu 2002; He 2003], which 

have been studied in the context of automatic speech recognition. We assume that the initial 

target speaker model )0(λ  and anti-model )0(λ  have M Gaussian mixtures  

and 

),(~ )0()0(
mmm N Σμg

),(~ )0()0(
mmm N Σμg , respectively, where  and )0(

mμ
)0(

mμ are r–dimensional mean vectors 

obtained with the GMM-UBM method; and  is an r×r covariance matrix of the UBM, m 

= 1,…, M. Note that, in this study, we only adapt the mean vectors of GMMs. After 

adaptation, the new mean vectors of the target speaker model and the anti-model take the 

following respective forms: 

mΣ

)0(
mm Wξμ =                                    (4.7) 

and  

)0(
mm ξWμ = ,                                  (4.8) 

where W and W  are r×(r+1) transformation matrices; and  and ′′= ]  1[ (0)
m

)0( μξm
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]  1[ (0)
m

)0( ′′= μξm . Given initial transformation matrices = )0(W )0(W = [0 I], where 0 is an r×1 

zero vector and I is an r×r identity matrix, the parameters W and W  can be iteratively 

optimized using 

(
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k
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respectively, where the superscript “(k)” denotes the k-th iteration, and δ is the step size. In 
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where the target speaker model )(λ k  with mixtures  and the anti-model )(k
mg )(λ k  with 

mixtures )(k
mg , m = 1,…, M, are obtained by LR-MVSE adaptation in k iterations, and  
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If we assume that all covariance matrices  of the UBM, m = 1,…, M, are diagonal, Eqs. 

(4.15) and (4.16) can be rewritten as 
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respectively, where  is the r1-th diagonal element of ;  is the r1-th element 

of ot;  and 

)( 1
2 rmσ mΣ )( 1rot

)( 2
)0( rmξ )( 2

)0( rmξ  are, respectively, the r2-th elements of  and )0(
mξ

)0(
mξ ; and 

 and ), 21 rr()(kW ),( 21
)( rrkW  are, respectively, the r1-th row and r2-th column elements of 

 and )(kW )(kW , r1 = 1,…, r, and r2 = 1,…, (r+1).  
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4.3. Eigenspace-based MVSE (E-MVSE) adaptation 

 
Alternatively, we can use the eigenspace method to implement MVSE adaptation. We call it 

eigenspace-based MVSE (E-MVSE) adaptation. E-MVSE is motivated by the 

MCE/eigenvoice technique [Valente 2003], which has been studied in the context of speaker 

identification. In this case, we also assume that only the mean vectors o  

Let  and 

f GMMs are adapted.

)0(u )0(u  be Thyes 2000] obtained by 

g all the mean vectors of the initial target speaker model 

(rM)×1 supervectors [Kuhn 2000; 

concatenatin )0(λ and anti-model (a 

clone of the UBM) )0(λ , where  

                             (4.19) 

and  
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21 M

Following the eigenvoice approach, we use the principal component analysis (PCA) technique 

[Duda 2001] to construct a speaker eigenspace E = span{e1, e2,…, eZ} sed on  

super

(0))0( ′′′′= μμμu K                             (4.20) 

 ba  R

vectors derived from R pre-trained background speaker GMMs, where 1−≤ RZ . 

According to the orthogonality principle [Strang 2005], we can decompose )  and 0(u )0(u  

into 
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respectively, η is the sample mean vector of R supervectors. The second terms in Eqs. 

(4.21) and (4.22) represent the results of projecting  and )( )0( ηu − )( )0( ηu −  onto the 
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eigenspace E te tha  most cases, . No t, in Eηuηu ( and )-( )0( ∉)-)0( , since the initial target 

speaker model and anti-model are not included

coordinates,  and 

 in the background speaker model set. The 

)0(
zf )0(

zf , z = 1,.., Z, are computed by 

                               ()( )0()0( ηue −′= zzf 4.23) 
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by the initial coordinates +    [ )0(
1

))0(
2

)0(
1 Zfff K ′]0(
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If we assume that all covariance matrices  of the UBM, m = 1,…, M, are diagonal, Eqs. 

(4.37) - (4.40) can be rewritten, respectively, as 
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where , , , and )( 1rmη )( 1, rmze )( 1rm
⊥e )( 1rm

⊥e , m = 1,…, M, r1 = 1,…, r, represent the r1-th 

elements of the m-th subvectors , , , and mη mz ,e ⊥
me ⊥

me , respectively.  
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4.4. Simplified Versions of LR-MVSE and E-MVSE 

 
As far as reliability is concerned, a target speaker model trained with the GMM-UBM 

approach may be effective in characterizing the target speaker’s voice. In contrast, a UBM 

generated from a number of background speakers may not be able to represent the imposters 

with respect to each specific target speaker. In other words, it may not be able to distinguish 

between imposters and the target speaker. Thus, it is more important to reinforce 

discriminability in the UBM than in the target speaker model. Moreover, in our experience, 

the training samples of target speakers are seldom mis-verified; i.e., nearly all the mis-verified 

training samples are from the cohort. Accordingly, to adapt the UBM to the target speaker 

dependent anti-model, it might be sufficient to use only negative training samples in our DFA 

framework. In this case, the training goal can be simplified to one of minimizing the average 

false acceptance (false alarm) loss l1. For LR-MVSE adaptation, the parameter W  is 

iteratively optimized using 
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and )(
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W∂
∂  is computed by Eq. (4.14). For E-MVSE adaptation, the coordinates zf , z = 1,.., 

Z +1, are iteratively optimized using 
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and )(
)(

k
zf
UL

∂
∂  is computed by Eq. (4.36). When N0 ≈  N1, the training times of the simplified 

versions of LR-MVSE and E-MVSE are about one-quarter of the training times of the 

respective original versions. 

 

 

4.5. Experiments and Analysis 

 
A. Experiment setup 

In our experiments, we used the NIST 2001 cellular speaker recognition evaluation 

(NIST2001-SRE) database, and divided it into two subsets: an evaluation set and a 

development set. The evaluation set contained 74 male and 100 female speakers. On average, 

each speaker had approximately 2 minutes of training utterances and 10 test segments. The 

development set contained 38 males and 22 females as background speakers that did not 

overlap with the speakers in the evaluation set. To scale up the number of background 

speakers, we also included 139 male and 191 female speakers extracted from the 

NIST2002-SRE corpus. Thus, we collected the training utterances of 177 male and 213 

female background speakers to build two gender-dependent UBMs, each containing 1,024 

mixture components. To train each target speaker’s GMM, we only adapted the mean vectors 

from the speaker’s corresponding gender-dependent UBM in the GMM-UBM method. Then, 

for each male or female target speaker, we chose the B closest speakers from the 177 male or 

213 female background speakers, respectively, as a cohort based on the degree of closeness 

measured in terms of the pairwise distance defined in Eq. (2.3). For each cohort speaker, we 

extracted J 3-second speech segments from his/her training utterances as negative samples of 

-75- 



a target speaker. Thus, each target speaker had J×B negative samples in total. All the 3-second 

segments extracted from each target speaker’s training utterances served as positive samples 

in LR-MVSE or E-MVSE adaptation. 

To remove silence/noise frames, we processed all the speech data with a Voice Activity 

Detector (VAD). Then, using a 32-ms Hamming-windowed frame with 10-ms shifts, we 

converted each utterance into a stream of 30-dimensional feature vectors, each consisting of 

15 Mel-scale frequency cepstral coefficients (MFCCs) and their first time derivatives. To 

compensate for channel mismatch effects, we applied feature warping [Pelecanos 2001] after 

MFCC extraction. 

In the experiments, a and b in the s function defined in Eq. (4.1) were set at 3 and 0.01, 

respectively. For E-MVSE adaptation, we generated two gender-dependent Z-dimensional 

eigenspaces using the GMMs of the 177 male and 213 female background speakers, 

respectively, with Z set to 70 or 140. The LR-MVSE and E-MVSE adaptation procedures 

were trained until they almost converged, i.e., until the number of mis-verified training 

samples approximated zero. For the overall expected loss D, x0 and x1 were set as CMiss × 

PTarget and CFalseAlarm × (1 - PTarget), respectively, according to the NIST Detection Cost 

Function (DCF) in Eq. (2.25). Following the NIST2001-SRE protocol, CMiss, CFalseAlarm, and 

PTarget were set at 10, 1, and 0.01, respectively. 

 

B. Experiment results 

To evaluate the performance of the DFA framework, we used the Detection Error Tradeoff 

(DET) curve and the NIST DCF; the latter reflects the performance at a single operating point 

on the former. We implemented the proposed DFA framework in three ways: 

 
a) LR-MVSE adaptation (“MAP + LR-MVSE”),  
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b) E-MVSE adaptation with the first 70 eigenvectors (“MAP + E-MVSE70”), and  

c) E-MVSE adaptation with the first 140 eigenvectors (“MAP + E-MVSE140”). 

 
For the performance comparison, we used two baseline systems: 

 
a) GMM-UBM (“MAP”) and 

b) conventional MVE (MCE) training with the sigmoid function (“MAP + MVE”).  

 
The target speaker GMM and the UBM obtained from the GMM-UBM method served as the 

initial models for the proposed DFA-related methods and the conventional MVE method.  

Fig. 4.3 plots the minimum DCFs against the total number of negative training samples 

per target speaker for each adaptation method. The experiments involved 2,038 target speaker 

trials and 20,380 impostor trials of the evaluation set. We considered different numbers of 

negative samples, but not different numbers of positive samples because the same target 

speaker data had been used to train the initial target speaker model in the GMM-UBM method. 

From the figure, we observe that “MAP + E-MVSE70” achieves the lowest minDCF in cases 

where the adaptation data only includes 6 or 12 negative training samples per target speaker; 

while “MAP + LR-MVSE” achieves the lowest minDCF in cases where the adaptation data 

includes 36 or 60 negative training samples per target speaker. As expected, a small amount 

of adaptation data favors the methods in which a smaller number of model parameters must 

be estimated. Note that the larger the number of negative training samples used, the lower the 

minDCF that can be achieved. 
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Fig. 4.3. The minimum DCFs versus the number (J×B) of 3-second negative training samples 

per target speaker. 

 

 

Fig. 4.4 shows the DET curves obtained by evaluating the above systems for the case with 

60 negative training samples per target speaker. It is clear that the performances of the three 

proposed methods, “MAP + LR-MVSE”, “MAP + E-MVSE70”, and “MAP + E-MVSE140”, 

are comparable; and they all outperform the conventional methods “MAP” and “MAP + MVE”. 

Interestingly, the performance of “MAP + MVE” is not always better than that of “MAP”. This 

is because MVE tends to over-train the models obtained from the GMM-UBM method, and it 

is difficult to select the optimal stopping point in MVE training.  
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Fig. 4.4. Experiment results in DET curves. The circles indicate the minimum DCFs. 

 

 

In the above experiments, we found that nearly all the mis-verified training samples in 

each adaptation iteration were negative training samples. Thus, we further compared the 

simplified versions of the LR-MVSE and E-MVSE methods with the respective original 

versions. Fig. 4.5 shows the DET curves for the case of 60 negative training samples per 

target speaker. It is clear that the simplified versions perform comparably to the respective 

original versions. This confirms our assumption that reinforcing the discriminability in the 

UBM is more beneficial than reinforcing the discriminability in the target speaker model. 

Table 4.1 summarizes the minimum DCFs of each system shown in Figs. 4.4 and 4.5. 

We observe that “MAP + LR-MVSE” achieves a 14.35% relative DCF reduction over the 

baseline GMM-UBM system (“MAP”) and a 9.22% relative DCF reduction over the “MAP + 

MVE” method. In fact, “MAP + simLR-MVSE” even performs slightly better than the 

original version “MAP + LR-MVSE”. 
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(a) LR-MVSE vs. the simplified version of LR-MVSE (simLR-MVSE)  

 

 

(b) E-MVSE70 vs. the simplified version of E-MVSE70 (simE-MVSE70) 

-80- 



 

 

(c) E-MVSE140 vs. the simplified version of E-MVSE140 (simE-MVSE140) 

Fig. 4.5. The DET curves of the LR-MVSE and E-MVSE systems and their simplified 

versions. The circles indicate the minimum DCFs. 

 
 

Table 4.1.  Summary of the minimum DCFs in Figs. 4.4 and 4.5. 

Methods minDCF
MAP 0.0460

MAP + MVE 0.0434
MAP + LR-MVSE 0.0394
MAP + E-MVSE70 0.0413
MAP + E-MVSE140 0.0415

MAP + simLR-MVSE 0.0390
MAP + simE-MVSE70 0.0420
MAP + simE-MVSE140 0.0416
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Chapter 5  

Conclusions 

 

In this dissertation, we have proposed a framework to improve the characterization of the 

alternative hypothesis for speaker verification. The framework is built on either a weighted 

arithmetic combination (WAC) or a weighted geometric combination (WGC) of useful 

information extracted from a set of pre-trained background models. The proposed 

combinations are more effective and robust than the simple geometric mean and arithmetic 

mean used in conventional approaches. The parameters associated with WAC or WGC are 

then optimized using the minimum verification error (MVE) criterion, such that both the false 

acceptance probability and the false rejection probability are minimized. In addition to 

applying the conventional gradient-based MVE training method to this problem, we also 

proposed an evolutionary MVE (EMVE) training scheme to further reduce the verification 

errors. The results of our speaker verification experiments conducted on the Extended 

M2VTS Database (XM2VTSDB) demonstrate that the proposed systems along with the MVE 

or EMVE training achieve higher verification accuracy than conventional LR-based 

approaches. Although they need more training time than conventional LR-based approaches 

in the offline training phase, the increase of the training time for enrolling a new target 

speaker or the verification time for an input test utterance is negligible. The proposed systems 

are still capable of supporting a real-time response. 
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Alternatively, we have also presented two novel WGC- and WAC-based decision 

functions for solving the speaker-verification problem. The new decision functions are treated 

as nonlinear discriminant classifiers that can be solved by using kernel-based techniques, such 

as the Kernel Fisher Discriminant and Support Vector Machine, to optimally separate samples 

of the null hypothesis from those of the alternative hypothesis. The proposed approaches have 

two advantages over existing methods. The first is that they embed a trainable mechanism in 

the decision functions. The second is that they convert variable-length utterances into 

fixed-dimension characteristic vectors, which are easily processed by kernel discriminant 

analysis. The results of experiments on two speaker verification tasks, the XM2VTSDB and 

ISCSLP2006-SRE tasks, show notable improvements in performance over classical 

approaches. It is worth noting that although we only consider the speaker verification problem 

in this dissertation, the above proposed approach is not limited to this application. It can be 

applied to other types of data and hypothesis testing problems.  

Finally, we have proposed a discriminative feedback adaptation (DFA) framework to 

improve the state of the art GMM-UBM speaker verification approach. The framework not 

only preserves the generalization ability of the GMM-UBM approach, but also reinforces the 

discrimination between H0 and H1. Our method is based on the minimum verification 

squared-error (MVSE) adaptation strategy, which is modified from the MVE training method 

so that only mis-verified training utterances are considered. Because a small number of 

mis-verified training samples may not be able to adapt a large number of model parameters, to 

implement DFA, we developed two adaptation techniques: the linear regression-based 

minimum verification squared-error (LR-MVSE) method and the eigenspace-based minimum 

verification squared-error (E-MVSE) method. In addition, we use a fast LR scoring approach 

and the simplified version of LR-MVSE or E-MVSE to improve the efficiency and 

effectiveness of the DFA framework. The results of experiments conducted on the 
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NIST2001-SRE database show that the proposed DFA framework can substantially improve 

the performance of the conventional GMM-UBM approach. 
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