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摘 要       

在資料探勘的領域中，從大型資料庫中尋找資料項目間的頻繁樣式是相當重要之議

題。因為資料項目間的頻繁樣式在現實生活中可應用在許多領域裡，譬如超級市場裡商

品之間的販售關係。然而頻繁樣式所涵蓋的項目廣泛，其中包含了高頻率項目集、新興

高頻率項目集以及高利益項目集等。近年來，由於經濟的關係，市場獲利的需求增加，

新興高頻率項目集與高利益項目集成為主要探討的兩個議題。所謂的新興高頻率項目集

是指項目集在舊有的資料庫中是低頻率項目集，然而在資料庫新增資料後，這些項目集

變成高頻率項目集。至於高利益項目集的探勘，則針對項目集所能得到利益的高低來探

討。過去的研究多著重於如何在大型資料庫中快速且正確地尋找這些項目集，減少候選

項目集的產生、搜尋資料庫的次數以及記憶體的使用等。然而，傳統的演算法無法直接

找尋在時序性資料庫中的頻繁樣式。因此，本論文主旨在研發從時序性資料庫中挖掘出

新興高頻率的項目集以及高利益的項目集的高效率探勘方法。 

在新興高頻率項目集的探勘上，我們提出了一個有效率的演算法 EFI (Emerging 

Frequent Itemsets)-Mine。此演算法利用移動視窗交集法來預測高頻率項目集，因此不需

要像以往的演算法須找出所有的高頻率項目集，以至減少高頻率項目集搜尋所需花費的

時間。實驗的結果，我們所提出的演算法較 Apriori 演算法在以 IBM 資料產生器中所產
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生的資料情形下，減少 90%的執行時間。 

此外，在本論文我們也提出一個高利益項目集的演算法 THUI (Temporal High Utility 

Itemsets)-Mine。此演算法利用分割移動視窗法與交易權重項目集來減少候選項目集的產

生，因此不需要像以往的演算法須找出所有的候選項目集，以至減少搜尋高利益項目集

與資料庫次數所需花費的時間。在以 IBM 資料產生器中所產生的資料下，我們所提出

的演算法較 Two-Phase 演算法，執行時間的改善率平均高達 67%。 

從利益探勘的特性中，我們可以觀察到資料庫存有許多未滿足門檻值的利益項目

集，有些是值得參考的。我們提出了兩個珍貴的利益項目集之演算法 TP-RUI (Two-Phase 

Rare Utility Itemsets) -Mine 和 TRUI (Temporal Rare Utility Itemsets) –Mine。尤其是

TRUI-Mine，此演算法利用相對性的門檻值來尋找珍貴的利益項目集，並利用分割移動

視窗法與交易權重項目集來減少候選項目集的產生，以至減少尋找珍貴的利益項目集所

需花費的時間。 

由於過去所探討的高利益項目集都是針對正利益的項目來研究，於是我們提出ㄧ個

從大型的資料庫中尋找包含負利益的高利益項目集的演算法 HUINIV (High Utility 

Itemsets with Negative Item Values) -Mine。此演算法利用去除負利益項目的交易權重項

目集方法來減少候選項目集產生。實驗的結果，我們所提出的演算法較 MEU 演算法在

以 IBM 資料產生器中所產生的資料情形下，減少 99%的候選項目集。 

關鍵字： 頻繁樣式；關聯法則; 時序性資料庫; 利益探勘; 
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ABSTRACT 

Mining frequent patterns for discovering the relationship among data items from large 

databases is an important topic in data mining since frequent patterns can be applied to wide 

applications. There exist various kinds of frequent patterns like frequent itemsets, emerging 

frequent itemsets, high utility itemsets and so on. Recently, emerging pattern mining and 

utility mining become very popular topics because of the rising of economic applications. 

Emerging frequent itemsets are those who are infrequent in the current database and then 

become frequent in the new database temporally added with new data transactions. High 

utility itemsets reveal the utility of an itemset, which can be measured in terms of cost, profit 

or other expressions of user preferences. In the past, most studies focus on developing 

efficient and effective methods for finding frequent itemsets from large database by reducing 

candidate itemsets, database scans and memory space. However, most methods designed for 

the traditional databases cannot be directly applied for mining temporal patterns in temporal 

databases because of the high complexity. Hence, we investigate efficient methods for mining 

emerging frequent itemsets and high utility itemsets in temporal databases in this dissertation. 

In emerging pattern mining, a novel approach named EFI (Emerging Frequent 

Itemsets)-Mine is presented to effectively identify the potential emerging itemsets by crossing 

sliding windows to predict frequent itemsets such that the execution time can be reduced 
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substantially in mining all frequent itemsets in temporal databases. The experimental results 

show that EFI delivers 90.6% of improvement over the well-known method Apriori in terms 

of execution time on various kinds of synthetic datasets. 

Besides, we also propose a novel method, namely THUI (Temporal High Utility 

Itemsets)-Mine, for mining temporal high utility itemsets from temporal databases efficiently 

and effectively. THUI-Mine can effectively identify the temporal high utility itemsets by 

partitioning sliding window and using transaction-weighted utilization itemsets to generate 

fewer candidate itemsets such that the execution time and number of database scans can be 

reduced substantially in mining high utility itemsets from temporal databases. The 

experimental results show that THUI-Mine delivers 67% of improvement over the 

well-known method Two-Phase in terms of execution time on various kinds of synthetic 

datasets. 

According to the characters of utility mining, we could obverse some utility itemsets are 

those itemsets which appear infrequently in the current time window of large databases but 

are highly associated with specific data. Hence, we proposed two novel algorithms, namely 

TP-RUI (Two-Phase Rare Utility Itemsets) -Mine and TRUI (Temporal Rare Utility 

Itemsets) –Mine, which can effectively identify the temporal rare utility itemsets by using 

relative utility threshold. The temporal rare utility itemsets are discovered by partitioning 

sliding window and using transaction-weighted utilization itemsets to generate fewer 

candidate itemsets such that the execution time and database scan can be reduced substantially 

in mining all high and rare utility itemsets in temporal databases.  

The past studies on high utility itemsets mining considered only positive item values and 

ignored the cases of negative item values that may occur in real-life applications. Therefore, 

we propose a novel method, namely HUINIV (High Utility Itemsets with Negative Item Values) 

-Mine, for mining high utility itemsets from large databases with consideration of negative 

item values. HUINIV-Mine can effectively identify high utility itemsets by using transaction 
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utility without negative item values to generate fewer candidate itemsets. The experimental 

results show that HUINIV-Mine delivers 99% of improvement over the well-known method 

MEU in terms of candidate itemsets on various kinds of synthetic datasets. 

Keywords: Frequent patterns mining, Association rules, Temporal databases, Utility mining  
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Chapter 1  

Introduction 

The mining of association rules for finding the relationship between data items in large 

databases is a well studied technique in data mining field with representative methods like 

Apriori [1][2][7]. An important research issue extended from the association rules mining is 

the discovery of temporal association patterns in temporal databases due to the wide 

applications on various domains. Temporal data mining can be defined as the activity of 

looking for interesting correlations or patterns in large sets of temporal data accumulated for 

other purposes [6]. For a database with a specified transaction window size, we may use the 

algorithm like Apriori to obtain frequent itemsets from the database.  

For time-variant temporal databases, there is a strong demand to develop an efficient and 

effective method to mine various temporal patterns [13]. However, most methods designed 

for the traditional databases cannot be directly applied for mining temporal patterns in 

temporal databases because of the high complexity.  

In many applications, the frequency of an itemset may not be a sufficient indicator of 

interestingness, because it only reflects the number of transactions in the database that contain 

the itemset. It does not reveal the utility of an itemset, which can be measured in terms of cost, 

profit or other expressions of user preferences. On the other hand, frequent itemsets may only 

contribute a small portion of the overall profit, whereas non-frequent itemsets may contribute 

a large portion of the profit. In reality, a retail business may be interested in identifying its 

most valuable customers (customers who contribute a major fraction of the profits to the 

company). Hence, frequency is not sufficient to answer questions such as whether an itemset 

is highly profitable, or whether an itemset has a strong impact. Utility mining is thus useful in 

a wide range of practical applications and was recently studied in [8][21][35]. 
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1.1 Motivation and Research Goal 

The research objective of this dissertation is to investigate algorithms for mining emerging 

frequent itemsets and high utility itemsets efficiently and effectively. 

The first research issue of this dissertation is mining temporal emerging frequent 

itemsets from temporal databases efficiently and effectively, we propose a new method, 

namely EFI (Emerging Frequent Itemsets)-Mine. The temporal emerging frequent itemsets are 

those that are infrequent in current time window of database but have high potential to 

become frequent in the subsequent time windows. Discovery of emerging frequent itemsets is 

an important process for mining interesting patterns like association rules from temporal 

databases. The novel contribution of EFI-Mine is that it can effectively identify the potential 

emerging itemsets such that the execution time can be reduced substantially in mining all 

frequent itemsets in temporal databases. This meets the critical requirements of time and 

space efficiency for mining temporal databases. 

Furthermore, we propose a novel method, namely THUI (Temporal High Utility 

Itemsets)-Mine, for mining temporal high utility itemsets from temporal databases efficiently 

and effectively. The novel contribution of THUI-Mine is that it can effectively identify the 

temporal high utility itemsets by generating fewer candidate itemsets such that the execution 

time can be reduced substantially in mining all high utility itemsets in temporal databases. In 

this way, the process of discovering all temporal high utility itemsets under all time windows 

of temporal databases can be achieved effectively with less memory space and execution time. 

This meets the critical requirements on time and space efficiency for mining temporal 

databases.  

According to the characters of utility mining, we could obverse some utility itemsets are 

those itemsets which appear infrequently in the current time window of large databases but 

are highly associated with specific data. Hence, we proposed two novel algorithms, namely 
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TP-RUI (Two-Phase Rare Utility Itemsets) -Mine and TRUI (Temporal Rare Utility 

Itemsets) –Mine, which can effectively identify the temporal rare utility itemsets by using 

relative utility threshold. The novel contribution of TRUI-Mine is particularly that it can 

effectively identify the temporal rare utility itemsets by generating fewer temporal high 

transaction-weighted utilization 2-itemsets in temporal databases. In this way, the process 

under all time windows of temporal databases can be achieved effectively with limited 

memory space, less candidate itemsets and CPU I/O time.  

The final issue explored in this thesis is based on the observation that the past studies on 

high utility itemsets mining considered only positive item values and ignored the cases of 

negative item values that may occur in real-life applications. Therefore, we propose a novel 

method, namely HUINIV (High Utility Itemsets with Negative Item Values) -Mine, for mining 

high utility itemsets from large databases with consideration of negative item values. The 

novel contribution of HUINIV-Mine is that it can effectively identify high utility itemsets by 

generating fewer high transaction-weighted utilization itemsets such that the execution time 

can be reduced substantially in mining the high utility itemsets. In this way, the process of 

discovering all high utility itemsets with consideration of negative item values can be 

accomplished effectively with less requirements on memory space and CPU I/O. This meets 

the critical requirements of temporal and spatial efficiency for mining high utility itemsets 

with negative item values. 

1.2 Related Work 

In association rules mining, Apriori [1], DHP [24], and partition-based ones [20][27] are 

proposed to find frequent itemsets. Many important applications have called for the need of 

incremental mining. This is due to the increasing use of the record-based databases whose 

data are being continuously added. Many algorithms like FUP [24], FUP2 [11] and UWEP 
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[4][5] are proposed to solve incremental database for finding frequent itemsets. The FUP 

algorithm updates the association rules in a database when new transactions are added to the 

database. Algorithm FUP is based on the framework of Apriori and is designed to discover 

the new frequent itemsets iteratively. The idea is to store the counts of all the frequent 

itemsets found in a previous mining operation. Using these stored counts and examining the 

newly added transactions, the overall count of these candidate itemsets are then obtained by 

scanning the original database. An extension to the work in [10] was reported in [11] where 

the authors propose an algorithm FUP2 for updating the existing association rules when 

transactions are added to and deleted from the database. UWEP (Update With Early Pruning) 

is an efficient incremental algorithm, that counts the original database at most once, and the 

increment exactly once. In addition the number of candidates generated and counted is 

minimum. 

In recent years, processing data from data streams is a very popular topic in data mining. 

A number of algorithms like Lossy Counting [22], FTP-DS [30] and RAM-DS [31] have been 

proposed to process data in data streams. Lossy Counting divided incoming stream 

conceptually into buckets. It uses bucket boundaries and maximal possible error to update or 

delete the itemsets with frequency for mining frequent itemsets. FTP-DS is a regression-based 

algorithm to mine frequent temporal patterns for data streams. A wavelet-based algorithm, 

called algorithm RAM-DS, to perform pattern mining tasks for data streams by exploring both 

temporal and support count granularities. 

Some algorithms like SWF [18] and Moment [12] are proposed to find frequent itemsets 

over a stream sliding window. By partitioning a transaction database into several partitions, 

algorithm SWF employs a filtering threshold in each partition to deal with the candidate 

itemset generation. Moment algorithm use the closed enumeration tree (CET), to maintain a 

dynamically selected set of itemsets over a sliding window. 

Dong and Li define an emerging pattern as an itemset the support of which increases 
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significantly between two databases. We view emerging frequent itemsets as a special case of 

the emerging patterns described by Dong and Li. Recently, a new algorithm modifies an 

existing incremental algorithm, UWEP, so that it can identify emergent large itemsets. It uses 

incremental scheme for finding emerging frequent itemsets [28].  

A formal definition of utility mining and theoretical model was proposed in [35], namely 

MEU, where the utility is defined as the combination of utility information in each transaction 

and additional resources. Since this model cannot rely on downward closure property of 

Apriori to restrict the number of itemsets to be examined, a heuristic is used to predict 

whether an itemset should be added to the candidate set. However, the prediction usually 

overestimates, especially at the beginning stages, where the number of candidates approaches 

the number of all the combinations of items. The examination of all the combinations is 

impractical, either in computation cost or in memory space cost, whenever the number of 

items is large or the utility threshold is low. Although this algorithm is not efficient or scalable, 

it is by far the best one to solve this specific problem.  

Another algorithm named Two-Phase was proposed in [21], which is based on the 

definition in [35] and achieves the finding of high utility itemsets. The Two-Phase algorithm 

is used to prune down the number of candidates and can obtain the complete set of high utility 

itemsets. In the first phase, a model that applies the “transaction-weighted downward closure 

property” on the search space is used to expedite the identification of candidates. In the 

second phase, one extra database scan is performed to identify the high utility itemsets. 

However, this algorithm must rescan the whole database when new transactions are added 

from temporal databases. It incurs more cost on I/O and CPU time for finding high utility 

itemsets. Hence, the Two-Phase algorithm is focused on traditional databases and is not suited 

for mining temporal databases.  

Many algorithms were proposed for mining useful information on different applications. 

A mining method was proposed to process computer vulnerability [38] for finding 

 5 



vulnerability correlation. A heuristic reduction algorithm HeuriRed and A complete heuristic 

reduction algorithm HeuriComRed [29] based on discernibility matrix were proposed to 

process imprecise and incomplete data for attributes reduction mining. 

One algorithm named RSAA (Relative support Apriori Algorithm) [36] is a method to 

discover the association rules for significantly rare itemsets that appear infrequently in the 

database but are highly associated with specific data. The technique adopts a new criterion, 

relative support, which can identify the strong co-relation of the significant rare itemset items 

with the specific data co-occurring in relatively high proportion. However, the technique of 

this algorithm can not be adopted in utility mining because it violates definitions of utility 

mining. Hence, the RSAA algorithm is focused on traditional association rules discovery and 

databases, and so it is not suited for utility mining and temporal databases. 

Although there existed numerous studies on frequent itemsets mining and data stream 

analysis as described above, there is no algorithm proposed for finding emerging frequent 

itemsets, temporal high utility itemsets, temporal rare utility itemsets and high utility itemsets 

with negative item values in temporal and large databases. This motivates our exploration on 

the issue of efficiently mining various frequent itemsets we describe above in temporal 

databases like data streams in this research. Therefore, we propose four methods that can 

identify frequent pattern efficiently and effectively. To our best knowledge, this is the first 

work on mining t emerging frequent itemsets, temporal high utility itemsets, temporal rare 

utility itemsets and high utility itemsets with negative item values from temporal and large 

databases. 

1.3 Organization of Thesis 

The remainder of this thesis is organized as follows. In Chapter 2, we describe EFI-Mine 

algorithm for mining temporal emerging frequent itemsets from temporal databases efficiently 
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and effectively. Efficient THUI-Mine algorithm for mining temporal high utility itemsets from 

temporal databases is introduced in Chapter 3. In Chapter 4, we describe two novel algorithms, 

namely TP-RUI (Two-Phase Rare Utility Itemsets) -Mine and TRUI (Temporal Rare Utility 

Itemsets) –Mine, for mining temporal rare utility itemsets from temporal databases. relevance 

feedback methods are surveyed and a novel feedback mechanism is proposed. In Chapter 5, 

we address a novel method, namely HUINIV (High Utility Itemsets with Negative Item 

Values) –Mine, for efficiently and effectively mining high utility itemsets from large databases 

with consideration of negative item values. Last, the conclusions are given in Chapter 6. 
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Chapter 2  

Mining Temporal Emerging Itemsets from 

Temporal Databases 

 

2.1 Problem Definition 

The mining of association rules for finding the relationship between data items in large 

databases is a well studied technique in data mining field with representative methods like 

Apriori [1][2][7]. The problem of mining association rules can be decomposed into two steps. 

The first step involves finding all frequent itemsets (or say large itemsets) in databases. Once 

the frequent itemsets are found, generating association rules is straightforward and can be 

accomplished in linear time. 

An important research issue extended from the association rules mining is the discovery 

of temporal association patterns in temporal databases due to the wide applications on various 

domains. Temporal data mining can be defined as the activity of looking for interesting 

correlations or patterns in large sets of temporal data accumulated for other purposes [6]. For 

a database with a specified transaction window size, we may use the algorithm like Apriori to 

obtain frequent itemsets from the database. For time-variant temporal databases, there is a 

strong demand to develop an efficient and effective method to mine various temporal patterns 

[4]. However, most methods designed for the traditional databases cannot be directly applied 

for mining temporal patterns in temporal databases because of the high complexity.  

Without loss of generality, consider a typical market-basket application as illustrated in 

[30] has been considered. The transaction flow in such an application is shown in Figure 2-1 

where items a to g stand for items purchased by customers. 
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Figure 2-1. An example of online transaction flows. 

 

In Figure 2-1, for example, the third customer bought item c during time t=[0,1), items c, 

e and g during t=[2, 3), and item g during t=[4, 5). It can be seen that in such a data stream 

environment it is intrinsically difficult to conduct the frequent pattern identification due to the 

limited time and space constraints. Furthermore, it wastes too much times finding frequent 

itemsets in different window times. Therefore, we develop a new scheme to find potential 

emerging frequent itemsets before next window times. 

Dong and Li [14] define an emerging pattern as an itemset the support of which 

increases significantly between two databases. We view emerging frequent itemsets as a 

special case of the emerging patterns described by Dong and Li. An Emerging Frequent 

Itemset (EFI) can be considered as an itemset that is infrequent (i.e., small) in the current 

database and gets increased for its support so that it will eventually become frequent (i.e., 

large) in the new database temporally added with new data transactions. For example, in the 

market basket domain, we may assume an interval as the time between wholesale purchases. 

Recognizing the set of items that will emerge or become frequent in the next time period with 

windows size may allow the storekeeper to order these emerging items much earlier than 

usual. Thus, the storekeeper will know what kinds of items will be popular in the next time 

period and avoid losing the income that their sales could have generated. Although some 
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related issues like mining emerging frequent itemsets [28] and incremental frequent itemsets 

[9][10][11][25] have been studied, they have been focused on traditional databases and are 

not suited for temporal databases. 

In this chapter, we explore the issue of efficiently mining emerging frequent itemsets in 

temporal databases like data streams [15][16][17][19]. We propose an algorithm named 

EFI-Mine that can discover emerging frequent itemsets from temporal databases efficiently 

and effectively. The EFI-Mine algorithm is based on the concept of Apriori algorithm [2] for 

mining frequent itemsets. The novel contribution of EFI-Mine is that it can effectively 

identify the potential emerging frequent itemsets in temporal databases so that the execution 

time for mining frequent itemsets can be substantially reduced. That is, EFI-Mine can 

discover the itemsets that are infrequent in current time window but will become frequent 

ones with high probability in subsegment time windows. In this way, the process of 

discovering all frequent itemsets under all time windows of temporal databases can be 

achieved efficiently with limited memory space. This meets the critical requirements of time 

and space efficiency for mining temporal databases. Through experimental evaluation, 

EFI-Mine is shown to deliver high precision in finding the emerging frequent itemsets and it 

also achieves high scalability in terms of execution time. 

Support Framework for Mining Temporal Patterns 

In this chapter, the mining of temporal patterns are explored for illustrative purposes since not 

only the patterns should be efficiently and effectively extracted but also variations of 

corresponding occurrence frequencies should be tracked. In market-basket analysis, patterns 

along with their frequencies are extracted from sliding window in transactions. So the data 

expires after a user-specified time window. As time advances, new data is included while 

obsolete data is discarded. With the mining task for discovering frequent temporal patterns, 
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only patterns with occurrence frequencies no less than a specified threshold are being tracked.  

We focus in this chapter on handling the different sliding windows to find emerging frequent 

itemsets. 

An example showing the basic process in transforming transactions into numerical time 

series, for discovering frequent temporal patterns, is provided as follows. 

Example 1: Consider the transaction flows shown in Figure 2-1. Given the window size w=3 

and the minimum support value as 40%, occurrence frequencies of the inter-transaction 

itemset {c, g} from time t=1 to t=5 can be obtained as shown in Table 2-1. 

 

Table 2-1. The support values of the inter-transaction itemset {c, g}. 

TxTime Occurrence(s) of {c,g} Support 
t=1 
t=2 
t=3 
t=4 
t=5 

w[0,1]
w[0,2]
w[0,3]
w[1,4]
w[2,5]

none 
CustomerID={2, 4} 
CustomerID={2, 3, 4}
CustomerID={2, 3} 
CustomerID={1, 3, 5}

0 
2/5=0.4 
3/5=0.6 
2/5=0.4 
3/5=0.6 

 

With the sliding window model, the frequent temporal patterns can be discovered for 

different time windows. The main goal of our research is to discover interesting emerging 

itemsets under progressive time windows. 

Emerging Frequent Itemsets and Interesting Emerging Itemsets 

In a database, the frequent itemsets will be changed when new datum are added. As time 

progress, we can see many interesting patterns with regards to the change in status of 

individual itemsets. An itemset that was infrequent may become frequent (large), while 

frequent itemsets may become infrequent (small) and an itemset may remain frequent or 

infrequent. We define infrequent itemsets that are moving toward being frequent as emerging. 

Conversely, frequent itemsets moving toward infrequent are submerging. An infrequent 
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(frequent) itemset that becomes large, i.e. with support above (below) minimum support value, 

is said to have emerged (submerged). The problems we address in this chapter are: 1) How 

can we identify itemsets that are emerging (submerging)? 2) Which of these itemsets have the 

potential to emerge (submerge) within the next time window? That is, we focus on finding 

emerging frequent itemsets in this chapter. 

According to the emerging itemsets of incremental scheme, we develop this concept on 

the temporal data mining. Temporal data mining has the limitation on window size for finding 

emerging itemsets. Therefore, we must change the formula for finding emerging itemsets. For 

the remainder of this chapter, we give definitions to the formula.  

Definition 2.1 dbk is the transactions in t=k, i.e., db1 is the transactions in t=1.  

Definition 2.2 DBi,i+1,…,j is the transactions in t=i to j, i.e., DB12345 is the transactions in t=1 

to 5. We also view DB12345 as the accumulation of db1+db2+db3+db4+db5.  

Suppose the original database is DBi,i+1,…,j with window size=N and N=j-i+1. Due to the 

limitation of window size, we should discard the old database dbi when adding a database 

dbj+1. The new database should be DBi+1,i+2,…,j+1. In our scheme, we should find emerging 

itemsets before a new database is added. So we should focus on the database DBi+1,i+2,…,j. 

The old database dbi is useless for finding emerging itemsets. For example, suppose original 

database is DB1234 and we set the limitation of window size as 5. If a database db5 is added, 

the new database will be DB12345. Due to the limitation of window size, when adding a 

database db6, we should discard the old database db1. Thus, the new database becomes 

DB23456. In our scheme, we would find potential emerging frequent itemsets before a database 

is added. So we should focus on the database DB2345 finding potential emerging frequent 

itemsets. And the potential emerging frequent itemsets of the database DB2345 can be 

represented more accurate in the new database DB23456. In practice, with the feature of data 

stream, we first remove db1 from DB1234 and then add db5 to form the database DB2345. So we 

could find potential emerging frequent itemsets from the database DB2345 before adding a new 
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database db6 to form DBB23456, and this conforms the limitation of window size. Figure 2-2 

shows we would find potential emerging frequent itemsets from the database DB2345. So the 

window size should be N-1 for finding potential emerging itemsets. 

 

 

Figure 2-2. Potentially emerging frequent itemsets in DB2345. 

 

The rest of this chapter is organized as follows: Section 2.2 describes the proposed 

approach, EFI-Mine, for finding the emerging frequent itemsets. In section 2.3, we describe 

the experimental results for evaluating the proposed method. The conclusion of the chapter is 

provided in Section 2.4. 

2.2 Mining Temporal Emerging Itemsets 

In this Section, we give an example for mining temporal emerging itemsets from data stream. 

The proposed algorithm, EFI-Mine, is also described in details in this Section. 

An example for mining emerging itemsets 

Figure 2-3 shows an example of emerging itemsets modified on that proposed by Dong and Li 

in [14] for the special case of EFI. It shows partitions of the space of itemsets, indicating all 
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possible transitions for an itemset X from original database DB to the new database DB+db. 

Figure 2-3 plots the support count in DB (denoted as SCDB) against the support count in 

db (denoted as SCdb). Each point in the graph depicts an ordered pair (SCdb, SCDB) where the 

sum of SCdb and SCDB is an itemset's support count in DB+db at some increment interval. If 

the increment adds no transactions to an itemset's support count, then its support count in DB 

has to be equal to minSCDB+minSCdb in order to achieve minSCDB+db. This corresponds to 

point H in Figure 2-3. Alternatively, if an itemset's SC is equal to |db| in db, then its support in 

DB has to be some SC=n, where n>0, and n= minSCDB+minSCdb -|db| for the itemset to be 

frequent. This is point C in Figure 2-3. Line HC partitions the space of all itemsets in DB+db 

into frequent and infrequent. The shaded area in Figure 2-3 represents all the frequent itemsets 

and it includes Line HC. Specific partitions under HC contain itemsets that are emerging in 

the current increment. For example, the area defined by ΔHFG represents those itemsets that 

were frequent itemsets in DB, infrequent itemsets in db, and now are infrequent in DB+db. 

These itemsets have therefore submerged. ΔGIC represents itemsets that were infrequent in 

DB and frequent in db. These itemsets have emerged. Therefore, we can find all itemsets in 

area ABCG are emerging in the current interval and all itemsets in area OAGH are 

submerging. 
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Figure 2-3. Emerging frequent itemsets. 

 

However, there are too many emerging itemsets in area ABCG. In fact, we should focus 

more potential emerging itemsets. To have the potential to emerge in the next increment, the 

support count of the itemset in DB+db needs to be greater than or equal to 

2minSCdb+minSCDB - |db| in the current increment. All points with this value are represented 

by line RS in Figure 2-4. 

For example, if we have a database with |DB|= 10000, |db|= 1000 and minsup =0.2, then 

the minimum support count for the current increment is 2,200 (2,000 from DB plus 200 from 

db). If an itemset can add the maximum support incremental support count, a total of 1,000 

from db, in the next increment, it would need a support count of at least 1400 in the current 

increment to be able to attain the minimum support count of 2,400 ((11000+1000)*0.2=2400) 

needed to become frequent.  

The band of itemsets between line RS and line HC are all itemsets that have the potential 

to become frequent in the next increment, by this formula. Intersecting area ABCG and HCSR, 

we get itemsets in GDSC are most likely to emerge in the next increment. 
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Figure 2-4. Potentially emerging frequent itemsets. 

 

Algorithm of EFI-Mine 

With window size we mention in Section 2.2.2 and the concepts of emerging itemsets in 

section 2.3.1, we set support value as S and assume the original database as DBi,i+1,…,j-1. 

According to the scheme we mentioned previously, if we want to find frequent itemsets from 

DBi+1,i+2,…,j+1, we should focus on DBi+1,i+2,…,j for finding potential emerging frequent 

itemsets after adding database dbj and then find potential emerging frequent itemsets of the 

database DBi+1,i+2,…,j+1 before adding next incremental new database dbj+1. It means dbi 

would be an old database that needs not be considered. After adding new database dbj+1, the 

new database would be DBi+1,i+2,…,j+1. So the window size is N when database is changed 

from dbi+1 to dbj+1. It also indicates N=(j+1)-(i+1)+1. By the feature of temporal data mining, 

we set |db|=|dbi|=|dbi+1|=…=|dbj|. In Figure 2-4, various lines bear the following meaning: 

jjii dbDB SCSCLineHC minmin
1,...,2,1
+=

−++
     

1,...,2,1
min

−++
=

jiiDBSCLineFI  
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||minmin2
1,...,2,1 jDBdb dbSCSCLineRS

jiij
−+=

−++
 

||minmin
1,...,2,1 jDBdb dbSCSCLineEC

jiij
−+=

−++
 

dbjSCLineAK min=  

According to the feature of window size in temporal mining, incremental database means 

adding length of original transactions and also promoting the probability of infrequent 

itemsets to become frequent. Because we focus on N-1 window size for finding potential 

emerging frequent itemsets, these formulas should be divided by N-1 base on the number of 

database as follows: 

1/)min(min
1,...,2,1

−+=
−++

NSCSCLineHC
jjii dbDB  

1-)/N||minmin2(
1,...,2,1 jDBdb dbSCSCLineRS

jiij
−+=

−++
 

Because line FI does not add new database, it should be divided by (N-1)-1. It means line 

FI should be divided by N-2 as follows: 

2-/Nmin
1,...,2,1 −++

=
jiiDBSCLineFI  

Line EC means that adding new database dbj and an itemset's SC is equal to |dbj| in dbj, 

so it should be divided by (N-1) as follows:   

1-)/N||minmin(
1,...,2,1 jDBdb dbSCSCLineEC

jiij
−+=

−++
 

Because dbj belongs to one of N window size, the formula should be divided by N as 

follows: 

NSCLineAK dbj/min=  

Figure 2-5 illustrates the potentially emerging frequent itemsets in area GDSC with 

window size limitation. The formula for each line is as mentioned above. 

According to these formulas, we can simplify these lines as follows: 

HC=[S*(j-1-(i+1)+1)*|db|+S*|db|]/N-1= [S*(N-2)*|db|+S*|db|]/N-1= S*|db| 
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FI= [S*(j-1-(i+1)+1)|db|]/N-2= S*|db| 

RS=[2*S*|db|+S*[(j-1)-(i+1)+1]*|db|-|db|]/N-1= [2*S*|db|+S*(N-2)*|db|-|db|]/N-1= 

[(S*N)-1]*|db|/N-1 

EC=[S*|db|+S*[(j-1)-(i+1)+1]*|db|-|db|]/N-1= [S*|db|+S*(N-2)*|db|-|db|]/N-1= 

[S*(N-1)-1]*|db|/N-1 

AK=S*db/N 

We can also find potentially emerging frequent itemsets in area HRSC without 

concerning support count in dbj. However, it will reduce the accuracy with potentially 

emerging frequent itemsets. Taking into consideration of dbj would get the trend of itemsets 

and get better accuracy with potentially emerging frequent itemsets. Therefore, itemsets in 

GDSC are most likely to emerge in the next increment. 

 

 

Figure 2-5. Potentially emerging frequent itemsets for temporal patterns. 

 

Figure 2-6 shows the algorithm of EFI-Mine and the processing procedure is outlined 

below. The basic processing procedure is like Apriori except the definition of for minimum 

support value for finding temporal emerging itemsets from data stream. With window size N, 

we would not only remove dbi but also add new database dbj for finding 1-emerging itemsets 
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on the database DBi+1,i+2,…,j and finding large 1-itemsets on the database dbj from Step 1 to 

Step 3. So the purpose is to find potential emerging frequent itemsets of the database 

DBi+1,i+2,…,j+1 before adding next new database dbj+1. We generate k-candidates and find 

k-emerging itemsets by calculating support count as mentioned previously from Step 4 to 

Step 13. Then, we generate k-candidates and find k-large itemsets by support count we 

mention from Step 14 to Step 23. Finally, those itemsets meeting the constraints S*|db|> 

c.count  [(S*N)≧ -1]*|db|/N-1 on DBBi+1,i+2,…,j and c.count S*db/N db≧ j are obtained as the 

potentially emerging frequent itemsets. 

 

 

Figure 2-6. Algorithm of EFI-Mine. 

 

We may utilize the formulas mentioned before to discuss the following situations. Notice 

that an itemset is emerging or not depends on support count of the itemset. Given an itemset 

whose support counts in DBi+1,i+2,…,j-1 and DBi+1,i+2,…,j-1+dbj are  and 
1,...,2,1DBSC
−++ jii

 19 



jjii db+−++ 1,...,2,1DBSC , respectively, the growth rate of that itemset is . 

The growth rate of an itemset that maintains minimal support 

is . An itemset meeting the 

1,...,2,11,...,2,1 DBDB SC-SC
−++−++ + jiijjii db

1,...,2,11,...,2,1 DBDB minSC-minSC
−++−++ + jiijjii db

1
minSC-minSC

SC-SC

1,...,2,11,...,2,1

1,...,2,11,...,2,1

DBDB

DBDB
>

−++−++

−++−++

+

+

jiijjii

jiijjii

db

db
 is an emerging itemset. An itemset needs a support 

count of at least dbdbdb jiijjjii 2DBDB 1,...,2,111,...,2,1
minSCminSC +++ −+++−++

=  to emerge in adding a new 

database dbj+1 with expanding one window size. A potential emerging frequent itemset is the 

one that is emerging and meets the following constraint: 

. Hence, we can infer that an itemset that will 

potentially emerge with expanding n window sizes is an itemset that is currently emerging 

and . Of course, the larger n is, the less 

accurate with finding potential emerging frequent itemsets might be. 

dbdbdb jiijiijjiijjii 2DBDBDBDB 1,...,2,11,...,2,11,...,2,11,...,2,1
minSC)SC-(SCSC +++ −++−++−++−++

>+

ndbdbdb jiijiijjiijjii
n +++ −++−++−++−++

>+
1,...,2,11,...,2,11,...,2,11,...,2,1 DBDBDBDB minSC)SC-(SCSC

2.3 Experiments and Analysis 

To evaluate the performance of EFI-Mine, we conducted experiments of using synthetic 

dataset generated via a randomized transaction generation algorithm in [3]. The synthetic data 

generation program takes the parameters as shown in Table 2-2, and the values of parameters 

used to generate the datasets are shown in Table 2-3. The simulation is implemented in C++ 

and conducted in a machine with 1.4GHz CPU and 512MB memory. The main performance 

metrices used are execution time and accuracy. We recorded the execution time that EFI-Mine 

spends in finding potential emerging frequent itemsets. The accuracy is to measure the 

number of actual emerging frequent itemset in ratio of the total potential emerging frequent 

itemsets that we found. Hence, the accuracy is defined as follows: 

Accuracy = (number of actual emerging frequent itemset) / (total potential emerging 
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frequent itemsets) 

 

Table 2-2. Parameters of the synthetic datasets. 

N Number of items 

T Average numbers of items per transaction 

C Number of customers 

D Number of transactions 

W Windows size 

S Support value 

 

Table 2-3. Parameter settings of synthetic datasets. 

Dataset 
Parameters 

N T C D W 

N100T5C1000 100 5 1000 100,000 10 

 

Effects of Varying Support Threshold 

The proposed approach is verified with experiments in various measurements. We vary the 

values of support threshold from 30% to 70% for interesting the effects on the accuracy. The 

other parameters were kept fixed as default values. Figure 2-7 shows the accuracy of 

EFI-Mine under different support threshold values. It is observed that the average accuracy of 

potential emerging frequent itemsets raises as the support value is increased. Especially, the 

accuracy reaches to 100% when the support value is beyond 60%. Hence, EFI-Mine is 

verified to be very effective in finding the emerging itemsets.  
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Figure 2-7. Accuracy under different support values (N100T5C1000, W=10). 

 

Comparisons with Apriori in Execution time 

The proposed algorithm is also compared to the well know Apriori algorithm. We compare the 

average execution time in different support values between Apriori and EFI-Mine. Both of 

these two algorithms could find frequent itemsets. However, Apriori can only find frequent 

itemsets, while EFI-Mine can find frequent itemsets that were infrequent in the past. Apriori 

algorithm processes DBi+1,i+2,…,j+1 to find frequent itemsets, while our EFI-Mine algorithm 

needs to process fewer database DBi+1,i+2,…,j to find potentially emerging frequent itemsets. 

From Figure 2-8, EFI-Mine spends few seconds with high stability for finding potentially 

emerging frequent itemsets. Compared to Apriori, the improvement is about 90.6% for 

support values varied from 30% to 60%. Although EFI-Mine does not always obtain frequent 

itemsets with 100% accuracy, it reduces substantially the time in finding frequent itemsets. 

Moreover, the frequent itemsets obtained by Apriori are not suitable for applications in 

temporal databases since we need frequent itemsets which are infrequent in the past and 

frequent in the current by the time change. Hence, EFI-Mine meets the requirements of high 

efficiency and high scalability in terms of execution time for data stream mining. 
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Figure 2-8. Execution time with w=10. 

 

Effects of Varying Window Size 

We investigate the effects of varying window size on the accuracy of mining results. As 

shown in Figure 2-9, we could observe that the larger window size, the higher with accuracy. 

In fact, the accuracy is almost 100% when window size is large than 15 in the experiments. 

This is because the itemsets are tended to be stable according to the past databases. This 

indicates that EFI-Mine fits for mining temporal databases with large window size. 
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Figure 2-9. Accuracy under different window sizes. 

 

Effects of Varying Transaction Size 

We investigate the effects of varying transaction size on the accuracy of mining results i.e., 

the average number of items per transaction. As shown in Figure 2-10, if T is larger, the 

accuracy is higher than under T. This is because T can bring more information and trend from 

past transactions. This indicates that EFI-Mine fits for mining temporal databases with large 

transaction size. 
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Figure 2-10. Accuracy under different numbers of items per transaction with w=10. 
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Effects of Varying Number of Items 

In this last experiment, we investigate the effects of varying the numbers of items on the 

accuracy of mining results. The results are as shown in Figure 2-11. We observe that the 

accuracy decreases when the numbers of items are increased. This is because too many items 

will affect the stability of the patterns. On the contrary, the accuracy under smaller numbers of 

items could reach almost 100%. This indicates that EFI-Mine fits for mining temporal 

databases with small numbers of items. 
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Figure 2-11. Accuracy under different numbers of items. 
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Chapter 3  

Mining Temporal High Utility Itemsets from 

Temporal Databases 

 

3.1 Problem Definition 

The mining of association rules for finding the relationship between data items in large 

databases is a well studied technique in the data mining field with representative methods like 

Apriori [1][2]. The problem of mining association rules can be decomposed into two steps. 

The first step involves finding of all frequent itemsets (or say large itemsets) in databases. 

Once the frequent itemsets are found, generating association rules is straightforward and can 

be accomplished in linear time. 

An important research issue extended from the mining of association rules is the 

discovery of temporal association patterns in temporal databases due to the wide applications 

on various domains. Temporal data mining can be defined as the activity of discovering 

interesting correlations or patterns in large sets of temporal data accumulated for other 

purposes [6]. For a database with a specified transaction window size, we may use an 

algorithm like Apriori to obtain frequent itemsets from the database. For time-variant 

temporal databases, there is a strong demand to develop an efficient and effective method to 

mine various temporal patterns [13]. However, most methods designed for traditional 

databases cannot be directly applied to the mining of temporal patterns in temporal databases 

because of their high complexity. 

In many applications, we would like to mine temporal association patterns from the most 
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recent data in temporal databases. That is, in temporal data mining, one should not only 

include new data (i.e., data in the new hour) but also remove the old data (i.e., data in the most 

obsolete hour) from the mining process. Without loss of generality, consider a typical 

market-basket application as illustrated in Figure 3-1, where the transactional data of 

customer purchases are shown as time advances. 

 

 

 

 

 

 

Figure 3-1. An example of online transaction flows. 

 

In Figure 3-1, for example, data was accumulated as a function of time. Data obtained 

prior to some specified time interval in the past becomes useless for reference. People might 

be most interested in the temporal association patterns in the latest three hours (i.e., db3,5) as 

shown in Figure 3-1. It can be seen that in such a temporal database environment it is 

intrinsically difficult to conduct the frequent pattern identification due to the constraints of 

limited time and memory space. Furthermore, it takes considerable time to find temporal 

frequent itemsets in different time windows. However, the frequency of an itemset may not be 

a sufficient indicator of interestingness, because it only reflects the number of transactions in 

the database that contain the itemset. It does not reveal the utility of an itemset, which can be 

measured in terms of cost, profit or other expressions of user preferences. On the other hand, 

frequent itemsets may only contribute a small portion of the overall profit, whereas 
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non-frequent itemsets may contribute a large portion of the profit. In reality, a retail business 

may be interested in identifying its most valuable customers (customers who contribute a 

major fraction of the profits to the company). Hence, frequency is not sufficient to answer 

questions such as whether an itemset is highly profitable, or whether an itemset has a strong 

impact. Utility mining is thus useful in a wide range of practical applications and was recently 

studied in [8][21][35]. This also motivates our research in developing a new scheme for 

finding temporal high utility itemsets (THUI) from temporal databases. 

 

Table 3-1. A transaction database and its utility table. 

         (a) Transaction table                         (b) The utility table 

ITEM 
TID 

A B C D E

T1 0 0 26 0 1

T2 0 6 0 1 1△
一 P1

T3 12 0 0 1 0

T4 0 1 0 7 0

T5 0 0 12 0 2
P2

 
T6 1 4 0 0 1

T7 0 10 0 0 1

T8 1 0 1 3 1

db1,3

D一

P3

 
T9 1 1 27 0 0

T10 0 6 2 0 0

T11 0 3 0 2 0△+ P4

 
T12 0 2 1 0 0

db2,4

ITEM PROFIT($)(per unit)

A 3 

B 10 

C 1 

D 6 

E 5 

 

Recently, a utility mining model was defined in [35]. Utility is considered as a measure 

of how “useful” (e.g., “profitable”) an itemset is. The definition of utility u(X) of an itemset X 

is the sum of the utilities of X in all transactions containing X. The goal of utility mining is to 

identify high utility itemsets which drive a large portion of the total utility. Traditional 
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association rules mining models assume that the utility of each item is always 1 and the sales 

quantity is either 0 or 1, thus it is only a special case of utility mining, where the utility or the 

sales quantity of each item could be any number. If u(X) is greater than a utility threshold, X is 

a high utility itemset. Otherwise, it is a low utility itemset. Table 3-1 is an example of utility 

mining in a transaction database. The number in each transaction in Table 3-1(a) is the sales 

volume of each item, and the utility of each item is listed in Table 3-1(b). For example, u({B, 

D}) = (6×10+1×6) + (1×10+7×6) + (3×10+2×6) = 160. {B, D} is considered as a high utility 

itemset if the utility threshold is set at 120. 

However, a high utility itemset may consist of some low utility items. Another attempt is to adopt 

the level-wise searching schema that exists in fast algorithms such as Apriori [3]. However, this 

algorithm does not apply to the utility mining model. For example, consider u(D) = 84 < 120 as shown 

in Table 3-1, D is a low utility item. However, its superset {B, D} is a high utility itemset. If Apriori is 

used to find high utility itemsets, all combinations of the items must be generated. Moreover, the 

number of candidates is prohibitively large in discovering a long pattern. The cost of either 

computation time or memory will be intolerable, regardless of what implementation is applied. The 

challenge of utility mining is not only in restricting the size of the candidate set but also in simplifying 

the computation for calculating the utility. Another challenge of utility mining is how to find temporal 

high utility itemsets from temporal databases as time advances.  

In this chapter, we explore the issue of efficiently mining high utility itemsets in 

temporal databases like data streams. We propose an algorithm named THUI-Mine that can 

discover temporal high utility itemsets from temporal databases efficiently and effectively. 

The underlying idea of THUI-Mine algorithm is to integrate the advantages of Two-Phase 

algorithm [21] and SWF algorithm [18] with augmentation of the incremental mining 

techniques for mining temporal high utility itemsets efficiently. The novel contribution of 

THUI-Mine is that it can efficiently identify the utility itemsets in temporal databases so that 

the execution time for mining high utility itemsets can be substantially reduced. That is, 
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THUI-Mine can discover the temporal high utility itemsets in current time window and also 

discover the temporal high utility itemsets in the next time window with limited memory 

space and less computation time by sliding window filter method. In this way, the process of 

discovering all temporal high utility itemsets under all time windows of temporal databases 

can be achieved effectively under less memory space and execution time. This meets the 

critical requirements of time and space efficiency for mining temporal databases. Through 

experimental evaluation, THUI-Mine is shown to produce fewer candidate itemsets in finding 

the temporal high utility itemsets, so it outperforms other methods in terms of execution 

efficiency. It is observed that the average improvement of THUI-Mine over Two-Phase 

algorithm reaches to about 67%. Moreover, it also achieves high scalability in dealing with 

large databases. To our best knowledge, this is the first work on mining temporal high utility 

itemsets from temporal databases. 

The rest of this chapter is organized as follows: Section 3.2 describes the proposed 

approach, THUI-Mine, for finding the temporal high utility itemsets. In section 3.3, we 

describe the experimental results for evaluating the proposed method. The conclusion of the 

chapter is provided in Section 3.4. 

3.2 Proposed Method 

In this section, we present the THUI-Mine method. We describe the basic concept of 

THUI-Mine and give an example for mining temporal high utility itemsets. The procedure of 

the THUI-Mine algorithm is provided in the last paragraph the section. 

Basic Concept of THUI-MINE 

The goal of utility mining is to discover all the itemsets whose utility values are beyond a user 

specified threshold in a transaction database. In [35], the goal of utility mining is defined as 
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the discovery of all high utility itemsets. An itemset X is a high utility itemset if u(X) ≥ε, 

where X  I and ε is the minimum utility threshold; otherwise, it is a low utility itemset. For 

example, in Table 3-1, u(A, T

⊆

8) = 1×3 = 3, u({A, C}, T8) = u(A, T8) + u(C, T8) = 1×3 + 1×1 = 

4, and u({A, C}) = u({A, C}, T8) + u({A, C}, T9) = 4 + 30 = 34. If ε = 120, {A, C} is a low 

utility itemset. However, if an item is a low utility item, its superset may be a high utility 

itemset. For example, consider u(D) = 84 < 120, D is a low utility item, but its superset {B, D} 

is a high utility itemset since u({B, D}) = 160 > 120. Intuitively, all combinations of items 

should be processed so that it never loses any high utility itemset. However, this will incur 

intolerable cost on computation time and memory space. A set of terms leading to the formal 

definition of utility mining problem can be generally defined as follows by referring to [35]: 

 I = {i1, i2, …, im} is a set of items.  

 D = {T1, T2, …, Tn} is a transaction database where each transaction Ti∈D is a subset of 

I.  

 o(ip, Tq), local transaction utility value, represents the quantity of item ip in transaction 

Tq. For example, o(A, T3) = 12, as shown in Table 3-1(a).  

 s(ip), external utility, is the value associated with item ip in the Utility Table. This value 

reflects the importance of an item, which is independent of transactions. For example, in 

Table 3-1(b), the external utility of item A, s(A), is 3.  

 u(ip, Tq), utility, the quantitative measure of utility for item ip in transaction Tq, is defined 

as o(ip, Tq)×s(ip). For example, u(A, T3) = 12 × 3, in Table 3-1.  

 u(X, Tq), utility of an itemset X in transaction Tq, is defined as , where X = 

{ i

∑
∈Xip

qp Tiu ),(

1, i2, …, im} is a k-itemset, X  T⊆ q and 1≤ k≤ m.  

 u(X), utility of an itemset X, is defined as  ∑
⊆∧∈ qq

q

TXDT
TXu ),( .

Liu et al. [21] proposed the Two-Phase algorithm for pruning candidate itemsets and 

simplifying the calculation of utility. First, the Phase I overestimates some low utility itemsets, 
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but it never underestimates any itemsets. For the example in Table 3-1, the transaction utility 

of transaction Tq, denoted as tu(Tq), is the sum of the utilities of all items in Tq: tu(Tq) = 

. Moreover, the transaction-weighted utilization of an itemset X, denoted as twu(X), 

is the sum of the transaction utilities of all the transactions containing X: twu(X) =  

For example, twu(A) = tu(T

∑
∈ qp

qp

Ti
Tiu ),(

∑
∈⊆ DTX q

qTtu )( .

3) + tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 157 and twu({D, 

E}) = tu(T2) + tu(T8) = 71 + 27 = 98. In fact, u(A) = u({A}, T3) + u({A}, T6) + u({A}, T8)+ 

u({A}, T9)=36 + 3 + 3 + 3 = 45 and u({D, E}) = u({D, E}, T2) + u({D, E}, T8)= 11 + 23 = 34. 

Table 3-2 gives the transaction utility for each transaction in Table 3-1. Second, one extra 

database scan is performed to filter the overestimated itemsets in phase II. For example, by 

observing that twu(A) = 157 > 120 and u(A) = 45 < 120, the item {A} is pruned. Otherwise, it 

is a high utility itemset. Finally, all high utility itemsets are discovered in this way.  

We illustrate the detail process of Two-Phase algorithm by the following example in db1,3 

of Table 3-1. Suppose the utility threshold is set as 120 with nine transactions in db1,3. In 

Phase I, the high transaction-weighted utilization 1-itemsets {A, B, C, D, E} are generated 

since twu(A) = tu(T3) + tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 157 > 120, twu(B) = 

tu(T2) + tu(T4) + tu(T6) + tu(T7) + tu(T9) = 71 + 52 + 48 + 105 + 40 = 361 > 120, twu(D) = 

tu(T2) + tu(T3) + tu(T4) + tu(T8) = 71 + 42 + 52 + 27 = 192 > 120 and twu(E) = tu(T1) + tu(T2) 

+ tu(T5) + tu(T6) + tu(T7) + tu(T8) = 31 + 71 + 22 + 48 + 105 + 27 = 304 > 120. Then, 10 

candidate 2-itemsets {AB, AC, AD AE, BC, BD, BE, CD, CE, DE} are generated by the high 

transaction-weighted utilization 1-itemsets {A, B, C, D, E} in the first database scan. In the 

same way, the high transaction-weighted utilization 2-itemset {BE} are generated since 

twu(AB) = tu(T6) + tu(T9) = 48 + 40 = 88 < 120, twu(AC) = tu(T8) + tu(T9) = 27 + 40 = 67 < 

120, twu(AD) = tu(T3) + tu(T8) = 42 + 27 = 69 < 120, twu(AE) = tu(T6) + tu(T8) = 48 + 27 = 

75 < 120, twu(BC) = tu(T9) = 40 < 120, twu(BD) = tu(T4) = 52 < 120, twu(BE) = tu(T2) + 

tu(T6) + tu(T7)= 71 + 48 + 105 = 224 > 120, twu(CD) = tu(T8) = 27 < 120, twu(CE) = tu(T1) + 
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tu(T5) + tu(T8)= 31 + 22 + 27 = 80 < 120 and twu(DE) = tu(T2) + tu(T8) = 71 + 27 = 98 < 120. 

After processing db1,3, the high transaction-weighted utilization itemsets in db1,3 are obtained 

as {A, B, C, D, E, BE}. 

In phase II, the high transaction-weighted utilization itemsets {A, B, C, D, E, BE} is used to scan 

db1,3 to find high utility itemsets. The resulting high utility itemsets are {B} and {BE} since u(A) = 

u({A}, T3) + u({A}, T6) + u({A}, T8) + u({A}, T9) = 45 < 120, u(B) = u({B}, T2) + u({B}, T4) + u({B}, 

T6) + u({B}, T7) + u({B}, T9) = 220 > 120, u(C) = u({C}, T1) + u({C}, T5) + u({C}, T8) + u({C}, T9) = 

66 < 120, u(D) = u({D}, T2) + u({D}, T3) + u({D}, T4) + u({D}, T8) = 72 < 120, u(E) = u({E}, T1) + 

u({E}, T2) + u({E}, T5) + u({E}, T6) + u({E}, T7) + u({E}, T8) = 35 < 120 and u({B, E}) = u({B, E}, 

T2) + u({B, E}, T6) + u({B, E}, T7) = 215 > 120. 

Our algorithm THUI-Mine is based on the principle of the Two-Phase algorithm [21], 

and we extend it with the sliding-window-filtering (SWF) technique and focus on utilizing 

incremental methods to reduce the candidate itemsets and execution time. In essence, by 

partitioning a transaction database into several partitions from temporal databases, algorithm 

THUI-Mine employs a filtering threshold in each partition to deal with the 

transaction-weighted utilization itemsets (TWUI) generated. The cumulative information in 

the prior phases is selectively carried over toward the generation of TWUI in the subsequent 

phases by THUI-Mine. In the processing of a partition, a progressive transaction-weighted 

utilization set of itemsets is generated by THUI-Mine. Explicitly, a progressive 

transaction-weighted utilization set of itemsets is composed of the following two types of 

TWUI: 1) the TWUI that were carried over from the previous progressive candidate set in the 

previous phase and remain as TWUI after the current partition is taken into consideration; 2) 

the TWUI that were not in the progressive candidate set in the previous phase but are newly 

selected after taking only the current data partition into account. As such, after the processing 

of a phase, algorithm THUI-Mine outputs a cumulative filter, denoted as CF, which consists of 

a progressive transaction-weighted utilization set of itemsets with their occurrence counts and 
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the corresponding partial support required.  

THUI-Mine is different from other existing methods like Lossy Counting [22], which 

uses bucket boundaries and maximal possible error to update or delete the itemsets with 

frequency. The CF computes the occurrence counts of itemsets in memory and then deletes 

itemsets that do not satisfy utility threshold in every partial database. With these design 

considerations, algorithm THUI-Mine is shown to have very good performance for mining 

temporal high utility itemsets from temporal databases. 

 

Table 3-2. Transaction utility of the transaction database. 

TID Transaction Utility TID Transaction Utility 

T1 31 T7 105 

T2 71 T8 27 

T3 42 T9 40 

T4 52 T10 62 

T5 22 T11 42 

T6 48 T12 21 

 

An Example for Mining Temporal High Utility Itemsets 

The proposed THUI-Mine algorithm can be best understood by the illustrative transaction 

database in Table 3-1 and Figure 3-2 where a scenario of generating high utility itemsets from 

temporal databases for mining temporal high utility itemsets is given. For real life 

applications, this illustrative transaction database can be mapped to the customer transactions 

in a supermarket. We set the utility threshold as 120 with nine transactions. Without loss of 

generality, the temporal mining problem can be decomposed into two procedures:  

1. Preprocessing procedure: This procedure deals with mining on the original transaction 
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database.  

2. Incremental procedure: The procedure deals with the update of the high utility 

itemsets from temporal databases. 

 

 

 

 

 

 

 

Figure 3-2. Temporal high utility itemsets generated by THUI-Mine. 

 

The preprocessing procedure is only utilized for the initial utility mining in the original 

database, e.g., db1,n. For mining high utility itemsets in db2,n+1, db3,n+2, dbi,j, and so on, the 

incremental procedure is employed. Consider the database in Table 3-1. Assume that the 

original transaction database db1,3 is segmented into three partitions, namely, {P1, P2, P3}, in 

the pre processing procedure. Each partition is scanned sequentially for the generation of 

candidate 2-itemsets in the first scan of the database db1,3. Since there are three partitions, the 

utility threshold of each partition is 120 / 3 = 40. Such a partial utility threshold is called the 

filtering threshold in this chapter. After scanning the first segment of the three transactions, 

1-itemsets {A, B, D, E} are kept to generate 2-itemsets because twu(A) = 42 > 40, twu(B) = 

71 > 40, twu(C) = 31 < 40, twu(D) = 113 > 40 and twu(E) = 102 > 40. Then, 2-itemsets {AB, 

AD AE, BD, BE, DE} are generated by 1-itemsets {A, B, D, E} in partition P1 as shown in 

Figure 3-2. In addition, each potential candidate itemset c ∈  C2 has two attributes: (1) c.start, 

which contains the identity of the starting partition when c was added to C2, and (2) 
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transaction-weighted utility which is the sum of the transaction utilities of all the transactions 

containing c since c was added to C2. Itemsets whose transaction-weighted utility are below 

the filtering threshold are removed. Then, as shown in Figure 3-2, only {AD, BD, BE, DE}, 

marked by “◎”, remain as temporal high transaction-weighted utilization 2-itemsets (TWU2I) 

whose information is then carried over to the next phase of processing. Similarly, after 

scanning partition P2, the temporal high TWU2I are recorded.  

From Figure 3-2, it is noted that since there are also three transactions in P2, the filtering 

threshold of those itemsets carried out from the previous phase is 40 + 40 = 80 and that of 

newly identified candidate itemsets is 40. It can be seen from Figure 3-2 that we have 4 

temporal high TWU2I in C2 after the processing of partition P2, and 2 of them are carried 

from P1 to P2 and 2 of them are newly identified in P2. Finally, partition P3 is processed by 

algorithm THUI-Mine. The resulting temporal high TWU2I are {AB, AC, BC, BD, BE} as 

shown in Figure 3-2. Note that although itemset {AE} appears in the previous phase P2, it is 

removed from temporal high TWU2I once P3 is taken into account since its 

transaction-weighted utility does not meet the filtering threshold then, i.e., 75 < 120. However, 

we do have two new itemsets, i.e., AC and BC, which join the C2 as temporal high TWU2I. 

Consequently, we have five temporal high TWU2I generated by THUI-Mine, where two of 

them are carried from P1 to P3, one of them is carried from P2 to P3, and two of them are 

newly identified in P3. Note that only 5 temporal high TWU2I are generated by THUI-Mine, 

while 10 candidate itemsets would be generated if Two-Phase algorithm were used as 

mentioned in section 3.3.1. After processing P1 to P3, those temporal high TWUI in db1,3 are 

obtained as {A, B, C, D, E, AB, AC, BC, BD, BE}. 

After generating temporal high TWU2I from the first scan of database db1,3, we use a 

skill to reduce the number of database scan. In fact, it will take k-1 database scan to generate 

k-candidate itemsets by using temporal high transaction-weighted utilization (k-1)-itemsets 

directly. Instead, we use temporal high TWU2I to generate Ck (k = 3, 4, ..., n), where Cn is the 
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candidate last itemset. It can be verified that temporal high TWU2I generated by THUI-Mine 

can be used to generate the candidate 3-itemsets. Clearly, a C3 can be generated from temporal 

high TWU2I. For example, the 3-candidate itemset {ABC} is generated from temporal high 

TWU2I {AB, AC, BC} in db1,3. However, the temporal high TWU2I generated by 

THUI-Mine is very close to the high utility itemsets. Similarly, all Ck can be stored in main 

memory and we can find temporal high utility itemsets together when the second scan of the 

database db1,3 is performed. Thus, only two scans of the original database db1,3 are required in 

the preprocessing step. In this way, the number of database scan is reduced effectively. The 

resulting temporal high utility itemsets are {B} and {BE} since u(B) = 220 >120 and u({B, 

E}) = 215 > 120. 

One important merit of THUI-Mine lies in its incremental procedure. As depicted in 

Figure 3-2, the mining of database will be moved from db1,3 to db2,4. Thus, some transactions 

like T1, T2 and T3 are deleted from the mining database and other transactions like T10, T11, 

and T12, are added. To illustrate it more clearly, this incremental step can also be divided into 

three sub-steps: (1) generating temporal high TWU2I in D− = db1,3 − ∆−, (2) generating 

temporal high TWU2I in db2,4 = D− + ∆+ and (3) scanning the database db2,4 only once for the 

generation of all temporal high utility itemsets. In the first sub-step, db1,3 − ∆− = D−, we check 

the pruned partition P1 and reduce the value of transaction-weighted utility and set c.start = 2 

for those temporal TWU2I where c.start = 1. It can be seen that itemset {BD} was removed. 

Next, in the second sub-step, we scan the incremental transactions in P4. The process in D− + 

∆+ = db2,4 is similar to the operation of scanning partitions, e.g., P2, in the preprocessing step. 

The new itemset {BD} joins the temporal high TWU2I after the scan of P4. In the third 

sub-step, we use temporal high TWU2I to generate Ck as mentioned above. Finally, those 

temporal high TWUI in db2,4 are {B, C, D, E, BC, BD, BE}. By scanning db2,4 only once, 

THUI-Mine obtains temporal high utility itemsets {B, BC, BE} in db2,4.  

In contrast, Two-Phase algorithm has to scan the whole database like db2,4 and more 
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candidate itemsets, i.e., {BC, BD, BE, CD, CE, DE}, will be generated whenever some 

transactions are deleted and other transactions are added. Then, Two-Phase algorithm needs 

one more database scan than THUI-Mine to obtain temporal high TWU2I. Finally, Two-Phase 

algorithm scans database again to produce temporal high utility itemsets. Hence, more 

database scans and candidate itemsets are incurred by Two-Phase algorithm in comparison 

with THUI-Mine. 

 

Table 3-3. Meanings of symbols used. 

dbi,j Partitioned_database (D) from Pi to Pj

s Utility threshold in one partition 

| Pk| Number of transactions in partition Pk

TUPk (I) Transactions in Pk that contain itemset I with transaction utility

UPk (I) Transactions in Pk that contain itemset I with utility 

| db1,n,(I)| Transactions number in db1,n that contain itemset I 

Ci,j The progressive candidate sets of dbi,j

Thtwi,j The progressive temporal high transaction-weighted utilization 
2-itemsets of dbi,j

Thui,j The progressive temporal high utility itemsets of dbi,j

∆− The deleted portion of an ongoing database 

D− The unchanged portion of an ongoing database 

∆+ The added portion of an ongoing database 

 

THUI-Mine Algorithm 

For easier illustration, the meanings of various symbols used are given in Table 3-3. The 

preprocessing procedure and the incremental procedure of algorithm THUI-Mine are 

described as follows: 
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Preprocessing procedure of THUI-Mine 

The preprocessing procedure of Algorithm THUI-Mine is shown in Figure 3-3. Initially, the 

database db1,n is partitioned into n partitions by executing the preprocessing procedure (in 

Step 2), and CF, the cumulative filter, is empty (in Step 3). Let Thtw1,n be the set of 

progressive temporal high TWU2I of dbi,j. Algorithm THUI-Mine only records Thtw1,n which 

is generated by the preprocessing procedure to be used by the incremental procedure. From 

Step 4 to Step 16, the algorithm processes one partition at a time for all partitions. When 

partition Pi is processed, each potential candidate 2-itemset is read and saved to CF. The 

transaction-weight utility of an itemset I and its starting partition are recorded in I.twu and 

I.start, respectively. An itemset, whose I.twu ≥ s, will be kept in CF. Next, we select Thtw1,n 

from I where I∈CF and keep I.twu in main memory for the subsequent incremental procedure. 

By employing the scan reduction technique from Step 19 to Step 26,  (h ≥ 3) are 

generated in main memory. After refreshing I.count = 0 where I.twu = 0 where I∈Thtw

n
hC ,1

1,n, we 

begin the last scan of database for the preprocessing procedure from Step 28 to Step 31. 

Finally, those itemsets satisfying the constraint that I.u ≧ s×P.count are finally obtained as 

the temporal high utility itemsets. 
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Figure 3-3. Preprocessing procedure of THUI-Mine. 

 

Incremental procedure of THUI-Mine 

As shown in Table 3-3, D− indicates the unchanged portion of an ongoing transaction database. 

The deleted and added portions of an ongoing transaction database are denoted by ∆− and ∆+, 

respectively. It is worth mentioning that the sizes of ∆+ and ∆−, i.e., | ∆+ | and | ∆− | 

respectively, are not required to be the same. The incremental procedure of THUI-Mine is 
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devised to maintain temporal high utility itemsets efficiently and effectively. This procedure is 

shown in Figure 3-4. As mentioned before, this incremental step can also be divided into three 

sub-steps: (1) generating temporal high TWU2I in D− = db1,3 − ∆−, (2) generating temporal 

high TWU2I in db2,4 = D− + ∆+ and (3) scanning the database db2,4 only once for the 

generation of all temporal high utility itemsets. Initially, after some update activities, old 

transactions ∆− are removed from the database dbm,n and new transactions ∆+ are added (in 

Step 6). Note that ∆−⊂ dbm,n. Denoting the updated database as dbi,j, note that dbi,j = dbm,n − 

∆− + ∆+. We denote the unchanged transactions by D− = dbm,n − ∆−  = dbi,j − ∆+. After 

loading Thtwm,n of dbm,n into CF where I∈Thtwm,n, we start the first sub-step, i.e., generating 

temporal high TWU2I in D− = dbm,n − ∆−. This sub-step reverses the cumulative processing 

which is described in the preprocessing procedure. From Step 8 to Step 16, we prune the 

occurrences of an itemset I, which appeared before partition Pi, by deleting the value I.twu 

where I∈CF and I.start < i. Next, from Step 17 to Step 39, similarly to the cumulative 

processing in Section 3.3.1, the second sub-step generates temporal high TWU2I in dbi,j = D− 

+ ∆+ and employs the scan reduction technique to generate . Finally, to generate temporal 

high utility itemsets, i.e., Thu

ji
hC ,

1+

i,j, in the updated database, we scan dbi,j only once in the 

incremental procedure to find temporal high utility itemsets. Note that Thtwi,j is kept in main 

memory for the next generation of incremental mining. 
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Figure 3-4. Incremental procedure of THUI-Mine. 

 

3.3 Experiments and Analysis 

To evaluate the performance of THUI-Mine, we conducted experiments using synthetic 
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datasets generated via a randomized dataset generator provided by IBM Quest project [3]. 

However, the IBM Quest data generator only generates the quantity of 0 or 1 for each item in 

a transaction. In order to fit databases into the scenario of utility mining, we randomly 

generate the quantity of each item in each transaction, ranging from 1 to 5, as is similar to the 

model used in [21]. Utility tables are also synthetically created by assigning a utility value to 

each item randomly, ranging from 1 to 1000. Because it is observed from real world databases 

that most items are in the low profit range, we generate the utility values using a log normal 

distribution, as is similar to the model used in [21]. Figure 3-5 shows the utility value 

distribution of 1000 items.  

The simulation is implemented in C++ and conducted in a machine with 2.4GHz CPU 

and 1G memory. For comparison with THUI-Mine algorithm, the two-Phase algorithm is 

extended with sliding window scenario. The extended Two-Phase algorithm scans the 

database according to the set time window and then performs the computation within the time 

window. This process is repeated over sliding time window for the database. The main 

performance metric used is execution time. We recorded the execution time of THUI-Mine in 

finding temporal high utility itemsets. The comparison on the number of generated itemsets 

for THUI-Mine, Two-Phase and MEU is presented to shows the performance comparison of 

THUI-Mine and Two-Phase. The results of scale-up experiments are presented to shows the 

performance comparison of THUI-Mine and Two-Phase on another dense dataset. 
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Figure 3-5. Utility value distribution in utility table. 

 

Evaluation on Number of Generated Candidates 

In this experiment, we compare the average number of candidates generated in the first 

database scan on the sliding windows and incremental transaction number d10K with 

different support values for THUI-Mine, Two-Phase [21] and MEU [35]. Without loss of 

generality, we set |d| = |∆+| = |∆−| for simplicity. Thus, by denoting the original database as 

db1,n and the new mining database as dbi,j, we have |dbi,j | = |db1,n − ∆− + ∆+| = |D|, where ∆− = 

db1,i−1 and ∆+ = dbn+1,j . Table 3-4 and Table 3-5 show the average number of candidates 

generated by THUI-Mine, Two-Phase and MEU on two datasets, respectively. The number of 

items is set at 1000, and the minimum utility threshold varies from 0.2% to 1%. The 

experimental results show that the number of candidate itemsets generated by THUI-Mine at 

the first database scan decreases dramatically as the threshold goes up. Especially, when the 

utility threshold is set as 1%, the number of candidate itemsets is 0 in database 
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T10.I6.D100K.d10K where T denotes the average size of the transactions and I the average 

number of frequent itemsets. The default size of the sliding window is set as 30K. In fact, we 

also varied the size of sliding window and the experimental results show that THUI-Mine 

outperforms Two-Phase algorithm under different sliding windows sizes. Due to space 

limitation, we only show the representative results with the sliding window size set as 30K. 

However, the number of candidates generated by Two-Phase is still very large and that for 

MEU is always 499,500 because it needs to process all combinations of 1000 items. 

THUI-Mine generates far fewer candidates when compared to Two-Phase and MEU.  

We obtain similar experimental results for different datasets. For example, only 118 

candidate itemsets are generated by THUI-Mine, but 183,921 and 499,500 candidate itemsets 

are generated by Two-Phase and MEU, respectively, when the utility threshold is set as 1% in 

dataset T20.I6.D100K.d10K. In the case of dataset T20.I6.D100K.d10K, more candidates are 

generated, because the transaction is longer than that in T10.I6.D100K.d10K. In overall, our 

algorithm THUI-Mine always generates far fewer candidates compared to Two-Phase and 

MEU for various kinds of databases. Hence, THUI-Mine is verified to be very effective in 

pruning candidate itemsets to find temporal high utility itemsets. 

Table 3-4. The number of candidate itemsets generated on database T10.I6.D100K.d10K. 

T10.I6.D100K.d10K Databases 

 

Threshold 
THUI-Mine Two-Phase MEU 

0.2% 3433 361675 499500 

0.3% 666 303810 499500 

0.4% 161 258840 499500 

0.6% 7 182710 499500 

0.8% 1 129286 499500 

1% 0 91378 499500 
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Table 3-5. The number of candidate itemsets generated on database T20.I6.D100K.d10K. 

T20.I6.D100K.d10K Databases 

 

Threshold 
THUI-Mine Two-Phase MEU 

0.2% 27357 401856 499500 

0.3% 11659 371953 499500 

0.4% 5389 337431 499500 

0.6% 1364 278631 499500 

0.8% 371 229503 499500 

1% 118 183921 499500 

 

Evaluation of Execution Efficiency 

In this experiment, we compare only the relative performance of Two-phase and THUI-Mine 

since MEU spends much higher execution time and becomes incomparable. Figure 3-6 and 

Figure 3-7 show the execution times for the two algorithms on datasets T20.I6.D100K.d10K 

and T10.I6.D100K.d10K, respectively, as the minimum utility threshold is decreased from 1% 

to 0.2%. It is observed that when the minimum utility threshold is high, there are only a 

limited number of high utility itemsets produced. However, as the minimum utility threshold 

decreases, the performance difference becomes prominent in that THUI-Mine significantly 

outperforms Two-Phase. As shown in Figure 3-6 and Figure 3-7, THUI-Mine leads to 

prominent performance improvement under different sizes of transaction. Explicitly, 

THUI-Mine is significantly faster than Two-Phase and the margin grows as the minimum 

utility threshold decreases. For example, THUI-mine is 10 times faster than Two-Phase when 

threshold is 0.2 for T20.I6.D100K.d10K. In overall, THUI-Mine spends much less time than 

Two-Phase with higher stability in finding temporal high utility itemsets. This is because the 

Two-Phase algorithm produces more candidate itemsets and needs more database scans to 
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find high utility itemsets than THUI-Mine. To measure the improvement on execution time for 

THUI-Mine compared to Two-Phase algorithm, we define the Improvement Ratio as follows: 

Phase-Twooftimeexecution 
Mine)-THUI of  time(execution - Phase)-Two of  time(execution = Ratiot Improvemen  

From the data illustrated in Figure 3-6, we see that the Improvement Ratio is about 

85.6% with the threshold set as 0.2%. In Figure 3-7, the average improvement is about 67% 

with minimum utility threshold varied from 0.2% to 1%. Obviously, THUI-Mine reduces 

substantially the time in finding high utility itemsets. Moreover, the high utility itemsets 

obtained by Two-Phase are not suitable for applications in temporal databases since 

Two-Phase needs more database scans and increased execution time in finding high utility 

itemsets. Hence, THUI-Mine meets the requirements of high efficiency in terms of execution 

time for temporal data mining. 
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Figure 3-6. Execution time for Two-Phase and THUI on T20.I6.D100K.d10K. 
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Figure 3-7. Execution time for Two-Phase and THUI on T10.I6.D100K.d10K. 

 

Scale-up on Incremental Mining 

In this experiment, we investigate the effects of varying incremental transaction size on the 

execution time of mining results. To further understand the impact of |d| on the relative 

performance of THUI-Mine and Two-Phase, we conduct scale-up experiments which are 

similar to those described in [18] with minimum support thresholds being set as 0.2% and 0.4 

%, respectively. Figure 3-8 shows the experimental results where the value in y-axis 

corresponds to the ratio of the execution time of THUI-Mine to that of Two-Phase under 

different values of |d|. It can be seen that the execution-time ratio remains stable with the 

growth of the incremental transaction number |d| since the size of |d| has little influence on the 

performance of THUI-Mine. Moreover, the execution time ratio of the scale-up experiments 

with minimum support thresholds varied from 0.6% to 1% remains constant at approximately 

0.4%. This implies that the advantage of THUI-Mine over Two-Phase is stable and less 

execution time is taken as the amount of incremental portion increases. This result also 

indicates that THUI-Mine is useful for mining temporal databases with large transaction size. 
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Figure 3-8. Scale-up performance results for THUI vs. Two-Phase. 

 

Evaluation on dense data 

Typically, the synthetic data sets are very sparse. For testing various kinds of databases, we 

evaluate another dense dataset, the gazelle data set as used in [37]. The gazelle data set comes 

from click-stream data from a dot-com company named Gazelle.com, a legware and legcare 

retailer. This data set was used in the KDD-Cup 2000 competition and publicly available from 

www.ecn.purdue.edu/ KDDCUP. In order to fit databases into the scenario of utility mining, 

we also randomly generate the quantity of each item in each transaction, ranging from 1 to 5. 

The utility tables are also synthetically created by assigning a utility value to each item 

randomly, ranging from 1 to 1000. 

Figure 3-9 shows the execution time for the two algorithms as the minimum utility 

threshold is varied from 0.1% to 0.02%. It is observed that THUI-Mine still spends less time 

than Two-Phase with higher stability for finding temporal high utility itemsets even under the 

dense data. This is because the Two-Phase algorithm produces more candidate itemsets and 

needs more database scans to find high utility itemsets than THUI-Mine. Hence, this result 
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also indicates that THUI-Mine is effective for mining temporal high utility itemsets under 

both of sparse and dense datasets. 
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Figure 3-9. Execution time for Two-Phase and THUI on gazelle dataset. 
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Chapter 4  

Mining Temporal Rare Utility Itemsets in Large 

Databases Using Relative Utility Thresholds 

 

4.1 Problem Definition 

The mining of association rules for discerning the relationship between data items in large 

databases is a well studied technique in the data mining field with representative methods like 

Apriori [1][2]. The problem with mining association rules can be distilled into two steps. The 

first step involves finding all frequent itemsets (or say large itemsets) in databases. Once the 

frequent itemsets are found, generating association rules is straightforward and can be 

accomplished in linear time. 

An important research issue that extends from the mining of association rules is the 

discovery of temporal association patterns in temporal databases due to the wide variety of 

applications on various domains. Temporal data mining can be defined as the activity of 

looking for interesting correlations or patterns in large sets of temporal data accumulated for 

other purposes [6]. For a database with a specified transaction window size, we may use an 

algorithm like Apriori to obtain frequent itemsets from the database. For time-variant 

temporal databases, there is a strong demand to develop an efficient and effective method to 

mine various temporal patterns [11][19]. However, most methods designed for traditional 

databases cannot be directly applied to the mining of temporal patterns in temporal databases 

because of their high complexity. 

In many applications, we would like to mine temporal association patterns in temporal 

databases for a specified amount of the most recent data. That is, in the temporal data mining, 
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one has to not only include new data (i.e., data created in the new hour) into, but also remove 

the old data (i.e., data created in the most obsolete hour) from the mining process. It can be 

seen that it is intrinsically difficult to conduct frequent pattern identification due to the 

constraints of limited time and space. Furthermore, it takes considerable time to find temporal 

frequent itemsets in different time windows. However, the frequency of an itemset may not be 

a sufficient indicator of interest, because it only reflects the number of transactions in the 

database that contain the itemset. It does not reveal the utility of an itemset, which can be 

measured in terms of cost, profit, or other expressions of user preference.  

On the other hand, frequent itemsets may only contribute a small portion of the overall 

profit, whereas non-frequent itemsets may contribute a large portion of the profit. In reality, a 

retail business may be interested in identifying its most valuable customers (customers who 

contribute a major fraction of the profits to the company). Hence, frequency is not sufficient 

to answer questions such as whether an itemset is highly profitable, or whether an itemset has 

a strong impact. Utility mining is thus useful in a wide range of practical applications and has 

been the subject of several recent studies [8][21][32][35]. 

In the existing mechanisms for mining high utility itemsets, the utility threshold is 

unique throughout the whole database, and they assume that each data included in the 

database occurs over a similar frequency. In reality, however, the data composing the database 

may occur either relatively frequently or not, according to the characteristics of the database. 

In addition, the rarely occurring data in the database may be significant enough to be of good 

use. Nevertheless, the existing high utility itemsets discovery techniques discover the high 

utility itemsets using the same utility threshold over the whole range of data, so the 

discovered high utility itemsets with regard to rare data may be redundant, and as a result 

unnecessary rules may be generated. 
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Table 4-2. A transaction database and its utility table. 

 (a) Transaction table                         (b)The utility table 

 

 ITEM  

 

 

                                       

 

TID 
A B C D E

T1 0 0 26 0 1
T2 0 6 0 1 1△一 P1

T3 12 0 0 1 0
T4 0 1 0 7 0
T5 0 0 12 0 2

P2

 
T6 1 4 0 0 1
T7 0 10 0 0 1
T8 1 0 1 3 1

db1,3

D一

P3

 
T9 1 1 27 0 0
T10 0 6 2 0 0
T11 0 3 0 2 0△+ P4

 
T12 0 2 1 0 0

db2,4

ITEM PROFIT($)(per unit)
A 3 
B 10 
C 1 
D 6 
E 5 

 

Recently, a utility mining model was defined in [35]. Utility is a measure of how “useful” 

(i. e. “profitable”) an itemset is. The definition of utility of an itemset X, u(X), is the sum of 

the utilities of X in all the transactions containing X. The goal of utility mining is to identify 

high utility itemsets which drive a large portion of the total utility. Traditional association 

rules mining models assume that the utility of each item is always 1 and the sales quantity is 

either 0 or 1; thus it is only a special case of utility mining where the utility or the sales 

quantity of each item could be any number. If u(X) is greater than a utility threshold, X is a 

high utility itemset. Otherwise, it is a low utility itemset. Table 4-1 is an example of utility 

mining in a transaction database. The number in each transaction in Table 4-1(a) is the sales 

volume of each item, and the utility of each item is listed in Table 4-1(b). For example, u({B, 

D}) = (6×10+1×6) + (1×10+7×6) + (3×10+2×6) = 160. {B, D} is a high utility itemset if the 
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utility threshold is set at 130. 

However, a high utility itemset may consist of some low utility items. Another approach 

is to adopt the level-wise searching schema that exists in fast algorithms, such as Apriori [3]. 

However, this algorithm doesn’t apply to the utility mining model. For example, u(D) = 84 < 

130, D is a low utility item, but its superset {B, D} is a high utility itemset. If Apriori is used 

to find high utility itemsets, all the combinations of all the items must be generated. Moreover, 

to discover a long pattern, the number of candidates is prohibitively large. The cost of either 

computation time or memory is intolerable, regardless of which method of implementation is 

applied. The challenge of utility mining is not only in restricting the size of the candidate set 

but also in simplifying the computation for calculating the utility. Another challenge of utility 

mining is how to find temporal significant rare utility itemsets from temporal databases as 

time advances. 

In this chapter, in addition to the preceding techniques, we not only study a technique to 

discover the association rules that describe the associations among data, but also suggest a 

high utility itemsets discovery technique that enables us to identify significant rare itemsets 

associated with specific data in a way that the rare data occur simultaneously with the specific 

data more frequently than the average co-occurrence frequency in the database. This 

motivates our research in developing a new scheme for identifying temporal rare utility 

itemsets (TRUI) from temporal databases. Therefore, we propose a novel method that can 

identify rare utility itemsets that co-occur in relatively high association with certain specific 

items. We adopt a relative utility threshold, a rate against the relative frequency of the data 

existing in a database, and explore the issue of efficiently mining rare utility itemsets in 

temporal databases and we will propose two algorithms named TP-RUI-Mine and TRUI-Mine 

that can identify the association rules that include information about the significant 

association among even rare data. The novel contribution of TRUI-Mine is particular in that it 

can efficiently identify the utility itemsets in temporal databases so that the execution time for 
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mining rare utility itemsets can be substantially reduced. In this way, the process under all 

time windows of temporal databases can be achieved effectively under limited memory space, 

less candidate itemsets and CPU I/O. This meets the critical requirements of time and space 

efficiency for mining temporal databases. Through experimental evaluation, TRUI-Mine is 

shown to produce fewer candidate itemsets in finding the temporal rare utility itemsets, so it 

outperforms the other algorithm TP-RUI-Mine, also proposed by us, in terms of execution 

efficiency. To our best knowledge, this is the first work on mining temporal rare utility 

itemsets from temporal databases. 

The rest of this chapter is organized as follows: Section 4.2 describes the proposed 

approaches, TP-RUI-Mine and TRUI-Mine, for finding the temporal rare utility itemsets. In 

section 4.3, we describe the experimental results for evaluating the proposed methods. The 

conclusion of the chapter is provided in Section 4.4. 

4.2 Proposed Methods 

In this section, we present the TP-RUI-Mine and TRUI-Mine methods and describe the basic 

concept of TP-RUI-Mine and TRUI-Mine. Then we give an example of mining temporal high 

utility itemsets. Finally, the procedure of the TRUI-Mine algorithm is provided in the last 

paragraph of the section. 

The goal of our algorithms is to discover temporal rare itemsets from temporal databases. 

The concept consists of utility mining and significantly rare itemsets. We describe the basic 

concept of utility mining and significantly rare itemset as follows. 

Basic Concept of Utility Mining  

The goal of utility mining is to discover all the itemsets whose utility values are beyond a user 

specified threshold in a transaction database. In [35] the goal of utility mining is to find all the 
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high utility itemsets. An itemset X is a high utility itemset if u(X) ≥ ε, where X  I and ε is 

the minimum utility threshold, otherwise, it is a low utility itemset. For example, in Table 4-1, 

u(A, T

⊆

8) = 1×3 = 3, u({A, C}, T8) = u(A, T8) + u(C, T8) = 1×3 + 1×1 = 4, and u({A, C}) = 

u({A, C}, T8) + u({A, C}, T9) = 4 + 30 = 34. If ε = 130, {A, C} is a low utility itemset. 

However, if an item is a low utility item, its superset may be a high utility itemset. For 

example, u(D) = 84 < 130, D is a low utility item, but its superset {B, D} is a high utility 

itemset because of u({B, D}) = 160 > 130. Hence, all the combinations of all items should be 

processed so that it never loses any high utility itemset. However the cost of either 

computation time or memory is intolerable.  

Liu et al. [21] proposed the Two-Phase algorithm for pruning candidate itemsets and 

simplifying the calculation of utility. First, Phase I overestimates some low utility itemsets, 

but it never underestimates any itemsets. For the example in Table 4-1, the transaction utility 

of transaction Tq, denoted as tu(Tq), is the sum of the utilities of all items in Tq: tu(Tq) = 

. And the transaction-weighted utilization of an itemset X, denoted as twu(X), is the 

sum of the transaction utilities of all the transactions containing X: twu(X) = . For 

example, twu(A) = tu(T

∑
∈ qp

qp

Ti
Tiu ),(

∑
∈⊆ DTX q

qTtu )(

3) + tu(T6) + tu(T8) + tu(T9) = 42 + 48 + 27 + 40 = 157 and twu({D, E}) 

= tu(T2) + tu(T8) = 71 + 27 = 98. In fact, u(A) = u({A}, T3) + u({A}, T6) + u({A}, T8)+ u({A}, 

T9)=36 + 3 + 3 + 3 = 45 and u({D, E}) = u({D, E}, T2) + u({D, E}, T8)= 11 + 23 = 34. So 

Phase I overestimates some low utility itemsets, but it never underestimates any itemsets. 

Table 4-2 gives the transaction utility for each transaction in Table 4-1. Second, one extra 

database scan is performed to filter the overestimated itemsets in Phase II. For example, 

twu(A) = 157 > 130 but u(A) = 45 < 130. Then item {A} is pruned. Otherwise, it is a high 

utility itemset. Finally, all of the high utility itemsets are identified in this way.  
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Table 4-2. Transaction utility of the database. 

TID Transaction Utility TID Transaction Utility 

T1 31 T7 105 

T2 71 T8 27 

T3 42 T9 40 

T4 52 T10 62 

T5 22 T11 42 

T6 48 T12 21 

 

Basic Concept of Significant Rare Utility Itemsets  

In this chapter, we use RUT (Relative Utility Threshold) which identifies the association rules 

containing the significantly rare itemsets that have high confidence with regard to specific 

data. A significantly rare itemset is one in which its frequency in the database does not satisfy 

the utility threshold but appears associated with the specific data in high proportion to its 

frequency. To identify significantly rare itemsets in the existing high utility itemsets discovery 

algorithms such as Two-Phase algorithm [21], we should set the utility threshold, generate 

high utility itemsets of which the members satisfy the utility threshold, and apply the 

specified confidence to all rules that can be produced by the high utility itemsets. However in 

some cases, these significantly rare itemsets are not discovered during the actual computation 

of the high utility itemsets. For example, data items a, b and c exist in the database, where 

each of a, b and c has support of 25%, 35% and 30% respectively in the database and the user 

has set the minimum utility threshold to 35%. Then a and c cannot be the members of the high 

utility itemset since they do not satisfy the minimum utility threshold. However, the itemset 

{a, b, c} may have support of 23%, and 90% of a’s occurrences may come together with b and 

c. In the existing discovery methods, the itemset {a, b, c} is not discovered because it does not 

satisfy the minimum utility threshold of 35%. 
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To discover such significantly rare itemsets that are rarely discovered using the existing 

utility mining methods, our algorithms set and utilize two minimum utility thresholds. The 

two utility thresholds are defined as the first utility threshold and the second utility threshold. 

Both of the utility thresholds are defined as follows: 

Definition 4.1. 1st utility threshold: Critical value of the user-specified utility threshold used 

in the process of high utility itemsets discovery. 

Definition 4.2. 2nd utility threshold: Critical value of the user-specified utility threshold used 

in the process of rare utility itemsets discovery. 

The first utility threshold and the second utility threshold are set so that the condition 

“1st utility threshold > 2nd utility threshold” is satisfied. In addition to the utility threshold, 

our algorithms use the relative utility threshold (RUT) that considers relative frequency 

between the data. RUT is one that measures the rare itemset satisfying the second utility 

threshold but not the first utility threshold. Using the RUT, we identify the significantly rare 

itemset. RUT is defined as follows: 

Definition 4.3. Relative Utility Threshold (RUT): RUT(i1, i2, …, ik) = max(threshold(i1, i2, …, 

ik)/threshold(i1), threshold(i1, i2, …, ik)/threshold(i2),…, threshold(i1, i2, …, ik)/threshold(ik)) 

RUT is between 0 and 1, and is determined by selecting the largest one among the 

confidence values for the candidate itemset against each data item. A high value RUT implies 

that the user selects the items in which the percentage of the co-occurrence is high. 

If we define RUT and discover the high utility itemsets using the utility threshold, we are 

able to discover the high utility itemsets in which the different frequencies of items are 

reflected. For example, it is less frequent for consumers to buy food processors or cooking 

pans in a supermarket than to buy bread or milk, but the former transactions are more 

profitable. When applying the existing methods that use only single utility threshold, we 

should set the utility threshold lower to discover the association with regard to food 

processors or cooking pans, and thus numerous unnecessary utility itemsets satisfying the low 
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utility threshold are produced. By using RUT, we can discover rare utility itemsets and 

prevent the generation of unnecessary utility itemsets. 

Our algorithms TP-RUI-Mine and TRUI-Mine are based on the principle of the 

Two-Phase algorithm [21] and THUI-Mine [32], and we combine these with the concept of 

the significantly rare itemset and focus on utilizing incremental methods to improve the 

response time with fewer candidate itemsets and CPU I/O. In essence, by partitioning a 

transaction database into several partitions from temporal databases, algorithm TRUI-Mine 

employs a filtering threshold in each partition to deal with the transaction-weighted utilization 

itemsets generated. The cumulative information in the prior phases is selectively carried over 

toward the generation of transaction-weighted utilization itemsets in the subsequent phases by 

TRUI-Mine. In the processing of a partition, a progressive transaction-weighted utilization set 

of itemsets is generated by TRUI-Mine. Explicitly, a progressive transaction-weighted 

utilization set of itemsets is composed of the following two types of transaction-weighted 

utilization itemsets: (1) the transaction-weighted utilization itemsets that were carried over 

from the previous progressive candidate set in the previous phase and remain as 

transaction-weighted utilization itemsets after the current partition is taken into consideration; 

and (2) the transaction-weighted utilization itemsets that were not in the progressive candidate 

set in the previous phase but are newly selected after only taking the current data partition into 

account. As such, after the processing of a phase, algorithm TRUI-Mine outputs a cumulative 

filter, denoted by CF, which consists of a progressive transaction-weighted utilization set of 

itemsets, their occurrence counts and the corresponding partial utility threshold required. Then 

temporal rare utility itemsets could be generated by RUT. With these design considerations, 

algorithm TRUI-Mine is shown to have very good performance for mining temporal rare 

utility itemsets from temporal databases. Although another algorithm TP-RUI-Mine is 

proposed by us and based on the principle of Two-Phase algorithm [21] and uses the same 

concept and processes with the part of generating temporal rare utility itemsets of TRUI-Mine. 
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However, TP-RUI-Mine would generate too many candidate itemsets compared to TRUI-Mine 

because of the principle of Two-Phase algorithm [21]. We found that TRUI-Mine is a more 

efficient algorithm than TP-RUI-Mine according to both theory and experimental results. 

Hence, we only show the processes of TRUI-Mine in detail. 

An Example for Mining Temporal Rare Utility Itemsets  

The proposed TRUI-Mine algorithm can be best understood by the illustrative transaction 

database in Table 4-1 and Figure 4-1 where a scenario of generating high utility itemsets from 

temporal databases for mining temporal rare utility itemsets is given. We set the first utility 

threshold at 130 and second utility threshold at 90 in nine transactions. According to the 

characteristics of the procedure of utility mining, we should set second utility threshold to be 

the same as the initial threshold so as to filter utility itemsets. If we set the first utility 

threshold to be the initial threshold, we might lose some utility itemsets that could be rare 

utility itemsets. In addition, we set RUT=0.6 to find temporal rare utility itemsets. In fact, our 

algorithm TRUI-Mine not only could discover temporal high utility itemsets but also temporal 

rare utility itemsets. Without loss of generality, the temporal mining problem can be divided 

into two procedures:  

1. Preprocessing procedure: This procedure deals with mining on the original transaction 

database.  

2. Incremental procedure: The procedure deals with the update of the high utility 

itemsets and rare utility itemsets from temporal databases. 
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Figure 4-1. Temporal rare utility itemsets generated by TRUI-Mine. 

 

The preprocessing procedure is only utilized for the initial utility mining in the original 

database, e.g., db1,n. For the generation of mining high utility itemsets and rare utility itemsets 

in db2,n+1, db3,n+2, dbi,j, and so on, the incremental procedure is employed. Consider the 

database in Table 4-1. Assume that the original transaction database db1,3 is segmented into 

three partitions, i.e., {P1, P2, P3}, in the preprocessing procedure. Each partition is scanned 

sequentially for the generation of candidate 2-itemsets in the first scan of the database db1,3. 

After scanning the first segment of 3 transactions, i.e., partition P1, 2-itemsets {AB, AD AE, 

BD, BE, DE} are generated as shown in Figure 4-1. In addition, each potential candidate 

itemset c ∈  C2 has two attributes: (1) c.start which contains the identity of the starting 

partition when c was added to C2; and (2) transaction-weighted utility which is the sum of the 

transaction utilities of all the transactions containing c since c was added to C2. Since there are 

three partitions, the second utility threshold of each partition is 90 / 3 = 30. Such a partial 

utility threshold is called the “filtering threshold” in this chapter. Itemsets whose 

transaction-weighted utility are below the filtering threshold are removed. Then, as shown in 

Figure 4-1, only {AD, BD, BE, DE}, marked by “ ◎ ”, remain as temporal high 

transaction-weighted utilization 2-itemsets whose information is then carried over to the next 
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phase of processing. Similarly, after scanning partition P2, the temporal high 

transaction-weighted utilization 2-itemsets are recorded. 

From Figure 4-1, it is noted that since there are also 3 transactions in P2, the filtering 

threshold of those itemsets carried out from the previous phase is 30 + 30 = 60, and that of 

newly identified candidate itemsets is 30. It can be seen from Figure 4-1 that we have 5 

temporal high transaction-weighted utilization 2-itemsets in C2 after the processing of 

partition P2, and 3 of them are carried from P1 to P2 and 2 of them are newly identified in P2. 

Note that though appearing in the previous phase P1, itemset {AD} is removed from temporal 

high transaction-weighted utilization 2-itemsets once P2 is taken into account since its 

transaction-weighted utility does not meet the filtering threshold (i.e., 42 < 60). Finally, 

partition P3 is processed by algorithm TRUI-Mine. The resulting temporal high 

transaction-weighted utilization 2-itemsets are {AB, AC, AE, BC, BD, BE, DE} as shown in 

Figure 4-1. After the processing of partition P3, we do have two new itemsets, i.e., AC and BC, 

which join the C2 as temporal high transaction-weighted utilization 2-itemsets. Consequently, 

we have 7 temporal high transaction-weighted utilization 2-itemsets generated by TRUI-Mine, 

and 3 of them are carried from P1 to P3, while 2 of them are carried from P2 to P3 and 2 of 

them are newly identified in P3. After processing P1 to P3, those temporal high 

transaction-weighted utilization itemsets in db1,3 are {A, B, C, D, E, AB, AC, AE, BC, BD, 

BE, DE}. 

After generating temporal high transaction-weighted utilization 2-itemsets from the first 

scan of database db1,3, we employ the scan reduction technique and use temporal high 

transaction-weighted utilization 2-itemsets to generate Ck (k = 3, 4, ..., n), where Cn is the 

candidate last itemset. It can be verified that temporal high transaction-weighted utilization 

2-itemsets generated by TRUI-Mine can be used to generate the candidate 3-itemsets. Clearly, 

a C3 can be generated from temporal high transaction-weighted utilization 2-itemsets. For 

example, 3-candidate itemsets {ABC}, {ABE} and {BDE} are generated from temporal high 
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transaction-weighted utilization 2-itemsets {AB, AC, BC}, {AB, AE, BE,} and {BD, BE, DE} 

in db1,3. Similarly, all Ck can be stored in main memory, and we can find temporal high utility 

itemsets together by first utility threshold and temporal rare candidate itemsets between first 

utility threshold and second utility threshold when the second scan of the database db1,3 is 

performed. Thus, only two scans of the original database db1,3 are required in the 

preprocessing step. The resulting temporal high utility itemsets are {B} and {BE} because 

u(B) = 330 >130 and u({B, E}) = 215 > 130. In addition, the temporal rare candidate itemset 

is {BD} because u({B, D}) = 118 between 90 (second utility threshold) and 130 (first utility 

threshold). The individual relative utility thresholds of {B, D} are {B, D}/{B} = 2/5 =0.4 and 

{B, D}/{D} = 2/4 =0.5. So the maximum relative utility threshold of {B, D} is 0.5. However, 

RUT(B, D) = 0.5 < 0.6. Hence, there is no temporal rare utility itemset that could be found in 

the database db1,3. 

One important merit of TRUI-Mine lies in its incremental procedure. As depicted in 

Figure 4-1, the mining database will be moved from db1,3 to db2,4. Thus, some transactions, 

i.e., T1, T2, and T3, are deleted from the mining database and other transactions, i.e., T10, T11, 

and T12, are added. To illustrate more clearly, this incremental step can also be divided into 

three sub-steps: (1) generating temporal high transaction-weighted utilization 2-itemsets in D− 

= db1,3 − ∆−, (2) generating temporal high transaction-weighted utilization 2-itemsets in db2,4 

= D− + ∆+ and (3) scanning the database db2,4 only once for the generation of all temporal 

high utility itemsets and temporal rare utility itemsets. In the first sub-step, db1,3 − ∆− = D−, 

we check the pruned partition P1, and reduce the value of transaction-weighted utility and set 

c.start = 2 for those temporal transaction-weighted utilization 2-itemsets where c.start = 1. It 

can be seen that itemsets {BD, DE} were removed. Next, in the second sub-step, we scan the 

incremental transactions in P4. The process in D− + ∆+ = db2,4 is similar to the operation of 

scanning partitions, e.g., P2, in the preprocessing step. The new itemset {BD} joins the 

temporal high transaction-weighted utilization 2-itemsets after the scan of P4. In the third 
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sub-step, we use temporal high transaction-weighted utilization 2-itemsets to generate Ck as 

mentioned above. Finally, those temporal high transaction-weighted utilization itemsets in 

db2,4 are {A, B, C, D, E, AE, BC, BD, BE}. Note that instead of 10 2-candidate itemsets that 

would be generated if TP-RUI-Mine were used, only 4 temporal high transaction-weighted 

utilization 2-itemsets are generated by TRUI-Mine. By scanning db2,4 only once, TRUI-Mine 

obtains temporal high utility itemsets {B, BE} in db2,4 because u(B) = 270 >130 and u({B, E}) 

= 150 > 130. In addition, the temporal rare candidate itemset are {BC} and {BD} because 

u({B, C}) = 120 and u({B, D}) = 94 between 90 (second utility threshold) and 130 (first 

utility threshold). The individual relative utility thresholds of {B, C} are {B, C}/{B} = 3/7 

=0.42 and {B, C}/{C} = 3/5 =0.6. The individual relative utility thresholds of {B, D} are {B, 

D}/{B} = 2/7 =0.28 and {B, D}/{D} = 2/3 =0.67. So the maximum relative utility thresholds 

of {B, C} and {B, D} are 0.6 and 0.67. It could be found that RUT(B, C) = 0.6 ≧ 0.6 and 

RUT(B, D) = 0.67 > 0.6. Consequently, TRUI-Mine obtains temporal rare utility itemsets {BC, 

BD} in the database db2,4. 

Through the example above, we confirm that items C and D, though they are rare data 

items not satisfying the first utility threshold, always occur simultaneously with item B; and 

the algorithm TRUI-Mine can discover the temporal rare utility itemsets that are not included 

in the temporal high utility itemsets but still significant in terms of the relative utility 

threshold. In addition, our algorithm TRUI-Mine not only could discover temporal high utility 

itemsets but also temporal rare utility itemsets. 

TRUI-Mine Algorithm  

For easier illustration, the meanings of various symbols used are given in Table 4-3. The 

preprocessing procedure and the incremental procedure of algorithm TRUI-Mine are 

described as follows. 
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Preprocessing procedure of TRUI-Mine 

The preprocessing procedure of Algorithm TRUI-Mine is shown in Figure 4-2. Initially, the 

database db1,n is partitioned into n partitions by executing the preprocessing procedure (in 

Step 2), and CF, the cumulative filter, is empty (in Step 3). Let Thtw1,n be the set of 

progressive temporal high transaction-weighted utilization 2-itemsets of dbi,j. Algorithm 

TRUI-Mine only records Thtw1,n which is generated by the preprocessing procedure to be 

used by the incremental procedure. From Step 4 to Step 16, the algorithm processes one 

partition at a time for all partitions. When partition Pi is processed, each potential candidate 

2-itemset is read and saved to CF. The transaction-weight utility of an itemset I and its starting 

partition are recorded in I.twu and I.start, respectively. An itemset, whose I.twu ≥ s, will be 

kept in CF. Next, we select Thtw1,n from I where I∈CF and keep I.twu in main memory for 

the subsequent incremental procedure. By employing the scan reduction technique from Step 

19 to Step 26,  (h ≥ 3) are generated in main memory. After refreshing I.count = 0 where 

I.twu = 0 and where I∈Thtw

n
hC ,1

1,n, we begin the last scan of the database for the preprocessing 

procedure from Step 28 to Step 31. Finally, those itemsets satisfying the constraint that I.u ≧ 

s×P.count and I.RUT ≧ RUT are finally obtained as the temporal high utility itemsets and 

temporal rare utility itemsets.  
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Table 4-3. Meanings of symbols used. 
dbi,j Partitioned_database (D) from Pi to Pj

s Second utility threshold in one partition 

F First utility threshold 

RUT Relative utility threshold 

| Pk| Number of transactions in partition Pk

TUPk 
(I) 

Transactions in Pk that contain itemset I with 
transaction utility 

UPk (I) Transactions in Pk that contain itemset I with utility 

| 
db1,n,(I)

| 
Transactions number in db1,n that contain itemset I 

Ci,j The progressive candidate sets of dbi,j

The progressive temporal high transaction-weighted 
utilization 2-itemsets of dbi,jThtwi,j

Thui,j The progressive temporal high utility itemsets of dbi,j

Trui,j The progressive temporal rare utility itemsets of dbi,j

∆− The deleted portion of an ongoing database 

D− The unchanged portion of an ongoing database 

∆+ The added portion of an ongoing database 
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Figure 4-2. Preprocessing procedure of TRUI-Mine. 

 

Incremental procedure of TRUI-Mine  

As shown in Table 4-3, D− indicates the unchanged portion of an ongoing transaction database. 
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The deleted and added portions of an ongoing transaction database are denoted by ∆− and ∆+, 

respectively. It is worth mentioning that the sizes of ∆+ and ∆−, i.e., | ∆+ | and | ∆− | 

respectively, are not required to be the same. The incremental procedure of TRUI-Mine is 

devised to maintain temporal high utility itemsets efficiently and effectively. This procedure is 

shown in Figure 4-3. As mentioned before, this incremental step can also be divided into three 

sub-steps: (1) generating temporal high transaction-weighted utilization 2-itemsets in D− = 

db1,3 − ∆−; (2) generating temporal high transaction-weighted utilization 2-itemsets in db2,4 = 

D− + ∆+;and (3) scanning the database db2,4 only once for the generation of all temporal high 

utility itemsets. Initially, after some update activities, old transactions ∆− are removed from 

the database dbm,n  and new transactions  ∆+ are added (in Step 6). Note that ∆−⊂ dbm,n. 

Then the updated database is denoted as dbi,j. Note that dbi,j = dbm,n − ∆− + ∆+. We denote the 

unchanged transactions by D− = dbm,n − ∆−  = dbi,j − ∆+. After loading Thtwm,n of dbm,n into 

CF where I Thtw∈ m,n, we start the first sub-step, i.e., generating temporal high 

transaction-weighted utilization 2-itemsets in D− = dbm,n − ∆−. This sub-step reverses the 

cumulative processing which is described in the preprocessing procedure. From Step 8 to Step 

16, we prune the occurrences of an itemset I, which appeared before partition Pi, by deleting 

the value I.twu where I∈CF and I.start < i. Next, from Step 17 to Step 39, similarly to the 

cumulative processing in Section 3.3.1, the second sub-step generates temporal high 

transaction-weighted utilization 2-itemsets in dbi,j = D− + ∆+ and employs the scan reduction 

technique to generate . Finally, to generate temporal high utility itemsets and temporal 

rare utility itemsets, i.e., Thu

ji
hC ,
+1

i,j and Trui,j in the updated database, we scan dbi,j only once in the 

incremental procedure to find temporal high utility itemsets and temporal rare utility itemsets. 

Note that Thtwi,j is kept in main memory for the next generation of incremental mining. 
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Figure 4-3. Incremental procedure of TRUI-Mine. 

 

4.3 Experiments and Analysis  

As described in previous sections, the proposed algorithms TP-RUI-Mine and TRUI-Mine are 
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based on the principle of the Two-Phase algorithm [21] and THUI-Mine [32] respectively, 

with consideration of the concept of significant rare itemsets. To evaluate the performance of 

TP-RUI-Mine and TRUI-Mine, we conducted experiments using synthetic datasets generated 

via a randomized dataset generator provided by IBM Quest project [3]. However, the IBM 

Quest data generator only generates the quantity of 0 or 1 for each item in a transaction. In 

order to fit databases into the scenario of utility mining, we randomly generated the quantity 

of each item in each transaction, ranging from 1 to 5, in a similar fashion to the model used in 

[21][32]. Utility tables are also synthetically created by assigning a utility value to each item 

randomly, ranging from 1 to 1000. Because it is observed from real world databases that most 

items are in the low profit range, we generated the utility values using a log normal 

distribution, in a similar fashion to the model used in [21][32]. Figure 4-4 shows the utility 

value distribution of 1000 items.  

The simulation is implemented in C++ and conducted in a machine with 2.4GHz CPU 

and 1G memory. The main performance metric utilized is execution time. We recorded the 

execution time that TP-RUI-Mine and TRUI-Mine used in finding temporal high utility 

itemsets and temporal rare utility itemsets. The number of itemsets compared by 

TP-RUI-Mine and TRUI-Mine is presented to show the performance comparison of 

TP-RUI-Mine and TRUI-Mine. Finally, we show the results of scale-up experiments. 
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Figure 4-4. Utility value distribution in utility table. 

Evaluation on Number of Generated Candidates 

In this experiment, we compared the average number of candidates generated in the first 

database scan on the sliding windows and the incremental transaction number d10K with the 

difference between the first utility threshold and the second utility threshold for TRUI-Mine 

and TP-RUI-Mine. The relative utility threshold is set to 0.1. Without loss of generality, we set 

|d| = |∆+| = |∆−| for simplicity. Thus, by denoting the original database as db1,n and the new 

mining database as dbi,j, we have |dbi,j | = |db1,n − ∆− + ∆+| = |D|, where ∆− = db1,i−1 and ∆+ = 

dbn+1,j . Table 4-4 shows the average number of candidates, temporal high utility and temporal 

rare utility generated by TRUI-Mine, and TP-RUI-Mine. The number of items is set at 1000, 

and the minimum first and second utility threshold varies from 0.2% to 1%. The number of 

candidate itemsets generated by TRUI-Mine at the first database scan decreases dramatically 

as the threshold goes up. When the second utility threshold and the first utility threshold are 

set to 0.8% and 1%, the number of temporal rare utility itemsets is 0 in database 

T10.I6.D100K.d10K where T denotes the average size of the transactions and I the average 
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number of frequent itemsets. We also use the same way to find the average number of 

candidates, temporal high utility and temporal rare utility in different database 

T20.I6.D100K.d10K and T10.I4.D100K.d10K. Although it still has many of temporal high 

utility itemsets, all of these temporal high utility itemsets are signal item. However, the 

number of candidates generated by TP-RUI-Mine is still very large. TRUI-Mine generates far 

fewer candidates when compared to TP-RUI-Mine.  

Overall, our algorithm TRUI-Mine always generated far fewer candidates compared to 

TP-RUI-Mine for various kinds of databases. Hence, TRUI-Mine was verified to be very 

effective in pruning candidate itemsets to find temporal high utility itemsets and temporal rare 

utility itemsets. 

 

Table 4-4. Number of candidate itemsets, temporal high utility itemsets and temporal rare 

utility itemsets generated on dataset T10.I6.D100K.d10K. 

T10.I6.D100K.d10K (RUT = 0.1) 

Temporal 
rare utility 
itemsets 

Second Utility 
threshold 

First utility 
threshold 

TRUI-Mine TP-RUI-Mine
Temporal high 
utility itemsets 

0.2% 0.4% 55967 445096 334 292 

0.3% 0.5% 33101 431985 275 30 

0.4% 0.6% 20088 412686 221 2 

0.6% 0.8% 8060 385881 151 1 

0.8% 1% 3433 361675 104 0 

 

Evaluation of Execution Efficiency  

In this experiment, we demonstrated the relative performance of TP-RUI-Mine and 

TRUI-Mine. Figure 4-5, Figure 4-6 and Figure 4-7 show the execution times for the two 
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algorithms as the various cases that the difference between first utility threshold and second 

utility threshold. It is observed that when the first and second utility threshold is high, there 

are only a limited number of high utility itemsets and rare utility itemsets produced. However, 

as the second utility threshold decreases, the performance difference becomes prominent in 

that TRUI-Mine significantly outperforms TP-RUI-Mine. As shown in Figure 4-5, Figure 4-6 

and Figure 4-7, TRUI-Mine leads to significant performance improvement for different 

average sizes of transaction. Explicitly, TRUI-Mine is orders of magnitude faster than 

TP-RUI-Mine, and the margin grows as the second utility threshold decreases. It is observed 

that TRUI-Mine spends less time than TP-RUI-Mine and maintains high stability while 

finding temporal high utility itemsets and temporal rare utility itemsets. This is because the 

TP-RUI-Mine produces more candidate itemsets and needs more database scans to find high 

utility itemsets and rare utility itemsets than the TRUI-Mine algorithm. To measure how much 

execution time could be reduced substantially in using TRUI-Mine compared to TP-RUI-Mine, 

we define the Improvement Ratio as follows:  

RUI-TPoftimeexecution 
TRUI) of  time(execution  RUI)-TP of  time(execution  Ratiot Improvemen −

=  

From the data illustrated in Figure 4-5 and Figure 4-6, we see that the Improvement 

Ratio is about 86.8% and 83% with the second utility threshold set as 0.2%. In Figure 4-7, the 

average improvement is about 64% with second utility threshold varied from 0.2% to 0.6%. 

Obviously, TRUI-Mine reduces substantially the time taken in finding high utility itemsets and 

rare utility itemsets. Moreover, the high utility itemsets and the rare utility itemsets obtained 

by TP-RUI-Mine are not suitable for applications in temporal databases since TP-RUI-Mine 

needs more database scans and increased execution times in finding high utility itemsets and 

rare utility itemsets by the time change. Hence, TRUI-Mine meets the requirements of high 

efficiency in terms of execution time for data stream mining. 
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Figure 4-5. Execution time on T10.I6.D100K.d10K. 
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Figure 4-6. Execution time on T20.I6.D100K.d10K. 
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Figure 4-7. Execution time on T10.I4.D100K.d10K. 
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Figure 4-8. Scale-up performance results. 

 

Scale-up on Incremental Mining  

In this experiment, we investigated the effects of varying incremental transaction size on the 

execution time of mining results. To further understand the impact of |d| on the relative 

performance of algorithms TRUI-Mine and TP-RUI-Mine, we conducted scale-up experiments 

which were similar to those described in [18] for both TRUI-Mine and TP-RUI-Mine with 

second utility thresholds being varied from 0.2% and 0.4 % and first utility thresholds being 
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varied from 0.4% and 0.6 %, respectively. Figure 4-8 shows the experimental results where 

the value of y-axis corresponds to the ratio of the execution time of TRUI-Mine to that of 

TP-RUI-Mine. Figure 4-8 shows the execution time-ratio for different values of |d|. It can be 

seen that the execution time-ratio remains stable with the growth of the incremental 

transaction number |d| since the size of |d| has little influence on the performance of 

TRUI-Mine. Moreover, the execution time ratios of the scale-up experiments with second 

utility thresholds varied from 0.6% to 1% remain constant at approximately 0.4%. This 

implies that the advantage of TRUI-Mine over TP-RUI-Mine is stable and less execution time 

is taken as the amount of incremental portion increases. This result also indicates that 

TRUI-Mine is more useful for mining temporal databases with large transaction size. 
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Chapter 5  

Mining High Utility Itemsets with Negative Item 

Values 

 

5.1 Problem Definition 

Mining of association rules in large databases is a well studied technique in the field of data 

mining with typical methods like Apriori [1][2]. The problem surrounding association rules 

mining can be decomposed into two steps. The first step involves finding all frequent itemsets 

(or large itemsets) in a database. Once the frequent itemsets are found, generating association 

rules is straightforward and can be accomplished in linear time.  

Most methods in finding frequent itemsets are designed for traditional databases. 

However, the frequency of an itemset may not be a sufficient indicator of significance, 

because frequency reflects only the number of transactions in the database that contain that 

itemset. It does not reveal the utility of an itemset, which can be measured in terms of cost, 

profit, or other expressions of user preference. On the other hand, frequent itemsets may only 

contribute a small portion of the overall profit, whereas non-frequent itemsets may contribute 

a large portion of the profit. In reality, a retail business may be most interested in identifying 

its most valuable customers (customers who contribute a major fraction of the profits to the 

company). Hence, frequency is not sufficient to answer questions such as whether an itemset 

is highly profitable, or whether an itemset has a strong impact.  

Utility mining is thus useful in a wide range of practical applications and was recently 

studied in [8][21][32][35]. However, a retail business may sale item with negative value. For 

example, many super markets may promote certain items to attract customers. In this scenario 
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customers may buy specific items and then receive free goods. Free goods result in negative 

value for super markets. However, supermarkets may earn higher profits from other items that 

are cross-promoted with these free items. This practice is common. For example, if a 

customer bought three of item A, he would then receive one free item B as a promotion from 

the supermarket. Suppose the supermarket gets 5 dollars of profit from each unit of item A 

sold, and loses 2 dollars for each unit of item B given away. Although giving away a unit of 

item B results in a loss of 2 dollars for supermarkets, they could possibly earn 15 dollars from 

the three units of item A that are cross-promoted with item B. The supermarket thus may have 

a net gain of 13 dollars from this promotion. This example demonstrates why we propose the 

concept of mining for negative item values in utility mining. This also motivates our research 

in developing a new scheme for finding high utility itemsets with negative item values 

(HUINIV) from large databases. 

 

Table 5-3. A transaction database and its utility table. 

 (a) Transaction table                        

      ITEM
TID 

A B C D E

T1 1 0 0 2 1

T2 0 1 2 6 0

T3 3 0 0 5 0

T4 1 0 0 0 1

T5 0 1 2 6 0

T6 0 1 1 0 2

T7 2 0 0 0 0

T8 3 0 0 1 0

T9 0 1 1 4 0

T10 1 0 0 0 1
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(b) The utility table 

 ITEM VALUE($)(per unit)

A 5 
 B -3 

C -2 
 

D 6 

E 10  

 

Recently, a utility mining model has been defined in [35]. Utility is a measure of how 

“useful” (i. e. “profitable”) an itemset is. The definition of the utility of an itemset X, u(X), 

states that it is equal to the sum of the utilities of X of all the transactions containing X. The 

goal of utility mining is to identify high utility itemsets, which drive a large portion of the 

total utility. Traditional association rules of mining models assume that the utility of each item 

is always 1 and that the quantity of sales is either 0 or 1; thus it is only a special case of utility 

mining in which the utility or the quantity of sales of each item can be any number. If u(X) is 

greater than a specified utility threshold, X is a high utility itemset; otherwise, it is a low 

utility itemset. Table 5-1 is an example of utility mining in a transaction database. The number 

associated with each transaction in Table 5-1(a) is the sales volume of each item, and the 

utility of each item is listed in Table 5-1(b). For example, u({A, D}) = (1×5+2×6) + (3×5+5×6) 

+ (3×5+1×6) = 83. {A, D} is a high utility itemset if the utility threshold is set at 80. 

However, a high utility itemset may consist of low utility items. Another possibility is to 

adopt the level-wise searching schema that exists in fast algorithms, such as Apriori [3]. This 

algorithm doesn’t apply to the utility mining model. For example, u(A) = 55 < 80, A is a low 

utility item, but its superset {A, D} is a high utility itemset. If Apriori is used to find high 

utility itemsets, all combinations of all items must be generated. Moreover, in order to 

discover a long pattern, the number of candidates is prohibitively large. The cost in terms of 

either computation time or memory is intolerable, regardless of the method utilized. The 
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challenge of utility mining is not only in restricting the size of the candidate set but also in 

simplifying the computation used to calculate its utility. Another challenge of utility mining is 

finding high utility itemsets with negative item values from large databases.  

In this chapter, we explore the issue of efficiently mining high utility itemsets with 

negative item values in large databases. We propose an algorithm named HUINIV(High Utility 

Itemsets with Negative Item Values)-Mine that can discover high utility itemsets with negative 

item values from large databases both efficiently and effectively. The underlying idea behind 

the HUINIV-Mine algorithm is based on the principle of the Two-Phase algorithm [21] and 

augments with negative item value for mining high utility itemsets efficiently. The novel 

contribution of HUINIV-Mine is that it can efficiently identify the utility of itemsets in large 

database so that the execution time for producing high utility itemsets with negative item 

values can be substantially reduced. That is, HUINIV-Mine can discover high utility itemsets 

with negative item values using limited memory and comparatively less computation time by 

the candidate itemsets filter method. In this way, the process of discovering all high utility 

itemsets in which all transactions are negative can be achieved effectively with limited 

memory, less candidate itemsets, and CPU I/O. This meets the critical requirements of time 

and spatial efficiency for mining large databases. Through experimental evaluation, 

HUINIV-Mine is shown to produce fewer candidate itemsets in the process of finding high 

utility itemsets with negative item values, so it outperforms other methods in terms of 

efficiency. We found that the average improvement of HUINIV-Mine compared to the MEU 

algorithm is about 99.2%. Moreover, it also achieves high scalability in dealing with large 

databases. To the best of our knowledge, this is the first work to propose a negative item 

concept in utility mining and the first work on mining high utility itemsets with negative item 

values from large database. 

The rest of this chapter is organized as follows: Section 5.2 describes the proposed 

approach, HUINIV-Mine, for finding the high utility itemsets with negative item values. In 
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section 5.3, we describe our experimental results for evaluating the proposed method. The 

conclusion of the chapter is provided in Section 5.4. 

5.2 Proposed Method 

In this section, we present the HUINIV-Mine method. We describe the basic concept of 

HUINIV-Mine. We give an example of mining temporal high utility itemsets and the 

procedure of the HUINIV-Mine algorithm. 

Basic Concept of HUINIV-Mine 

The goal of utility mining is to discover all itemsets whose utility values exceed a user 

specified threshold in a transaction database. In [35] the goal of utility mining is to find all 

high utility itemsets. An itemset X is a high utility itemset if u(X) ≥ε, where X  I and ε is 

the minimum utility threshold, otherwise, it is a low utility itemset. For example, in Table 5-1, 

u(A, T

⊆

1) = 1×5 = 5, u({A, E}, T1) = u(A, T1) + u(E, T1) = 1×5 + 1×10 = 15, and u({A, E}) = 

u({A, E}, T1) + u({A, E}, T4) + u({A, E}, T10) = 15 + 15 + 15= 45. If ε = 80, {A, E} is a low 

utility itemset. However, if an item is a low utility item, its superset may be a high utility 

itemset. For example, u(A) = 55 < 80, A is a low utility item, but its superset {A, D} is a high 

utility itemset because u({A, D}) = 83 > 80. Hence, all the combinations of all items should 

be processed so that it never loses any high utility itemset. But the high cost of either 

computational time or memory is intolerable. A set of terms that leads to the formal definition 

of the utility mining problem can be generally defined as follows by referring to [35]: 

 I = {i1, i2, …, im} is a set of items.  

 D = {T1, T2, …, Tn} be a transaction database where each transaction Ti∈D is a subset of 

I.  

 o(ip, Tq), local transaction utility value, represents the quantity of item ip in transaction 
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Tq. For example, o(A, T3) = 3, in Table 5-1(a).  

 s(ip), external utility, is the value associated with item ip in the Utility Table. This value 

reflects the importance of an item, which is independent of transactions. For example, in 

Table 5-1(b), the external utility of item A, s(A), is 5.  

 u(ip, Tq), utility, the quantitative measure of utility for item ip in transaction Tq, is defined 

as: o(ip, Tq)×s(ip). For example, u(A, T3) = 3 × 5, in Table 5-1.  

 u(X, Tq), utility of an itemset X in transaction Tq, is defined as , where X = 

{ i

∑
∈Xip

qp Tiu ),(

1, i2, …, im} is a k-itemset, X  T⊆ q and 1≤ k≤ m.  

 u(X), utility of an itemset X, is defined as  ∑
⊆∧∈ qq

q

TXDT
TXu ),( .

Liu et al. [21], proposed the Two-Phase algorithm for pruning candidate itemsets and 

simplifying the calculation of utility. First, Phase I overestimates some low utility itemsets, 

but it never underestimates any itemsets. For example in Table 5-1, the transaction utility of 

transaction Tq, denoted as tu(Tq), is the sum of the utilities of all items in Tq: tu(Tq) = 

. And the transaction-weighted utilization of an itemset X, denoted as twu(X), is the 

sum of the transaction utilities of all transactions containing X: twu(X) = . For 

example, twu(A) = tu(T

∑
∈ qp

qp

Ti
Tiu ),(

∑
∈⊆ DTX q

qTtu )(

1) + tu(T3) + tu(T4) + tu(T7) + tu(T8) + tu(T10)= 27 + 45 + 15 +10 + 21 

+ 15 = 133 and twu({A, E}) = tu(T1) + tu(T4) + tu(T10) = 27 + 15 + 15= 57. In fact, u(A) = 

u({A}, T1) + u({A}, T3) + u({A}, T4) + u({A}, T7) + u({A}, T8) + u({A}, T10) =5 + 15 + 5 + 

10 + 15 + 5 = 55 and u({A, E}) = u({A, E}, T1) + u({A, E}, T4) + u({A, E}, T10)= 15 + 15 + 

15 = 45. So while Phase I overestimates some low utility itemsets, it never underestimates any 

itemsets whatsoever. Table 5-2 gives the transaction utility of each transaction in Table 5-1. 

One extra database scan is performed to filter the overestimated itemsets in phase II. For 

example, twu(A) = 126 > 80 but u(A) = 55 < 80. After that, item {A} is pruned; otherwise, it 

is a high utility itemset. In the end, all of high utility itemsets have been discovered in this 
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way. However, we cannot apply the Two-Phase algorithm to databases whose items include 

negative values. Some high utility itemsets may be lost in this way. For example, twu({B, D}) 

= tu(T2) + tu(T5) + tu(T9)= 29 + 29 + 19 = 77. If ε = 80, twu({B, D}) = 77 < 80 is a low 

transaction-weighted utilization itemset, then {B, D} will be deleted. In fact, u({B, D}) = 

u({B, D}, T2) + u({B, D}, T5) + u({B, D}, T9)= 33 + 33 + 21= 87 > 80. {B, D} should be a 

high utility itemset. Thus, the Two-Phase algorithm is not sufficient to answer question 

regarding items with negative values. As one possible solution, utility mining, useful over a 

wide range of practical applications, was recently studied in [8][21][32][35]. This also 

motivates our research in developing a new scheme for finding high utility itemsets with 

negative item values (HUINIV) from large databases.   

Our algorithm HUINIV-Mine is based on the principle of the Two-Phase algorithm [21], 

and focuses on utilizing transaction utility without using negative item value methods to 

improve the response time by concerning fewer candidate itemsets and less CPU I/O. In 

essence, by removing items with negative values from a transaction in a large database, 

algorithm HUINIV-Mine employs a filtering threshold within the database to deal with the 

transaction-weighted utilization itemsets (TWUI) generated. Table 5-3 gives the transaction 

utility without negative item values for each transaction in Table 5-1. In this way, 

HUINIV-Mine can overestimate some low utility itemsets, but it never underestimates any 

itemsets and it never loses any itemsets that may be of high utility. In processing a database, a 

transaction-weighted utilization set of itemsets is generated by HUINIV-Mine. Explicitly, a 

transaction-weighted utilization set of itemsets is composed of the TWUI that were generated 

from the previous transaction-weighted utilization candidate sets during the previous phase. 

After the processing, the algorithm HUINIV-Mine outputs a high transaction-weighted 

utilization set of itemsets. However, some of the high transaction-weighted utilization sets of 

itemsets should be pruned advance. Each item of the itemset that has negative value will 

never be part of a high utility itemset. At least one item’s value within an itemset should be 
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positive, or the itemset need not scan the database. Hence, the algorithm HUINIV-Mine 

outputs real high transaction-weighted utilization candidate itemsets after filtering some 

itemsets. Finally, HUINIV-Mine computes the occurrence counts of itemsets in the memory 

and then deletes itemsets that do not satisfy utility threshold within the database so as to find 

high utility itemsets with negative item values.  

Taking these design features under consideration, the algorithm HUINIV-Mine is shown 

to perform very well at mining high utility itemsets with negative item values from large 

databases. In Section 5.3.2, we give an example of mining high utility itemsets with negative 

item values from large databases. The proposed algorithm, HUINIV-Mine, is described in 

detail in Section 5.3.3. 

 

Table 5-2. Transaction utility of the transaction database. 

TID Transaction Utility TID Transaction Utility 

T1 27 T6 15 

T2 29 T7 10 

T3 45 T8 21 

T4 15 T9 19 

T5 29 T10 15 
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Table 5-3. Transaction utility without negative item values of the transaction database. 

TID 
Transaction Utility without 

Negative Item Values 
TID 

Transaction Utility without 
Negative Item Values 

T1 27 T6 20 

T2 36 T7 10 

T3 45 T8 21 

T4 15 T9 24 

T5 36 T10 15 

 

An Example of Mining High Utility Itemsets with Negative item Values 

The proposed HUINIV-Mine algorithm can be best understood from the illustrative transaction 

database shown in Table 5-1 and Figure 5-1 in which a scenario for generating high utility 

itemsets from large databases to mine high utility itemsets with negative item values is given. 

This type of illustrative transaction database resembles items that are sold by supermarkets in 

real life. This also means that utility mining has real-life applications. We set the utility 

threshold at 80 with ten transactions. Without loss of generality, the mining problem can be 

decomposed into two procedures:  

1. TWUI procedure: This procedure deals with mining the transaction database to 

generate TWUI.  

2. Filter procedure: The procedure deals with filtering negative itemsets and generating 

high utility itemsets with negative item values from large databases. 
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Figure 5-1. High utility itemsets generated from large databases by HUINIV-Mine. 

 

The TWUI procedure is only utilized for the initial utility mining in the database. For the 

mining high utility itemsets, the filter procedure is employed. Consider the database in Table 

5-1. Each transaction is scanned sequentially for the generation of candidate 1-itemsets in the 

first scan of the database. Itemsets whose transaction-weighted utility is below the utility 

threshold are removed. Then, as shown in Figure 5-1, only {A, B, C, D}, marked by “◎”, 

remain as high transaction-weighted utilization 1-itemsets. Although items B and C have 

negative values, they may constitute high utility itemset by combining with other items. These 

items should be preserved to combine with other items to generate the next candidate itemsets. 

The candidate 2-itemsets {AB, AC, AD, BC, BD, CD} are generated by high 

transaction-weighted utilization 1-itemsets. In the same way, only {AD, BC, BD, CD}, 

marked by “◎”, remain as high transaction-weighted utilization 2-itemsets. The candidate 

3-itemsets {BCD} are generated by high transaction-weighted utilization 2-itemsets; high 

transaction-weighted utilization 3-itemsets being those whose transaction-weighted utility is 
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above the utility threshold.  

We could get high transaction-weighted utilization candidate itemsets {A, B, C, D, AD, 

BC, BD, CD, BCD}. However, some of the high transaction-weighted utilization sets of 

itemsets should be pruned in advance. If each item of the itemset’s value is negative, it will 

not be a high utility itemset. For example, {B, C, BC} should be deleted. Hence, algorithm 

HUINIV-Mine outputs only 6 real high transaction-weighted utilization candidate itemsets {A, 

D, AD, BD, CD, BCD} after filtering the itemsets. Finally, all candidates can be stored in 

main memory, and we can find high utility itemsets with negative item values when the scan 

of the database is performed. The resulting high utility itemsets are {D}, {AD}, {BD} and 

{CD} because u(D) = 144 >80, u({A, D}) = 83 >80, u({B, D}) = 87 >80 and u({B, E}) = 86 

> 80 as shown in Figure 5-1. 

 

Table 5-4. Meanings of symbols used. 

DB Database 

threshld Utility threshold in database 

twu Transaction-weighted utilization itemsets without negative item values 

htwui High transaction-weighted utilization i-itemsets without negative item values

I.value Each item’s value 

hui High utility itemsets with negative item values 

 

HUINIV-Mine Algorithm 

For clarification, the meanings of various symbols used are given in Table 5-4. The procedure 

used Algorithm HUINIV-Mine is shown in Figure 5-2.  

Initially, it input the database DB (in step 1), and it finds high transaction-weighted 

utilization 1-itemsets from step 2 to step 5. The transaction-weighted utility without negative 
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item value of itemset I is recorded in I.twu. An itemset, whose I.twu ≥ threshold (in step 3), 

will be kept in htwu (in step 4). Next, we use high transaction-weighted utilization itemsets to 

generate transaction-weighted utilization candidate itemsets. Then we scan the database to 

find high transaction-weighted utilization itemsets from step 6 to step 13. After identifying all 

htwu, we perform a last scan of the database from Step 14 to Step 19. Since each item’s value 

in the itemset is negative, it cannot be a high utility itemset. At least one item’s value in 

itemset I should be positive (in step 14), or else the itemset does not need to scan the database. 

Finally, those itemsets satisfying the constraint that I.htwu ≧ threshold are finally obtained 

as the high utility itemsets with negative item values.  

 

 

Figure 5-2. Procedure used by HUINIV-Mine. 

5.3 Experiments and Analysis 

To evaluate the performance of HUINIV-Mine, we conducted experiments using synthetic 
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datasets generated via a randomized dataset generator provided by IBM Quest [3]. However, 

the IBM Quest data generator only generates quantities of 0 or 1 for each item in a transaction. 

In order to fit databases into the scenario of utility mining, we randomly generate the quantity 

of each item in each transaction, ranging from 1 to 5; much like the model used in [21][32]. 

Utility tables are also synthetically created by assigning a utility value to each item randomly, 

ranging from -100 to 1000. Since it is observed from real databases that most items are in the 

low value range and low negative value range, we generate the utility values using a log 

normal distribution; similarly to the model used in [21][32]. Figure 5-3 shows the utility value 

distribution of 1000 items.  

The simulation is implemented in C++ and conducted in a machine with 2.4GHz CPU 

and 1G memory. The MEU algorithm [35] is also utilized in a negative itemsets scenario for 

comparison with the HUINIV-Mine algorithm. The scenario using MEU consists of scanning 

the database after collecting the data to find high utility itemsets with negative item values. 

The main performance metric used is execution time. We recorded the time that 

HUINIV-Mine uses to find high utility itemsets with negative item values. The number of 

candidate itemsets compared of HUINIV-Mine and MEU is presented and show comparison in 

performance of a variety of IBM Quest data with HUINIV-Mine. We also give the 

performance of HUINIV-Mine with real data. 
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Figure 5-3. Utility value with negative distribution in utility table. 

 

Evaluation of Number of Generated Candidates 

In this experiment, we compare the average number of candidates generated in the first 

database scan with different support values for HUINIV-Mine and MEU [35]. Table 5-5, Table 

5-6, Table 5-7 and Table 5-8 show the average number of candidates generated by 

HUINIV-Mine and MEU. The number of items is set at 1000, and the minimum utility 

threshold varies from 0.2% to 1%. The number of candidate itemsets generated by 

HUINIV-Mine during the first database scan decreases dramatically as the threshold increases. 

Particularly when the utility threshold is set to 1%, the number of candidate itemsets is 

generally 588, including all various candidate itemsets in database T10.I4.D100K where T 

denotes the average size of the transactions and I the average number of frequent itemsets. 

However, the number of candidates generated by MEU is always 499,500 because it needs to 

process all combinations of 1000 items to generate only 2-candidate itemsets. HUINIV-Mine 

generates far fewer candidates when compared to MEU.  
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We obtain similar experimental results from different datasets. For example, only 644 

candidate itemsets are generated by HUINIV-Mine, but 499500 candidate itemsets are 

generated by MEU, respectively, when the utility threshold is set as 1% in dataset 

T10.I4.D100K. In the case of datasets T20.I4.D100K and T20.I6.D100K, more candidates are 

generated, because each transaction is longer than those in T10.I4.D100K and T10.I4.D100K. 

Overall, our algorithm HUINIV-Mine always generates far fewer candidates when compared 

to MEU for various kinds of databases. Thus, HUINIV-Mine is verified to be very effective in 

pruning candidate itemsets to find high utility itemsets with negative item values. 

It is observed that HUINIV-Mine obtains fewer candidate itemsets than MEU with high 

stability with regard to finding high utility itemsets with negative item values. To measure 

how many candidate itemsets could be reduced substantially by using HUINIV-Mine 

compared to MEU algorithm, we define the Improvement Ratio as follows: 

MEUofitemsetscandidate
Mine)-HUIVP of itemsets (candidate - MEU) of itemsets (candidate = Ratiot Improvemen  

From the data illustrated in Table 5-5, we see that the Improvement Ratio is about 99.8% 

with the threshold set as 1%. In Table 5-8, the average improvement is about 99.2% with the 

minimum utility threshold varied from 0.2% to 1%. Obviously, HUINIV-Mine reduces 

substantially the candidate itemsets for finding high utility itemsets with negative item values. 

Moreover, the high utility itemsets obtained by MEU are not suitable for applications in large 

database since MEU requires more database scans, and increased execution times and 

candidate itemsets to find high utility itemsets with negative item values. Thus, HUINIV-Mine 

meets the requirements of being highly effective in terms of candidate itemsets for large 

database mining. 
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Table 5-5. The number of candidate itemsets and high utility itemsets generated from database 

T10.I4.D100K. 

T10.I4.D100K Databases

Threshold 
HUINIV-Mine MEU 

High Utility 
Itemsets 

0.2% 11306 499500 285 

0.3% 3928 499500 183 

0.4% 1691 499500 115 

0.6% 846 499500 58 

0.8% 676 499500 29 

1% 588 499500 14 

 

Table 5-6. The number of candidate itemsets and high utility itemsets generated from database 

T10.I6.D100K. 

T10.I6.D100K Databases 

 

Threshold 
HUINIV-Mine MEU 

High Utility 
Itemsets 

0.2% 16304 499500 335 

0.3% 5336 499500 197 

0.4% 2469 499500 130 

0.6% 1056 499500 69 

0.8% 755 499500 29 

1% 644 499500 19 
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Table 5-7. The number of candidate itemsets and high utility itemsets generated from database 

T20.I4.D100K. 

T20.I4.D100K Databases 

 

Threshold 
HUINIV-Mine MEU 

High Utility 
Itemsets 

0.2% 20026 499500 118 

0.3% 7958 499500 55 

0.4% 3754 499500 29 

0.6% 1308 499500 8 

0.8% 774 499500 4 

1% 599 499500 2 

 

Table 5-8. The number of candidate itemsets and high utility itemsets generated from database 

T20.I6.D100K. 

T20.I6.D100K Databases 

 

Threshold 
HUINIV-Mine MEU 

High Utility 
Itemsets 

0.2% 27357 499500 127 

0.3% 8441 499500 56 

0.4% 4095 499500 23 

0.6% 1438 499500 7 

0.8% 823 499500 4 

1% 637 499500 3 

 

Evaluation of Execution Time 

In this experiment, we show only the performance of HUINIV-Mine since MEU requires 

much higher execution time (longer than 10 hours) to complete the second scan lacks basis for 
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comparison because the number of candidate itemsets generated is always 499500.  

Therefore, HUINIV-Mine meets the requirements of efficiency in terms of execution time for 

large database mining. 

Figure 5-4 and Figure 5-5 show the execution times for HUINIV-Mine as the minimum 

utility threshold is decreased from 1% to 0.2%. It is observed that when the minimum utility 

threshold is high, there are only a limited number of high utility itemsets produced. However, 

as the minimum utility threshold decreases, the execution times increase with more high 

utility itemsets produced. As shown in Figure 5-4 and Figure 5-5, the margin grows as the 

minimum utility threshold increases for different average sizes of transaction.  
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Figure 5-4. Execution time for HUINIV on T20.I6.D100K and T10.I6.D100K. 
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Figure 5-5. Execution time for HUINIV on T20.I4.D100K and T10.I4.D100K. 

 

Evaluation with Real Data 

We also evaluate our algorithm HUINIV-Mine with real data, BMS-POS. The BMS-POS 

dataset contains several years worth of point-of-sale data from a large electronics retailer. 

Since this retailer has so many different products, we used product categories as items. Each 

item thus represents a category, rather than an individual product. The transaction in this 

dataset is a customer’s purchase transaction consisting of all product categories purchased at 

one time. The goal of this dataset is to find associations between product categories purchased 

by customers in a single visit to the retailer. Table 5-9 characterizes BMS-POS in terms of the 

number of transactions, the number of distinct items, the maximum transaction size, and the 

average transaction size. 

This data set was used in the KDD-Cup 2000 competition and was recently made 

publicly available by Blue Martini Software (downloaded from 

http://www.ecn.purdue.edu/KDDCUP). In order to render databases siuitable for utility 
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mining, we also randomly generate the quantity of each item in each transaction, ranging from 

1 to 5. Utility tables are also synthetically created by assigning a utility value to each item 

randomly, ranging from 1 to 1000. 

Table 5-10 shows the average number of candidates generated by HUINIV-Mine and 

MEU. The number of items is set at 1000, and the minimum utility threshold varies from 

0.2% to 1%. The number of candidate itemsets generated by HUINIV-Mine during the first 

database scan decreases dramatically as the threshold increases. Particularly when the utility 

threshold is set to 1%, the number of candidate itemsets is generally 3789, including all 

various candidate itemsets within the database BMS-POS. However, the number of candidates 

generated by MEU is always 499,500 because it must process all combinations of 1000 items 

to generate only 2-candidate itemsets. It is observed that HUINIV-Mine still generates far 

fewer candidates when compared to MEU even using the real data. Hence, this result 

indicates that HUINIV-Mine is useful for mining high utility itemsets with negative item 

values from both artificial data and real data. Figure 5-6 shows the execution times for 

HUINIV-Mine as the minimum utility threshold is decreased from 1% to 0.2%. 

 

Table 5-9. Database BMS-POS characteristics. 

BMS-POS 

Transactions Distinct items Maximum Trans. Size Average Trans. Size 

515597 1657 164 6.5 
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Table 5-10. The number of candidate itemsets and high utility itemsets generated on database 

BMS-POS. 

BMS-POS Databases 

 

Threshold 
HUINIV-Mine MEU 

High Utility 
Itemsets 

0.2% 59066 499500 151 

0.3% 31485 499500 66 

0.4% 19488 499500 34 

0.6% 9603 499500 16 

0.8% 5728 499500 7 

1% 3789 499500 4 
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Figure 5-6. Execution time for HUINIV on BMS-POS. 
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Chapter 6  

Conclusions and Future Work 

The mining of association rules for finding the relationship between data items in large 

databases is a well studied technique in data mining field. For time-variant temporal databases, 

there is a strong demand to develop an efficient and effective method to mine various 

temporal patterns. However, most methods designed for the traditional databases cannot be 

directly applied for mining temporal patterns in temporal databases because of the high 

complexity. In many applications, the frequency of an itemset may not be a sufficient 

indicator of interestingness, because it only reflects the number of transactions in the database 

that contain the itemset. It does not reveal the utility of an itemset, which can be measured in 

terms of cost, profit or other expressions of user preferences. Hence, frequency is not 

sufficient to answer questions such as whether an itemset is highly profitable, or whether an 

itemset has a strong impact. Utility mining is thus useful in a wide range of practical 

applications. Therefore, we proposed a set of data mining methods for mining emerging 

frequent itemsets and high utility itemsets from temporal databases in this thesis. 

First, we addressed the problem of discovering temporal emerging itemsets in temporal 

databases, i.e., the itemsets that are infrequent in current time window but have the high 

potential to become frequent in the subsequent time windows. We propose a new approach, 

namely EFI-Mine, which can discover emerging frequent itemsets from temporal databases 

efficiently and effectively. The novel contribution of EFI-Mine is that it can effectively 

identify the potential emerging itemsets such that the execution time can be reduced 

substantially in mining all frequent itemsets in temporal databases. The experimental results 

show that EFI-Mine can find the emerging frequent itemsets with high precision under 

different conditions like varied window size, transaction size and number of items, etc. This 
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also indicates that EFI-Mine fits for mining temporal databases with large window size 

transaction size and number of items. Moreover, it is highly efficient and scalable in terms of 

execution time. Hence, EFI-Mine promising for mining temporal emerging patterns in 

temporal databases. 

Second, we addressed the problem of discovering temporal high utility itemsets in 

temporal databases. Under the stream database situation, the memory is often limited and it is 

hard to store large itemsets in memory. We propose a new algorithm, namely THUI-Mine, 

which can discover temporal high utility itemsets from temporal databases efficiently and 

effectively. The novel contribution of THUI-Mine is that it can effectively identify the 

temporal high utility itemsets with less candidate itemsets such that the execution time can be 

reduced efficiently. In this way, the process of discovering the temporal high utility itemsets in 

temporal databases can be achieved effectively with less memory space and execution time. 

This meets the critical requirements of time and space efficiency for mining temporal 

databases.  

The experimental results show that THUI-Mine can discover the temporal high utility 

itemsets with higher performance by generating less candidate itemsets as compared to other 

algorithms under different experimental conditions, including both of sparse and dense 

datasets. Across the experiments, THUI-mine is faster than Two-Phase by 2 to 10 times, and 

the performance gain becomes more significant as the minimum utility threshold decreases. 

For example, THUI-mine is 10 times faster than Two-Phase when the threshold is 0.2 for 

dataset T20.I6.D100K.d10K. This performance enhancement comes mainly from the good 

feature of THUI-mine in producing far fewer candidate itemsets. Moreover, the experimental 

results also show that THUI-Mine is scalable with large databases. Therefore, it is indicated 

that the advantage of THUI-Mine over Two-Phase is stable and less execution time is taken as 

the amount of incremental portion of databases increases. Hence, THUI-Mine is promising for 

mining temporal high utility itemsets in temporal databases.  
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Third, we addressed the problem of discovering temporal rare utility itemsets in temporal 

databases, i.e., the itemsets that are larger than relative utility threshold in a current time 

window of the data stream. We propose two approaches, namely TP-RUI-Mine and 

TRUI-Mine, which can identify not only temporal high utility itemsets but also temporal rare 

utility itemsets from temporal databases both efficiently and effectively. To our best 

knowledge, this is the first work on mining temporal rare utility itemsets from temporal 

databases. The novel contribution of TRUI-Mine in particular is that it can effectively identify 

the temporal rare utility itemsets with less temporal high transaction-weighted utilization 

2-itemsets such that the execution time can be reduced efficiently in mining all rare utility 

itemsets in temporal databases. In this way, the process of discovering all temporal rare utility 

itemsets under all time windows of temporal databases can be achieved effectively with 

limited memory space, less candidate itemsets and less CPU I/O. This meets the critical 

requirements of time and space efficiency for mining temporal databases.  

The experimental results show that TRUI-Mine can find the temporal rare utility itemsets 

with higher performance by generating less candidate itemsets compared to TP-RUI-Mine 

under different experimental conditions. Moreover, it performs scalably in terms of execution 

time with large databases. Hence, TRUI-Mine is promising for mining temporal rare utility 

itemsets in temporal databases.  

Fourth, we addressed the problem of discovering high utility itemsets with negative item 

values in large databases, i.e., the itemsets containing negative item values that are larger than 

threshold in large databases. We propose a new approach, namely HUINIV-Mine, which can 

identify high utility itemsets with negative item values in large databases both efficiently and 

effectively. The novel contribution of HUINIV-Mine is that it can effectively identify high 

utility itemsets with negative item values in less high TWUI such that the execution time can 

be reduced efficiently for mining all high utility itemsets with negative item values in large 

databases. In this way, the process of discovering all high utility itemsets containing negative 
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item values can be achieved effectively with limited memory space, less candidate itemsets 

and CPU I/O. This meets the critical requirements of time and space efficiency for mining 

high utility itemsets with negative item values. 

The experimental results show that HUINIV-Mine can find high utility itemsets with 

negative item values with higher performance by generating fewer candidate itemsets 

compared to other algorithms under varied experimental conditions. It was found that 

HUINIV-Mine delivers an average improvement around 99.2% over MEU method in terms of 

execution performance. That is, the advantage of HUINIV-Mine over MEU is stable and less 

execution time is taken when the concept of negative item values is considered. Hence, 

HUINIV-Mine is promising for mining high utility itemsets in large databases with negative 

item values.  

For the future work, we would extend the concepts of the proposed methods to discover 

other interesting patterns in temporal databases, like the frequent closed sets or other 

interesting patterns in temporal databases such as different ordered transactions. Moreover, we 

would explore to extend the concepts proposed in the thesis for discovering high utility 

itemsets with negative item values in temporal databases or data streams. 
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