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Abstract

The difficulty that a high density storage system encounters lies in giving
consideration on both a nano-sized optical spot and an adequate throughput. This
thesis proposed an innovative aperture desigh- which possesses the annex of a
nano-waveguide and surface -plasmon 'polaritons to substantially increase the
throughput at a nano-sized optical spot‘concomitantly. Besides, this aperture design
was fabricated on the end face of'a fiber, of which the compactness and flexibility
facilitate to be integrated with a magnetic pickup as a near-field hybrid one.

By the analyses and optimization, an enhancement with five orders of
magnitude in power throughput was derived; moreover, the implemented
experimental results, a near-field transmitted intensity with a signal-noise ratio of 40
dB and a far-field transmission enhancement of 33, evidently demonstrated the
strong transmitted field enhancement in the near-field region and fulfilled the

requirement of a high-density storage system.
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