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ABSTRACT

Mining frequent patterns for discovering the relationship among data items from large
databases is an important topic in data mining since frequent patterns can be applied to wide
applications. There exist various kinds of frequent patterns like frequent itemsets, emerging
frequent itemsets, high utility itemsets and so'on. Recently, emerging pattern mining and
utility mining become very popular topics because of the rising of economic applications.
Emerging frequent itemsets are those who are infrequent in the current database and then
become frequent in the new database temporally added with new data transactions. High
utility itemsets reveal the utility of an itemset, which can be measured in terms of cost, profit
or other expressions of user preferences. In the past, most studies focus on developing
efficient and effective methods for finding frequent itemsets from large database by reducing
candidate itemsets, database scans and memory space. However, most methods designed for
the traditional databases cannot be directly applied for mining temporal patterns in temporal
databases because of the high complexity. Hence, we investigate efficient methods for mining
emerging frequent itemsets and high utility itemsets in temporal databases in this dissertation.

In emerging pattern mining, a novel approach named EFI (Emerging Frequent
Itemsets)-Mine is presented to effectively identify the potential emerging itemsets by crossing
sliding windows to predict frequent itemsets such that the execution time can be reduced
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substantially in mining all frequent itemsets in temporal databases. The experimental results
show that EFI delivers 90.6% of improvement over the well-known method Apriori in terms
of execution time on various kinds of synthetic datasets.

Besides, we also propose a novel method, namely THUI (Temporal High Utility
Itemsets)-Mine, for mining temporal high utility itemsets from temporal databases efficiently
and effectively. THUI-Mine can effectively identify the temporal high utility itemsets by
partitioning sliding window and using transaction-weighted utilization itemsets to generate
fewer candidate itemsets such that the execution time and number of database scans can be
reduced substantially in mining high utility itemsets from temporal databases. The
experimental results show that THUI-Mine delivers 67% of improvement over the
well-known method Two-Phase in terms of execution time on various kinds of synthetic
datasets.

According to the characters.of utility mining, we-could obverse some utility itemsets are
those itemsets which appear infrequently-in-the current time window of large databases but
are highly associated with specific ‘data. Hence; we proposed two novel algorithms, namely
TP-RUI (Two-Phase Rare Utility Itemsets) -Mine and TRUI (Temporal Rare Utility
Itemsets) —Mine, which can effectively identify the temporal rare utility itemsets by using
relative utility threshold. The temporal rare utility itemsets are discovered by partitioning
sliding window and using transaction-weighted utilization itemsets to generate fewer
candidate itemsets such that the execution time and database scan can be reduced substantially
in mining all high and rare utility itemsets in temporal databases.

The past studies on high utility itemsets mining considered only positive item values and
ignored the cases of negative item values that may occur in real-life applications. Therefore,
we propose a novel method, namely HUINIV (High Utility Itemsets with Negative Item Values)
-Mine, for mining high utility itemsets from large databases with consideration of negative
item values. HUINIV-Mine can effectively identify high utility itemsets by using transaction

v



utility without negative item values to generate fewer candidate itemsets. The experimental
results show that HUINIV-Mine delivers 99% of improvement over the well-known method

MEU in terms of candidate itemsets on various kinds of synthetic datasets.

Keywords: Frequent patterns mining, Association rules, Temporal databases, Utility mining
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Chapter 1

Introduction

The mining of association rules for finding the relationship between data items in large
databases is a well studied technique in data mining field with representative methods like
Apriori [1][2][7]. An important research issue extended from the association rules mining is
the discovery of temporal association patterns in temporal databases due to the wide
applications on various domains. Temporal data mining can be defined as the activity of
looking for interesting correlations or patterns in large sets of temporal data accumulated for
other purposes [6]. For a database with a specified transaction window size, we may use the
algorithm like Apriori to obtain frequent itemsets-from the database.

For time-variant temporal databases, there is.a sttong demand to develop an efficient and
effective method to mine various temporal patterns [13]. However, most methods designed
for the traditional databases canhot be directly applied for mining temporal patterns in
temporal databases because of the high complexity.

In many applications, the frequency of an itemset may not be a sufficient indicator of
interestingness, because it only reflects the number of transactions in the database that contain
the itemset. It does not reveal the utility of an itemset, which can be measured in terms of cost,
profit or other expressions of user preferences. On the other hand, frequent itemsets may only
contribute a small portion of the overall profit, whereas non-frequent itemsets may contribute
a large portion of the profit. In reality, a retail business may be interested in identifying its
most valuable customers (customers who contribute a major fraction of the profits to the
company). Hence, frequency is not sufficient to answer questions such as whether an itemset
is highly profitable, or whether an itemset has a strong impact. Utility mining is thus useful in

a wide range of practical applications and was recently studied in [8][21][35].



1.1 Motivation and Research Goal

The research objective of this dissertation is to investigate algorithms for mining emerging
frequent itemsets and high utility itemsets efficiently and effectively.

The first research issue of this dissertation is mining temporal emerging frequent
itemsets from temporal databases efficiently and effectively, we propose a new method,
namely EFI (Emerging Frequent Itemsets)-Mine. The temporal emerging frequent itemsets are
those that are infrequent in current time window of database but have high potential to
become frequent in the subsequent time windows. Discovery of emerging frequent itemsets is
an important process for mining interesting patterns like association rules from temporal
databases. The novel contribution of EFI-Mine is that it can effectively identify the potential
emerging itemsets such that the execution time can be reduced substantially in mining all
frequent itemsets in temporal databases.|"This meets the critical requirements of time and
space efficiency for mining temporal databases.

Furthermore, we propose a‘novel method,; namely THUI (Temporal High Utility
Itemsets)-Mine, for mining temporal high utility itemsets from temporal databases efficiently
and effectively. The novel contribution of THUI-Mine is that it can effectively identify the
temporal high utility itemsets by generating fewer candidate itemsets such that the execution
time can be reduced substantially in mining all high utility itemsets in temporal databases. In
this way, the process of discovering all temporal high utility itemsets under all time windows
of temporal databases can be achieved effectively with less memory space and execution time.
This meets the critical requirements on time and space efficiency for mining temporal
databases.

According to the characters of utility mining, we could obverse some utility itemsets are
those itemsets which appear infrequently in the current time window of large databases but

are highly associated with specific data. Hence, we proposed two novel algorithms, namely



TP-RUI (Two-Phase Rare Utility Itemsets) -Mine and TRUI (Temporal Rare Ultility
Itemsets) —Mine, which can effectively identify the temporal rare utility itemsets by using
relative utility threshold. The novel contribution of TRUI-Mine is particularly that it can
effectively identify the temporal rare utility itemsets by generating fewer temporal high
transaction-weighted utilization 2-itemsets in temporal databases. In this way, the process
under all time windows of temporal databases can be achieved effectively with limited
memory space, less candidate itemsets and CPU /O time.

The final issue explored in this thesis is based on the observation that the past studies on
high utility itemsets mining considered only positive item values and ignored the cases of
negative item values that may occur in real-life applications. Therefore, we propose a novel
method, namely HUINIV (High Utility Itemsets with Negative Item Values) -Mine, for mining
high utility itemsets from large databases with consideration of negative item values. The
novel contribution of HUINIV-Mine.is that it can effectively identify high utility itemsets by
generating fewer high transaction-weighted.utilization itemsets such that the execution time
can be reduced substantially in mining:the high utility itemsets. In this way, the process of
discovering all high utility itemsets with consideration of negative item values can be
accomplished effectively with less requirements on memory space and CPU I/O. This meets
the critical requirements of temporal and spatial efficiency for mining high utility itemsets

with negative item values.

1.2 Related Work

In association rules mining, Apriori [1], DHP [24], and partition-based ones [20][27] are
proposed to find frequent itemsets. Many important applications have called for the need of
incremental mining. This is due to the increasing use of the record-based databases whose

data are being continuously added. Many algorithms like FUP [24], FUP,[11] and UWEP



[4][5] are proposed to solve incremental database for finding frequent itemsets. The FUP
algorithm updates the association rules in a database when new transactions are added to the
database. Algorithm FUP is based on the framework of Apriori and is designed to discover
the new frequent itemsets iteratively. The idea is to store the counts of all the frequent
itemsets found in a previous mining operation. Using these stored counts and examining the
newly added transactions, the overall count of these candidate itemsets are then obtained by
scanning the original database. An extension to the work in [10] was reported in [11] where
the authors propose an algorithm FUP, for updating the existing association rules when
transactions are added to and deleted from the database. UWEP (Update With Early Pruning)
is an efficient incremental algorithm, that counts the original database at most once, and the
increment exactly once. In addition the number of candidates generated and counted is
minimum.

In recent years, processing data from data.streams is a very popular topic in data mining.
A number of algorithms like Lossy Counting [22], FTP-DS [30] and RAM-DS [31] have been
proposed to process data in data streams..'Lossy Counting divided incoming stream
conceptually into buckets. It uses bucket boundaries and maximal possible error to update or
delete the itemsets with frequency for mining frequent itemsets. FTP-DS is a regression-based
algorithm to mine frequent temporal patterns for data streams. A wavelet-based algorithm,
called algorithm RAM-DS, to perform pattern mining tasks for data streams by exploring both
temporal and support count granularities.

Some algorithms like SWF [18] and Moment [12] are proposed to find frequent itemsets
over a stream sliding window. By partitioning a transaction database into several partitions,
algorithm SWF employs a filtering threshold in each partition to deal with the candidate
itemset generation. Moment algorithm use the closed enumeration tree (CET), to maintain a
dynamically selected set of itemsets over a sliding window.

Dong and Li define an emerging pattern as an itemset the support of which increases

4



significantly between two databases. We view emerging frequent itemsets as a special case of
the emerging patterns described by Dong and Li. Recently, a new algorithm modifies an
existing incremental algorithm, UWEP, so that it can identify emergent large itemsets. It uses
incremental scheme for finding emerging frequent itemsets [28].

A formal definition of utility mining and theoretical model was proposed in [35], namely
MEU, where the utility is defined as the combination of utility information in each transaction
and additional resources. Since this model cannot rely on downward closure property of
Apriori to restrict the number of itemsets to be examined, a heuristic is used to predict
whether an itemset should be added to the candidate set. However, the prediction usually
overestimates, especially at the beginning stages, where the number of candidates approaches
the number of all the combinations of items. The examination of all the combinations is
impractical, either in computation.cost or in memory space cost, whenever the number of
items is large or the utility threshold is low. Although this algorithm is not efficient or scalable,
it is by far the best one to solve this speeific_problem.

Another algorithm named Two-Phase was proposed in [21], which is based on the
definition in [35] and achieves the finding of high utility itemsets. The Two-Phase algorithm
is used to prune down the number of candidates and can obtain the complete set of high utility
itemsets. In the first phase, a model that applies the “transaction-weighted downward closure
property” on the search space is used to expedite the identification of candidates. In the
second phase, one extra database scan is performed to identify the high utility itemsets.
However, this algorithm must rescan the whole database when new transactions are added
from temporal databases. It incurs more cost on I/O and CPU time for finding high utility
itemsets. Hence, the Two-Phase algorithm is focused on traditional databases and is not suited
for mining temporal databases.

Many algorithms were proposed for mining useful information on different applications.
A mining method was proposed to process computer vulnerability [38] for finding
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vulnerability correlation. A heuristic reduction algorithm HeuriRed and A complete heuristic
reduction algorithm HeuriComRed [29] based on discernibility matrix were proposed to
process imprecise and incomplete data for attributes reduction mining.

One algorithm named RSAA (Relative support Apriori Algorithm) [36] is a method to
discover the association rules for significantly rare itemsets that appear infrequently in the
database but are highly associated with specific data. The technique adopts a new criterion,
relative support, which can identify the strong co-relation of the significant rare itemset items
with the specific data co-occurring in relatively high proportion. However, the technique of
this algorithm can not be adopted in utility mining because it violates definitions of utility
mining. Hence, the RSAA algorithm is focused on traditional association rules discovery and
databases, and so it is not suited for utility mining and temporal databases.

Although there existed numerous studies on‘frequent itemsets mining and data stream
analysis as described above, there is no algorithm ‘proposed for finding emerging frequent
itemsets, temporal high utility itemsets, temporal rare-utility itemsets and high utility itemsets
with negative item values in temporal and large databases. This motivates our exploration on
the issue of efficiently mining various frequent itemsets we describe above in temporal
databases like data streams in this research. Therefore, we propose four methods that can
identify frequent pattern efficiently and effectively. To our best knowledge, this is the first
work on mining t emerging frequent itemsets, temporal high utility itemsets, temporal rare
utility itemsets and high utility itemsets with negative item values from temporal and large

databases.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we describe EFI-Mine

algorithm for mining temporal emerging frequent itemsets from temporal databases efficiently



and effectively. Efficient THUI-Mine algorithm for mining temporal high utility itemsets from
temporal databases is introduced in Chapter 3. In Chapter 4, we describe two novel algorithms,
namely TP-RUI (Two-Phase Rare Utility Itemsets) -Mine and TRUI (Temporal Rare Utility
Itemsets) —Mine, for mining temporal rare utility itemsets from temporal databases. relevance
feedback methods are surveyed and a novel feedback mechanism is proposed. In Chapter 5,
we address a novel method, namely HUINIV (High Utility Itemsets with Negative Item
Values) —Mine, for efficiently and effectively mining high utility itemsets from large databases

with consideration of negative item values. Last, the conclusions are given in Chapter 6.



Chapter 2
Mining Temporal Emerging Itemsets from

Temporal Databases

2.1 Problem Definition

The mining of association rules for finding the relationship between data items in large
databases is a well studied technique in data mining field with representative methods like
Apriori [1][2][7]. The problem of mining association rules can be decomposed into two steps.
The first step involves finding all frequent itemsets (or say large itemsets) in databases. Once
the frequent itemsets are found,.generating association rules is straightforward and can be
accomplished in linear time.

An important research issue ‘extended from the-association rules mining is the discovery
of temporal association patterns in temporal databases due to the wide applications on various
domains. Temporal data mining can be defined as the activity of looking for interesting
correlations or patterns in large sets of temporal data accumulated for other purposes [6]. For
a database with a specified transaction window size, we may use the algorithm like Apriori to
obtain frequent itemsets from the database. For time-variant temporal databases, there is a
strong demand to develop an efficient and effective method to mine various temporal patterns
[4]. However, most methods designed for the traditional databases cannot be directly applied
for mining temporal patterns in temporal databases because of the high complexity.

Without loss of generality, consider a typical market-basket application as illustrated in
[30] has been considered. The transaction flow in such an application is shown in Figure 2-1

where items a to g stand for items purchased by customers.
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Figure 2-1. An example of online transaction flows.

In Figure 2-1, for example, the third customer bought item ¢ during time t=[0,1), items c,
e and g during t=[2, 3), and item g during t=[4, 5). It can be seen that in such a data stream
environment it is intrinsically difficult.to-conduct the frequent pattern identification due to the
limited time and space constraints. Furthermore;. it wastes too much times finding frequent
itemsets in different window times. Therefore, we develop a new scheme to find potential
emerging frequent itemsets before next window times.

Dong and Li [14] define an emerging pattern as an itemset the support of which
increases significantly between two databases. We view emerging frequent itemsets as a
special case of the emerging patterns described by Dong and Li. An Emerging Frequent
Itemset (EFI) can be considered as an itemset that is infrequent (i.e., small) in the current
database and gets increased for its support so that it will eventually become frequent (i.e.,
large) in the new database temporally added with new data transactions. For example, in the
market basket domain, we may assume an interval as the time between wholesale purchases.
Recognizing the set of items that will emerge or become frequent in the next time period with
windows size may allow the storekeeper to order these emerging items much earlier than
usual. Thus, the storekeeper will know what kinds of items will be popular in the next time

period and avoid losing the income that their sales could have generated. Although some



related issues like mining emerging frequent itemsets [28] and incremental frequent itemsets
[9][10][11][25] have been studied, they have been focused on traditional databases and are

not suited for temporal databases.

In this chapter, we explore the issue of efficiently mining emerging frequent itemsets in
temporal databases like data streams [15][16][17][19]. We propose an algorithm named
EFI-Mine that can discover emerging frequent itemsets from temporal databases efficiently
and effectively. The EFI-Mine algorithm is based on the concept of Apriori algorithm [2] for
mining frequent itemsets. The novel contribution of EFI-Mine is that it can effectively
identify the potential emerging frequent itemsets in temporal databases so that the execution
time for mining frequent itemsets can be substantially reduced. That is, EFI-Mine can
discover the itemsets that are infrequent in current time window but will become frequent
ones with high probability in Subsegment time' windows. In this way, the process of
discovering all frequent itemsets under all time windows of temporal databases can be
achieved efficiently with limited memory space. This meets the critical requirements of time
and space efficiency for mining temporal "databases. Through experimental evaluation,
EFI-Mine is shown to deliver high precision in finding the emerging frequent itemsets and it

also achieves high scalability in terms of execution time.

Support Framework for Mining Temporal Patterns

In this chapter, the mining of temporal patterns are explored for illustrative purposes since not
only the patterns should be efficiently and effectively extracted but also variations of
corresponding occurrence frequencies should be tracked. In market-basket analysis, patterns
along with their frequencies are extracted from sliding window in transactions. So the data
expires after a user-specified time window. As time advances, new data is included while

obsolete data is discarded. With the mining task for discovering frequent temporal patterns,
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only patterns with occurrence frequencies no less than a specified threshold are being tracked.
We focus in this chapter on handling the different sliding windows to find emerging frequent
itemsets.

An example showing the basic process in transforming transactions into numerical time
series, for discovering frequent temporal patterns, is provided as follows.
Example 1: Consider the transaction flows shown in Figure 2-1. Given the window size w=3
and the minimum support value as 40%, occurrence frequencies of the inter-transaction

itemset {c, g} from time t=1 to t=5 can be obtained as shown in Table 2-1.

Table 2-1. The support values of the inter-transaction itemset {c, g}.

TxTime Occurrence(s) of {c,g} Support

t=1 | w[0,1] |none 0

t=2 | w[0,2] {CustomerIlD={2;4} 2/5=0.4
t=3 | w[0,3] |CustomerlD={2, 3,4} 3/5=0.6
t=4 | w[l1,4] |CustometID=1{2, 3} 2/5=0.4
t=5 | w[2,5} |CustomerID={1,3, 5} 3/5=0.6

With the sliding window model, the frequent temporal patterns can be discovered for
different time windows. The main goal of our research is to discover interesting emerging

itemsets under progressive time windows.

Emerging Frequent Itemsets and Interesting Emerging Itemsets

In a database, the frequent itemsets will be changed when new datum are added. As time
progress, we can see many interesting patterns with regards to the change in status of
individual itemsets. An itemset that was infrequent may become frequent (large), while
frequent itemsets may become infrequent (small) and an itemset may remain frequent or
infrequent. We define infrequent itemsets that are moving toward being frequent as emerging.

Conversely, frequent itemsets moving toward infrequent are submerging. An infrequent
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(frequent) itemset that becomes large, i.e. with support above (below) minimum support value,
is said to have emerged (submerged). The problems we address in this chapter are: 1) How
can we identify itemsets that are emerging (submerging)? 2) Which of these itemsets have the
potential to emerge (submerge) within the next time window? That is, we focus on finding
emerging frequent itemsets in this chapter.

According to the emerging itemsets of incremental scheme, we develop this concept on
the temporal data mining. Temporal data mining has the limitation on window size for finding
emerging itemsets. Therefore, we must change the formula for finding emerging itemsets. For
the remainder of this chapter, we give definitions to the formula.

Definition 2.1 db is the transactions in t=Kk, i.e., db; is the transactions in t=1.
Definition 2.2 DBi+1,...,j is the transactions in t=i to j, i.e., DB12a45 is the transactions in t=1
to 5. We also view DB:12345 as the aceumulation of db,+db,+dbz+dbs+dbs.

Suppose the original database is DBijjs1 .- .4; With window size=N and N=j-i+1. Due to the
limitation of window size, we should discard_the old database db; when adding a database
dbj+1. The new database should be DBy i, In our scheme, we should find emerging
itemsets before a new database is added. So we should focus on the database DBy ...,
The old database db; is useless for finding emerging itemsets. For example, suppose original
database is DBj;34 and we set the limitation of window size as 5. If a database dbs is added,
the new database will be DBjy345. Due to the limitation of window size, when adding a
database dbs, we should discard the old database db;. Thus, the new database becomes
DBj34se. In our scheme, we would find potential emerging frequent itemsets before a database
is added. So we should focus on the database DB;34s finding potential emerging frequent
itemsets. And the potential emerging frequent itemsets of the database DBjjus can be
represented more accurate in the new database DBs34s56. In practice, with the feature of data
stream, we first remove db; from DB,34 and then add dbs to form the database DB»345. So we
could find potential emerging frequent itemsets from the database DB;345 before adding a new

12



database dbgs to form DB,34s6, and this conforms the limitation of window size. Figure 2-2
shows we would find potential emerging frequent itemsets from the database DB;34s5. So the

window size should be N-1 for finding potential emerging itemsets.

DB 23436
DB 13345

TxTime I | | | | | | »

0 1 2 3 4 5 &

Figure 2-2. Poteiitiélly 'Ig!n'erging"ﬁequent itemsets in DB34s.
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The rest of this chapter is.‘iqrganiigd--a'si'vfollo_\%/s: Section 2.2 describes the proposed
approach, EFI-Mine, for finding the émerging-fféquent itemsets. In section 2.3, we describe
the experimental results for evaluating the proposed method. The conclusion of the chapter is

provided in Section 2.4.

2.2 Mining Temporal Emerging Itemsets

In this Section, we give an example for mining temporal emerging itemsets from data stream.

The proposed algorithm, EFI-Mine, is also described in details in this Section.
An example for mining emerging itemsets

Figure 2-3 shows an example of emerging itemsets modified on that proposed by Dong and Li

in [14] for the special case of EFI. It shows partitions of the space of itemsets, indicating all
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possible transitions for an itemset X from original database DB to the new database DB+db.
Figure 2-3 plots the support count in DB (denoted as SCpg) against the support count in
db (denoted as SCyp). Each point in the graph depicts an ordered pair (SCqy, SCpg) Where the
sum of SCg, and SCpg is an itemset's support count in DB+db at some increment interval. If
the increment adds no transactions to an itemset's support count, then its support count in DB
has to be equal to minSCpg+minSCy, in order to achieve minSCpgtq,. This corresponds to
point H in Figure 2-3. Alternatively, if an itemset's SC is equal to |db| in db, then its support in
DB has to be some SC=n, where n>0, and n= minSCpg+minSCy, -|db| for the itemset to be
frequent. This is point C in Figure 2-3. Line HC partitions the space of all itemsets in DB+db
into frequent and infrequent. The shaded area in Figure 2-3 represents all the frequent itemsets
and it includes Line HC. Specific partitions under HC contain itemsets that are emerging in
the current increment. For example; the area defined by AHFG represents those itemsets that
were frequent itemsets in DB, infrequent itemsets. in-db, and now are infrequent in DB+db.
These itemsets have therefore submerged.. AGIC represents itemsets that were infrequent in
DB and frequent in db. These itemsets-have emerged. Therefore, we can find all itemsets in
area ABCG are emerging in the current interval and all itemsets in area OAGH are

submerging.
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Figure 2-3. Emerging frequent itemsets.

However, there are too many emerging it€émsets in area ABCG. In fact, we should focus
more potential emerging itemsets: To have the petential to emerge in the next increment, the
support count of the itemset in DB#+db needs to be greater than or equal to
2minSCq,+minSCpg - |db| in the current increment.-All points with this value are represented
by line RS in Figure 2-4.

For example, if we have a database with |DB|= 10000, |db|= 1000 and minsup =0.2, then
the minimum support count for the current increment is 2,200 (2,000 from DB plus 200 from
db). If an itemset can add the maximum support incremental support count, a total of 1,000
from db, in the next increment, it would need a support count of at least 1400 in the current
increment to be able to attain the minimum support count of 2,400 ((11000+1000)*0.2=2400)
needed to become frequent.

The band of itemsets between line RS and line HC are all itemsets that have the potential
to become frequent in the next increment, by this formula. Intersecting area ABCG and HCSR,

we get itemsets in GDSC are most likely to emerge in the next increment.
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Figure 2-4. Potentially emerging frequent itemsets.

Algorithm of EFI-Mine

With window size we mention in Section-2.2.2 and the concepts of emerging itemsets in
section 2.3.1, we set support value as‘Siand ‘assume the original database as DBijii,...,-1.
According to the scheme we mentioned previously, if we want to find frequent itemsets from
DBi+1,i2,...,j+1, we should focus on DBiiijss....,; for finding potential emerging frequent
itemsets after adding database db; and then find potential emerging frequent itemsets of the
database DBiij+,...,j+1 before adding next incremental new database dbj:;. It means db;
would be an old database that needs not be considered. After adding new database db;:, the
new database would be DBi:+....,;+1. So the window size is N when database is changed

from db;:; to dbj+i. It also indicates N=(j+1)-(i+1)+1. By the feature of temporal data mining,

we set |db|=|db;|=|db;+i|=...=|dbj|. In Figure 2-4, various lines bear the following meaning:
LineHC=minSCp,  ~~ +minSCy
LineFI=minSCp, .
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LineRS=2minSC,, +minSCyq = —|db|
LineEC=minSC,, +minSCpy —|db;]|

LineAK=minSC,,

According to the feature of window size in temporal mining, incremental database means
adding length of original transactions and also promoting the probability of infrequent
itemsets to become frequent. Because we focus on N-1 window size for finding potential
emerging frequent itemsets, these formulas should be divided by N-1 base on the number of
database as follows:

LineHC=(minSCpg ~ +minSCy )/N-I

LineRS=(2minSC,, +minSCpe = —|db; /N-1

Because line FI does not add-new database, it should be divided by (N-1)-1. It means line

FI should be divided by N-2 as follows:

LIneFI = mln SCD&H i+2,..j-1 /N ) 2

Line EC means that adding new database db; and an itemset's SC is equal to |dbj| in db;,

so it should be divided by (N-1) as follows:

Because db; belongs to one of N window size, the formula should be divided by N as

follows:

LineAK-mirSG,/N

Figure 2-5 illustrates the potentially emerging frequent itemsets in area GDSC with
window size limitation. The formula for each line is as mentioned above.
According to these formulas, we can simplify these lines as follows:

HC=[S*(j-1-(i+1)+1)*|db]+S*|db|]/N-1= [S*(N-2)*|db|+S*|db|]/N-1= S*|db|
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FI= [S*(j-1-(i+1)+1)|db|]/N-2= S*|db|
RS=[2*S*|db|+S*[(j-1)-(i+1)+1]*|db]|-|db|]/N-1= [2*#S*|db|+S*(N-2)*|db|-|db|]/N-1=
[(S*N)-1]*|db}/N-1
EC=[S*|db|+S*[(j-1)-(i+1)+1]*|db|-|db|]/N-1= [S*|db[+S*(N-2)*|db|-|db|]/N-1=
[S*(N-1)-1]*|db|/N-1
AK=S*db/N

We can also find potentially emerging frequent itemsets in area HRSC without
concerning support count in db;. However, it will reduce the accuracy with potentially
emerging frequent itemsets. Taking into consideration of db; would get the trend of itemsets
and get better accuracy with potentially emerging frequent itemsets. Therefore, itemsets in

GDSC are most likely to emerge in the next increment.
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Figure 2-5. Potentially emerging frequent itemsets for temporal patterns.

Figure 2-6 shows the algorithm of EFI-Mine and the processing procedure is outlined
below. The basic processing procedure is like Apriori except the definition of for minimum
support value for finding temporal emerging itemsets from data stream. With window size N,
we would not only remove db; but also add new database db; for finding 1-emerging itemsets
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on the database DBy +s....,j and finding large 1-itemsets on the database db; from Step 1 to
Step 3. So the purpose is to find potential emerging frequent itemsets of the database
DBi:1i+2,...,j+1 before adding next new database db;:;;. We generate k-candidates and find
k-emerging itemsets by calculating support count as mentioned previously from Step 4 to
Step 13. Then, we generate k-candidates and find k-large itemsets by support count we
mention from Step 14 to Step 23. Finally, those itemsets meeting the constraints S*|db>
c.count = [(S*N)-1]*|db|//N-1 on DBi;1+2,...,j and c.count =S*db/N db; are obtained as the

potentially emerging frequent itemsets.

13 Input: DBysa,. . 1

2y Remove dby; from DByga,. .. j1and add new database db; then the database becomes
DBinge,... .

3 Ey={emerging l-itemsets on database DBy pq .. 5} and Ly={large 14temsets on database
dhi};

Fifor( k=2; B #0k++ T dobegin

5 Cy =candidate-gen( Gy 1), / Mew candidates

6)  forall transactions t€ DBy ... 5 do begin

T Cy = subsetCy , t), & Candidates contained in transactions
) forall candidates ¢ € Cydo

)] ccountt,

1m enud

11} Ew={ce Cy | Z*dbl>ccount = [[S3*N)-17*db}H-1}
12y /3T between LineHC and LineR3

13 end

14y for( k=12; Ly, 50 k4 ) do begin

15y Cy = candidate-gen(Cy.1);, / Mew candidates

16} forall transactions t= db; do begn

' Cy = subset(Cy , t), # Candidates contained in transactions
18) forall candidates c € Cydo

19 ccountt,

20 enud

21 La={ce Cx | ccount = 3*db/N}
) 30 larger than LineAK

23 end

24y Output: ( UpF Ny,

Figure 2-6. Algorithm of EFI-Mine.

We may utilize the formulas mentioned before to discuss the following situations. Notice

that an itemset is emerging or not depends on support count of the itemset. Given an itemset

whose support counts in DBjijin,....,i.1 and DBjijj,...,;+db; are SCg, and

41,142, -1
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SCps respectively, the growth rate of that itemset is SC

i41,i42,... j-1+db;j 2 DB, s, jor+db; ~ DBy, j1

The  growth rate of an  itemset that maintains  minimal  support

1s minSC,,

i+1,i+2,..., j—l+dbj

-minSCp, . An itemset meeting the

i+1,i+2,...,j-1

SCDBi+].i+2 jo+db; -SCDB'

..... i+1,i+2,...,j-1

>1 1s an emerging itemset. An itemset needs a support

minSC,

12, j-1+0D;

-minSCp,

i+1,i+2,...,j-1

count of at least minSC to emerge in adding a new

DB, i, jo+dbj+dby,, T mlnSCDBHI,HZ..”,JfI +2db

database dbj:; with expanding one window size. A potential emerging frequent itemset is the
one that is emerging and meets the following constraint:

SCon. o +(SCon o -SCoy  )>minSChy - Hence, we can infer that an itemset that will

potentially emerge with expanding n window sizes is an itemset that is currently emerging

and SCon.. v +N(Con. o -SCon 5 ) miSCORh Of course, the larger n is, the less

accurate with finding potential emerging fréquent itemsets might be.

2.3 Experiments and Analysis

To evaluate the performance of EFI-Mine, we conducted experiments of using synthetic
dataset generated via a randomized transaction generation algorithm in [3]. The synthetic data
generation program takes the parameters as shown in Table 2-2, and the values of parameters
used to generate the datasets are shown in Table 2-3. The simulation is implemented in C++
and conducted in a machine with 1.4GHz CPU and 512MB memory. The main performance
metrices used are execution time and accuracy. We recorded the execution time that EFI-Mine
spends in finding potential emerging frequent itemsets. The accuracy is to measure the
number of actual emerging frequent itemset in ratio of the total potential emerging frequent
itemsets that we found. Hence, the accuracy is defined as follows:

Accuracy = (number of actual emerging frequent itemset) / (total potential emerging
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frequent itemsets)

Table 2-2. Parameters of the synthetic datasets.

Number of items

Average numbers of items per transaction

Number of customers

Number of transactions

£ O] Q] 9] Z

Windows size

S |Support value

Table 2-3. Parameter settings of synthetic datasets.

Dataset N T C D \\Y
Parameters
N100T5C1000 100 5 1000 100,000 10

Effects of Varying Support Threshold

The proposed approach is verified with experiments in various measurements. We vary the
values of support threshold from 30% to 70% for interesting the effects on the accuracy. The
other parameters were kept fixed as default values. Figure 2-7 shows the accuracy of
EFI-Mine under different support threshold values. It is observed that the average accuracy of
potential emerging frequent itemsets raises as the support value is increased. Especially, the
accuracy reaches to 100% when the support value is beyond 60%. Hence, EFI-Mine is

verified to be very effective in finding the emerging itemsets.
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Figure 2-7. Accuracy under different support values (N100T5C1000, W=10).

Comparisons with Apriori in Execution time

The proposed algorithm is also compared to the well'’know Apriori algorithm. We compare the
average execution time in different support values bétween Apriori and EFI-Mine. Both of
these two algorithms could find frequent itemsets.'However, Apriori can only find frequent
itemsets, while EFI-Mine can find frequent itemsets that were infrequent in the past. Apriori
algorithm processes DBi;1:....,i+1 to find frequent itemsets, while our EFI-Mine algorithm
needs to process fewer database DB +,...,j to find potentially emerging frequent itemsets.
From Figure 2-8, EFI-Mine spends few seconds with high stability for finding potentially
emerging frequent itemsets. Compared to Apriori, the improvement is about 90.6% for
support values varied from 30% to 60%. Although EFI-Mine does not always obtain frequent
itemsets with 100% accuracy, it reduces substantially the time in finding frequent itemsets.
Moreover, the frequent itemsets obtained by Apriori are not suitable for applications in
temporal databases since we need frequent itemsets which are infrequent in the past and
frequent in the current by the time change. Hence, EFI-Mine meets the requirements of high

efficiency and high scalability in terms of execution time for data stream mining.
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Figure 2-8. Execution time with w=10.

Effects of Varying Window Size

We investigate the effects of varying window size on the accuracy of mining results. As
shown in Figure 2-9, we could observe that-the-larger window size, the higher with accuracy.
In fact, the accuracy is almost 100% when window size is large than 15 in the experiments.
This is because the itemsets are tended to be stable according to the past databases. This

indicates that EFI-Mine fits for mining temporal databases with large window size.
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Figure 2-9. Accuracy under different window sizes.

Effects of Varying Transaction Size

We investigate the effects of va
the average number of items p :' i ction s shown in Figure 2-10, if T is larger, the
accuracy is higher than under T. This

past transactions. This indicates that EF Mine fits for mining temporal databases with large
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Figure 2-10. Accuracy under different numbers of items per transaction with w=10.
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Effects of Varying Number of Items

In this last experiment, we investigate the effects of varying the numbers of items on the
accuracy of mining results. The results are as shown in Figure 2-11. We observe that the
accuracy decreases when the numbers of items are increased. This is because too many items
will affect the stability of the patterns. On the contrary, the accuracy under smaller numbers of
items could reach almost 100%. This indicates that EFI-Mine fits for mining temporal

databases with small numbers of items.
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Figure 2-11. Accuracy under different numbers of items.
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Chapter 3
Mining Temporal High Utility Itemsets from

Temporal Databases

3.1 Problem Definition

The mining of association rules for finding the relationship between data items in large
databases is a well studied technique in the data mining field with representative methods like
Apriori [1][2]. The problem of mining association rules can be decomposed into two steps.
The first step involves finding of all frequent itemsets (or say large itemsets) in databases.
Once the frequent itemsets are found, generating association rules is straightforward and can
be accomplished in linear time.

An important research issue extended’from the mining of association rules is the
discovery of temporal association patterns in temporal databases due to the wide applications
on various domains. Temporal data mining can be defined as the activity of discovering
interesting correlations or patterns in large sets of temporal data accumulated for other
purposes [6]. For a database with a specified transaction window size, we may use an
algorithm like Apriori to obtain frequent itemsets from the database. For time-variant
temporal databases, there is a strong demand to develop an efficient and effective method to
mine various temporal patterns [13]. However, most methods designed for traditional
databases cannot be directly applied to the mining of temporal patterns in temporal databases
because of their high complexity.

In many applications, we would like to mine temporal association patterns from the most
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recent data in temporal databases. That is, in temporal data mining, one should not only
include new data (i.e., data in the new hour) but also remove the old data (i.e., data in the most
obsolete hour) from the mining process. Without loss of generality, consider a typical
market-basket application as illustrated in Figure 3-1, where the transactional data of

customer purchases are shown as time advances.

[ data for 1:00H1

db* data for 2:00|12

av¥—  [data for 3:00/13
L35 [ data for 4:00]+4
| data for 5:00 >

Figure 3-1. An.example.of online transaction flows.

In Figure 3-1, for example, data was accumulated as a function of time. Data obtained
prior to some specified time interval in the past becomes useless for reference. People might
be most interested in the temporal association patterns in the latest three hours (i.e., db>") as
shown in Figure 3-1. It can be seen that in such a temporal database environment it is
intrinsically difficult to conduct the frequent pattern identification due to the constraints of
limited time and memory space. Furthermore, it takes considerable time to find temporal
frequent itemsets in different time windows. However, the frequency of an itemset may not be
a sufficient indicator of interestingness, because it only reflects the number of transactions in
the database that contain the itemset. It does not reveal the utility of an itemset, which can be
measured in terms of cost, profit or other expressions of user preferences. On the other hand,

frequent itemsets may only contribute a small portion of the overall profit, whereas
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non-frequent itemsets may contribute a large portion of the profit. In reality, a retail business
may be interested in identifying its most valuable customers (customers who contribute a
major fraction of the profits to the company). Hence, frequency is not sufficient to answer
questions such as whether an itemset is highly profitable, or whether an itemset has a strong
impact. Utility mining is thus useful in a wide range of practical applications and was recently
studied in [8][21][35]. This also motivates our research in developing a new scheme for

finding temporal high utility itemsets (THUI) from temporal databases.

Table 3-1. A transaction database and its utility table.

(a) Transaction table (b) The utility table
| TEM AlB|CcilDI|E ITEM | PROFIT($)(per unit)
TID A 3
] T, 0 (=0-|26(0 [-1 10
APy T, oF6 |0 |1}1 c .
T 12 -0 110 b 5
P, T, O X0 (710 E 5
db*® Ts o|o 12002
D Te 1140|011
T, 0|10/ 0|0 |1
Ps 24
Tg 170131 db”
Ty 111127010
Tio 0| 6 0|0
+ P4
AN Tn 030|210
Tz 0| 2 0|0

Recently, a utility mining model was defined in [35]. Utility is considered as a measure
of how “useful” (e.g., “profitable”) an itemset is. The definition of utility u(X) of an itemset X
is the sum of the utilities of X in all transactions containing X. The goal of utility mining is to

identify high utility itemsets which drive a large portion of the total utility. Traditional
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association rules mining models assume that the utility of each item is always 1 and the sales
quantity is either 0 or 1, thus it is only a special case of utility mining, where the utility or the
sales quantity of each item could be any number. If u(X) is greater than a utility threshold, X is
a high utility itemset. Otherwise, it is a low utility itemset. Table 3-1 is an example of utility
mining in a transaction database. The number in each transaction in Table 3-1(a) is the sales
volume of each item, and the utility of each item is listed in Table 3-1(b). For example, u({B,
D}) = (6x10+1x6) + (1x10+7x6) + (3x10+2x6) = 160. {B, D} is considered as a high utility
itemset if the utility threshold is set at 120.

However, a high utility itemset may consist of some low utility items. Another attempt is to adopt
the level-wise searching schema that exists in fast algorithms such as Apriori [3]. However, this
algorithm does not apply to the utility mining model. For example, consider u(D) = 84 < 120 as shown
in Table 3-1, D is a low utility item. However, its superset {B, D} is a high utility itemset. If Apriori is
used to find high utility itemsets, -all_combinations of the items must be generated. Moreover, the
number of candidates is prohibitively slarge in_discovering a long pattern. The cost of either
computation time or memory will be intolerable, regardless of what implementation is applied. The
challenge of utility mining is not only in restricting the size of the candidate set but also in simplifying
the computation for calculating the utility. Another challenge of utility mining is how to find temporal
high utility itemsets from temporal databases as time advances.

In this chapter, we explore the issue of efficiently mining high utility itemsets in
temporal databases like data streams. We propose an algorithm named THUI-Mine that can
discover temporal high utility itemsets from temporal databases efficiently and effectively.
The underlying idea of THUI-Mine algorithm is to integrate the advantages of Two-Phase
algorithm [21] and SWF algorithm [18] with augmentation of the incremental mining
techniques for mining temporal high utility itemsets efficiently. The novel contribution of
THUI-Mine is that it can efficiently identify the utility itemsets in temporal databases so that
the execution time for mining high utility itemsets can be substantially reduced. That is,

29



THUI-Mine can discover the temporal high utility itemsets in current time window and also
discover the temporal high utility itemsets in the next time window with limited memory
space and less computation time by sliding window filter method. In this way, the process of
discovering all temporal high utility itemsets under all time windows of temporal databases
can be achieved effectively under less memory space and execution time. This meets the
critical requirements of time and space efficiency for mining temporal databases. Through
experimental evaluation, THUI-Mine is shown to produce fewer candidate itemsets in finding
the temporal high utility itemsets, so it outperforms other methods in terms of execution
efficiency. It is observed that the average improvement of THUI-Mine over Two-Phase
algorithm reaches to about 67%. Moreover, it also achieves high scalability in dealing with
large databases. To our best knowledge, this is the first work on mining temporal high utility
itemsets from temporal databases.

The rest of this chapter is.organized as-follows: Section 3.2 describes the proposed
approach, THUI-Mine, for finding the temporal high utility itemsets. In section 3.3, we
describe the experimental results for evaluating the proposed method. The conclusion of the

chapter is provided in Section 3.4.

3.2 Proposed Method

In this section, we present the THUI-Mine method. We describe the basic concept of
THUI-Mine and give an example for mining temporal high utility itemsets. The procedure of

the THUI-Mine algorithm is provided in the last paragraph the section.
Basic Concept of THUI-MINE

The goal of utility mining is to discover all the itemsets whose utility values are beyond a user

specified threshold in a transaction database. In [35], the goal of utility mining is defined as
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the discovery of all high utility itemsets. An itemset X is a high utility itemset if u(X) >e,

where X < | and ¢ is the minimum utility threshold; otherwise, it is a low utility itemset. For

example, in Table 3-1, U(A, Tg) = 1x3 =3, u({A, C}, Tg) = U(A, Ts) T+ U(C, Tg) = 1x3 + Ix1 =

4, and U({A, C}) = U({A, C}, Tg) + U({A, C}, To) =4 + 30 =34. If £ = 120, {A, C} is a low

utility itemset. However, if an item is a low utility item, its superset may be a high utility

itemset. For example, consider u(D) = 84 < 120, D is a low utility item, but its superset {B, D}

is a high utility itemset since Uu({B, D}) = 160 > 120. Intuitively, all combinations of items

should be processed so that it never loses any high utility itemset. However, this will incur
intolerable cost on computation time and memory space. A set of terms leading to the formal

definition of utility mining problem can be generally defined as follows by referring to [35]:

e |I={iy iy, ..., In} is a set of items.

e D={T,, T, ..., Ty} is a transaction database where each transaction T;e D is a subset of
l.

e 0(ip, Ty), local transaction utility. value, represents the quantity of item i, in transaction
Tq. For example, 0(A, T3) = 12,"as shown inTable 3-1(a).

e  S(ip), external utility, is the value associated with item iy in the Utility Table. This value
reflects the importance of an item, which is independent of transactions. For example, in
Table 3-1(b), the external utility of item A, S(A), is 3.

e  U(ip, Tq), utility, the quantitative measure of utility for item ip in transaction T, is defined

as 0(ip, Tq)xS(ip). For example, U(A, T3) =12 x 3, in Table 3-1.

e U(X, Ty, utility of an itemset X in transaction Tq, is defined as Zu(ip,Tq), where X =

ipeX

{11, 12, ..., Im} is a k-itemset, X < Tgand I<k<m.

e u(X), utility of an itemset X, is defined as ZU(X ,T0) .

TqeDAXcTq

Liu et al. [21] proposed the Two-Phase algorithm for pruning candidate itemsets and

simplifying the calculation of utility. First, the Phase I overestimates some low utility itemsets,
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but it never underestimates any itemsets. For the example in Table 3-1, the transaction utility

of transaction Tq, denoted as tu(Ty), is the sum of the utilities of all items in Tq: tu(Tq) =

ZU(ip,Tq) . Moreover, the transaction-weighted utilization of an itemset X, denoted as twu(X),

ipeTq

is the sum of the transaction utilities of all the transactions containing X: twu(X) = Ztu (To) .
XcTqeD

For example, twu(A) = tu(Ts) + tu(Te) + tu(Ts) + tu(Ty) =42 + 48 + 27 + 40 = 157 and twu({D,
E}) = tu(T,) + tu(Tg) = 71 + 27 = 98. In fact, u(A) = u({A}, Ts) + u({Al}, Te) + U({A}, Te)+
U({A}, To)=36 +3 +3 +3=45and u({D, E}) =u({D, E}, T») + u({D, E}, Tg)= 11 + 23 = 34,
Table 3-2 gives the transaction utility for each transaction in Table 3-1. Second, one extra
database scan is performed to filter the overestimated itemsets in phase II. For example, by
observing that twu(A) = 157 > 120 and U(A) = 45 < 120, the item {A} is pruned. Otherwise, it
is a high utility itemset. Finally, all high utility itemsets are discovered in this way.

We illustrate the detail process of Two-Phase algorithm by the following example in db'~
of Table 3-1. Suppose the utility threshold is set as 120 with nine transactions in db'”. In
Phase I, the high transaction-weighted utilization' I-itemsets {A, B, C, D, E} are generated
since tWU(A) = tu(Ts) + tu(Te) + tu(Tg) + tu(Ty) =42 + 48 + 27 + 40 = 157 > 120, twu(B) =
tu(Ty) + tu(Ts) + tu(Te) + tu(T7) + tu(To) = 71 + 52 + 48 + 105 + 40 = 361 > 120, twu(D) =
tu(To) + tu(Ts) + tu(Ts) + tu(Ts) =71 +42 + 52 + 27 =192 > 120 and twu(E) = tu(T;) + tu(T,)
+ tu(Ts) + tu(Te) + tu(Ty) + tu(Tg) = 31 + 71 + 22 + 48 + 105 + 27 = 304 > 120. Then, 10
candidate 2-itemsets {AB, AC, AD AE, BC, BD, BE, CD, CE, DE} are generated by the high
transaction-weighted utilization 1-itemsets {A, B, C, D, E} in the first database scan. In the
same way, the high transaction-weighted utilization 2-itemset {BE} are generated since
tWu(AB) = tu(Te) + tu(Ty) = 48 + 40 = 88 < 120, twu(AC) = tu(Tg) + tu(Te) =27 + 40 = 67 <
120, twu(AD) = tu(Ts3) + tu(Tg) = 42 + 27 = 69 < 120, tWu(AE) = tu(Te) + tu(Tg) =48 + 27 =
75 < 120, twu(BC) = tu(Ty) = 40 < 120, twu(BD) = tu(T4) = 52 < 120, twu(BE) = tu(T,) +

tu(Te) + tu(T7)= 71 + 48 + 105 = 224 > 120, twu(CD) = tu(Tg) = 27 < 120, twu(CE) = tu(T,) +
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tu(Ts) + tu(Tg)=31 + 22 + 27 = 80 < 120 and twu(DE) = tu(T,) + tu(Tg) = 71 + 27 =98 < 120.
After processing db'~, the high transaction-weighted utilization itemsets in db'* are obtained
as {A, B, C, D, E, BE}.

In phase 11, the high transaction-weighted utilization itemsets {A, B, C, D, E, BE} is used to scan
db'? to find high utility itemsets. The resulting high utility itemsets are {B} and {BE} since U(A) =
U({A}, Ts) T U({A}, Te) + U({A}, Tg) + U({A}, To) =45 < 120, u(B) = u({B}, T2) + u({Bj, Ts) + u({B},
Te) +u({B}, T7) + u({B}, To) =220 > 120, u(C) = u({C}, T) + u({C}, Ts) + u({C}, Ts) + u({C}, To) =
66 < 120, u(D) = u({D}, T») + u({D}, T3) + u({D}, T4) + u({D}, Ts) = 72 < 120, u(E) = u({E}, T,) +
U({E}, To) + u({E}, Ts) + u({E}, Te) + U({E}, T7) + u({E}, Tg) = 35 < 120 and u({B, E}) = u({B, E},
To) + u({B, E}, Te) + U({B, E}, T7) = 215 > 120.

Our algorithm THUI-Mine is based on the principle of the Two-Phase algorithm [21],
and we extend it with the sliding-window-filtering (SWF) technique and focus on utilizing
incremental methods to reduce -the candidateitemsets and execution time. In essence, by
partitioning a transaction database inte-several partitions from temporal databases, algorithm
THUI-Mine employs a filtering: threshold  ‘in each partition to deal with the
transaction-weighted utilization itemsets (TWUI) generated. The cumulative information in
the prior phases is selectively carried over toward the generation of TWUI in the subsequent
phases by THUI-Mine. In the processing of a partition, a progressive transaction-weighted
utilization set of itemsets is generated by THUI-Mine. Explicitly, a progressive
transaction-weighted utilization set of itemsets is composed of the following two types of
TWUIL: 1) the TWUI that were carried over from the previous progressive candidate set in the
previous phase and remain as TWUI after the current partition is taken into consideration; 2)
the TWUI that were not in the progressive candidate set in the previous phase but are newly
selected after taking only the current data partition into account. As such, after the processing
of a phase, algorithm THUI-Mine outputs a cumulative filter, denoted as CF, which consists of
a progressive transaction-weighted utilization set of itemsets with their occurrence counts and
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the corresponding partial support required.

THUI-Mine is different from other existing methods like Lossy Counting [22], which
uses bucket boundaries and maximal possible error to update or delete the itemsets with
frequency. The CF computes the occurrence counts of itemsets in memory and then deletes
itemsets that do not satisfy utility threshold in every partial database. With these design
considerations, algorithm THUI-Mine is shown to have very good performance for mining

temporal high utility itemsets from temporal databases.

Table 3-2. Transaction utility of the transaction database.

TID Transaction Utility TID Transaction Utility
T, 31 T, 105
T, 71 Ts 27
T; 42 To 40
T, 52 Tio 62
Ts s Th 42
Ts 48 T, 21

An Example for Mining Temporal High Utility [temsets

The proposed THUI-Mine algorithm can be best understood by the illustrative transaction
database in Table 3-1 and Figure 3-2 where a scenario of generating high utility itemsets from
temporal databases for mining temporal high utility itemsets is given. For real life
applications, this illustrative transaction database can be mapped to the customer transactions
in a supermarket. We set the utility threshold as 120 with nine transactions. Without loss of
generality, the temporal mining problem can be decomposed into two procedures:

1. Preprocessing procedure: This procedure deals with mining on the original transaction
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database.
2. Incremental procedure: The procedure deals with the update of the high utility

itemsets from temporal databases.

P P2 P3
Cap | start | transaction-weighted utility Cy| start | transaction-weighted utility Cqp | start | transaction-weighted utility
AB| 1 0 @ AB| 2 48 & AB| 2 88
@ AD| 1 42 AD| 1 42 & AC| 3 87
AE| 1 0 @ AE| 2 48 AD| 3 27
@ BD| 1 71 @ BD| 1 123 AE| 2 75
& BE| 1 71 @ BE| 1 11% @ BCZ| 3 40
@ DE| 1 71 DE| 1 71 @ BD| 1 123
@ BE| 1 224
dol? — n =D D+ af=dbd* CE| 3 27
Cz | start | transaction-weighted utility Cz| start | transaction-weighted utility
@ AB| 2 88 AB| 2 88
@ AC|) 3 &7 AC| 3 &7
@ BC| 3 40 @ BC| 3 123
BD| 2 52 &y BD| 4 42
@ BE| 2 153 & BE| I 153
CD| 4 0

Figure 3-2. Temporalhigh utility itemsets generated by THUI-Mine.

The preprocessing procedure is only-utilized for-the initial utility mining in the original
database, e.g., db'". For mining high utility itemsets in db>*"', db®"*?, db", and so on, the
incremental procedure is employed. Consider the database in Table 3-1. Assume that the
original transaction database db'? is segmented into three partitions, namely, {P;, P,, Ps}, in
the pre processing procedure. Each partition is scanned sequentially for the generation of
candidate 2-itemsets in the first scan of the database db'~. Since there are three partitions, the
utility threshold of each partition is 120 / 3 = 40. Such a partial utility threshold is called the
filtering threshold in this chapter. After scanning the first segment of the three transactions,
l-itemsets {A, B, D, E} are kept to generate 2-itemsets because twWu(A) = 42 > 40, twu(B) =
71 > 40, twu(C) = 31 <40, twu(D) = 113 > 40 and twu(E) = 102 > 40. Then, 2-itemsets {AB,
AD AE, BD, BE, DE} are generated by l-itemsets {A, B, D, E} in partition P; as shown in
Figure 3-2. In addition, each potential candidate itemset c € C, has two attributes: (1) c.start,
which contains the identity of the starting partition when ¢ was added to C,, and (2)
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transaction-weighted utility which is the sum of the transaction utilities of all the transactions
containing ¢ since ¢ was added to C,. Itemsets whose transaction-weighted utility are below
the filtering threshold are removed. Then, as shown in Figure 3-2, only {AD, BD, BE, DE},
marked by “©”, remain as temporal high transaction-weighted utilization 2-itemsets (TWUZ2I)
whose information is then carried over to the next phase of processing. Similarly, after
scanning partition P, the temporal high TWU2I are recorded.

From Figure 3-2, it is noted that since there are also three transactions in P, the filtering
threshold of those itemsets carried out from the previous phase is 40 + 40 = 80 and that of
newly identified candidate itemsets is 40. It can be seen from Figure 3-2 that we have 4
temporal high TWU2I in C, after the processing of partition P,, and 2 of them are carried
from P, to P, and 2 of them are newly identified in P,. Finally, partition P3 is processed by
algorithm THUI-Mine. The resulting temporal high TWU2I are {AB, AC, BC, BD, BE} as
shown in Figure 3-2. Note that although'itemset {AE} appears in the previous phase P», it is
removed from temporal high't TWU2IL _once P; is taken into account since its
transaction-weighted utility does notaneet the filtering threshold then, i.e., 75 < 120. However,
we do have two new itemsets, i.e., AC and BC, which join the C, as temporal high TWU?2I.
Consequently, we have five temporal high TWU2I generated by THUI-Mine, where two of
them are carried from P; to P3;, one of them is carried from P, to P3, and two of them are
newly identified in P;. Note that only 5 temporal high TWU2I are generated by THUI-Mine,
while 10 candidate itemsets would be generated if Two-Phase algorithm were used as
mentioned in section 3.3.1. After processing P, to Ps, those temporal high TWUI in db'” are
obtained as {A, B, C, D, E, AB, AC, BC, BD, BE}.

After generating temporal high TWU2I from the first scan of database db'?, we use a
skill to reduce the number of database scan. In fact, it will take k-1 database scan to generate
k-candidate itemsets by using temporal high transaction-weighted utilization (k-1)-itemsets
directly. Instead, we use temporal high TWU2I to generate Cyx (k = 3, 4, ..., n), where C, is the
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candidate last itemset. It can be verified that temporal high TWU2I generated by THUI-Mine
can be used to generate the candidate 3-itemsets. Clearly, a C; can be generated from temporal
high TWU2I. For example, the 3-candidate itemset {ABC} is generated from temporal high
TWU2I {AB, AC, BC} in db'’. However, the temporal high TWU2I generated by
THUI-Mine is very close to the high utility itemsets. Similarly, all Cy can be stored in main
memory and we can find temporal high utility itemsets together when the second scan of the
database db'” is performed. Thus, only two scans of the original database db'* are required in
the preprocessing step. In this way, the number of database scan is reduced effectively. The
resulting temporal high utility itemsets are {B} and {BE} since u(B) = 220 >120 and u({B,
E})=215>120.

One important merit of THUI-Mine lies in its incremental procedure. As depicted in
Figure 3-2, the mining of database will be moved'from db'” to db**. Thus, some transactions
like T;, T, and T3 are deleted from the mining database and other transactions like Tjo, Ty,
and T, are added. To illustrate it more clearly, this incremental step can also be divided into
three sub-steps: (1) generating temporal high-TWU2I in D™ = db'® — A", (2) generating
temporal high TWU2I in db*>* = D™ + A" and (3) scanning the database db** only once for the
generation of all temporal high utility itemsets. In the first sub-step, db'” — A" = D", we check
the pruned partition P; and reduce the value of transaction-weighted utility and set c.start = 2
for those temporal TWU2I where c.start = 1. It can be seen that itemset {BD} was removed.
Next, in the second sub-step, we scan the incremental transactions in P4. The process in D +
A" = db**is similar to the operation of scanning partitions, e.g., Py, in the preprocessing step.
The new itemset {BD} joins the temporal high TWU?2I after the scan of P4. In the third
sub-step, we use temporal high TWU2I to generate Cy as mentioned above. Finally, those
temporal high TWUI in db** are {B, C, D, E, BC, BD, BE}. By scanning db, 4 only once,
THUI-Mine obtains temporal high utility itemsets {B, BC, BE} in db™".

In contrast, Two-Phase algorithm has to scan the whole database like db>* and more
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candidate itemsets, i.e., {BC, BD, BE, CD, CE, DE}, will be generated whenever some
transactions are deleted and other transactions are added. Then, Two-Phase algorithm needs
one more database scan than THUI-Mine to obtain temporal high TWU2I. Finally, Two-Phase
algorithm scans database again to produce temporal high utility itemsets. Hence, more

database scans and candidate itemsets are incurred by Two-Phase algorithm in comparison

with THUI-Mine.

Table 3-3. Meanings of symbols used.

db" Partitioned_database (D) from P; to P;
] Utility threshold in one partition
| Py Number of transactions in partition Py
TUP, (I) Transactions'in Py that ¢entain itemset [ with transaction utility
UP () Transactions in Py that'contain itemset I with utility
| db"™ (D) Transactions number in db' that contain itemset I
C" The progressive candidate séts of db™
Thtw' The progressive'tlemporal high transaction-weighted utilization
2-itemsets of db"
Thu™ The progressive temporal high utility itemsets of db"
A The deleted portion of an ongoing database
D The unchanged portion of an ongoing database
A" The added portion of an ongoing database

THUI-Mine Algorithm

For easier illustration, the meanings of various symbols used are given in Table 3-3. The
preprocessing procedure and the incremental procedure of algorithm THUI-Mine are

described as follows:
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Preprocessing procedure of THUI-Mine

The preprocessing procedure of Algorithm THUI-Mine is shown in Figure 3-3. Initially, the
database db'" is partitioned into n partitions by executing the preprocessing procedure (in
Step 2), and CF, the cumulative filter, is empty (in Step 3). Let Thtw'" be the set of
progressive temporal high TWU2I of db™. Algorithm THUI-Mine only records Thtw'" which
is generated by the preprocessing procedure to be used by the incremental procedure. From
Step 4 to Step 16, the algorithm processes one partition at a time for all partitions. When
partition P; is processed, each potential candidate 2-itemset is read and saved to CF. The
transaction-weight utility of an itemset I and its starting partition are recorded in I.twu and
Lstart, respectively. An itemset, whose L.twu > s, will be kept in CE. Next, we select Thtw'"

from I where I e CF and keep I.twu in mainmemory for the subsequent incremental procedure.
By employing the scan reduction téchhique from Step 19 to Step 26, C!" (h > 3) are

generated in main memory. After refreshing I.count =0 where I.twu = 0 where I e Thtw'", we
begin the last scan of database for the preproeessing procedure from Step 28 to Step 31.
Finally, those itemsets satisfying the constraint that [.Lu = sxP.count are finally obtained as

the temporal high utility itemsets.
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Figure 3-3. Preprocessing procedure of THUI-Mine.

Incremental procedure of THUI-Mine

As shown in Table 3-3, D indicates the unchanged portion of an ongoing transaction database.
The deleted and added portions of an ongoing transaction database are denoted by A and A",
respectively. It is worth mentioning that the sizes of A" and A, ie., | A" | and | A |

respectively, are not required to be the same. The incremental procedure of THUI-Mine is
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devised to maintain temporal high utility itemsets efficiently and effectively. This procedure is
shown in Figure 3-4. As mentioned before, this incremental step can also be divided into three
sub-steps: (1) generating temporal high TWU2I in D™ = db'? — A", (2) generating temporal
high TWU2I in db** = D™ + A" and (3) scanning the database db>* only once for the
generation of all temporal high utility itemsets. Initially, after some update activities, old
transactions A~ are removed from the database db™" and new transactions A" are added (in
Step 6). Note that A~ < db™". Denoting the updated database as db", note that db™ = db™" —
A” + A'. We denote the unchanged transactions by D™ = db™" — A~ = db" — A+. After
loading Thtw™" of db™" into CF where 1< Thtw™", we start the first sub-step, i.e., generating
temporal high TWU2I in D” = db™"— A". This sub-step reverses the cumulative processing
which is described in the preprocessing procedure. From Step 8 to Step 16, we prune the
occurrences of an itemset I, whichappeared before partition P;, by deleting the value I.twu
where [eCF and Lstart < i. Next, from Step 17 to Step 39, similarly to the cumulative
processing in Section 3.3.1, the second sub-step-generates temporal high TWU2I in db'/ = D~

+ A" and employs the scan reduction technique to generate C!'! . Finally, to generate temporal
high utility itemsets, i.e., Thui’j, in the updated database, we scan db'J only once in the

incremental procedure to find temporal high utility itemsets. Note that Thtw™ is kept in main

memory for the next generation of incremental mining.
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Figure 3-4. Incremental procedure of THUI-Mine.

3.3 Experiments and Analysis

To evaluate the performance of THUI-Mine, we conducted experiments using synthetic
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datasets generated via a randomized dataset generator provided by IBM Quest project [3].
However, the IBM Quest data generator only generates the quantity of 0 or 1 for each item in
a transaction. In order to fit databases into the scenario of utility mining, we randomly
generate the quantity of each item in each transaction, ranging from 1 to 5, as is similar to the
model used in [21]. Utility tables are also synthetically created by assigning a utility value to
each item randomly, ranging from 1 to 1000. Because it is observed from real world databases
that most items are in the low profit range, we generate the utility values using a log normal
distribution, as is similar to the model used in [21]. Figure 3-5 shows the utility value
distribution of 1000 items.

The simulation is implemented in C++ and conducted in a machine with 2.4GHz CPU
and 1G memory. For comparison with THUI-Mine algorithm, the two-Phase algorithm is
extended with sliding window scenario. The extended Two-Phase algorithm scans the
database according to the set time window and.then performs the computation within the time
window. This process is repeated ower sliding time window for the database. The main
performance metric used is execution time. We recorded the execution time of THUI-Mine in
finding temporal high utility itemsets. The comparison on the number of generated itemsets
for THUI-Mine, Two-Phase and MEU is presented to shows the performance comparison of
THUI-Mine and Two-Phase. The results of scale-up experiments are presented to shows the

performance comparison of THUI-Mine and Two-Phase on another dense dataset.
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Figure 3-5. Utility value distribution in utility table.

Evaluation on Number of Génerated Candidates

In this experiment, we compare the average number of candidates generated in the first
database scan on the sliding windows and incremental transaction number d10K with
different support values for THUI-Mine, Two-Phase [21] and MEU [35]. Without loss of
generality, we set |d| = |A'| = |A7| for simplicity. Thus, by denoting the original database as
db"" and the new mining database as db™, we have |db" | = |db""— A"+ A’| = [D|, where A” =
db™! and A" = db™" . Table 3-4 and Table 3-5 show the average number of candidates
generated by THUI-Mine, Two-Phase and MEU on two datasets, respectively. The number of
items is set at 1000, and the minimum utility threshold varies from 0.2% to 1%. The
experimental results show that the number of candidate itemsets generated by THUI-Mine at
the first database scan decreases dramatically as the threshold goes up. Especially, when the
utility threshold is set as 1%, the number of candidate itemsets is 0 in database
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T10.16.D100K.d10K where T denotes the average size of the transactions and | the average
number of frequent itemsets. The default size of the sliding window is set as 30K. In fact, we
also varied the size of sliding window and the experimental results show that THUI-Mine
outperforms Two-Phase algorithm under different sliding windows sizes. Due to space
limitation, we only show the representative results with the sliding window size set as 30K.
However, the number of candidates generated by Two-Phase is still very large and that for
MEU is always 499,500 because it needs to process all combinations of 1000 items.
THUI-Mine generates far fewer candidates when compared to Two-Phase and MEU.

We obtain similar experimental results for different datasets. For example, only 118
candidate itemsets are generated by THUI-Mine, but 183,921 and 499,500 candidate itemsets
are generated by Two-Phase and MEU, respectively, when the utility threshold is set as 1% in
dataset T20.16.D100K.d10K. In the‘case of dataset T20.16.D100K.d10K, more candidates are
generated, because the transaction is longer than that-in T10.16.D100K.d10K. In overall, our
algorithm THUI-Mine always generates far fewer candidates compared to Two-Phase and
MEU for various kinds of databases. Hence, FHUI-Mine is verified to be very effective in
pruning candidate itemsets to find temporal high utility itemsets.

Table 3-4. The number of candidate itemsets generated on database T10.16.D100K.d10K.

Databases T10.16.D100K.d10K
THUI-Mine Two-Phase MEU
Threshold

0.2% 3433 361675 499500

0.3% 666 303810 499500

0.4% 161 258840 499500

0.6% 7 182710 499500

0.8% 1 129286 499500
1% 0 91378 499500
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Table 3-5. The number of candidate itemsets generated on database T20.16.D100K.d10K.

Databases T20.16.D100K.d10K
THUI-Mine Two-Phase MEU
Threshold

0.2% 27357 401856 499500

0.3% 11659 371953 499500

0.4% 5389 337431 499500

0.6% 1364 278631 499500

0.8% 371 229503 499500
1% 118 183921 499500

Evaluation of Execution Efficiency

In this experiment, we compare only the relative performance of Two-phase and THUI-Mine
since MEU spends much higher;executionytimesand becomes incomparable. Figure 3-6 and
Figure 3-7 show the execution times for:the two algorithms on datasets T20.16.D100K.d10K
and T10.16.D100K.d10K, respectively, as the minimum utility threshold is decreased from 1%
to 0.2%. It is observed that when the minimum utility threshold is high, there are only a
limited number of high utility itemsets produced. However, as the minimum utility threshold
decreases, the performance difference becomes prominent in that THUI-Mine significantly
outperforms Two-Phase. As shown in Figure 3-6 and Figure 3-7, THUI-Mine leads to
prominent performance improvement under different sizes of transaction. Explicitly,
THUI-Mine is significantly faster than Two-Phase and the margin grows as the minimum
utility threshold decreases. For example, THUI-mine is 10 times faster than Two-Phase when
threshold is 0.2 for T20.16.D100K.d10K. In overall, THUI-Mine spends much less time than
Two-Phase with higher stability in finding temporal high utility itemsets. This is because the

Two-Phase algorithm produces more candidate itemsets and needs more database scans to
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find high utility itemsets than THUI-Mine. To measure the improvement on execution time for

THUI-Mine compared to Two-Phase algorithm, we define the Improvement Ratio as follows:

. (execution time of Two - Phase) - (execution time of THUI - Mine)
Improvement Ratio =

execution time of Two - Phase

From the data illustrated in Figure 3-6, we see that the Improvement Ratio is about
85.6% with the threshold set as 0.2%. In Figure 3-7, the average improvement is about 67%
with minimum utility threshold varied from 0.2% to 1%. Obviously, THUI-Mine reduces
substantially the time in finding high utility itemsets. Moreover, the high utility itemsets
obtained by Two-Phase are not suitable for applications in temporal databases since
Two-Phase needs more database scans and increased execution time in finding high utility
itemsets. Hence, THUI-Mine meets the requirements of high efficiency in terms of execution

time for temporal data mining.
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Figure 3-6. Execution time for Two-Phase and THUI on T20.16.D100K.d10K.
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Figure 3-7. Execution time for Two-Phase and THUI on T10.16.D100K.d10K.

Scale-up on Incremental Minmg

In this experiment, we investigate the leffects of varying incremental transaction size on the
execution time of mining results.“To. further undérstand the impact of |d| on the relative
performance of THUI-Mine and Two-Phase, we conduct scale-up experiments which are
similar to those described in [18] with minimum support thresholds being set as 0.2% and 0.4
%, respectively. Figure 3-8 shows the experimental results where the value in y-axis
corresponds to the ratio of the execution time of THUI-Mine to that of Two-Phase under
different values of |d|. It can be seen that the execution-time ratio remains stable with the
growth of the incremental transaction number |d| since the size of |d| has little influence on the
performance of THUI-Mine. Moreover, the execution time ratio of the scale-up experiments
with minimum support thresholds varied from 0.6% to 1% remains constant at approximately
0.4%. This implies that the advantage of THUI-Mine over Two-Phase is stable and less
execution time is taken as the amount of incremental portion increases. This result also

indicates that THUI-Mine is useful for mining temporal databases with large transaction size.
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Figure 3-8. Scale-up performance results for THUI vs. Two-Phase.

Evaluation on dense data

Typically, the synthetic data sets are very.sparse. Fortesting various kinds of databases, we
evaluate another dense dataset, the'gazelle data set-as used in [37]. The gazelle data set comes
from click-stream data from a dot-com company named Gazelle.com, a legware and legcare
retailer. This data set was used in the KDD-Cup 2000 competition and publicly available from
www.ecn.purdue.edu/ KDDCUP. In order to fit databases into the scenario of utility mining,
we also randomly generate the quantity of each item in each transaction, ranging from 1 to 5.
The utility tables are also synthetically created by assigning a utility value to each item
randomly, ranging from 1 to 1000.

Figure 3-9 shows the execution time for the two algorithms as the minimum utility
threshold is varied from 0.1% to 0.02%. It is observed that THUI-Mine still spends less time
than Two-Phase with higher stability for finding temporal high utility itemsets even under the
dense data. This is because the Two-Phase algorithm produces more candidate itemsets and

needs more database scans to find high utility itemsets than THUI-Mine. Hence, this result
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also indicates that THUI-Mine is effective for mining temporal high utility itemsets under

both of sparse and dense datasets.
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Figure 3-9. Execution time for Two-Phase and THUI on gazelle dataset.
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Chapter 4
Mining Temporal Rare Utility Itemsets in Large

Databases Using Relative Utility Thresholds

4.1 Problem Definition

The mining of association rules for discerning the relationship between data items in large
databases is a well studied technique in the data mining field with representative methods like
Apriori [1][2]. The problem with mining association rules can be distilled into two steps. The
first step involves finding all frequent itemsets (or say large itemsets) in databases. Once the
frequent itemsets are found, geherating -association rules is straightforward and can be
accomplished in linear time.

An important research issue-that“extends from the mining of association rules is the
discovery of temporal association patterns in temporal databases due to the wide variety of
applications on various domains. Temporal data mining can be defined as the activity of
looking for interesting correlations or patterns in large sets of temporal data accumulated for
other purposes [6]. For a database with a specified transaction window size, we may use an
algorithm like Apriori to obtain frequent itemsets from the database. For time-variant
temporal databases, there is a strong demand to develop an efficient and effective method to
mine various temporal patterns [11][19]. However, most methods designed for traditional
databases cannot be directly applied to the mining of temporal patterns in temporal databases
because of their high complexity.

In many applications, we would like to mine temporal association patterns in temporal

databases for a specified amount of the most recent data. That is, in the temporal data mining,
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one has to not only include new data (i.e., data created in the new hour) into, but also remove
the old data (i.e., data created in the most obsolete hour) from the mining process. It can be
seen that it is intrinsically difficult to conduct frequent pattern identification due to the
constraints of limited time and space. Furthermore, it takes considerable time to find temporal
frequent itemsets in different time windows. However, the frequency of an itemset may not be
a sufficient indicator of interest, because it only reflects the number of transactions in the
database that contain the itemset. It does not reveal the utility of an itemset, which can be
measured in terms of cost, profit, or other expressions of user preference.

On the other hand, frequent itemsets may only contribute a small portion of the overall
profit, whereas non-frequent itemsets may contribute a large portion of the profit. In reality, a
retail business may be interested in identifying its most valuable customers (customers who
contribute a major fraction of the profits to the eompany). Hence, frequency is not sufficient
to answer questions such as whether an itemset is highly profitable, or whether an itemset has
a strong impact. Utility mining is-thus.useful in.a wide range of practical applications and has
been the subject of several recent studies [8][21][32][35].

In the existing mechanisms for mining high utility itemsets, the utility threshold is
unique throughout the whole database, and they assume that each data included in the
database occurs over a similar frequency. In reality, however, the data composing the database
may occur either relatively frequently or not, according to the characteristics of the database.
In addition, the rarely occurring data in the database may be significant enough to be of good
use. Nevertheless, the existing high utility itemsets discovery techniques discover the high
utility itemsets using the same utility threshold over the whole range of data, so the
discovered high utility itemsets with regard to rare data may be redundant, and as a result

unnecessary rules may be generated.
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Table 4-2. A transaction database and its utility table.

(a) Transaction table (b)The utility table
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Recently, a utility mining model was defined in [35]. Utility is a measure of how “useful”
(i. e. “profitable”) an itemset is. The definition of utility of an itemset X, u(X), is the sum of
the utilities of X in all the transactions containing X. The goal of utility mining is to identify
high utility itemsets which drive a large portion of the total utility. Traditional association
rules mining models assume that the utility of each item is always 1 and the sales quantity is
either 0 or 1; thus it is only a special case of utility mining where the utility or the sales
quantity of each item could be any number. If u(X) is greater than a utility threshold, X is a
high utility itemset. Otherwise, it is a low utility itemset. Table 4-1 is an example of utility
mining in a transaction database. The number in each transaction in Table 4-1(a) is the sales
volume of each item, and the utility of each item is listed in Table 4-1(b). For example, u({B,

D}) = (6x10+1x6) + (1x10+7%6) + (3x10+2x6) = 160. {B, D} is a high utility itemset if the
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utility threshold is set at 130.

However, a high utility itemset may consist of some low utility items. Another approach
is to adopt the level-wise searching schema that exists in fast algorithms, such as Apriori [3].
However, this algorithm doesn’t apply to the utility mining model. For example, u(D) = 84 <
130, D is a low utility item, but its superset {B, D} is a high utility itemset. If Apriori is used
to find high utility itemsets, all the combinations of all the items must be generated. Moreover,
to discover a long pattern, the number of candidates is prohibitively large. The cost of either
computation time or memory is intolerable, regardless of which method of implementation is
applied. The challenge of utility mining is not only in restricting the size of the candidate set
but also in simplifying the computation for calculating the utility. Another challenge of utility
mining is how to find temporal significant rare utility itemsets from temporal databases as
time advances.

In this chapter, in addition to the preceding techniques, we not only study a technique to
discover the association rules that describe the assoeiations among data, but also suggest a
high utility itemsets discovery technique that enables us to identify significant rare itemsets
associated with specific data in a way that the rare data occur simultaneously with the specific
data more frequently than the average co-occurrence frequency in the database. This
motivates our research in developing a new scheme for identifying temporal rare utility
itemsets (TRUI) from temporal databases. Therefore, we propose a novel method that can
identify rare utility itemsets that co-occur in relatively high association with certain specific
items. We adopt a relative utility threshold, a rate against the relative frequency of the data
existing in a database, and explore the issue of efficiently mining rare utility itemsets in
temporal databases and we will propose two algorithms named TP-RUI-Mine and TRUI-Mine
that can identify the association rules that include information about the significant
association among even rare data. The novel contribution of TRUI-Mine is particular in that it
can efficiently identify the utility itemsets in temporal databases so that the execution time for
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mining rare utility itemsets can be substantially reduced. In this way, the process under all
time windows of temporal databases can be achieved effectively under limited memory space,
less candidate itemsets and CPU 1/O. This meets the critical requirements of time and space
efficiency for mining temporal databases. Through experimental evaluation, TRUI-Mine is
shown to produce fewer candidate itemsets in finding the temporal rare utility itemsets, so it
outperforms the other algorithm TP-RUI-Mine, also proposed by us, in terms of execution
efficiency. To our best knowledge, this is the first work on mining temporal rare utility
itemsets from temporal databases.

The rest of this chapter is organized as follows: Section 4.2 describes the proposed
approaches, TP-RUI-Mine and TRUI-Mine, for finding the temporal rare utility itemsets. In
section 4.3, we describe the experimental results for evaluating the proposed methods. The

conclusion of the chapter is provided in Section 4.4

4.2 Proposed Methods

In this section, we present the TP-RUI-Mine and TRUI-Mine methods and describe the basic
concept of TP-RUI-Mine and TRUI-Mine. Then we give an example of mining temporal high
utility itemsets. Finally, the procedure of the TRUI-Mine algorithm is provided in the last
paragraph of the section.

The goal of our algorithms is to discover temporal rare itemsets from temporal databases.
The concept consists of utility mining and significantly rare itemsets. We describe the basic

concept of utility mining and significantly rare itemset as follows.
Basic Concept of Utility Mining

The goal of utility mining is to discover all the itemsets whose utility values are beyond a user

specified threshold in a transaction database. In [35] the goal of utility mining is to find all the
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high utility itemsets. An itemset X is a high utility itemset if u(X) > &, where X < 1 and ¢ is
the minimum utility threshold, otherwise, it is a low utility itemset. For example, in Table 4-1,
U(A, Tg) = 1x3 =3, U({A, C}, Tg) = U(A, Tg) + U(C, Tg) = 1x3 + 1x1 =4, and U({A, C}) =
U({A, C}, Ts) + U({A, C}, To) =4 + 30 = 34. If ¢ = 130, {A, C} is a low utility itemset.
However, if an item is a low utility item, its superset may be a high utility itemset. For
example, u(D) = 84 < 130, D is a low utility item, but its superset {B, D} is a high utility
itemset because of U({B, D}) = 160 > 130. Hence, all the combinations of all items should be
processed so that it never loses any high utility itemset. However the cost of either
computation time or memory is intolerable.

Liu et al. [21] proposed the Two-Phase algorithm for pruning candidate itemsets and
simplifying the calculation of utility. First, Phase I overestimates some low utility itemsets,
but it never underestimates any itemsets. For the example in Table 4-1, the transaction utility

of transaction Tq, denoted as tu(Tg), is the sum of the utilities of all items in Tq: tu(Ty) =

ZU(ip,Tq) . And the transaction-weighted-titthization of an itemset X, denoted as twu(X), is the

ipeTq

sum of the transaction utilities of all the transactions containing X: twu(X) = Ztu(T q) . For
X cTqeD

example, twu(A) = tu(Ts) + tu(Te) + tu(Tg) + tu(Ty) =42 + 48 + 27 + 40 = 157 and twu({D, E})
=tu(T,) +tu(Ts) =71 + 27 = 98. In fact, U(A) = U({A}, T3) + U({A}, Te) + U({A}, Ts)+ U({A},
To)=36 + 3+ 3 + 3 =45 and u({D, E}) = u({D, E}, T») + u({D, E}, Tg)= 11 + 23 = 34. So
Phase I overestimates some low utility itemsets, but it never underestimates any itemsets.
Table 4-2 gives the transaction utility for each transaction in Table 4-1. Second, one extra
database scan is performed to filter the overestimated itemsets in Phase II. For example,
twu(A) = 157 > 130 but u(A) = 45 < 130. Then item {A} is pruned. Otherwise, it is a high

utility itemset. Finally, all of the high utility itemsets are identified in this way.
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Table 4-2. Transaction utility of the database.

TID | Transaction Utility | TID | Transaction Utility
T 31 T, 105
T, 71 Ts 27
Ts 42 Ty 40
T4 52 Tio 62
Ts 22 Ty 42
Te 48 T2 21

Basic Concept of Significant Rare Utility Itemsets

In this chapter, we use RUT (Relative Utility Threshold) which identifies the association rules
containing the significantly rare itemsets that have high confidence with regard to specific
data. A significantly rare itemset s oene in which its frequency in the database does not satisfy
the utility threshold but appears:associated-with the specific data in high proportion to its
frequency. To identify significantly rare-itemsets in the existing high utility itemsets discovery
algorithms such as Two-Phase algorithm [21], we should set the utility threshold, generate
high utility itemsets of which the members satisfy the utility threshold, and apply the
specified confidence to all rules that can be produced by the high utility itemsets. However in
some cases, these significantly rare itemsets are not discovered during the actual computation
of the high utility itemsets. For example, data items a, b and c exist in the database, where
each of a, b and ¢ has support of 25%, 35% and 30% respectively in the database and the user
has set the minimum utility threshold to 35%. Then a and c cannot be the members of the high
utility itemset since they do not satisfy the minimum utility threshold. However, the itemset
{a, b, ¢} may have support of 23%, and 90% of a’s occurrences may come together with b and
c. In the existing discovery methods, the itemset {a, b, ¢} is not discovered because it does not

satisfy the minimum utility threshold of 35%.
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To discover such significantly rare itemsets that are rarely discovered using the existing
utility mining methods, our algorithms set and utilize two minimum utility thresholds. The
two utility thresholds are defined as the first utility threshold and the second utility threshold.
Both of the utility thresholds are defined as follows:

Definition 4.1. st utility threshold: Critical value of the user-specified utility threshold used
in the process of high utility itemsets discovery.
Definition 4.2. 2nd utility threshold: Critical value of the user-specified utility threshold used
in the process of rare utility itemsets discovery.

The first utility threshold and the second utility threshold are set so that the condition
“Ist utility threshold > 2nd utility threshold” is satisfied. In addition to the utility threshold,
our algorithms use the relative utility threshold (RUT) that considers relative frequency
between the data. RUT is one that measures the rare itemset satisfying the second utility
threshold but not the first utility-threshold: Using the-RUT, we identify the significantly rare
itemset. RUT is defined as follows:

Definition 4.3. Relative Utility Threshold (RUTF): RUT(iy, 1, ..., ik) = max(threshold(iy, 1, ...,
ix)/threshold(i;), threshold(iy, iy, ..., ix)/threshold(i,),.. ., threshold(iy, iy, ..., ix)/threshold(ix))

RUT is between 0 and 1, and is determined by selecting the largest one among the
confidence values for the candidate itemset against each data item. A high value RUT implies
that the user selects the items in which the percentage of the co-occurrence is high.

If we define RUT and discover the high utility itemsets using the utility threshold, we are
able to discover the high utility itemsets in which the different frequencies of items are
reflected. For example, it is less frequent for consumers to buy food processors or cooking
pans in a supermarket than to buy bread or milk, but the former transactions are more
profitable. When applying the existing methods that use only single utility threshold, we
should set the utility threshold lower to discover the association with regard to food
processors or cooking pans, and thus numerous unnecessary utility itemsets satisfying the low
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utility threshold are produced. By using RUT, we can discover rare utility itemsets and
prevent the generation of unnecessary utility itemsets.

Our algorithms TP-RUI-Mine and TRUI-Mine are based on the principle of the
Two-Phase algorithm [21] and THUI-Mine [32], and we combine these with the concept of
the significantly rare itemset and focus on utilizing incremental methods to improve the
response time with fewer candidate itemsets and CPU I/O. In essence, by partitioning a
transaction database into several partitions from temporal databases, algorithm TRUI-Mine
employs a filtering threshold in each partition to deal with the transaction-weighted utilization
itemsets generated. The cumulative information in the prior phases is selectively carried over
toward the generation of transaction-weighted utilization itemsets in the subsequent phases by
TRUI-Mine. In the processing of a partition, a progressive transaction-weighted utilization set
of itemsets is generated by TRUI-Mine. Explicitly, a progressive transaction-weighted
utilization set of itemsets is composed of the- following two types of transaction-weighted
utilization itemsets: (1) the transaction-weighted utilization itemsets that were carried over
from the previous progressive candidate set “in the previous phase and remain as
transaction-weighted utilization itemsets after the current partition is taken into consideration;
and (2) the transaction-weighted utilization itemsets that were not in the progressive candidate
set in the previous phase but are newly selected after only taking the current data partition into
account. As such, after the processing of a phase, algorithm TRUI-Mine outputs a cumulative
filter, denoted by CF, which consists of a progressive transaction-weighted utilization set of
itemsets, their occurrence counts and the corresponding partial utility threshold required. Then
temporal rare utility itemsets could be generated by RUT. With these design considerations,
algorithm TRUI-Mine is shown to have very good performance for mining temporal rare
utility itemsets from temporal databases. Although another algorithm TP-RUI-Mine is
proposed by us and based on the principle of Two-Phase algorithm [21] and uses the same
concept and processes with the part of generating temporal rare utility itemsets of TRUI-Mine.
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However, TP-RUI-Mine would generate too many candidate itemsets compared to TRUI-Mine
because of the principle of Two-Phase algorithm [21]. We found that TRUI-Mine is a more
efficient algorithm than TP-RUI-Mine according to both theory and experimental results.

Hence, we only show the processes of TRUI-Mine in detail.

An Example for Mining Temporal Rare Utility Itemsets

The proposed TRUI-Mine algorithm can be best understood by the illustrative transaction
database in Table 4-1 and Figure 4-1 where a scenario of generating high utility itemsets from
temporal databases for mining temporal rare utility itemsets is given. We set the first utility
threshold at 130 and second utility threshold at 90 in nine transactions. According to the
characteristics of the procedure of utility mining, we should set second utility threshold to be
the same as the initial threshold so as to filter utility itemsets. If we set the first utility
threshold to be the initial threshold, we might lose some utility itemsets that could be rare
utility itemsets. In addition, we set RUT=0.6-to-find temporal rare utility itemsets. In fact, our
algorithm TRUI-Mine not only could‘discover.temporal high utility itemsets but also temporal
rare utility itemsets. Without loss of generality, the temporal mining problem can be divided
into two procedures:

1. Preprocessing procedure: This procedure deals with mining on the original transaction
database.

2. Incremental procedure: The procedure deals with the update of the high utility

itemsets and rare utility itemsets from temporal databases.
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Figure 4-1. Temporal rare utility itemsets generated by TRUI-Mine.

The preprocessing procedure is only utilized for the initial utility mining in the original
database, e.g., db'". For the generation.of mining high utility itemsets and rare utility itemsets
in dbz’nﬂ, db3’n+2, dbi’j, and so .0n, ther mcremental. procedure is employed. Consider the
database in Table 4-1. Assume that the original transaction database db' is segmented into
three partitions, i.e., {P;, P», P3},<in the preprocessing procedure. Each partition is scanned
sequentially for the generation of candidate 2-itemsets in the first scan of the database db'~.
After scanning the first segment of 3 transactions, i.e., partition P;, 2-itemsets {AB, AD AE,
BD, BE, DE} are generated as shown in Figure 4-1. In addition, each potential candidate
itemset ¢ € C, has two attributes: (1) c.start which contains the identity of the starting
partition when ¢ was added to C,; and (2) transaction-weighted utility which is the sum of the
transaction utilities of all the transactions containing c since ¢ was added to C,. Since there are
three partitions, the second utility threshold of each partition is 90 / 3 = 30. Such a partial
utility threshold is called the “filtering threshold” in this chapter. Itemsets whose
transaction-weighted utility are below the filtering threshold are removed. Then, as shown in
Figure 4-1, only {AD, BD, BE, DE}, marked by “©”, remain as temporal high

transaction-weighted utilization 2-itemsets whose information is then carried over to the next
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phase of processing. Similarly, after scanning partition P,, the temporal high
transaction-weighted utilization 2-itemsets are recorded.

From Figure 4-1, it is noted that since there are also 3 transactions in P, the filtering
threshold of those itemsets carried out from the previous phase is 30 + 30 = 60, and that of
newly identified candidate itemsets is 30. It can be seen from Figure 4-1 that we have 5
temporal high transaction-weighted utilization 2-itemsets in C, after the processing of
partition P, and 3 of them are carried from P; to P, and 2 of them are newly identified in P,.
Note that though appearing in the previous phase P, itemset {AD} is removed from temporal
high transaction-weighted utilization 2-itemsets once P, is taken into account since its
transaction-weighted utility does not meet the filtering threshold (i.e., 42 < 60). Finally,
partition P; is processed by algorithm TRUI-Mine. The resulting temporal high
transaction-weighted utilization 2-itemsets are {AB, AC, AE, BC, BD, BE, DE} as shown in
Figure 4-1. After the processing of partition Pz, we do-have two new itemsets, i.e., AC and BC,
which join the C, as temporal high transaction-weighted utilization 2-itemsets. Consequently,
we have 7 temporal high transaction-weighted utilization 2-itemsets generated by TRUI-Mine,
and 3 of them are carried from P, to P3, while 2 of them are carried from P, to P; and 2 of
them are newly identified in Ps;. After processing P; to Ps;, those temporal high
transaction-weighted utilization itemsets in db'? are {A, B, C, D, E, AB, AC, AE, BC, BD,
BE, DE}.

After generating temporal high transaction-weighted utilization 2-itemsets from the first
scan of database db'’, we employ the scan reduction technique and use temporal high
transaction-weighted utilization 2-itemsets to generate Cy (k = 3, 4, ..., n), where C, is the
candidate last itemset. It can be verified that temporal high transaction-weighted utilization
2-itemsets generated by TRUI-Mine can be used to generate the candidate 3-itemsets. Clearly,
a C; can be generated from temporal high transaction-weighted utilization 2-itemsets. For
example, 3-candidate itemsets {ABC}, {ABE} and {BDE} are generated from temporal high
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transaction-weighted utilization 2-itemsets {AB, AC, BC}, {AB, AE, BE,} and {BD, BE, DE}
in db'”. Similarly, all Cy can be stored in main memory, and we can find temporal high utility
itemsets together by first utility threshold and temporal rare candidate itemsets between first
utility threshold and second utility threshold when the second scan of the database db'” is
performed. Thus, only two scans of the original database db'® are required in the
preprocessing step. The resulting temporal high utility itemsets are {B} and {BE} because
u(B) =330 >130 and u({B, E}) = 215 > 130. In addition, the temporal rare candidate itemset
is {BD} because u({B, D}) = 118 between 90 (second utility threshold) and 130 (first utility
threshold). The individual relative utility thresholds of {B, D} are {B, D}/{B} = 2/5 =0.4 and
{B, D}/{D} =2/4 =0.5. So the maximum relative utility threshold of {B, D} is 0.5. However,
RUT @, py = 0.5 < 0.6. Hence, there is no temporal rare utility itemset that could be found in
the database db'~.

One important merit of TRUI-Mine lies.in its incremental procedure. As depicted in
Figure 4-1, the mining database will be moved:from-db'~ to db>*. Thus, some transactions,
i.e., Ty, T,, and T3, are deleted from the mining database and other transactions, i.e., Tio, T11,
and T, are added. To illustrate more clearly, this incremental step can also be divided into
three sub-steps: (1) generating temporal high transaction-weighted utilization 2-itemsets in D
= db'?— A", (2) generating temporal high transaction-weighted utilization 2-itemsets in db**
=D + A" and (3) scanning the database db>* only once for the generation of all temporal
high utility itemsets and temporal rare utility itemsets. In the first sub-step, db'> — A" = D",
we check the pruned partition P;, and reduce the value of transaction-weighted utility and set
c.start = 2 for those temporal transaction-weighted utilization 2-itemsets where c.start = 1. It
can be seen that itemsets {BD, DE} were removed. Next, in the second sub-step, we scan the
incremental transactions in P4. The process in D™ + A" = db>*is similar to the operation of
scanning partitions, e.g., P», in the preprocessing step. The new itemset {BD} joins the
temporal high transaction-weighted utilization 2-itemsets after the scan of P4. In the third
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sub-step, we use temporal high transaction-weighted utilization 2-itemsets to generate Cy as
mentioned above. Finally, those temporal high transaction-weighted utilization itemsets in
db** are {A, B, C, D, E, AE, BC, BD, BE}. Note that instead of 10 2-candidate itemsets that
would be generated if TP-RUI-Mine were used, only 4 temporal high transaction-weighted
utilization 2-itemsets are generated by TRUI-Mine. By scanning db,4 only once, TRUI-Mine
obtains temporal high utility itemsets {B, BE} in db>* because u(B) = 270 >130 and u({B, E})
= 150 > 130. In addition, the temporal rare candidate itemset are {BC} and {BD} because
u({B, C}) = 120 and u({B, D}) = 94 between 90 (second utility threshold) and 130 (first
utility threshold). The individual relative utility thresholds of {B, C} are {B, C}/{B} = 3/7
=0.42 and {B, C}/{C} = 3/5 =0.6. The individual relative utility thresholds of {B, D} are {B,
D}/{B} =2/7 =0.28 and {B, D}/{D} = 2/3 =0.67. So the maximum relative utility thresholds
of {B, C} and {B, D} are 0.6 and0:67. It could be found that RUTg ¢y = 0.6 = 0.6 and
RUT @&, py = 0.67 > 0.6. Consequently, TRUI-Mine obtains temporal rare utility itemsets {BC,
BD} in the database db**.

Through the example above, we confirm that items C and D, though they are rare data
items not satisfying the first utility threshold, always occur simultaneously with item B; and
the algorithm TRUI-Mine can discover the temporal rare utility itemsets that are not included
in the temporal high utility itemsets but still significant in terms of the relative utility
threshold. In addition, our algorithm TRUI-Mine not only could discover temporal high utility

itemsets but also temporal rare utility itemsets.

TRUI-Mine Algorithm

For easier illustration, the meanings of various symbols used are given in Table 4-3. The
preprocessing procedure and the incremental procedure of algorithm TRUI-Mine are

described as follows.
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Preprocessing procedure of TRUI-Mine

The preprocessing procedure of Algorithm TRUI-Mine is shown in Figure 4-2. Initially, the
database db'" is partitioned into n partitions by executing the preprocessing procedure (in
Step 2), and CF, the cumulative filter, is empty (in Step 3). Let Thtw'" be the set of
progressive temporal high transaction-weighted utilization 2-itemsets of db™, Algorithm
TRUI-Mine only records Thtw'" which is generated by the preprocessing procedure to be
used by the incremental procedure. From Step 4 to Step 16, the algorithm processes one
partition at a time for all partitions. When partition P; is processed, each potential candidate
2-itemset is read and saved to CF. The transaction-weight utility of an itemset I and its starting
partition are recorded in I.twu and L.start, respectively. An itemset, whose I.twu > s, will be
kept in CF. Next, we select Thtw'" from Iswhere I« CF and keep Ltwu in main memory for

the subsequent incremental procedure. By employing, the scan reduction technique from Step

19 to Step 26, C" (h> 3) are generated ifi main memory. After refreshing I.count = 0 where

Ltwu = 0 and where Ie Thtw'", we begin the last scan of the database for the preprocessing
procedure from Step 28 to Step 31. Finally, those itemsets satisfying the constraint that Lu =

sxP.count and LRUT = RUT are finally obtained as the temporal high utility itemsets and

temporal rare utility itemsets.
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Table 4-3. Meanings of symbols used.

db™ Partitioned database (D) from P; to P;
S Second utility threshold in one partition
F First utility threshold
RUT Relative utility threshold
| Py Number of transactions in partition Py
TUPy Transactions in Py that contain itemset I with
D transaction utility
UPx (I) Transactions in Py that contain itemset I with utility
|
db'" (1) Transactions number in db'" that contain itemset I
|
C The progressive candidate sets of db™
Thiw' The progressive temporal hi.gh transaction-weighted
utilization 2-itemsets of'db"
Thu"! Theprogressive tempotal high utility itemsets of db"
Tru" The progressive-temporal rare utility itemsets of db"
. The deleted portion of an ongoing database
D The unchanged portion of an ongoing database

The added portion of an ongoing database
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=) begin for each 2-itemszset I = Py,

& if(I=& CF)

7. Itwru=TTIEy, (I,

a3 Istart =1,

9. i {Ltwu = s=FP.count ) ff Poount 1s number of partitions
10. CE=CF UL

11 if(I=CF)

12 I twu =T twu+ TP, (T3

1= if(Ltwu < s<P.count )

14 CF=CF—T,

15, etud

16 end

17. select Thiw!? from I where I = CF;
18, keep Thtwl™ in main memory,;

15 h=2,

20. begin while (Thtw!l-m3 @) fratabase scan reduction
21. if (h=2)

22, Ca = Thw!® * Thewls |

23 else

24, O =G =G

25 h=h+1;

26, end

27 refresh Ttwu = 0 where I = Thtw!-n ;

28 begin fork=1ton f2nd scan of dbla
29 for each itemset I = Thiw!l C;i_fl

=0 Iu=Tu+ TPk (I

31 end

22 for each itemset I € Thtwlal C;ifl
35 iflu = F)

a4, Thul®m=Thul™m T,

25 else if (F = Tu = s+P count)

36, ILETIT= max (thresholdii, iz . igvthresholdi),
=7 threshold(d, iz .., igdthreshold (G20,
38

39, thresholdify, iz, ., igdthreshold(Gn
40, if (IRETIT = EUUT)

417. Truln=Tmlx | T

42 end

43 return Thul-® and Truls;

Figure 4-2. Preprocessing procedure of TRUI-Mine.

Incremental procedure of TRUI-Mine

As shown in Table 4-3, D indicates the unchanged portion of an ongoing transaction database.
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The deleted and added portions of an ongoing transaction database are denoted by A and A",
respectively. It is worth mentioning that the sizes of A" and A, ie., | A" | and | A |
respectively, are not required to be the same. The incremental procedure of TRUI-Mine is
devised to maintain temporal high utility itemsets efficiently and effectively. This procedure is
shown in Figure 4-3. As mentioned before, this incremental step can also be divided into three
sub-steps: (1) generating temporal high transaction-weighted utilization 2-itemsets in D =
db'?— A™; (2) generating temporal high transaction-weighted utilization 2-itemsets in db** =
D+ A";and (3) scanning the database db™* only once for the generation of all temporal high
utility itemsets. Initially, after some update activities, old transactions A are removed from
the database db™" and new transactions A" are added (in Step 6). Note that A" —db™".
Then the updated database is denoted as db". Note that db™ = db™" — A + A". We denote the
unchanged transactions by D™ = db%®~ A~ = db".— A+. After loading Thtw™" of db™" into
CF where I e Thtw™", we start' the first 'sub-step, i.e., generating temporal high
transaction-weighted utilization 2-itemséts_in. D~ = db™" — A". This sub-step reverses the
cumulative processing which is described in thepreprocessing procedure. From Step 8§ to Step
16, we prune the occurrences of an itemset I, which appeared before partition P;, by deleting
the value I.twu where [e CF and Lstart < i. Next, from Step 17 to Step 39, similarly to the
cumulative processing in Section 3.3.1, the second sub-step generates temporal high

transaction-weighted utilization 2-itemsets in db™ = D™ + A" and employs the scan reduction

technique to generate CJ . Finally, to generate temporal high utility itemsets and temporal

rare utility itemsets, i.e., Thu" and Tru" in the updated database, we scan db' only once in the
incremental procedure to find temporal high utility itemsets and temporal rare utility itemsets.

Note that Thtw™ is kept in main memory for the next generation of incremental mining.
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Figure 4-3. Incremental procedure of TRUI-Mine.

4.3 Experiments and Analysis

As described in previous sections, the proposed algorithms TP-RUI-Mine and TRUI-Mine are
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based on the principle of the Two-Phase algorithm [21] and THUI-Mine [32] respectively,
with consideration of the concept of significant rare itemsets. To evaluate the performance of
TP-RUI-Mine and TRUI-Mine, we conducted experiments using synthetic datasets generated
via a randomized dataset generator provided by IBM Quest project [3]. However, the IBM
Quest data generator only generates the quantity of O or 1 for each item in a transaction. In
order to fit databases into the scenario of utility mining, we randomly generated the quantity
of each item in each transaction, ranging from 1 to 5, in a similar fashion to the model used in
[21][32]. Utility tables are also synthetically created by assigning a utility value to each item
randomly, ranging from 1 to 1000. Because it is observed from real world databases that most
items are in the low profit range, we generated the utility values using a log normal
distribution, in a similar fashion to the model used in [21][32]. Figure 4-4 shows the utility
value distribution of 1000 items.

The simulation is implemented.in C++ and c¢onducted in a machine with 2.4GHz CPU
and 1G memory. The main performance _metric utilized is execution time. We recorded the
execution time that TP-RUI-Mine“and. TRUI-Mine used in finding temporal high utility
itemsets and temporal rare utility itemsets. The number of itemsets compared by
TP-RUI-Mine and TRUI-Mine is presented to show the performance comparison of

TP-RUI-Mine and TRUI-Mine. Finally, we show the results of scale-up experiments.
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Figure 4-4. Utility value distribution in utility table.

Evaluation on Number of Generated Candidates

In this experiment, we compared the average number of candidates generated in the first
database scan on the sliding windews and the incremental transaction number d10K with the
difference between the first utility threshold and the second utility threshold for TRUI-Mine
and TP-RUI-Mine. The relative utility threshold is set to 0.1. Without loss of generality, we set
|d| = |A"| = |AT] for simplicity. Thus, by denoting the original database as db'" and the new
mining database as db", we have |db" | = |[db'"— A"+ A"| = |D|, where A" = db""" and A" =
db™!Y | Table 4-4 shows the average number of candidates, temporal high utility and temporal
rare utility generated by TRUI-Mine, and TP-RUI-Mine. The number of items is set at 1000,
and the minimum first and second utility threshold varies from 0.2% to 1%. The number of
candidate itemsets generated by TRUI-Mine at the first database scan decreases dramatically
as the threshold goes up. When the second utility threshold and the first utility threshold are
set to 0.8% and 1%, the number of temporal rare utility itemsets is 0 in database

T10.16.D100K.d10K where T denotes the average size of the transactions and I the average
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number of frequent itemsets. We also use the same way to find the average number of
candidates, temporal high utility and temporal rare utility in different database
T20.16.D100K.d10K and T10.14.D100K.d10K. Although it still has many of temporal high
utility itemsets, all of these temporal high utility itemsets are signal item. However, the
number of candidates generated by TP-RUI-Mine is still very large. TRUI-Mine generates far
fewer candidates when compared to TP-RUI-Mine.

Overall, our algorithm TRUI-Mine always generated far fewer candidates compared to
TP-RUI-Mine for various kinds of databases. Hence, TRUI-Mine was verified to be very
effective in pruning candidate itemsets to find temporal high utility itemsets and temporal rare

utility itemsets.

Table 4-4. Number of candidate itemsets, temporal high utility itemsets and temporal rare

utility itemsets generated on dataset T10.16.D100K.d10K.

T10.16.D100K.d10K (RUT = 0.1)

. ) . . Temporal
Second Utility First utility . . Temporal high .
TRUIzMine “TP-RUI-Mine L rare utility
threshold threshold utility itemsets .
1temsets
0.2% 0.4% 55967 445096 334 292
0.3% 0.5% 33101 431985 275 30
0.4% 0.6% 20088 412686 221 2
0.6% 0.8% 8060 385881 151 1
0.8% 1% 3433 361675 104 0

Evaluation of Execution Efficiency

In this experiment, we demonstrated the relative performance of TP-RUI-Mine and

TRUI-Mine. Figure 4-5, Figure 4-6 and Figure 4-7 show the execution times for the two
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algorithms as the various cases that the difference between first utility threshold and second
utility threshold. It is observed that when the first and second utility threshold is high, there
are only a limited number of high utility itemsets and rare utility itemsets produced. However,
as the second utility threshold decreases, the performance difference becomes prominent in
that TRUI-Mine significantly outperforms TP-RUI-Mine. As shown in Figure 4-5, Figure 4-6
and Figure 4-7, TRUI-Mine leads to significant performance improvement for different
average sizes of transaction. Explicitly, TRUI-Mine is orders of magnitude faster than
TP-RUI-Mine, and the margin grows as the second utility threshold decreases. It is observed
that TRUI-Mine spends less time than TP-RUI-Mine and maintains high stability while
finding temporal high utility itemsets and temporal rare utility itemsets. This is because the
TP-RUI-Mine produces more candidate itemsets and needs more database scans to find high
utility itemsets and rare utility itemsets than the TRUI-Mine algorithm. To measure how much
execution time could be reduced-substantially in using- TRUI-Mine compared to TP-RUI-Mine,

we define the Improvement Ratio-as follows:

(execution time of TP.=RUI) — (execution time of TRUI)
execution time of TP - RUI

Improvement Ratio =

From the data illustrated in Figure 4-5 and Figure 4-6, we see that the Improvement
Ratio is about 86.8% and 83% with the second utility threshold set as 0.2%. In Figure 4-7, the
average improvement is about 64% with second utility threshold varied from 0.2% to 0.6%.
Obviously, TRUI-Mine reduces substantially the time taken in finding high utility itemsets and
rare utility itemsets. Moreover, the high utility itemsets and the rare utility itemsets obtained
by TP-RUI-Mine are not suitable for applications in temporal databases since TP-RUI-Mine
needs more database scans and increased execution times in finding high utility itemsets and
rare utility itemsets by the time change. Hence, TRUI-Mine meets the requirements of high

efficiency in terms of execution time for data stream mining.
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Figure 4-5. Execution time on T10.16.D100K.d10K.
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Figure 4-6. Execution time on T20.16.D100K.d10K.
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Figure 4-7. Execution time on T10.14.D100K.d10K.
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Figure 4-8. Scale-up performance results.

Scale-up on Incremental Mining

In this experiment, we investigated the effects of varying incremental transaction size on the
execution time of mining results. To further understand the impact of |d| on the relative
performance of algorithms TRUI-Mine and TP-RUI-Mine, we conducted scale-up experiments
which were similar to those described in [18] for both TRUI-Mine and TP-RUI-Mine with

second utility thresholds being varied from 0.2% and 0.4 % and first utility thresholds being
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varied from 0.4% and 0.6 %, respectively. Figure 4-8 shows the experimental results where
the value of y-axis corresponds to the ratio of the execution time of TRUI-Mine to that of
TP-RUI-Mine. Figure 4-8 shows the execution time-ratio for different values of |d|. It can be
seen that the execution time-ratio remains stable with the growth of the incremental
transaction number |d| since the size of |d| has little influence on the performance of
TRUI-Mine. Moreover, the execution time ratios of the scale-up experiments with second
utility thresholds varied from 0.6% to 1% remain constant at approximately 0.4%. This
implies that the advantage of TRUI-Mine over TP-RUI-Mine is stable and less execution time
is taken as the amount of incremental portion increases. This result also indicates that

TRUI-Mine is more useful for mining temporal databases with large transaction size.
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Chapter 5
Mining High Utility Itemsets with Negative Item

Values

5.1 Problem Definition

Mining of association rules in large databases is a well studied technique in the field of data
mining with typical methods like Apriori [1][2]. The problem surrounding association rules
mining can be decomposed into two steps. The first step involves finding all frequent itemsets
(or large itemsets) in a database. Once the frequent.-itemsets are found, generating association
rules is straightforward and can be accomplished m.linear time.

Most methods in finding “frequent-itemsets ‘are designed for traditional databases.
However, the frequency of an itemset.may-not be a sufficient indicator of significance,
because frequency reflects only the number of transactions in the database that contain that
itemset. It does not reveal the utility of an itemset, which can be measured in terms of cost,
profit, or other expressions of user preference. On the other hand, frequent itemsets may only
contribute a small portion of the overall profit, whereas non-frequent itemsets may contribute
a large portion of the profit. In reality, a retail business may be most interested in identifying
its most valuable customers (customers who contribute a major fraction of the profits to the
company). Hence, frequency is not sufficient to answer questions such as whether an itemset
is highly profitable, or whether an itemset has a strong impact.

Utility mining is thus useful in a wide range of practical applications and was recently
studied in [8][21][32][35]. However, a retail business may sale item with negative value. For

example, many super markets may promote certain items to attract customers. In this scenario
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customers may buy specific items and then receive free goods. Free goods result in negative
value for super markets. However, supermarkets may earn higher profits from other items that
are cross-promoted with these free items. This practice is common. For example, if a
customer bought three of item A, he would then receive one free item B as a promotion from
the supermarket. Suppose the supermarket gets 5 dollars of profit from each unit of item A
sold, and loses 2 dollars for each unit of item B given away. Although giving away a unit of
item B results in a loss of 2 dollars for supermarkets, they could possibly earn 15 dollars from
the three units of item A that are cross-promoted with item B. The supermarket thus may have
a net gain of 13 dollars from this promotion. This example demonstrates why we propose the
concept of mining for negative item values in utility mining. This also motivates our research
in developing a new scheme for finding high utility itemsets with negative item values

(HUINIV) from large databases.

Table 5-3. Atransaction database-and its utility table.

() Transaction table

ITEM
TID A|B|C|D|E
T 1100 (|2]|1
T, 0|1(2|6|0
Ts 3/0(0|5|0
T, 110|001
Ts 0|1(2|6|0
T 0|1]1]0]|2
T, 2(0]0]0](0
Ts 3{0]0]1]|0
Ty 0j1(1(4|0
To 110|001

78



(b) The utility table

ITEM| VALUE($)(per unit)
A 5
-3
C -2
D 6
E 10

Recently, a utility mining model has been defined in [35]. Utility is a measure of how
“useful” (i. e. “profitable”) an itemset is. The definition of the utility of an itemset X, u(X),
states that it is equal to the sum of the utilities of X of all the transactions containing X. The
goal of utility mining is to identify high utility itemsets, which drive a large portion of the
total utility. Traditional association rules of mining'models assume that the utility of each item
is always 1 and that the quantity-of sales is either 0 or-l; thus it is only a special case of utility
mining in which the utility or the quantity-of sales of each item can be any number. If u(X) is
greater than a specified utility threshold, X is-a high utility itemset; otherwise, it is a low
utility itemset. Table 5-1 is an example of utility mining in a transaction database. The number
associated with each transaction in Table 5-1(a) is the sales volume of each item, and the
utility of each item is listed in Table 5-1(b). For example, U({A, D}) = (1x5+2x6) + (3x5+5%6)
+ (3x5+1x6) = 83. {A, D} is a high utility itemset if the utility threshold is set at 80.

However, a high utility itemset may consist of low utility items. Another possibility is to
adopt the level-wise searching schema that exists in fast algorithms, such as Apriori [3]. This
algorithm doesn’t apply to the utility mining model. For example, u(A) = 55 < 80, A is a low
utility item, but its superset {A, D} is a high utility itemset. If Apriori is used to find high
utility itemsets, all combinations of all items must be generated. Moreover, in order to
discover a long pattern, the number of candidates is prohibitively large. The cost in terms of
either computation time or memory is intolerable, regardless of the method utilized. The
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challenge of utility mining is not only in restricting the size of the candidate set but also in
simplifying the computation used to calculate its utility. Another challenge of utility mining is
finding high utility itemsets with negative item values from large databases.

In this chapter, we explore the issue of efficiently mining high utility itemsets with
negative item values in large databases. We propose an algorithm named HUINIV(High Utility
Itemsets with Negative Item Values)-Mine that can discover high utility itemsets with negative
item values from large databases both efficiently and effectively. The underlying idea behind
the HUINIV-Mine algorithm is based on the principle of the Two-Phase algorithm [21] and
augments with negative item value for mining high utility itemsets efficiently. The novel
contribution of HUINIV-Mine is that it can efficiently identify the utility of itemsets in large
database so that the execution time for producing high utility itemsets with negative item
values can be substantially reduced: That is, HUINIV-Mine can discover high utility itemsets
with negative item values using dimited memory and eomparatively less computation time by
the candidate itemsets filter method. idn"this.-way, the process of discovering all high utility
itemsets in which all transactions”are. negative ‘can be achieved effectively with limited
memory, less candidate itemsets, and CPU I/O. This meets the critical requirements of time
and spatial efficiency for mining large databases. Through experimental evaluation,
HUINIV-Mine is shown to produce fewer candidate itemsets in the process of finding high
utility itemsets with negative item values, so it outperforms other methods in terms of
efficiency. We found that the average improvement of HUINIV-Mine compared to the MEU
algorithm is about 99.2%. Moreover, it also achieves high scalability in dealing with large
databases. To the best of our knowledge, this is the first work to propose a negative item
concept in utility mining and the first work on mining high utility itemsets with negative item
values from large database.

The rest of this chapter is organized as follows: Section 5.2 describes the proposed
approach, HUINIV-Mine, for finding the high utility itemsets with negative item values. In
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section 5.3, we describe our experimental results for evaluating the proposed method. The

conclusion of the chapter is provided in Section 5.4.

5.2 Proposed Method

In this section, we present the HUINIV-Mine method. We describe the basic concept of
HUINIV-Mine. We give an example of mining temporal high utility itemsets and the

procedure of the HUINIV-Mine algorithm.
Basic Concept of HUINIV-Mine

The goal of utility mining is to discover all itemsets whose utility values exceed a user
specified threshold in a transaction database..In [35] the goal of utility mining is to find all
high utility itemsets. An itemset Xiis a high utility itemset if u(X) >¢, where X < 1 and ¢ is
the minimum utility threshold, otherwise, it.isa low utility itemset. For example, in Table 5-1,
U(A, Ty) = 1x5 =5, u({A, E}, Ty = U(A, Toy+u(E, T)) = 1x5 + 1x10 = 15, and u({A, E}) =
U(TA, E}, T) +U({A, E}, Ta) + U({A, EXFTi) = 15 + 15 + 15=45. If ¢ = 80, {A, E} is a low
utility itemset. However, if an item is a low utility item, its superset may be a high utility
itemset. For example, U(A) = 55 < 80, A is a low utility item, but its superset {A, D} is a high
utility itemset because U({A, D}) = 83 > 80. Hence, all the combinations of all items should
be processed so that it never loses any high utility itemset. But the high cost of either
computational time or memory is intolerable. A set of terms that leads to the formal definition
of the utility mining problem can be generally defined as follows by referring to [35]:

e |={iy Iy ..., In} is a set of items.

e D={T,, Ty ..., Th} be atransaction database where each transaction T;e D is a subset of

l.

e  0(ip, Ty), local transaction utility value, represents the quantity of item iy in transaction
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Tq. For example, 0(A, T3) = 3, in Table 5-1(a).

e  S(ip), external utility, is the value associated with item ip in the Utility Table. This value
reflects the importance of an item, which is independent of transactions. For example, in
Table 5-1(b), the external utility of item A, S(A), is 5.

e  U(ip, Tq), utility, the quantitative measure of utility for item ip in transaction T, is defined

as: 0(ip, Tq)*S(ip). For example, U(A, T3) =3 x 5, in Table 5-1.

e Uu(X, Ty, utility of an itemset X in transaction Tq, is defined as Zu(ip,Tq), where X =

ipeX

{11, 12, ..., Im} is a k-itemset, X < Tgand I<k<m.

e u(X), utility of an itemset X, is defined as ZU(X ,T0) .

TqeDAXcTq

Liu et al. [21], proposed the Two-Phase algorithm for pruning candidate itemsets and
simplifying the calculation of utility. First, Phase I overestimates some low utility itemsets,
but it never underestimates any itemsets. For, example in Table 5-1, the transaction utility of

transaction Tq, denoted as tu(Tgy), 1s the-sum of the utilities of all items in Tq: tu(Ty) =

ZU(ip,Tq) . And the transaction-weighted utilization of an itemset X, denoted as twu(X), is the

ipeTq

sum of the transaction utilities of all transactions containing X: twu(X) = Ztu(T .). For
XcTqeD

example, tWu(A) = tu(T;) + tu(Ts) + tu(Ts) + tu(Ty) + tu(Ts) + tu(Tio)=27 + 45 + 15 +10 + 21
+ 15 = 133 and twu({A, E}) = tu(T;) + tu(Ty) + tu(T1o) = 27 + 15 + 15= 57. In fact, U(A) =
U({A}, T) +U({A}, T3) T U({A}, Ta) + U({AS, T7) + U({A], Te) T U({A}, Tio) =5+ 15+ 5+
10+ 15+5=55and u({A, E}) = u({A, E}, T)) + U({A, E}, T4) + U({A, E}, T19)= 15+ 15 +
15 =45. So while Phase I overestimates some low utility itemsets, it never underestimates any
itemsets whatsoever. Table 5-2 gives the transaction utility of each transaction in Table 5-1.
One extra database scan is performed to filter the overestimated itemsets in phase II. For
example, tWU(A) = 126 > 80 but U(A) = 55 < 80. After that, item {A} is pruned; otherwise, it

is a high utility itemset. In the end, all of high utility itemsets have been discovered in this
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way. However, we cannot apply the Two-Phase algorithm to databases whose items include
negative values. Some high utility itemsets may be lost in this way. For example, twu({B, D})
= tu(Ty) + tu(Ts) + tu(To)= 29 + 29 + 19 = 77. If ¢ = 80, twu({B, D}) = 77 < 80 is a low
transaction-weighted utilization itemset, then {B, D} will be deleted. In fact, u({B, D}) =
u({B, D}, T2) + u({B, D}, Ts) + u({B, D}, To)= 33 + 33 + 21= 87 > 80. {B, D} should be a
high utility itemset. Thus, the Two-Phase algorithm is not sufficient to answer question
regarding items with negative values. As one possible solution, utility mining, useful over a
wide range of practical applications, was recently studied in [8][21][32][35]. This also
motivates our research in developing a new scheme for finding high utility itemsets with
negative item values (HUINIV) from large databases.

Our algorithm HUINIV-Mine is based on the principle of the Two-Phase algorithm [21],
and focuses on utilizing transaction utility witheut using negative item value methods to
improve the response time by concerning fewer candidate itemsets and less CPU I/O. In
essence, by removing items with negative values from a transaction in a large database,
algorithm HUINIV-Mine employs afiltering threshold within the database to deal with the
transaction-weighted utilization itemsets (TWUI) generated. Table 5-3 gives the transaction
utility without negative item values for each transaction in Table 5-1. In this way,
HUINIV-Mine can overestimate some low utility itemsets, but it never underestimates any
itemsets and it never loses any itemsets that may be of high utility. In processing a database, a
transaction-weighted utilization set of itemsets is generated by HUINIV-Mine. Explicitly, a
transaction-weighted utilization set of itemsets is composed of the TWUI that were generated
from the previous transaction-weighted utilization candidate sets during the previous phase.
After the processing, the algorithm HUINIV-Mine outputs a high transaction-weighted
utilization set of itemsets. However, some of the high transaction-weighted utilization sets of
itemsets should be pruned advance. Each item of the itemset that has negative value will
never be part of a high utility itemset. At least one item’s value within an itemset should be

83



positive, or the itemset need not scan the database. Hence, the algorithm HUINIV-Mine
outputs real high transaction-weighted utilization candidate itemsets after filtering some
itemsets. Finally, HUINIV-Mine computes the occurrence counts of itemsets in the memory
and then deletes itemsets that do not satisfy utility threshold within the database so as to find
high utility itemsets with negative item values.

Taking these design features under consideration, the algorithm HUINIV-Mine is shown
to perform very well at mining high utility itemsets with negative item values from large
databases. In Section 5.3.2, we give an example of mining high utility itemsets with negative
item values from large databases. The proposed algorithm, HUINIV-Mine, is described in

detail in Section 5.3.3.

Table 5-2. Transaction utility-of the transaction database.

TID | Transactien Utility |+ TID | |- Transaction Utility
T, 27 T 15
T, 29 T; 10
Ts 45 Tg 21
Ty 15 Ty 19
Ts 29 Tho 15

84



Table 5-3. Transaction utility without negative item values of the transaction database.

TID Transaction Utility without TID Transaction Utility without
Negative Item Values Negative Item Values
T, 27 T 20
T, 36 T, 10
Ts 45 Ts 21
T, 15 T 24
Ts 36 Tio 15

An Example of Mining High Utility Itemsets with Negative item Values

The proposed HUINIV-Mine algorithm can be best understood from the illustrative transaction
database shown in Table 5-1 and Figure 5-1 in ‘which a scenario for generating high utility
itemsets from large databases to mine high utility itemsets with negative item values is given.
This type of illustrative transaction database resembles items that are sold by supermarkets in
real life. This also means that utility. mining has real-life applications. We set the utility
threshold at 80 with ten transactions. Without loss of generality, the mining problem can be
decomposed into two procedures:

1. TWUI procedure: This procedure deals with mining the transaction database to
generate TWUIL

2. Filter procedure: The procedure deals with filtering negative itemsets and generating

high utility itemsets with negative item values from large databases.
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| transaction-weighted utility Cq | transaction-weighted utility 3 | transaction-weighted utility
o A 133 AB 0 {EBCD 95
& B 116 AC 0
& C 116 @ AD 93
@ D 189 @ BC 116
E 77 @ BD 95
@ CD 96
High transaction-weighted Candidates utility
utilization candidate itemsets A 35
A @ D 144
B Frune negative itemset @ AD 93
@ @ BD 87
D @@ CD 86
AD ECD 77
BC
ED
CD
BCD

Figure 5-1. High utility itemsets'generated from large databases by HUINIV-Mine.

The TWUI procedure is only utilizedfor the initial utility mining in the database. For the
mining high utility itemsets, the filter procedure-is‘employed. Consider the database in Table
5-1. Each transaction is scanned sequentially for the generation of candidate 1-itemsets in the
first scan of the database. Itemsets whose transaction-weighted utility is below the utility
threshold are removed. Then, as shown in Figure 5-1, only {A, B, C, D}, marked by “©”,
remain as high transaction-weighted utilization 1-itemsets. Although items B and C have
negative values, they may constitute high utility itemset by combining with other items. These
items should be preserved to combine with other items to generate the next candidate itemsets.
The candidate 2-itemsets {AB, AC, AD, BC, BD, CD} are generated by high
transaction-weighted utilization 1-itemsets. In the same way, only {AD, BC, BD, CD},
marked by “©?7”, remain as high transaction-weighted utilization 2-itemsets. The candidate
3-itemsets {BCD} are generated by high transaction-weighted utilization 2-itemsets; high

transaction-weighted utilization 3-itemsets being those whose transaction-weighted utility is
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above the utility threshold.

We could get high transaction-weighted utilization candidate itemsets {A, B, C, D, AD,
BC, BD, CD, BCD}. However, some of the high transaction-weighted utilization sets of
itemsets should be pruned in advance. If each item of the itemset’s value is negative, it will
not be a high utility itemset. For example, {B, C, BC} should be deleted. Hence, algorithm
HUINIV-Mine outputs only 6 real high transaction-weighted utilization candidate itemsets {A,
D, AD, BD, CD, BCD} after filtering the itemsets. Finally, all candidates can be stored in
main memory, and we can find high utility itemsets with negative item values when the scan
of the database is performed. The resulting high utility itemsets are {D}, {AD}, {BD} and
{CD} because u(D) = 144 >80, u({A, D}) = 83 >80, u({B, D}) = 87 >80 and u({B, E}) = 86

> 80 as shown in Figure 5-1.

Table 5-4. Meanings of symbols used.

DB Database

threshld |Utility threshold in-database

twu Transaction-weighted utilization itemsets without negative item values

htwu;  [High transaction-weighted utilization i-itemsets without negative item values

I.value |Each item’s value

hui High utility itemsets with negative item values

HUINIV-Mine Algorithm

For clarification, the meanings of various symbols used are given in Table 5-4. The procedure
used Algorithm HUINIV-Mine is shown in Figure 5-2.
Initially, it input the database DB (in step 1), and it finds high transaction-weighted

utilization 1-itemsets from step 2 to step 5. The transaction-weighted utility without negative
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item value of itemset I is recorded in [.twu. An itemset, whose I.twu > threshold (in step 3),
will be kept in htwu (in step 4). Next, we use high transaction-weighted utilization itemsets to
generate transaction-weighted utilization candidate itemsets. Then we scan the database to
find high transaction-weighted utilization itemsets from step 6 to step 13. After identifying all
htwu, we perform a last scan of the database from Step 14 to Step 19. Since each item’s value
in the itemset is negative, it cannot be a high utility itemset. At least one item’s value in
itemset [ should be positive (in step 14), or else the itemset does not need to scan the database.
Finally, those itemsets satisfying the constraint that L.htwu = threshold are finally obtained

as the high utility itemsets with negative item values.

Algorithim HUINIV-Mine

Input: DB

fork=1ton H Fmnd high transaction-weighted utilization 1-itemsets
if Ttwu = threshold )

htwy =htwuy U Itw,

1

2

3

4

5. end
6 fori=2; htwu # 0 i+

7 Ttwu =Liwu_genthtwui,), # Generate transaction-weighted utilization i-candidate iternsets
3. if (Ttwu+# @)

9. fork=lton

10 if (Itwu = threshold )
11. htww; =htwo; U Ltwu,
12. end

13, end

14 for each itemset 1€ htwu+# ¢ && Ivalue > 0/ Find high utility itemsets with negative item values
13. fork=1ton

16, if (Lhtwu = threshold)
17. hui=hui U Lhtwu,
18 end

19 end

20, returmn hui,

Figure 5-2. Procedure used by HUINIV-Mine.

5.3 Experiments and Analysis

To evaluate the performance of HUINIV-Mine, we conducted experiments using synthetic
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datasets generated via a randomized dataset generator provided by IBM Quest [3]. However,
the IBM Quest data generator only generates quantities of 0 or 1 for each item in a transaction.
In order to fit databases into the scenario of utility mining, we randomly generate the quantity
of each item in each transaction, ranging from 1 to 5; much like the model used in [21][32].
Utility tables are also synthetically created by assigning a utility value to each item randomly,
ranging from -100 to 1000. Since it is observed from real databases that most items are in the
low value range and low negative value range, we generate the utility values using a log
normal distribution; similarly to the model used in [21][32]. Figure 5-3 shows the utility value
distribution of 1000 items.

The simulation is implemented in C++ and conducted in a machine with 2.4GHz CPU
and 1G memory. The MEU algorithm [35] is also utilized in a negative itemsets scenario for
comparison with the HUINIV-Mine-algorithm. The.scenario using MEU consists of scanning
the database after collecting the-data to find high utility itemsets with negative item values.
The main performance metric- used-iS_exccution time. We recorded the time that
HUINIV-Mine uses to find high utilityitemsets with negative item values. The number of
candidate itemsets compared of HUINIV-Mine and MEU is presented and show comparison in
performance of a variety of IBM Quest data with HUINIV-Mine. We also give the

performance of HUINIV-Mine with real data.
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Figure 5-3. Utility value with negative distribution in utility table.

Evaluation of Number of Generated Candidates

In this experiment, we compare ‘the average number of candidates generated in the first
database scan with different support values for HUINIV-Mine and MEU [35]. Table 5-5, Table
5-6, Table 5-7 and Table 5-8 show the average number of candidates generated by
HUINIV-Mine and MEU. The number of items is set at 1000, and the minimum utility
threshold varies from 0.2% to 1%. The number of candidate itemsets generated by
HUINIV-Mine during the first database scan decreases dramatically as the threshold increases.
Particularly when the utility threshold is set to 1%, the number of candidate itemsets is
generally 588, including all various candidate itemsets in database T10.14.D100K where T
denotes the average size of the transactions and I the average number of frequent itemsets.
However, the number of candidates generated by MEU is always 499,500 because it needs to
process all combinations of 1000 items to generate only 2-candidate itemsets. HUINIV-Mine

generates far fewer candidates when compared to MEU.
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We obtain similar experimental results from different datasets. For example, only 644
candidate itemsets are generated by HUINIV-Mine, but 499500 candidate itemsets are
generated by MEU, respectively, when the utility threshold is set as 1% in dataset
T10.14.D100K. In the case of datasets T20.14.D100K and T20.16.D100K, more candidates are
generated, because each transaction is longer than those in T10.14.D100K and T10.14.D100K.
Overall, our algorithm HUINIV-Mine always generates far fewer candidates when compared
to MEU for various kinds of databases. Thus, HUINIV-Mine is verified to be very effective in
pruning candidate itemsets to find high utility itemsets with negative item values.

It is observed that HUINIV-Mine obtains fewer candidate itemsets than MEU with high
stability with regard to finding high utility itemsets with negative item values. To measure
how many candidate itemsets could be reduced substantially by using HUINIV-Mine

compared to MEU algorithm, we define the Improvement Ratio as follows:

. _ (candidate itemsets of' MEU) =(candidate itemsets of HUIVP - Mine)
Improvement Ratio = : -
candidate itemsets of MEU

From the data illustrated in Table 5-5, we see:that the Improvement Ratio is about 99.8%
with the threshold set as 1%. In Table 5-8, the average improvement is about 99.2% with the
minimum utility threshold varied from 0.2% to 1%. Obviously, HUINIV-Mine reduces
substantially the candidate itemsets for finding high utility itemsets with negative item values.
Moreover, the high utility itemsets obtained by MEU are not suitable for applications in large
database since MEU requires more database scans, and increased execution times and
candidate itemsets to find high utility itemsets with negative item values. Thus, HUINIV-Mine
meets the requirements of being highly effective in terms of candidate itemsets for large

database mining.
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Table 5-5. The number of candidate itemsets and high utility itemsets generated from database

T10.14.D100K.
Databases T10.14.D100K
HUINIV-Mine MEU High Utility
Threshold Itemsets
0.2% 11306 499500 285
0.3% 3928 499500 183
0.4% 1691 499500 115
0.6% 846 499500 58
0.8% 676 499500 29
1% 588 499500 14

Table 5-6. The number of candidate itemsets and high utility itemsets generated from database

T10.16.DTO0K.
Databases T10.16.D100K
HUINIV-Mine MEU High Utility
Threshold Itemsets

0.2% 16304 499500 335
0.3% 5336 499500 197
0.4% 2469 499500 130
0.6% 1056 499500 69
0.8% 755 499500 29

1% 644 499500 19
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Table 5-7. The number of candidate itemsets and high utility itemsets generated from database

T20.14.D100K.
Databases T20.14.D100K
HUINIV-Mine MEU High Utility
Threshold Itemsets

0.2% 20026 499500 118
0.3% 7958 499500 55
0.4% 3754 499500 29
0.6% 1308 499500 8
0.8% 774 499500 4

1% 599 499500 2

Table 5-8. The number of candidate itemsets and+high utility itemsets generated from database

T20.16.DTO0K.
Databases T20.16.D100K
HUINIV-Mine MEU High Utility
Threshold Itemsets

0.2% 27357 499500 127
0.3% 8441 499500 56
0.4% 4095 499500 23
0.6% 1438 499500 7
0.8% 823 499500 4

1% 637 499500 3

Evaluation of Execution Time

In this experiment, we show only the performance of HUINIV-Mine since MEU requires

much higher execution time (longer than 10 hours) to complete the second scan lacks basis for
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comparison because the number of candidate itemsets generated is always 499500.
Therefore, HUINIV-Mine meets the requirements of efficiency in terms of execution time for
large database mining.

Figure 5-4 and Figure 5-5 show the execution times for HUINIV-Mine as the minimum
utility threshold is decreased from 1% to 0.2%. It is observed that when the minimum utility
threshold is high, there are only a limited number of high utility itemsets produced. However,
as the minimum utility threshold decreases, the execution times increase with more high
utility itemsets produced. As shown in Figure 5-4 and Figure 5-5, the margin grows as the

minimum utility threshold increases for different average sizes of transaction.

IBM Quest Data

8000
7000 &

6000 \
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—=—T20.16.D100K

4000

——T10.16.D100K
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2000 & ]

1000 \ .

Execution Time (Sec)

0.2 0.3 0.4 0.6 0.8 1
Minimum Utility Threshold (%)

Figure 5-4. Execution time for HUINIV on T20.16.D100K and T10.16.D100K.
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Figure 5-5. Execution time for HUINIV on T20.14.D100K and T10.14.D100K.

Evaluation with Real Data

We also evaluate our algorithm 'HUINIV-Mine with real data, BMS-POS. The BMS-POS
dataset contains several years worth of point-of-sale data from a large electronics retailer.
Since this retailer has so many different products, we used product categories as items. Each
item thus represents a category, rather than an individual product. The transaction in this
dataset is a customer’s purchase transaction consisting of all product categories purchased at
one time. The goal of this dataset is to find associations between product categories purchased
by customers in a single visit to the retailer. Table 5-9 characterizes BMS-POS in terms of the
number of transactions, the number of distinct items, the maximum transaction size, and the
average transaction size.

This data set was used in the KDD-Cup 2000 competition and was recently made
publicly available by Blue Martini Software (downloaded from

http://www.ecn.purdue.edu/KDDCUP). In order to render databases siuitable for utility
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mining, we also randomly generate the quantity of each item in each transaction, ranging from
1 to 5. Utility tables are also synthetically created by assigning a utility value to each item
randomly, ranging from 1 to 1000.

Table 5-10 shows the average number of candidates generated by HUINIV-Mine and
MEU. The number of items is set at 1000, and the minimum utility threshold varies from
0.2% to 1%. The number of candidate itemsets generated by HUINIV-Mine during the first
database scan decreases dramatically as the threshold increases. Particularly when the utility
threshold is set to 1%, the number of candidate itemsets is generally 3789, including all
various candidate itemsets within the database BMS-POS. However, the number of candidates
generated by MEU is always 499,500 because it must process all combinations of 1000 items
to generate only 2-candidate itemsets. It is observed that HUINIV-Mine still generates far
fewer candidates when compared.ito MEU even. using the real data. Hence, this result
indicates that HUINIV-Mine is -useful for ' mining, high utility itemsets with negative item
values from both artificial data-andireal data. Figure 5-6 shows the execution times for

HUINIV-Mine as the minimum utility thresholdis decreased from 1% to 0.2%.

Table 5-9. Database BMS-POS characteristics.

BMS-POS

Transactions | Distinct items | Maximum Trans. Size | Average Trans. Size

515597 1657 164 6.5
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Table 5-10. The number of candidate itemsets and high utility itemsets generated on database

BMS-POS.
Databases BMS-POS
. High Utility
HUINIV-Mine MEU
Threshold Itemsets
0.2% 59066 499500 151
0.3% 31485 499500 66
0.4% 19488 499500 34
0.6% 9603 499500 16
0.8% 5728 499500 7
1% 3789 499500 4
BMS-POS
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Figure 5-6. Execution time for HUINIV on BMS-POS.
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Chapter 6

Conclusions and Future Work

The mining of association rules for finding the relationship between data items in large
databases is a well studied technique in data mining field. For time-variant temporal databases,
there is a strong demand to develop an efficient and effective method to mine various
temporal patterns. However, most methods designed for the traditional databases cannot be
directly applied for mining temporal patterns in temporal databases because of the high
complexity. In many applications, the frequency of an itemset may not be a sufficient
indicator of interestingness, because it only reflects the number of transactions in the database
that contain the itemset. It does not reveal the Utility of an itemset, which can be measured in
terms of cost, profit or other expressions.of wuser: preferences. Hence, frequency is not
sufficient to answer questions such as whether an itemset is highly profitable, or whether an
itemset has a strong impact. Utility mining is thus useful in a wide range of practical
applications. Therefore, we proposed a set of data mining methods for mining emerging
frequent itemsets and high utility itemsets from temporal databases in this thesis.

First, we addressed the problem of discovering temporal emerging itemsets in temporal
databases, i.e., the itemsets that are infrequent in current time window but have the high
potential to become frequent in the subsequent time windows. We propose a new approach,
namely EFI-Mine, which can discover emerging frequent itemsets from temporal databases
efficiently and effectively. The novel contribution of EFI-Mine is that it can effectively
identify the potential emerging itemsets such that the execution time can be reduced
substantially in mining all frequent itemsets in temporal databases. The experimental results
show that EFI-Mine can find the emerging frequent itemsets with high precision under

different conditions like varied window size, transaction size and number of items, etc. This
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also indicates that EFI-Mine fits for mining temporal databases with large window size
transaction size and number of items. Moreover, it is highly efficient and scalable in terms of
execution time. Hence, EFI-Mine promising for mining temporal emerging patterns in
temporal databases.

Second, we addressed the problem of discovering temporal high utility itemsets in
temporal databases. Under the stream database situation, the memory is often limited and it is
hard to store large itemsets in memory. We propose a new algorithm, namely THUI-Mine,
which can discover temporal high utility itemsets from temporal databases efficiently and
effectively. The novel contribution of THUI-Mine is that it can effectively identify the
temporal high utility itemsets with less candidate itemsets such that the execution time can be
reduced efficiently. In this way, the process of discovering the temporal high utility itemsets in
temporal databases can be achieved effectively with less memory space and execution time.
This meets the critical requirements of time and space efficiency for mining temporal
databases.

The experimental results show:that THUI-Mine can discover the temporal high utility
itemsets with higher performance by generating less candidate itemsets as compared to other
algorithms under different experimental conditions, including both of sparse and dense
datasets. Across the experiments, THUI-mine is faster than Two-Phase by 2 to 10 times, and
the performance gain becomes more significant as the minimum utility threshold decreases.
For example, THUI-mine is 10 times faster than Two-Phase when the threshold is 0.2 for
dataset T20.16.D100K.d10K. This performance enhancement comes mainly from the good
feature of THUI-mine in producing far fewer candidate itemsets. Moreover, the experimental
results also show that THUI-Mine is scalable with large databases. Therefore, it is indicated
that the advantage of THUI-Mine over Two-Phase is stable and less execution time is taken as
the amount of incremental portion of databases increases. Hence, THUI-Mine is promising for
mining temporal high utility itemsets in temporal databases.
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Third, we addressed the problem of discovering temporal rare utility itemsets in temporal
databases, i.e., the itemsets that are larger than relative utility threshold in a current time
window of the data stream. We propose two approaches, namely TP-RUI-Mine and
TRUI-Mine, which can identify not only temporal high utility itemsets but also temporal rare
utility itemsets from temporal databases both efficiently and effectively. To our best
knowledge, this is the first work on mining temporal rare utility itemsets from temporal
databases. The novel contribution of TRUI-Mine in particular is that it can effectively identify
the temporal rare utility itemsets with less temporal high transaction-weighted utilization
2-itemsets such that the execution time can be reduced efficiently in mining all rare utility
itemsets in temporal databases. In this way, the process of discovering all temporal rare utility
itemsets under all time windows of temporal databases can be achieved effectively with
limited memory space, less candidate itemsets and less CPU I/O. This meets the critical
requirements of time and space efficiency for mining temporal databases.

The experimental results show that TRUI-Mine can find the temporal rare utility itemsets
with higher performance by generating. less candidate itemsets compared to TP-RUI-Mine
under different experimental conditions. Moreover, it performs scalably in terms of execution
time with large databases. Hence, TRUI-Mine is promising for mining temporal rare utility
itemsets in temporal databases.

Fourth, we addressed the problem of discovering high utility itemsets with negative item
values in large databases, i.e., the itemsets containing negative item values that are larger than
threshold in large databases. We propose a new approach, namely HUINIV-Mine, which can
identify high utility itemsets with negative item values in large databases both efficiently and
effectively. The novel contribution of HUINIV-Mine is that it can effectively identify high
utility itemsets with negative item values in less high TWUI such that the execution time can
be reduced efficiently for mining all high utility itemsets with negative item values in large
databases. In this way, the process of discovering all high utility itemsets containing negative
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item values can be achieved effectively with limited memory space, less candidate itemsets
and CPU I/O. This meets the critical requirements of time and space efficiency for mining
high utility itemsets with negative item values.

The experimental results show that HUINIV-Mine can find high utility itemsets with
negative item values with higher performance by generating fewer candidate itemsets
compared to other algorithms under varied experimental conditions. It was found that
HUINIV-Mine delivers an average improvement around 99.2% over MEU method in terms of
execution performance. That is, the advantage of HUINIV-Mine over MEU is stable and less
execution time is taken when the concept of negative item values is considered. Hence,
HUINIV-Mine is promising for mining high utility itemsets in large databases with negative
item values.

For the future work, we wouldiextend the concepts of the proposed methods to discover
other interesting patterns in temporal databases, like the frequent closed sets or other
interesting patterns in temporal databases such.as different ordered transactions. Moreover, we
would explore to extend the concepts: proposed-in the thesis for discovering high utility

itemsets with negative item values in temporal databases or data streams.
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