B L

R ENRERET AN EZTY

Agreement Problems under Combined Wired/Wireless Network

Fopo4 e
hEE R B gL

R S

RERERTEARNELAY

Agreement Problems under Combined Wired/Wireless Network

Foyo4 L EEy Student : Chien-Fu Cheng
hERE R B AL Advisor : Dr. Tyne Liang
3 T E L Dr. Shu-Ching Wang

=
|4
<k
2
A=
W

A Dissertation Submitted to
Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science

September 2008
Hsinchu, Taiwan, Republic of China

PER R4 L £

RENRERTIERNEZFAY

ERE S S

\J‘_‘\g
Y~
..ﬂn'«
T
| L

STl

CEREAE B L b

s
i
>—L
(pa)
.)\'

7

a‘%
=
z-‘d
W
3 |
il

b

'

o
a\

s

J,g]l.
s

B ER S GERAEd» TR E N

SRS (2 77 AR BARER) o FILR SN RERESAT ARME FHPIES 5L

FERAEIE e 2 T REFAIIERE > APZE- BRIR LB F TSI ED
A BFARERE R R E SRR e T R R R 2 R ALS S 3F

BEPMLOERE - R o ELOTE R R AR R] S RS

N

F AR b oo d 0 MR T i S B0 R TE AL BEN eRT

e

-

N

B iR R EE T

2

MENppR2? > BB RFIANREN R P ML ®

F_&

S

A Y o AP REE AT R 2 SRR SRR . 20 TR
Vet B (RN AL B8 a4 L ¥ RF TGV ARILEE ks) W E S

TR B L e TR AR AR R B T P S e

e
F
A~
1\4
X
&
3\

Tl BPPRE R AEJIE > dopt - ROEF KT

R
N

il
BN RIE B 4 e T REE R 0 A ¢ TR AR R T T R L L
FEI DT LB AT P RIEE o ph o d N AR E B E R
PR REUR £ R B FI AP MR AN S AR T o
STRE(BVERERS A PR G R/ TN R D E AL B T

Bl AL R I - B AT e SRS TS UK 1R/ i I B T B TR

w
g

FOgEER 2

R GG TERFNEAR S G B R R B FDa- S RAE 0 A 3 S

-~

N2 EARR &V L2 Fooips R Z - RGPS

"E\

SELIS S S A AR L B I
R AAFER AL PR R TR RAEFF TR AL R IR F o L0

-

Bl B AR B S ST E o Aot - kR RE R R F D - RS
FARFHFIOT R b R IR fwg?]f%ﬁ'? o T FEILATHEG k&
FZ2Li0mAApE €8 che AR E? APRgy ol s kiR % - KB

PR RET BRBE R 2 P o

R R G AN Xt VAR LN JAR LK A R AR LR e i S

B B R R AR AR BB A

il

Agreement Problems under Combined Wired/Wireless Network

Student: Chien-Fu Cheng Advisor: Dr. Tyne Liang
Dr. Shu-Ching Wang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Since wireless communication and mobile computing are becoming more and more
ubiquitous, most network environments today are combined wired and wireless. The
reliability and fault tolerance of the combined wired/wireless network has become an
important topic. In order to provide a reliable environment, a mechanism that allows a set of
processors to reach a common agreement, even in the presence of faulty processors, is needed.
Therefore, the Byzantine Agreement (BA) problem and Consensus problem have drawn
attention of more researchers. Traditionally, most of the BA problem and Consensus problem
were focused on wired networks. We know that the physical topology of a wired network is
static, but the physical topology of a combined wired/wireless network is dynamic. Thus,
previous BA and Consensus protocols for static network are not applicable in a combined
wired/wireless network.

In this dissertation, we visited the BA problem and Consensus problem in combined
wired/wireless network. In order to meet the characteristics of combine wired/wireless
networks (the limited resources have made the computation ability of mobile processors often
weaker than that of stationary processors) and reduce the number of rounds of message
exchange required, most of the communications and computation overhead must be fulfilled
within by the servers. Therefore, we introduce a hierarchical concept in our system model.
Only servers need to exchange messages and compute the common value. From the

il

performance perspective, the proposed protocols use the minimum number of message
exchanges and can tolerate the maximum number of faulty processors allowed in the networks.
AS a matter of fact, pure wired networks and pure wireless networks are all special case of the
combined wired/wireless networks. We also discuss the BA and Consensus problems in pure
wired network and pure wireless network.

In a highly reliable fault-tolerant environment, to reach a common agreement is not
enough. It is also necessary to detect/locate the faulty components in the network. Therefore,
we also propose a new protocol to solve the Fault Diagnosis Agreement (FDA) problem in
combined wired/wireless networks.

In the usage, the file-sharing application has been the most popular application in
Peer-to-Peer (P2P) systems. Many P2P networks are overlay networks because they run on
top of the combined wired/wireless network. Hence, the Consensus problem of file-sharing
has become an important topic. As malicious attackers may modify files arbitrarily and spread
inconsistent files to other processors in the P2P network, inconsistent files will not only
spread in P2P networks but also waste resources, such as bandwidth, space of storage and
transmission time. Hence, how to make fault-free processors ensure that the files they hold are
correct is an import topic. In this thesis, we give an application of Consensus protocol to

ensure the file consistency of file-sharing in P2P systems.

Keywords: fault-tolerant distributed system, Byzantine agreement problem, Consensus
problem, fault diagnosis agreement problem, malicious fault, dormant fault, dynamic network,

combined wired/wireless network, Peer-to-Peer system, file-sharing.

v

ACKNOWLEDGEMENT

Gs #D

Bl iz FAEZRHO IR EREIBE LU B ph EREIRTE L
B R g A R JAF T T il U R EOE o B indg X P ehin
BEA RN RY IR OLY S Gp F2E IS o Bl g
BE L RRE S FPBRPUE RE AR AT EL U R RPN U REE R
EREE R e

EHEATRZLR 23 HER - PATRRZ - AP IR B FREAT FE
e ¢ BT %%mgvi fgi\.rrrl*v ;{3&;{5 }A’i,\a&fﬁ'%xmpﬁ =1 s ih i L \,Tsi

LprE g Rk o AR R E AR HA T 2

AR p A BGROR BT HANRA 0 FE G B oL FEEE RS bR Pl

FRSende 4 2 R RSB 0 B P

BRBeNA 5 5 Wy LL’/‘—Q}EJ(J‘E\.&@;T—; AN EFE B A

TABLE OF CONTENTS

ABSTRACT ...ttt st h ettt ettt e et s be bt et ebe e st e st et et entennes il
ACKNOWLEDGEMENT ..ottt sttt sttt ettt sbesne s A%
TABLE OF CONTENTS ...ttt st sttt enes vi
LIST OF FIGURES ..ottt ettt ettt sttt ettt ix
LIST OF TABLES ...ttt sttt ettt ettt ebe et eneeneeneas Xi
LIST OF NOTATIONS ...ttt ettt sttt sttt ettt besbesee e xii
Chapter 1 INtrOQUCTION.oocuiiiiieiie ettt ettt ettt e et e e stee st e esbaeeabeessaeensaesseennns 1
1.1 Problem DefinItioncocueriiriiriiniieieiiesieeieetet ettt sttt 1

1.2 IMIOTIVALION ..ttt ettt ettt sttt sttt ettt et sae et et e st e et e et e sbeeeesanens 2

1.3 Organization Of DISSEITAtION..........cecviiiuiieiiieriieeitierieeieesteeteesiteebee e eteesaeebeeseaeeneeas 3
Chapter 2 A Survey of Related Research WOrksccoooiieiiieiiiiiiiiiniicieeeeee e 4
2.1 NEtWOTK SIUCLUTESeuveiieteeiieriiesieete ettt sttt sttt ettt sb et st esaeeeeeanes 4
2.1.1 Pure Wired NEetWOTKcoouiiiiiiiiiiiiiiieneeet e 4

2.1.2 Pure Wireless NetWOTKcceevuiiiirieiiiieniesieeeeteiceeeeeee e 6

2.1.3 Combined Wired/Wireless NetWork.........cccceveriiriiniiiiniiniiiecenceceeee, 7

2.2 The Fallible COMPONENLS.......cc.eiiiieiiiiiiieeiieiieeiieeieeieesteesteeeeeeteesereeseesnaeeseesnneeneeas 8
2.2.1 The Symptoms of a Faulty Processor............ccceeviiiiiieniieiiienieeieeeieeieesie e 8

2.2.2 The Symptoms of a Faulty Communication Linkccccoeceeviniiniinenienennne. 8

2.3 Agreement Problems Definitionccceeeuieiiiiiiiiiiieiiecieeie et 9
2.3.1 Byzantine Agreement Problem..............ccoooiiiiiiiiiiiiiienieiccceeee e 9

2.3.2 Consensus Problemccooviiiiiiiiiiiiiiiiie e 13

2.3.3 Fault Diagnosis Agreement Problem............cccccoecieniiiiiiniiiinieiiicie e 16

2.4 CONCIUSION ...ttt ettt et st b et e bt e sae e 19
Chapter 3 Basic Concepts and ApPProachesoccveeeuierieiiieniieniiienieeieeiee et 20
3.1 Agreement Problem in Pure Wireless Network...........cccccoeviiiiiiniieiieniiecieeieee 21

3.2 Agreement Problem in Combined Wired/Wireless Network........c..ccccevvevieniinenene. 22
3.2.1 Byzantine Agreement Problem in Combined Wired/Wireless Network 23

3.2.2 Consensus Problem in Combined Wired/Wireless Networkcccccueeeee.. 24

3.3 Fault Diagnosis Agreement Problem in Combined Wired/Wireless Network 26

3.4 File Consistency Problem of File-Sharing in Peer-to-Peer Systemsccc........ 27
Chapter 4 Byzantine Agreement Protocol for Wireless Networkscccceceevervierienceniennene 29
4.1 The Conditions for BA Problem in Wireless Networkcccceevvevviiniieiienieeinn. 29
4.1.1 SyStem MOdE].......ooiiiiiieii e et e 29

4.1.2 The number of Message Exchange Rounds Required by MAHAP 30

4.1.3 CONSLIAINE ...ttt ettt ettt st sbt et et saeebesaeens 30

4.2 Proposed BA Protocol: “Mobile Ad-Hoc Agreement Protocol” (MAHAP).............. 31

4.2.1 Message-Exchanging Phasecccccceeiiiiiiiiiiinieiieceee e 31
4.2.2 Decision-MaKing Phase..........cccceeciiiiiiiiiieniieciiee et 32
4.2.3 Extension-Agreement Phase..........c.ccccoeviiiiiiiiiiiniiiiiicceeee e 33
4.2.4 The Message Gathering Tree (MZ-tree)......ccceeeveevieeriienieeiiienieeieeree e 36
4.2.5 The Information Collecting Tree (1C-tre€)occvvevueeriieerieeiieiie e 37

4.3 An MAHAP Execution EXampleccoooieiiieniiiiiiieiieciieie e 37
4.4 The Correctness and Complexity of MAHAP.........ccooviiiiiiiiiiiiiieiecece e, 43
4.5 CONCIUSION ...ttt ettt ettt ettt ettt ea e sb et eate bt esbeeatenbeenaeeanen 47
Chapter 5 Server-initiated Agreement Protocol for Combined Wired/Wireless Networks.......49
5.1 The Conditions for BA Problem in Combined Wired/Wireless Network.................. 49
5.1.1 System MOdel......covieiiiiiieiiecie et 49
5.1.2 Properties of the BA Problem...........c.ccccooviiiiiiiiiiiniiiieecceeeeeee e 50
5.1.3 CONSIANE 1.uveiiiiieiiiieiiieie ettt ettt ettt et et sbe et eatesbe e b eneesaeenee 51

5.2 Secure COMMUNICALIONeouviriiiriieiiriieriieie ettt sttt ettt et sbe et et e sbe e e eaeenees 51
5.2.1 Related Cryptographic Technologies............cccceecurerieiiiienieniieiieeieeee e 51
5.2.2 Afips@ach. ... BB el O et WL e, 53

5.3 BA Protocol: “Server-initiated Byzantine Agreement Protocol” (SBAP) 53
5.3.1 The Number of Required Rounds of Message-Exchangecccccceeeunenee.. 54
5.3.2 Message-Exchanging Phaseccccooiiiiiiiiiiiiiiiiceceeeee e 54
5.3.3 Decision-Making Phase...........cceeoieriiiiiiiiiiiiieciecieecie et 55
5.3.4 Agreement-Distribution Phase............ccceerieiiiiiniiiiiiiiieeieeieceeeeeee e 55

5.4 An Example of Reaching Byzantine Agreement............cccoecuvevieniierieniieeniecieeieene 57
5.5 The Correctness and Complexity of SBAPcociiiiieiiiiiiiieietee e 58
5.6 CONCIUSION ...ttt ettt ettt et a e et sb e et sae e 61
Chapter 6 Client-initiated Consensus Protocol for Combined Wired/Wireless Networks........ 63
6.1 The Conditions for Consensus Problem in Combined Wired/Wireless Network63
0.1.1 System MOdel......cccooeuiiiiiiiieciie e 63
6.1.2 Properties of the Consensus Problemcccceiviiiiieniiniiinieiiieeeeee, 65
0.1.3 CONSIIANT ..ottt ettt ettt st s e e b eaeesbe e 65

6.2 Transmission Protocol: “Secure Relay Fault-tolerance Channel” (SRFC)................ 66
6.2.1 The Connectivity CONSIAINT..........cccuierieeiiienieeieerie et eriie et ere e saeeeeas 67
6.2.2 Four Cases of Fault Handling...........c.ccccoeviiiiiiiniiiiniiieeee e 68

6.3 Consensus Protocol: “Client-initiated Consensus Protocol” (CCP)..........ccccceveeeneee. 69
6.3.1 Client-initiated Stcccvveriiiiriieiieiie ettt e 70
6.3.2 CONSENSUS STAZE ..eveveeeniiieeiiieeitieeiiee et ee et e et e e et e e etteesbteesabeeesabeeesaseeenaseeas 72

6.4 An Example of Reaching CONSeNnSUS..........cccveriieriiiiiiieiieeieeiie et 74
6.4.1 Client-initiated Stccovueriiiiriieiieie ettt 74
6.4.2 CONSENSUS STAZE ..evvveeeniiieeiiieeitieeiiee et ee et e et e e et e e e teeesbeeesibeeesabeeesaseeenaseens 75

6.5 The Correctness and CompleXity Of CCPcccooviiiiiiieiiiiniiiiieeeeee e 77

0.6 CONCIUSION ...ttt ettt et ettt st e et 79

Chapter 7 Fault Diagnosis AGrEEMENL..........cccueerieeriieriieiieeieeniieeteeneeereeneeesseesaeesseessaesseens 81

7.1 Proposed Protocol: “Adaptive Fault Diagnosis Agreement Protocol” (AFDA)......... 81

7.1.1 Message-Collection Phase...........ccocviiiiiiiiiiiiiiiicieceecee e 82

7.1.2 Fault-Diagnosis Phasecccceeviiiiiiiiiiiiciceeeee e 82

7.1.3 Re-configuration Phaseccoooieiiiiiiiiiiiiiieie e 84

7.2 An AFDA Execution EXample.........cccccieiiiiiiiiniiiiiiiiieiee e 86

7.2.1 Message-Collection Phase...........ccocviiiiiiiiiiiiiiiiceccecee e 87

7.2.2 Fault-Diagnosis Phasecccceeviiiiiiiiiniieiceeeee e 87

7.2.3 Re-configuration Phasecoocieiiiiiiiiiiiiiieie e 87

7.3 The Correctness Of AFDAcc.ooiiiiiiiiieeee et 91

7.3.1 AFDA with MAHAP in Wireless Networkccccocevievenienniciicnicicnne 91

7.3.2 AFDA with SBAP in Combined Wired/Wireless Networkcccceeenneee. 93

7.4 CONCIUSION ...ttt sttt ettt st a e et e bt et eanesaeenee 95
Chapter 8 Consensus Problem under Peer-to-Peer Environment: An Application to

File-Sharing........ R x..... B nl ol 0 ol O - W0, 96

8.1 INETOAUCTION ...ttt ettt ettt ettt e b e e e b enees 97

8.1.1 The Classification of Peer-to-Peer File-Sharing Systemscccccvverieennene 97

8.1.2 Clustering AIZOTItRMc.cooiiiiiiiiiiieiiee e 98

8.2 System Model and APProach.........ceeecuieriieiiieiiieiieeie et 99

8.2.1 Clustering Algorithm: K-means AIgorithmcccceeerieniininiiniiniiicnne 99

8.2.2 Consistent Hash Function: SHA-1 Function............ccccceeeviniiiinieninnennns 101

8.2.3 Overlay Network: de-Bruijn Graph..........cccocceeiiiiiiiiiiniieeeee 101

8.2.4 Consensus Protocol: Consensus Protocol for P2P Network (CP,z,) 103

8.3 An CP,,, Execution EXamplecccecviiiiiiininiiiniiiiiiicicicccccecceceeee 107

8.3.1 CIUSLEIING ..ottt ettt ettt ettt ettt e e stee e be et eeabeesseeenseesaaeenseenns 107

8.3.2 Mapping the Processors in Cluster to de-Bruijn Overlay Network............... 107

8.3.3 Getting the Consistent File Informationcccocceeveiieniieniieniiienieeieee, 108

8.4 The Correctness Of CP oy .c.cviviiiiiiiiiiiiienieeteeeecctee e 113

8.5 CONCIUSION ...ttt ettt sttt sttt et st e bt et eseesbeeaeennens 114

Chapter 9 Conclusion and Future Workcccccoooiiiiiiiiiiniieiceceee e 116

0.1 CONCIUSIONuiieiieeee ettt ettt b et sttt et sbe e b enees 116

9.2 FULUIE WOTK ...ttt et 117

L 10) FT0Tea =1 0] 1 | 20O USRS 119

viii

LIST OF FIGURES

Figure 2-1. An example of fully connected networki............ccceeieriiiiniiniiniiiiinececeeee, 5
Figure 2-2. An example of broadcast NEtWOTKcccceviiriiiiiriiniiiiiieeieceeeee e 5
Figure 2-3. An example of generalized connected networkccooceeveviiniiiinicninciicne, 5
Figure 2-4. An example of general NetWOrk...........ccceeviiiiiiiiiniiieieceeeee e 5
Figure 2-5. An example of multicasting Nnetworkccccooeeviriiniiniininieeeeeee 6
Figure 2-6. An example of Wireless NetWOTK..........ccceeveriiriiiiiniiniiienieeeeee e 7
Figure 2-7. An example of combined wired/wireless network...........ccoceveeverieniencnicneenennne. 7
Figure 3-1. The flow chart of the proposed approachccoecveiiiiiiiiiiieiiieeeeeeee, 21
Figure 4-1. An example Of MANETooiiiiiiiiiiiieeeeeeeeeee e 30
Figure 4-2. The proposed MAHAP Protocol..........coceevirieiiiiiiniinieienienieeieseeee e 35
Figure 4-3. The VOTE ;7 fUNCHON.........ooiiiiiieiiiciieectee ettt 36
Figure 4-4. An example of executing MAHAPccoooiiiiiiiiiiiiieeeeee e 43
Figure 5-1. An example of combined wired/wireless network...........ccceevevieniniinininiennnn 50
Figure 5-2. Diffie-Hellman key eXchange..........cccoevviiiiiiiiiiiiiiiiiieeceee e 53
Figure 5-3. The BA protocol Server-initial Byzantine Agreement Protocol (SBAP)............... 56
Figure 5-4. The VOTE, ;g FUNCHION ...c..oouiiiiiiiiiiiiiiiiiiccceeceese e 56
Figure 5-5. The mg-trees of each agreement-server in the first round of message-exchanging
phasquiits 00 il oo o . eeeneeanineenreeneenne 58
Figure 5-6. The 2-level mg-tree of agreement- SErver ASE......c.ccoveviinieiienieneniienieeeiee 58
Figure 6-1. Two-level combined wired/wireless NEtWOTKc..coccervivirienieniniienieecienne 64
Figure 6-2. Secure Relay Fault-tolerance Channel (SRFC)c..cccooviiiiininiiniiniiiinieeee 66
Figure 6-3. The c disjoint paths between CSg and CS¢, where ¢=3.......ccccocveviriniininiennnn 69
Figure 6-4. Client-initiated Consensus Protocol (CCP)ccceeiiiiiiiiieeiieniieieeieeeeee e, 71
Figure 6-5. The VOTE ;i FUNCHON.......oooiiiiiiiiiiieeeceee et 73
Figure 6-6. CSy transmits different message to different consensus-server..........c..coceeevennene. 75
Figure 6-7. An one-level mg-tree 0f CSp ...cooveiiiniiiiiiiieieicceee e 75
Figure 6-8. An mg-tree of CSy after the second round of the message-exchanging phase...... 76
Figure 6-9. An mg-tree of CSg without repeated name Verticescceveveeneenierienieeniennnn 76
Figure 7-1. The proposed AFDA ProtoCOL.........ccouiiieriiriiiiiiiieieiiereeieete st 86
Figure 7-2. The common set of the 1C-trees by each fault-free processor..........cceceevveennennnen. 90
Figure 7-3. An example of MANET after re-configurationcccceeeeveenienennenieneenieneenn 91
Figure 8-1. Classification of P2P file-sharing systems...........ccceecvvevierieerieniiienieeieeeie e 98
Figure 8-2. The flow chart of the proposed approachcccoecveviiiiiiniiieiiieeeeeeee, 99
Figure 8-3. The k-means algorithmc..ccoeiiiiiiiiiiiiniiieeeee e 101
Figure 8-4. An example of DB(2,3) de-Bruijn networkccccooveevirienieniniieneinecieeene, 102

X

Figure 8-5. The shortest path from Hy t0 Hy..ooooviiiniiniiiiiiicccccee, 103

Figure 8-6. The procedure of removing influence from maliciously colliding processors 104

Figure 8-7. The VOTE, ;g FUNCHIONcoueiiiiiiiiiiiiciiiececccee s 105
Figure 8-8. The Consensus Protocol for P2P network (CPp2p) ..cveovevvenenininiiiiiiiciccenne, 106
Figure 8-9. An example of our approach...........ccceeeiieiiiiiiiiniieieseeee e 112

LIST OF TABLES

Table 2-1 The comparison of various BA protocols over different wired network models 11
Table 2-2 The comparison of various BA protocols over different wireless network models . 13
Table 2-3 The differences among the BA problem and Consensus problem.............c.cceeuneen. 14
Table 2-4 The comparison of various Consensus protocols over different wired networks..... 15
Table 2-5 The comparison of various Consensus protocols over different wireless networks. 16
Table 2-6 The different approaches of the fault diagnosis problemccccevevviervininnicnnene. 18
Table 2-7 The comparison of various FDA protocols over different static network models.... 19

Table 6-1 Some instances of the number of rounds required for various Consensus protocols

Xi

AES
AFDA
BA

CCP

Cd

Cm

CP,2
EAP

DES

DHT
FDA
IAP

1c-tree

IC-trees

MAHAP
MANET

mg-tree

LIST OF NOTATIONS

Advanced Encryption Standard

Adaptive Fault Diagnosis Agreement Protocol
Byzantine Agreement

Client-initiated Consensus Protocol

c is the connectivity of each server in the higher network level of combined

wired/wireless network

¢4 1s the maximum number of dormant faulty communication links allowed in

the higher network level of combined wired/wireless network

cm 1s the maximum number of malicious faulty communication links allowed in

the higher network level of combined wired/wireless network
Consensus Protocol for P2P network

Eventual Agreement Problem

Data Encryption Standard

Distributed Hash Table

Fault Diagnosis Agreement

Immediate Agreement Problem

Information Collecting Tree, the information collecting tree is a tree structure
used to store the messages and to remove the influence from the repeated

Processors

IC-trees =[ic-tree,, ic-tree,, ic-tree ..., ic-tree;] , where o is the last Processor id

in the network by alphabetical order. IC-trees is the set of processors’ ic-tree.
Mobile Ad-Hoc Agreement Protocol
Mobile Ad-hoc Network

Message Gathering Tree, the message gathering tree is a tree structure used to

store the messages

Xii

p2p

Da

DPda

DPm

QoS
SBAP
TTL

Zd

Zm

Zy

N is the set of all processors in the network and | N | = n, where n is the

number of processors in the underlying network, and n>4.
Peer-to-Peer

Pa 1s the maximum number of away processors allowed in the underlying

network

pa 18 the maximum number of dormant faulty processors allowed in the
underlying network

pm 1s the maximum number of malicious faulty processors allowed in the

underlying network

Quality of Service

Server-initiated Byzantine Agreement Protocol
Time-To-Live

z4 18 the maximum number of dormant faulty servers allowed in the combined

wired/wireless network

zp 1s the maximum number of malicious faulty servers allowed in the combined

wired/wireless network, zmSL(z,,- 1)/ 3]

Zy is the set of all servers in the combined wired/wireless network and |Zy|= z,,

where z, is the number of servers in the underlying network and z, >4
y 1s the number of rounds required

The value 6 ° is used to report an absent value

The value 1’ is used to report a value from dormant faulty component

@ 1s the default value

xiil

Chapter 1

Introduction

A distributed system is a collection of autonomous computers linked by a network, with
software designed to produce an integrated computing facility. [12] . Since distributed
computing is becoming more and more ubiquitous, the reliability and fault tolerance of the
distributed system has become an important topic. For a system to be reliable, it is necessary
to create a mechanism that allows a set of processors to agree on a common value [47] . With
this agreement, several important distributed services can be achieved, such as clock
synchronization, resource allocation, replicated file system [5] , atomic broadcast, atomic

commitment and group membership [10] [21] [56] .

1.1 Problem Definition

Byzantine Agreement (BA) and Consensus problem are the most fundamental problems to
reach a common agreement in distributed systems. The BA problem was first introduced by
Pease, Shostak and Lamport [37] . In the BA problem, there are n (n>4) processors in a
distributed system and an initial value vy is set in a commander processor so that the
commander processor can send its initial value to the other processors. The goal of a BA
protocol is to make each fault-free processor reach a common agreement value. Protocols
designed to deal with the BA problem should satisfy the following requirements:
(BA_Agreement): All fault-free processors agree on a common value;

(BA_Validity): If the source (commander) processor is fault-free, then all fault-free

processors agree on the initial value that the source processor sends.

In the Consensus problem, each processor has its own initial value and sends its initial
value to others. After the protocol is executed, each fault-free processor reaches a common
agreement value. Protocols designed to deal with the Consensus problem should satisfy the
following requirements:

(Consensus_Agreement): All fault-free processors agree on a common value;
(Consensus_Validity): If the initial value of all processors is v;, then all fault-free
processors shall agree on v;.

In a highly reliable fault-tolerant distributed system, just reaching a common agreement
is not enough. We need to take into consideration another related problem called the Fault
Diagnosis Agreement (FDA) problem. The goal of solving the FDA problem is to make each
fault-free processor detect/locate the common set of faulty components in the distributed
system. After reaching the FDA, each fault-free processor can maintain the performance and
integrity of the distributed system to provide a stable environment. Protocols designed to deal
with the FDA problem should satisfy the following requirements:

(FDA_Agreement): All fault-free processors must identify the common set of faulty
processors;
(FDA_Fairness): NO fault-free processor is incorrectly detected as faulty by any

fault-free processor.

1.2 Motivation

In recent years, wireless networks and mobile computing are becoming ubiquitous. Most
network environments today are combined wired and wireless. The combined wired/wireless
networks have the advantages of both wired (e.g., powerful computation ability, high
bandwidth, reliability, and so on.) and wireless networks (e.g., mobility, quick deployment,

and so on). Previous BA and Consensus protocols for wired network [3] [28] [37] [51] [52]

[60] [61] [65] [70] were not applicable in combined wired/wireless networks. In this
dissertation, the BA and Consensus problems in the combined wired/wireless network are
re-examined. Moreover, we also propose a fault diagnosis agreement protocol to detect/locate
the faulty processors. In the usage, many P2P networks are overlay networks because they run
on top of the combined wired/wireless network. Hence, we also give an application of

Consensus protocol to ensure the file consistency of file-sharing in P2P networks.

1.3 Organization of Dissertation

This dissertation consists of nine chapters, and the remainder is organized as follows. Chapter
2 describes the survey of related research works. Chapter 3 describes the basic concepts and
approaches. Chapter 4 elaborates on the proposed BA protocol (Mobile Ad-Hoc Agreement
Protocol, MAHAP) for wireless network. Chapter 5 provides detailed descriptions of the
proposed BA protocol (Server-initiated Byzantine Agreement Protocol, SBAP) for combined
wired/wireless network. Chapter 6 elaborates on the proposed Consensus protocol
(Client-initiated Consensus Protocol, CCP) for combined wired/wireless Network. Chapter 7
provides detailed descriptions of the proposed FDA protocol (Adaptive Fault Diagnosis
Agreement Protocol, AFDA). Chapter 8 gives an application of Consensus protocol
(Consensus Protocol for P2P Network , CP,,,) in file-sharing P2P system. Finally, conclusion

and future work are given in Chapter 9.

Chapter 2
A Survey of Related Research Works

This chapter reviews the network structures, the types of fallible components and the related

work of the BA, Consensus and FDA problems.

2.1 Network Structures

The network models can be classified into three categories based on their mobility features.
The three types are pure wired network, pure wireless network and combined wired/wireless

network.

2.1.1 Pure Wired Network

A wired network consists of a hard-wired backbone and powerful computing processors.
Therefore, the bandwidth speed, computation ability and reliability of wired networks are
generally much better than those of wireless networks. There are many kinds of pure wired
network. They are basically classified into fully connected network [37] , broadcast network
[3] , generalized connected network [60] , general network [51] and multicasting network
[61] . A fully connected network is a mesh network in which each of the processors is
connected to each other. An example of fully connected network is shown in Figure 2-1. A
broadcast network is a network architecture in which a set of processors are connected via a
shared communications line, called a bus. Figure 2-2 shows an example of broadcast network.
A generalized connected network is a network structure that combines the fully connected

network and broadcast network. It has the following features: (1) Grouping: A local bus links

the processors of a same group. (2) Group member: The number of processors in each group
is the same. (3) Connectivity: Each group is connected to each other. An example of
generalized connected network is shown in Figure 2-3. A general network is an un-fully
connected network. Figure 2-4 shows an example of general network. A multicasting network
is a network structure that combines the general network and broadcast network together. The
multicasting network has the following features: (1) Grouping: A local bus links the
processors of a same group. (2) Group member: The number of processors in each group can
be different from each other. (3) Connectivity: It allows the multicasting network a bounded
connectivity ¢, where c is a constant. As a matter of fact, fully connected network, broadcast
network, generalized connected network and general network are all special cases of
multicasting network. An example of multicasting network is shown in Figure 2-5.

We know that the processors in a wired network do not have mobility. Hence, the

physical topology of a wired network is static.

$ © ©
@ ©

Figure 2-1. An example of fully connected Figure 2-2. An example of broadcast

network network

Figure 2-3. An example of generalized Figure 2-4. An example of general network

connected network

Figure 2-5. An example of multicasting network

2.1.2 Pure Wireless Network

In recent years, wireless network have become more popular. Mobile Ad-Hoc Network
(MANET) is one type of non-fixed infrastructure wireless networks. Hence, MANETs have
enjoyed an amazing rise in popularity. Because, the features of MANET are infrastructure less
(no access point or base stations, no dedicated routers), automatic adaptation to changes in
topology (nodes enter and leave the network freely, and mobility within the network) and
quick deployment. Therefore, the MANETS are very attractive for tactical communications in
the military, law enforcement, and conferences [22] . But, the limited resources (e.g.,
bandwidth and limited power) make the computation ability of mobile processors weaker than
that of stationary processors. An example of wireless network is shown in Figure 2-6.

We know that the processors in a wireless network have mobility. Hence, the physical

topology of a wireless network is dynamic.

Mobile Processor Radigiiange

Figure 2-6. An example of wireless network

2.1.3 Combined Wired/Wireless Network

Since wireless networks and mobile computing are becoming ubiquitous, most network
environments today are combined wired and wireless. The combined wired/wireless networks
have the advantages of both wired (e.g., powerful computation ability, high bandwidth,
reliability, and so on.) and wireless networks (e.g., mobility, quick deployment, and so on). An
example of combined wired/wireless network is shown in Figure 2-7.

Some of processors have mobility in combined wired/wireless network, so the physical

topology of combined wired/wireless network is also dynamic.

o Y
S

Stationary Processor Mobile Processor Radio Range

Figure 2-7. An example of combined wired/wireless network

2.2 The Fallible Components

Agreement may not take place for two reasons. Firstly, processors themselves may be faulty,
resulting in unpredictable behaviors. Secondly, the communication link may be faulty,

resulting in lost or garbled messages [47] .

2.2.1 The Symptoms of a Faulty Processor

During the execution of a protocol, a processor is said to be fault-free if it follows the protocol
specifications; otherwise, the processor is said to be faulty [47] . There are two failure types,
namely the dormant fault and the malicious fault (also called the Byzantine fault or the
arbitrary fault) [33] [50] .

The dormant faults include crashes and omission. A crash fault occurs when a processor
stops executing prematurely and does nothing afterward [57] . An omission fault takes place
when a processor fails to transmit or receive a message on time or at all. The malicious fault is
the most damaging failure type because the behavior of a malicious faulty processor is
unpredictable and arbitrary (e.g., suffer benign failures, send bogus values in messages, send
messages at the wrong time, send different messages to different processors and work in
coordination with other faulty processors to prevent fault-free processors from reaching a
common value) [13] [32] . Therefore, the malicious fault is the most damaging failure type
and causes the worst problem. If the BA and Consensus problems can be solved under
malicious fault conditions, the BA and Consensus problems can be solved under other failure

type conditions.

2.2.2 The Symptoms of a Faulty Communication Link

The symptoms of a faulty communication link can also be divided into two types. They are

dormant fault (omission and delay) and malicious fault [41] [70] . In a synchronous system,
each fault-free processor can detect messages from a dormant faulty communication link
using the time-out mechanism or encryption technologies. Messages from a malicious faulty

communication link can be detected by encryption technologies.

2.3 Agreement Problems Definition

In this section, we give the definitions of agreement problems. There are Byzantine
Agreement (BA) problem, Consensus problem, and Fault Diagnosis Agreement (FDA)

problem.

2.3.1 Byzantine Agreement Problem

The Byzantine Agreement (BA) problem was first described and solved by Pease, Shostak,
and Lamport [37] . In the classical BA problem, there is a set of generals of the Byzantine
army camped with their troops around an enemy city. The generals can only communicate
with each other through messengers. To conquer the enemy city, the generals must reach a
common agreement on whether or not to launch a united attack at dawn (attack or retreat). It
is very important that all the loyal generals should decide on the same agreement, since an
attack called by only a small number of the generals would result in a lost battle [28] [37]
[47] . The above abstract assumptions can be transferred to corresponding assumptions in the
distributed system as follows: In the BA problem, there are n (n>4) processors in the network,
where one processor is designated as the commander that holds an initial value v;. The
commander first sends the initial value v, to all other processors. On receipt of the value vy,
each processor (without the commander) exchanges the received value with other processors.
In addition, there is an adversary that controls up to p,, (n > 3 p,, + 1) of the processors and
can arbitrarily deviate from the designated protocol specification. After a number of message
exchange rounds, a common agreement can be reached among all fault-free processors if and

9

only if the maximum number of faulty processors allowed, p,,, is smaller than one third of the
total number of processors in the network (pmgi_(n—l)/SJ). Here, the number of message
exchange rounds is +1 (¢ (n-1)/3) [28] [37] . In short, to solve a BA problem is to make
every fault-free processor be agreed on a common value regardless the influence of faulty
components. More precisely, the BA problem is defined by the two properties:
(BA_Agreement): All fault-free processors agree on a common value;

(BA_Validity): If the source (commander) processor is fault-free, then all fault-free

processors agree on the initial value that the source processor sends.

That is, only one processor has initial value in the BA problem. After executing BA
protocol, each fault-free processor can make the same decision (common value), the common
value is necessary to be selected from the initial value or the default value (the default value is
predefined).

The BA problem has been extensively studied over the past two decades. Many graceful
BA protocols have been proposed with various network structure assumptions and different
symptoms of faulty components assumptions [28] [37] [51] [55] [60] [61] [63] [66] [70] .

They are BA problem in pure wired network and BA problem in pure wireless network.

2.3.1.1 The BA Problem in Pure Wired Network

As indicated in chapter 2.3.1, the BA problem was first described and solved by Pease,
Shostak, and Lamport [37] . Subsequently, may graceful BA protocols have been proposed. In
[28] [37] , the network topology is fully connected network, and the fallible component
assumption involves only malicious faulty processors. In [70] , the network topology is also
fully connected network, but the fallible component assumptions are malicious faulty
processors and malicious faulty communication links. In [60] , the assumption in a

generalized connected network is that all network processors are partitioned into groups. Each

10

group has the same number of processors, with the network topology fully connected. The
fallible components include malicious faulty processors and malicious faulty communication
links. In the general network [51] , the network topology may not be fully connected, the
fallible components are dormant/malicious faulty processors, and dormant/malicious faulty
communication links. In the multicasting network [61] , processors are partitioned into groups,
with each group having different numbers of processors, the network topology may not be
fully connected and fallible components are dormant/malicious faulty processors and
dormant/malicious faulty communication links. Table 2-1 shows a comparison of various BA

protocols over different wired network models.

Table 2-1 The comparison of various BA protocols over different wired network models

Network models
Fully Connected Generalized General Network Multicasting
Network Connected Network Network
Lamport et al.[28] \
Pease et al. [37] \Y
Yan et al. [70] \Y
Wang et al. [60] \Y \
Siu et al. [51] \Y \Y%
Wang et al. [61] \Y \Y \Y \Y

2.3.1.2 The BA Problem in Pure Wireless Network

In recent years, Mobile Ad Hoc Networks (MANETs) have become more popular. MANET is
a self-organizing multi-hop system without any fixed infrastructure. Therefore, users can still
use network services while continually on the move. Some of the potential MANET
applications include military purpose, rescue and conference [39] .

So far, numerous routing algorithm have been proposed for MANET, and they may be
generally classified into three categories, table-driven routing algorithm, on-demand routing
algorithm and hybrid routing algorithm [22] . The table-driven (also called as the proactive)

routing algorithm involves all processors trying to have complete knowledge of all paths to all

11

other processors in the MANET, such like FSR [38], FSLS [44] , OLSR [24] and TBRPF [6]
The on-demand (also called as the reactive) routing algorithm involves paths being discovered
when they are required, such like AODV [40] and DSR [25] . The hybrid routing algorithm
involves a combination of the table-driven routing algorithm and on-demand routing
algorithm, such like ZRP [36] . Any of the above strategies can help each processor transmit a
message to other processors in the MANET.

To achieve perfect reliability in the MANET, reaching a common agreement in the
presence of faults before performing some special tasks is essential [47] . However, previous
BA protocols for static networks [28] [37] [51] [60] [61] [70] are not applicable in an
MANET. Because, previous BA problem is considered for a static network [28] [37] [51] [60]
[61] [70] , and each processor does not have mobility in a static network. However, each
processor has mobility in the MANET, so the processor may move away from or back to the
MANET at any time. Therefore, some of the fault-free processors (mobile processors may
move away from the network during BA protocol execution and back to the network before
ending the BA protocol) would not receive enough messages to reach a common agreement.
Thus, previous BA protocols for static networks [28] [37] [51] [60] [61] [70] are not
applicable in an MANET.

For MANET, we proposed a BA protocol [67] in 2004, called Mobile Ad-Hoc
Agreement Protocol (MAHAP), for solving the BA problem in the MANET. MAHAP is the
first BA protocol to solve the BA problem in the MANET. MAHARP allows return processors
(mobile processors move away from the network during BA protocol execution and back to
the network before ending the BA protocol) to reach the same agreement value. The detailed
description of MAHAP is shown in chapter 4. Moreover, Wang et al. [63] proposed a BA
protocol in 2004, called Byzantine Agreement under Mobile Network, for solving the BA
problem in the mobile network. The feature of [47] is that the number of rounds of message
exchange required is dynamic. If processor immigrates or moves away from the network, the

12

number of rounds required is recomputed. Subsequently, Wang et al. [66] proposed a BA
protocol in 2007, called Subnet Byzantine Agreement Protocol, for solving the BA problem in
the virtual subnet of a MANET. The virtual subnet is designed to prevent the broadcast storm
problem. However, they assumed that each processor can not leave from the network or
immigrate into the network during BA protocol execution. Hence, they did not consider the
return processors. In Tsou [55] , they proposed another BA protocol in 2007, called
Hierarchical Clustering Agreement Protocol, for solving the BA problem in the hierarchical
cluster-oriented MANET. Tsou [55] used the cluster concept to make return processors
receive enough messages to reach a common agreement. Hence, the protocol proposed by
Tsou [55] is applicable with return processor in cluster-oriented MANET. However, the
protocol proposed by Tsou [55] is inapplicable in mobile ip network and MANET when
return processor is considered. Due to mobile ip network and MANET are not logically
divided into cluster architecture. Table 2-2 shows a comparison of various BA protocols over

different wireless network models.

Table 2-2 The comparison of various BA protocols over different wireless network models

Network models Return processor
Mobile IP MANET | Virtual Subnet |Cluster-oriented | Applicable | Inapplicable
Network of MANET MANET
MAHAP \Y \Y \Y
Wang et al. [63] \% \% \%
Wang et al. [66] \% \% \% \%
Tsou [55] \% \%

2.3.2 Consensus Problem

The Consensus problem [3] [52] [64] [65] [70] [71] [72] and BA problem are two closely
related fundamental problems in agreement on a common value in distributed system. The
difference between the BA problem and Consensus problem is that each processor has its own

initial value in the Consensus problem [70] . The Consensus problem is defined by these two

13

properties:

(Consensus_Agreement): All fault-free processors agree on a common value;

(Consensus_Validity): If the initial value of all processors is v;, then all fault-free
processors shall agree on v;.

That is, each processor has its own initial value and the initial value of each processor
may be different in the Consensus problem. After executing the Consensus protocol, each
fault-free processor can make the same decision (common value), so the common value is
necessary to be selected from one of the initial values or the default value (the default value is
predefined).

In view of the definition of the initial value and the common value, the Consensus
problem is solved if n copies of the BA protocol are run in parallel [70] . Through these
properties, it can be clearly understood that the BA problem is a special case of the Consensus
problem in which only one processor’s initial value is of interest. To summaries the
differences among the BA problem and Consensus problem, Table 2-3 compares the

assumptions and the goals of the BA and Consensus problems.

Table 2-3 The differences among the BA problem and Consensus problem

Byzantine Agreement Consensus
The owner of the initial value Source processor Each processor
Value to be agreed A single value A single value

In previous results [3] [52] [65] [64] [70] [71] [72] , the Consensus problem was also
solved in many network models with various fallible component assumptions. They are

Consensus problem in pure wired network and Consensus problem in pure wireless network.

14

2.3.2.1 The Consensus Problem in Pure Wired Network

The Consensus problem has been visited in many kinds of wired networks, such as broadcast
network [3] , fully connected network [70] , general network [52] and multicasting network
[65] .

For a broadcast network, Babaoglu et al. [3] proposed a protocol to solve the Consensus
problem in the presence of malicious faulty processors. Subsequently, Yan et al. [70] proposed
a protocol to solve the Consensus problem with malicious faulty processors in fully connected
network. Afterward, Siu et al. [52] proposed a protocol for handling dormant/malicious faulty
processors and dormant/malicious faulty communication links in general network. For a
multicasting network, Wang et al. [65] proposed a protocol to solve Consensus problem with
dormant/malicious faulty communication links. Table 2-4 shows a comparison of various

Consensus protocols over different network models.

Table 2-4 The comparison of various Consensus protocols over different wired networks

Network models
Broadcast Network Fully Connected General Network Multicasting
Network Network
Babaoglu et al. [3] \
Yan et al.[70] \% \Y
Siu et al. [52] \Y \Y \Y
Wang et al. [65] \Y \Y \Y \Y

2.3.2.2 The Consensus Problem in Pure Wireless Network

The Consensus problem has also been visited in many kinds of wireless networks, such as
mobile ip network [64] , MANET [64] , virtual subnet of MANET [72] and cluster-oriented
MANET [71].

For mobile ip network and MANET, Wang et al. [64] proposed a protocol to solve the

Consensus problem with dormant/malicious communication links. For virtual subnet of

15

MANET, Yan et al. [72] proposed a Consensus protocol with dormant/malicious
communiation links. Moreover, Yan et al. [71] proposed a protocol to solve the Consensus
problem with dormant/malicious communication links in cluster-oriented MANET. Table 2-5

shows a comparison of various Consensus protocols over different wireless network models.

Table 2-5 The comparison of various Consensus protocols over different wireless networks

Network models
Mobile IP Network MANET Virtual Subnet of Cluster-oriented
MANET MANET
Wang et al. [64] \Y \Y
Yan et al. [72] \%
Yan et al. [71] \%

2.3.3 Fault Diagnosis Agreement Problem

In a highly reliable fault-tolerant environment, to reach a common agreement is not
enough. It is also necessary to detect/locate the faulty components in the network. Therefore,
we must consider another related problem which is called the fault diagnosis problem. There
are two fault diagnosis models in the fault diagnosis problem. They are non-agreement [1] [30]
[46] and agreement [23] [59] [62] . In the non-agreement fault diagnosis model, one or more
fault-free processors can detect the faulty processors, but the detection results of a fault-free
processor may not agree with other fault-free processors. In the agreement fault diagnosis
model, the detection results of each fault-free processor are the same. Hence, the agreement
fault diagnosis model is better than non-agreement fault diagnosis model in a highly reliable
fault-tolerant environment. Therefore, we consider the Fault Diagnosis Agreement (FDA)
problem [23] [59] [62] . FDA is used to make each fault-free processor detect/locate “the
same” faulty components in the network. After reaching the FDA, each fault-free processor
can maintain the performance and integrity of the network. Protocols designed to deal with

the FDA problem should satisfy the following requirements:

16

(FDA_Agreement): All fault-free processors must identify the common set of faulty
processors;

(FDA_Fairness): NO fault-free processor is incorrectly detected as faulty by any
fault-free processor.

There are two distinct approaches to dealing with the fault diagnosis problem: the
test-based approach [30] and the evidence-based approach [1] [23] [46] [59] [62] . In the
test-based approach, where a testing processor p may test another processor ¢, if the testing
processor p is fault-free, then the test results is correct. However, such an approach is not
applicable to the case where the testing processor is faulty or the processor ¢ is of the
malicious kind. The detailed description of malicious fault is shown in chapter 2.2.1. The
reason is that if the testing processor p is faulty, then the test results of the testing processor p
will be incorrect; if the processor ¢ is of the malicious kind, then the processor g can hide its
faulty behaviors and pass the test held by the testing processor p. Therefore, the test-based
approach is not suitable for the fault diagnosis problem with malicious faulty components. On
the other hand, in the evidence-based approach, the evidence-based protocol collects the
received messages in the BA protocol. Therefore, the evidence-based fault diagnosis protocol
uses the received messages in the BA protocol as the evidence to find out the faulty
components. Therefore, the evidence-based fault diagnosis protocol can handle the faulty
components of the malicious kind [1] [23] [46] [59] [62] . Table 2-6 shows different
approaches of the fault diagnosis problem.

After the set of faulty processors is detected/located by all fault-free processors, we can
re-configure the network and eliminate the faulty processors to enhance the performance and

strengthen the integrity of the network.

17

Table 2-6 The different approaches of the fault diagnosis problem

Approaches Agreement
Test-based Evidence-based Non-agreement Agreement
Mallela et al. [30] \Y \Y
Adams et al. [1] \Y \%
Shin et al. [46] \Y \Y
Hsiao et al.[23] \% \%
Wang et al.[59] \ \
Wang et al.[62] \% \4

2.3.3.1 The Related Work on the Fault Diagnosis Agreement Problem

In previous result, the FDA problem is only considered for a static network (fully connected
network, general network and multicasting network) [1] [23] [30] [46] [59] [62] .

For a fully connected network, Mallela et al. [30] proposed a protocol to detect dormant
faulty processors. In their protocol, they used the test-based approach. However, test-based
approach is not applicable with malicious faulty processors. Subsequently, Adams et al. [1]
and Shin et al.[46] proposed two evidence-based protocols to detect malicious faulty
processors in fully connected networks. However, their protocols are non-agreement fault
diagnosis model. Hence, the detection results of a fault-free processor may not agree with
other fault-free processors. Afterward, Wang et al. [59] proposed a fault diagnosis agreement
protocol to detect the malicious faulty processor by evidence-based approach. Hence, the
detection results of each fault-free processor are the same.

For a general network, Hsiao et al. [23] proposed a fault diagnosis agreement protocol to
detect the malicious faulty processor by evidence-based approach. For a multicasting network,
Wang et al. [62] proposed a fault diagnosis agreement protocol to detect the malicious faulty
processors by evidence-based approach. Table 2-7 shows a comparison of various FDA

protocols over different static network models.

18

Table 2-7 The comparison of various FDA protocols over different static network models

Network Models Agreement
Fully Connected General Multicasting | Non-agreement Agreement
Network Network Network
Adams et al. [1] \ \Y
Mallela et al. [30] \Y \"
Shin et al. [46] \ \Y
Wang et al.[59] \% \%
Hsiao et al.[23] \Y \% \%
Wang et al.[62] \Y \% \%

2.4 Conclusion

As described in chapter 2.3, most of existing protocols are designed for solving the BA,
Consensus and FDA problems in pure wireless network or pure wired network. However,
most network environments today are combined wired and wireless. In this dissertation, we

revisited agreement problems in combined wired/wireless network.

19

Chapter 3

Basic Concepts and Approaches

The research objective of this dissertation is to propose protocols for solving agreement
problems in combined wired/wireless network. As a matter of fact, pure wired networks and
pure wireless networks are all special cases of the combined wired/wireless networks. We also
discuss the agreement problems in pure wired network (fully connected network, broadcasting
network, generalize connected network, general network) and pure wireless network
(MANET) in chapter 2.3.1, 2.3.2, 2.3.3, and 4. Moreover, we also propose a fault diagnosis
agreement protocol to detect/locate the faulty processors. In the usage, many P2P networks
are overlay networks because they run on top of the combined wired/wireless network. Hence,
we give an application of Consensus protocol to ensure the file consistency of file-sharing in

P2P networks. The flow chart of the proposed approaches is shown in Figure 3-1.

20

[Chapter 4]
Byzantine Agreement Protocol:
Mobile Ad-Hoc Agreement Protocol (MAHAP)

Wired Network + Wireless Network

N\

[Chapter 7]
Fault Diagnosis Agreement Protocol:
Adaptive Fault Diagnosis Agreement Protocol (AFDA)

Combined Wired/Wireless

Network
[Chapter 5] [Chapter 6]
Byzantine Agreement Protocol: Consensus Protocol:
Server-initiated Byzantine Agreement Protocol (SBAP) Client-initiated Consensus Protocol (CCP)

Peer-to-Peer Network

[Chapter 8]
File Consistency Problem of File-Sharing in P2P Network
An Application of Consensus Protocol:
Consensus Protocol for P2P Network (CP,,,)

Figure 3-1. The flow chart of the proposed approach

3.1 Agreement Problem in Pure Wireless Network

Since, previous BA protocols [28] [37] [51] [60] [61] [70] for wired network are not
applicable in an MANET. Hence, we proposed a first BA protocol to solve the BA problem in
an MANET in 2004. The first protocol designed to solve the BA problem in an MANET is
called MAHAP (Mobile Ad-Hoc Agreement Protocol). MAHAP allows each fault-free
processor (include return processors) to reach a common agreement value for solving the BA
problem using the minimum number of message exchanges and tolerating a maximum
number of faulty processors. The assumptions and parameters of the proposed BA protocol in
the MANET are listed as follows:

B Each processor in the MANET can be uniquely identified.

21

Let N be the set of all processors in the network and | N | = n, where n is the
number of processors in the underlying MANET, and n>4.

One of processors is designated as the source processor that holds an initial value.
The processors of the underlying MANET are assumed fallible.

A processor that transmits messages is called a sender processor.

There is only one source processor that transmits messages in the first message
exchange round in the BA problem.

Let p,, be the maximum number of malicious faulty processors.

Let p, be the maximum number of away processors.

The constraint of the number of malicious faulty processors and away processors
in the MANET is n>3p,+p,.

Each processor can transmit a message to all other processors in the MANET
through routing protocols (on-demand routing protocol or table-driven protocol or
hybrid routing protocol).

All messages are encrypted. Intermediate components cannot falsify a message
from a sender processor to a receiver processor.

Each processor can detect a processor that is not in the MANET.

A processor does not know the faulty status of other processors.

The detailed description of MAHAP is shown in chapter 4.

3.2 Agreement Problem in Combined Wired/Wireless Network

Previous BA and Consensus protocols for wired network [3] [28] [37] [51] [52] [60] [61] [65]

[70] were not applicable in combined wired/wireless networks. Because, mobile processors

may move away from the network during BA protocol execution and back to the network

before ending the BA protocol, these mobile processors would not receive enough messages

22

to reach a common agreement value.

Furthermore, the communication overhead of the BA and Consensus protocols are
inherently large because the BA and Consensus protocols require numerous rounds to
exchange messages [19] . Previous BA and Consensus protocols [28] [37] [51] [52] [60] [70]
designed for flat architectures were not efficient because all messages must propagate
globally throughout the network.

To solve the BA and Consensus problems in the combined wired/wireless network,
create secure communications between each processor and reduce the communication
overhead, we propose a secure communication protocol and hierarchical BA and Consensus

protocols.

3.2.1 Byzantine Agreement Problem in Combined Wired/Wireless Network

The proposed BA protocol for combined wired/wireless network is called the SBAP
(Server-initiated Byzantine Agreement Protocol). SBAP use the hierarchical model concept to
reduce the communication overhead and provide secure communications by cryptographic
technologies. The assumptions and parameters of the proposed BA protocol in the combined
wired/wireless network are listed as follows:

B The underlying network is a two-level combined wired/wireless network.

B The two levels include a higher network level and a zone level.

B The combined wired/wireless network consists of wired backbones and wireless

cells that provide access to mobile processors.

B Processors include agreement-server, mobile processor and stationary processor.

B Agreement-server is a powerful and reliable computer with high bandwidth.

B Mobile processor is a processor with mobility.

B Stationary processor is a processor without mobility.

23

B Let N be the set of all processors in the network and |N|= n, where n is the number
of processors in the underlying network.

B Let Zy be the set of all agreement-servers in the network and |Zy|= z,, where z, is
the number of agreement-servers in the underlying network and z, >4.

B The underlying network is unreliable: messages may be dropped, reordered,
inserted or duplicated by faulty processors.

B Each processor in the network can be identified uniquely.

B Let p, be the maximum number of malicious faulty processors allowed.

B Letz, be the maximum number of malicious faulty agreement-servers allowed.

B The constraint of the number of malicious faulty agreement-servers in the network
18 z,, >3z,,.

B All messages are encrypted. Intermediate components cannot falsify a message
from a sender processor to a receiver processor.

B A processor does not know the faulty status of other processors in the underlying
network.

The detailed description of SBAP is shown in chapter 5.

3.2.2 Consensus Problem in Combined Wired/Wireless Network

The proposed Consensus protocol for combined wired/wireless network called the CCP
(Client-initiated Consensus Protocol). CCP also use the hierarchical model concept to reduce
the communication overhead and provide secure communications by SRFC (Secure Relay
Fault-tolerance Channel). The assumptions and parameters of the proposed Consensus
protocol in the combined wired/wireless network are listed as follows:

B The underlying network is un-fully connected.

B The underlying network is a two-level combined wired/wireless network.

24

The two levels include a higher network level and a zone level.

The combined wired/wireless network consists of wired backbones and wireless
cells that provide access to mobile processors.

Processors include consensus-server, mobile processor and stationary processor.
Clients include stationary processor and mobile processor.

Consensus-server is a powerful and reliable computer with high bandwidth.
Mobile processor is a processor with mobility.

Stationary processor is a processor without mobility.

Let N be the set of all processors in the network and |N|= n, where n is the number
of processors in the underlying network.

Let Zy be the set of all consensus-servers in the network and |Zy|= z,, where z, is
the number of consensus-servers in the underlying network and z, >4.

The underlying network is unreliable: messages may be dropped, reordered,
inserted or duplicated by faulty components.

Each processor in the network can be uniquely identified.

Let p,, be the maximum number of malicious faulty processors allowed.

Let p; be the maximum number of dormant faulty processors allowed.

Let z, be the maximum number of malicious faulty consensus-servers allowed,
znd(z,-1)/3).

The constraint of the number of malicious faulty consensus-servers and dormant
faulty consensus-servers in the network is z,> L(z,,—l)/ 3J+2zm+zd.

Let z; be the maximum number of dormant faulty consensus-servers allowed.

Let ¢, be the maximum number of malicious faulty communication links allowed
in the higher network level.

Let ¢, be the maximum number of dormant faulty communication links allowed in
the higher network level.

25

B Let ¢ be the connectivity of each consensus-server in the higher network level,
where c¢>c, etz tza.

B The connectivity c, of Zone, must be larger than the number of malicious faulty
components (processors and communication links) plus the number of dormant
faulty components in Zone,, where 1<p=<z,.

B A processor does not know the faulty status of other components in the underlying
network.

The detailed description of SBAP is shown in chapter 5.

3.3 Fault Diagnosis Agreement Problem in Combined Wired/Wireless

Network

In recent years, combined wired/wireless networks have become more and more popular. In
order to provide a highly reliable computing environment for combined wired/wireless
network, we shall propose a new protocol to solve the FDA problem in combined
wired/wireless networks.

The proposed protocol called Adaptive Fault Diagnosis Agreement Protocol (AFDA).
AFDA is an adaptive FDA protocol. AFDA not only can solve the FDA problem in combined
wired/wireless network, but also AFDA can solve the FDA problem in other networks.
Because, AFDA is an evidence-based protocol that collects the messages accumulated in a BA
protocol as evidence and then detects/locates the common set of faulty processors by
examining the collected evidence. For example, AFDA with MAHAP (BA protocol for
MANET) can sovle the FDA problem in MANET. AFDA with SBAP (BA protocol for
combined wired/wireless network) can solve the FDA problem in combined wired/wireless
network. The assumptions and parameters of the proposed AFDA protocol in MANET and
combined wired/wireless network is shown in chapter 3.1 and 3.2. The detailed description of

26

AFDA is shown in chapter 7.

3.4 File Consistency Problem of File-Sharing in Peer-to-Peer Systems

In the usage, the file-sharing application has been the most popular application in Peer-to-Peer
(P2P) systems. Many P2P networks are overlay networks because they run on top of the
combined wired/wireless network. We know that P2P systems are flexible and self-organizing
in adapting to changes in a distributed environment. These adaptive features make the system
vulnerable [35] [49] . The malicious processors could work in coordination with other faulty
processors to modify the files and spread the inconsistent files to other fault-free processors. If
not properly controlled, fault-free processor may also spread inconsistent files to other
processors and even potentially paralyze the entire P2P network. Inconsistent file not only
spread in P2P networks but also waste resources, such as bandwidth, space of storage, and
transmission time.

Hence, checking file consistency with other fault-free processors has become the most
challenging problem in a P2P system. In this dissertation, we give an application of
Consensus protocol to ensure the file consistency of file-sharing in P2P systems. The
proposed protocol is called the CP,,, (Consensus Protocol for P2P Network). CP,,, allows
each fault-free processor to ensure the file consistency of file-sharing in P2P systems. The
assumptions and parameters of the proposed Consensus protocol in the P2P network are listed
as follows:

B Each processor in the P2P network can be uniquely identified.

B Let N be the set of all processors in the network and | N | = n, where n is the
number of processors in the underlying P2P network, and n>4.

B The processors of the underlying P2P network are assumed fallible.

B The maximum number of malicious faulty processors is n/3.

27

B Each fault-free processor has the correct file information.
B A processor does not know the faulty status of other processors.

The detailed description of CP,;, is shown in chapter 8.

28

Chapter 4
Byzantine Agreement Protocol for Wireless

Networks

In this chapter, we introduce our approach to solve the BA problem with malicious faulty

processors in a wireless network.

4.1 The Conditions for BA Problem in Wireless Network

To solve the BA problem in wireless network, the system model, the number of required

message exchange rounds and the constraint in wireless network should be considered first.

4.1.1 System Model

Because the processors of wireless network (MANET) are mobile, the processors may move
away from the network or return at any time. In our system, a processor that moves away

from the MANET in the message-exchanging phase is called an “away processor”, while a

processor that returns to the MANET before the decision-making phase is called a “return

processor”. Because an away processor moves away from the MANET, an away processor
cannot transmit and receive messages from other processors in the MANET. The detailed

descriptions of the message-exchanging phase and decision-making phase will be presented in

chapter 4.2.1 and 4.2.2.
In this chapter, the BA problem is considered in an MANET with fallible processors. The
failure type of a fallible processor is malicious (worst case). An MANET example is shown in

Figure 4-1. The assumptions and parameters of the system are listed in chapter 3.1.

29

PrOCQSsorc PrOCesso % _______

Processor f- Precessor b rocessor d
Processor s - rocessor h
{ Q’ a—

Q

Processore ./ \\P\’rocessor/g,/
Mobile Processor ~ Malicious Fault Radio Range

Figure 4-1. An example of MANET

4.1.2 The number of Message Exchange Rounds Required by MAHAP

In the BA problem, each processor exchanges messages during the message-exchanging phase.

Thus, the message-exchanging phase is a time consuming phase. Therefore, reducing the

number of required rounds is the major concern in an optimal protocol design. The term
“round” denotes the message exchange interval between any pair of processors [19] [28] . A
round is defined as follows: (1) Sends messages to any set of processors (2) Receives
messages from this round (3) Does local processing [19] [28] . Fischer and Lynch [19]
indicated that #+1 (~=[(n-1)/3]) is the minimum number of rounds required to get enough
messages to reach a common agreement value. By the definition of round, the number of
required message exchange rounds in the MANET is also t+1 (t<.(n-1)/3)). A detailed

description of the message-exchanging phase will be presented in chapter 4.2.1.

4.1.3 Constraint

The number of faulty processors allowed in the network depends on the total number of
processors in the network and the processor failure types. For example, in Lamport et al. [28],

the assumption of processor fault type is malicious in a static network. The Lamport et al.

30

constraint [28] is #n>3p,,, where p,, is the number of malicious faulty processors.
The BA protocol MAHAP is designed for an MANET with malicious faulty processors.
Because MANET processors are mobile and the away processors can be detected by each

processor in the MANET, the constraint of the system is #>3p,,+p,.

4.2 Proposed BA Protocol: “Mobile Ad-Hoc Agreement Protocol”

(MAHAP)

The BA protocol involves making each fault-free processor agree on a common value
transmitted by the source processor. Therefore, there are three phases in the MAHAP:

message-exchanging phase, decision-making phase and extension-agreement phase. The

message-exchanging phase is used to collect the messages, the decision-making phase is used

to compute a common agreement value for the BA problem and the extension-agreement

phase is used to allow return processors to compute a common agreement value that is the
same as that of other fault-free processors’ agreement value. In addition, the number of rounds
required for executing MAHAP is #+1 (td.(n-1)/3J). The MAHAP protocol can tolerate p,,
malicious faulty processors, and p, away processors, where n>3p,+p,. The MAHAP protocol

definition is shown in Figure 4-2.

4.2.1 Message-Exchanging Phase

The goal of the message-exchanging phase is to collect the messages. In the MANET, each

processor has partial or complete common knowledge of the graphic information of the
underlying MANET (this depends on the routing protocols: table-driven or on-demand or
hybrid). Each processor can transmit message(s) to other processors in the MANET directly

or through intermediate processors (relay processors). To prevent the message falsification by

31

the relay processors, the message is authenticated. Therefore, a message from a sender
processor to a receiver processor cannot be falsified by faulty relay processors. If no message
is received from a sender processor, the value §° is used as the received message. The value
5 is used to report an absent value.

In the message-exchanging phase, the number of rounds required y must be computed,

where y=t+1, and t=|_(n—1)/3J. In the first round of the message-exchanging phase, the source

processor transmits its initial value v; using encryption technology to all other processors.
Each processor then stores the value from the source processor in the root s of its message
gathering tree (mg-tree). The mg-tree is a tree structure that is used to store received messages
(a detailed description of the mg-tree is presented in chapter 4.2.4). If the initial value v, from
the source processor is ” & ”, the value “0” is then used to replace the value ” 6 °”. After the

first round of message-exchanging phase (>1), each processor (except the source processor)

transmits the values at level i-1 in its mg-tree using encryption technology to all other

processors. If the value at level i-1 is 67 the value 5/ is used as the transmitted value, where

0<j< (n-1)/3J-1. Each processor stores the values received at level i in its mg-tree.

4.2.2 Decision-Making Phase

The goal of the decision-making phase is to compute a common agreement value for the BA

problem. After the message-exchanging phase, each processor has its own mg-tree. Each

processor reorganizes its mg-tree into a corresponding information collecting tree (ic-tree).
The ic-tree is a tree structure that is used to store received messages without repeated
processor names (a detailed description of the ic-tree is presented in chapter 4.2.5). Using the
VOTE,; function on each processor’s ic-tree from the level #+1 to root s obtains the
agreement value VOTE,,(s). The agreement value VOTE,,(s) is transmitted to the return

processors. The formal description of the VOTE,,; function is shown in Figure 4-3. There are

32

five conditions in the VOTE,,; function. If the vertex « is a leaf, then there is only one value
in the vertex a. Thus, the majority value is the value of vertex « (condition 1). Condition 2 is
used to remove the influence from malicious faulty processors. Condition 3 is used to remove
the influence from no response processors and presents the existence of absentees. Condition
4 is used to get the majority value. Condition 5 happens when there is no majority value.
Conditions 1, 4, and 5 in the VOTE,,; function are similar to the conventional majority vote

[28] .

4.2.3 Extension-Agreement Phase

The goal of the extension-agreement phase is to allow return processors to compute a

common agreement value the same as that of other fault-free processors’ function VOTE 4(s)

value. In the extension-agreement phase, each return processor receives the agreement values

from the other processors. The VOTE,,; function is used on the values received to obtain the
agreement value. The return processors can then obtain the same agreement value as other
fault-free processors. The reason is that each fault-free processor can reach a common
agreement value if #n>3p,+p,. Thus, there are at least n-(n-1-p,)/3J-p, processors that are
fault-free and have the same agreement value. That is, in the worst case, a return processor
can receive n-L(n-1-p,)/3J-p. copies of the same value, which is larger than | (n-1-p,)/3]. A

return processor can then decide which agreement value using the VOTE,; function.

33

MOBILE AD-HOC AGREEMENT PROTOCOL (MAHAP)

Definition:

*

For the “Table-driven” Ad-Hoc routing protocols, each processor has common
knowledge of the entire graphic information G=(E,N), where N is the set of processors
in the network and E is a set of processor pairs (V;,N;) indicating a physical link (the
radio range is covered) between processor &V; and processor N; ,where 1 <i,j <n.

For the “On-demand” Ad-Hoc routing protocols, each processor has partial common
knowledge of the graphic information G=(E,N).

Each processor can transmit a message to all other processors in the MANET through
the “On-demand* or the “Table-driven” or the “Hybrid” protocol.

Three processor roles: sender processor, relay processor and receiver processor,
depending on the message flow. A message sent from a sender processor to a receiver
processor may be passed through some intermediate (relay processor).

A relay processor cannot falsify a message from a sender processor to a receiver
processor. This is achieved using encryption technology.

The return processor, a processor that moves away from the MANET in the
message-exchanging phase, and returns to the MANET before the decision-making

phase.
Each processor receives other processors’ messages at each message exchange round. If

o . q o 0
no message is received, the value is replaced with ¢ .

Figure 4-2. The proposed MAHAP protocol (cont’d.)

34

Message-Exchanging Phase:
Compute the number of rounds required y: y=t+1, where = |_(n-1)/ 3],
Fori=1toy
If i=1, then:

1. The source processor transmits its initial value v, using encryption technology to
all other processors.

2.Each processor stores the value from the source processor in the root s of its
mg-tree.

3.If the initial value v, from the source processor is “ 0 0”, the value “0” is used to
replace the “ 6 value.

Ifi>1, do:

1. Except for the source processor, each processor transmits the values at level i-1 in
its mg-tree using encryption technology to all other processors. If the value at
level i-1 is 67, the value 67" is used as the transmitted value, where
0 (n-1)/3)-1.

2. Each processor stores the values received at level i of its mg-tree.

Next i

Decision-Making Phase:
Step 1:Each processor turns the mg-tree into its corresponding ic-tree by deleting the
vertices with repeated names.
Step 2: Each processor uses the VOTE,; function on its ic-tree from the level #+1 to root s
and obtains the agreement value VOTE,4(s).
Step 3:Each processor transmits the VOTE,,(s) value by using encryption technology to

the return processors if there is any return processor in the MANET.

Extension-Agreement Phase: (for the return processor only)
Step 1:Each return processor requests other processors to send their VOTE,4(s) values.
Step 2: Each return processor receives other processors’ VOTE ,(s) values.
Step 3:Each return processor uses the VOTE,,; function to the received messages to obtain

the agreement value.

Figure 4-2. The proposed MAHAP protocol

35

FUNCTION VOTEq(e)

begin
if the o is a leaf
output the value of « /* condition 1*/
else begin
if the number of value & °is > 3*(t-y+1)+[(n-1) mod 3]
output the value of « /* condition 2*/
if the majority value is 5 ', where 1< i <[(n-1)/3 -1
output the value &' /* condition 3*/
if the majority value is the non- 5/ value, where 0<j d(n-1)3)-1, me{0,1}
output the majority value m /* condition 4*/
if the majority value does not exist
output the default value ¢ /* condition 5*/
end
end.

The VOTE,, function only counts the non-value 6 ° (excluding the last level of the ic-tree) for all
vertexes at the y-th level of an ic-tree, where 1<y <t+1, = (n-1)/3].

Figure 4-3. The VOTE,, function

4.2.4 The Message Gathering Tree (mg-tree)

The structure of an mg-tree with one level, an mg-tree with two levels and mg-tree with three
levels are shown in Figure 4-4(b), Figure 4-4(d) and Figure 4-4(e). Each fault-free processor
maintains such an mg-tree during the execution of MAHAP. At the first message exchange
round, Processor s transmits its initial value to the other processors. We assume that each
receiver processor can always identify the sender of a message. When a fault-free processor
receives the message sent from the source processor, it stores the received value, denoted as
val(s), at the root of its mg-tree as shown in Figure 4-4(b). At the second message exchange
round, each processor transmits the root value of its mg-tree to the other processors. If
Processor a sends message val(s) to Processor b, then Processor b stores the received
messages from Processor a, denoted as val(sa), in vertex sa of its mg-tree. Similarly, if
Processor b sends message val(sa) to Processor a, then the value is val(sab) and stored in
vertex sab of Processor a’s mg-tree as presented in Figure 4-4(e). Generally speaking,
message val(sa...n), stored in the vertex sa...n of an mg-tree, implies that the message just

received was sent through the source processor, Processor a,..., Processor n, where Processor

36

n is the latest processor to pass the message. When a message is transmitted through a
processor more than once, the name of the processor will be repeated correspondingly. For
instance, the appearance of message val(saa) in vertex saa in Figure 4-4(e) indicates that the
message is sent from Processor s to Processor a and to somewhere else and then to Processor
a again; therefore, Processor a appears twice in vertex name saa.

In summary, the root of an mg-tree is always named s to denote that the stored message
is sent from the source processor at the first message exchange round, and the vertex of an
mg-tree is labeled with a list of processor names. The processor name list contains the names

of the processors through which the stored message was transferred.

4.2.5 The Information Collecting Tree (ic-tree)

An ic-tree is reorganized from a corresponding mg-tree by removing the vertices with
repeated processor names in order to avoid the repeated influences from faulty processors in
an ic-tree. In Figure 4-4(f), there is an example of an ic-tree created by deleting the repeated

processors name of the original mg-tree.

4.3 An MAHAP Execution Example

The worst BA problem case occurs when the source processor is a malicious faulty processor.
If the BA problem can be solved in the worst case (the source processor is a malicious faulty
processor), the BA problem can be solved in all other cases if n>3p,,+p,. Therefore, in this
section, an example of executing MAHAP in the worst case is given.

The MANET example is shown in Figure 4-1. There are nine processors in the network.
The malicious faulty processors are Processors s and e. The source processor is a malicious

faulty processor which means that Processor s may transmit different values to different

37

processors. To reach a common agreement value from each fault-free processor in our
example, the MAHAP needs 3 (|_(9—1)/3J+1) message exchange rounds.

In the first round of message-exchanging phase, the source processor Processor s

transmits different messages to different processors in the MANET, as shown in Figure 4-4(a).
Therefore, the fault-free Processor a receives the value “0” from the source processor in the

first round of message-exchanging phase and stores the message received in the root s of its

mg-tree, as shown in Figure 4-4(b). In the second round of message-exchanging phase,

Processors b and f move away from the MANET, as shown in Figure 4-4(c). Fault-free
Processor a therefore cannot receive the message from Processors b and f. An mg-tree

example of Processor a in the second round of message-exchanging phase is shown in Figure

4-4(d). In addition, an mg-tree example of Processor a in the third round is shown in Figure
4-4(e).

In the decision-making phase, each fault-free processor turns its mg-tree into the

corresponding ic-tree by deleting the vertices with repeated names to avoid repeated influence
from faulty processors. An example of an ic-tree by Processor a is shown in Figure 4-4(f).
Using the VOTE,, function on its ic-tree from the level #+1 to the root s, an agreement value
“0” can be obtained. An example using the VOTE,,; function on Processor a’s ic-tree from the
level #+1 of the ic-tree to roots s is shown in Figure 4-4(g). If there is any return processor in
the MANET, each processor transmits its agreement value to the return processor.

In the extension-agreement phase, each return processor receives the other processors’

agreement values (the function VOTE,(s) values). Using the VOTE,; function on the
received messages, an agreement value can be obtained. Processor b returns to the MANET

before the decision-making phase, as shown in Figure 4-4(h). An example of Processor b

getting the other processors’ agreement values and using the VOTE,; function to obtain the

final agreement value “0” is shown in Figure 4-4(1).

38

g 49 &

Processor a Processor b Processor c
N 0 I 1 \} -
~ ~. | -
-~
8 0 ! X3
-—— - —————— X}y ——-—_—-——— = —— —— »-
Processor d _ Processor 3~ _ Processor e
Q.- I N
. 1 ~N
7 * N
& & 'S
Processor f Processor g Processor A

(a) In the first round of message-exchanging phase, Processor s transmits its initial value to

other processors

mg-tree of Processor a

Level 1
0 root
@ ____ = & s
Processor s Processor a ()
Val(s)=0

(b) Processor a stores the received value from Processor s in the root of its mg-tree

Proﬁor I[

‘Q\MOV rocessor b /

" Processqr ¢ Prfo\ceSSOQ&Q/
£ rocessord g

@ Processor s 77777 Processorh
\Q/ Jj—

. Processore .~ Processor a-

(c) Processor b and f move away in the second round of message-exchanging phase

Figure 4-4. An example of executing MAHAP (cont’d.)

39

I I

J

Processor\b Processor ¢ Processor d
~ 2 ' P
~7 |0 Q -
RN ” -
X 0 ’Q\ ’
____________ - ——
\Q/)
Processor e or &
Processor Processor f
\ d
/\ -7 - b N]
_ -~ ~ N
., 8
Processor g Processor A
Level 1 Level 2 Level 1 Level 2
root root
S S
. SZ Val(sa)=0 ° sa Val(sa)=0
Val(s)=0 —:C Val(sb)=2] Val(s)=0 1b Vaisby=[5 7]
Val(sc)=0 se Val(sc)=0
sd sd
e Vallsd)=0 - Val(sd)=0
o Val(se)=0 o Val(se)=0
= Val(sf)=[2] —’ = Val(sh)=[5 7]
:‘Z— Val(sg)=1 Sg— Val(sg)=1
Val(sh)=1 S Val(sh)=1

(d) Processor a can detect the Processor » and Processor f'do not send the message and stores

the received messages from other processors in the level 2 of its mg-tree

Figure 4-4. An example of executing MAHAP (cont’d.)

40

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

root root
. i Saq Val(saa)=0 . Sl
Val(s)=0 Val(sa)=0 | 5@ Val(saby=0" Val(s)=0 Valsay=0 B2 -5
e Val(sac)=0 ¢ Val(sac)=0
sad Val(sad)=0 159 \alsady=0
EZ;_— Val(sae):l0 i:/e_— Val(sae)=l0
F———— Val(sa/)=0 F———— Val(sa/)=0
1998 Val(sag)=0 1598 val(sag)=0
sah Val(sah)=0 L@ Val(sahy=0
sb - sba Val(sba)=0" sb - sha Val(sba)=0"
Val(shy=8" |22\ iopby=5" Val(sb)=0
j:; Val(sbc)—é‘)‘ EZ; Val(sbe)=0"
Val(shd)= -5! Val(sbd)=0
Sie— Val(she)=0 SZE— Val(sbe)=0
R EL/AR YV
1952 \a(shg)= 61 152 \aishg)=0"
sbh Val(sbi)=0" sbh Val(sbh)=d"
3¢ ed Val(sca)=0 3 icd Val(sca)=0
Val(se)=0 | Val(sch)-8" Val(se)=0 |-5¢b Val(sch)-5"
see Val(sce)=0
j:‘: Val(scd)=0 ij— Val(scd)=0
———— Val(sce)=1 ————— Val(sce)=1
B Valsep=8" B Vaisen=5"
L S Val(scg)=0 Lsee Val(scg)=0
Lsch Val(sehy=0 Lsh Val(seh)=0
sd sda, Val(sda)=0 sd sda Val(sda)=0
Valsd)=0 1S90 an-5° Val(sdy0 {5 Val(sb)=8"
ig; Val(sde)=0 154 raisdey=0
Val(sdd)=0 »
sde Val(sde)=0 o Val(sde0
sdf Val(sdf)=8" B aisdn=5"
Lsde \ai(sdg)=0 1592 \ai(sdg)=0
scth Val(sdh)=0 Turn the mg-tree into the Lsdh_ Nal(sdhy=0
se sea Val(sea)=0 corresponding ic-tree by deleteing the se sea Val(sed)=0
Val(se)=0 |seb Val(seb)=0 vertices with repeated names Val(se)=0 |seb Val(seb)=60
500 Val(sec)=0 L Val(sec)=0
j:j Val(sed)=0 Lsed al(sed)=0
——— Val(see)= 0
B Vaisen=0" B aisen=5"
- S Val(seg)=1 pres Val(seg)=1
Lseh Val(sehy=1 Lseh vVal(sehy=I
= 0 sfa Val(sfa)= 6 . 0 £ Val(gfa)-3
Val(s/)=0 Val(sb)=0" Val(s/)=0 Sﬂf Val(sfb) 60
f;; Val(sfc)—ﬁ'l jf;— Val(sfe)= 6
L - Val(sfd)—5 S/ Val(sfd)= 5!
Wi Ha Val(sfe)=t I — Val(sfe)=0
fj{L Val(sff)= 6 o
P8 vy)—6 LIS val(sfg)= 6
| T Val(ﬁ)—ﬁ /R Val(sfh)= -5!
g S8d Val(sga)=1 2 fgd Val(sga)=1
Val(sg=1 |58 Val(sg5)-0" Val(sg)=1 | s& Val(sgb)-5"
8¢ Val(sge)=1 8 Val(sge)=1
158 ai(sgd)-1 L8 \isedy-1
- CO Val(sge)=0 O Val(sge)=0
B Vai(sghn=-6" B Valsgh)=6"
1988 val(sgg)=1
sgh Val(sgh)=1 sgh Val(sgh)=1
sh sha Val(sha)=1 sh sha Val(sha)=1
valshy=t - P05 Valshy=t [0 ony-5"
e Val(shey-1 e Val(she)-1
L Val(shd)=1 L Val(shd)=1
SZ‘? Val(she)=0 S?e— Val(she)=0
B (o0 B alshp)=6°
Lshe Val(shg)-1 Lshe Val(shg)=1
Lshh Nal(shi=1
(e) The final mg-tree of Processor a after the (f) The ic-tree of Processor a

message-exchanging phase (mg-tree with three levels)

Figure 4-4. An example of executing MAHAP (cont’d.)

41

@ (VOTE(sa)= (VOTE(sab), VOTE(sac), VOTE(sad), VOTE(sae), VOTE(saf), VOTE(sag), VOTE(sah))
(VOTE(sa) =8",0,0,1,8",0,0)= 0 by the condition 4 in the function VOTE
@ (VOTE(sb)= (VOTE(sba), VOTE(shc), VOTE(sbd), VOTE(she), VOTE(sbf), VOTE(sbg), VOTE(sbh))

(VOTE(sb) =5',5',6',0,5°,5",5") = &° by the condition 3 in the function VOTE
@ (VOTE(sc)= (VOTE(sca), VOTE(sch), VOTE(scd), VOTE(sce), VOTE(scf), VOTE(scg), VOTE(sch))

(VOTE(sc) = 0,8°, 0,1,8°,0,0)=0 by the condition 4 in the function VOTE

@ (VOTE(sd)= (VOTE(sda), VOTE(sdb), VOTE(sdc), VOTE(sde), VOTE(sdf), VOTE(sdg), VOTE(sdh))
(VOTE(sd) = 0,8°,0,0,5°,0,0) = 0 by the condition 4 in the function VOTE

@ (VOTE(se)= (VOTE(sea), VOTE(seb), VOTE(sec), VOTE(sed), VOTE(sef), VOTE(seg), VOTE(seh))
(VOTE(se) = 0,8°,0,0,8%,1,1) =0 by the condition 4 in the function VOTE

@ (VOTE(sf)= (VOTE(sfa), VOTE(sfb), VOTE(sfc), VOTE(sfd), VOTE(sfe), VOTE(sfg), VOTE(sfh))
(VOTE(sf) =5',8",8',6',0,8',8") =&’ by the condition 3 in the function VOTE

@ (VOTE(sg)= (VOTE(sga), VOTE(sgb), VOTE(sgc), VOTE(sgd), VOTE(sge), VOTE(sgf), VOTE(sgh))
(VOTE(sg) =1,8°,1,1,0,8°,1) = 1 by the condition 4 in the function VOTE

@ (VOTE(sh)= (VOTE(sha), VOTE(shb), VOTE(shc), VOTE(shd), VOTE(she), VOTE(shf), VOTE(shg))
(VOTE(sh) = 1,8°,1,1,0,8°,1) = 1 by the condition 4 in the function VOTE

y

B (VOTE(s)= (VOTE(sa), VOTE(sb), VOTE(sc), VOTE(sd), VOTE(se), VOTE(sf), VOTE(sg), VOTE(sh))
(VOTE(s) = 0,5",0,0,0,8°,1,1) = 0 by the condition 4 in the function VOTE

(g) Using function VOTE,, on Processor a’s ic-tree from the level #+1 to root s, an agreement

value “0” can be obtained.

‘ . Processqr ¢ Processor
Processorb \

—— L S~

ocessor d]

@ Processor s Processor h

~._ Processor e Processor a-

(h) Processor b returns to the MANET before the decision-making phase.

Figure 4-4. An example of executing MAHAP (cont’d.)

42

g a9 8

Processor a Processor ¢ Processor d
S0 |0 Q_~- -
RN e -

X ! Q : S
———————————— - \Q/ -———— — -
Processor e Processor b Processor f
A

0~ |0 o
~ - N
g S @
Processor g Processor £ Processor s

VOTE,40,0,0,1, 6 0,0,0,1) =0
(1) Processor b can get the other processors’ agreement values and use function VOTE,, to

obtain the final agreement value “0”.

Figure 4-4. An example of executing MAHAP

4.4 The Correctness and Complexity of MAHAP

To prove the correctness of our protocol, a vertex « is called common [4] if each fault-free
processor has the same value for a. That is, if vertex o is common, then the value stored in
vertex « of each fault-free processor’s mg-tree or ic-tree is identical. When each fault-free
processor has the common initial value from the source processor in the root of its ic-tree, if
the root s of the ic-tree of a fault-free processor is common and the initial value received from
the source processor is stored in the root of the tree structure, then an agreement is reached
because the root is common. Thus, the constraints, (BA_Agreement) and (BA_Validity), can
be rewritten as:
(BA_Agreement’): Root s is common, and
(BA_Validity’): VOTE,4(s) = v, for each fault-free processor, if the source processor is
fault-free.
To prove that a vertex is common, the term common frontier [4] is defined as follows:

When every root-to-leaf path of the tree (an mg-tree or an ic-tree) contains a common vertex,

43

the collection of the common vertices forms a common frontier. In other words, every
fault-free processor has the same messages collected in the common frontier if a common
frontier does exist in a fault-free processor’s tree structure (mg-tree or ic-tree). Subsequently,
using the same majority voting function to compute the root value of the tree structure, every
fault-free processor can compute the same root value because the same input (the same
collected messages in the common frontier) and the same computing function will produce the
same output (the root value).

Since MAHAP can solve the BA problem, the correctness of MAHAP should be
examined using the following two terms.

(1) Correct vertex: Vertex i of a tree is qualified as a correct vertex if processor i (the last
processor name in vertex «i’s processor name list) is fault-free. In other words, a
correct vertex is a place to store the value received from a fault-free processor.

(2) True value: For a correct vertex «i in the tree of a fault-free processor j, val(ai) is the
true value of vertex «i. In other words, the stored value is the true value.

According to the definition of a correct vertex, the value it stores is received from a
fault-free processor, and a fault-free processor always transmits the same value to all
processors. Therefore, the correct vertices of such an mg-tree are common. After turning the
mg-tree into its corresponding ic-tree by deleting the vertices with repeated processor names,
the values stored on the correct vertices of an ic-tree will be the same. Therefore, all of the
correct vertices of an ic-tree are also common. Again, using the definition of a correct vertex,
a common frontier does exist in the ic-tree. Thus, the root can be proven a common vertex
[(BA_Agreement’) is true] due to the existence of a common frontier, regardless of the
correctness of the source processor. An agreement on the root value can now be reached. To
check the validity of (BA_Validity’), (BA_Validity’) is always true due to the propositional
logic [8] . If the source processor fails, (BA_ Validity’) is true, and the reason is that the
proposition [(P=»Q)] means (NOT(P) OR Q), so (NOT(P) OR Q) or (P=>Q) is true when P is

44

false, where P implies “the source processor is fault-free” and (P=»Q) implies (BA_Validity’s).
Conversely, root s is a correct vertex by the definition of a correct vertex if the source
processor is fault-free. If all of the correct vertices’ true values can be computed by MAHAP,
then the true value of the root can also be computed because the root is a correct vertex. As
defined earlier, the true value of the root is the initial value of the source processor if the
source processor is fault-free. In short, each fault-free processor’s root value is the initial
value of the source processor if the source processor is fault-free; therefore, (BA_Validity’) is
true if the source processor is fault-free. Since (BA_ Agreement’) and (BA_Validity’) are both

true regardless if the source processor is fault-free or failed, the BA problem is solved.

Lemma 4-1: All correct vertices of an ic-tree are common.

Proof: After reorganization, no repeated vertices are in an ic-tree. At level ¢ +1 or above, the
correct vertex o has at least 2¢ +1 children, out of which at least # +1 children are
correct. The true values of these 7 +1 correct vertices are common, and the majority of
the vertex values « are common. The correct vertex « is common in the ic-tree if the

level of « is less then ¢ +1. Consequently, all correct vertices of the ic-tree are common.

Lemma 4-2: The common frontier exists in the ic-tree.

Proof: There are ¢ +1 vertices along each root-to-leaf path of an ic-tree in which the root is
labeled by the source name, and the others are labeled by a sequence of processor
names. Since at most ¢ processors can fail, there is at least one correct vertex along
each root-to-leaf path of the ic-tree. Using Lemma 4-1, the correct vertex is common

and the common frontier exists in each fault-free processor’s ic-tree. W

45

Lemma 4-3: Let a be a vertex, a is common if there is a common frontier in the sub-tree

rooted at a.

Proof: If the height of « is 0 and the common frontier (« itself) exists, then « is common. If
the height of « is r, the children of « are all in common under the induction hypothesis

with the height of the children being »-1. B

Corollary 4-1: The root is common if the common frontier exists in the ic-tree.

Theorem 4-1: The root of a fault-free processor’s ic-tree is common.
Proof: Using Lemma 4-1, Lemma 4-2, Lemma 4-3 and Corollary 4-1, the theorem is proved.

Theorem 4-2: Protocol MAHAP solves the BA problem in an MANET.

Proof: To prove this theorem, MAHAP must meet the constraints (BA Agreement’) and
(BA Validity’)
(BA_Agreement’): Root s is common.
By Theorem 4-1, (BA_Agreement’) is satisfied.
(BA_Validity’): VOTE,4(s) = v for all fault-free processors, if the initial value of the
source is v; say v =1,
Most processors are fault-free. The value of the correct vertices for all of the fault-free
processor mg-trees is v.

When the mg-tree is turned into an ic-tree, the correct vertices still exist.

Therefore, each correct vertex of the ic-tree is common (Lemma 4-1), and its true
value is v. Using Theorem 4-1, this root is common. The computed value VOTE4(s) =
v is stored in the root for all the fault-free processors. Therefore, (BA_Validity’) is

satisfied. W

46

Theorem 4-3: MAHAP requires t+1 rounds in the message-exchanging phase to solve the

BA problem in a MANET, and t+1 (t=(n-1)/3)J) is the minimum number of rounds in

the message-exchanging phase.

Proof: In the BA problem, each processor exchanges messages during the

message-exchanging phase. Thus, the message-exchanging phase is a time consuming phase.
Therefore, reducing the number of required rounds is the major concern in an optimal
protocol design. The term “round” denotes the message exchange interval between any pair of
processors [19] [28] . A round is defined as follows: (1) Sends messages to any set of
processors (2) Receives messages from this round (3) Does local processing [19] [28] .
Fischer and Lynch [19] indicated that #+1 (t=|_(n—1)/3j) is the minimum number of rounds
required to get enough messages to reach a common agreement value. By the definition of
round, the number of required message exchange rounds in the MANET is also #+1

(td.(n-1)/3]). m

4.5 Conclusion

In order to provide a reliable computing environment for dynamic MANET, we need to solve
the BA problem in the dynamic MANET. To the best of our knowledge, MAHAP is the first
protocol to solve the BA problem in the dynamic MANET. In this study, we revisited the BA
problem in an MANET with the most damaging type of failed processors (malicious fault).
The proposed MAHAP is the optimal protocol that can solve the BA problem in the MANET.
The term “optimal” means that the protocol can reach an agreement with the minimum
number of rounds required and tolerates the maximum number of faulty components.
MAHAP has the following features:

€ MAHAP can solve the BA problem in various MANETs (Such as table-driven

47

routing MANET, on-demand routing MANET and hybrid routing MANET) by
Theorem 4-2.
MAHAP allows return processors to reach the same agreement value by

extension-agreement phase in MAHAP

MAHAP can solve the BA problem using the minimum number of message
exchange rounds (#+1 rounds of message exchange)
MAHAP can tolerate the most damaging failed processor type (malicious fault).

MAHAP can tolerate p,, malicious faulty processors and p, away processors.

48

Chapter 5
Server-initiated Agreement Protocol for Combined

Wired/Wireless Networks

Wireless networks have become ubiquitous, making combined wired/wireless network a
popular trend of development in nowadays. In practice, most current networks are combined
wired and wireless environments. In this chapter, we introduce our approach to solve the BA

problem with malicious faulty processors in a combined wired/wireless network.

5.1 The Conditions for BA Problem in Combined Wired/Wireless

Network

To design a BA protocol in combined wired/wireless network, certain conditions must be
taken into account. They are the system model, properties of the BA problem and the

constraint in combined wired/wireless network.

5.1.1 System Model

Byzantine agreement protocols imply large communication overhead [19] [28] . The previous
network architectures from these results [28] [37] [51] [60] [70] were all flat architectures,
with all processors carrying the same responsibility. BA protocols in flat architectures are not
efficient because all messages must propagate globally throughout the network. To reduce the
communication overhead, we used a hierarchical model concept. Our network model is a
two-level combined wired/wireless computing environment consisting of a wired backbone

and wireless cells that provide access to mobile processors.

49

In this chapter, the BA problem is considered in a combined wired/wireless network with
fallible processor. The failure type of a fallible component is malicious fault (worst case).
Figure 5-1 shows an example of the two-level combined wired/wireless network. There are
sixteen processors in the network. There are four agreement-servers, five stationary
processors and seven mobile processors. Each agreement-server manages a zone’s processors.
For example, agreement-server AS, manages processor Aj, A, and Aj in the zone A. The

assumptions and parameters of the system are listed in chapter 3.2.1.

- Higher network Zone level
& level J——
&G D
/ B /;
ArA N
@z D,
i Xl
4

S X

Agreement Server Mobile Processor Stationary Processor Malicious Fault

Figure 5-1. An example of combined wired/wireless network

5.1.2 Properties of the BA Problem

By the concept of multilevel hierarchy, each processor in the zone is managed by its
agreement-server. Hence, two properties of BA problem in two-level combined wired/wireless

network are modified as follows:

50

(BA_Agreement): All fault-free processors managed by fault-free agreement-server agree
on a common value;
(BA_Validity): If the source agreement-servcer is fault-free, the agreement value should

be the initial value of the source agreement-server.

5.1.3 Constraint

In the BA problem, the number of faulty processors that can be allowed is determined by the
total number of processors in the network. Pease, Shostak and Lamport [28] indicated the
constraint of the BA problem is n>3p,,.

The network architecture of Pease, Shostak and Lamport [28] is flat architecture; so all

processors need to exchange the messages in the message-exchanging phase. In our protocol,

the network architecture is hierarchical, only agreement-servers need to exchange the

messages in the message-exchanging phase, so the constraint of our model is z,>3z,,.

5.2 Secure Communication

A close study of cryptographic technologies is not necessary for our purpose. Hence, we give

a brief introduction of some cryptographic technologies that are used in our system.

5.2.1 Related Cryptographic Technologies

The brief introduction of Diffie-Hellman key exchange, advanced encryption standard and

threshold signature are shown here.

51

5.2.1.1 Diffie-Hellman Key Exchange

Diffie-Hellman key exchange [16] is a cryptographic protocol that allows two processors to
agree on a secret key over an insecure communication channel. Once the shared secret key
has been established, they can use it to encrypt their secret communication using conventional

cryptographic methods. Figure 5-2 shows the Diftie-Hellman key exchange procedure.

5.2.1.2 Advanced Encryption Standard — Symmetric Cryptographic Algorithm

In a symmetric cryptographic system, the communication parties share a key in advance. They
encrypt and decrypt delivered messages by the shared key. The security is based on the shared
key. If adversaries reveal the shared key, the symmetric cryptographic system will crash.
Advanced Encryption Standard (AES) also known as Rijndael [14] is a block cipher adopted
as an encryption standard by the US government and expected to be used worldwide. It has
been extensively analyzed and compared with its predecessor, the Data Encryption Standard

(DES) [45] .

5.2.1.3 Threshold Signature

In threshold signature scheme, the secret s is divided into k£ shares and is set a threshold value
h (h < k). When collecting to 4 above shares, we can reconstruct the original secret s. The

threshold signature is based on the following equation:

f(x)=a, x""+a,_,x"7 +...+a,x+a, mod p, where p is a prime number.

52

A chooses u B chooses v

(p, g, &' mod p) .
A B
. (¢" mod p)
Secret key = g"" mod p
A computes B computes
(g" mod p)" = g"" mod p (g" mod p)’'=g"" mod p

Figure 5-2. Diffie-Hellman key exchange

5.2.2 Approach

We know that mobile processor power is supplied using batteries. Because power saving is a
serious topic with mobile processors. The asymmetric cryptographic algorithm, which needs a
large amount of computation is not suited for mobile processors. The advantage of the
symmetric cryptographic algorithm is that it is generally much faster than the asymmetric
cryptographic algorithm. However, the disadvantage of the symmetric cryptographic
algorithm is the requirement for a shared secret key with one copy at each end. Hence,
maintaining secure during distribution is an important problem.

Hence, we combined the asymmetric cryptographic and symmetric cryptographic
algorithms to obtain the advantages of both in this study. That is, the session key is generated
using the Diffie-Hellman key exchange and the symmetric key is generated using the AES.
Since the symmetric key is generated by AES is generally faster than the asymmetric

cryptographic algorithm. Then, we use symmetric key to encrypt the messages.

5.3 BA Protocol: “Server-initiated Byzantine Agreement Protocol”

(SBAP)

To meet the characteristics of mobile environments in the BA problem, most of the

53

communication and computation overhead must be fulfilled within in the agreement-servers.
Therefore, only the agreement-server needs to exchange messages and compute the agreement
value in our protocol. All messages in SBAP are encrypted by the symmetric key to ensure the

security. There are three phases in SBAP; they are message-exchanging phase,

decision-making phase and agreement-distribution phase. The protocol SBAP is shown in

Figure 5-3.

5.3.1 The Number of Required Rounds of Message-Exchange

In the BA protocol, we use term “round” to compute the amount of messages exchange. The
term “round” denotes the interval of message exchange between any pair of processors [19]
[28] . Fischer and Lynch [19] indicated that #+1 (t=|_(n—1)/3J) rounds are the minimum number
of rounds required to get enough messages to achieve BA.

The network architecture by Fischer and Lynch [19] is flat architecture, but the network
architecture in our system is a hierarchical architecture. In our protocol, only

agreement-servers need to exchange messages in the message-exchanging phase. Therefore,

the number of required rounds of message-exchange is z,+1 (z,=(z,-1)/3J). That is, SBAP

can reduce the entire network transmission consumption

5.3.2 Message-Exchanging Phase

Each agreement-server computes the number of rounds required y (y= z,+1, where z,=(z,-1)/3)

at first. At first round of message-exchanging phase, only the source processor needs to

encrypt its initial value to all other agreement-servers. Each agreement-server then stores the
value from the source processor in the root of its mg-tree. At the i#l round of

message-exchanging phase, each agreement-server (without source processor) encrypts the

value at level i-1 round in its mg-tree to all other agreement-servers. Each agreement-server

54

then stores the value from other agreement-servers in the level i-th of its mg-tree.

5.3.3 Decision-Making Phase

After message-exchanging phase, each agreement-server deletes vertices with repeated

names of mg-tree to avoid the repeated influence from faulty processors. Then, each
agreement-server uses the VOTE,,, function on its mg-tree from leaf to root to obtain the

agreement value. The VOTE,,; function is shown in Figure 5-4.

5.3.4 Agreement-Distribution Phase

Each agreement-server encrypts its agreement value to all processors in its zone. All fault-free
processors (both stationary processors and mobile processors), which are managed by the
fault-free agreement-server, can then reach a common agreement value. The value agreed

upon by a faulty processor is ignored [28] .

55

(SBAP)
Server-initial Byzantine Agreement Protocol
All messages in SBAP are encrypted by the symmetric key

Message-Exchanging
Phase:

Compute the number of rounds required y: y= z,,+1, where z,= (z,-1)/3

Begin
Fori=1toy
Ifi =1 Then

1. The source processor encrypts its initial value to all other agreement-servers.
2. Each agreement-server stores the value from the source processor in the root
of its mg-tree.
Else
1. Each agreement-server (without source processor) encrypts the value at level
i-1 in its mg-tree to all other agreement-servers.
2. Each agreement-server stores the value from other agreement-servers in the
level i-th of its mg-tree.
End If
Next
End

Decision-Making
Phase:

UEach agreement-server deletes vertices with repeated names of the mg-tree.
UEach agreement-server uses VOTE,,; function on its mg-tree (from leaf to root) to get
the agreement value.

Agreement-
Distribution Phase:

QEach agreement-server encrypts the agreement value to all processors in its zone.

Figure 5-3. The BA protocol Server-initial Byzantine Agreement Protocol (SBAP)

[Begin
If o is a leaf Then
output the value of a
VOTE,o(a) =< If the majority Vralu'e ism, m €{0,1}
output the majority value m
If the majority value does not exist
output the default value ¢
\ End

Figure 5-4. The VOTE,,; Function

56

5.4 An Example of Reaching Byzantine Agreement

In this section, we present a short synopsis of the SBAP execution protocol. A combined
wire/wireless network is shown in Figure 5-1. There are sixteen processors (including four
agreement-servers, five stationary processors and seven mobile processors) falling into four
zones. For example, there are three mobile processors (Aj, A; and Aj) in the zone A, and they
are managed by agreement-server ASA. The malicious faulty components are
agreement-server AS,, mobile processor C; and stationary processor D;.

The source processor is the most important in the BA protocol. If the source processor
has a malicious fault, it may send different initial values to different processors in the first

round of message-exchanging phase. Therefore, the worst case BA problem is that the source

processor has a malicious fault. If the BA protocol can solve the worst case, the BA problem
can be solved in other cases. Hence, we suppose that the agreement-server AS, is the source
processor. To reach a common agreement value among all fault-free component in our

example, the SBAP needs 2 (| (4-1)/3J+1) message-exchange rounds.

In the first round of message-exchanging phase, the source processor AS, encrypts its
initial value to all other agreement-servers in the network. Agreement-servers ASg, ASc, and
ASp then store the value from the source processor AS, in the root of their mg-trees, as

shown in Figure 5-5. In the second round of message-exchanging phase, each

agreement-server (without source processor) encrypts the value at the root in its mg-tree to all
other agreement-servers. The 2-level mg-tree of agreement-server ASg in the second round of

message-exchanging phase is shown in Figure 5-6. In the decision-making phase, each

agreement-server deletes the vertices with repeated mg-tree names to avoid the repeated
influence from faulty processors. In our example, there is no vertex with a repeated name. The
VOTE,,, function is then used on its mg-tree from leaf to root to get the agreement value. For
example, agreement-server ASg computes VOTE(A) = (0,1,1) =1 (VOTE(A) = (VOTE(AB),

57

VOTE(AC), VOTE(AD))). An agreement value 1 is obtained. In the agreement-distribution

phase, each agreement-server encrypts its agreement value to all processors in its zone.
Therefore, agreement-server ASp encrypts its agreement value 1 to processor B; and

processor B2 in the zone B.

Level 1

rootA
ASg 0
ASc 1
ASp 1

(mg-trees)

Figure 5-5. The mg-trees of each agreement-server in the first round of message-exchanging

phase

Level 1l Level 2
root A AB

. 0
Val(A)=0 [AC 1 Messages
AD received

! 1

(mg-tree)

Figure 5-6. The 2-level mg-tree of agreement- server ASg

5.5 The Correctness and Complexity of SBAP

If the value stored in vertex « of each fault-free agreement-server’s mg-tree is identical, then
the vertex « is called common [4] . When each fault-free agreement-server’s has the common
initial value from the source agreement-server in the root of its mg-tree, then an agreement is
reached because the root is common. Thus, the constraints, (Agreement) and (Validity), can be

rewritten as:

58

(BA_Agreement’): Root value is common.
(BA_Validity’): VOTE(@) = initial value of source agreement-server, for each
fault-free agreement-server, if the source processor is fault-free.

To prove that a vertex is common, the term common frontier [4] is defined as follows:
When every root-to-leaf path of the mg-tree contains a common vertex, the collection of the
common vertices forms a common frontier. In other words, every fault-free agreement-server
has the same messages collected in the common frontier if a common frontier does exist in a
fault-free agreement-server’s mg-tree. Subsequently, using the same function VOTE,, to
compute the root value of the tree structure, every fault-free agreement-server can compute
the same root value because the same input (the same collected messages in the common

frontier) and the same computing function will produce the same output (the root value).

Lemma 5-1: All correct vertices of an mg-tree are common.

Proof: In the decision-making phase, all vertices with repeated names are deleted in an

mg-tree. At level z,+1 or above, the correct vertex « has at least 2z,,+1 children, out of which
at least z,+1 children are correct. The true values of these z,+1 correct vertices are common,
and the majority of the vertex values a are common. The correct vertex « is common in the
mg-tree if the level of a is less then z,+1. Consequently, all correct vertices of the mg-tree are

common. W

Lemma 5-2: The common frontier exists in the mg-tree.
Proof: There are z,+1 vertices along each root-to-leaf path of an mg-tree in which the root is
labeled by the source name, and the others are labeled by a sequence of agreement-server id.

Since at most z, agreement-server can fail, there is at least one correct vertex along each

59

root-to-leaf path of the mg-tree. Using Lemma 5-1, the correct vertex is common and the

common frontier exists in each fault-free agreement-server’s mg-tree. W

Lemma 5-3: Let o be a vertex, « is common if there is a common frontier in the sub-tree
rooted at a.

Proof: If the height of « is 0 and the common frontier (¢« itself) exists, & is common. If the
height of « is y, the children of « are all in common under the induction hypothesis with the

height of the children being y-1. B

Corollary 5-1: The root is common if the common frontier exists in the mg-tree.

Theorem 5-1: The root of a fault-free agreement-server’s mg-tree is common.

Proof: Using Lemmas 3-1, 3-2, 3-3 and Corollary 5-1, the theorem is proved. B

Theorem 5-2: Protocol SBAP solves the BA problem in a two-level combined

wired/wireless network.

Proof: To prove this theorem, SBAP must meet the constraints (BA Agreement’) and

(BA_Validity’)

(BA_Agreement’): Root value is common. By Theorem 5-1, (BA Agreement’) is satisfied

(BA_Validity’): VOTE(a) = v for all fault-free agreement-servers, if the initial value of
the source agreement-server is vs say v = V.

Most agreement-servers are fault-free. The value of the correct vertices for all of the fault-free

agreement-servers’ mg-trees is v. Therefore, each correct vertex of the mg-tree is common

(Lemma 5-1), and its true value is v. Using Theorem 5-1, this root is common. The computed

value VOTE(a) = v is stored in the root for all the fault-free agreement-server. Therefore,

(BA_Validity’) is satisfied. B

60

Theorem 5-3: SBAP requires zn+1 rounds in the “message-exchanging phase” to solve

the BA problem in a two-level combined wired/wireless network, and zn+1

(zw=l(22-1)/3))) is the minimum number of rounds in the “message-exchanging phase”.

Proof: The “message-exchanging phase” is a time consuming phase. Fischer and Lynch [19]

indicated that #+1 (t=|_(n—1)/3j) rounds are the minimum number of rounds required to get
enough messages to achieve BA. The network architecture of Fischer and Lynch [19] is flat
architecture, but the network architecture of our system is hierarchical architecture. In our

protocol, only agreement-servers need to exchange the messages in the message-exchanging

phase, so the number of required rounds of message-exchange is z,+1 (zm=|_(zn—1)/3j). Thus,

SBAP requires z,+1 rounds, and this number is the minimum. H

5.6 Conclusion

Combined wired/wireless networks have become popular because they have the advantages of
both wired network (e.g., powerful computation ability, high bandwidth, reliability and so on.)
and wireless network (e.g., mobility, quick deployment and so on). Previous BA protocols [28]
[37] [51] [60] [70] , were not applicable for combined wired/wireless networks. In this paper,
we revisit the BA problem over a combined wired/wireless network with malicious faulty
processors and use a hierarchical architecture to reduce the communication overhead.
Base on the preceding discussion, the protocol SBAP have the following features:
€ Most of the communication and computation overhead are fulfilled within in
agreement-servers. (To meet the characteristics of mobile environments, most of the
communication and computation overhead must be fulfilled within in the
agreement-servers.)

€ SBAP can reduce the number of message-exchange rounds (SBAP uses the

61

hierarchical model concept to reduce the number of message-exchange rounds.)
SBAP can reach a common agreement with malicious faulty processors in two-level
combined wired/wireless networks. (By Theorem 5-2.)

The number of message-exchange rounds for SBAP is the minimum. (By Theorem

5-3)

62

Chapter 6
Client-initiated Consensus Protocol for Combined

Wired/Wireless Networks

In chapter 5, we proposed a server-initiated BA protocol, SBAP, to solve the BA problem with
malicious faulty processors in a combined wired/wireless network. In this chapter, we
consider another related problem: Consensus problem. Moreover, malicious fault assumption
with processors grows into the dual failure mode (both dormant fault and malicious fault) on
both processors and communication links.

That is, we introduce our approach to solve the Consensus problem with
dormant/malicious faulty processors/communication links in a combined wired/wireless

network in this chapter.

6.1 The Conditions for Consensus Problem in Combined

Wired/Wireless Network

To design a Consensus protocol, certain conditions must be taken into account. They are the

system model, properties of the Consensus problem and the constraint.

6.1.1 System Model

In recent years, the bandwidth and quality of wireless networks has been drastically improved.
Therefore, wireless network has become more and more popular [9] , resulting in the
development of nowadays network from wired or wireless network to combined

wired/wireless network.

63

We know that the communication overhead of the Consensus protocol is inherently large
[19] . Previous Consensus protocols were designed for flat networks [52] [70] In a flat
network, all processors undertake equal responsibility and all messages must propagate
globally throughout the network. This makes the previous Consensus protocols inefficient. In
this study, we use a hierarchical concept to reduce the communication overhead.

In this chapter, the Consensus problem is considered in a combined wired/wireless
network with fallible components (processor and communication link). The failure type of a
fallible component may be dormant fault or malicious fault. Figure 6-1 shows an example of
the two-level combined wired/wireless network. There are six consensus-servers, six
stationary processors and nine mobile processors. The network is divided into six zones by six
consensus-servers. Each consensus-server manages a zone’s processors. For example,
consensus-server CS, manages processor Aj, A, and As in the zone A. The assumptions and

parameters of the system are listed in chapter 3.2.2.

Higher network Zone;];\ g
G B4 Consensus Server

J

Mobile Processor

@

Stationary Processor

Malicious Fault

!

Zone level Dorma;lt Fault

\\\ 1 Y
. Zoneg -

Figure 6-1. Two-level combined wired/wireless network

64

6.1.2 Properties of the Consensus Problem

Using the hierarchical concept, each processor in the zone is managed by its consensus-server.

Hence, two properties of the Consensus problem in two-level combined wired/wireless

network are modified as follows:

(Consensus_Agreement): All fault-free processors managed by fault-free consensus-server
agree on a common value;

(Consensus_Validity): If the initial value of all consensus-server is v;, then all fault-free
processors managed by the fault-free consensus-server shall agree

on v;.

6.1.3 Constraint

In the Consensus problem, the number of faulty processors allowed in the network depends
on the total number of processors. Meyer and Pradhan [33] indicates the constraint of
Consensus problem with malicious faulty processors and dormant faulty processors is n
>3p,tpgs. Afterward, Siu et al. [50] finds that the correct constraint should be n>
L(n-1)/3 +2putpa.

The network architectures of Meyer and Pradhan [33] and Siu et al. [50] are flat. All

processors need to exchange the messages in the message-exchanging phase. In our

Consensus protocol, the network architecture is hierarchical, and only the consensus-server

needs to exchange the messages in the message-exchanging phase. Hence, the constraint of

our model is z,> |_(zn-1)/ 3J+2zm+zd.

65

6.2 Transmission Protocol: “Secure Relay Fault-tolerance Channel”

(SRFC)

Energy consumption is a major performance metric for mobile processors [48] . If the power
consumption is low, the battery lifetime will be longer. In this section, a transmission protocol
“Secure Relay Fault-tolerance Channel” (SRFC) is proposed. SRFC can remove the influence
from the faulty intermediate component and reduces power consumption to provide a secure
communication channel between sender and receiver. The transmission protocol SRFC is

shown in Figure 6-2.

Secure Relay Fault-tolerance Channel (SRFC)

Assumption:
m Each consensus-server has the common knowledge of graphic information

m The connectivity of each consensus-server is ¢ (¢>c,tcat zntza)

m Each processor in the same zone has the common knowledge of graphic information with its zone

m The connectivity ¢, of Zone, must be larger than the number of malicious faulty components plus
the number of dormant faulty components in Zone,, where 1<p=<z,

m The message through component with dormant fault can be detected by symmetric key, and the
message is substituted as ¢

m The message through "intermediate component" with malicious fault can be detected by

symmetric key, and the message is substituted as ¢

Channel-Creating Phase:
1. Generating an session key by Diffie-Hellman key exchange
2. Generating an symmetric key by AES

- Using session key to distribute the symmetric key securely

Message-Transmission Phase:
1. Using symmetric key to transmit the message through one path of ¢ processor-disjoint paths
2. If the message is found out has the question by receiver processor, then re-transmits the message
through another path of ¢
- If all messages from ¢ paths are ¢, then the received message is substituted by A, where 1” is used to

report the existence of an absentee

Figure 6-2. Secure Relay Fault-tolerance Channel (SRFC)

66

6.2.1 The Connectivity Constraint

In Meyer and Pradhan [33] , the fallible components are dormant/malicious faulty processors.
Meyer and Pradhan [33] used a time-out mechanism to detect a dormant faulty processor.
However, the time-out mechanism cannot detect a malicious faulty intermediate component.
To avoid the majority value from being dominated by malicious faulty intermediate
components, the connectivity constraint in the network by Meyer and Pradhan [33] is ¢’
(¢ >2putpa, where p,, 1s the maximum number of malicious faulty processors allowed and p,
is the maximum number of dormant faulty processors allowed). In Siu, Chin and Yang [50] ,
the fallible components are dormant/malicious faulty processors and dormant/malicious faulty
communication links. Siu, Chin and Yang [50] also used a time-out mechanism to detect a
dormant faulty component. Thus, the connectivity constraint in the network by Siu, Chin and
Yang [50] is ¢” (¢ ">2putpat2(lytls), where p,, is the maximum number of malicious faulty
processors allowed, p, is the maximum number of dormant faulty processors allowed, /,, is the
maximum number of malicious faulty communication links allowed and /; is the maximum
number of dormant faulty communication links allowed).

In SRFC, the network connectivity constraint is improved. For the higher network level,
the connectivity of each consensus-server is ¢ (c>cytcstzmtzqs where ¢, is the maximum
number of malicious faulty communication link allowed, c¢; is the maximum number of
dormant faulty communication links allowed, z,, is the maximum number of malicious faulty
consensus-servers allowed and z; is the maximum number of dormant faulty
consensus-servers allowed). For the zone level, the connectivity ¢, of Zone, must be larger
than the number of malicious faulty components (processors and communication links) plus
the number of dormant faulty components in Zone,, where 1<p<z,. Because a symmetric key
is used, the receiver processor can detect a message that is influenced by dormant and

malicious faulty intermediate components.

67

6.2.2 Four Cases of Fault Handling

We classify the fault (or attack) that may take place in a transmission process into four cases:
1. Sender with dormant fault or intermediate component with dormant fault
2. Intermediate component with malicious fault
3. Sender with malicious fault
4. Receiver with dormant fault or receiver with malicious fault

Our protocol SRFC can deal with Cases 1 and Case 2. For Case 1, a message sent
through a dormant faulty component cannot be reconstructed by the symmetric key. In Case 2,
we can detect that the message is false using the symmetric key. In Case 3, our SRFC cannot
detect if the message is correct or not. Because the sender has the symmetric key, the sender
has control over the message. Case 3 can be solved using our Consensus protocol CCP. The
detailed description of CCP is presented in chapter 6.3. For Case 4, because the receiver is a
faulty component, we do not care the message received from the faulty receiver.

If the network connectivity is ¢, we can determine ¢ processor-disjoint paths between the
sender and receiver. These ¢ processor-disjoint paths can be predefined [68] . An example of
c(c=3) processor-disjoint path between CSg and CS¢ is shown in Figure 6-3. In Path 2 there is
a dormant faulty communication link between CSg and CSc. Hence, the message is influenced
by the dormant faulty component (Case 1). CS¢ can detect this problem using the symmetric
key. In Path 3 there is a malicious faulty component CSx (Case 2), CSc also can detect this
problem using the symmetric key. In Path 1, there is no faulty intermediate component
between CSp and CSc, CSc can receive the message from CSg without faulty influence. That
is, if c>cptestzntza (3>0+1+140, 3>2), we can ensure that the receiver can receive the

message without influence from faulty intermediate component.

68

Path 1

Path 2 s (]
wl;

& s 1 »: Malicious Fault
Chs CSg CSc '
Path 3 g O Dorma;lt Fault
g
CSA CSD

Figure 6-3. The ¢ disjoint paths between CSg and CSc, where ¢=3

To reduce power consumption, each sender only transmits one copy of the message
through one path of ¢ paths. If the receiver detects that the message is false, it then
re-transmits the message through another path in ¢ processor-disjoint paths. If all messages
from ¢ paths are ¢, then the received message is substituted by A°. A is used to report the
existence of an absentee.

That is, SRFC can remove the influence from dormant/malicious faulty intermediate
components and the influence from dormant faulty sender. SRFC is an efficient transmission
protocol which reduces the computation time and power consumption to provide a secure

communication channel.

6.3 Consensus Protocol: “Client-initiated Consensus Protocol” (CCP)

In this section, we would like to focus our attention on the proposed Consensus protocol
“Client-initiated Consensus Protocol” (CCP). To meet the characteristics of Consensus
problem in combined wired/wireless networks, most of the communications and computation
overhead must be fulfilled within by the consensus-servers. Therefore, only consensus-servers
need to exchange messages and compute the common value in CCP. Furthermore, all
messages in CCP are transmitted by SRFC. There are two stages in CCP, namely the
Client-initiated Stage and the Consensus Stage. The Consensus protocol CCP is shown in

Figure 6-4.

69

6.3.1 Client-initiated Stage

The purpose of the Client-initiated Stage is to collect the initial value from each client and
compute the pre-consensus value for each consensus-server. Any client may initiate
Consensus in the network. When a client p; wants to initiate a Consensus, it transmits the
“Initiate consensus” message to its consensus-server CS;. (Client p; is managed by CS;, where
1<i< the number of processor in CS;'s zone, 1<j<z,.) The consensus-server CS; then informs
other consensus-servers to gather the initial value from each client in its zone. Each
consensus-server can obtain the pre-consensus value by threshold signature if it collects more

than half of the same value in its zone.

70

Client-initiated Consensus Protocol (CCP)

Assumption:
m Any client may initiate consensus
m Each processor in the network uses SRFC to transmit the message

Client-initiated Stage:

Message Gathering Phase:
1. Client p, transmits "initiate-consensus" message to its consensus-server CS;
- Client p; is managed by CS;, where 1<i< the number of processor in CS;'s zone, 1</<z,
2. Consensus-server CS; informs other consensus-servers to gather the initial value of each
client in its zone
3. Each client signs its initial value to its consensus-server by threshold signature
- value 0 or value 1
4. Each consensus-server obtains the pre-consensus value by reconstructing the secret
- If the pre-consensus value does not exist, using value 0 as the pre-consensus value

Consensus Stage:

Message Exchanging Phase:
m Computes the number of rounds required y: y= z,,+1, where z,=|(z,-1)/3
m Creates the vertex root R in the level 0 of mg-tree, and set Val(R)=null

Begin
Fori=1toy
If i =1 Then

1. Each consensus-server transmits its pre-consensus value to all other consensus-servers
2. Each consensus-server stores the values from the other consensus-servers in the level 1
of its mg-tree, if the received value is 1°, value 0 is being substituted for value 2”
Else
1. Each consensus-server transmits the values at level i-1 in its mg-tree to all other
consensus-servers, if the value at level i-1 is ¥, then uses the value ¥ as the
transmitted value, where 0</<z,,-1
2. Each consensus-server stores the values from the other consensus-servers in the level i-th
of its mg-tree
End If
Next
End

Decision Making Phase:
1. Each consensus-server deletes vertices with repeated names of its mg-tree
2. Each consensus-server uses VOTE,,;, function on its mg-tree (from leaf to root) to get a

common value

Consensus Distributing Phase:
1. Each consensus-server transmits the common value to all processors in its zone

Figure 6-4. Client-initiated Consensus Protocol (CCP)

71

6.3.2 Consensus Stage

The purpose of the Consensus Stage is to compute a common value. There are three phases in

the Consensus stage; including the message-exchanging phase, the decision-making phase

and the consensus-distribution phase. In the message-exchanging phase, each

consensus-server computes the number of rounds required at first. Then, each

consensus-server creates the vertex R in the level 0 of its mg-tree, and set Val(‘R)=null.

6.3.2.1 The Number of Required Rounds in Message-Exchanging phase

In the Consensus protocol, we also use term “round” to compute the number of messages
exchanged. In our protocol, only consensus-servers need to exchange the messages in the

message-exchanging phase. So the number of required rounds in the message-exchanging

phase is z,+1 (zy=L(z,-1)/3).

6.3.2.2 Message-Exchanging Phase

In the first round of the message-exchanging phase, each consensus-server transmits its

pre-consensus value to all other consensus-servers. Each consensus-server then stores the
values from the other consensus-servers in level 1 of its mg-tree. If the received value is A°,
value 0 is substituted for value A’.

In the i#1 round of message-exchanging phase, each consensus-server transmits the

values at level i-1 round in its mg-tree to all other consensus-servers.

72

6.3.2.3 Decision-Making Phase

After the message-exchanging phase, each consensus-server deletes vertices with repeated

names of mg-tree to avoid the repeated influence from faulty consensus-servers. Then, each
consensus-server uses the VOTE,,;, function on its mg-tree from leaf to root to obtain the
common value. The VOTE,,;; function is shown in Figure 6-5. Conditions 1, 4 and 5 are
similar to convention majority vote [28] . Condition 2 is used to deal with the dual failure
mode (where both dormant fault and malicious fault exist). Condition 3 is used to describe the

existence of an absentee.

6.3.2.4 Consensus-Distribution Phase

Each consensus-server transmits the common value to all processors in its zone. All fault-free
processors (both stationary processors and mobile processors), which are managed by the
fault-free consensus-server, can obtain a common value. The value agreed upon by a

processor, which is managed by faulty consensus-server, is ignored [28] .

VOTE,... Function

Begin
If o is a leaf Then
output the value of /* Condition 1*/
Elself \°| >3(z,+1-y)+ ((z,— 1) mod 3) Then
output the value of a /* Condition 2*/
Elself the majority value is)/, where 1<i <z,~ 1 Then
VOTE,(o) = output the value A" /* Condition 3*/
Elself the majority value is non-¥ , where 0 <j <z,— 1, m € {0,1}Then
output the value m /* Condition 4*/
Elself the majority value does not exist Then
output the default value ¢ /* Condition 5%/
End If
End

m The VOTE,,;, function only counts the non-value A° (excluding the last level of the mg-tree) for all
vertexes a at the y-th level of an mg-tree, where 1 = y =z,+1, z,,,:L(z,,-l)/3J.
u |1’ = the number of copies of A’

Figure 6-5. The VOTE,,;; Function

73

6.4 An Example of Reaching Consensus

In this section, we give an example of executing SRFC and CCP. A two-level combined
network is shown in Figure 6-1. The dormant faulty components are B; and Lcg. The

malicious faulty components are CS,, D; and C;.

6.4.1 Client-initiated Stage

B, wants to initiate a Consensus. Hence, B, creates a secure communication channel between
CSg by SRFC. B, then transmits the “initiate-consensus” message to CSg through
processor-disjoint path created by SRFC. After CSg receives the “initiate-consensus” message,
CSg creates secure communication channels to all other consensus-servers by SRFC and then
informs all consensus-servers to gather the initial value from each client in its zone. The

initial value of each client is shown as follows.

Client ID: A1 Az A3 B] Bz C] Cz C3 C4 D1 D2 D3 E] F] F2
Initial value: [0 |1 [0 |[A” |1 |1 [1 |1 [1 |1 |0 |1 |0 |0 |O

Each consensus-server then obtains the pre-consensus value using the threshold signature.
For example, there are two processors in Zoneg, one is B; which is a dormant faulty processor,
and another is B, which is a fault-free processor. Hence, CSg can detect that the message from
B, is influenced by a dormant faulty component. After B; and B, sign its initial value to CSg,
CSg can obtain the pre-consensus value 1 (the number of value 1 is greater than or equal to
half of the number of processor in Zoneg, A" is ignore). The pre-consensus value of each

consensus-server is shown as follows.

Consensus-Server 1D: CSa CSg CSc CSp CSg CSk

Pre-consensus value: 0 1 1 1 0 0

74

6.4.2 Consensus Stage

In the message-exchanging phase, we first compute the number of rounds required y=2

(y=L(6-1)/3J+1). Then, we creates the vertex Rin the level 0 of its mg-tree, and set

Val(*R)=null. In the first round of the message-exchanging phase, each consensus-server

transmits its pre-consensus value to all other consensus-servers by SRFC. Each
consensus-server then stores the values from other consensus-servers in the level 1 of its
mg-tree. Since CS, is a malicious faulty processor, CSa may transmit different messages to
different consensus-server to prevent the fault-free consensus-server from reaching a common

value. The messages transmitted by CS, in the first round of message-exchanging phase are

shown in Figure 6-6. An mg-tree of CSg after the first round of message-exchanging phase is

shown in Figure 6-7.

A RN
z) AN
THO 7 I
& 3 &
CSp CSg CSr

Figure 6-6. CSx transmits different message to different consensus-server

Level 0 Level 1

R A
o Val(A)= 0
Val(®)=null E Val(B)= 1
¢ Val(C)= 1
D Val(D)= 1
B Val(E)= 0
3 Val(F)= 0

Figure 6-7. An one-level mg-tree of CSg

75

In the second round of the message-exchanging phase, each consensus-server transmits

the value at level 1 in its mg-tree to all other consensus-servers, and stores the value from
other consensus-servers in the level 2 of its mg-tree. An mg-tree of CSg after the second round

of the message-exchanging phase is shown in Figure 6-8.

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2
R R
N AV|A—o ﬁg AR * AVIA-O ﬁg
Val(ty=null al(A)= e Val(AB)= 0 Val@y=mar | VA I Val(AB)= 0
AD Val(AC)=0 Fap——— Val(AC)=0
AE Val(AD)= 1 e Val(AD)= 1
A Val(AE)= 1 AF Val(AE)= 1
Val(AF)= 0 Val(AF)=0
B BA Val(BA)= 0 = BA Val(BA)= 0
Val(B)= 1 :2 Val(BB)= 1 Val(B)= 1 Eg
Val(BF)= 1 = Val(BF)=1
& gg‘ Val(CA)= 0 e g'é Val(CA)= 0
Val(C)=1 oo ValCB)=1 Val(C)= 1 oo ValCB)=1
cp_ JvalCo=1 co
cF ValCE)=1 Deleting thé oF — ValCE)=1
Val(CF)=1 vertices with L~ Val(CF)= 1
5 o repeated 5 o
-5 Val(DA)= 1 names o5 Val(DA)= 1
Val(D)= 1 == Val(DB)= 1 Val(D)=1 oo Val(DB)= 1
DD— Val(DC)=1 DD— VaI(DC)= 1
DE 20D oE
DF— Val(DE)= 1 DF— Val(DE)= 1
Val(DF)= 1 Val(DF)= 1
E Sa Val(EA)= 1 E Sa Val(EA)= 1
- EB - EB
Val(E)= 0 = Val(EB)= 0 Val(E)=0 e Val(EB)=0
Val(EF)=0 L= Val(EF)=0
3 FA Val(FA)= 0 R e Val(FA)= 0
. FB . FB
Val(F)=0 o ValFB=0 Val(F)=0 e VelFB=0
e Val(FC)=0 e Val(Fo)=0
FF——— ValFE)=0 e ValFE)=0
Val(FF)= 0

Figure 6-8. An mg-tree of CSg after the second Figure 6-9. An mg-tree of CSg without

round of the message-exchanging phase repeated name vertices

76

In the decision-making phase, the vertices with repeated names of mg-tree are deleted by

each consensus-serer. An mg-tree of CSg without repeated name vertices is shown in Figure
6-9. Each consensus-server then uses the VOTE,,;, function on its mg-tree (from leaf to root)
to compute the common value. For example, CSg can obtain the common value ¢ by VOTE,,;,.
VOTE,.»(R) = ((0,0,1,1,0), (0,1,1,1,1), (0,1,1,1,1), (1,1,1,1,1), (1,0,0,0,0), (0,0,0,0,0)) =

(0,1,1,1,0,0) = ¢.

6.5 The Correctness and Complexity of CCP

The goal of CCP is to enable all fault-free consensus-server to reach a common value to solve
the Consensus problem in a combined wired/wireless network. To prove the correctness of our
protocol CCP, a vertex R is called common [4] if each fault-free consensus-server has the
same value for $R. That is, if vertex R is common, then the value stored in vertex R of each

fault-free consensus-server’s mg-tree is identical.

Lemma 6-1: All correct vertices of an mg-tree are common after function VOTEniy is
applied to mg-tree.

Proof: In the decision-making phase, all vertices with repeated names are deleted in an

mg-tree. At level z,,+1 or above, the correct vertex « has at least 2z,+1 children, and
out of which at least z,,+1 children are correct. The true values of these z,+1 correct
vertices are common, and the majority of the vertex value « is common. The correct
vertex « is common in the mg-tree if the level of « is less then z,+1. Consequently, all

correct vertices of the mg-tree are common. W

Lemma 6-2: The common frontier exists in the mg-tree.

Proof: By definition, an mg-tree is a tree of level z,+1. There are z,+1 vertices along each
root-to-leaf path of an mg-tree. Since at most z,, consensus-servers can fail, there is at
least one correct vertex along each root-to-leaf path of the mg-tree. Using Lemma 6-1,

77

the correct vertex is common and the common frontier exists in each fault-free

consensus-server’s mg-tree. W

Lemma 6-3: Let a be a vertex, a is common if there is a common frontier in the sub-tree

rooted at a.

Proof: If the height of « is 0 and the common frontier (« itself) exists, a is common. If the
height of « is y, the children of « are all in common under the induction hypothesis

with the height of the children being y-1. B

Corollary 6-1: The value of root R is common if the common frontier exists in the

mg-tree.

Theorem 6-1: The value of root R of a fault-free consensus-server’s mg-tree is common.

Proof: Using Lemmas 4-1, 4-2, 4-3 and Corollary 6-1, the theorem is proved. B

Theorem 6-2: Protocol CCP solves the Consensus problem in a two-level combined
wired/wireless network.
Proof: To prove this theorem, CCP must meet the constraints (Consensus’) and (Validity”)
(Consensus_Agreement): Root value is common.
By Theorem 6-1, (Consensus_Agreement’) is satisfied.
(Consensus_Validity): VOTE(«) = v for all fault-free consensus-servers, if the initial
value of all consensus-server is v, say v = v;.
Most consensus-servers are fault-free. The value of the correct vertices for all of the
fault-free consensus-servers’ mg-trees is v. Therefore, each correct vertex of the
mg-tree is common (Lemma 6-1), and its true value is v. Using Theorem 6-1, this root

is common. The computed value VOTE(«) = v is stored in the root for all the

78

fault-free consensus-server. Therefore, (Validity’) is satisfied. B

Theorem 6-3: CCP requires z,+1 rounds in the message-exchanging phase to solve the

Consensus problem in a two-level combined wired/wireless network, and z,+1 (z,=L(z,-1)/3)J)

is the minimum number of rounds in the “message-exchanging phase”.

Proof: In the Consensus protocol, we use term “round” to compute the number of messages
exchanged. A round is defined as follows: (1) sending messages to any set of nodes, (2)
receiving messages, and (3) processing the messages locally [19] . The

“message-exchanging phase” is a time consuming phase. Fischer and Lynch [19]

indicated that #+1 (/=L.(n-1)/3) rounds are the minimum number of rounds required to
get enough messages to achieve Consensus. The network architecture of Fischer and
Lynch [19] is a flat architecture, but the network architecture of our system is
two-level architecture. In our protocol, only consensus-servers need to exchange the

messages in the message-exchanging phase, so the number of required rounds of

message-exchange is z,+1 (zm=|_(zn—1)/3j). Thus, CCP requires z,+1 rounds, and this

number 1s the minimum. W

6.6 Conclusion

Three motives are combined in this dissertation on the Consensus problem in combined
wired/wireless network. First, most networks today are combined wired/wireless networks.
Extant Consensus protocols are not applicable to combined wired/wireless networks. Hence,
we proposed the protocol CCP to solve the Consensus problem in combined wired/wireless
network. Second, the limited resources have made the computation ability of mobile
processors often weaker than that of stationary processors. The proposed SRFC provides an

efficient and secure communication channel. Third, the communication overhead of the

79

Consensus protocol is inherently large. We used the hierarchical concept in CCP to reduce the
large amount of communication overheads. For example, if there are 128 processors that fall
into 8 zones, the protocols designed for flat network need 43 (L(n-1)/3] +1) rounds in the

message-exchanging phase to reach a common value. However, CCP only needs 3 (|_(zn—1)/3j

+1) rounds in the message-exchanging phase to reach a common value. Therefore, CCP is

more efficient than the previous protocols when the network is logically divided into
hierarchical architecture. Table 6-1 shows some instances of the number of rounds required
for flat network and two-level network. Smaller number of zone is preferred since the number

of rounds required in the message-exchanging phase is smaller.

That is, we solved the Consensus problem with dual failure mode (both dormant and
malicious fault) on both processors and communication links in the combined wired/wireless
network. CCP requires only z,+1 rounds (minimum number of rounds) in the

message-exchanging phase which is optimal for all fault-free processors managed by

fault-free consensus-servers to reach a common value.

Table 6-1 Some instances of the number of rounds required for various Consensus protocols

The number of rounds required in message-exchanging phase

n=128, z,=32 | n=128, z,=16 | n=128, z,=8
Flat Network 1, Z=L(n- 1)/3J 43 43 43
Two-Level Network | z,+1, z,=(z,-1)/3] 11 6 3

n: the number of processors in the underlying network and n>4.

z,: the number of zones in the underlying network and z,>4.

80

Chapter 7

Fault Diagnosis Agreement

In this chapter, we introduce our approach to solve the FDA problem in a combined
wired/wireless network. The proposed protocol called Adaptive Fault Diagnosis Agreement
Protocol (AFDA). AFDA is an adaptive FDA protocol. AFDA not only can solve the FDA
problem in combined wired/wireless network, but also AFDA can solve the FDA problem in
other networks. For example, if AFDA uses the evidence gathered from the BA protocol
MAHAP, the malicious faulty processors, away processors and return processors can be
detected/located in MANET. If AFDA uses the evidence gathered from the BA protocol SBAP,
the the malicious faulty agreement-servers, away processors and return processors can be

detected/located in combined wired/wireless network.

7.1 Proposed Protocol: “Adaptive Fault Diagnosis Agreement

Protocol” (AFDA)

There are three phases in the AFDA: message-collection phase, fault-diagnosis phase and

re-configuration phase. The message-collection phase is used to collect ic-trees of all

processors/agreement-servers which executing the BA protocol MAHAP/SBAP (depends on
the network). In order to ensure that the fault diagnosis result from each fault-free
processor/agreement-server is the same in MANET/combined wired/wireless network, each
fault-free processor/agreement-server should collect the same evidence. Thus, AFDA collects
ic-trees of all processors/agreement-server by using MAHAP/SBAP (depends on the network).

The fault-diagnosis phase is used to detect/locate away processors, return processors, and

81

malicious faulty processors/agreement-servers. The set of MFN is used to record malicious
faulty processors/agreement-servers, the set of AN is used to record processors which have
ever moved away from the network, and the set of RN is used to record return processors. The

re-configuration phase is used to re-configure the network by isolating malicious faulty

processors/agreement-servers and away processors. The AFDA protocol is shown in Figure

7-1.

7.1.1 Message-Collection Phase

The goal of the message-collection phase is to collect ic-trees of all

processors/agreement-servers which executing the BA protocol MAHAP/SBAP (except
return processors and away processors) as evidence. In order to ensure that the fault diagnosis
result from each fault-free processor/agreement-server is the same, each fault-free
processor/agreement-server should collect the same evidence. Therefore, in the

message-collection phase of AFDA, each processor/agreement-server (except return

processors and away processors) uses MAHAP/SBAP (depends on the network) to distribute
its ic-tree to all processors/agreement-servers. Then processor/agreement-server stores the
other processors’/agreement-servers’ ic-trees to construct the set of 1C-trees =[ic-tree;, ic-tree,,
ic-treey ..., ic-tree;] , where © is the last Processor/agreement-server id in the network by
alphabetical order. By wusing MAHAP/SBAP, we can ensure that fault-free
processor/agreement-server collects the same set of 1C-trees (the common set of 1C-trees).
The detail description about how to collect the common set of 1C-trees is shown in Lemma

7-1-1 and 6-2-1.

7.1.2 Fault-Diagnosis Phase

The goal of the fault-diagnosis phase is to detect/locate away processors, return processors

82

and malicious faulty processors/agreement-servers. Each processor/agreement-server

maintains the set of MFN, AN and RN in the fault-diagnosis phase. The set of MFN is used to

record malicious faulty processors/agreement-servers, the set of AN is used to record
processors which have ever moved away from the network and the set of RN is used to record
return processors. Each processor/agreement-server examines the common set of 1C-trees in a

top-down and level by level sequence by step2 in the fault-diagnosis phase of AFDA.

7.1.2.1 Detect/Locate away processors and return processors

Some of processor has mobility in the network, and away processors can be detected by the
system. If Processor p has ever been an away processor, each processor sets AN = AN U {p},
where p is Processor id. Moreover, return processors can also be detected, so each processor
can also record the return processor in the set of RN. If Processor b is a return processor,

then RN=RN U {b}, where b is Processor id.

7.1.2.2 Detect/Locate malicious faulty processors/agreement-servers

Each fault-free processor/agreement-server examines all vertices (except vertex s...u) in the
IC-trees in a top-down and level by level sequence, where u is Processor/agreement-server id
and Processor/agreement-server u has been detected as an away processor or malicious faulty
processor/agreement-server. If the number of the most common value in vertex s...i is less
than threshold-MANET] threshold-CN, then Processor/agreement-server i is a malicious faulty
processor/agreement-server. Each processor/agreement-server sets MFN = MFN U {i}, where
i is Processor/agreement-server id. The detail description about threshold-MANET and

threshold-CN is shown in Lemma 7-1-3 and Lemma 7-2-3.

83

7.1.3 Re-configuration Phase

In this phase, each processor/agreement-server re-configures the network logically by
isolating processors/agreement-servers in the set of ISOLATION. The set of
ISOLATION=MFNU(AN-RN) is used to record processors/agreement-servers that should be

isolated. Then, each processor/agreement-server sets AN=Null, RN=Null and MFN=Null.

84

ADAPTIVE EAULT DIAGNOSIS AGREEMENT PROTOCOL (AFDA)
Message-Collection Phase:
Stepl:
For MANET:
Each processor (except away processor and return processor) uses MAHAP to
distribute its ic-tree (as the initial value) to all processors.
For combined wired/wireless network:
Each agreement-server (except away processor and return processor) uses SBAP
to distribute its ic-tree (as the initial value) to all agreement-servers.
Step2:
Then each processor/agreement-server (depends on the network) stores the other
processors’/agreement-servers’ ic-trees to construct the set of IC-trees =[ic-tree;,
ic-tree,, ic-tree, ..., ic-tree;|, where @ is the last Processor/agreement-server id in the
network by alphabetical order.
=>Fach fault-free processor/agreement-server constructs the same set of I1C-trees
(the common set of 1C-trees) by using MAHAP/SBAP.

Fault-Diagnosis Phase:

€ Set MFN=Null; the set of MFN is used to record malicious faulty
processors/agreement-servers.

€ Set AN=Null; the set of AN is used to record processors which has ever
moved away.

€ Set RN=Null; the set of RN is used to record return processors.

MFN = MFN v {malicious faulty processors/agreement-servers}.

AN = AN U {away processors}.

RN = RN U {return processors}.

Stepl: Detect/locate away processors and return processors
1.1 If Processor p is an away processor, Then
Set AN = AN U {p}, where p is Processor id.
End if
1.2 If Processor b is a return processor, Then
Set RN=RN U {b}, where b is Processor id.
End if

Figure 7-1. The proposed AFDA protocol (cont’d.)

85

Step2: Detect/locate malicious faulty processors/agreement-server
Parameter threshold-MANET = n-(| AN | +L.(n- | AN | -1)/3)).
Parameter threshold-CN = n-(L(n-1)/3).
Examine all vertices (except vertex s...u) in the 1C-trees by the following rule (in a
top-down and level by level sequence), where i is Processor id and Processor u has
been detected as an away processor or malicious faulty processor/agreement-server.
For MANET:
If the number of the most common value in vertex s...i is less than
threshold-MANET, Then
Processor i'is a malicious faulty processor.
Set MFN = MFN v {i}, where i is Processor id.
End if
For combined wired/wireless network:
If the number of the most common value in vertex s...i is less than
threshold-CN, Then
Agreement-server i is a malicious faulty agreement-server.
Set MFN = MFN v {i}, where i is agreement-server id.
End if
Re-Configuration Phase:
Stepl: Set ISOLATION=MFNU(AN-RN); The set of ISOLATION is used to record
processors/agreement-server which should be isolated.
Step2: According to ISOLATION, each processor/agreement-server can re-configure the

network logically.
Step3: Set AN=Nul, RN=Null and MFN=Null.

Figure 7-1. The proposed AFDA protocol

7.2 An AFDA Execution Example

The evidence-based FDA protocol AFDA is based on the BA protocol MAHAP/SBAP. An
MAHAP execution example is given in chapter 4.3. Hence, we give an example of executing
AFDA with MAHAP. That is, AFDA collects all the processors’ ic-trees as evidence from the

example in chapter 4.3.

86

7.2.1 Message-Collection Phase

Each processor (except away processor and return processor) uses MAHARP to distribute its

ic-tree from the example in chapter 4.3 to all processors in the message-collection phase.
Then, each fault-free processor constructs the same set of I1C-trees =[ic-tree; ic-tree,, ...,

ic-tree;] as shown in Figure 7-2.

7.2.2 Fault-Diagnosis Phase

Each processor can detect and locate Processor b and Processor f that have ever been away
processors, so it sets AN = AN U {b, f}. Because Processor b is also a return processor, each
processor also sets RN=RN U {b}.

Since AFDA examines vertices in a top-down and level by level sequence, so AFDA
examines all values in vertices s of the common set of 1C-trees at first. The values stored in
vertex s of 1C-trees are (0,0,0,0,1,1,1). The number of the most common value “0” stored in
the vertex s is 4, which is less than 5 (9-(2+2)). Each fault-free processor can detect/locate
that Processor s is a malicious faulty processor and set MFN=MFN U {s}. Then, each
fault-free processor examines the vertices sa, sb, sc, sd, se, sf, sg, and sh in level 2. Since
Processor b and Processor f have been detected as away processors, each processor will not
examine the vertices sb and sf. In level 3, each processor can detect/locate Processor that e is a
malicious processor by examining vertex sae. Because, the values stored in vertex sae are
(0,1,0,1,0,1,1), the number of the most common value “1” is 4 which is less than 5 (9-(2+2)).

Each processor sets MFN=MFN U {e}.

7.2.3 Re-configuration Phase

According to AN={b, f}, RN={b} and MFN={s,e}, ISOLATION={s.e} U {b, f}-{b}={s.e.f }.

87

Each processor can isolate the Processor s, Processor e and Processor f to re-configure the
MANET logically as shown in Figure 7-3. Finally, it sets AN=Null, RN=Null and MFN=Null.
Furthermore, due to the fact that the source processor (leader) s is a faulty processor, the

system should elect a new source processor in the MANET [31] .

88

Node s
Level 1 Level 2 Level 3
root
5 sa
Val(s)-0 Val(sa)0 Val(sab)=8"
Val(sac)=0
Val(sad)=0
Val(sae)=0
—— Val(saf)= 60
ﬂ:— Val(sag)=0
LS9 Val(sah)=0
sb e Val(sbay-d"
Val(sb)=0)
: de Val(.vbc):8 ll
‘W Val(sbd)=0
F———— Val(she)=t 0
sbf
! Val(sh)=0"
sbg 6]
Lsbh ai(sbhy-d"
s¢ ”Z Val(sca)=0
Val(sc)=0 sc Val(sch)=0
;ZI Val(sed)=0
———— Val(sce)=1
sef Val(s¢ 6
—g— Val(scg)=0
LS Val(sch)=0
sd ‘Z: Val(sda)=0
Val(sd)=0 —“d Val(sdb)=5"
sde Val(sdc)=0
‘:Z;— Val(sde)=1
ljd— Val(sd]f 60
Ld;’; Val(sdg)=0
L Val(sdh)=0
e s.e: Val(sea)= U
Val(se)=0 [-5¢ Val(se
f"fd— Val(sec)=0
H—— Val(sed)=0
B Vaigee=d"
_g_SC’I Val(seg)=1
Sen Val(seh)=1
of . Z;Z Val(yfa)-6"
Val(sf)=0 sﬂ Val(s/)-0"

Val(s fc):&:

‘Z;j— Val(sfd)y=0

: Val(sfe)=0

Z;;— Val(sfg)zﬁi

L Val(s/h)=0

5 sga —
E—VI - L” Valisgay1 |
al(sg) Val(sgh)=0
%;— Val(sge)=1

% Val(sgd)=1

e Val(sge)=1
B Val(sg-0°

Lsgh vai(sgh)-1

sh sha _
Valshy=1 | shb Val(&ha)ﬁi]‘iﬂ

S e Val(sh:
S-u Val(sh

’:]:e Val(shd)=1

’_ Val(she)=1
";’f Val(shf)-5"

FE8 Val(shg)=1

Level 1

root
s

Node a
Level 2

sa

Level 3

Val(s)=0

Val(sa)=0

sb

Val(sh)=8"

s¢.

she

sbg

Val(sc)=0

sd

sed
sce
|sef
L

Lsch

Val(sd)=0

se.

Val(se)=0

st

seg

Val(g/)-8"

S
Val(sg)=1

sh

:/h

Val(sh)=1

Val(sab)-5"

Val(sac)=0
Val(sad)=0
Val(sae)=1
Val(saf)=0
Val(sag)=0
Val(sah)=0

Va](.vba)ZSl

Val(she)=0"

Val(sbd)=0
Val(sbe)=0

Val(sh)=5"

Val(shg)=0
Val(sbh)=0

Val(sca)=0
Val(sch)=0

Val(sed)=0
Val(sce)=1

Val(sef)=0"

Val(scg)=0
Val(sch)=0

Val(sda)=0
Val(sdb)=0
Val(sdc)=0

Val(sde)=0

Val(sdf)-8"

Val(sdg)=0
Val(sdh)=0

Val(sea)=0
Val(seb)=0
Val(sec)=0
Val(sed)=0

Val(se)-3"

Val(seg)=1
Val(seh)=1

Val(sfa)-8"

Val(sfb)~¢ 6
Val(sfe)= 3!
Val(sfd)-0
Val(sfe)=0

Val(s0)-d)

Val(sfh)=0

Val(sga)=1

Val(sgb)-0"

Val(sge)=1
Val(sgd)=1
Val(sge)=0

Val(sgf)-0"

Val(sgh)=1

Val(sha)=1

Val(shb)=0
Val(she
Val(shd)=1
Val(she)=0

Val(shf)=0"

Val(shg)=1

Node ¢
Level 1 Level 2 Level 3
root
s sa
Val(s)=0 Valsay-0 |sab Val(saby=5"
:_afl Val(sac)=0
;:E Val(sad)=0
———— Val(sae)=0
lsaf Val(sa/)ZSD
S_"f Val(sag)=0
San Val(sah)=0
sb 0 sha Va](.sba)ZSI
Val(sh)=0
::: Val(she)=0"
‘V e Val(shd)=0
———— Val(sbe)=0
“:; Val(shf)-0"
% Val(sbg)=d
L Val(sbh)=0
S¢ SL:: Val(sca)=0
Val(se)=0 L vai(sch)=0
;Z‘l Val(sed)=0
— Val(sce)=1
B Vaisen=5"
«ﬁ’ Val(scg)=0
Lsch Val(sch)=0
sd ‘Z‘; Val(sda)=0
Val(sd)=0 fd‘ Val(sdb)=0
46 Val(sdc)=0
sde
———— Val(sde)=0
B isan=5"
LZ;, Val(sdg)=0
& Val(sdh)=0
se ”Z Val(sea)=0
Val(se)=0 2 o ep)=d
mﬂ'— Val(sec)=0
He Val(sed)=0
B vaigsen=0"
Aj”g Val(seg)=1
seh Val(seh)=1
sf - “';; Val(sfa)-8"
Val(s/)= ‘zf‘ Val(sb)=0
5 Val(s)-8!
‘Yf Val(sfd)-0
e Val(sfe)=1
—“;; Val(sf)= 5
L Valgm)-d'
ig——sig— Val(sga)=1
Valsg=l P2 yien)-8°
i‘% Val(sge)=1
FE Val(sgd)=1
i‘,;; Val(sge)=1
B Val(sgn-8"
Lsgh vai(sghy=1
sh ‘Z; Val(sha)=1
Val(sh)=1 —“] - Val(shb)=0
'z;;— Val(she)=1
o Val(shd)-1
% Val(shey=1
———— Val(sh)=0
Lshe Val(she)1

Level 1

root
s

Node d
Level 2

sa

Level 3

Val(s)=0

Figure 7-2. The common set of the 1C-trees by each fault-free processor (cont’d.)

89

Val(sa)=0

sb

Val(sh)=8"

s¢

Val(sc)=0

sd

sed
sce
lsef
4"_

Lsch

sda

Val(sd)=0

se

sdb
sde

sde.
sdf

sdg
sdh

sea

Val(se)=0

sf

seb
sec.

sed

sef
seg

sfa

Val(s/)-5"

(I —
Val(sg)=1

sh

sfb
sfe
sfd
sfe

sth

sga
sgb
sge
sgd
sge
sgf-

sha

Val(sh)=1

shb
she
shd
she
shf
shg

Val(saby=d"
Val(sac)=0
Val(sad)=0
Val(sae)=1
Val(saf)=0
Val(sag)=0
Val(sah)=0

Va](.vba)zal

Val(she)=d"
Val(shd)-0"
Val(sbe)=0
Val(shf)=0
Val(shg)=0
Val(sbh)=0

Val(sca)=0
Val(sch)=0

Val(sed)=0
Val(sce)=0
Val(scf)= 80
Val(scg)=0
Val(sch)=0

Val(sda)=0
Val(sdb)=0
Val(sdc)=0

Val(sde)=0
Val(sdf)-0"
Val(sdg)=0
Val(sdh)=0

Val(sea)=0
Val(seb)=0
Val(sec)=0
Val(sed)=0

Val(se/):50
Val(seg)=1
Val(seh)=1

Val(sfay-8"
Val(sfb)= 60
Val(sf)= 6
Val(yfid)-5'
Val(sfe)=1

Val(sfg)= 6
Val(sfh)= 3!

Val(sga)=1
Val(sgh)-0"
Val(sge)=1
Val(sgd)=1
Val(sge)=1
Val(sgf)-0"

Val(sgh)=1

Val(sha)=1
Val(shb)=0
Val(she)=1
Val(shd)=1
Val(she)=1
Val(shf)-8"
Val(shg)=1

Level |

root
s

Node e
Level 2

sa

Level 3

Val(s)=1

Val(sa)=0

sb

sab
sac
sad
sae
saf
sag
sah

sha

Val(sb)-5"

sc.

she
shd
she
sbf
shg
sbh

Val(sc)=0

sd

sch

sed
sce
scf
seg
sch

sda

Val(sd)=0

se.

sdb

Val(se)=0

sf

Val(s/)-5"

sg

Val(sg)=1

sh

Val(sh)=1

sgb

she
shd
she
shf
shg

Val(sab)y=d"
Val(sac)=0
Val(sad)=0
Val(sae)=0
Va](:a/):§
Val(sag)=0
Val(sah)=0

Val(sba)-5"

Val(sbe)-8"
Val(shd)=d"
Val(sbe)=0
Val(sbf)=0
Val(sbg)=0
Val(sbli)-d

Val(sca)=0
Val(sch)=0

Val(scd)=0
Val(sce)=1
Val(sc)=0"
Val(scg)=0
Val(sch)=0

Val(sda)=0
Val(sdb)=0
Val(sde)=0

Val(sde)=0
Val(sdf)-d"
Val(sdg)=0
Val(sdh)=0

Val(sea)=0
Val(seb)-0"
Val(sec)=0
Val(sed)=0

Val(se)=8"
Val(seg)=1
Val(seh)=1

Val(sfa)=0'
Val(sfb)-0"
Val(se)-'
Val(sfid)-9"
Val(sfe)=0

Val(2)-8)
Val(sfh)=-8

Val(sga)=1
Val(s, gb)fﬁ
Val(sge)=1
Val(sgd)=1
Val(sge)=1
Va](sgf):50

Val(sgh)=1

Val(sha)=1
Val(shb)=0
Val(she)=1
Val(shd)=1
Val(she)=1
Val(shf)=0
Val(shg)=1

Node g
Level 1 Level 2 Level 3
root
5 sa
Val(s)=1 Val(sa)=0 [-sab Val(sab)=0"
j:; Val(sac)=0
Val(sad)=0
% Val(sae)=1
a— Va[(.mf):a0
ﬂ;':_ Val(sag)=0
sal Val(sah)=0
sb R Val(sba)-5"
Val(sh)=0 .
R Va](:bc):6ll
The Val(sbd)=0
jb; Val(she)=0
T Val(shf)=0 .
#Z— Val(sbg)-0
Val(sbh)=0
sc SCZ Val(sca)=0
Val(sc)=0 |5 Val(sch)=0
;ZZ Val(sed)=0
o Val(sce)=0,
Val(scf)=0
ﬁf,_ Val(scg)=0
&8 Val(sch)=0
sd -YZ‘; Val(sda)=0
Val(sd)=0 :d Val(sdb)=
5.4 Val(sdc)=0
sde
———— Val(sde)=0
—LZ Val(sd)=5"
% Val(sdg)=0
5 Val(sdh)=0
se, se¢b1 Val(sea)=0
Val(sy=l |5 Val(seh)=5"
jz; Val(sec)=0
Val(sed)=0
AR
“ﬁ Val(seg)=1
i Val(seh)=1
s sfa !
Val(sfay-0
0
Val(sf)=0 Ly Val(.\/b)’ao
I/ — Val(sfe) :ﬁl
i (sfCy
e Val(sfd)=0
FE val(sfe)=0
/S Val(sfg):ﬁ:
9 Val(sfh)=0
S8 Sg;— Val(sga)=1
Valisg=l 22 yoian)-8°
WZ Val(sge)=1
ng Val(sgd)=1
Val(sge)=1
sg Val(sgf)-0"
sgh Val(sgh)=1
Lsh S:Z Val(sha)=1
Val(sh)=1 Sh Val(shb)=0
fh; Val(she)=1
“’ Val(shd)=1
z}:; Val(she)=1
m Val(sh)=0
18 Val(shg)=1

Node £

Level 1 Level 2 Level 3
root
5 sa
Val(s)-1 Val(say=0 |-sab Val(sab)=8"
jZ; Val(sac)=0
Val(sad)=0
% Val(sae)=1
— Val(sq/)zao
ﬂi_ Val(sag)=0
L Val(sahy0
sb e Val(sha)-8"
Val(sbh)=0 N
R Val(sbc):ﬁ'l
Py Val(sbd)=0
jbz— Val(she)=0
7,; Val(sbf)=0
ﬁ«;— Val(sbg)=0
Val(sbh)=0
s¢ “Z Val(sca)=0
Val(se)=0 |5 Val(sch)=0
;Z: Val(scd)=0
o Val(sce)=0
E 0
s Val(sch)=0
sd "'52 Val(sda)=0
Val(sd)=0 :d Val(sdb)=0
e Val(sde)=0
sde
——— Val(sde)=0
df
P valsap-3"
s-di Val(sdg)=0
s Val(sdh)=0
s Sed Val(sea)=0
Val(sey=1 - [5¢ Val(seb)=8"
zz; Val(sec)=0
Val(sed)=0
B valgsen-5°
:e’f Val(seg)=1
se Val(seh)=1
s . sfa Val(sfa)ZS:]
Val(s/)=0 - vm(.s/b)*ﬁl
—‘Sfd— Va[(sfc):6|
e Val(sfd)=0
P Val(sfe)=0
-ﬁ— Val(sf2)-9,
Val(sfh)=0
58 S”"Z Val(sga)=1
Val(sg=l - 82 yi60n)-0
WZ Val(sge)=1
FEC—— Val(sgd)-1
zﬁ; Val(sge)=1 o
Val(sg/)=0
sgh Val(sgh)-1
sh 5:: Val(shay=1
Val(sh)=1 Sh Val(shb)=0
fh: Val(she)=1
“’ Val(shd)=1
zh’; Val(she)=1
m Val(shf)=0
18 Val(shg)=1

Figure 7-2. The common set of the 1C-trees by each fault-free processor

90

\ ‘ Processor

Processorc ./ X

Processor b Q/ .7
\

I rocessord
Iy, Processor h
Q/ J—

Processor a-

Figure 7-3. An example of MANET after re-configuration

7.3 The Correctness of AFDA

7.3.1 AFDA with MAHAP in Wireless Network

Lemma 7-1-1: Each fault-free processor receives the same common set of IC-trees as

evidence in the_message-collection phase by using AFDA and MAHAP.

Proof: The proposed BA protocol MAHAP satisfies the following requirements in the
MANET:

(BA_Agreement): All fault-free processors agree on a common value;
(BA_Validity): If the source (commander) processor is fault-free, then all
fault-free processors agree on the initial value that the source

Pprocessor sends.

After executing the BA protocol MAHAP, each fault-free processor reaches the
same agreement value whether the source processor is fault-free or not. That is, if the
source processor is fault-free, all fault-free processors in the network must reach a
common agreement value which is the initial value of the source processor. If the
source processor is a faulty processor, all fault-free processor also reach a common
agreement value.

In order to let each fault-free processor collect the same set of IC-trees in the

MANET, each processor distributes its ic-tree to all the other processors by using

91

MAHAP. Finally, each fault-free processor can receive the same set of
IC-trees=[ic-tree,, ic-tree,, ic-tree; ..., ic-tree;], where @ is the last Processor id in the

MANET by BA Agreement and BA_Validity. ®

Lemma 7-1-2: Each fault-free processor can detect/locate the same faulty processors by

using AFDA and MAHAP.

Proof: Each fault-free processor receives the same evidence by Lemma 7-1-1 and uses the
same FDA protocol AFDA, so each fault-free processor will surely detect/locate the

same faulty processors. H

Theorem 7-1-1: Protocol AFDA with MAHAP satisfies the agreement of FDA.
Proof: By Lemma 7-1-1 and Lemma 7-1-2, AFDA can identify the common set of faulty

processors. H

Lemma 7-1-3: The malicious faulty processors can be detected and located in MANET if

n>3pm+pa.

Proof: According to the constraint on the number of processors in an MANET is #>3p,,tp,.
there are at most p, away processors and p,, malicious processors in an MANET. So,
Pa (D= |AN |) away processors cannot transmit message and p,, malicious processors
can produce at most p, values at the same vertex in the 1C-trees different from the
most common value. That is, if the sender Processor i is fault-free, there are at least
n-(| AN | +L(n-| AN| -1)/3J) values at the vertex s...i in the IC-trees are the same.

Otherwise, the Processor i'is a malicious faulty processor.

Lemma 7-1-4: The maximum number of detectable/locatable faulty processors and away
processors by AFDA in MANET is p, malicious faulty processors and p, away processors,
N>3pm+Pa.

Proof: Due to the constraint on the number of processors in an MANET is n>3p,tp, there are

at most p,, malicious processors and p, away processors in an MANET. &

Theorem 7-1-2: Protocol AFDA with MAHAP satisfies the fairness requirement of FDA.
Proof: By Lemma 7-1-3, no fault-free processor is falsely detected as faulty by any fault-free
processors if n>3p,tp,. B

92

Theorem 7-1-3: Protocol AFDA with MAHAP solves the FDA problem in an MANET if
N>3pm+Pa.

Proof: By Theorem 7-1-1 and Theorem 7-1-2, this theorem is proved. W

7.3.2 AFDA with SBAP in Combined Wired/Wireless Network

Lemma 7-2-1: Each fault-free agreement-server receives the same common set of

IC-trees as evidence in the_message-collection phase by AFDA and SBAP.

Proof: The proposed BA protocol SBAP satisfies the following requirements in the combined

wired/wireless network:

(BA_Agreement): All fault-free processors managed by fault-free agreement-server
agree on a common value;

(BA_Validity): If the source (commander) agreement-server is fault-free, the
agreement value should be the initial value of the source

agreement-server.

After executing the BA protocol SBAP, all fault-free processors managed by
fault-free agreement-server agree on a common value whether the source
agreement-server is fault-free or not. That is, if the source agreement-server is
fault-free, all fault-free processors managed by fault-free agreement-server in the
network must reach a common agreement value which is the initial value of the source
agreement-server. If the source agreement-server is a faulty processor, all fault-free
processors managed by fault-free agreement-server also reach a common agreement
value.

In order to let each fault-free processor managed by fault-free agreement server
collect the same set of IC-trees in the combined wired/wireless network, each
agreement-server distributes its ic-tree to all the other agreement-server by using
SBAP. Finally, each fault-free agreement-server can receive the same set of
IC-trees=[ic-tree, ic-tree,, ic-treey ..., ic-tree;], where @ is the last agreement-server id

in the combined wired/wireless network by BA Agreement and BA Validity. ®

93

Lemma 7-2-2: Each fault-free agreement-server can detect/locate the same faulty

agreement-server by using AFDA and SBAP.

Proof: Each fault-free agreement-server receives the same evidence by Lemma 7-2-1 and
uses the same FDA protocol AFDA, so each fault-free agreement-server will surely

detect/locate the same faulty agreement-servers. W

Theorem 7-2-1: Protocol AFDA with SBAP satisfies the agreement of FDA.
Proof: By Lemma 7-2-1 and Lemma 7-2-2, AFDA can identify the common set of faulty

agreement-servers.

Lemma 7-2-3: The malicious faulty agreement-servers can be detected and located in

combined wired/wireless network if z,>3zp,

Proof: According to the constraint on the number of agreement-server in a combined
wired/wireless network is z,>3z,, there are at most z, malicious agreement-servers in a
combined wired/wireless network. So, z,, malicious processors can produce at most z,
values at the same vertex in the 1C-trees different from the most common value. That
is, if the sender agreement-server i is fault-free, there are at least n-(L(n-1)/3J) values
at the vertex s...i in the IC-trees are the same. Otherwise, the agreement-server i is a

malicious faulty agreement-server.

Lemma 7-2-4: The maximum number of detectable/locatable malicious faulty

agreement-servers by AFDA in combined wired/wireless network is z, malicious faulty

agreement servers, zn>3Zn.

Proof: Due to the constraint on the number of agreement-servers in a combined
wired/wireless network is z,>3z,, there are at most z,, malicious agreement-servers in a

combined wired/wireless network.

Theorem 7-2-2: Protocol AFDA with SBAP satisfies the fairness requirement of FDA.
Proof: By Lemma 7-2-3, no fault-free agreement-server is falsely detected as faulty by any

fault-free agreement-server if z,>3z,. R

Theorem 7-2-3: Protocol AFDA with SBAP solves the FDA problem in a combined

wired/wireless network if z,>3z.

94

Proof: By Theorem 7-2-1 and Theorem 7-2-2, this theorem is proved. W

7.4 Conclusion

In order to provide a highly reliable computing environment for combined wired/wireless
network, we need to solve the FDA problems in combined wired/wireless network. In
previous result, FDA problems were considered for a static network. Therefore, in this study,
we revisited the FDA problems in the combined wired/wireless network. AFDA is an adaptive
FDA protocol. AFDA not only can solve the FDA problem in combined wired/wireless
network, but also AFDA can solve the FDA problem in other networks. The proposed
evidence-based FDA protocol AFDA with MAHAP can detect/locate at most p,, malicious
faulty processors in an MANET. AFDA with SBAP can detect/locate at most z,, malicious
faulty agreement-servers in a combined wired/wireless network.

After reaching the common agreement and fault diagnosis, we can re-configure the
network and eliminate the faulty processors to enhance the performance and strengthen the
integrity of the network. This is of special importance for high reliability applications such as

a life-critical distributed system.

95

Chapter 8
Consensus Problem under Peer-to-Peer

Environment: An Application to File-Sharing

In nowadays, Peer-to-Peer networks (P2P) have been more and more popular. Many P2P
networks are overlay networks because they run on top of the combined wired/wireless
network. We know that the most popular application in Peer-to-Peer (P2P) system is
file-sharing. However, malicious attackers may modify files arbitrarily and spread
inconsistent files to other processors in the P2P network; inconsistent files will not only
spread in P2P networks but also waste resources, such as bandwidth, space of storage and
transmission time. Hence, how to make fault-free processors ensure that the files they hold are
correct is an import topic. So far, no previous study has attempted to solve the Consensus
problem of file-sharing with malicious processors in P2P networks.

In this chapter, we give an application of Consensus protocol. We proposed a novel
hybrid approach to solve the Consensus problem of file-sharing in P2P systems. Moreover, a
P2P network is composed of heterogeneous processors, and the ability of each processor may
vary with its computation capability (CPU), bandwidth, space of storage and etc. To provide
better quality of service (QoS), we should group processors by their abilities to reduce waiting
time. In this study, the clustering algorithm is employed to cluster the large sets of processors
into groups of smaller sets of similar processors. That is, we propose a novel hybrid approach
that clusters similar processors into the same group to provide better QoS and solve the

Consensus problem of file-sharing with malicious processors in P2P networks.

96

8.1 Introduction

This section introduces the classification of peer-to-peer file-sharing systems and the

clustering algorithm.

8.1.1 The Classification of Peer-to-Peer File-Sharing Systems

Peer-to-Peer (P2P) systems have been developed for a long time and become more and more
popular in the area of file-sharing [2] [11] [17] [34] [20] [29] [35] [42] [49] [54] . P2P
file-sharing systems can be classified into two categories, centralized P2P file-sharing and
distributed P2P file-sharing. An example of centralized P2P file-sharing system is Napster [34]
which was first introduced in January 1999 by Shawn Fanning for MP3 files sharing and later
unplugged in July 2001. In a centralized system, each client can look up files through
centralized servers effectively. However, the centralized P2P file-sharing system has the
problem of “single point of failure”. Contrary to centralized P2P file-sharing, distributed P2P
file-sharing systems do not have this problem. The distributed P2P file-sharing systems can be
subdivided into structured and unstructured systems.

In the unstructured P2P file-sharing system, such as Gnutella [20] , each node incurs a
reasonable overhead to build overlay links arbitrarily. Lookup service in the Gnutella is
performed using query flooding. However, using query flooding in an unstructured P2P
file-sharing system may not accurately locate the file that is really in the system. Because the
network is unstructured and query packet is forwarded to the system until its Time-To-Live
(TTL) becomes zero.

In a structured P2P file-sharing system, both overlay topology and file placement are
tightly controlled. The most common structured P2P file-sharing system is Distributed Hash
Table (DHT) system [29] [35] [42] [49] [53] [54] . Distributed hash tables are a class of

97

distributed systems that provide lookup services similar to a hash table: (name, value) pairs
are stored in the DHT. Any participating processor can efficiently retrieve the value associated
with a given name [18] . The structured DHT P2P file-sharing system can also be further
classified into two categories: variable-degree DHT system (e.g., CAN [42] and Chord [54])
and constant-degree DHT system (e.g., de-Bruijn [29] [53]). A constant-degree DHT
system, such as de-Bruijn, has a constant-sized routing table and achieves a log-arithmetic
routing hops. Moreover, de-Bruijn graphs are nearly optimal [29] . A detailed description of
de-Bruijn will be provided in chapter 8.2.3. In this study, we adopt the de-Bruijn graph as
overlay network in our P2P system. The classification of P2P file-sharing systems is shown in

Figure 8-1.

Peer-to-Peer File-Sharing

Systems
|
I I
Centralized .
(e Nipsi0) Distributed
|
I I
Unstructured
Structured
ructre (e.g., Gnutella)
|
I I
Variable-degree DHT Constant-degree DHT
(e.g., CAN, Chord) (e.g., de-Bruijn)

Figure 8-1. Classification of P2P file-sharing systems

8.1.2 Clustering Algorithm

P2P network is composed of a large number of heterogeneous processors. The ability of each
processor in P2P network may vary with several factors, including computation capability
(CPU), bandwidth, space of storage, and etc [43] . However, putting varied processors in the
same group may reduce system performance. Higher-performance processors may spend a lot

of time waiting for lower-performance processors. In order to provide better Quality of

98

Service (QoS), we should put processors with similar abilities into the same group to reduce
the waiting time. Through grouping, processors within the same group are more similar to
each other than those in other groups [69] . Hence, we introduce the clustering algorithm,
k-means algorithm [26] , to find natural groups of data (processors) based on computation
capability, bandwidth, and space of storage. A detailed description of k-means algorithm is

provided in chapter 8.2.1.

8.2 System Model and Approach

In this section, we introduce our approach to solve the Consensus problem of file-sharing with

malicious processors in P2P systems. Figure 8-2. shows the flow chart of our approach.

Un-Clustering Processors K-means Algorithm Clusters of Processors
- lustering algorith
(raw data) (clustering algorithm) (clusters of data)
SHA-1 Function de-Bruijn graph Consensus Protocol for P2P network cp,,,
(consistent hash function) (P2P network) (consensus protocol)

v

Consistent File Information
(file information)

Figure 8-2. The flow chart of the proposed approach

8.2.1 Clustering Algorithm: K-means Algorithm

The most important factors to consider when evaluating the ability of a processor are
computation capability, bandwidth, and space of storage [43] . In order to enhance system
efficiency, we should cluster processors with similar abilities into the same group based on
computation capability, bandwidth, and space of storage to reduce the waiting time. The
k-means algorithm is the simplest and most popular clustering algorithm [26] . Hence, we

adopt k-means algorithm as our clustering algorithm in our approach.

99

The k-means algorithm is performed in the following procedure: Suppose there are n;
un-clustered processors described by the attribute vectors S={x;, x,"**, x,, }. We want to
partition these n, processors in to k clusters, where k< n,, S =S;US,0L...US;. Let ¢; be the mean
of the vectors in cluster i (S;). First of all, select £ number of points to be the centers of
clusters arbitrarily, C={c,, c2,***, ¢}, and then find the Euclidean distance from each point to
each center, and assign the point to the closest center. Next, for each set of points assigned to
a center, find the middle of the cluster, take that value as the new center, and repeat the

process until all the centers are fixed. The k-means algorithm is shown in Figure 8-3.

® 5, the total number of un-clustered processors.

® [the number of clusters, A< n,.

® S: the set of instances, S={x;, x2,"**, X»}, |[S|= n, S =S;US>0U...US;.
® (: the set of centers in each cluster, C={c;, c2,"*, ci}.

® S(?): the set S; in the #-th iteration.

® N: the number of processors in the set Si(7).

® ¢(?): the center of S; in the #-th iteration.

® |x,-c;i(?)||: the Euclidean distance between x,, and c;.

® Random_Select(k,S): select k processors from the set S randomly, C={c,, c2,***, ck};

100

Input:
Number of clusters, £;
The set of instances, S={x;, x2,***, xnt};

/* Initialization */

C =Random_Select(,S); /* C={cy, c2,"*+, cr} */
/* Partition */
Repeat
%, €St if |x, — ¢, <[x, O m = Loz, j = ki #
N =[s,0);
c(t+l)=— Dx,j=1.k;
j xeS (1)
Until c;(t+1)=c;(?)
Output:
Set 1,5, Si;

Figure 8-3. The k-means algorithm

8.2.2 Consistent Hash Function: SHA-1 Function

After clustering, we use SHA-1 function [18] to assign each processor and key to the
corresponding processor in the de-Bruijn network, A detailed description of de-Bruijn
network will be provided in chapter 8.2.3. The SHA-1 function is a consistent hash function
that assigns each processor and key an m-bit identifier. A processor’s identifier is defined by
hashing the processor’s IP address, while a key identifier is produced by hashing the key.

B Processor’s ID = SHA-1 (IP address)

B Key’s ID = SHA-1 (object’s key/name)

8.2.3 Overlay Network: de-Bruijn Graph

The performance of P2P network is determined by the properties of diameter and degree of
graph. Since non-trivial Moore graphs are non-existent [7] , Loguinov et al. [29] indicated that
de-Bruijn graphs of diameter |—logkn—| are nearly optimal and feature very short average routing
distances and high resilience to processor failure. Hence, we adopt de-Bruijn graph as overlay

101

network in our system model.

The de-Bruijn graph is denoted by DB(4,d), where #>2 is the node degree and d is the
dimension of the graph. The de-Bruijn graph has n=h" processors and processor is encoded by
a h-ary string of d digits from the digit set {0, 1, 2, ..., h-1}. The DB graphs are directed
graphs with 4 incoming edges and /4 outgoing edges. An example of de-Bruijn graph of degree
2 and dimension 3 is shown in Figure 8-4.

Shortest path routing in de-Bruijn graphs is easy to implement by the string-matching
algorithm [29] . Assume that processor x wants to seek a shortest path to processor y. Then
processor x finds the longest overlap between the suffix of its id and prefix of y’s id as shown
in Figure 8-5. For example, processor 000 wants to find the shortest path to processor 011.
According to the string-matching algorithm in Figure 8-5, the prefix A is 00, overlap B is 0,
and suffix C is 11. Hence, the routing path P is 00011, and the shortest routing path is

000=>001=>011.

X

Malicious Fault

O

Processor

Figure 8-4. An example of DB(2,3) de-Bruijn network

102

<+——prefix A—

" r ooe

zl XY} zD-i XY} zD

|
| |
|
: ri+1 XYY} rD | :HX
| |
| |
| |
| I

j«—overlap B——>t+—suffix C—
| |

Routing Path P:

p: rl r2 YY) ri+1 YY) rD YY) zD

<+——prefix 4 > overlap B——»<—suffix C—»

Figure 8-5. The shortest path from H, to H,

8.2.4 Consensus Protocol: Consensus Protocol for P2P Network (CP,,)

Previous studies on P2P fault tolerance mostly dealt with random attacks [2] [17] [29] [49] ,
by which each peer suffers a fault independently. However, these solutions cannot handle
processor collusions effectively. In order to get the consistent file information from fault-free
processors, we propose the “Consensus Protocol for P2P Network™ (CP,,,) to solve the
Consensus problem under malicious attacks from processor collusion in the de-Bruijn P2P
file-sharing system.

The goal of CP,;, is to get the consistent file information from fault-free processors. The
file information contains length, name, size, and etc [11] . There are two phases in the

protocol CP,,: message-exchanging phase and decision-making phase. In the

message-exchanging phase, we use the term “round” to compute the number of messages

exchanged. A round is defined as follows: (i) Sends messages to other processors (ii) Receives
messages from this round (ii1) Does local processing [19] [60] [70] Fischer and Lynch [19]
indicated that 7+1 (t=|_(n-1)/3j) rounds are the minimum number of rounds required to get
enough messages to achieve agreement if and only if the maximum number of malicious
processors is smaller than 1/3 of the total number of processors, where # is the total number of

processors in the network. The number of rounds required in protocol CP,;, is also #+1, which

103

is the minimum. The decision-making phase is used to compute the Consensus value. The

procedure of removing influence from malicious processors (including malicious intermediate

processors and malicious sender processors) by CP,,,, is shown in Figure 8-6.

. : The messages under the influence from malicious faulty sender processor and
malicious faulty intermediate processors

: The messages under the influence from malicious faulty sender processor

@ : The messages without influence from any faulty processor

Round (#1)* Round (¢+1)°

. Round 2* Round 2"
Round 1* Round 1

I

Message Exchanging Phase ‘ Decision Making Phase
(The Consensus protocol CP,;,)

Figure 8-6. The procedure of removing influence from maliciously colliding processors

CP,;, combines the following approaches to solve the Consensus problem with

maliciously colliding processors in de_Bruijn P2P file-sharing system.

B Secure Communication Channel: we combine the symmetric cryptographic and
asymmetric cryptographic algorithms to take the advantages of both algorithms. There

are two phases in the secure communication channel, including the channel-creating

phase and the message-transmission phase. In the channel-creating phase, the session

key is generated using the Diffie-Hellman key exchange [16] (asymmetric cryptographic
algorithm) and the symmetric key is generated using the Advanced Encryption Standard
(AES) algorithm [14] (symmetric cryptographic algorithm). The goal of session key is
used to distribute the symmetric key to the receiver securely. In the

message-transmission phase, we use a symmetric key to encrypt and decrypt the

104

messages to reduce the computation time.

At the beginning of the i-th round of message exchange, say Round i*, each sender
uses symmetric key to send its messages to all other processors in the network. Hence,
each receiver collects all of the senders’ messages without being influenced from
malicious intermediate processors when symmetric key is applied, say Round i, as

shown in Figure 8-6.

B The Voting Function — VOTEny: After #+1 rounds of message exchange, each
fault-free processor can receive enough messages to remove the influence from

malicious sender processor using the VOTE,,; function in the decision-making phase.

The VOTE,,, function is shown in Figure 8-7.

(Begin
If o 1s a leaf Then
output the value of a
VOTE, o @) =< If the majority value is m, m € {0,1}
& output the majority value m
If the majority value does not exist
output the default value ¢
_ End

Figure 8-7. The VOTE,,; Function

CP,2, combines secure communication channel and the VOTE,,, function to solve the
Consensus problem in de-Bruijn overlay P2P file-sharing system. The procedure can be
presented with the following primitives:

® SMA(D): search the shortest path to processor P by the string-matching algorithm.

® SVC Send(m,b): send message m to processor P using the symmetric key from

protocol SVC.

® SVC Receive(m,P): receive message m from processor P using the symmetric key

105

from protocol SVC.

® C(Create Vertex(abP): create vertex ab in the mg-tree, where a is the vertex name (a
sequence of processor id) of mg-tree in level i-1, |aP|=i, 2<|ab|<t+1.

® val(ab): the value of vertex aP in the mg-tree.

® Store Vertex(m,oP): store the message m from processor P in the vertex aP and set
val(ab)=m.

® Get Vertex(m, i): get the message m from level i of the mg-tree.

® Decl Repeated(mg-tree): delete vertices with repeated name in the mg-tree.

Using the above primitives, the formal procedure of CP,;, is shown in Figure 8-8.

/* Initialization */ /* round i, 2<i<t+1 */
Create Vertex(R); for PeN do
/* Message-Exchanging Phase */ Get_Vertex(m, i-1);
/* the first round */ SVC Send(m,b);
for PeN do end
SMA(D); for PeN do
SVC_Send(m,P); SVC Receive(m,b);
end Create Vertex(ab);
for PeN do Store Vertex(m, ab);
SVC Receive(m,P); end
Create_Vertex(P); /* Decision-Making Phase */
Store Vertex(m,P); Del Repeated(mg-tree);
end Output(VOTE,¢(R));

Figure 8-8. The Consensus Protocol for P2P network (CP,;,)

After each processor using CP,;, to send its file information to all other processors, each
fault-free processor can get the consistent file information if and only if the maximum number
of malicious processors is smaller than 1/3 of the total number of processors in de-Bruijn

overlay P2P file-sharing system.

106

8.3 An CP,,, Execution Example

In this section, we use an example to demonstrate our proposed approaches.

8.3.1 Clustering

As mentioned above, the most important factors considered in evaluating the ability of a
processor are computation capability, bandwidth, and space of storage. To simulate the
heterogeneity of processors in a P2P file-sharing system, the computation capability,
bandwidth, and space of storage of each processor were generated at random. Figure 8-9(a)
shows an example of 30 processors generated at random. Then, the k-means algorithm, as
shown in Figure 8-3, is applied to group the 30 processors into three clusters. The result of the

three clusters is shown in Figure 8-9(b).
8.3.2 Mapping the Processors in Cluster to de-Bruijn Overlay Network

We use the cluster 1 as our example to show how the consistent file information is
obtained. First, we map the processors in the cluster 1 to the corresponding processors in
de-Bruijn overlay network. Since there are eight processors in the cluster 1, we need to
produce a de-Bruijn network with at least eight processors (DB(2,3)). Later, the hash function
SHA-1 is used to map the processors in cluster 1 to the corresponding processors in DB(2,3)
de-Bruijn network as shown in Figure 8-4. For simplify our descriptions, we use A to
represent processor 000, B to represent processor 001, and so on. There are two malicious
processors in the DB(2,3) de-Bruijn network; they are processor B and processor G. Hence,
processor B and processor G may work in coordination to prevent other fault-free processors
from getting the consistent file information and spread the inconsistent files to other fault-free
processors.

107

8.3.3 Getting the Consistent File Information

To prevent the distribution of inconsistent files, each processor executes the protocol
CP,,, to get the file information from other processors. Since | n-1/3] processors at most may
be faulty, each fault-free processor can get the correct and consistent file information. The

initial value of each processor is shown in Table 8-1.

Table 8-1 The initial value of each processor

Processor 1D A B C D E F G
Initial value 1 1 0 0 0 0 1 0

In the beginning of the protocol CP,;,, each processor creates an mg-tree with the vertex

‘R in the level 0.

B Message-Exchanging Phase

In the message-exchanging phase, the number of rounds required y must be computed

first, where y=t+1=3, and ¢ = |_(n-1)/3J. In our example, there are eight processors in the
DB(2,3) de-Bruijn network as shown in Figure 8-4. Hence, the number of rounds required y is
3 (3=L(8-1)/3J+1=3).

In the first round of message-exchanging phase, each processor transmits its initial value

to all other processors by protocol SVC. Then each processor stores the messages from other
processors in the level 1 of its mg-tree. Figure 8-9(c) shows the mg-trees of each processor

after the first round of message-exchanging phase. Since processor B and processor G are

malicious processors, they may transmit values arbitrarily.

In the second round of message-exchanging phase, each processor transmits the

messages received in the level 1 of its mg-tree to other processors and receives other

108

processors’ messages in the level 2 of its mg-tree. An example of processor A’s mg-tree after

the second round of message-exchanging phase is shown in Figure 8-9(d).

In the third round of message-exchanging phase, each processor transmits the messages

received in the level 2 of its mg-tree to other processors and receives other processors’
messages in the level 3 of its mg-tree. An example of processor A’s mg-tree after the third

round of message-exchanging phase is shown in Figure 8-9(e).

B Decision-Making Phase

In the decision-making phase, each processor deletes vertices with repeated names of

mg-tree to avoid the repeated influence from malicious processors. An example of processor
A’s mg-tree without repeated name vertices is shown in Figure 8-9(f).

After deleting the vertices with repeated names, each processor uses the VOTE,,
function on its mg-tree from leaf to root to compute the Consensus value.
VOTE,x(R)=VOTE, o(VOTE,4(A), VOTE,B), VOTE,C), VOTE,,D), VOTE,,E),
VOTE,4(F), VOTE,,x(G), VOTE,(H)). For example, processor A computes VOTE,,;(R)=
VOTE,,(1,1,0,0,0,0,1,0) = 0, where VOTE,,(A)= VOTE,,(1,1,1,1,1,0,1), VOTE,,x(B)=
VOTE,,(1,1,0,1,0,1,0) and so on.

Each processor can find out the inconsistent file by correct file information obtained
using protocol CP,;,. Then the fault-free processors know which files they hold are correct

and which or not, and they will not share inconsistent files to other processors.

109

Processor Parameters (Cluster 1)

1D Computation Bandwidth Space of
capability Storage
01 8 10 9
06 6 9 7
Processor Parameters 07 8 9 4
16 8 6 10
1D Computation Bandwidth Space of 19 7 9 7
capability Storage 20 7 9 S
01 8 10 9 Y G 7 3
02 7 > 3 29 10 8 9
03 7 6 5
04 4 9 3
05 7 5 5
06 6 9 7 Processor Parameters (Cluster2)
07 8 9 9 ID Computation Bandwidth Space of
08 1 S 3 capability Storage
09 1 2 1 02 7 5 3
10 3 9 5 03 7 6 5
11 6 6 4 04 4 9 3
12 2 1 1 05 7 5 5
13 6 4 2 10 3 9 5
14 1 2 1 11 6 6 4
15 2 7 5 13 6 4 2
16 8 6 10 15 2 7 5
17 5 3 7 17 5 3 7
18 5 4 3 18 5 4 3
19 7 9 7 21 4 3 4
20 7 9 8 22 3 7 6
21 4 3 4 23 7 4 2
22 3 7 6 26 6 5 4
23 7 4 2 28 6 4 7
24 6 7 8 30 3 10 2
25 2 7 1
26 6 5 4
27 3 3 1
o8 G 7 7 Processor Parameters (Cluster3)
29 10 8 9 1D Computation Bandwidth Space of
30 3 10 2 capability Storage
08 1 5 3
09 1 2 1
12 2 1 1
(a) 30 random processors 1 - 3 0
25 2 7 1
27 3 3 1

(b) three clusters which are partitioned by

k-means algorithm

Figure 8-9. An example of our approach (cont’d.)

110

Processor A’s 1-level mg-tree

Level 0 Level 1

R A
val@)=null LB
c

D

E

F

G

H

Processor D’s 1-level mg-tree

Level 0

Level 1
R A
B
Val(R)=null |
C
D
E
F
G
H

Val(A)= 1
Val(B)= 1
Val(C)= 1
Val(D)= 1
Val(E)= 0
Val(F)= 0
Val(G)= 0
Val(H)= 0

Val(A)= 1
val(B)= 0
Val(C)= 1
val(D)= 1
Val(E)= 0
val(F)= 0
val(G)= 1
Val(H)= 0

Processor B’s 1-level mg-tree

Level 0
RN
-—

Val(R)=null

Level 1

I|O|mm|olO|w(>

Processor E’s 1-level mg-tree

Level 0

Level 1
R A
B
Val(R)=null
C
D
E
F
G
H

Processor G’s 1-level mg-tree

Level 0
R

L

Val(R)=null

Level 1

IO |mmoo|m|>

Val(A)= 1
Val(B)= 1
Val(C)= 1
Val(D)= 1
Val(E)= 0
Val(F)= 0
Val(G)= 0
Val(H)= 0

Val(A)= 1
Val(B)= 0
Val(C)= 1
Val(D)= 1
Val(E)= 0
Val(F)= 0
Val(G)= 1
Val(H)= 0

Val(A)= 1
val(B)= 1
val(C)= 1
val(D)= 1
Val(E)= 0
val(F)= 0
Vval(G)=0
Val(H)= 0

Level 0

Level 1
R A
B
Val(R)=null

C

| D

E

F

G

H

Level 0

Level 1
RN A
B
Val(R)=null

|C

D

E

F

G

H

Processor H’s 1-level mg-tree

Level 0
R
o= mm

Val(R)=null

Level 1

Val(A)= 1
Val(B)= 0
Val(C)= 1
Val(D)= 1
Val(E)= 0
Val(F)= 0
Val(G)= 1
Val(H)= 0

I|@|mm|o|o|w|>

Processor C’s 1-level mg-tree

Val(A)=1
Val(B)= 1
Val(C)=1
val(D)= 1
Val(E)=0
Val(F)=0
Val(G)=0
Val(H)=0

Processor F’s 1-level mg-tree

Val(A)= 1
Val(B)= 0
val(C)= 1
val(D)= 1
Val(E)= 0
Val(F)= 0
Val(G)= 1
val(H)= 0

(c) The mg-trees of each processor after the first round of message-exchanging phase

Figure 8-9. An example of our approach (cont’d.)

111

Level 0

Level 1

A

R

Val(R)=null

Val(A)= 1 AB__

B

Val(AA)= 1
Val(AB)= 1

Val(AC)= 1
Val(AD)= 1
Val(AE)= 1
Val(AF)= 1
Val(AG)= 0
Val(AH)= 1

Val(B)= 1 BB

C

Val(BA)= 1
Val(BB)= 0

Val(BC)= 1
Val(BD)= 0
Val(BE)= 1
Val(BF)= 0
Val(BG)= 1
Val(BH)= 0

valC)=0 |CB

D

Val(CA)= 0
Val(CB)= 1

Val(CC)= 0
Val(CD)= 0
Val(CE)= 0
Val(CF)= 0
Val(CG)= 0
Val(CH)= 0

Val(D)= 0 DB

Val(DA)= 0
Val(DB)= 0

Val(DC)= 0
Val(DD)= 0
Val(DE)= 0
Val(DF)= 0
Val(DG)= 1
Val(DH)= 0

E EA Val(EA)= 0
ValE)=0 |EB ___ ygEB)=1
EC Val(EC)= 0

ED Val(ED)= 0

EE Val(EE)= 0

EF Val(EF)= 0

ES Val(EG)= 0

Val(EH)= 0

F FA Val(FA)= 0
ValFy=0 |FB varg)=o
ig Val(FC)= 0

Val(FD)= 0

EE Val(FE)= 0

= Val(FF)= 0

= Val(FG)= 1

Val(FH)= 0

S GA Val(GA)= 0
val@=0 |GB ___ \ueB)=1
gg Val(GC)= 0

Val(GD)= 1

gg Val(GE)= 0

Val(GF)= 1

gﬁ Val(GG)= 0

Val(GH)= 1

H HA Val(HA)= 0
vaH)=0 |HB yamg)=0
HC Val(HC)= 0

HD Val(HD)= 0

:E Val(HE)= 0

Val(HF)= 0

HG Val(HG)= 1

HH Val(HH)= 0

(d) Processor A’s mg-tree after the second round of message-exchanging phase

Level 0 Level 1 Level 2
R A AA
Val(A)= 1 AB___
Val(R)=null AC
AD
AE
|AF___
AG
AH
B BA
Val(B)= 1 BB
BC
BD
BE
|BF
BG
[BH
c LN]
Val(C)= 0
—D LN}
Val(D)= 0
—E LN}
Val(E)= 0
—F LN}
Val(F)= 0
LIS e
Val(G)= 0
H HA
Val(H)= 0 HB
[lHC
|lHD
|\HE
|\HF
|lHG
HH

(e) Processor A’s mg-tree after the third round

Val(AA)= 1 ——
Val(AB)= 1
Val(AC)= 1
Val(AD)= 1
Val(AE)= 1
Val(AF)= 1
Val(AG)= 0

Val(AH)= 1

Val(BA)= 1
Val(BB)=0
Val(BC)= 1
Val(BD)= 0
Val(BE)= 1
Val(BF)= 0
Val(BG)= 1
Val(BH)= 0 ——

Val(HA)= 0 ——
Val(HB)= 0
Val(HC)= 0
Val(HD)= 0
Val(HE)= 0
Val(HF)= 0
Val(HG)= 1

Val(HH)= 0

BHA

BHB

BHC

BHD

BHE

BHF
BHG
BHH

HAA

HAB

HAC
HAD
HAE
HAF
HAG
HAH

Level 3

Val(AAA)= 1
Val(AAB)= 1
Val(AAC)= 1
Val(AAD)= 1
Val(AAE)= 1
Val(AAF)= 1
Val(AAG)= 1
Val(AAH)= 1

Val(BHA)= 0
Val(BHB)= 1
Val(BHC)= 0
Val(BHD)= 0
Val(BHE)= 0
Val(BHF)= 0
Val(BHG)= 1
Val(BHH)= 0

Val(HAA)= 0
Val(HAB)= 0
Val(HAC)= 0
Val(HAD)= 0
Val(HAE)= 0
Val(HAF)= 0
Val(HAG)= 0
Val(HAH)= 0

of message-exchanging phase

Level0 Level 1 Level 2
R A
1 Val(A)=1 | AB
Val(R)=null AC
AD
AE
|AF.
AG
AH
B BA
Val(B)= 1
BC
BD
BE
|BF
BG
Deleting the vertices BH—
with [}
repeated names W oo
1o LY
Val(D)=0
' E LY
Val(E)= 0
L LY
Val(F)= 0
L — LY
Val(G)= 0
H HA
Val(H)=0 HB
|HC
|HD
|HE
HF
|HG

Figure 8-9. An example of our approach

112

Val(AB)= 1
Val(AC)= 1
Val(AD)= 1
Val(AE)= 1
Val(AF)= 1
Val(AG)= 0
Val(AH)= 1

Val(BA)= 1

Val(BC)= 1
Val(BD)= 0
Val(BE)= 1
Val(BF)= 0
Val(BG)= 1
Val(BH)= 0 ——

BHA

BHC

BHD

BHE

(BHF
BHG

Val(HA)= 0 ——

Val(HB)= 0
Val(HC)= 0
Val(HD)= 0
Val(HE)= 0
Val(HF)= 0
Val(HG)= 1

name vertices

HAB

HAC

HAD

HAE

aF——
HAG

Level 3

Val(BHA)= 0

Val(BHC)= 0
Val(BHD)= 0
Val(BHE)= 0
Val(BHF)= 0
Val(BHG)= 1

Val(HAB)= 0
Val(HAC)= 0
Val(HAD)= 0
Val(HAE)= 0
Val(HAF)= 0
Val(HAG)= 0

(f) Processor A’s mg-tree without repeated

8.4 The Correctness of CP,;,

The following lemmas and theorems are used to prove the correctness of protocol CP,;,.

Lemma 8-1: After VOTEng function is applied to mg-tree from leaf to root, all correct
vertices of an mg-tree are common.

Proof: In the decision-making phase, all vertices with repeated names are deleted in an

mg-tree. At level #+1 or above, the correct vertex « has at least 2¢+1 children, and out
of which at least #+1 children are correct. The true values of these #+1 correct vertices
are common, and the majority of the vertex value « is common. The correct vertex o
is common in the mg-tree if the level of « is less then #+1. Consequently, all correct

vertices of the mg-tree are common. W

Lemma 8-2: The common frontier exists in the mg-tree.

Proof: By definition, an mg-tree is a tree of level #+1. There are #+1 vertices along each
root-to-leaf path of an mg-tree. Since at most ¢ processors can fail, there is at least one
correct vertex along each root-to-leaf path of the mg-tree. Using Lemma 8-1, the
correct vertex is common and the common frontier exists in each fault-free processor’s

mg-tree. B

Lemma 8-3: Let a be a vertex, a is common if there is a common frontier in the sub-tree

rooted at a.

Proof: If the height of « is 0 and the common frontier (« itself) exists, & is common. If the
height of « is y, the children of « are all in common under the induction hypothesis

with the height of the children being y-1. B

113

Corollary 8-1: The value of root R is common if the common frontier exists in the

mg-tree.

Theorem 8-1: The value of root R of a fault-free processor’s mg-tree is common.

Proof: Using Lemmas 6-1, 6-2, 6-3 and Corollary 8-1, the theorem is proved. B

Theorem 8-2: Protocol CPyy, solves the Consensus problem in a de-Bruijn overlay P2P

file-sharing system.

Proof: To prove this theorem, CP,,, must meet the constraints (Consensus_Agreement) and
(Consensus_Validity)
(Consensus_Agreement): Root value is common. By Theorem 8-1,
(Consensus_Agreement) is satisfied
(Consensus_Validity): VOTE(«) = v for all fault-free processors, if the initial value
of all processor is v say v = vy.
Most processors are fault-free. The value of the correct vertices for all of the fault-free
processors’ mg-trees is v. Therefore, each correct vertex of the mg-tree is common
(Lemma 8-1), and its true value is v. Using Theorem 8-1, this root is common. The
computed value VOTE(«) = v is stored in the root for all the fault-free processors.

Therefore, (Consensus_Validity) is satisfied. B

8.5 Conclusion

The Consensus problem of file-sharing in P2P system becomes more complicated with
the growing of P2P networks [2] [11] [17] [34] [20] [29] [35] [42] [49] [54] . The malicious
processors could work in coordination with other malicious processors to modify files and
spread inconsistent ones to other fault-free processors arbitrarily. If not properly controlled,
fault-free processors may also spread inconsistent files to other processors and potentially

114

paralyze the entire P2P network. So far, no previous has attempted to solve the Consensus
problem of file-sharing with malicious processors in P2P networks.

In this chapter, we proposed a novel hybrid approach integrating the clustering algorithm
and Consensus protocol to provide better QoS and solve the Consensus problem in the
de-Bruijn overlay P2P file-sharing system. In the clustering algorithm, we adopt k-means
algorithm to cluster similar processors into the same group to provide better QoS. Moreover,
k-means algorithm is the simplest and most popular clustering algorithm [26] . Due to the fact
that de-Bruijn graphs are nearly optimal [29] , we adopt de-Bruijn graphs as the overlay
network in the P2P file-sharing system. We also proposed a Consensus protocol CP,;,, get the

consistent file information in the de-Bruijn overlay P2P file-sharing system.

115

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In recent year, combined wired/wireless network have become more popular, the reliability
and fault tolerance of combined wired/wireless network has become an important topic. We
know that pure wired networks and pure wireless networks are all special cases of the
combined wired/wireless networks. Hence, we also discuss the agreement problems in pure
wired network and pure wireless network.

For pure wireless network, we proposed a BA protocol, Mobile Ad-Hoc Agreement
Protocol (MAHAP), to solve the BA problem in wireless network with malicious faulty
processors. MAHARP is the first BA protocol to solve the BA problem in MANET. The feature
of mobility is considered in MAHAP.

For combined wired/wireless network, we proposed another BA protocol,
Server-initiated Byzantine Agreement Protocol (SBAP), to solve the BA problem in combined
wired/wireless network in the presence of malicious faulty processors. To meet the
characteristics of mobile environments, most of the communication and computation
overhead must be fulfilled within in the agreement-servers in SBAP. Furthermore, SBAP uses
a hierarchical architecture to reduce the communication overhead. For combined
wired/wireless network, we also proposed a Consensus protocol, Client-initiated Consensus
Protocol (CCP), to solve the Consensus problem in combined wired/wireless network.
Moreover, malicious fault assumption with processors grows into the dual failure mode (both
dormant fault and malicious fault) on both processors and communication links.

In order to provide a highly reliable computing environment for combined wired/wireless

116

network, we proposed a FDA protocol, Adaptive Fault Diagnosis Agreement Protocol
(AFDA), to solve the FDA problem in combined wired/wireless network. AFDA is an
adaptive FDA protocol. AFDA not only can solve the FDA problem in combined
wired/wireless network, but also AFDA can solve the FDA problem in wireless network.

In the usage, the file-sharing application has been the most popular application in P2P
systems. Many P2P networks are overlay networks because they run on top of the combined
wired/wireless network. However, malicious attackers may modify files arbitrarily and spread
inconsistent files to other processors in the P2P network. So far, no previous study has
attempted to solve the Consensus problem of file-sharing with malicious processors in P2P
networks. Hence, we give an application of Consensus protocol to ensure the file consistency

of file-sharing in P2P networks.

9.2 Future Work

In this dissertation, the proposed BA and Consensus protocols required each fault-free
processor to reach a common agreement at the same round of message-exchange. That is,
even when the system has a smaller number of faulty processors, or there is no faulty
processor at all in the system, the system still needs the same rounds of message exchange to
reach a common agreement. The above problem is also called the Immediate Agreement
Problem (IAP) [19] . As a result, the IAP has a consistent round complexity. However, the

message-exchanging phase is a time-consuming phase, and the IAP does not seem efficient

enough when the number of faulty processors is smaller than the tolerable number of faulty
processors in a network. To improve the efficiency, another related problem called early
stopping agreement problem (also called Eventual Agreement Problem, EAP) [15] [27] [58]
can be visited. An early stopping agreement protocol is able to stop as early as possible when

a processor receives enough information from other processors. Therefore, our future work

117

will be focused on solving the early stopping problem in combined wired/wireless network.

118

Bibliography

(1]

(2]

(3]

(4]

[3]

(6]

[7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. C. Adams and K.V.S. Ramarao, “Distributed diagnosis of Byzantine processors and
links,” Proceeding of the Symposium on Distributed Computing Systems, pp.562-569,
1989.

J. Aspnes, Z. Diamadi, and G. Shah, “Fault-Tolerant Routing in Peer-to-Peer Systems,” in
Proceeding of the 23rd Annual Symposium on Principles of Distributed Computing,
pp.223-232,2002.

O. Babaoglu, and R. Drummond, “Streets of Byzantium: Network Architectures for Fast
Reliable Broadcasts,” IEEE Transactions on Software Engineering, Vol. 11, no. 6, 1985,
pp. 546-554.

A. Bar-Noy, D. Dolev, C. Dwork and H. R. Strong, “Shifting Gears: Changing
Algorithms on the Fly to Expedite Byzantine Agreement,” Information and Computation,
vol.97, no.2, pp.205-233, 1992.

M. Barborak, M. Malek and A. Dahubra, “The Consensus Problem in Fault-Tolerant
Computing,” ACM Computing Surveys, vol.25, no.2, pp.171-220, 1993.

B. Bellur and R. G. Ogier, A Reliable, “Efficient Topology Broadcast Protocol for
Dynamic Networks,” Proceeding of the 18th IEEE INFOCOM, pp.178-186, 1999.

W. G. Bridges and S. Toueg, “On the Impossibility of Directed Moore Graphs,” Journal
of Combinatorial Theory, no. 3, 1980.
D. R. Broug, Logic Programming. New Frontiers, Kluwer Academic, 1992.

T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility models for Ad Hoc Network

Research,” Wireless Communications & Mobile Computing, vol. 2, no. 5, 2002.

T. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed
Systems,” Journal of the ACM, Vol. 43, No. 4, 1996, pp. 225-267.

B. Cohen, “Incentives Build Robustness in BitTorrent,” Proceeding of the Workshop on
Economics of Peer-to-Peer Systems, pp.1-5, 2003.

G. Coulouris , J. D. Dollimore, T. Kindberg, “Distributed Systems-Concepts and
Design”,3rd Edition, Addison-Wesley 2001.

G. D. Crescenzo, R. Ge and G. R. Arce “Securing Reliable Server Pooling in MANET
Against Byzantine Adversaries,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 2, 2006, pp. 357-369.

J. Daemen, V. Rijmen, “The Rijndael Block Cipher,” AES Document Version2.

D. Dolev, R. Reischuk, and A.R. Strong, “Early Stopping in Byzantine Agreement,”

119

ACM for Computing Machinery, vol. 37, no. 4, pp.720-741, 1990.

[16] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory, vol.22, pp. 644-654, 1976.

[17] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust Incentive Techniques for
Peer-to-Peer Networks,” Proceeding of the 5th ACM Conference on Electronic
Commerce, pp.102-111, 2004.

[18] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/NIST, National
Tehnical Information Service, Springfield, VA, Apr. 1995.

[19] M. Fisher, and N. Lynch, “A Lower Bound for the Assure Interactive Consistency,”
Information Processing Letters, vol.14, no.3, pp.183-186, 1982.

[20] Gnutella, http://www.gnutella.com
[21] R. Guerraoui and A. Schiper, “The Generic Consensus Service,” IEEE Transactions on
Software Engineering, vol. 27, no. 1, 2001, pp. 29-41.

[22] X. Hong, K. Xu, and M. Gerla, “Scalable routing Protocols for Mobile Ad Hoc
Networks,” IEEE Network, vol. 16, no.4, pp.11-21, 2002.

[23] H.S. Hsiao, Y.H. Chin, W.P. Yang, “Reaching Fault Diagnosis Agreement under a Hybrid
Fault Model,” IEEE Transactions on Computers, vol. 49, no. 9, pp.980-986, 2000.

[24] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum and L. Viennot,
“Optimized Link State Routing Protocol for Ad Hoc Networks,” Proceedings of IEEE
International Technology for the 21st Century, 2000.

[25] D. B. Johnson and D. A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks,
Mobile Computing, Kluwer, 1996.

[26] L. Kaufman and P. J. Rousseeuw, finding Groups in Data: An Introduction to Cluster
Analysis, John Wiley & Sons, Inc., New York, 1990.

[27] A. W. Krings and T. Feyer, “The Byzantine Agreement Problem: Optimal Early
Stopping,” Proceedings of 32nd Hawaii International Conference on System Sciences,
LNCS 520, 1999.

28] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems, vol.4, no.3, pp.382-401, 1982.

[29] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-Theoretic Analysis of Structured

Peer-to-Peer Systems: Routing Distances and Fault Resilience,” Proceeding of

Applications, technologies, architectures, and protocols for computer communications,

pp-395-406, 2003.
[30] S. Mallela and G. M. Masson, “Diagnosable systems for intermittent faults,” /EEE
Transaction on Computers, vol. 27, no. 6, pp. 560-566, 1978.

[31] N. Malpani, J. L. Welch and N. Vaidya, “Leader election algorithms for mobile ad hoc

120

networks,” Proceedings of the 4th International workshop on Discrete algorithms and

methods for mobile computing and communications, pp.96-103, 2000.

[32] S. Marano, V. Matta and L. Tong, “Distributed inference in the presence of Byzantine
sensors,” Proceedings of IEEE Asilomar Conference on Signals, Systems, and
Computers, 2006, pp. 281-284.

[33] F.J. Meyer and D.K. Pradhan, “Consensus with Dual Failure Modes,” IEEE Transaction
on Parallel and Distributed Systems, vol. 2, no. 2, pp. 214-222, 1991.

[34] Napster, http://www.napster.com

[35] M. Naor and U. Wieder, “A Simple Fault Tolerant Distributed Hash Tables,” Lecture
Notes in Computer Science, vol. 2735, pp. 88-97, 2003.

[36] M.R. Pearlman and Z. J. Haas, “Determining the optimal configurations for the zone
routing protocol,” IEEE Journal on Selected Areas in Communications, vol.17, no. 8,
pp-1395-1414, 1999.

[37] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,”
Journal of ACM, vol.27, no.2, pp. 228-234, 1980.

[38] G. Pei, M. Gerla, and T.W. Chen, “Fisheye State Routing: A Routing Scheme for Ad
Hoc Wireless Network,” Proceedings of the IEEE International Conference on
Communications, pp.70-74, 2000.

[39] C.E. Perkins, Ad Hoc Networking, Addison-Wesley, 2001.

[40] C.E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector Routing,”
Proceedings of the Ist IEEE Workshop on Mobile Computing Systems & Applications,
pp-90-100, 1999.

[41] G Rabbat, D. Nowak and A. Bucklew, “Generalized Consensus Computation in
Networked Systems with Erasure Links,” Proceedings of IEEE 6™ Workshop on Signal
Processing Advances in Wireless Communications, 2005, pp. 1088-1092.

[42] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker, "A scalable
content-addressable network", in Proceeding of ACM SIGCOMM, pp. 161-172, Aug.
2001.

[43] N. Roy, S. K. Das, K. Basu and M. Kumar, “Enhancing Availability of Grid
Computational Services to Ubiquitous Computing Applications,” in Proceeding of 19th
IEEFE International Parallel and Distributed Processing Symposium, pp.92a-92a, 2005.

[44] C. Santivanez, R. Ramanathan, and I. Stavrakakis, “Making Link-State Routing Scale for
Ad Hoc Networks,” Proceedings of the 2nd ACM International. Symposium on Mobile
Ad Hoc Net. & Compputing, pp.22-32, 2001.

[45] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John
Whily & Sons, Inc. 1994.

121

[46] K. Shin and P. Ramanathan, “Diagnosis of Processors with Byzantine Faults in a
Distributed Computing Systems,” Proceedings of International Conference on
Fault-Tolerant Computing, pp.55-60, 1987.

[47] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts 6th Ed., John Wiley
& Sons, Inc, 2002.

[48] T. Simunic “Power Saving Techniques for Wireless LANSs,” Proceedings of Design,
Automation and Test in Europe, vol. 3, pp. 96-97 2005.

[49] E. Sit, R. Morris, “Security Considerations for Peer-to-Peer Distributed Hash Tables,”
Proceedings for the Ist International Workshop on Peer-to-Peer Systems, pp. 261-269,
2002.

[50] H. S. Siu, Y.H. Chin, W.P. Yang, “A Note on Consensus on Dual Failure Modes, /IEEE
Transactions on Parallel and Distributed Systems,” vol.7, no.3, pp.225-229, 1996.

[51] H.S. Siu, Y.H. Chin, and W.P. Yang, “Byzantine Agreement in the Presence of Mixed
Faults on Processors and Links”, IEEE Transaction on Parallel and Distributed System,
vol. 9, no.4, pp. 335-345, 1998.

[52] H.S. Siu, Y.H. Chin, and W.P. Yang, “Reaching Strong Consensus in the Presence of
Mixed Failure Types,” Information Sciences: An International Journal, vol.108, nol.1-4,
pp.157-180, 1998.

[53] K.N. Sivarajan and R. Ramaswami, “Lightwave Networks Based on de Bruijn Graphs,”
IEEE/ACM Trans. On Networking, vol. 2, no. 1994.

[54] L Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications," in Proceeding of ACM
SIGCOMM, pp. 149-160, 2001.

[55] Y.F. Tsou, “ A particular Solution for Agreement Problem under Cluster-oriented
MANET,” Master Thesis, Department of Information Management, Chaoyang
Technology of University, Taiwan, 2007.

[56] J. Turek and D. Shasha, “The Many Faces of Consensus in Distributed Systems,” IEEE
Computer, Vol. 25, No. 6, 1992, pp. 8-17.

[57] X. Wang and J. Cao, “An Optimal Early Stopping Uniform Consensus Protocol in
Synchronous Distributed Systems with Orderly Crash Failure,” Proceeding of the 23th
International Conference on Distributed Computing Systems, pp.76-81, 2003.

(58] S.C. Wang and C.F. Cheng, “Eventually Dual Failure Agreement,” in Fundamenta
Informaticae, vol. 57, no. 1, pp.79-99, 2003

[59] S.C. Wang, Y.H. Chin, and K.Q. Yan, “Reaching a Fault Detection Agreement,”
Proceedings International Conference on Parallel Processing, pp.251-258, 1990.

[60] S.C. Wang, Y.H. Chin, and K.Q. Yan, “Byzantine Agreement in a Generalized Connected

122

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Network,” [EEE Transactions on Parallel and Distributed System, vol.6, no.4,
pp.420-427, 1995.

S.C. Wang ~ K.Q. Yan and C.F. Cheng, “Achieving High Efficient Byzantine Agreement
with Dual Components Failure Mode on a Multicasting Network,” Proceedings of the
9th IEEE International Conference on Parallel and Distributed Systems, pp. 577-582,
2002.

S.C. Wang ~ K.Q. Yan and C.F. Cheng, “Evidence-based MultiCasting Fault Diagnosis
Agreement with Fallible Processors”, Proceedings of the 32nd International Conference
on Parallel Processing, pp.69-74, 2003.

S.C. Wang, K.Q. Yan and H.C. Hsieh, “The New Territory of Mobile Agreement,”
Computer Standards & Interfaces, vol. 26, pp. 435-447, 2004.

S.C. Wang, K.Q. Yan, H.C. Hsieh, “Reaching Consensus Underlying a Mobile
Environment,” Proceeding of the 2003 Digital Life and Internet Technology Symposium,
2003.

S.C. Wang, J.E. Yang, K.Q. Yan, and C.F. Cheng, “Achieving High Efficient Consensus
in a Hybrid Fallible Multicasting Network,” Proceedings of International Conference on

Systems Engineering, 2002.

S.C. Wang, K.Q. Yan and GY. Zheng, “Dual Agreement Virtual Subnet Protocol for
Mobile Ad-Hoc Networks,” Proceeding of the 22nd Annual ACM Symposium on Applied
Computing, pp. 11-15, 2007.

S.C. Wang ~ W.P. Yang and C.F. Cheng, “Byzantine Agreement on Mobile Ad-Hoc
Network,” Proceeding of the IEEE International Conference on Networking, Sensing and
Control, pp. 52-57, 2004.

D. B. West, Introduction to Graph Theory, 2™. Ed., Prentice Hall 2001.

R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural
Networks, vol. 16, no. 3, pp. 645-678, 2005.

K.Q. Yan, Y.H. Chin and S.C. Wang, “Optimal Agreement Protocol in Malicious Faulty
Processors and Faulty Links,” IEEE Transactions on Knowledge and Data Engineering,
vol.4, no. 3, pp.266-280, 1992.

K.Q. Yan, S.C. Wang, Y.F. Tsou, “Revisit Consensus in a Dual Fallible
Clustered-MANET,” Proceeding of the 2006 Taiwan Academic Network Symposium,
2006.

K.Q. Yan, S.C. Wang GY. Zheng, “Reaching Dual Fallible Virtual Subnet Consensus,”
Proceeding of the 3rd International Conference on Soft Computing and Intelligent

Systems and 7th International Symposium on advanced Intelligent Systems, pp.20-24,
2006.

123

