

國 立 交 通 大 學

資訊科學與工程研究所

博士論文

混合式網路下協議問題之研究

Agreement Problems under Combined Wired/Wireless Network

研 究 生：鄭建富

指導教授：梁 婷 博士

王淑卿 博士

中 華 民 國 九 十 七 年 九 月

混合式網路下協議問題之研究

Agreement Problems under Combined Wired/Wireless Network

研 究 生：鄭建富 Student : Chien-Fu Cheng

指導教授：梁 婷 博士 Advisor : Dr. Tyne Liang

 王淑卿 博士 Dr. Shu-Ching Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation Submitted to

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in
Computer Science

September 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年九月

 i

混合式網路下協議問題之研究

學生：鄭建富 指導教授：梁 婷 博士

 王淑卿 博士

國立交通大學 資訊科學與工程研究所

摘 要

近年來由於無線通訊以及行動計算的蓬勃發展使得現今的網路型態走向了混合式

的網路（包含了有線網路及無線網路）。因此混合式網路的可靠度以及容錯問題成為非

常重要的課題。 為了提供可靠的計算環境，我們需要一個機制讓參與運作的處理器即

使在發生錯誤或攻擊時仍能夠達成協議。 因此拜占庭協議問題以及合議問題成為許多

學者們關注的焦點。 然而，過往的拜占庭協議問題以及合議問題的研究大都是針對在

有線的網路之上。由於有線網路的實體拓樸為靜態的，使得過往針對這些固定式網路所

提出的協定無法運作在混合式網路之中，其主要原因在於混合式網路之實體拓樸為動態

的。

在本論文中，我們將探討拜占庭協議問題以及合議問題於混合式網路。為了因應混

合式網路的特性（行動式處理器的運算能力通常較固定式處理器要來的弱）以及減少為

了達成協議所需要的訊息交換次數，因此在我們所設計的協定之中導入了階層式的概

念，將大部分的通訊工作以及運算工作交由伺服器來處理，如此一來將可以大幅降低行

動式處理器的負擔。以效能的觀點來看，本論文中所提出的協定使用了最少的訊息交換

次數並且可以容忍最大數量的損毀處理器。此外，由於純粹的有線網路以及純粹的無線

網路都是混合式網路的特例，因此我們也將討論協議問題於這兩種網路之上。

為了提供更高可靠度的計算環境，我們還必須偵測/定位出網路中的損毀處理器。 因

此，我們也將提出一個新的錯誤診斷協定來偵測/定位出損毀的處理器於混合式網路之

中。a

 ii

在應用方面，近年來檔案分享已經成為點對點網路上最受歡迎的一項服務，而許多

的點對點網路都是架構在有線及無線的混合式網路之上。這也使得檔案一致性的問題成

為一項非常重要的課題。 因為惡質性損毀的攻擊者可能會隨意變更檔案的內容，並且

將這些更改過的檔案傳送給其他的處理器。如此一來將使網路上充斥著不一致的檔案，

造成浪費許多的資源，例如：頻寬、儲存空間以及傳輸時間。 因此確認所擁有的檔案

是否為正確是相當重要的。 在本研究當中我們將使用所提出的協定來解決檔案一致性

的問題於點對點網路之中。

關鍵字：容錯分散式系統; 拜占庭協議問題; 合議問題; 錯誤偵斷問題; 惡質性損毀; 非

惡質性損毀; 動態網路; 有線及無線混合式網路; 點對點網路; 檔案分享

 iii

Agreement Problems under Combined Wired/Wireless Network

Student: Chien-Fu Cheng Advisor: Dr. Tyne Liang
 Dr. Shu-Ching Wang

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

Since wireless communication and mobile computing are becoming more and more

ubiquitous, most network environments today are combined wired and wireless. The

reliability and fault tolerance of the combined wired/wireless network has become an

important topic. In order to provide a reliable environment, a mechanism that allows a set of

processors to reach a common agreement, even in the presence of faulty processors, is needed.

Therefore, the Byzantine Agreement (BA) problem and Consensus problem have drawn

attention of more researchers. Traditionally, most of the BA problem and Consensus problem

were focused on wired networks. We know that the physical topology of a wired network is

static, but the physical topology of a combined wired/wireless network is dynamic. Thus,

previous BA and Consensus protocols for static network are not applicable in a combined

wired/wireless network.

In this dissertation, we visited the BA problem and Consensus problem in combined

wired/wireless network. In order to meet the characteristics of combine wired/wireless

networks (the limited resources have made the computation ability of mobile processors often

weaker than that of stationary processors) and reduce the number of rounds of message

exchange required, most of the communications and computation overhead must be fulfilled

within by the servers. Therefore, we introduce a hierarchical concept in our system model.

Only servers need to exchange messages and compute the common value. From the

 iv

performance perspective, the proposed protocols use the minimum number of message

exchanges and can tolerate the maximum number of faulty processors allowed in the networks.

AS a matter of fact, pure wired networks and pure wireless networks are all special case of the

combined wired/wireless networks. We also discuss the BA and Consensus problems in pure

wired network and pure wireless network.

In a highly reliable fault-tolerant environment, to reach a common agreement is not

enough. It is also necessary to detect/locate the faulty components in the network. Therefore,

we also propose a new protocol to solve the Fault Diagnosis Agreement (FDA) problem in

combined wired/wireless networks.

In the usage, the file-sharing application has been the most popular application in

Peer-to-Peer (P2P) systems. Many P2P networks are overlay networks because they run on

top of the combined wired/wireless network. Hence, the Consensus problem of file-sharing

has become an important topic. As malicious attackers may modify files arbitrarily and spread

inconsistent files to other processors in the P2P network, inconsistent files will not only

spread in P2P networks but also waste resources, such as bandwidth, space of storage and

transmission time. Hence, how to make fault-free processors ensure that the files they hold are

correct is an import topic. In this thesis, we give an application of Consensus protocol to

ensure the file consistency of file-sharing in P2P systems.

Keywords: fault-tolerant distributed system, Byzantine agreement problem, Consensus

problem, fault diagnosis agreement problem, malicious fault, dormant fault, dynamic network,

combined wired/wireless network, Peer-to-Peer system; file-sharing.

 v

ACKNOWLEDGEMENT

(誌 謝)

博士論文能夠完成，首先要感謝的是指導教授梁婷博士以及共同指導教授王淑卿博士，

感謝兩位老師在我研究所生涯中對我學術研究的指導以及啟發。兩位指導老師嚴謹的治

學態度，讓我在學術研究上學習到謹慎的思考，也在日常生活上獲益良多。 此外也感

謝系上的楊武教授、蔡鍚鈞教授以及譚建民教授在計畫書口試、校內口試以及校外口試

時所提供的許多寶貴建議。

感謝校外口試委員：王有禮教授、石維寬教授、金仲達教授、徐力行教授在口試過

程中提供許多寶貴的建議，讓我的論文能更趨完善。感謝實驗室的同仁們，你們是我博

士班研究生涯的好伙伴，再次謝謝你們在這段過程中對我的幫忙以及鼓勵。

我要把我最深的感謝留給我的家人，因為有你們的支持與鼓勵，讓我在求學的過程

中有足夠的動力去完成這個學位，謝謝你們。

要感謝的人太多，僅以此論文獻給我最愛的親人、師長與朋友。

 vi

TABLE OF CONTENTS

ABSTRACT ..iii
ACKNOWLEDGEMENT..v
TABLE OF CONTENTS...vi
LIST OF FIGURES...ix
LIST OF TABLES...xi
LIST OF NOTATIONS...xii
Chapter 1 Introduction..1

1.1 Problem Definition ...1
1.2 Motivation ..2
1.3 Organization of Dissertation...3

Chapter 2 A Survey of Related Research Works ..4
2.1 Network Structures ...4

2.1.1 Pure Wired Network ..4
2.1.2 Pure Wireless Network ..6
2.1.3 Combined Wired/Wireless Network..7

2.2 The Fallible Components..8
2.2.1 The Symptoms of a Faulty Processor ..8
2.2.2 The Symptoms of a Faulty Communication Link ...8

2.3 Agreement Problems Definition ...9
2.3.1 Byzantine Agreement Problem..9
2.3.2 Consensus Problem ...13
2.3.3 Fault Diagnosis Agreement Problem...16

2.4 Conclusion..19
Chapter 3 Basic Concepts and Approaches ..20

3.1 Agreement Problem in Pure Wireless Network..21
3.2 Agreement Problem in Combined Wired/Wireless Network......................................22

3.2.1 Byzantine Agreement Problem in Combined Wired/Wireless Network23
3.2.2 Consensus Problem in Combined Wired/Wireless Network24

3.3 Fault Diagnosis Agreement Problem in Combined Wired/Wireless Network26
3.4 File Consistency Problem of File-Sharing in Peer-to-Peer Systems27

Chapter 4 Byzantine Agreement Protocol for Wireless Networks ...29
4.1 The Conditions for BA Problem in Wireless Network ..29

4.1.1 System Model ..29
4.1.2 The number of Message Exchange Rounds Required by MAHAP30
4.1.3 Constraint ..30

 vii

4.2 Proposed BA Protocol: “Mobile Ad-Hoc Agreement Protocol” (MAHAP)..............31
4.2.1 Message-Exchanging Phase ..31
4.2.2 Decision-Making Phase...32
4.2.3 Extension-Agreement Phase..33
4.2.4 The Message Gathering Tree (mg-tree)...36
4.2.5 The Information Collecting Tree (ic-tree) ...37

4.3 An MAHAP Execution Example ...37
4.4 The Correctness and Complexity of MAHAP..43
4.5 Conclusion..47

Chapter 5 Server-initiated Agreement Protocol for Combined Wired/Wireless Networks49
5.1 The Conditions for BA Problem in Combined Wired/Wireless Network..................49

5.1.1 System Model ..49
5.1.2 Properties of the BA Problem..50
5.1.3 Constraint ..51

5.2 Secure Communication ..51
5.2.1 Related Cryptographic Technologies...51
5.2.2 Approach..53

5.3 BA Protocol: “Server-initiated Byzantine Agreement Protocol” (SBAP)53
5.3.1 The Number of Required Rounds of Message-Exchange54
5.3.2 Message-Exchanging Phase ..54
5.3.3 Decision-Making Phase...55
5.3.4 Agreement-Distribution Phase...55

5.4 An Example of Reaching Byzantine Agreement..57
5.5 The Correctness and Complexity of SBAP ..58
5.6 Conclusion..61

Chapter 6 Client-initiated Consensus Protocol for Combined Wired/Wireless Networks63
6.1 The Conditions for Consensus Problem in Combined Wired/Wireless Network63

6.1.1 System Model ..63
6.1.2 Properties of the Consensus Problem ..65
6.1.3 Constraint ..65

6.2 Transmission Protocol: “Secure Relay Fault-tolerance Channel” (SRFC)66
6.2.1 The Connectivity Constraint..67
6.2.2 Four Cases of Fault Handling..68

6.3 Consensus Protocol: “Client-initiated Consensus Protocol” (CCP)...........................69
6.3.1 Client-initiated Stage ...70
6.3.2 Consensus Stage ..72

6.4 An Example of Reaching Consensus..74
6.4.1 Client-initiated Stage ...74
6.4.2 Consensus Stage ..75

 viii

6.5 The Correctness and Complexity of CCP ..77
6.6 Conclusion..79

Chapter 7 Fault Diagnosis Agreement..81
7.1 Proposed Protocol: “Adaptive Fault Diagnosis Agreement Protocol” (AFDA).........81

7.1.1 Message-Collection Phase...82
7.1.2 Fault-Diagnosis Phase ...82
7.1.3 Re-configuration Phase ...84

7.2 An AFDA Execution Example..86
7.2.1 Message-Collection Phase...87
7.2.2 Fault-Diagnosis Phase ...87
7.2.3 Re-configuration Phase ...87

7.3 The Correctness of AFDA ..91
7.3.1 AFDA with MAHAP in Wireless Network ...91
7.3.2 AFDA with SBAP in Combined Wired/Wireless Network93

7.4 Conclusion..95
Chapter 8 Consensus Problem under Peer-to-Peer Environment: An Application to
File-Sharing ..96

8.1 Introduction ..97
8.1.1 The Classification of Peer-to-Peer File-Sharing Systems97
8.1.2 Clustering Algorithm ...98

8.2 System Model and Approach..99
8.2.1 Clustering Algorithm: K-means Algorithm ...99
8.2.2 Consistent Hash Function: SHA-1 Function ...101
8.2.3 Overlay Network: de-Bruijn Graph...101
8.2.4 Consensus Protocol: Consensus Protocol for P2P Network (CPp2p)103

8.3 An CPp2p Execution Example ...107
8.3.1 Clustering ..107
8.3.2 Mapping the Processors in Cluster to de-Bruijn Overlay Network...............107
8.3.3 Getting the Consistent File Information ..108

8.4 The Correctness of CPp2p .. 113
8.5 Conclusion.. 114

Chapter 9 Conclusion and Future Work ... 116
9.1 Conclusion.. 116
9.2 Future Work .. 117

Bibliography ... 119

 ix

LIST OF FIGURES

Figure 2-1. An example of fully connected network..5
Figure 2-2. An example of broadcast network ...5
Figure 2-3. An example of generalized connected network ...5
Figure 2-4. An example of general network...5
Figure 2-5. An example of multicasting network...6
Figure 2-6. An example of wireless network..7
Figure 2-7. An example of combined wired/wireless network...7
Figure 3-1. The flow chart of the proposed approach ..21
Figure 4-1. An example of MANET...30
Figure 4-2. The proposed MAHAP protocol ..35
Figure 4-3. The VOTEad function...36
Figure 4-4. An example of executing MAHAP..43
Figure 5-1. An example of combined wired/wireless network...50
Figure 5-2. Diffie-Hellman key exchange..53
Figure 5-3. The BA protocol Server-initial Byzantine Agreement Protocol (SBAP)...............56
Figure 5-4. The VOTEmg Function ...56
Figure 5-5. The mg-trees of each agreement-server in the first round of message-exchanging

phase ..58
Figure 5-6. The 2-level mg-tree of agreement- server ASB ..58
Figure 6-1. Two-level combined wired/wireless network ..64
Figure 6-2. Secure Relay Fault-tolerance Channel (SRFC) ...66
Figure 6-3. The c disjoint paths between CSB and CSC, where c=3...69
Figure 6-4. Client-initiated Consensus Protocol (CCP) ...71
Figure 6-5. The VOTEmix Function...73
Figure 6-6. CSA transmits different message to different consensus-server.............................75
Figure 6-7. An one-level mg-tree of CSB ...75
Figure 6-8. An mg-tree of CSB after the second round of the message-exchanging phase76
Figure 6-9. An mg-tree of CSB without repeated name vertices ..76
Figure 7-1. The proposed AFDA protocol..86
Figure 7-2. The common set of the IC-trees by each fault-free processor...............................90
Figure 7-3. An example of MANET after re-configuration ...91
Figure 8-1. Classification of P2P file-sharing systems...98
Figure 8-2. The flow chart of the proposed approach ..99
Figure 8-3. The k-means algorithm ..101
Figure 8-4. An example of DB(2,3) de-Bruijn network ...102

 x

Figure 8-5. The shortest path from Hx to Hy ...103
Figure 8-6. The procedure of removing influence from maliciously colliding processors104
Figure 8-7. The VOTEmg Function ...105
Figure 8-8. The Consensus Protocol for P2P network (CPp2p) ...106
Figure 8-9. An example of our approach.. 112

 xi

LIST OF TABLES

Table 2-1 The comparison of various BA protocols over different wired network models 11
Table 2-2 The comparison of various BA protocols over different wireless network models .13
Table 2-3 The differences among the BA problem and Consensus problem............................14
Table 2-4 The comparison of various Consensus protocols over different wired networks.....15
Table 2-5 The comparison of various Consensus protocols over different wireless networks.16
Table 2-6 The different approaches of the fault diagnosis problem ...18
Table 2-7 The comparison of various FDA protocols over different static network models....19
Table 6-1 Some instances of the number of rounds required for various Consensus protocols

..80
Table 8-1 The initial value of each processor...108

 xii

LIST OF NOTATIONS

AES Advanced Encryption Standard

AFDA Adaptive Fault Diagnosis Agreement Protocol

BA Byzantine Agreement

CCP Client-initiated Consensus Protocol

c c is the connectivity of each server in the higher network level of combined
wired/wireless network

cd cd is the maximum number of dormant faulty communication links allowed in
the higher network level of combined wired/wireless network

cm cm is the maximum number of malicious faulty communication links allowed in
the higher network level of combined wired/wireless network

CPp2p Consensus Protocol for P2P network

EAP Eventual Agreement Problem

DES Data Encryption Standard

DHT Distributed Hash Table

FDA Fault Diagnosis Agreement

IAP Immediate Agreement Problem

ic-tree Information Collecting Tree, the information collecting tree is a tree structure
used to store the messages and to remove the influence from the repeated
processors

IC-trees IC-trees =[ic-trees, ic-treea, ic-treeb …, ic-treeϋ] , where ϋ is the last Processor id
in the network by alphabetical order. IC-trees is the set of processors’ ic-tree.

MAHAP Mobile Ad-Hoc Agreement Protocol

MANET Mobile Ad-hoc Network

mg-tree Message Gathering Tree, the message gathering tree is a tree structure used to
store the messages

 xiii

N N is the set of all processors in the network and ∣N∣= n, where n is the
number of processors in the underlying network, and n≥4.

P2P Peer-to-Peer

pa pa is the maximum number of away processors allowed in the underlying
network

pd pd is the maximum number of dormant faulty processors allowed in the
underlying network

pm pm is the maximum number of malicious faulty processors allowed in the
underlying network

QoS Quality of Service

SBAP Server-initiated Byzantine Agreement Protocol

TTL Time-To-Live

zd zd is the maximum number of dormant faulty servers allowed in the combined
wired/wireless network

zm zm is the maximum number of malicious faulty servers allowed in the combined
wired/wireless network, zm≤⎣(zn-1)/3⎦

ZN ZN is the set of all servers in the combined wired/wireless network and |ZN|= zn,
where zn is the number of servers in the underlying network and zn ≥4

γ γ is the number of rounds required

δ0 The valueδ0 is used to report an absent value

λ0 The value λ0 is used to report a value from dormant faulty component

φ φ is the default value

 1

Chapter 1

Introduction

A distributed system is a collection of autonomous computers linked by a network, with

software designed to produce an integrated computing facility. [12] . Since distributed

computing is becoming more and more ubiquitous, the reliability and fault tolerance of the

distributed system has become an important topic. For a system to be reliable, it is necessary

to create a mechanism that allows a set of processors to agree on a common value [47] . With

this agreement, several important distributed services can be achieved, such as clock

synchronization, resource allocation, replicated file system [5] , atomic broadcast, atomic

commitment and group membership [10] [21] [56] .

1.1 Problem Definition

Byzantine Agreement (BA) and Consensus problem are the most fundamental problems to

reach a common agreement in distributed systems. The BA problem was first introduced by

Pease, Shostak and Lamport [37] . In the BA problem, there are n (n≥4) processors in a

distributed system and an initial value vs is set in a commander processor so that the

commander processor can send its initial value to the other processors. The goal of a BA

protocol is to make each fault-free processor reach a common agreement value. Protocols

designed to deal with the BA problem should satisfy the following requirements:

(BA_Agreement): All fault-free processors agree on a common value;

(BA_Validity): If the source (commander) processor is fault-free, then all fault-free

processors agree on the initial value that the source processor sends.

 2

In the Consensus problem, each processor has its own initial value and sends its initial

value to others. After the protocol is executed, each fault-free processor reaches a common

agreement value. Protocols designed to deal with the Consensus problem should satisfy the

following requirements:

(Consensus_Agreement): All fault-free processors agree on a common value;

(Consensus_Validity): If the initial value of all processors is vi, then all fault-free

processors shall agree on vi.

In a highly reliable fault-tolerant distributed system, just reaching a common agreement

is not enough. We need to take into consideration another related problem called the Fault

Diagnosis Agreement (FDA) problem. The goal of solving the FDA problem is to make each

fault-free processor detect/locate the common set of faulty components in the distributed

system. After reaching the FDA, each fault-free processor can maintain the performance and

integrity of the distributed system to provide a stable environment. Protocols designed to deal

with the FDA problem should satisfy the following requirements:

(FDA_Agreement): All fault-free processors must identify the common set of faulty

processors;

(FDA_Fairness): NO fault-free processor is incorrectly detected as faulty by any

fault-free processor.

1.2 Motivation

In recent years, wireless networks and mobile computing are becoming ubiquitous. Most

network environments today are combined wired and wireless. The combined wired/wireless

networks have the advantages of both wired (e.g., powerful computation ability, high

bandwidth, reliability, and so on.) and wireless networks (e.g., mobility, quick deployment,

and so on). Previous BA and Consensus protocols for wired network [3] [28] [37] [51] [52]

 3

[60] [61] [65] [70] were not applicable in combined wired/wireless networks. In this

dissertation, the BA and Consensus problems in the combined wired/wireless network are

re-examined. Moreover, we also propose a fault diagnosis agreement protocol to detect/locate

the faulty processors. In the usage, many P2P networks are overlay networks because they run

on top of the combined wired/wireless network. Hence, we also give an application of

Consensus protocol to ensure the file consistency of file-sharing in P2P networks.

1.3 Organization of Dissertation

This dissertation consists of nine chapters, and the remainder is organized as follows. Chapter

2 describes the survey of related research works. Chapter 3 describes the basic concepts and

approaches. Chapter 4 elaborates on the proposed BA protocol (Mobile Ad-Hoc Agreement

Protocol, MAHAP) for wireless network. Chapter 5 provides detailed descriptions of the

proposed BA protocol (Server-initiated Byzantine Agreement Protocol, SBAP) for combined

wired/wireless network. Chapter 6 elaborates on the proposed Consensus protocol

(Client-initiated Consensus Protocol, CCP) for combined wired/wireless Network. Chapter 7

provides detailed descriptions of the proposed FDA protocol (Adaptive Fault Diagnosis

Agreement Protocol, AFDA). Chapter 8 gives an application of Consensus protocol

(Consensus Protocol for P2P Network , CPp2p) in file-sharing P2P system. Finally, conclusion

and future work are given in Chapter 9.

 4

Chapter 2

A Survey of Related Research Works

This chapter reviews the network structures, the types of fallible components and the related

work of the BA, Consensus and FDA problems.

2.1 Network Structures

The network models can be classified into three categories based on their mobility features.

The three types are pure wired network, pure wireless network and combined wired/wireless

network.

2.1.1 Pure Wired Network

A wired network consists of a hard-wired backbone and powerful computing processors.

Therefore, the bandwidth speed, computation ability and reliability of wired networks are

generally much better than those of wireless networks. There are many kinds of pure wired

network. They are basically classified into fully connected network [37] , broadcast network

[3] , generalized connected network [60] , general network [51] and multicasting network

[61] . A fully connected network is a mesh network in which each of the processors is

connected to each other. An example of fully connected network is shown in Figure 2-1. A

broadcast network is a network architecture in which a set of processors are connected via a

shared communications line, called a bus. Figure 2-2 shows an example of broadcast network.

A generalized connected network is a network structure that combines the fully connected

network and broadcast network. It has the following features: (1) Grouping: A local bus links

 5

the processors of a same group. (2) Group member: The number of processors in each group

is the same. (3) Connectivity: Each group is connected to each other. An example of

generalized connected network is shown in Figure 2-3. A general network is an un-fully

connected network. Figure 2-4 shows an example of general network. A multicasting network

is a network structure that combines the general network and broadcast network together. The

multicasting network has the following features: (1) Grouping: A local bus links the

processors of a same group. (2) Group member: The number of processors in each group can

be different from each other. (3) Connectivity: It allows the multicasting network a bounded

connectivity c, where c is a constant. As a matter of fact, fully connected network, broadcast

network, generalized connected network and general network are all special cases of

multicasting network. An example of multicasting network is shown in Figure 2-5.

We know that the processors in a wired network do not have mobility. Hence, the

physical topology of a wired network is static.

Figure 2-1. An example of fully connected
network

Figure 2-2. An example of broadcast
network

Figure 2-3. An example of generalized

connected network
Figure 2-4. An example of general network

 6

Figure 2-5. An example of multicasting network

2.1.2 Pure Wireless Network

In recent years, wireless network have become more popular. Mobile Ad-Hoc Network

(MANET) is one type of non-fixed infrastructure wireless networks. Hence, MANETs have

enjoyed an amazing rise in popularity. Because, the features of MANET are infrastructure less

(no access point or base stations, no dedicated routers), automatic adaptation to changes in

topology (nodes enter and leave the network freely, and mobility within the network) and

quick deployment. Therefore, the MANETs are very attractive for tactical communications in

the military, law enforcement, and conferences [22] . But, the limited resources (e.g.,

bandwidth and limited power) make the computation ability of mobile processors weaker than

that of stationary processors. An example of wireless network is shown in Figure 2-6.

We know that the processors in a wireless network have mobility. Hence, the physical

topology of a wireless network is dynamic.

 7

Mobile Processor Radio Range

Figure 2-6. An example of wireless network

2.1.3 Combined Wired/Wireless Network

Since wireless networks and mobile computing are becoming ubiquitous, most network

environments today are combined wired and wireless. The combined wired/wireless networks

have the advantages of both wired (e.g., powerful computation ability, high bandwidth,

reliability, and so on.) and wireless networks (e.g., mobility, quick deployment, and so on). An

example of combined wired/wireless network is shown in Figure 2-7.

Some of processors have mobility in combined wired/wireless network, so the physical

topology of combined wired/wireless network is also dynamic.

Figure 2-7. An example of combined wired/wireless network

 8

2.2 The Fallible Components

Agreement may not take place for two reasons. Firstly, processors themselves may be faulty,

resulting in unpredictable behaviors. Secondly, the communication link may be faulty,

resulting in lost or garbled messages [47] .

2.2.1 The Symptoms of a Faulty Processor

During the execution of a protocol, a processor is said to be fault-free if it follows the protocol

specifications; otherwise, the processor is said to be faulty [47] . There are two failure types,

namely the dormant fault and the malicious fault (also called the Byzantine fault or the

arbitrary fault) [33] [50] .

The dormant faults include crashes and omission. A crash fault occurs when a processor

stops executing prematurely and does nothing afterward [57] . An omission fault takes place

when a processor fails to transmit or receive a message on time or at all. The malicious fault is

the most damaging failure type because the behavior of a malicious faulty processor is

unpredictable and arbitrary (e.g., suffer benign failures, send bogus values in messages, send

messages at the wrong time, send different messages to different processors and work in

coordination with other faulty processors to prevent fault-free processors from reaching a

common value) [13] [32] . Therefore, the malicious fault is the most damaging failure type

and causes the worst problem. If the BA and Consensus problems can be solved under

malicious fault conditions, the BA and Consensus problems can be solved under other failure

type conditions.

2.2.2 The Symptoms of a Faulty Communication Link

The symptoms of a faulty communication link can also be divided into two types. They are

 9

dormant fault (omission and delay) and malicious fault [41] [70] . In a synchronous system,

each fault-free processor can detect messages from a dormant faulty communication link

using the time-out mechanism or encryption technologies. Messages from a malicious faulty

communication link can be detected by encryption technologies.

2.3 Agreement Problems Definition

In this section, we give the definitions of agreement problems. There are Byzantine
Agreement (BA) problem, Consensus problem, and Fault Diagnosis Agreement (FDA)
problem.

2.3.1 Byzantine Agreement Problem

The Byzantine Agreement (BA) problem was first described and solved by Pease, Shostak,

and Lamport [37] . In the classical BA problem, there is a set of generals of the Byzantine

army camped with their troops around an enemy city. The generals can only communicate

with each other through messengers. To conquer the enemy city, the generals must reach a

common agreement on whether or not to launch a united attack at dawn (attack or retreat). It

is very important that all the loyal generals should decide on the same agreement, since an

attack called by only a small number of the generals would result in a lost battle [28] [37]

[47] . The above abstract assumptions can be transferred to corresponding assumptions in the

distributed system as follows: In the BA problem, there are n (n≥4) processors in the network,

where one processor is designated as the commander that holds an initial value vs. The

commander first sends the initial value vs to all other processors. On receipt of the value vs,

each processor (without the commander) exchanges the received value with other processors.

In addition, there is an adversary that controls up to pm (n ≥ 3 pm + 1) of the processors and

can arbitrarily deviate from the designated protocol specification. After a number of message

exchange rounds, a common agreement can be reached among all fault-free processors if and

 10

only if the maximum number of faulty processors allowed, pm, is smaller than one third of the

total number of processors in the network (pm≤⎣(n-1)/3⎦). Here, the number of message

exchange rounds is t+1 (t≤⎣(n-1)/3⎦) [28] [37] . In short, to solve a BA problem is to make

every fault-free processor be agreed on a common value regardless the influence of faulty

components. More precisely, the BA problem is defined by the two properties:

(BA_Agreement): All fault-free processors agree on a common value;

(BA_Validity): If the source (commander) processor is fault-free, then all fault-free

processors agree on the initial value that the source processor sends.

That is, only one processor has initial value in the BA problem. After executing BA

protocol, each fault-free processor can make the same decision (common value), the common

value is necessary to be selected from the initial value or the default value (the default value is

predefined).

The BA problem has been extensively studied over the past two decades. Many graceful

BA protocols have been proposed with various network structure assumptions and different

symptoms of faulty components assumptions [28] [37] [51] [55] [60] [61] [63] [66] [70] .

They are BA problem in pure wired network and BA problem in pure wireless network.

2.3.1.1 The BA Problem in Pure Wired Network

As indicated in chapter 2.3.1, the BA problem was first described and solved by Pease,

Shostak, and Lamport [37] . Subsequently, may graceful BA protocols have been proposed. In

[28] [37] , the network topology is fully connected network, and the fallible component

assumption involves only malicious faulty processors. In [70] , the network topology is also

fully connected network, but the fallible component assumptions are malicious faulty

processors and malicious faulty communication links. In [60] , the assumption in a

generalized connected network is that all network processors are partitioned into groups. Each

 11

group has the same number of processors, with the network topology fully connected. The

fallible components include malicious faulty processors and malicious faulty communication

links. In the general network [51] , the network topology may not be fully connected, the

fallible components are dormant/malicious faulty processors, and dormant/malicious faulty

communication links. In the multicasting network [61] , processors are partitioned into groups,

with each group having different numbers of processors, the network topology may not be

fully connected and fallible components are dormant/malicious faulty processors and

dormant/malicious faulty communication links. Table 2-1 shows a comparison of various BA

protocols over different wired network models.

Table 2-1 The comparison of various BA protocols over different wired network models
Network models

Fully Connected
Network

Generalized
Connected Network

General Network Multicasting
Network

Lamport et al.[28] V
Pease et al. [37] V
Yan et al. [70] V
Wang et al. [60] V V
Siu et al. [51] V V
Wang et al. [61] V V V V

2.3.1.2 The BA Problem in Pure Wireless Network

In recent years, Mobile Ad Hoc Networks (MANETs) have become more popular. MANET is

a self-organizing multi-hop system without any fixed infrastructure. Therefore, users can still

use network services while continually on the move. Some of the potential MANET

applications include military purpose, rescue and conference [39] .

So far, numerous routing algorithm have been proposed for MANET, and they may be

generally classified into three categories, table-driven routing algorithm, on-demand routing

algorithm and hybrid routing algorithm [22] . The table-driven (also called as the proactive)

routing algorithm involves all processors trying to have complete knowledge of all paths to all

 12

other processors in the MANET, such like FSR [38] , FSLS [44] , OLSR [24] and TBRPF [6]

The on-demand (also called as the reactive) routing algorithm involves paths being discovered

when they are required, such like AODV [40] and DSR [25] . The hybrid routing algorithm

involves a combination of the table-driven routing algorithm and on-demand routing

algorithm, such like ZRP [36] . Any of the above strategies can help each processor transmit a

message to other processors in the MANET.

To achieve perfect reliability in the MANET, reaching a common agreement in the

presence of faults before performing some special tasks is essential [47] . However, previous

BA protocols for static networks [28] [37] [51] [60] [61] [70] are not applicable in an

MANET. Because, previous BA problem is considered for a static network [28] [37] [51] [60]

[61] [70] , and each processor does not have mobility in a static network. However, each

processor has mobility in the MANET, so the processor may move away from or back to the

MANET at any time. Therefore, some of the fault-free processors (mobile processors may

move away from the network during BA protocol execution and back to the network before

ending the BA protocol) would not receive enough messages to reach a common agreement.

Thus, previous BA protocols for static networks [28] [37] [51] [60] [61] [70] are not

applicable in an MANET.

For MANET, we proposed a BA protocol [67] in 2004, called Mobile Ad-Hoc

Agreement Protocol (MAHAP), for solving the BA problem in the MANET. MAHAP is the

first BA protocol to solve the BA problem in the MANET. MAHAP allows return processors

(mobile processors move away from the network during BA protocol execution and back to

the network before ending the BA protocol) to reach the same agreement value. The detailed

description of MAHAP is shown in chapter 4. Moreover, Wang et al. [63] proposed a BA

protocol in 2004, called Byzantine Agreement under Mobile Network, for solving the BA

problem in the mobile network. The feature of [47] is that the number of rounds of message

exchange required is dynamic. If processor immigrates or moves away from the network, the

 13

number of rounds required is recomputed. Subsequently, Wang et al. [66] proposed a BA

protocol in 2007, called Subnet Byzantine Agreement Protocol, for solving the BA problem in

the virtual subnet of a MANET. The virtual subnet is designed to prevent the broadcast storm

problem. However, they assumed that each processor can not leave from the network or

immigrate into the network during BA protocol execution. Hence, they did not consider the

return processors. In Tsou [55] , they proposed another BA protocol in 2007, called

Hierarchical Clustering Agreement Protocol, for solving the BA problem in the hierarchical

cluster-oriented MANET. Tsou [55] used the cluster concept to make return processors

receive enough messages to reach a common agreement. Hence, the protocol proposed by

Tsou [55] is applicable with return processor in cluster-oriented MANET. However, the

protocol proposed by Tsou [55] is inapplicable in mobile ip network and MANET when

return processor is considered. Due to mobile ip network and MANET are not logically

divided into cluster architecture. Table 2-2 shows a comparison of various BA protocols over

different wireless network models.

Table 2-2 The comparison of various BA protocols over different wireless network models
 Network models Return processor
 Mobile IP

Network
MANET Virtual Subnet

of MANET
Cluster-oriented

MANET
Applicable Inapplicable

MAHAP V V V
Wang et al. [63] V V V
Wang et al. [66] V V V V
Tsou [55] V V

2.3.2 Consensus Problem

The Consensus problem [3] [52] [64] [65] [70] [71] [72] and BA problem are two closely

related fundamental problems in agreement on a common value in distributed system. The

difference between the BA problem and Consensus problem is that each processor has its own

initial value in the Consensus problem [70] . The Consensus problem is defined by these two

 14

properties:

(Consensus_Agreement): All fault-free processors agree on a common value;

(Consensus_Validity): If the initial value of all processors is vi, then all fault-free

processors shall agree on vi.

That is, each processor has its own initial value and the initial value of each processor

may be different in the Consensus problem. After executing the Consensus protocol, each

fault-free processor can make the same decision (common value), so the common value is

necessary to be selected from one of the initial values or the default value (the default value is

predefined).

In view of the definition of the initial value and the common value, the Consensus

problem is solved if n copies of the BA protocol are run in parallel [70] . Through these

properties, it can be clearly understood that the BA problem is a special case of the Consensus

problem in which only one processor’s initial value is of interest. To summaries the

differences among the BA problem and Consensus problem, Table 2-3 compares the

assumptions and the goals of the BA and Consensus problems.

Table 2-3 The differences among the BA problem and Consensus problem

 Byzantine Agreement Consensus

The owner of the initial value Source processor Each processor
Value to be agreed A single value A single value

In previous results [3] [52] [65] [64] [70] [71] [72] , the Consensus problem was also

solved in many network models with various fallible component assumptions. They are

Consensus problem in pure wired network and Consensus problem in pure wireless network.

 15

2.3.2.1 The Consensus Problem in Pure Wired Network

The Consensus problem has been visited in many kinds of wired networks, such as broadcast

network [3] , fully connected network [70] , general network [52] and multicasting network

[65] .

For a broadcast network, Babaoglu et al. [3] proposed a protocol to solve the Consensus

problem in the presence of malicious faulty processors. Subsequently, Yan et al. [70] proposed

a protocol to solve the Consensus problem with malicious faulty processors in fully connected

network. Afterward, Siu et al. [52] proposed a protocol for handling dormant/malicious faulty

processors and dormant/malicious faulty communication links in general network. For a

multicasting network, Wang et al. [65] proposed a protocol to solve Consensus problem with

dormant/malicious faulty communication links. Table 2-4 shows a comparison of various

Consensus protocols over different network models.

Table 2-4 The comparison of various Consensus protocols over different wired networks
 Network models
 Broadcast Network Fully Connected

Network
General Network Multicasting

Network
Babaoglu et al. [3] V
Yan et al.[70] V V
Siu et al. [52] V V V
Wang et al. [65] V V V V

2.3.2.2 The Consensus Problem in Pure Wireless Network

The Consensus problem has also been visited in many kinds of wireless networks, such as

mobile ip network [64] , MANET [64] , virtual subnet of MANET [72] and cluster-oriented

MANET [71] .

For mobile ip network and MANET, Wang et al. [64] proposed a protocol to solve the

Consensus problem with dormant/malicious communication links. For virtual subnet of

 16

MANET, Yan et al. [72] proposed a Consensus protocol with dormant/malicious

communiation links. Moreover, Yan et al. [71] proposed a protocol to solve the Consensus

problem with dormant/malicious communication links in cluster-oriented MANET. Table 2-5

shows a comparison of various Consensus protocols over different wireless network models.

Table 2-5 The comparison of various Consensus protocols over different wireless networks
 Network models
 Mobile IP Network MANET Virtual Subnet of

MANET
Cluster-oriented

MANET
Wang et al. [64] V V
Yan et al. [72] V
Yan et al. [71] V

2.3.3 Fault Diagnosis Agreement Problem

In a highly reliable fault-tolerant environment, to reach a common agreement is not

enough. It is also necessary to detect/locate the faulty components in the network. Therefore,

we must consider another related problem which is called the fault diagnosis problem. There

are two fault diagnosis models in the fault diagnosis problem. They are non-agreement [1] [30]

[46] and agreement [23] [59] [62] . In the non-agreement fault diagnosis model, one or more

fault-free processors can detect the faulty processors, but the detection results of a fault-free

processor may not agree with other fault-free processors. In the agreement fault diagnosis

model, the detection results of each fault-free processor are the same. Hence, the agreement

fault diagnosis model is better than non-agreement fault diagnosis model in a highly reliable

fault-tolerant environment. Therefore, we consider the Fault Diagnosis Agreement (FDA)

problem [23] [59] [62] . FDA is used to make each fault-free processor detect/locate “the

same” faulty components in the network. After reaching the FDA, each fault-free processor

can maintain the performance and integrity of the network. Protocols designed to deal with

the FDA problem should satisfy the following requirements:

 17

(FDA_Agreement): All fault-free processors must identify the common set of faulty

processors;

(FDA_Fairness): NO fault-free processor is incorrectly detected as faulty by any

fault-free processor.

There are two distinct approaches to dealing with the fault diagnosis problem: the

test-based approach [30] and the evidence-based approach [1] [23] [46] [59] [62] . In the

test-based approach, where a testing processor p may test another processor q, if the testing

processor p is fault-free, then the test results is correct. However, such an approach is not

applicable to the case where the testing processor is faulty or the processor q is of the

malicious kind. The detailed description of malicious fault is shown in chapter 2.2.1. The

reason is that if the testing processor p is faulty, then the test results of the testing processor p

will be incorrect; if the processor q is of the malicious kind, then the processor q can hide its

faulty behaviors and pass the test held by the testing processor p. Therefore, the test-based

approach is not suitable for the fault diagnosis problem with malicious faulty components. On

the other hand, in the evidence-based approach, the evidence-based protocol collects the

received messages in the BA protocol. Therefore, the evidence-based fault diagnosis protocol

uses the received messages in the BA protocol as the evidence to find out the faulty

components. Therefore, the evidence-based fault diagnosis protocol can handle the faulty

components of the malicious kind [1] [23] [46] [59] [62] . Table 2-6 shows different

approaches of the fault diagnosis problem.

After the set of faulty processors is detected/located by all fault-free processors, we can

re-configure the network and eliminate the faulty processors to enhance the performance and

strengthen the integrity of the network.

 18

Table 2-6 The different approaches of the fault diagnosis problem
 Approaches Agreement
 Test-based Evidence-based Non-agreement Agreement
Mallela et al. [30] V V
Adams et al. [1] V V
Shin et al. [46] V V
Hsiao et al.[23] V V
Wang et al.[59] V V
Wang et al.[62] V V

2.3.3.1 The Related Work on the Fault Diagnosis Agreement Problem

In previous result, the FDA problem is only considered for a static network (fully connected

network, general network and multicasting network) [1] [23] [30] [46] [59] [62] .

For a fully connected network, Mallela et al. [30] proposed a protocol to detect dormant

faulty processors. In their protocol, they used the test-based approach. However, test-based

approach is not applicable with malicious faulty processors. Subsequently, Adams et al. [1]

and Shin et al.[46] proposed two evidence-based protocols to detect malicious faulty

processors in fully connected networks. However, their protocols are non-agreement fault

diagnosis model. Hence, the detection results of a fault-free processor may not agree with

other fault-free processors. Afterward, Wang et al. [59] proposed a fault diagnosis agreement

protocol to detect the malicious faulty processor by evidence-based approach. Hence, the

detection results of each fault-free processor are the same.

For a general network, Hsiao et al. [23] proposed a fault diagnosis agreement protocol to

detect the malicious faulty processor by evidence-based approach. For a multicasting network,

Wang et al. [62] proposed a fault diagnosis agreement protocol to detect the malicious faulty

processors by evidence-based approach. Table 2-7 shows a comparison of various FDA

protocols over different static network models.

 19

Table 2-7 The comparison of various FDA protocols over different static network models
 Network Models Agreement
 Fully Connected

Network
General
Network

Multicasting
Network

Non-agreement Agreement

Adams et al. [1] V V
Mallela et al. [30] V V
Shin et al. [46] V V
Wang et al.[59] V V
Hsiao et al.[23] V V V
Wang et al.[62] V V V

2.4 Conclusion

As described in chapter 2.3, most of existing protocols are designed for solving the BA,

Consensus and FDA problems in pure wireless network or pure wired network. However,

most network environments today are combined wired and wireless. In this dissertation, we

revisited agreement problems in combined wired/wireless network.

 20

Chapter 3

Basic Concepts and Approaches

The research objective of this dissertation is to propose protocols for solving agreement

problems in combined wired/wireless network. As a matter of fact, pure wired networks and

pure wireless networks are all special cases of the combined wired/wireless networks. We also

discuss the agreement problems in pure wired network (fully connected network, broadcasting

network, generalize connected network, general network) and pure wireless network

(MANET) in chapter 2.3.1, 2.3.2, 2.3.3, and 4. Moreover, we also propose a fault diagnosis

agreement protocol to detect/locate the faulty processors. In the usage, many P2P networks

are overlay networks because they run on top of the combined wired/wireless network. Hence,

we give an application of Consensus protocol to ensure the file consistency of file-sharing in

P2P networks. The flow chart of the proposed approaches is shown in Figure 3-1.

 21

Combined Wired/Wireless
Network

Wired Network Wireless Network

[Chapter 4]
Byzantine Agreement Protocol:

Mobile Ad-Hoc Agreement Protocol (MAHAP)

[Chapter 7]
Fault Diagnosis Agreement Protocol:

Adaptive Fault Diagnosis Agreement Protocol (AFDA)

[Chapter 5]
Byzantine Agreement Protocol:

Server-initiated Byzantine Agreement Protocol (SBAP)

[Chapter 6]
Consensus Protocol:

Client-initiated Consensus Protocol (CCP)

Peer-to-Peer Network

[Chapter 8]
File Consistency Problem of File-Sharing in P2P Network

An Application of Consensus Protocol:
Consensus Protocol for P2P Network (CPp2p)

Figure 3-1. The flow chart of the proposed approach

3.1 Agreement Problem in Pure Wireless Network

Since, previous BA protocols [28] [37] [51] [60] [61] [70] for wired network are not

applicable in an MANET. Hence, we proposed a first BA protocol to solve the BA problem in

an MANET in 2004. The first protocol designed to solve the BA problem in an MANET is

called MAHAP (Mobile Ad-Hoc Agreement Protocol). MAHAP allows each fault-free

processor (include return processors) to reach a common agreement value for solving the BA

problem using the minimum number of message exchanges and tolerating a maximum

number of faulty processors. The assumptions and parameters of the proposed BA protocol in

the MANET are listed as follows:

 Each processor in the MANET can be uniquely identified.

 22

 Let N be the set of all processors in the network and ∣N∣= n, where n is the

number of processors in the underlying MANET, and n≥4.

 One of processors is designated as the source processor that holds an initial value.

 The processors of the underlying MANET are assumed fallible.

 A processor that transmits messages is called a sender processor.

 There is only one source processor that transmits messages in the first message

exchange round in the BA problem.

 Let pm be the maximum number of malicious faulty processors.

 Let pa be the maximum number of away processors.

 The constraint of the number of malicious faulty processors and away processors

in the MANET is n>3pm+pa.

 Each processor can transmit a message to all other processors in the MANET

through routing protocols (on-demand routing protocol or table-driven protocol or

hybrid routing protocol).

 All messages are encrypted. Intermediate components cannot falsify a message

from a sender processor to a receiver processor.

 Each processor can detect a processor that is not in the MANET.

 A processor does not know the faulty status of other processors.

The detailed description of MAHAP is shown in chapter 4.

3.2 Agreement Problem in Combined Wired/Wireless Network

Previous BA and Consensus protocols for wired network [3] [28] [37] [51] [52] [60] [61] [65]

[70] were not applicable in combined wired/wireless networks. Because, mobile processors

may move away from the network during BA protocol execution and back to the network

before ending the BA protocol, these mobile processors would not receive enough messages

 23

to reach a common agreement value.

Furthermore, the communication overhead of the BA and Consensus protocols are

inherently large because the BA and Consensus protocols require numerous rounds to

exchange messages [19] . Previous BA and Consensus protocols [28] [37] [51] [52] [60] [70]

designed for flat architectures were not efficient because all messages must propagate

globally throughout the network.

To solve the BA and Consensus problems in the combined wired/wireless network,

create secure communications between each processor and reduce the communication

overhead, we propose a secure communication protocol and hierarchical BA and Consensus

protocols.

3.2.1 Byzantine Agreement Problem in Combined Wired/Wireless Network

The proposed BA protocol for combined wired/wireless network is called the SBAP

(Server-initiated Byzantine Agreement Protocol). SBAP use the hierarchical model concept to

reduce the communication overhead and provide secure communications by cryptographic

technologies. The assumptions and parameters of the proposed BA protocol in the combined

wired/wireless network are listed as follows:

 The underlying network is a two-level combined wired/wireless network.

 The two levels include a higher network level and a zone level.

 The combined wired/wireless network consists of wired backbones and wireless

cells that provide access to mobile processors.

 Processors include agreement-server, mobile processor and stationary processor.

 Agreement-server is a powerful and reliable computer with high bandwidth.

 Mobile processor is a processor with mobility.

 Stationary processor is a processor without mobility.

 24

 Let N be the set of all processors in the network and |N|= n, where n is the number

of processors in the underlying network.

 Let ZN be the set of all agreement-servers in the network and |ZN|= zn, where zn is

the number of agreement-servers in the underlying network and zn ≥4.

 The underlying network is unreliable: messages may be dropped, reordered,

inserted or duplicated by faulty processors.

 Each processor in the network can be identified uniquely.

 Let pm be the maximum number of malicious faulty processors allowed.

 Let zm be the maximum number of malicious faulty agreement-servers allowed.

 The constraint of the number of malicious faulty agreement-servers in the network

is zn >3zm.

 All messages are encrypted. Intermediate components cannot falsify a message

from a sender processor to a receiver processor.

 A processor does not know the faulty status of other processors in the underlying

network.

The detailed description of SBAP is shown in chapter 5.

3.2.2 Consensus Problem in Combined Wired/Wireless Network

The proposed Consensus protocol for combined wired/wireless network called the CCP

(Client-initiated Consensus Protocol). CCP also use the hierarchical model concept to reduce

the communication overhead and provide secure communications by SRFC (Secure Relay

Fault-tolerance Channel). The assumptions and parameters of the proposed Consensus

protocol in the combined wired/wireless network are listed as follows:

 The underlying network is un-fully connected.

 The underlying network is a two-level combined wired/wireless network.

 25

 The two levels include a higher network level and a zone level.

 The combined wired/wireless network consists of wired backbones and wireless

cells that provide access to mobile processors.

 Processors include consensus-server, mobile processor and stationary processor.

 Clients include stationary processor and mobile processor.

 Consensus-server is a powerful and reliable computer with high bandwidth.

 Mobile processor is a processor with mobility.

 Stationary processor is a processor without mobility.

 Let N be the set of all processors in the network and |N|= n, where n is the number

of processors in the underlying network.

 Let ZN be the set of all consensus-servers in the network and |ZN|= zn, where zn is

the number of consensus-servers in the underlying network and zn ≥4.

 The underlying network is unreliable: messages may be dropped, reordered,

inserted or duplicated by faulty components.

 Each processor in the network can be uniquely identified.

 Let pm be the maximum number of malicious faulty processors allowed.

 Let pd be the maximum number of dormant faulty processors allowed.

 Let zm be the maximum number of malicious faulty consensus-servers allowed,

zm≤⎣(zn-1)/3⎦.

 The constraint of the number of malicious faulty consensus-servers and dormant

faulty consensus-servers in the network is zn> ⎣(zn-1)/3⎦+2zm+zd.

 Let zd be the maximum number of dormant faulty consensus-servers allowed.

 Let cm be the maximum number of malicious faulty communication links allowed

in the higher network level.

 Let cd be the maximum number of dormant faulty communication links allowed in

the higher network level.

 26

 Let c be the connectivity of each consensus-server in the higher network level,

where c>cm+cd+zm+zd.

 The connectivity cp of Zonep must be larger than the number of malicious faulty

components (processors and communication links) plus the number of dormant

faulty components in Zonep, where 1≤p≤zn.

 A processor does not know the faulty status of other components in the underlying

network.

The detailed description of SBAP is shown in chapter 5.

3.3 Fault Diagnosis Agreement Problem in Combined Wired/Wireless

Network

In recent years, combined wired/wireless networks have become more and more popular. In

order to provide a highly reliable computing environment for combined wired/wireless

network, we shall propose a new protocol to solve the FDA problem in combined

wired/wireless networks.

The proposed protocol called Adaptive Fault Diagnosis Agreement Protocol (AFDA).

AFDA is an adaptive FDA protocol. AFDA not only can solve the FDA problem in combined

wired/wireless network, but also AFDA can solve the FDA problem in other networks.

Because, AFDA is an evidence-based protocol that collects the messages accumulated in a BA

protocol as evidence and then detects/locates the common set of faulty processors by

examining the collected evidence. For example, AFDA with MAHAP (BA protocol for

MANET) can sovle the FDA problem in MANET. AFDA with SBAP (BA protocol for

combined wired/wireless network) can solve the FDA problem in combined wired/wireless

network. The assumptions and parameters of the proposed AFDA protocol in MANET and

combined wired/wireless network is shown in chapter 3.1 and 3.2. The detailed description of

 27

AFDA is shown in chapter 7.

3.4 File Consistency Problem of File-Sharing in Peer-to-Peer Systems

In the usage, the file-sharing application has been the most popular application in Peer-to-Peer

(P2P) systems. Many P2P networks are overlay networks because they run on top of the

combined wired/wireless network. We know that P2P systems are flexible and self-organizing

in adapting to changes in a distributed environment. These adaptive features make the system

vulnerable [35] [49] . The malicious processors could work in coordination with other faulty

processors to modify the files and spread the inconsistent files to other fault-free processors. If

not properly controlled, fault-free processor may also spread inconsistent files to other

processors and even potentially paralyze the entire P2P network. Inconsistent file not only

spread in P2P networks but also waste resources, such as bandwidth, space of storage, and

transmission time.

Hence, checking file consistency with other fault-free processors has become the most

challenging problem in a P2P system. In this dissertation, we give an application of

Consensus protocol to ensure the file consistency of file-sharing in P2P systems. The

proposed protocol is called the CPp2p (Consensus Protocol for P2P Network). CPp2p allows

each fault-free processor to ensure the file consistency of file-sharing in P2P systems. The

assumptions and parameters of the proposed Consensus protocol in the P2P network are listed

as follows:

 Each processor in the P2P network can be uniquely identified.

 Let N be the set of all processors in the network and ∣N∣= n, where n is the

number of processors in the underlying P2P network, and n≥4.

 The processors of the underlying P2P network are assumed fallible.

 The maximum number of malicious faulty processors is n/3.

 28

 Each fault-free processor has the correct file information.

 A processor does not know the faulty status of other processors.

The detailed description of CPp2p is shown in chapter 8.

 29

Chapter 4

Byzantine Agreement Protocol for Wireless

Networks

In this chapter, we introduce our approach to solve the BA problem with malicious faulty

processors in a wireless network.

4.1 The Conditions for BA Problem in Wireless Network

To solve the BA problem in wireless network, the system model, the number of required
message exchange rounds and the constraint in wireless network should be considered first.

4.1.1 System Model

Because the processors of wireless network (MANET) are mobile, the processors may move

away from the network or return at any time. In our system, a processor that moves away

from the MANET in the message-exchanging phase is called an “away processor”, while a

processor that returns to the MANET before the decision-making phase is called a “return

processor”. Because an away processor moves away from the MANET, an away processor

cannot transmit and receive messages from other processors in the MANET. The detailed

descriptions of the message-exchanging phase and decision-making phase will be presented in

chapter 4.2.1 and 4.2.2.

In this chapter, the BA problem is considered in an MANET with fallible processors. The

failure type of a fallible processor is malicious (worst case). An MANET example is shown in

Figure 4-1. The assumptions and parameters of the system are listed in chapter 3.1.

 30

Figure 4-1. An example of MANET

4.1.2 The number of Message Exchange Rounds Required by MAHAP

In the BA problem, each processor exchanges messages during the message-exchanging phase.

Thus, the message-exchanging phase is a time consuming phase. Therefore, reducing the

number of required rounds is the major concern in an optimal protocol design. The term

“round” denotes the message exchange interval between any pair of processors [19] [28] . A

round is defined as follows: (1) Sends messages to any set of processors (2) Receives

messages from this round (3) Does local processing [19] [28] . Fischer and Lynch [19]

indicated that t+1 (t=⎣(n-1)/3⎦) is the minimum number of rounds required to get enough

messages to reach a common agreement value. By the definition of round, the number of

required message exchange rounds in the MANET is also t+1 (t≤⎣(n-1)/3⎦). A detailed

description of the message-exchanging phase will be presented in chapter 4.2.1.

4.1.3 Constraint

The number of faulty processors allowed in the network depends on the total number of

processors in the network and the processor failure types. For example, in Lamport et al. [28] ,

the assumption of processor fault type is malicious in a static network. The Lamport et al.

 31

constraint [28] is n>3pm, where pm is the number of malicious faulty processors.

The BA protocol MAHAP is designed for an MANET with malicious faulty processors.

Because MANET processors are mobile and the away processors can be detected by each

processor in the MANET, the constraint of the system is n>3pm+pa.

4.2 Proposed BA Protocol: “Mobile Ad-Hoc Agreement Protocol”

(MAHAP)

The BA protocol involves making each fault-free processor agree on a common value

transmitted by the source processor. Therefore, there are three phases in the MAHAP:

message-exchanging phase, decision-making phase and extension-agreement phase. The

message-exchanging phase is used to collect the messages, the decision-making phase is used

to compute a common agreement value for the BA problem and the extension-agreement

phase is used to allow return processors to compute a common agreement value that is the

same as that of other fault-free processors’ agreement value. In addition, the number of rounds

required for executing MAHAP is t+1 (t≤⎣(n-1)/3⎦). The MAHAP protocol can tolerate pm

malicious faulty processors, and pa away processors, where n>3pm+pa. The MAHAP protocol

definition is shown in Figure 4-2.

4.2.1 Message-Exchanging Phase

The goal of the message-exchanging phase is to collect the messages. In the MANET, each

processor has partial or complete common knowledge of the graphic information of the

underlying MANET (this depends on the routing protocols: table-driven or on-demand or

hybrid). Each processor can transmit message(s) to other processors in the MANET directly

or through intermediate processors (relay processors). To prevent the message falsification by

 32

the relay processors, the message is authenticated. Therefore, a message from a sender

processor to a receiver processor cannot be falsified by faulty relay processors. If no message

is received from a sender processor, the valueδ0 is used as the received message. The value

δ0 is used to report an absent value.

In the message-exchanging phase, the number of rounds required γ must be computed,

where γ=t+1, and t=⎣(n-1)/3⎦. In the first round of the message-exchanging phase, the source

processor transmits its initial value vs using encryption technology to all other processors.

Each processor then stores the value from the source processor in the root s of its message

gathering tree (mg-tree). The mg-tree is a tree structure that is used to store received messages

(a detailed description of the mg-tree is presented in chapter 4.2.4). If the initial value vs from

the source processor is ”δ0”, the value “0” is then used to replace the value ”δ0”. After the

first round of message-exchanging phase (i>1), each processor (except the source processor)

transmits the values at level i-1 in its mg-tree using encryption technology to all other

processors. If the value at level i-1 isδj the valueδj+1 is used as the transmitted value, where

0≤j≤⎣(n-1)/3⎦-1. Each processor stores the values received at level i in its mg-tree.

4.2.2 Decision-Making Phase

The goal of the decision-making phase is to compute a common agreement value for the BA

problem. After the message-exchanging phase, each processor has its own mg-tree. Each

processor reorganizes its mg-tree into a corresponding information collecting tree (ic-tree).

The ic-tree is a tree structure that is used to store received messages without repeated

processor names (a detailed description of the ic-tree is presented in chapter 4.2.5). Using the

VOTEad function on each processor’s ic-tree from the level t+1 to root s obtains the

agreement value VOTEad(s). The agreement value VOTEad(s) is transmitted to the return

processors. The formal description of the VOTEad function is shown in Figure 4-3. There are

 33

five conditions in the VOTEad function. If the vertex α is a leaf, then there is only one value

in the vertex α. Thus, the majority value is the value of vertex α (condition 1). Condition 2 is

used to remove the influence from malicious faulty processors. Condition 3 is used to remove

the influence from no response processors and presents the existence of absentees. Condition

4 is used to get the majority value. Condition 5 happens when there is no majority value.

Conditions 1, 4, and 5 in the VOTEad function are similar to the conventional majority vote

[28] .

4.2.3 Extension-Agreement Phase

The goal of the extension-agreement phase is to allow return processors to compute a

common agreement value the same as that of other fault-free processors’ function VOTEad(s)

value. In the extension-agreement phase, each return processor receives the agreement values

from the other processors. The VOTEad function is used on the values received to obtain the

agreement value. The return processors can then obtain the same agreement value as other

fault-free processors. The reason is that each fault-free processor can reach a common

agreement value if n>3pm+pa. Thus, there are at least n-⎣(n-1-pa)/3⎦-pa processors that are

fault-free and have the same agreement value. That is, in the worst case, a return processor

can receive n-⎣(n-1-pa)/3⎦-pa copies of the same value, which is larger than ⎣(n-1-pa)/3⎦. A

return processor can then decide which agreement value using the VOTEad function.

 34

MOBILE AD-HOC AGREEMENT PROTOCOL (MAHAP)
Definition:

 For the “Table-driven” Ad-Hoc routing protocols, each processor has common
knowledge of the entire graphic information G=(E,N), where N is the set of processors
in the network and E is a set of processor pairs (Ni,Nj) indicating a physical link (the
radio range is covered) between processor Ni and processor Nj ,where 1 ≤ i,j ≤ n.

 For the “On-demand” Ad-Hoc routing protocols, each processor has partial common
knowledge of the graphic information G=(E,N).

 Each processor can transmit a message to all other processors in the MANET through
the “On-demand“ or the “Table-driven” or the “Hybrid” protocol.

 Three processor roles: sender processor, relay processor and receiver processor,
depending on the message flow. A message sent from a sender processor to a receiver
processor may be passed through some intermediate (relay processor).

 A relay processor cannot falsify a message from a sender processor to a receiver
processor. This is achieved using encryption technology.

 The return processor, a processor that moves away from the MANET in the
message-exchanging phase, and returns to the MANET before the decision-making
phase.

 Each processor receives other processors’ messages at each message exchange round. If
no message is received, the value is replaced with δ0.

Figure 4-2. The proposed MAHAP protocol (cont’d.)

 35

Message-Exchanging Phase:

Compute the number of rounds required γ: γ=t+1, where t= ⎣(n-1)/3⎦.
For i = 1 to γ

If i=1, then:
1. The source processor transmits its initial value vs using encryption technology to

all other processors.
2. Each processor stores the value from the source processor in the root s of its

mg-tree.
3. If the initial value vs from the source processor is “δ0”, the value “0” is used to

replace the “δ0” value.
If i > 1, do:

1. Except for the source processor, each processor transmits the values at level i-1 in
its mg-tree using encryption technology to all other processors. If the value at
level i-1 is δ j, the value δ j+1 is used as the transmitted value, where
0≤j≤⎣(n-1)/3⎦-1.

2. Each processor stores the values received at level i of its mg-tree.
 Next i
Decision-Making Phase:

Step 1: Each processor turns the mg-tree into its corresponding ic-tree by deleting the
vertices with repeated names.

Step 2: Each processor uses the VOTEad function on its ic-tree from the level t+1 to root s
and obtains the agreement value VOTEad(s).

Step 3: Each processor transmits the VOTEad(s) value by using encryption technology to
the return processors if there is any return processor in the MANET.

Extension-Agreement Phase: (for the return processor only)
Step 1: Each return processor requests other processors to send their VOTEad(s) values.
Step 2: Each return processor receives other processors’ VOTEad(s) values.
Step 3: Each return processor uses the VOTEad function to the received messages to obtain

the agreement value.

Figure 4-2. The proposed MAHAP protocol

 36

FUNCTION VOTEad(α)
 begin

if the α is a leaf
output the value of α /* condition 1*/

else begin
if the number of value δ0 is ≥ 3*(t-γ+1)+[(n-1) mod 3]

output the value of α /* condition 2*/
if the majority value isδi, where 1≤ i ≤ ⎣(n -1)/3⎦-1

output the value δi-1 /* condition 3*/
if the majority value is the non-δj value, where 0≤ j ≤⎣(n -1)/3⎦-1, m∈{0,1}

output the majority value m /* condition 4*/
if the majority value does not exist

output the default value φ /* condition 5*/
end

end.
The VOTEad function only counts the non-valueδ0 (excluding the last level of the ic-tree) for all
vertexes at the γ-th level of an ic-tree, where 1≤ γ ≤t+1, t=⎣(n-1)/3⎦.

Figure 4-3. The VOTEad function

4.2.4 The Message Gathering Tree (mg-tree)

The structure of an mg-tree with one level, an mg-tree with two levels and mg-tree with three

levels are shown in Figure 4-4(b), Figure 4-4(d) and Figure 4-4(e). Each fault-free processor

maintains such an mg-tree during the execution of MAHAP. At the first message exchange

round, Processor s transmits its initial value to the other processors. We assume that each

receiver processor can always identify the sender of a message. When a fault-free processor

receives the message sent from the source processor, it stores the received value, denoted as

val(s), at the root of its mg-tree as shown in Figure 4-4(b). At the second message exchange

round, each processor transmits the root value of its mg-tree to the other processors. If

Processor a sends message val(s) to Processor b, then Processor b stores the received

messages from Processor a, denoted as val(sa), in vertex sa of its mg-tree. Similarly, if

Processor b sends message val(sa) to Processor a, then the value is val(sab) and stored in

vertex sab of Processor a’s mg-tree as presented in Figure 4-4(e). Generally speaking,

message val(sa…n), stored in the vertex sa…n of an mg-tree, implies that the message just

received was sent through the source processor, Processor a,…, Processor n, where Processor

 37

n is the latest processor to pass the message. When a message is transmitted through a

processor more than once, the name of the processor will be repeated correspondingly. For

instance, the appearance of message val(saa) in vertex saa in Figure 4-4(e) indicates that the

message is sent from Processor s to Processor a and to somewhere else and then to Processor

a again; therefore, Processor a appears twice in vertex name saa.

In summary, the root of an mg-tree is always named s to denote that the stored message

is sent from the source processor at the first message exchange round, and the vertex of an

mg-tree is labeled with a list of processor names. The processor name list contains the names

of the processors through which the stored message was transferred.

4.2.5 The Information Collecting Tree (ic-tree)

An ic-tree is reorganized from a corresponding mg-tree by removing the vertices with

repeated processor names in order to avoid the repeated influences from faulty processors in

an ic-tree. In Figure 4-4(f), there is an example of an ic-tree created by deleting the repeated

processors name of the original mg-tree.

4.3 An MAHAP Execution Example

The worst BA problem case occurs when the source processor is a malicious faulty processor.

If the BA problem can be solved in the worst case (the source processor is a malicious faulty

processor), the BA problem can be solved in all other cases if n>3pm+pa. Therefore, in this

section, an example of executing MAHAP in the worst case is given.

The MANET example is shown in Figure 4-1. There are nine processors in the network.

The malicious faulty processors are Processors s and e. The source processor is a malicious

faulty processor which means that Processor s may transmit different values to different

 38

processors. To reach a common agreement value from each fault-free processor in our

example, the MAHAP needs 3 (⎣(9-1)/3⎦+1) message exchange rounds.

In the first round of message-exchanging phase, the source processor Processor s

transmits different messages to different processors in the MANET, as shown in Figure 4-4(a).

Therefore, the fault-free Processor a receives the value “0” from the source processor in the

first round of message-exchanging phase and stores the message received in the root s of its

mg-tree, as shown in Figure 4-4(b). In the second round of message-exchanging phase,

Processors b and f move away from the MANET, as shown in Figure 4-4(c). Fault-free

Processor a therefore cannot receive the message from Processors b and f. An mg-tree

example of Processor a in the second round of message-exchanging phase is shown in Figure

4-4(d). In addition, an mg-tree example of Processor a in the third round is shown in Figure

4-4(e).

In the decision-making phase, each fault-free processor turns its mg-tree into the

corresponding ic-tree by deleting the vertices with repeated names to avoid repeated influence

from faulty processors. An example of an ic-tree by Processor a is shown in Figure 4-4(f).

Using the VOTEad function on its ic-tree from the level t+1 to the root s, an agreement value

“0” can be obtained. An example using the VOTEad function on Processor a’s ic-tree from the

level t+1 of the ic-tree to roots s is shown in Figure 4-4(g). If there is any return processor in

the MANET, each processor transmits its agreement value to the return processor.

In the extension-agreement phase, each return processor receives the other processors’

agreement values (the function VOTEad(s) values). Using the VOTEad function on the

received messages, an agreement value can be obtained. Processor b returns to the MANET

before the decision-making phase, as shown in Figure 4-4(h). An example of Processor b

getting the other processors’ agreement values and using the VOTEad function to obtain the

final agreement value “0” is shown in Figure 4-4(i).

 39

(a) In the first round of message-exchanging phase, Processor s transmits its initial value to

other processors

(b) Processor a stores the received value from Processor s in the root of its mg-tree

Processor f
Processor b

Processor d

Processor c

Processor e Processor a

Processor h

Processor g

Processor s

Move away

(c) Processor b and f move away in the second round of message-exchanging phase

Figure 4-4. An example of executing MAHAP (cont’d.)

 40

Processor e

Processor d

Processor g

Processor cProcessor b

Processor h

Processor a Processor f

0

?0

? 0

1 1

0

(d) Processor a can detect the Processor b and Processor f do not send the message and stores

the received messages from other processors in the level 2 of its mg-tree

Figure 4-4. An example of executing MAHAP (cont’d.)

 41

Turn the mg-tree into the

corresponding ic-tree by deleteing the

vertices with repeated names

(e) The final mg-tree of Processor a after the

message-exchanging phase (mg-tree with three levels)

(f) The ic-tree of Processor a

Figure 4-4. An example of executing MAHAP (cont’d.)

 42

(g) Using function VOTEad on Processor a’s ic-tree from the level t+1 to root s, an agreement

value “0” can be obtained.

(h) Processor b returns to the MANET before the decision-making phase.

Figure 4-4. An example of executing MAHAP (cont’d.)

 43

Processor e

Processor d

Processor g

Processor cProcessor a

Processor s

Processor b Processor f

0

?1

0 0

0 1

Processor h

0

VOTEad(0,0,0,1,δ0,0,0,1) = 0

(i) Processor b can get the other processors’ agreement values and use function VOTEad to
obtain the final agreement value “0”.

Figure 4-4. An example of executing MAHAP

4.4 The Correctness and Complexity of MAHAP

To prove the correctness of our protocol, a vertex α is called common [4] if each fault-free

processor has the same value for α. That is, if vertex α is common, then the value stored in

vertex α of each fault-free processor’s mg-tree or ic-tree is identical. When each fault-free

processor has the common initial value from the source processor in the root of its ic-tree, if

the root s of the ic-tree of a fault-free processor is common and the initial value received from

the source processor is stored in the root of the tree structure, then an agreement is reached

because the root is common. Thus, the constraints, (BA_Agreement) and (BA_Validity), can

be rewritten as:

(BA_Agreement’): Root s is common, and

(BA_Validity’): VOTEad(s) = vs for each fault-free processor, if the source processor is

fault-free.

To prove that a vertex is common, the term common frontier [4] is defined as follows:

When every root-to-leaf path of the tree (an mg-tree or an ic-tree) contains a common vertex,

 44

the collection of the common vertices forms a common frontier. In other words, every

fault-free processor has the same messages collected in the common frontier if a common

frontier does exist in a fault-free processor’s tree structure (mg-tree or ic-tree). Subsequently,

using the same majority voting function to compute the root value of the tree structure, every

fault-free processor can compute the same root value because the same input (the same

collected messages in the common frontier) and the same computing function will produce the

same output (the root value).

Since MAHAP can solve the BA problem, the correctness of MAHAP should be

examined using the following two terms.

(1) Correct vertex: Vertex αi of a tree is qualified as a correct vertex if processor i (the last

processor name in vertex αi’s processor name list) is fault-free. In other words, a

correct vertex is a place to store the value received from a fault-free processor.

(2) True value: For a correct vertex αi in the tree of a fault-free processor j, val(αi) is the

true value of vertex αi. In other words, the stored value is the true value.

According to the definition of a correct vertex, the value it stores is received from a

fault-free processor, and a fault-free processor always transmits the same value to all

processors. Therefore, the correct vertices of such an mg-tree are common. After turning the

mg-tree into its corresponding ic-tree by deleting the vertices with repeated processor names,

the values stored on the correct vertices of an ic-tree will be the same. Therefore, all of the

correct vertices of an ic-tree are also common. Again, using the definition of a correct vertex,

a common frontier does exist in the ic-tree. Thus, the root can be proven a common vertex

[(BA_Agreement’) is true] due to the existence of a common frontier, regardless of the

correctness of the source processor. An agreement on the root value can now be reached. To

check the validity of (BA_Validity’), (BA_Validity’) is always true due to the propositional

logic [8] . If the source processor fails, (BA_Validity’) is true, and the reason is that the

proposition [(P Q)] means (NOT(P) OR Q), so (NOT(P) OR Q) or (P Q) is true when P is

 45

false, where P implies “the source processor is fault-free” and (P Q) implies (BA_Validity’s).

Conversely, root s is a correct vertex by the definition of a correct vertex if the source

processor is fault-free. If all of the correct vertices’ true values can be computed by MAHAP,

then the true value of the root can also be computed because the root is a correct vertex. As

defined earlier, the true value of the root is the initial value of the source processor if the

source processor is fault-free. In short, each fault-free processor’s root value is the initial

value of the source processor if the source processor is fault-free; therefore, (BA_Validity’) is

true if the source processor is fault-free. Since (BA_Agreement’) and (BA_Validity’) are both

true regardless if the source processor is fault-free or failed, the BA problem is solved.

Lemma 4-1: All correct vertices of an ic-tree are common.

Proof: After reorganization, no repeated vertices are in an ic-tree. At level t +1 or above, the

correct vertex α has at least 2t +1 children, out of which at least t +1 children are

correct. The true values of these t +1 correct vertices are common, and the majority of

the vertex values α are common. The correct vertex α is common in the ic-tree if the

level of α is less then t +1. Consequently, all correct vertices of the ic-tree are common.

Lemma 4-2: The common frontier exists in the ic-tree.

Proof: There are t +1 vertices along each root-to-leaf path of an ic-tree in which the root is

labeled by the source name, and the others are labeled by a sequence of processor

names. Since at most t processors can fail, there is at least one correct vertex along

each root-to-leaf path of the ic-tree. Using Lemma 4-1, the correct vertex is common

and the common frontier exists in each fault-free processor’s ic-tree.

 46

Lemma 4-3: Let α be a vertex, α is common if there is a common frontier in the sub-tree

rooted at α.

Proof: If the height of α is 0 and the common frontier (α itself) exists, then α is common. If

the height of α is r, the children of α are all in common under the induction hypothesis

with the height of the children being r-1.

Corollary 4-1: The root is common if the common frontier exists in the ic-tree.

Theorem 4-1: The root of a fault-free processor’s ic-tree is common.

Proof: Using Lemma 4-1, Lemma 4-2, Lemma 4-3 and Corollary 4-1, the theorem is proved.

Theorem 4-2: Protocol MAHAP solves the BA problem in an MANET.

Proof: To prove this theorem, MAHAP must meet the constraints (BA_Agreement’) and

(BA_Validity’)

(BA_Agreement’): Root s is common.

By Theorem 4-1, (BA_Agreement’) is satisfied.

(BA_Validity’): VOTEad(s) = v for all fault-free processors, if the initial value of the

source is vt say v = vt

Most processors are fault-free. The value of the correct vertices for all of the fault-free

processor mg-trees is v.

When the mg-tree is turned into an ic-tree, the correct vertices still exist.

Therefore, each correct vertex of the ic-tree is common (Lemma 4-1), and its true

value is v. Using Theorem 4-1, this root is common. The computed value VOTEad(s) =

v is stored in the root for all the fault-free processors. Therefore, (BA_Validity’) is

satisfied.

 47

Theorem 4-3: MAHAP requires t+1 rounds in the message-exchanging phase to solve the

BA problem in a MANET, and t+1 (t=⎣(n-1)/3)⎦) is the minimum number of rounds in

the message-exchanging phase.

Proof: In the BA problem, each processor exchanges messages during the

message-exchanging phase. Thus, the message-exchanging phase is a time consuming phase.

Therefore, reducing the number of required rounds is the major concern in an optimal

protocol design. The term “round” denotes the message exchange interval between any pair of

processors [19] [28] . A round is defined as follows: (1) Sends messages to any set of

processors (2) Receives messages from this round (3) Does local processing [19] [28] .

Fischer and Lynch [19] indicated that t+1 (t=⎣(n-1)/3⎦) is the minimum number of rounds

required to get enough messages to reach a common agreement value. By the definition of

round, the number of required message exchange rounds in the MANET is also t+1

(t≤⎣(n-1)/3⎦).

4.5 Conclusion

In order to provide a reliable computing environment for dynamic MANET, we need to solve

the BA problem in the dynamic MANET. To the best of our knowledge, MAHAP is the first

protocol to solve the BA problem in the dynamic MANET. In this study, we revisited the BA

problem in an MANET with the most damaging type of failed processors (malicious fault).

The proposed MAHAP is the optimal protocol that can solve the BA problem in the MANET.

The term “optimal” means that the protocol can reach an agreement with the minimum

number of rounds required and tolerates the maximum number of faulty components.

MAHAP has the following features:

 MAHAP can solve the BA problem in various MANETs (Such as table-driven

 48

routing MANET, on-demand routing MANET and hybrid routing MANET) by

Theorem 4-2.

 MAHAP allows return processors to reach the same agreement value by

extension-agreement phase in MAHAP

 MAHAP can solve the BA problem using the minimum number of message

exchange rounds (t+1 rounds of message exchange)

 MAHAP can tolerate the most damaging failed processor type (malicious fault).

 MAHAP can tolerate pm malicious faulty processors and pa away processors.

 49

Chapter 5

Server-initiated Agreement Protocol for Combined

Wired/Wireless Networks

Wireless networks have become ubiquitous, making combined wired/wireless network a

popular trend of development in nowadays. In practice, most current networks are combined

wired and wireless environments. In this chapter, we introduce our approach to solve the BA

problem with malicious faulty processors in a combined wired/wireless network.

5.1 The Conditions for BA Problem in Combined Wired/Wireless

Network

To design a BA protocol in combined wired/wireless network, certain conditions must be

taken into account. They are the system model, properties of the BA problem and the

constraint in combined wired/wireless network.

5.1.1 System Model

Byzantine agreement protocols imply large communication overhead [19] [28] . The previous

network architectures from these results [28] [37] [51] [60] [70] were all flat architectures,

with all processors carrying the same responsibility. BA protocols in flat architectures are not

efficient because all messages must propagate globally throughout the network. To reduce the

communication overhead, we used a hierarchical model concept. Our network model is a

two-level combined wired/wireless computing environment consisting of a wired backbone

and wireless cells that provide access to mobile processors.

 50

In this chapter, the BA problem is considered in a combined wired/wireless network with

fallible processor. The failure type of a fallible component is malicious fault (worst case).

Figure 5-1 shows an example of the two-level combined wired/wireless network. There are

sixteen processors in the network. There are four agreement-servers, five stationary

processors and seven mobile processors. Each agreement-server manages a zone’s processors.

For example, agreement-server ASA manages processor A1, A2 and A3 in the zone A. The

assumptions and parameters of the system are listed in chapter 3.2.1.

Figure 5-1. An example of combined wired/wireless network

5.1.2 Properties of the BA Problem

By the concept of multilevel hierarchy, each processor in the zone is managed by its

agreement-server. Hence, two properties of BA problem in two-level combined wired/wireless

network are modified as follows:

 51

(BA_Agreement): All fault-free processors managed by fault-free agreement-server agree

on a common value;

(BA_Validity): If the source agreement-servcer is fault-free, the agreement value should

be the initial value of the source agreement-server.

5.1.3 Constraint

In the BA problem, the number of faulty processors that can be allowed is determined by the

total number of processors in the network. Pease, Shostak and Lamport [28] indicated the

constraint of the BA problem is n>3pm.

The network architecture of Pease, Shostak and Lamport [28] is flat architecture; so all

processors need to exchange the messages in the message-exchanging phase. In our protocol,

the network architecture is hierarchical, only agreement-servers need to exchange the

messages in the message-exchanging phase, so the constraint of our model is zn>3zm.

5.2 Secure Communication

A close study of cryptographic technologies is not necessary for our purpose. Hence, we give

a brief introduction of some cryptographic technologies that are used in our system.

5.2.1 Related Cryptographic Technologies

The brief introduction of Diffie-Hellman key exchange, advanced encryption standard and

threshold signature are shown here.

 52

5.2.1.1 Diffie-Hellman Key Exchange

Diffie-Hellman key exchange [16] is a cryptographic protocol that allows two processors to

agree on a secret key over an insecure communication channel. Once the shared secret key

has been established, they can use it to encrypt their secret communication using conventional

cryptographic methods. Figure 5-2 shows the Diffie-Hellman key exchange procedure.

5.2.1.2 Advanced Encryption Standard – Symmetric Cryptographic Algorithm

In a symmetric cryptographic system, the communication parties share a key in advance. They

encrypt and decrypt delivered messages by the shared key. The security is based on the shared

key. If adversaries reveal the shared key, the symmetric cryptographic system will crash.

Advanced Encryption Standard (AES) also known as Rijndael [14] is a block cipher adopted

as an encryption standard by the US government and expected to be used worldwide. It has

been extensively analyzed and compared with its predecessor, the Data Encryption Standard

(DES) [45] .

5.2.1.3 Threshold Signature

In threshold signature scheme, the secret s is divided into k shares and is set a threshold value

h (h ≤ k). When collecting to h above shares, we can reconstruct the original secret s. The

threshold signature is based on the following equation:

paxaxaxaxf h
h

h
h mod...)(01

2
2

1
1 ++++= −

−
−

− , where p is a prime number.

 53

(p, g, gu mod p)

(gV mod p)

Secret key = guv mod p

A

A chooses u

A computes
(gv mod p)u = guv mod p

B

B chooses v

B computes
(gu mod p)v = guv mod p

Figure 5-2. Diffie-Hellman key exchange

5.2.2 Approach

We know that mobile processor power is supplied using batteries. Because power saving is a

serious topic with mobile processors. The asymmetric cryptographic algorithm, which needs a

large amount of computation is not suited for mobile processors. The advantage of the

symmetric cryptographic algorithm is that it is generally much faster than the asymmetric

cryptographic algorithm. However, the disadvantage of the symmetric cryptographic

algorithm is the requirement for a shared secret key with one copy at each end. Hence,

maintaining secure during distribution is an important problem.

Hence, we combined the asymmetric cryptographic and symmetric cryptographic

algorithms to obtain the advantages of both in this study. That is, the session key is generated

using the Diffie-Hellman key exchange and the symmetric key is generated using the AES.

Since the symmetric key is generated by AES is generally faster than the asymmetric

cryptographic algorithm. Then, we use symmetric key to encrypt the messages.

5.3 BA Protocol: “Server-initiated Byzantine Agreement Protocol”

(SBAP)

To meet the characteristics of mobile environments in the BA problem, most of the

 54

communication and computation overhead must be fulfilled within in the agreement-servers.

Therefore, only the agreement-server needs to exchange messages and compute the agreement

value in our protocol. All messages in SBAP are encrypted by the symmetric key to ensure the

security. There are three phases in SBAP; they are message-exchanging phase,

decision-making phase and agreement-distribution phase. The protocol SBAP is shown in

Figure 5-3.

5.3.1 The Number of Required Rounds of Message-Exchange

In the BA protocol, we use term “round” to compute the amount of messages exchange. The

term “round” denotes the interval of message exchange between any pair of processors [19]

[28] . Fischer and Lynch [19] indicated that t+1 (t=⎣(n-1)/3⎦) rounds are the minimum number

of rounds required to get enough messages to achieve BA.

The network architecture by Fischer and Lynch [19] is flat architecture, but the network

architecture in our system is a hierarchical architecture. In our protocol, only

agreement-servers need to exchange messages in the message-exchanging phase. Therefore,

the number of required rounds of message-exchange is zm+1 (zm=⎣(zn-1)/3⎦). That is, SBAP

can reduce the entire network transmission consumption

5.3.2 Message-Exchanging Phase

Each agreement-server computes the number of rounds required γ (γ= zm+1, where zm=(zn-1)/3)

at first. At first round of message-exchanging phase, only the source processor needs to

encrypt its initial value to all other agreement-servers. Each agreement-server then stores the

value from the source processor in the root of its mg-tree. At the i≠1 round of

message-exchanging phase, each agreement-server (without source processor) encrypts the

value at level i-1 round in its mg-tree to all other agreement-servers. Each agreement-server

 55

then stores the value from other agreement-servers in the level i-th of its mg-tree.

5.3.3 Decision-Making Phase

After message-exchanging phase, each agreement-server deletes vertices with repeated

names of mg-tree to avoid the repeated influence from faulty processors. Then, each

agreement-server uses the VOTEmg function on its mg-tree from leaf to root to obtain the

agreement value. The VOTEmg function is shown in Figure 5-4.

5.3.4 Agreement-Distribution Phase

Each agreement-server encrypts its agreement value to all processors in its zone. All fault-free

processors (both stationary processors and mobile processors), which are managed by the

fault-free agreement-server, can then reach a common agreement value. The value agreed

upon by a faulty processor is ignored [28] .

 56

Decision-Making
Phase:

Message-Exchanging
Phase:

(SBAP)
Server-initial Byzantine Agreement Protocol

Agreement-
Distribution Phase:

All messages in SBAP are encrypted by the symmetric key

Compute the number of rounds required γ: γ= zm+1, where zm= (zn-1)/3

Begin
 For i = 1 to γ
 If i =1 Then
 1. The source processor encrypts its initial value to all other agreement-servers.
 2. Each agreement-server stores the value from the source processor in the root
 of its mg-tree.
 Else
 1. Each agreement-server (without source processor) encrypts the value at level

i-1 in its mg-tree to all other agreement-servers.
 2. Each agreement-server stores the value from other agreement-servers in the
 level i-th of its mg-tree.
 End If
 Next
End

Each agreement-server deletes vertices with repeated names of the mg-tree.
Each agreement-server uses VOTEmg function on its mg-tree (from leaf to root) to get

 the agreement value.

Each agreement-server encrypts the agreement value to all processors in its zone.

Figure 5-3. The BA protocol Server-initial Byzantine Agreement Protocol (SBAP)

Figure 5-4. The VOTEmg Function

 57

5.4 An Example of Reaching Byzantine Agreement

In this section, we present a short synopsis of the SBAP execution protocol. A combined

wire/wireless network is shown in Figure 5-1. There are sixteen processors (including four

agreement-servers, five stationary processors and seven mobile processors) falling into four

zones. For example, there are three mobile processors (A1, A2 and A3) in the zone A, and they

are managed by agreement-server ASA. The malicious faulty components are

agreement-server ASA, mobile processor C3 and stationary processor D1.

The source processor is the most important in the BA protocol. If the source processor

has a malicious fault, it may send different initial values to different processors in the first

round of message-exchanging phase. Therefore, the worst case BA problem is that the source

processor has a malicious fault. If the BA protocol can solve the worst case, the BA problem

can be solved in other cases. Hence, we suppose that the agreement-server ASA is the source

processor. To reach a common agreement value among all fault-free component in our

example, the SBAP needs 2 (⎣(4-1)/3⎦+1) message-exchange rounds.

In the first round of message-exchanging phase, the source processor ASA encrypts its

initial value to all other agreement-servers in the network. Agreement-servers ASB, ASC, and

ASD then store the value from the source processor ASA in the root of their mg-trees, as

shown in Figure 5-5. In the second round of message-exchanging phase, each

agreement-server (without source processor) encrypts the value at the root in its mg-tree to all

other agreement-servers. The 2-level mg-tree of agreement-server ASB in the second round of

message-exchanging phase is shown in Figure 5-6. In the decision-making phase, each

agreement-server deletes the vertices with repeated mg-tree names to avoid the repeated

influence from faulty processors. In our example, there is no vertex with a repeated name. The

VOTEmg function is then used on its mg-tree from leaf to root to get the agreement value. For

example, agreement-server ASB computes VOTE(A) = (0,1,1) = 1 (VOTE(A) = (VOTE(AB),

 58

VOTE(AC), VOTE(AD))). An agreement value 1 is obtained. In the agreement-distribution

phase, each agreement-server encrypts its agreement value to all processors in its zone.

Therefore, agreement-server ASB encrypts its agreement value 1 to processor B1 and

processor B2 in the zone B.

Figure 5-5. The mg-trees of each agreement-server in the first round of message-exchanging

phase

Figure 5-6. The 2-level mg-tree of agreement- server ASB

5.5 The Correctness and Complexity of SBAP

If the value stored in vertex α of each fault-free agreement-server’s mg-tree is identical, then

the vertex α is called common [4] . When each fault-free agreement-server’s has the common

initial value from the source agreement-server in the root of its mg-tree, then an agreement is

reached because the root is common. Thus, the constraints, (Agreement) and (Validity), can be

rewritten as:

 59

(BA_Agreement’): Root value is common.

(BA_Validity’): VOTE(α) = initial value of source agreement-server, for each

fault-free agreement-server, if the source processor is fault-free.

To prove that a vertex is common, the term common frontier [4] is defined as follows:

When every root-to-leaf path of the mg-tree contains a common vertex, the collection of the

common vertices forms a common frontier. In other words, every fault-free agreement-server

has the same messages collected in the common frontier if a common frontier does exist in a

fault-free agreement-server’s mg-tree. Subsequently, using the same function VOTEmg to

compute the root value of the tree structure, every fault-free agreement-server can compute

the same root value because the same input (the same collected messages in the common

frontier) and the same computing function will produce the same output (the root value).

Lemma 5-1: All correct vertices of an mg-tree are common.

Proof: In the decision-making phase, all vertices with repeated names are deleted in an

mg-tree. At level zm+1 or above, the correct vertex α has at least 2zm+1 children, out of which

at least zm+1 children are correct. The true values of these zm+1 correct vertices are common,

and the majority of the vertex values α are common. The correct vertex α is common in the

mg-tree if the level of α is less then zm+1. Consequently, all correct vertices of the mg-tree are

common.

Lemma 5-2: The common frontier exists in the mg-tree.

Proof: There are zm+1 vertices along each root-to-leaf path of an mg-tree in which the root is

labeled by the source name, and the others are labeled by a sequence of agreement-server id.

Since at most zm agreement-server can fail, there is at least one correct vertex along each

 60

root-to-leaf path of the mg-tree. Using Lemma 5-1, the correct vertex is common and the

common frontier exists in each fault-free agreement-server’s mg-tree.

Lemma 5-3: Let α be a vertex, α is common if there is a common frontier in the sub-tree

rooted at α.

Proof: If the height of α is 0 and the common frontier (α itself) exists, α is common. If the

height of α is γ, the children of α are all in common under the induction hypothesis with the

height of the children being γ-1.

Corollary 5-1: The root is common if the common frontier exists in the mg-tree.

Theorem 5-1: The root of a fault-free agreement-server’s mg-tree is common.

Proof: Using Lemmas 3-1, 3-2, 3-3 and Corollary 5-1, the theorem is proved.

Theorem 5-2: Protocol SBAP solves the BA problem in a two-level combined

wired/wireless network.

Proof: To prove this theorem, SBAP must meet the constraints (BA_Agreement’) and

(BA_Validity’)

(BA_Agreement’): Root value is common. By Theorem 5-1, (BA_Agreement’) is satisfied

(BA_Validity’): VOTE(α) = v for all fault-free agreement-servers, if the initial value of

the source agreement-server is vs say v = vs.

Most agreement-servers are fault-free. The value of the correct vertices for all of the fault-free

agreement-servers’ mg-trees is v. Therefore, each correct vertex of the mg-tree is common

(Lemma 5-1), and its true value is v. Using Theorem 5-1, this root is common. The computed

value VOTE(α) = v is stored in the root for all the fault-free agreement-server. Therefore,

(BA_Validity’) is satisfied.

 61

Theorem 5-3: SBAP requires zm+1 rounds in the “message-exchanging phase” to solve

the BA problem in a two-level combined wired/wireless network, and zm+1

(zm=⎣(zn-1)/3)⎦) is the minimum number of rounds in the “message-exchanging phase”.

Proof: The “message-exchanging phase” is a time consuming phase. Fischer and Lynch [19]

indicated that t+1 (t=⎣(n-1)/3⎦) rounds are the minimum number of rounds required to get

enough messages to achieve BA. The network architecture of Fischer and Lynch [19] is flat

architecture, but the network architecture of our system is hierarchical architecture. In our

protocol, only agreement-servers need to exchange the messages in the message-exchanging

phase, so the number of required rounds of message-exchange is zm+1 (zm=⎣(zn-1)/3⎦). Thus,

SBAP requires zm+1 rounds, and this number is the minimum.

5.6 Conclusion

Combined wired/wireless networks have become popular because they have the advantages of

both wired network (e.g., powerful computation ability, high bandwidth, reliability and so on.)

and wireless network (e.g., mobility, quick deployment and so on). Previous BA protocols [28]

[37] [51] [60] [70] , were not applicable for combined wired/wireless networks. In this paper,

we revisit the BA problem over a combined wired/wireless network with malicious faulty

processors and use a hierarchical architecture to reduce the communication overhead.

Base on the preceding discussion, the protocol SBAP have the following features:

 Most of the communication and computation overhead are fulfilled within in

agreement-servers. (To meet the characteristics of mobile environments, most of the

communication and computation overhead must be fulfilled within in the

agreement-servers.)

 SBAP can reduce the number of message-exchange rounds (SBAP uses the

 62

hierarchical model concept to reduce the number of message-exchange rounds.)

 SBAP can reach a common agreement with malicious faulty processors in two-level

combined wired/wireless networks. (By Theorem 5-2.)

 The number of message-exchange rounds for SBAP is the minimum. (By Theorem

5-3.)

 63

Chapter 6

Client-initiated Consensus Protocol for Combined

Wired/Wireless Networks

In chapter 5, we proposed a server-initiated BA protocol, SBAP, to solve the BA problem with

malicious faulty processors in a combined wired/wireless network. In this chapter, we

consider another related problem: Consensus problem. Moreover, malicious fault assumption

with processors grows into the dual failure mode (both dormant fault and malicious fault) on

both processors and communication links.

That is, we introduce our approach to solve the Consensus problem with

dormant/malicious faulty processors/communication links in a combined wired/wireless

network in this chapter.

6.1 The Conditions for Consensus Problem in Combined

Wired/Wireless Network

To design a Consensus protocol, certain conditions must be taken into account. They are the

system model, properties of the Consensus problem and the constraint.

6.1.1 System Model

In recent years, the bandwidth and quality of wireless networks has been drastically improved.

Therefore, wireless network has become more and more popular [9] , resulting in the

development of nowadays network from wired or wireless network to combined

wired/wireless network.

 64

We know that the communication overhead of the Consensus protocol is inherently large

[19] . Previous Consensus protocols were designed for flat networks [52] [70] In a flat

network, all processors undertake equal responsibility and all messages must propagate

globally throughout the network. This makes the previous Consensus protocols inefficient. In

this study, we use a hierarchical concept to reduce the communication overhead.

In this chapter, the Consensus problem is considered in a combined wired/wireless

network with fallible components (processor and communication link). The failure type of a

fallible component may be dormant fault or malicious fault. Figure 6-1 shows an example of

the two-level combined wired/wireless network. There are six consensus-servers, six

stationary processors and nine mobile processors. The network is divided into six zones by six

consensus-servers. Each consensus-server manages a zone’s processors. For example,

consensus-server CSA manages processor A1, A2 and A3 in the zone A. The assumptions and

parameters of the system are listed in chapter 3.2.2.

B1

B2

ZoneB

D3

D2

D1

ZoneD

A1

A3A2

ZoneA C1 C2
C3

C4

ZoneC

E1ZoneE

CSC

CSB

CSE

CSD
CSF

CSA

F2F1

ZoneF

Stationary Processor

Consensus Server

Mobile Processor

Malicious Fault

Dormant Fault

Higher network
level

Zone level

Figure 6-1. Two-level combined wired/wireless network

 65

6.1.2 Properties of the Consensus Problem

Using the hierarchical concept, each processor in the zone is managed by its consensus-server.

Hence, two properties of the Consensus problem in two-level combined wired/wireless

network are modified as follows:

(Consensus_Agreement): All fault-free processors managed by fault-free consensus-server

agree on a common value;

(Consensus_Validity): If the initial value of all consensus-server is vi, then all fault-free

processors managed by the fault-free consensus-server shall agree

on vi.

6.1.3 Constraint

In the Consensus problem, the number of faulty processors allowed in the network depends

on the total number of processors. Meyer and Pradhan [33] indicates the constraint of

Consensus problem with malicious faulty processors and dormant faulty processors is n

>3pm+pd. Afterward, Siu et al. [50] finds that the correct constraint should be n>

⎣(n-1)/3⎦+2pm+pd.

The network architectures of Meyer and Pradhan [33] and Siu et al. [50] are flat. All

processors need to exchange the messages in the message-exchanging phase. In our

Consensus protocol, the network architecture is hierarchical, and only the consensus-server

needs to exchange the messages in the message-exchanging phase. Hence, the constraint of

our model is zn> ⎣(zn-1)/3⎦+2zm+zd.

 66

6.2 Transmission Protocol: “Secure Relay Fault-tolerance Channel”

(SRFC)

Energy consumption is a major performance metric for mobile processors [48] . If the power

consumption is low, the battery lifetime will be longer. In this section, a transmission protocol

“Secure Relay Fault-tolerance Channel” (SRFC) is proposed. SRFC can remove the influence

from the faulty intermediate component and reduces power consumption to provide a secure

communication channel between sender and receiver. The transmission protocol SRFC is

shown in Figure 6-2.

Secure Relay Fault-tolerance Channel (SRFC)
Assumption:
■ Each consensus-server has the common knowledge of graphic information
■ The connectivity of each consensus-server is c (c>cm+cd+ zm+zd)
■ Each processor in the same zone has the common knowledge of graphic information with its zone
■ The connectivity cp of Zonep must be larger than the number of malicious faulty components plus

 the number of dormant faulty components in Zonep, where 1≤p≤zn

■ The message through component with dormant fault can be detected by symmetric key, and the
 message is substituted as φ
■ The message through "intermediate component" with malicious fault can be detected by

 symmetric key, and the message is substituted as φ

Channel-Creating Phase:
 1. Generating an session key by Diffie-Hellman key exchange
 2. Generating an symmetric key by AES

- Using session key to distribute the symmetric key securely

Message-Transmission Phase:
 1. Using symmetric key to transmit the message through one path of c processor-disjoint paths
 2. If the message is found out has the question by receiver processor, then re-transmits the message

 through another path of c
- If all messages from c paths are φ, then the received message is substituted by λ0, where λ0 is used to
 report the existence of an absentee

Figure 6-2. Secure Relay Fault-tolerance Channel (SRFC)

 67

6.2.1 The Connectivity Constraint

In Meyer and Pradhan [33] , the fallible components are dormant/malicious faulty processors.

Meyer and Pradhan [33] used a time-out mechanism to detect a dormant faulty processor.

However, the time-out mechanism cannot detect a malicious faulty intermediate component.

To avoid the majority value from being dominated by malicious faulty intermediate

components, the connectivity constraint in the network by Meyer and Pradhan [33] is c’

(c’>2pm+pd, where pm is the maximum number of malicious faulty processors allowed and pd

is the maximum number of dormant faulty processors allowed). In Siu, Chin and Yang [50] ,

the fallible components are dormant/malicious faulty processors and dormant/malicious faulty

communication links. Siu, Chin and Yang [50] also used a time-out mechanism to detect a

dormant faulty component. Thus, the connectivity constraint in the network by Siu, Chin and

Yang [50] is c’’ (c’’>2pm+pd+2(lm+ld), where pm is the maximum number of malicious faulty

processors allowed, pd is the maximum number of dormant faulty processors allowed, lm is the

maximum number of malicious faulty communication links allowed and ld is the maximum

number of dormant faulty communication links allowed).

In SRFC, the network connectivity constraint is improved. For the higher network level,

the connectivity of each consensus-server is c (c>cm+cd+zm+zd where cm is the maximum

number of malicious faulty communication link allowed, cd is the maximum number of

dormant faulty communication links allowed, zm is the maximum number of malicious faulty

consensus-servers allowed and zd is the maximum number of dormant faulty

consensus-servers allowed). For the zone level, the connectivity cp of Zonep must be larger

than the number of malicious faulty components (processors and communication links) plus

the number of dormant faulty components in Zonep, where 1≤p≤zn. Because a symmetric key

is used, the receiver processor can detect a message that is influenced by dormant and

malicious faulty intermediate components.

 68

6.2.2 Four Cases of Fault Handling

We classify the fault (or attack) that may take place in a transmission process into four cases:

1. Sender with dormant fault or intermediate component with dormant fault

2. Intermediate component with malicious fault

3. Sender with malicious fault

4. Receiver with dormant fault or receiver with malicious fault

Our protocol SRFC can deal with Cases 1 and Case 2. For Case 1, a message sent

through a dormant faulty component cannot be reconstructed by the symmetric key. In Case 2,

we can detect that the message is false using the symmetric key. In Case 3, our SRFC cannot

detect if the message is correct or not. Because the sender has the symmetric key, the sender

has control over the message. Case 3 can be solved using our Consensus protocol CCP. The

detailed description of CCP is presented in chapter 6.3. For Case 4, because the receiver is a

faulty component, we do not care the message received from the faulty receiver.

If the network connectivity is c, we can determine c processor-disjoint paths between the

sender and receiver. These c processor-disjoint paths can be predefined [68] . An example of

c(c=3) processor-disjoint path between CSB and CSC is shown in Figure 6-3. In Path 2 there is

a dormant faulty communication link between CSE and CSC. Hence, the message is influenced

by the dormant faulty component (Case 1). CSC can detect this problem using the symmetric

key. In Path 3 there is a malicious faulty component CSA (Case 2), CSC also can detect this

problem using the symmetric key. In Path 1, there is no faulty intermediate component

between CSB and CSC, CSC can receive the message from CSB without faulty influence. That

is, if c>cm+cd+zm+zd (3>0+1+1+0, 3>2), we can ensure that the receiver can receive the

message without influence from faulty intermediate component.

 69

Figure 6-3. The c disjoint paths between CSB and CSC, where c=3

To reduce power consumption, each sender only transmits one copy of the message

through one path of c paths. If the receiver detects that the message is false, it then

re-transmits the message through another path in c processor-disjoint paths. If all messages

from c paths are φ, then the received message is substituted by λ0. λ0 is used to report the

existence of an absentee.

That is, SRFC can remove the influence from dormant/malicious faulty intermediate

components and the influence from dormant faulty sender. SRFC is an efficient transmission

protocol which reduces the computation time and power consumption to provide a secure

communication channel.

6.3 Consensus Protocol: “Client-initiated Consensus Protocol” (CCP)

In this section, we would like to focus our attention on the proposed Consensus protocol

“Client-initiated Consensus Protocol” (CCP). To meet the characteristics of Consensus

problem in combined wired/wireless networks, most of the communications and computation

overhead must be fulfilled within by the consensus-servers. Therefore, only consensus-servers

need to exchange messages and compute the common value in CCP. Furthermore, all

messages in CCP are transmitted by SRFC. There are two stages in CCP, namely the

Client-initiated Stage and the Consensus Stage. The Consensus protocol CCP is shown in

Figure 6-4.

 70

6.3.1 Client-initiated Stage

The purpose of the Client-initiated Stage is to collect the initial value from each client and

compute the pre-consensus value for each consensus-server. Any client may initiate

Consensus in the network. When a client pi wants to initiate a Consensus, it transmits the

“initiate consensus” message to its consensus-server CSj. (Client pi is managed by CSj, where

1≤i≤ the number of processor in CSj's zone, 1≤j≤zn.) The consensus-server CSj then informs

other consensus-servers to gather the initial value from each client in its zone. Each

consensus-server can obtain the pre-consensus value by threshold signature if it collects more

than half of the same value in its zone.

 71

Figure 6-4. Client-initiated Consensus Protocol (CCP)

 72

6.3.2 Consensus Stage

The purpose of the Consensus Stage is to compute a common value. There are three phases in

the Consensus stage; including the message-exchanging phase, the decision-making phase

and the consensus-distribution phase. In the message-exchanging phase, each

consensus-server computes the number of rounds required at first. Then, each

consensus-server creates the vertex ℜ in the level 0 of its mg-tree, and set Val(ℜ)=null.

6.3.2.1 The Number of Required Rounds in Message-Exchanging phase

In the Consensus protocol, we also use term “round” to compute the number of messages

exchanged. In our protocol, only consensus-servers need to exchange the messages in the

message-exchanging phase. So the number of required rounds in the message-exchanging

phase is zm+1 (zm=⎣(zn-1)/3⎦).

6.3.2.2 Message-Exchanging Phase

In the first round of the message-exchanging phase, each consensus-server transmits its

pre-consensus value to all other consensus-servers. Each consensus-server then stores the

values from the other consensus-servers in level 1 of its mg-tree. If the received value is λ0,

value 0 is substituted for value λ0.

In the i≠1 round of message-exchanging phase, each consensus-server transmits the

values at level i-1 round in its mg-tree to all other consensus-servers.

 73

6.3.2.3 Decision-Making Phase

After the message-exchanging phase, each consensus-server deletes vertices with repeated

names of mg-tree to avoid the repeated influence from faulty consensus-servers. Then, each

consensus-server uses the VOTEmix function on its mg-tree from leaf to root to obtain the

common value. The VOTEmix function is shown in Figure 6-5. Conditions 1, 4 and 5 are

similar to convention majority vote [28] . Condition 2 is used to deal with the dual failure

mode (where both dormant fault and malicious fault exist). Condition 3 is used to describe the

existence of an absentee.

6.3.2.4 Consensus-Distribution Phase

Each consensus-server transmits the common value to all processors in its zone. All fault-free

processors (both stationary processors and mobile processors), which are managed by the

fault-free consensus-server, can obtain a common value. The value agreed upon by a

processor, which is managed by faulty consensus-server, is ignored [28] .

Figure 6-5. The VOTEmix Function

 74

6.4 An Example of Reaching Consensus

In this section, we give an example of executing SRFC and CCP. A two-level combined

network is shown in Figure 6-1. The dormant faulty components are B1 and LCE. The

malicious faulty components are CSA, D1 and C3.

6.4.1 Client-initiated Stage

B2 wants to initiate a Consensus. Hence, B2 creates a secure communication channel between

CSB by SRFC. B2 then transmits the “initiate-consensus” message to CSB through

processor-disjoint path created by SRFC. After CSB receives the “initiate-consensus” message,

CSB creates secure communication channels to all other consensus-servers by SRFC and then

informs all consensus-servers to gather the initial value from each client in its zone. The

initial value of each client is shown as follows.

Client ID: A1 A2 A3 B1 B2 C1 C2 C3 C4 D1 D2 D3 E1 F1 F2

Initial value: 0 1 0 λ0 1 1 1 1 1 1 0 1 0 0 0

Each consensus-server then obtains the pre-consensus value using the threshold signature.

For example, there are two processors in ZoneB, one is B1 which is a dormant faulty processor,

and another is B2 which is a fault-free processor. Hence, CSB can detect that the message from

B1 is influenced by a dormant faulty component. After B1 and B2 sign its initial value to CSB,

CSB can obtain the pre-consensus value 1 (the number of value 1 is greater than or equal to

half of the number of processor in ZoneB, λ0 is ignore). The pre-consensus value of each

consensus-server is shown as follows.

Consensus-Server ID: CSA CSB CSC CSD CSE CSF
Pre-consensus value: 0 1 1 1 0 0

 75

6.4.2 Consensus Stage

In the message-exchanging phase, we first compute the number of rounds required γ=2

(γ=⎣(6-1)/3⎦+1). Then, we creates the vertex ℜ in the level 0 of its mg-tree, and set

Val(ℜ)=null. In the first round of the message-exchanging phase, each consensus-server

transmits its pre-consensus value to all other consensus-servers by SRFC. Each

consensus-server then stores the values from other consensus-servers in the level 1 of its

mg-tree. Since CSA is a malicious faulty processor, CSA may transmit different messages to

different consensus-server to prevent the fault-free consensus-server from reaching a common

value. The messages transmitted by CSA in the first round of message-exchanging phase are

shown in Figure 6-6. An mg-tree of CSB after the first round of message-exchanging phase is

shown in Figure 6-7.

Figure 6-6. CSA transmits different message to different consensus-server

Figure 6-7. An one-level mg-tree of CSB

 76

In the second round of the message-exchanging phase, each consensus-server transmits

the value at level 1 in its mg-tree to all other consensus-servers, and stores the value from

other consensus-servers in the level 2 of its mg-tree. An mg-tree of CSB after the second round

of the message-exchanging phase is shown in Figure 6-8.

Figure 6-8. An mg-tree of CSB after the second

round of the message-exchanging phase

Figure 6-9. An mg-tree of CSB without

repeated name vertices

 77

In the decision-making phase, the vertices with repeated names of mg-tree are deleted by

each consensus-serer. An mg-tree of CSB without repeated name vertices is shown in Figure

6-9. Each consensus-server then uses the VOTEmix function on its mg-tree (from leaf to root)

to compute the common value. For example, CSB can obtain the common value φ by VOTEmix.

VOTEmix(ℜ) = ((0,0,1,1,0), (0,1,1,1,1), (0,1,1,1,1), (1,1,1,1,1), (1,0,0,0,0), (0,0,0,0,0)) =

(0,1,1,1,0,0) = φ.

6.5 The Correctness and Complexity of CCP

The goal of CCP is to enable all fault-free consensus-server to reach a common value to solve

the Consensus problem in a combined wired/wireless network. To prove the correctness of our

protocol CCP, a vertex ℜ is called common [4] if each fault-free consensus-server has the

same value for ℜ. That is, if vertex ℜ is common, then the value stored in vertex ℜ of each

fault-free consensus-server’s mg-tree is identical.

Lemma 6-1: All correct vertices of an mg-tree are common after function VOTEmix is

applied to mg-tree.

Proof: In the decision-making phase, all vertices with repeated names are deleted in an

mg-tree. At level zm+1 or above, the correct vertex α has at least 2zm+1 children, and

out of which at least zm+1 children are correct. The true values of these zm+1 correct

vertices are common, and the majority of the vertex value α is common. The correct

vertex α is common in the mg-tree if the level of α is less then zm+1. Consequently, all

correct vertices of the mg-tree are common.

Lemma 6-2: The common frontier exists in the mg-tree.

Proof: By definition, an mg-tree is a tree of level zm+1. There are zm+1 vertices along each

root-to-leaf path of an mg-tree. Since at most zm consensus-servers can fail, there is at

least one correct vertex along each root-to-leaf path of the mg-tree. Using Lemma 6-1,

 78

the correct vertex is common and the common frontier exists in each fault-free

consensus-server’s mg-tree.

Lemma 6-3: Let α be a vertex, α is common if there is a common frontier in the sub-tree

rooted at α.

Proof: If the height of α is 0 and the common frontier (α itself) exists, α is common. If the

height of α is γ, the children of α are all in common under the induction hypothesis

with the height of the children being γ-1.

Corollary 6-1: The value of root ℜ is common if the common frontier exists in the

mg-tree.

Theorem 6-1: The value of root ℜ of a fault-free consensus-server’s mg-tree is common.

Proof: Using Lemmas 4-1, 4-2, 4-3 and Corollary 6-1, the theorem is proved.

Theorem 6-2: Protocol CCP solves the Consensus problem in a two-level combined

wired/wireless network.

Proof: To prove this theorem, CCP must meet the constraints (Consensus’) and (Validity’)

(Consensus_Agreement): Root value is common.

By Theorem 6-1, (Consensus_Agreement’) is satisfied.

(Consensus_Validity): VOTE(α) = v for all fault-free consensus-servers, if the initial

value of all consensus-server is vs say v = vs.

Most consensus-servers are fault-free. The value of the correct vertices for all of the

fault-free consensus-servers’ mg-trees is v. Therefore, each correct vertex of the

mg-tree is common (Lemma 6-1), and its true value is v. Using Theorem 6-1, this root

is common. The computed value VOTE(α) = v is stored in the root for all the

 79

fault-free consensus-server. Therefore, (Validity’) is satisfied.

Theorem 6-3: CCP requires zm+1 rounds in the message-exchanging phase to solve the

Consensus problem in a two-level combined wired/wireless network, and zm+1 (zm=⎣(zn-1)/3)⎦)

is the minimum number of rounds in the “message-exchanging phase”.

Proof: In the Consensus protocol, we use term “round” to compute the number of messages

exchanged. A round is defined as follows: (1) sending messages to any set of nodes, (2)

receiving messages, and (3) processing the messages locally [19] . The

“message-exchanging phase” is a time consuming phase. Fischer and Lynch [19]

indicated that t+1 (t=⎣(n-1)/3⎦) rounds are the minimum number of rounds required to

get enough messages to achieve Consensus. The network architecture of Fischer and

Lynch [19] is a flat architecture, but the network architecture of our system is

two-level architecture. In our protocol, only consensus-servers need to exchange the

messages in the message-exchanging phase, so the number of required rounds of

message-exchange is zm+1 (zm=⎣(zn-1)/3⎦). Thus, CCP requires zm+1 rounds, and this

number is the minimum.

6.6 Conclusion

Three motives are combined in this dissertation on the Consensus problem in combined

wired/wireless network. First, most networks today are combined wired/wireless networks.

Extant Consensus protocols are not applicable to combined wired/wireless networks. Hence,

we proposed the protocol CCP to solve the Consensus problem in combined wired/wireless

network. Second, the limited resources have made the computation ability of mobile

processors often weaker than that of stationary processors. The proposed SRFC provides an

efficient and secure communication channel. Third, the communication overhead of the

 80

Consensus protocol is inherently large. We used the hierarchical concept in CCP to reduce the

large amount of communication overheads. For example, if there are 128 processors that fall

into 8 zones, the protocols designed for flat network need 43 (⎣(n-1)/3⎦ +1) rounds in the

message-exchanging phase to reach a common value. However, CCP only needs 3 (⎣(zn-1)/3⎦

+1) rounds in the message-exchanging phase to reach a common value. Therefore, CCP is

more efficient than the previous protocols when the network is logically divided into

hierarchical architecture. Table 6-1 shows some instances of the number of rounds required

for flat network and two-level network. Smaller number of zone is preferred since the number

of rounds required in the message-exchanging phase is smaller.

That is, we solved the Consensus problem with dual failure mode (both dormant and

malicious fault) on both processors and communication links in the combined wired/wireless

network. CCP requires only zm+1 rounds (minimum number of rounds) in the

message-exchanging phase which is optimal for all fault-free processors managed by

fault-free consensus-servers to reach a common value.

Table 6-1 Some instances of the number of rounds required for various Consensus protocols

 The number of rounds required in message-exchanging phase

 n=128, zn=32 n=128, zn=16 n=128, zn=8
Flat Network t+1, t=⎣(n-1)/3⎦ 43 43 43

Two-Level Network zm+1, zm=⎣(zn-1)/3⎦ 11 6 3

n: the number of processors in the underlying network and n≥4.

zn: the number of zones in the underlying network and zn≥4.

 81

Chapter 7

Fault Diagnosis Agreement

In this chapter, we introduce our approach to solve the FDA problem in a combined

wired/wireless network. The proposed protocol called Adaptive Fault Diagnosis Agreement

Protocol (AFDA). AFDA is an adaptive FDA protocol. AFDA not only can solve the FDA

problem in combined wired/wireless network, but also AFDA can solve the FDA problem in

other networks. For example, if AFDA uses the evidence gathered from the BA protocol

MAHAP, the malicious faulty processors, away processors and return processors can be

detected/located in MANET. If AFDA uses the evidence gathered from the BA protocol SBAP,

the the malicious faulty agreement-servers, away processors and return processors can be

detected/located in combined wired/wireless network.

7.1 Proposed Protocol: “Adaptive Fault Diagnosis Agreement

Protocol” (AFDA)

There are three phases in the AFDA: message-collection phase, fault-diagnosis phase and

re-configuration phase. The message-collection phase is used to collect ic-trees of all

processors/agreement-servers which executing the BA protocol MAHAP/SBAP (depends on

the network). In order to ensure that the fault diagnosis result from each fault-free

processor/agreement-server is the same in MANET/combined wired/wireless network, each

fault-free processor/agreement-server should collect the same evidence. Thus, AFDA collects

ic-trees of all processors/agreement-server by using MAHAP/SBAP (depends on the network).

The fault-diagnosis phase is used to detect/locate away processors, return processors, and

 82

malicious faulty processors/agreement-servers. The set of MFN is used to record malicious

faulty processors/agreement-servers, the set of AN is used to record processors which have

ever moved away from the network, and the set of RN is used to record return processors. The

re-configuration phase is used to re-configure the network by isolating malicious faulty

processors/agreement-servers and away processors. The AFDA protocol is shown in Figure

7-1.

7.1.1 Message-Collection Phase

The goal of the message-collection phase is to collect ic-trees of all

processors/agreement-servers which executing the BA protocol MAHAP/SBAP (except

return processors and away processors) as evidence. In order to ensure that the fault diagnosis

result from each fault-free processor/agreement-server is the same, each fault-free

processor/agreement-server should collect the same evidence. Therefore, in the

message-collection phase of AFDA, each processor/agreement-server (except return

processors and away processors) uses MAHAP/SBAP (depends on the network) to distribute

its ic-tree to all processors/agreement-servers. Then processor/agreement-server stores the

other processors’/agreement-servers’ ic-trees to construct the set of IC-trees =[ic-trees, ic-treea,

ic-treeb …, ic-treeϋ] , where ϋ is the last Processor/agreement-server id in the network by

alphabetical order. By using MAHAP/SBAP, we can ensure that fault-free

processor/agreement-server collects the same set of IC-trees (the common set of IC-trees).

The detail description about how to collect the common set of IC-trees is shown in Lemma

7-1-1 and 6-2-1.

7.1.2 Fault-Diagnosis Phase

The goal of the fault-diagnosis phase is to detect/locate away processors, return processors

 83

and malicious faulty processors/agreement-servers. Each processor/agreement-server

maintains the set of MFN, AN and RN in the fault-diagnosis phase. The set of MFN is used to

record malicious faulty processors/agreement-servers, the set of AN is used to record

processors which have ever moved away from the network and the set of RN is used to record

return processors. Each processor/agreement-server examines the common set of IC-trees in a

top-down and level by level sequence by step2 in the fault-diagnosis phase of AFDA.

7.1.2.1 Detect/Locate away processors and return processors

Some of processor has mobility in the network, and away processors can be detected by the

system. If Processor ρ has ever been an away processor, each processor sets AN = AN ∪ {ρ},

where ρ is Processor id. Moreover, return processors can also be detected, so each processor

can also record the return processor in the set of RN. If Processor Ъ is a return processor,

then RN=RN ∪ {Ъ}, where Ъ is Processor id.

7.1.2.2 Detect/Locate malicious faulty processors/agreement-servers

Each fault-free processor/agreement-server examines all vertices (except vertex s…μ) in the

IC-trees in a top-down and level by level sequence, where μ is Processor/agreement-server id

and Processor/agreement-server μ has been detected as an away processor or malicious faulty

processor/agreement-server. If the number of the most common value in vertex s…ϊ is less

than threshold-MANET/ threshold-CN, then Processor/agreement-server ϊ is a malicious faulty

processor/agreement-server. Each processor/agreement-server sets MFN = MFN ∪ {ϊ}, where

ϊ is Processor/agreement-server id. The detail description about threshold-MANET and

threshold-CN is shown in Lemma 7-1-3 and Lemma 7-2-3.

 84

7.1.3 Re-configuration Phase

In this phase, each processor/agreement-server re-configures the network logically by

isolating processors/agreement-servers in the set of ISOLATION. The set of

ISOLATION=MFN∪(AN-RN) is used to record processors/agreement-servers that should be

isolated. Then, each processor/agreement-server sets AN=Null, RN=Null and MFN=Null.

 85

 ADAPTIVE FAULT DIAGNOSIS AGREEMENT PROTOCOL (AFDA)

Message-Collection Phase:
 Step1:
 For MANET:

Each processor (except away processor and return processor) uses MAHAP to
distribute its ic-tree (as the initial value) to all processors.

For combined wired/wireless network:
Each agreement-server (except away processor and return processor) uses SBAP
to distribute its ic-tree (as the initial value) to all agreement-servers.

 Step2:
 Then each processor/agreement-server (depends on the network) stores the other

processors’/agreement-servers’ ic-trees to construct the set of IC-trees =[ic-trees,

ic-treea, ic-treeb …, ic-treeϋ], where ϋ is the last Processor/agreement-server id in the
network by alphabetical order.

 =>Each fault-free processor/agreement-server constructs the same set of IC-trees
(the common set of IC-trees) by using MAHAP/SBAP.

Fault-Diagnosis Phase:
 Set MFN=Null; the set of MFN is used to record malicious faulty

processors/agreement-servers.
 Set AN=Null; the set of AN is used to record processors which has ever

moved away.
 Set RN=Null; the set of RN is used to record return processors.

 MFN = MFN ∪ {malicious faulty processors/agreement-servers}.
 AN = AN ∪ {away processors}.
 RN = RN ∪ {return processors}.

 Step1: Detect/locate away processors and return processors
 1.1 If Processor ρ is an away processor, Then

Set AN = AN ∪ {ρ}, where ρ is Processor id.
End if

 1.2 If Processor Ъ is a return processor, Then
Set RN=RN ∪ {Ъ}, where Ъ is Processor id.

End if

Figure 7-1. The proposed AFDA protocol (cont’d.)

 86

 Step2: Detect/locate malicious faulty processors/agreement-server
 Parameter threshold-MANET = n-(│AN│+⎣(n-│AN│-1)/3⎦).

Parameter threshold-CN = n-(⎣(n-1)/3⎦).
Examine all vertices (except vertex s…μ) in the IC-trees by the following rule (in a
top-down and level by level sequence), where μ is Processor id and Processor μ has
been detected as an away processor or malicious faulty processor/agreement-server.

 For MANET:
If the number of the most common value in vertex s…ϊ is less than
threshold-MANET, Then

Processor ϊ is a malicious faulty processor.
Set MFN = MFN ∪ {ϊ}, where ϊ is Processor id.

End if
For combined wired/wireless network:

If the number of the most common value in vertex s…ϊ is less than
threshold-CN, Then

Agreement-server ϊ is a malicious faulty agreement-server.
Set MFN = MFN ∪ {ϊ}, where ϊ is agreement-server id.

End if
Re-Configuration Phase:
 Step1: Set ISOLATION=MFN∪(AN-RN); The set of ISOLATION is used to record

processors/agreement-server which should be isolated.
 Step2: According to ISOLATION, each processor/agreement-server can re-configure the

network logically.
 Step3: Set AN=Nul, RN=Null and MFN=Null.

Figure 7-1. The proposed AFDA protocol

7.2 An AFDA Execution Example

The evidence-based FDA protocol AFDA is based on the BA protocol MAHAP/SBAP. An

MAHAP execution example is given in chapter 4.3. Hence, we give an example of executing

AFDA with MAHAP. That is, AFDA collects all the processors’ ic-trees as evidence from the

example in chapter 4.3.

 87

7.2.1 Message-Collection Phase

Each processor (except away processor and return processor) uses MAHAP to distribute its

ic-tree from the example in chapter 4.3 to all processors in the message-collection phase.

Then, each fault-free processor constructs the same set of IC-trees =[ic-trees, ic-treea, …,

ic-treeh] as shown in Figure 7-2.

7.2.2 Fault-Diagnosis Phase

Each processor can detect and locate Processor b and Processor f that have ever been away

processors, so it sets AN = AN ∪ {b, f}. Because Processor b is also a return processor, each

processor also sets RN=RN ∪ {b}.

Since AFDA examines vertices in a top-down and level by level sequence, so AFDA

examines all values in vertices s of the common set of IC-trees at first. The values stored in

vertex s of IC-trees are (0,0,0,0,1,1,1). The number of the most common value “0” stored in

the vertex s is 4, which is less than 5 (9-(2+2)). Each fault-free processor can detect/locate

that Processor s is a malicious faulty processor and set MFN=MFN ∪ {s}. Then, each

fault-free processor examines the vertices sa, sb, sc, sd, se, sf, sg, and sh in level 2. Since

Processor b and Processor f have been detected as away processors, each processor will not

examine the vertices sb and sf. In level 3, each processor can detect/locate Processor that e is a

malicious processor by examining vertex sae. Because, the values stored in vertex sae are

(0,1,0,1,0,1,1), the number of the most common value “1” is 4 which is less than 5 (9-(2+2)).

Each processor sets MFN=MFN ∪ {e}.

7.2.3 Re-configuration Phase

According to AN={b, f}, RN={b} and MFN={s,e}, ISOLATION={s,e} ∪ {b, f}-{b}={s,e,f }.

 88

Each processor can isolate the Processor s, Processor e and Processor f to re-configure the

MANET logically as shown in Figure 7-3. Finally, it sets AN=Null, RN=Null and MFN=Null.

Furthermore, due to the fact that the source processor (leader) s is a faulty processor, the

system should elect a new source processor in the MANET [31] .

 89

Figure 7-2. The common set of the IC-trees by each fault-free processor (cont’d.)

 90

Figure 7-2. The common set of the IC-trees by each fault-free processor

 91

Figure 7-3. An example of MANET after re-configuration

7.3 The Correctness of AFDA

7.3.1 AFDA with MAHAP in Wireless Network

Lemma 7-1-1: Each fault-free processor receives the same common set of IC-trees as

evidence in the message-collection phase by using AFDA and MAHAP.

Proof: The proposed BA protocol MAHAP satisfies the following requirements in the

MANET:

(BA_Agreement): All fault-free processors agree on a common value;

(BA_Validity): If the source (commander) processor is fault-free, then all

fault-free processors agree on the initial value that the source

processor sends.

After executing the BA protocol MAHAP, each fault-free processor reaches the

same agreement value whether the source processor is fault-free or not. That is, if the

source processor is fault-free, all fault-free processors in the network must reach a

common agreement value which is the initial value of the source processor. If the

source processor is a faulty processor, all fault-free processor also reach a common

agreement value.

In order to let each fault-free processor collect the same set of IC-trees in the

MANET, each processor distributes its ic-tree to all the other processors by using

 92

MAHAP. Finally, each fault-free processor can receive the same set of

IC-trees=[ic-trees, ic-treea, ic-treeb …, ic-treeϋ], where ϋ is the last Processor id in the

MANET by BA_Agreement and BA_Validity.

Lemma 7-1-2: Each fault-free processor can detect/locate the same faulty processors by

using AFDA and MAHAP.

Proof: Each fault-free processor receives the same evidence by Lemma 7-1-1 and uses the

same FDA protocol AFDA, so each fault-free processor will surely detect/locate the

same faulty processors.

Theorem 7-1-1: Protocol AFDA with MAHAP satisfies the agreement of FDA.

Proof: By Lemma 7-1-1 and Lemma 7-1-2, AFDA can identify the common set of faulty

processors.

Lemma 7-1-3: The malicious faulty processors can be detected and located in MANET if

n>3pm+pa.

Proof: According to the constraint on the number of processors in an MANET is n>3pm+pa,

there are at most pa away processors and pm malicious processors in an MANET. So,

pa (pa=│AN│) away processors cannot transmit message and pm malicious processors

can produce at most pm values at the same vertex in the IC-trees different from the

most common value. That is, if the sender Processor ϊ is fault-free, there are at least

n-(│AN│+⎣(n-│AN│-1)/3⎦) values at the vertex s…ϊ in the IC-trees are the same.

Otherwise, the Processor ϊ is a malicious faulty processor.

Lemma 7-1-4: The maximum number of detectable/locatable faulty processors and away

processors by AFDA in MANET is pm malicious faulty processors and pa away processors,

n>3pm+pa.

Proof: Due to the constraint on the number of processors in an MANET is n>3pm+pa, there are

at most pm malicious processors and pa away processors in an MANET.

Theorem 7-1-2: Protocol AFDA with MAHAP satisfies the fairness requirement of FDA.

Proof: By Lemma 7-1-3, no fault-free processor is falsely detected as faulty by any fault-free

processors if n>3pm+pa.

 93

Theorem 7-1-3: Protocol AFDA with MAHAP solves the FDA problem in an MANET if

n>3pm+pa.

Proof: By Theorem 7-1-1 and Theorem 7-1-2, this theorem is proved.

7.3.2 AFDA with SBAP in Combined Wired/Wireless Network

Lemma 7-2-1: Each fault-free agreement-server receives the same common set of

IC-trees as evidence in the message-collection phase by AFDA and SBAP.

Proof: The proposed BA protocol SBAP satisfies the following requirements in the combined

wired/wireless network:

(BA_Agreement): All fault-free processors managed by fault-free agreement-server

agree on a common value;

(BA_Validity): If the source (commander) agreement-server is fault-free, the

agreement value should be the initial value of the source

agreement-server.

After executing the BA protocol SBAP, all fault-free processors managed by

fault-free agreement-server agree on a common value whether the source

agreement-server is fault-free or not. That is, if the source agreement-server is

fault-free, all fault-free processors managed by fault-free agreement-server in the

network must reach a common agreement value which is the initial value of the source

agreement-server. If the source agreement-server is a faulty processor, all fault-free

processors managed by fault-free agreement-server also reach a common agreement

value.

In order to let each fault-free processor managed by fault-free agreement server

collect the same set of IC-trees in the combined wired/wireless network, each

agreement-server distributes its ic-tree to all the other agreement-server by using

SBAP. Finally, each fault-free agreement-server can receive the same set of

IC-trees=[ic-trees, ic-treea, ic-treeb …, ic-treeϋ], where ϋ is the last agreement-server id

in the combined wired/wireless network by BA_Agreement and BA_Validity.

 94

Lemma 7-2-2: Each fault-free agreement-server can detect/locate the same faulty

agreement-server by using AFDA and SBAP.

Proof: Each fault-free agreement-server receives the same evidence by Lemma 7-2-1 and

uses the same FDA protocol AFDA, so each fault-free agreement-server will surely

detect/locate the same faulty agreement-servers.

Theorem 7-2-1: Protocol AFDA with SBAP satisfies the agreement of FDA.

Proof: By Lemma 7-2-1 and Lemma 7-2-2, AFDA can identify the common set of faulty

agreement-servers.

Lemma 7-2-3: The malicious faulty agreement-servers can be detected and located in

combined wired/wireless network if zn>3zm.

Proof: According to the constraint on the number of agreement-server in a combined

wired/wireless network is zn>3zm, there are at most zm malicious agreement-servers in a

combined wired/wireless network. So, zm malicious processors can produce at most zm

values at the same vertex in the IC-trees different from the most common value. That

is, if the sender agreement-server ϊ is fault-free, there are at least n-(⎣(n-1)/3⎦) values

at the vertex s…ϊ in the IC-trees are the same. Otherwise, the agreement-server ϊ is a

malicious faulty agreement-server.

Lemma 7-2-4: The maximum number of detectable/locatable malicious faulty

agreement-servers by AFDA in combined wired/wireless network is zm malicious faulty

agreement servers, zn>3zm.

Proof: Due to the constraint on the number of agreement-servers in a combined

wired/wireless network is zn>3zm, there are at most zm malicious agreement-servers in a

combined wired/wireless network.

Theorem 7-2-2: Protocol AFDA with SBAP satisfies the fairness requirement of FDA.

Proof: By Lemma 7-2-3, no fault-free agreement-server is falsely detected as faulty by any

fault-free agreement-server if zn>3zm.

Theorem 7-2-3: Protocol AFDA with SBAP solves the FDA problem in a combined

wired/wireless network if zn>3zm.

 95

Proof: By Theorem 7-2-1 and Theorem 7-2-2, this theorem is proved.

7.4 Conclusion

In order to provide a highly reliable computing environment for combined wired/wireless

network, we need to solve the FDA problems in combined wired/wireless network. In

previous result, FDA problems were considered for a static network. Therefore, in this study,

we revisited the FDA problems in the combined wired/wireless network. AFDA is an adaptive

FDA protocol. AFDA not only can solve the FDA problem in combined wired/wireless

network, but also AFDA can solve the FDA problem in other networks. The proposed

evidence-based FDA protocol AFDA with MAHAP can detect/locate at most pm malicious

faulty processors in an MANET. AFDA with SBAP can detect/locate at most zm malicious

faulty agreement-servers in a combined wired/wireless network.

After reaching the common agreement and fault diagnosis, we can re-configure the

network and eliminate the faulty processors to enhance the performance and strengthen the

integrity of the network. This is of special importance for high reliability applications such as

a life-critical distributed system.

 96

Chapter 8

Consensus Problem under Peer-to-Peer

Environment: An Application to File-Sharing

In nowadays, Peer-to-Peer networks (P2P) have been more and more popular. Many P2P

networks are overlay networks because they run on top of the combined wired/wireless

network. We know that the most popular application in Peer-to-Peer (P2P) system is

file-sharing. However, malicious attackers may modify files arbitrarily and spread

inconsistent files to other processors in the P2P network; inconsistent files will not only

spread in P2P networks but also waste resources, such as bandwidth, space of storage and

transmission time. Hence, how to make fault-free processors ensure that the files they hold are

correct is an import topic. So far, no previous study has attempted to solve the Consensus

problem of file-sharing with malicious processors in P2P networks.

In this chapter, we give an application of Consensus protocol. We proposed a novel

hybrid approach to solve the Consensus problem of file-sharing in P2P systems. Moreover, a

P2P network is composed of heterogeneous processors, and the ability of each processor may

vary with its computation capability (CPU), bandwidth, space of storage and etc. To provide

better quality of service (QoS), we should group processors by their abilities to reduce waiting

time. In this study, the clustering algorithm is employed to cluster the large sets of processors

into groups of smaller sets of similar processors. That is, we propose a novel hybrid approach

that clusters similar processors into the same group to provide better QoS and solve the

Consensus problem of file-sharing with malicious processors in P2P networks.

 97

8.1 Introduction

This section introduces the classification of peer-to-peer file-sharing systems and the

clustering algorithm.

8.1.1 The Classification of Peer-to-Peer File-Sharing Systems

Peer-to-Peer (P2P) systems have been developed for a long time and become more and more

popular in the area of file-sharing [2] [11] [17] [34] [20] [29] [35] [42] [49] [54] . P2P

file-sharing systems can be classified into two categories, centralized P2P file-sharing and

distributed P2P file-sharing. An example of centralized P2P file-sharing system is Napster [34]

which was first introduced in January 1999 by Shawn Fanning for MP3 files sharing and later

unplugged in July 2001. In a centralized system, each client can look up files through

centralized servers effectively. However, the centralized P2P file-sharing system has the

problem of “single point of failure”. Contrary to centralized P2P file-sharing, distributed P2P

file-sharing systems do not have this problem. The distributed P2P file-sharing systems can be

subdivided into structured and unstructured systems.

In the unstructured P2P file-sharing system, such as Gnutella [20] , each node incurs a

reasonable overhead to build overlay links arbitrarily. Lookup service in the Gnutella is

performed using query flooding. However, using query flooding in an unstructured P2P

file-sharing system may not accurately locate the file that is really in the system. Because the

network is unstructured and query packet is forwarded to the system until its Time-To-Live

(TTL) becomes zero.

In a structured P2P file-sharing system, both overlay topology and file placement are

tightly controlled. The most common structured P2P file-sharing system is Distributed Hash

Table (DHT) system [29] [35] [42] [49] [53] [54] . Distributed hash tables are a class of

 98

distributed systems that provide lookup services similar to a hash table: (name, value) pairs

are stored in the DHT. Any participating processor can efficiently retrieve the value associated

with a given name [18] . The structured DHT P2P file-sharing system can also be further

classified into two categories: variable-degree DHT system (e.g., CAN [42] and Chord [54])

and constant-degree DHT system (e.g., de-Bruijn [29] [53]). A constant-degree DHT

system, such as de-Bruijn, has a constant-sized routing table and achieves a log-arithmetic

routing hops. Moreover, de-Bruijn graphs are nearly optimal [29] . A detailed description of

de-Bruijn will be provided in chapter 8.2.3. In this study, we adopt the de-Bruijn graph as

overlay network in our P2P system. The classification of P2P file-sharing systems is shown in

Figure 8-1.

Figure 8-1. Classification of P2P file-sharing systems

8.1.2 Clustering Algorithm

P2P network is composed of a large number of heterogeneous processors. The ability of each

processor in P2P network may vary with several factors, including computation capability

(CPU), bandwidth, space of storage, and etc [43] . However, putting varied processors in the

same group may reduce system performance. Higher-performance processors may spend a lot

of time waiting for lower-performance processors. In order to provide better Quality of

 99

Service (QoS), we should put processors with similar abilities into the same group to reduce

the waiting time. Through grouping, processors within the same group are more similar to

each other than those in other groups [69] . Hence, we introduce the clustering algorithm,

k-means algorithm [26] , to find natural groups of data (processors) based on computation

capability, bandwidth, and space of storage. A detailed description of k-means algorithm is

provided in chapter 8.2.1.

8.2 System Model and Approach

In this section, we introduce our approach to solve the Consensus problem of file-sharing with

malicious processors in P2P systems. Figure 8-2. shows the flow chart of our approach.

Figure 8-2. The flow chart of the proposed approach

8.2.1 Clustering Algorithm: K-means Algorithm

The most important factors to consider when evaluating the ability of a processor are

computation capability, bandwidth, and space of storage [43] . In order to enhance system

efficiency, we should cluster processors with similar abilities into the same group based on

computation capability, bandwidth, and space of storage to reduce the waiting time. The

k-means algorithm is the simplest and most popular clustering algorithm [26] . Hence, we

adopt k-means algorithm as our clustering algorithm in our approach.

 100

The k-means algorithm is performed in the following procedure: Suppose there are nt

un-clustered processors described by the attribute vectors S={x1, x2,…, xnt }. We want to

partition these nt processors in to k clusters, where k< nt, S =S1∪S2∪...∪Sk. Let ci be the mean

of the vectors in cluster i (Si). First of all, select k number of points to be the centers of

clusters arbitrarily, C={c1, c2,…, ck}, and then find the Euclidean distance from each point to

each center, and assign the point to the closest center. Next, for each set of points assigned to

a center, find the middle of the cluster, take that value as the new center, and repeat the

process until all the centers are fixed. The k-means algorithm is shown in Figure 8-3.

 nt: the total number of un-clustered processors.

 k: the number of clusters, k< nt.

 S: the set of instances, S={x1, x2,…, xn}, |S|= nt, S =S1∪S2∪...∪Sk.

 C: the set of centers in each cluster, C={c1, c2,…, ck}.

 Si(t): the set Si in the t-th iteration.

 Ni: the number of processors in the set Si(t).

 ci(t): the center of Si in the t-th iteration.

 ||xm-ci(t)||: the Euclidean distance between xm and ci.

 Random_Select(k,S): select k processors from the set S randomly, C={c1, c2,…, ck};

 101

Input:
 Number of clusters, k;
 The set of instances, S={x1, x2,…, xnt};
/* Initialization */
 C = Random_Select(k,S); /* C={c1, c2,…, ck} */
/* Partition */
 Repeat

)()(),(tcxtcxiftSx imjmjm −<−∈ jikjinm t ≠== ,,...,1,;,...,1, ;
)(tSN jj = ;

∑
∈

=+
)(

1)1(
tSxj

j
j

x
N

tc kj ,...,1, = ;

 Until)()1(tctc jj =+
Output:
 Set S1,S2,…, Sk;

Figure 8-3. The k-means algorithm

8.2.2 Consistent Hash Function: SHA-1 Function

After clustering, we use SHA-1 function [18] to assign each processor and key to the

corresponding processor in the de-Bruijn network, A detailed description of de-Bruijn

network will be provided in chapter 8.2.3. The SHA-1 function is a consistent hash function

that assigns each processor and key an m-bit identifier. A processor’s identifier is defined by

hashing the processor’s IP address, while a key identifier is produced by hashing the key.

 Processor’s ID = SHA-1 (IP address)

 Key’s ID = SHA-1 (object’s key/name)

8.2.3 Overlay Network: de-Bruijn Graph

The performance of P2P network is determined by the properties of diameter and degree of

graph. Since non-trivial Moore graphs are non-existent [7] , Loguinov et al. [29] indicated that

de-Bruijn graphs of diameter ⎡logkn⎤ are nearly optimal and feature very short average routing

distances and high resilience to processor failure. Hence, we adopt de-Bruijn graph as overlay

 102

network in our system model.

The de-Bruijn graph is denoted by DB(h,d), where h≥2 is the node degree and d is the

dimension of the graph. The de-Bruijn graph has n=hd processors and processor is encoded by

a h-ary string of d digits from the digit set {0, 1, 2, …, h-1}. The DB graphs are directed

graphs with h incoming edges and h outgoing edges. An example of de-Bruijn graph of degree

2 and dimension 3 is shown in Figure 8-4.

Shortest path routing in de-Bruijn graphs is easy to implement by the string-matching

algorithm [29] . Assume that processor x wants to seek a shortest path to processor y. Then

processor x finds the longest overlap between the suffix of its id and prefix of y’s id as shown

in Figure 8-5. For example, processor 000 wants to find the shortest path to processor 011.

According to the string-matching algorithm in Figure 8-5, the prefix A is 00, overlap B is 0,

and suffix C is 11. Hence, the routing path P is 00011, and the shortest routing path is

000=>001=>011.

000

001
010

011

100

110

101

111

Figure 8-4. An example of DB(2,3) de-Bruijn network

 103

Figure 8-5. The shortest path from Hx to Hy

8.2.4 Consensus Protocol: Consensus Protocol for P2P Network (CPp2p)

Previous studies on P2P fault tolerance mostly dealt with random attacks [2] [17] [29] [49] ,

by which each peer suffers a fault independently. However, these solutions cannot handle

processor collusions effectively. In order to get the consistent file information from fault-free

processors, we propose the “Consensus Protocol for P2P Network” (CPp2p) to solve the

Consensus problem under malicious attacks from processor collusion in the de-Bruijn P2P

file-sharing system.

The goal of CPp2p is to get the consistent file information from fault-free processors. The

file information contains length, name, size, and etc [11] . There are two phases in the

protocol CPp2p: message-exchanging phase and decision-making phase. In the

message-exchanging phase, we use the term “round” to compute the number of messages

exchanged. A round is defined as follows: (i) Sends messages to other processors (ii) Receives

messages from this round (iii) Does local processing [19] [60] [70] Fischer and Lynch [19]

indicated that t+1 (t=⎣(n-1)/3⎦) rounds are the minimum number of rounds required to get

enough messages to achieve agreement if and only if the maximum number of malicious

processors is smaller than 1/3 of the total number of processors, where n is the total number of

processors in the network. The number of rounds required in protocol CPp2p is also t+1, which

 104

is the minimum. The decision-making phase is used to compute the Consensus value. The

procedure of removing influence from malicious processors (including malicious intermediate

processors and malicious sender processors) by CPp2p is shown in Figure 8-6.

Figure 8-6. The procedure of removing influence from maliciously colliding processors

CPp2p combines the following approaches to solve the Consensus problem with

maliciously colliding processors in de_Bruijn P2P file-sharing system.

 Secure Communication Channel: we combine the symmetric cryptographic and

asymmetric cryptographic algorithms to take the advantages of both algorithms. There

are two phases in the secure communication channel, including the channel-creating

phase and the message-transmission phase. In the channel-creating phase, the session

key is generated using the Diffie-Hellman key exchange [16] (asymmetric cryptographic

algorithm) and the symmetric key is generated using the Advanced Encryption Standard

(AES) algorithm [14] (symmetric cryptographic algorithm). The goal of session key is

used to distribute the symmetric key to the receiver securely. In the

message-transmission phase, we use a symmetric key to encrypt and decrypt the

 105

messages to reduce the computation time.

At the beginning of the i-th round of message exchange, say Round i#, each sender

uses symmetric key to send its messages to all other processors in the network. Hence,

each receiver collects all of the senders’ messages without being influenced from

malicious intermediate processors when symmetric key is applied, say Round i*, as

shown in Figure 8-6.

 The Voting Function – VOTEmg: After t+1 rounds of message exchange, each

fault-free processor can receive enough messages to remove the influence from

malicious sender processor using the VOTEmg function in the decision-making phase.

The VOTEmg function is shown in Figure 8-7.

Figure 8-7. The VOTEmg Function

CPp2p combines secure communication channel and the VOTEmg function to solve the

Consensus problem in de-Bruijn overlay P2P file-sharing system. The procedure can be

presented with the following primitives:

 SMA(Þ): search the shortest path to processor Þ by the string-matching algorithm.

 SVC_Send(m,Þ): send message m to processor Þ using the symmetric key from

protocol SVC.

 SVC_Receive(m,Þ): receive message m from processor Þ using the symmetric key

 106

from protocol SVC.

 Create_Vertex(αÞ): create vertex αÞ in the mg-tree, where α is the vertex name (a

sequence of processor id) of mg-tree in level i-1, |αÞ|=i, 2≤|αÞ|≤t+1.

 val(αÞ): the value of vertex αÞ in the mg-tree.

 Store_Vertex(m,αÞ): store the message m from processor Þ in the vertex αÞ and set

val(αÞ)=m.

 Get_Vertex(m, i): get the message m from level i of the mg-tree.

 Del_Repeated(mg-tree): delete vertices with repeated name in the mg-tree.

Using the above primitives, the formal procedure of CPp2p is shown in Figure 8-8.

/* Initialization */
Create_Vertex(R);

/* Message-Exchanging Phase */
/* the first round */

for Þ∈N do
 SMA(Þ);

 SVC_Send(m,Þ);
 end
 for Þ∈N do
 SVC_Receive(m,Þ);
 Create_Vertex(Þ);

 Store_Vertex(m,Þ);
 end

/* round i, 2≤i≤t+1 */
 for Þ∈N do

 Get_Vertex(m, i-1);
SVC_Send(m,Þ);

 end
 for Þ∈N do
 SVC_Receive(m,Þ);
 Create_Vertex(αÞ);

 Store_Vertex(m, αÞ);
 end
/* Decision-Making Phase */
 Del_Repeated(mg-tree);

Output(VOTEmg(R));

Figure 8-8. The Consensus Protocol for P2P network (CPp2p)

After each processor using CPp2p to send its file information to all other processors, each

fault-free processor can get the consistent file information if and only if the maximum number

of malicious processors is smaller than 1/3 of the total number of processors in de-Bruijn

overlay P2P file-sharing system.

 107

8.3 An CPp2p Execution Example

In this section, we use an example to demonstrate our proposed approaches.

8.3.1 Clustering

As mentioned above, the most important factors considered in evaluating the ability of a

processor are computation capability, bandwidth, and space of storage. To simulate the

heterogeneity of processors in a P2P file-sharing system, the computation capability,

bandwidth, and space of storage of each processor were generated at random. Figure 8-9(a)

shows an example of 30 processors generated at random. Then, the k-means algorithm, as

shown in Figure 8-3, is applied to group the 30 processors into three clusters. The result of the

three clusters is shown in Figure 8-9(b).

8.3.2 Mapping the Processors in Cluster to de-Bruijn Overlay Network

We use the cluster 1 as our example to show how the consistent file information is

obtained. First, we map the processors in the cluster 1 to the corresponding processors in

de-Bruijn overlay network. Since there are eight processors in the cluster 1, we need to

produce a de-Bruijn network with at least eight processors (DB(2,3)). Later, the hash function

SHA-1 is used to map the processors in cluster 1 to the corresponding processors in DB(2,3)

de-Bruijn network as shown in Figure 8-4. For simplify our descriptions, we use A to

represent processor 000, B to represent processor 001, and so on. There are two malicious

processors in the DB(2,3) de-Bruijn network; they are processor B and processor G. Hence,

processor B and processor G may work in coordination to prevent other fault-free processors

from getting the consistent file information and spread the inconsistent files to other fault-free

processors.

 108

8.3.3 Getting the Consistent File Information

To prevent the distribution of inconsistent files, each processor executes the protocol

CPp2p to get the file information from other processors. Since ⎣n-1/3⎦ processors at most may

be faulty, each fault-free processor can get the correct and consistent file information. The

initial value of each processor is shown in Table 8-1.

Table 8-1 The initial value of each processor

Processor ID A B C D E F G H
Initial value 1 1 0 0 0 0 1 0

In the beginning of the protocol CPp2p , each processor creates an mg-tree with the vertex

ℜ in the level 0.

 Message-Exchanging Phase

In the message-exchanging phase, the number of rounds required γ must be computed

first, where γ=t+1=3, and t = ⎣(n-1)/3⎦. In our example, there are eight processors in the

DB(2,3) de-Bruijn network as shown in Figure 8-4. Hence, the number of rounds required γ is

3 (γ= ⎣(8-1)/3⎦+1=3).

In the first round of message-exchanging phase, each processor transmits its initial value

to all other processors by protocol SVC. Then each processor stores the messages from other

processors in the level 1 of its mg-tree. Figure 8-9(c) shows the mg-trees of each processor

after the first round of message-exchanging phase. Since processor B and processor G are

malicious processors, they may transmit values arbitrarily.

In the second round of message-exchanging phase, each processor transmits the

messages received in the level 1 of its mg-tree to other processors and receives other

 109

processors’ messages in the level 2 of its mg-tree. An example of processor A’s mg-tree after

the second round of message-exchanging phase is shown in Figure 8-9(d).

In the third round of message-exchanging phase, each processor transmits the messages

received in the level 2 of its mg-tree to other processors and receives other processors’

messages in the level 3 of its mg-tree. An example of processor A’s mg-tree after the third

round of message-exchanging phase is shown in Figure 8-9(e).

 Decision-Making Phase

In the decision-making phase, each processor deletes vertices with repeated names of

mg-tree to avoid the repeated influence from malicious processors. An example of processor

A’s mg-tree without repeated name vertices is shown in Figure 8-9(f).

After deleting the vertices with repeated names, each processor uses the VOTEmg

function on its mg-tree from leaf to root to compute the Consensus value.

VOTEmg(ℜ)=VOTEmg(VOTEmg(A), VOTEmg(B), VOTEmg(C), VOTEmg(D), VOTEmg(E),

VOTEmg(F), VOTEmg(G), VOTEmg(H)). For example, processor A computes VOTEmg(ℜ)=

VOTEmg(1,1,0,0,0,0,1,0) = 0, where VOTEmg(A)= VOTEmg(1,1,1,1,1,0,1), VOTEmg(B)=

VOTEmg(1,1,0,1,0,1,0) and so on.

Each processor can find out the inconsistent file by correct file information obtained

using protocol CPp2p. Then the fault-free processors know which files they hold are correct

and which or not, and they will not share inconsistent files to other processors.

 110

Processor Parameters
ID Computation

capability
Bandwidth Space of

Storage
01 8 10 9
02 7 5 3
03 7 6 5
04 4 9 3
05 7 5 5
06 6 9 7
07 8 9 9
08 1 5 3
09 1 2 1
10 3 9 5
11 6 6 4
12 2 1 1
13 6 4 2
14 1 2 1
15 2 7 5
16 8 6 10
17 5 3 7
18 5 4 3
19 7 9 7
20 7 9 8
21 4 3 4
22 3 7 6
23 7 4 2
24 6 7 8
25 2 7 1
26 6 5 4
27 3 3 1
28 6 4 7
29 10 8 9
30 3 10 2

(a) 30 random processors

Processor Parameters (Cluster 1)
ID Computation

capability
Bandwidth Space of

Storage
01 8 10 9
06 6 9 7
07 8 9 9
16 8 6 10
19 7 9 7
20 7 9 8
24 6 7 8
29 10 8 9

Processor Parameters (Cluster2)
ID Computation

capability
Bandwidth Space of

Storage
02 7 5 3
03 7 6 5
04 4 9 3
05 7 5 5
10 3 9 5
11 6 6 4
13 6 4 2
15 2 7 5
17 5 3 7
18 5 4 3
21 4 3 4
22 3 7 6
23 7 4 2
26 6 5 4
28 6 4 7
30 3 10 2

Processor Parameters (Cluster3)
ID Computation

capability
Bandwidth Space of

Storage
08 1 5 3
09 1 2 1
12 2 1 1
14 1 2 1
25 2 7 1
27 3 3 1

(b) three clusters which are partitioned by

k-means algorithm

Figure 8-9. An example of our approach (cont’d.)

 111

Processor A’s 1-level mg-tree Processor B’s 1-level mg-tree Processor C’s 1-level mg-tree

 A
Level 1

B
C
D
E
F

Val(A)= 1
Val(B)= 1

Val(F)= 0
Val(E)= 0

Val(C)= 1
Val(D)= 1

Level 0

Val()=null

G
H Val(H)= 0

Val(G)= 0

Processor D’s 1-level mg-tree Processor E’s 1-level mg-tree Processor F’s 1-level mg-tree

 A
Level 1

B
C
D
E
F

Val(A)= 1
Val(B)= 0

Val(F)= 0
Val(E)= 0

Val(C)= 1
Val(D)= 1

Level 0

Val()=null

G
H Val(H)= 0

Val(G)= 1

 A
Level 1

B
C
D
E
F

Val(A)= 1
Val(B)= 1

Val(F)= 0
Val(E)= 0

Val(C)= 1
Val(D)= 1

Level 0

Val()=null

G
H Val(H)= 0

Val(G)= 0

 A
Level 1

B
C
D
E
F

Val(A)= 1
Val(B)= 0

Val(F)= 0
Val(E)= 0

Val(C)= 1
Val(D)= 1

Level 0

Val()=null

G
H Val(H)= 0

Val(G)= 1

Processor G’s 1-level mg-tree Processor H’s 1-level mg-tree

 (c) The mg-trees of each processor after the first round of message-exchanging phase

Figure 8-9. An example of our approach (cont’d.)

 112

(d) Processor A’s mg-tree after the second round of message-exchanging phase

(e) Processor A’s mg-tree after the third round

of message-exchanging phase
(f) Processor A’s mg-tree without repeated

name vertices

Figure 8-9. An example of our approach

 113

8.4 The Correctness of CPp2p

The following lemmas and theorems are used to prove the correctness of protocol CPp2p.

Lemma 8-1: After VOTEmg function is applied to mg-tree from leaf to root, all correct

vertices of an mg-tree are common.

Proof: In the decision-making phase, all vertices with repeated names are deleted in an

mg-tree. At level t+1 or above, the correct vertex α has at least 2t+1 children, and out

of which at least t+1 children are correct. The true values of these t+1 correct vertices

are common, and the majority of the vertex value α is common. The correct vertex α

is common in the mg-tree if the level of α is less then t+1. Consequently, all correct

vertices of the mg-tree are common.

Lemma 8-2: The common frontier exists in the mg-tree.

Proof: By definition, an mg-tree is a tree of level t+1. There are t+1 vertices along each

root-to-leaf path of an mg-tree. Since at most t processors can fail, there is at least one

correct vertex along each root-to-leaf path of the mg-tree. Using Lemma 8-1, the

correct vertex is common and the common frontier exists in each fault-free processor’s

mg-tree.

Lemma 8-3: Let α be a vertex, α is common if there is a common frontier in the sub-tree

rooted at α.

Proof: If the height of α is 0 and the common frontier (α itself) exists, α is common. If the

height of α is γ, the children of α are all in common under the induction hypothesis

with the height of the children being γ-1.

 114

Corollary 8-1: The value of root ℜ is common if the common frontier exists in the

mg-tree.

Theorem 8-1: The value of root ℜ of a fault-free processor’s mg-tree is common.

Proof: Using Lemmas 6-1, 6-2, 6-3 and Corollary 8-1, the theorem is proved.

Theorem 8-2: Protocol CPp2p solves the Consensus problem in a de-Bruijn overlay P2P

file-sharing system.

Proof: To prove this theorem, CPp2p must meet the constraints (Consensus_Agreement) and

(Consensus_Validity)

(Consensus_Agreement): Root value is common. By Theorem 8-1,

(Consensus_Agreement) is satisfied

(Consensus_Validity): VOTE(α) = v for all fault-free processors, if the initial value

of all processor is vs say v = vs.

Most processors are fault-free. The value of the correct vertices for all of the fault-free

processors’ mg-trees is v. Therefore, each correct vertex of the mg-tree is common

(Lemma 8-1), and its true value is v. Using Theorem 8-1, this root is common. The

computed value VOTE(α) = v is stored in the root for all the fault-free processors.

Therefore, (Consensus_Validity) is satisfied.

8.5 Conclusion

The Consensus problem of file-sharing in P2P system becomes more complicated with

the growing of P2P networks [2] [11] [17] [34] [20] [29] [35] [42] [49] [54] . The malicious

processors could work in coordination with other malicious processors to modify files and

spread inconsistent ones to other fault-free processors arbitrarily. If not properly controlled,

fault-free processors may also spread inconsistent files to other processors and potentially

 115

paralyze the entire P2P network. So far, no previous has attempted to solve the Consensus

problem of file-sharing with malicious processors in P2P networks.

In this chapter, we proposed a novel hybrid approach integrating the clustering algorithm

and Consensus protocol to provide better QoS and solve the Consensus problem in the

de-Bruijn overlay P2P file-sharing system. In the clustering algorithm, we adopt k-means

algorithm to cluster similar processors into the same group to provide better QoS. Moreover,

k-means algorithm is the simplest and most popular clustering algorithm [26] . Due to the fact

that de-Bruijn graphs are nearly optimal [29] , we adopt de-Bruijn graphs as the overlay

network in the P2P file-sharing system. We also proposed a Consensus protocol CPp2p get the

consistent file information in the de-Bruijn overlay P2P file-sharing system.

 116

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In recent year, combined wired/wireless network have become more popular, the reliability

and fault tolerance of combined wired/wireless network has become an important topic. We

know that pure wired networks and pure wireless networks are all special cases of the

combined wired/wireless networks. Hence, we also discuss the agreement problems in pure

wired network and pure wireless network.

For pure wireless network, we proposed a BA protocol, Mobile Ad-Hoc Agreement

Protocol (MAHAP), to solve the BA problem in wireless network with malicious faulty

processors. MAHAP is the first BA protocol to solve the BA problem in MANET. The feature

of mobility is considered in MAHAP.

For combined wired/wireless network, we proposed another BA protocol,

Server-initiated Byzantine Agreement Protocol (SBAP), to solve the BA problem in combined

wired/wireless network in the presence of malicious faulty processors. To meet the

characteristics of mobile environments, most of the communication and computation

overhead must be fulfilled within in the agreement-servers in SBAP. Furthermore, SBAP uses

a hierarchical architecture to reduce the communication overhead. For combined

wired/wireless network, we also proposed a Consensus protocol, Client-initiated Consensus

Protocol (CCP), to solve the Consensus problem in combined wired/wireless network.

Moreover, malicious fault assumption with processors grows into the dual failure mode (both

dormant fault and malicious fault) on both processors and communication links.

In order to provide a highly reliable computing environment for combined wired/wireless

 117

network, we proposed a FDA protocol, Adaptive Fault Diagnosis Agreement Protocol

(AFDA), to solve the FDA problem in combined wired/wireless network. AFDA is an

adaptive FDA protocol. AFDA not only can solve the FDA problem in combined

wired/wireless network, but also AFDA can solve the FDA problem in wireless network.

In the usage, the file-sharing application has been the most popular application in P2P

systems. Many P2P networks are overlay networks because they run on top of the combined

wired/wireless network. However, malicious attackers may modify files arbitrarily and spread

inconsistent files to other processors in the P2P network. So far, no previous study has

attempted to solve the Consensus problem of file-sharing with malicious processors in P2P

networks. Hence, we give an application of Consensus protocol to ensure the file consistency

of file-sharing in P2P networks.

9.2 Future Work

In this dissertation, the proposed BA and Consensus protocols required each fault-free

processor to reach a common agreement at the same round of message-exchange. That is,

even when the system has a smaller number of faulty processors, or there is no faulty

processor at all in the system, the system still needs the same rounds of message exchange to

reach a common agreement. The above problem is also called the Immediate Agreement

Problem (IAP) [19] . As a result, the IAP has a consistent round complexity. However, the

message-exchanging phase is a time-consuming phase, and the IAP does not seem efficient

enough when the number of faulty processors is smaller than the tolerable number of faulty

processors in a network. To improve the efficiency, another related problem called early

stopping agreement problem (also called Eventual Agreement Problem, EAP) [15] [27] [58]

can be visited. An early stopping agreement protocol is able to stop as early as possible when

a processor receives enough information from other processors. Therefore, our future work

 118

will be focused on solving the early stopping problem in combined wired/wireless network.

 119

Bibliography

[1] J. C. Adams and K.V.S. Ramarao, “Distributed diagnosis of Byzantine processors and

links,” Proceeding of the Symposium on Distributed Computing Systems, pp.562-569,
1989.

[2] J. Aspnes, Z. Diamadi, and G. Shah, “Fault-Tolerant Routing in Peer-to-Peer Systems,” in
Proceeding of the 23rd Annual Symposium on Principles of Distributed Computing,
pp.223-232 ,2002.

[3] O. Babaoglu, and R. Drummond, “Streets of Byzantium: Network Architectures for Fast
Reliable Broadcasts,” IEEE Transactions on Software Engineering, Vol. 11, no. 6, 1985,
pp. 546-554.

[4] A. Bar-Noy, D. Dolev, C. Dwork and H. R. Strong, “Shifting Gears: Changing
Algorithms on the Fly to Expedite Byzantine Agreement,” Information and Computation,
vol.97, no.2, pp.205-233, 1992.

[5] M. Barborak, M. Malek and A. Dahubra, “The Consensus Problem in Fault-Tolerant
Computing,” ACM Computing Surveys, vol.25, no.2, pp.171-220, 1993.

[6] B. Bellur and R. G. Ogier, A Reliable, “Efficient Topology Broadcast Protocol for
Dynamic Networks,” Proceeding of the 18th IEEE INFOCOM, pp.178-186, 1999.

[7] W. G. Bridges and S. Toueg, “On the Impossibility of Directed Moore Graphs,” Journal
of Combinatorial Theory, no. 3, 1980.

[8] D. R. Broug, Logic Programming. New Frontiers, Kluwer Academic, 1992.

[9] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility models for Ad Hoc Network
Research,” Wireless Communications & Mobile Computing, vol. 2, no. 5, 2002.

[10] T. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed
Systems,” Journal of the ACM, Vol. 43, No. 4, 1996, pp. 225-267.

[11] B. Cohen, “Incentives Build Robustness in BitTorrent,” Proceeding of the Workshop on
Economics of Peer-to-Peer Systems, pp.1-5, 2003.

[12] G. Coulouris , J. D. Dollimore, T. Kindberg, “Distributed Systems-Concepts and
Design”,3rd Edition, Addison-Wesley 2001.

[13] G. D. Crescenzo, R. Ge and G. R. Arce “Securing Reliable Server Pooling in MANET
Against Byzantine Adversaries,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 2, 2006, pp. 357-369.

[14] J. Daemen, V. Rijmen, “The Rijndael Block Cipher,” AES Document Version2.

[15] D. Dolev, R. Reischuk, and A.R. Strong, “Early Stopping in Byzantine Agreement,”

 120

ACM for Computing Machinery, vol. 37, no. 4, pp.720-741, 1990.

[16] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory, vol.22, pp. 644-654, 1976.

[17] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust Incentive Techniques for
Peer-to-Peer Networks,” Proceeding of the 5th ACM Conference on Electronic
Commerce, pp.102-111, 2004.

[18] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/NIST, National
Tehnical Information Service, Springfield, VA, Apr. 1995.

[19] M. Fisher, and N. Lynch, “A Lower Bound for the Assure Interactive Consistency,”
Information Processing Letters, vol.14, no.3, pp.183-186, 1982.

[20] Gnutella, http://www.gnutella.com
[21] R. Guerraoui and A. Schiper, “The Generic Consensus Service,” IEEE Transactions on

Software Engineering, vol. 27, no. 1, 2001, pp. 29-41.

[22] X. Hong, K. Xu, and M. Gerla, “Scalable routing Protocols for Mobile Ad Hoc
Networks,” IEEE Network, vol. 16, no.4, pp.11-21, 2002.

[23] H.S. Hsiao, Y.H. Chin, W.P. Yang, “Reaching Fault Diagnosis Agreement under a Hybrid
Fault Model,” IEEE Transactions on Computers, vol. 49, no. 9, pp.980-986, 2000.

[24] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum and L. Viennot,
“Optimized Link State Routing Protocol for Ad Hoc Networks,” Proceedings of IEEE
International Technology for the 21st Century, 2000.

[25] D. B. Johnson and D. A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks,
Mobile Computing, Kluwer, 1996.

[26] L. Kaufman and P. J. Rousseeuw, finding Groups in Data: An Introduction to Cluster
Analysis, John Wiley & Sons, Inc., New York, 1990.

[27] A. W. Krings and T. Feyer, “The Byzantine Agreement Problem: Optimal Early
Stopping,” Proceedings of 32nd Hawaii International Conference on System Sciences,
LNCS 520, 1999.

[28] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems, vol.4, no.3, pp.382-401, 1982.

[29] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-Theoretic Analysis of Structured
Peer-to-Peer Systems: Routing Distances and Fault Resilience,” Proceeding of
Applications, technologies, architectures, and protocols for computer communications,
pp.395-406, 2003.

[30] S. Mallela and G. M. Masson, “Diagnosable systems for intermittent faults,” IEEE
Transaction on Computers, vol. 27, no. 6, pp. 560-566, 1978.

[31] N. Malpani, J. L. Welch and N. Vaidya, “Leader election algorithms for mobile ad hoc

 121

networks,” Proceedings of the 4th International workshop on Discrete algorithms and
methods for mobile computing and communications, pp.96-103, 2000.

[32] S. Marano, V. Matta and L. Tong, “Distributed inference in the presence of Byzantine
sensors,” Proceedings of IEEE Asilomar Conference on Signals, Systems, and
Computers, 2006, pp. 281-284.

[33] F.J. Meyer and D.K. Pradhan, “Consensus with Dual Failure Modes,” IEEE Transaction
on Parallel and Distributed Systems, vol. 2, no. 2, pp. 214-222, 1991.

[34] Napster, http://www.napster.com
[35] M. Naor and U. Wieder, “A Simple Fault Tolerant Distributed Hash Tables,” Lecture

Notes in Computer Science, vol. 2735, pp. 88-97, 2003.
[36] M.R. Pearlman and Z. J. Haas, “Determining the optimal configurations for the zone

routing protocol,” IEEE Journal on Selected Areas in Communications, vol.17, no. 8,
pp.1395–1414, 1999.

[37] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,”
Journal of ACM, vol.27, no.2, pp. 228-234, 1980.

[38] G. Pei, M. Gerla, and T.W. Chen, “Fisheye State Routing: A Routing Scheme for Ad
Hoc Wireless Network,” Proceedings of the IEEE International Conference on
Communications, pp.70-74, 2000.

[39] C.E. Perkins, Ad Hoc Networking, Addison-Wesley, 2001.

[40] C.E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector Routing,”
Proceedings of the 1st IEEE Workshop on Mobile Computing Systems & Applications,
pp.90–100, 1999.

[41] G. Rabbat, D. Nowak and A. Bucklew, “Generalized Consensus Computation in
Networked Systems with Erasure Links,” Proceedings of IEEE 6th Workshop on Signal
Processing Advances in Wireless Communications, 2005, pp. 1088-1092.

[42] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker, "A scalable
content-addressable network", in Proceeding of ACM SIGCOMM, pp. 161-172, Aug.
2001.

[43] N. Roy, S. K. Das, K. Basu and M. Kumar, “Enhancing Availability of Grid
Computational Services to Ubiquitous Computing Applications,” in Proceeding of 19th
IEEE International Parallel and Distributed Processing Symposium, pp.92a-92a, 2005.

[44] C. Santivanez, R. Ramanathan, and I. Stavrakakis, “Making Link-State Routing Scale for
Ad Hoc Networks,” Proceedings of the 2nd ACM International. Symposium on Mobile
Ad Hoc Net. & Compputing, pp.22-32, 2001.

[45] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John
Whily & Sons, Inc. 1994.

 122

[46] K. Shin and P. Ramanathan, “Diagnosis of Processors with Byzantine Faults in a
Distributed Computing Systems,” Proceedings of International Conference on
Fault-Tolerant Computing, pp.55-60, 1987.

[47] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts 6th Ed., John Wiley
& Sons, Inc, 2002.

[48] T. Simunic “Power Saving Techniques for Wireless LANs,” Proceedings of Design,
Automation and Test in Europe, vol. 3, pp. 96-97 2005.

[49] E. Sit, R. Morris, “Security Considerations for Peer-to-Peer Distributed Hash Tables,”
Proceedings for the 1st International Workshop on Peer-to-Peer Systems, pp. 261-269,
2002.

[50] H. S. Siu, Y.H. Chin, W.P. Yang, “A Note on Consensus on Dual Failure Modes, IEEE
Transactions on Parallel and Distributed Systems,” vol.7, no.3, pp.225-229, 1996.

[51] H.S. Siu, Y.H. Chin, and W.P. Yang, “Byzantine Agreement in the Presence of Mixed
Faults on Processors and Links”, IEEE Transaction on Parallel and Distributed System,
vol. 9, no.4, pp. 335-345, 1998.

[52] H.S. Siu, Y.H. Chin, and W.P. Yang, “Reaching Strong Consensus in the Presence of
Mixed Failure Types,” Information Sciences: An International Journal, vol.108, nol.1-4,
pp.157-180, 1998.

[53] K.N. Sivarajan and R. Ramaswami, “Lightwave Networks Based on de Bruijn Graphs,”
IEEE/ACM Trans. On Networking, vol. 2, no. 1994.

[54] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications," in Proceeding of ACM
SIGCOMM, pp. 149-160, 2001.

[55] Y.F. Tsou, “ A particular Solution for Agreement Problem under Cluster-oriented
MANET,” Master Thesis, Department of Information Management, Chaoyang
Technology of University, Taiwan, 2007.

[56] J. Turek and D. Shasha, “The Many Faces of Consensus in Distributed Systems,” IEEE
Computer, Vol. 25, No. 6, 1992, pp. 8-17.

[57] X. Wang and J. Cao, “An Optimal Early Stopping Uniform Consensus Protocol in
Synchronous Distributed Systems with Orderly Crash Failure,” Proceeding of the 23th
International Conference on Distributed Computing Systems, pp.76-81, 2003.

[58] S.C. Wang and C.F. Cheng, “Eventually Dual Failure Agreement,” in Fundamenta
Informaticae, vol. 57, no. 1, pp.79-99, 2003

[59] S.C. Wang, Y.H. Chin, and K.Q. Yan, “Reaching a Fault Detection Agreement,”
Proceedings International Conference on Parallel Processing, pp.251-258, 1990.

[60] S.C. Wang, Y.H. Chin, and K.Q. Yan, “Byzantine Agreement in a Generalized Connected

 123

Network,” IEEE Transactions on Parallel and Distributed System, vol.6, no.4,
pp.420-427, 1995.

[61] S.C. Wang、K.Q. Yan and C.F. Cheng, “Achieving High Efficient Byzantine Agreement
with Dual Components Failure Mode on a Multicasting Network,” Proceedings of the
9th IEEE International Conference on Parallel and Distributed Systems, pp. 577-582,
2002.

[62] S.C. Wang、K.Q. Yan and C.F. Cheng, “Evidence-based MultiCasting Fault Diagnosis
Agreement with Fallible Processors”, Proceedings of the 32nd International Conference
on Parallel Processing, pp.69-74, 2003.

[63] S.C. Wang, K.Q. Yan and H.C. Hsieh, “The New Territory of Mobile Agreement,”
Computer Standards & Interfaces, vol. 26, pp. 435-447, 2004.

[64] S.C. Wang, K.Q. Yan, H.C. Hsieh, “Reaching Consensus Underlying a Mobile
Environment,” Proceeding of the 2003 Digital Life and Internet Technology Symposium,
2003.

[65] S.C. Wang, J.E. Yang, K.Q. Yan, and C.F. Cheng, “Achieving High Efficient Consensus
in a Hybrid Fallible Multicasting Network,” Proceedings of International Conference on
Systems Engineering, 2002.

[66] S.C. Wang, K.Q. Yan and G.Y. Zheng, “Dual Agreement Virtual Subnet Protocol for
Mobile Ad-Hoc Networks,” Proceeding of the 22nd Annual ACM Symposium on Applied
Computing, pp. 11-15, 2007.

[67] S.C. Wang、W.P. Yang and C.F. Cheng, “Byzantine Agreement on Mobile Ad-Hoc
Network,” Proceeding of the IEEE International Conference on Networking, Sensing and
Control, pp. 52-57, 2004.

[68] D. B. West, Introduction to Graph Theory, 2nd. Ed., Prentice Hall 2001.

[69] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural
Networks, vol. 16, no. 3, pp. 645-678, 2005.

[70] K.Q. Yan, Y.H. Chin and S.C. Wang, “Optimal Agreement Protocol in Malicious Faulty
Processors and Faulty Links,” IEEE Transactions on Knowledge and Data Engineering,
vol.4, no. 3, pp.266-280, 1992.

[71] K.Q. Yan, S.C. Wang, Y.F. Tsou, “Revisit Consensus in a Dual Fallible
Clustered-MANET,” Proceeding of the 2006 Taiwan Academic Network Symposium,
2006.

[72] K.Q. Yan, S.C. Wang G.Y. Zheng, “Reaching Dual Fallible Virtual Subnet Consensus,”
Proceeding of the 3rd International Conference on Soft Computing and Intelligent
Systems and 7th International Symposium on advanced Intelligent Systems, pp.20-24,
2006.

