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Feedback stabilization of nonlinear driftless systems with
applications to homogeneous-type systems

DER-CHERNG LIAWt and YEw-WEN LIANGt

Issues of asymptotic stabilization of nonlinear driftless systems as given by x = g(x)u
with applications to homogeneous-type driftless systems are presented. Conditions of
the existence ofa smooth time-invariantstabilizerfor general nonlineardriftless systems
are obtained by the construction of quadratic-type Lyapunov functions. The proposed
conditions do not contradict Brockett's (1983) result for the existence of a smooth
time-invariant stabilizer. These results are then employed to study the stabilization
problem of homogeneous-type systems. Sufficient conditions are obtained for the
stabilization of planar type homogeneous driftless systems with positive order. It is
shownthat the single input control driftless systems cannot be asymptotically stabi/izable
by any continuous control if g(x) is a homogeneous function of even order. Moreover,
equivalent conditions for the stabi/izability of linear driftless systems and the explicit
design of stabilizing control lawsfor bilinear driftless systems are also presented.

I. Introduction

In recent years, the study of the stabilization of nonlinear
driftless systems as given by x = g(x)u has attracted
considerable attention. These studies include the exist­
ence conditions of time-invariant smooth stabilizers
(Brockett 1983, Liaw and Liang 1993), the design of
time-varying stabilizers (Coron 1992, Pomet 1992), the
design of time-invariant piecewise smooth stabilizers
(Canudas and Sordalen 1992), and applications to the
study of a satellite's orbital motion (Ahmed and Sen
1980, 1981) and car-like robot systems (Walsh et al.
1994). In the study of homogeneous-type nonlinear
systems, substantial literature has been published for
system stabilization. Among these results, both Andreini
et al. (1988) and Tsinias (1990) proposed sufficient
Lyapunov conditions for system stabilization, Luesink
and Nijmeijer (1989) proposed a constant control law
for bilinear systems, while Bacciotti and Boieri (1991)
obtained results for the local asymptotic smooth stabiliz­
ability of single-input planar bilinear systems. Moreover,
Celikovsky (1993) attained the stabilizability of single-
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input homogeneous bilinear systems of which the matrix
of the linear term is semi-stable and the matrix of the
bilinear term is skew-symmetric.

There are two major goals of this paper. One is to
relax the assumption of system stabilizability on the full
rank of g(O) as proposed by Brockett (1983). Quadratic
type Lyapunov functions will be proposed to determine
the asymptotic stabilizability of driftless systems without
the assumptions on g(O). The other goal is to study the
stabilizability of homogeneous-type driftless systems. We
will show that the single input control driftless systems
cannot be asymptotically stabilizable by any continuous
control if g(x) is a homogeneous function of even order.
The stabilization problem of both linear driftless systems
and bilinear driftless systems will also be discussed.
Specifically, the equivalent conditions for the stabiliz­
ability of linear driftless systems and explicit design of
the stabilizing control laws for bilinear driftless systems
will be presented.

The paper is organized as follows. In § 2, a quadratic­
type Lyapunov function is employed to construct asymp­
totic stabilizability conditions for general driftless
systems. It is followed by the recall of the definition of
homogeneous system and the basic properties of a
homogeneous function. The asymptotic stabilizability
of homogeneous-type systems, specifically for planar
systems, linear systems and bilinear systems is discussed.

0020-7721/97 $12.00 © 1997 Taylor & Francis Ltd.
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174 D.-C. Liaw and Y.- W. Liang

Lemma 2: Suppose the origin of system (2) is locally
asymptotically stabilizable. Then, for an~ asymptotic sta­
bilizer, u = u(x) for the origin, g(x)u(x) ¥ 0 around some
deleted neighbourhood of the origin. I

From Lemma 2, if the origin of (2) is asymptotically
stabilizable, then g(x) and the controlj» cannot vanish
around some deleted neighbourhood n of the origin, as
well as the control u cannot be orthogonal to the row

where a > 0, b > 0 and u E R. In this case, g(x l , X2)T =
(ax" bxDT and x = (XI' X2)T. It is easy to check' that
g(O,O) = 0 and the number of inputs is less than the
number of states. Thus, the linear independency of
columns of g(O, 0) as required in Lemma I does not hold.
Choose the control input u = -(a2x~ + b2xi) and let
V = ax~ + bx~ be a Lyapunov function candidate for
system (3). We obtain V = -2(a2x~ + b2xi)2 < 0 for all
x # O. According to Lyapunov stability criteria, we can
hence conclude that the origin of system (3) is globally
asymptotically stable. 0

In the following, we will try to relax the stabilizing
condition given in Lemma I. First, by the definition of
the equilibrium point, we have the next result to provide
a necessary condition of the asymptotic stabilization of
system (2).

generality, the origin is supposed to be the operating
point of interest. In addition, the deleted neighbourhood
of the origin is defined as a neighbourhood around the
origin without containing the origin itself.

We now recall a necessary and sufficient condition
obtained by Brockett (1983) for the existence of a smooth
time-invariant stabilizing control law for system (2) as
given below.

Lemma 1: (Brockett 1983): Suppose all the vectors
gk(O) in (2) are linearly independent. Then there exists a
smooth time-invariant asymptotic stabilizer for the origin
of system (2) if and only if m = n.

Lemma 1 above provides a necessary and sufficient
condition for the existence of a smooth stabilizing con­
troller for system (2) while all the vectors gk(O) are
assumed to be linearly independent. However, the linear
independency of gk(O) is not a necessary condition to
identify the feedback stabilizability of system (2). In the
next example, we show that there does exist a smooth
time-invariant stabilizer for system (2) while the assump­
tion of linear independency (as required in Lemma I)
does not hold.

Examples are given in § 4 to illustrate the applications.
Finally, § 5 summarizes the main results.

2. Stabilization of driftless systems

Consider a class of nonlinear control systems as given by

x = f(x) + g(x)u, (I)

where g(x) = (g,(x), ... , grn(x» and u = (u l , ... , urnf.
Here, x ERn, Uj E R for i = I, ... , m, and f(x) and gi(X)
for i = I, ... ,m are all assumed to be smooth functions.
To study the stabilization problems of (I), in general, we
need to solve for the equilibrium points of the uncon­
trolled version of the system. That is, to solve for
x, ERn-such that f(x n ) = O. Then all the stability analy­
sis and control design will play around the point of x e­

In fact, the autonomous term (or the so-called 'drift­
term ') f(x) plays a very important role in idetermining
tile stability as well as the stabilizability or system (I).
For instance, suppose all the eigenvalues of/the jacobian
matrix Df(x.) lie in the open left-half of the complex
plane. Then the equilibrium point x, will be asymptotic­
ally stable even without control. If some eigenvalues do
not have negative real part, the control input u will then
playa role in forcing these eigenvalues to lie in the open
left-half of the complex plane or in providing nonlinear
efforts to guarantee the stability of x e :

Results have been presented regarding the asymptotic
stabilization of the origin of (I) in critical cases, that is,
the jacobian matrix Df(x.) possesses eigenvalues lying
on the imaginary axis of the complex plane (Aeyels 1985,
Bchtash and Sastry 1988, Liaw and Abed 1991, Fu and
Abed 1993). The study of the most degenerate critical
case of system (I) of which f(x) = 0: for all x E R"
has also attracted attention (Coron 1992, Pomet 1992,
Sontag 1993, Canudas and Sordalen 1992, Walsh et al.
1994). Such a class of systems is the s6-called 'driftless
system,' which is represented :s /

x = g(x)u = 2: ukgk(X). (2)
k= I :

In system (2), x E R" and Ilk E R for all k = I, ... , m.
Moreover, gk(X) is assumed to be smooth for all k z: 1.

From the viewpoint of system stabilization, there are
two major differences between systems (I) and (2). One,
is that system (2) has an infinite number of equilibrium
points, while (I) generally has finite ones. Secondly, the
system (2) always needs some control force to damp out
the disturbances, while system (I) might not need a
control force to damp out the disturbance if it appears
in the stable manifold of the uncontrolled model. Due to
these two major differences, it will be much harder to
stabilize an operating point of driftless system (2) and
more conditions will be required on g(x) to fulfil the tasks.

In the following, for simplicity and without loss of

Example 1: Consider a planar system as given by

(~ I ) = (ax~)u,
X2 bX2

(3)
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Feedback stabilization of nonlinear driftless systems 175

where e, denotes the ith cartesian unit column vector,
and (x, > 0 for all i = 1, ... , m.

(ii) For some i, xTPgj(x) # 0 around a deleted neighbour­
hood ofthe origin with the asymptotic stabilizer chosen
;'1 tile form as given in (5) or (6) below

3. Applications to homogeneous-type drift less systems

In this section, we first recall the definition of a homo­
geneous system. A property of a homogeneous function
is also presented. We will then apply the results of
Theorem I to study the stabilization problem of homo­
geneous-type systems for both single input and multiple
input control cases.

It is known (e.g. Hahn 1967) that a function h is said
to be 'homogeneous of order p' if h(h) = JePh(x) for all

space of g(x) on n. However, g(x)u must vanish at the
origin since the origin is an equilibrium point of (2).

Next, by choosing V(x) = x'Px as a Lyapunov func­
tion candidate, we have the following result for guaran­
teeing the asymptotic stability of the origin of system (2).

Theorem I: Let P be a symmetric positivedefinite matrix.
Then, the origin of system (2) is asymptotically stable if
either of the following two conditions holds:

(i) xT Pg(x) # 0 around a deleted neighbourhood of the
origin with control input given by

where fJ > 0 and sgn( . ) denotes the sign function.

By employing the same quadratic type Lyapunov
function candidate as that for Theorem 1, it is obvious
to have the next negative result for the stabilization of
system (2).

Theorem 2: If xT Pg(x) = 0 on a neighbourhood of the
origin, then the origin of (2) is not asymptotically stabiltz­
able.

Remark I: It is easy to check that condition (i) of
Theorem I holds if g(O) of system (2) is a non-singular
matrix. Thus, Theorem 1 does not contradict the result
of Lemma I. However, the assumptions of Theorem I
do not require g(O) being of full rank. 0

Remark 2: Although the stabilizability of Example 1
cannot be determined by Lemma 1, Theorem I, however,
can provide help by choosing P as an identity matrix
of R". We then have xTpg(x) = axi + bx~ # 0 for all
x, # 0 or X 2 # O. Thus, the origin of (3) is concluded by
Theorem I to be asymptotically stabilizable. 0

3.1. Single-input system with even order

We now consider the case in which g(x) is an even
order homogeneous vector function. For the case in

(i) h(x) is a constant function for all x E R" if p = 0;

(ii) h(O) = 0 if p > 0;

(iii) ifh(x) does not vanish on a closedsphere ofR" centred
at the origin, then h(x) # 0 for all x # O. Otherwise,
there exists at least one-dimensional solutions of
h(x) = 0 in R" passing through the origin.

It is known that the origin of a homogeneous vector
field of even integer order cannot be asymptotically
stabilizable (Corollary 2.1 of Koditschek and Narendra
1982). Moreover, it is noted that if system (2) possesses
an asymptotic homogeneous stabilizer, then local stabiliz­
ability is equivalent to global stabilizability (Hahn 1967).
Thus if g(x) is a homogeneous matrix function of integer
order p, and u is supposed to be a homogeneous
asymptotic stabilizer of integer order q, then q must be
a number such that p +' fl is an odd number. One of the
main goals of this paper can hence be to construct a
feasible order of a homogeneous-type state feedback
stabilizer for the case of which g(x) is of integer order.

A direct application of Theorem 1 to the case for which
g(x) is a homogeneous matrix function may conclude the
asymptotic stabilizability of the origin of system (2). Also,
it is easy to check that the control law as given in (4)
will result in an odd degree homogeneous matrix func­
tion for the closed loop system dynamics if condition (i)
of Theorem 1 holds. However, in general, it is hard to
check condition (i) of Theorem 1 around a deleted
neighbourhood of the origin. In the following, we will
try to relax the checking condition for specific homo­
geneous-type driftless systems. First, we will prove that,
for single control input, the homogeneous-type driftless
system of even order will not be asymptotically stabiliz­
able by time-invariant feedback control. It isfollowed by
the stabilization design for a planar homogeneous-type
driftless system. We then focus on the study of the
stabilization for both linear and bilinear systems, these
two types of systems are a special class of homogeneous­
type driftless systems. To facilitate the study, in the
remainder of this section, we assume g(x) is a homo­
geneous function in system (2).

). > O. A nonlinear time-invariant system is said to be a
homogeneous system if its system dynamics are a homo­
geneous function. Based on the definition of a homo­
geneous function, it is not difficult to obtain the following
result.

Lemma 3: Suppose h(x) is a continuous homogeneous
function in x E R" of order p. Then the following three
conditions hold:

(4)

(5)

(6)

m

U = - L (Xj(xTPgj(x»ei ,
i= 1

u = -fJ(xTpgj(x»e,

u = -fJ sgn (xTpg,(x»e;,
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176 D.-C. Liaw and Y.-W. Liang

with

we then have

(13)
(

x 2

g(x) = 0'

Example 2: Consider a planar driftless system x=

g(x)u with x = (x" X2)T E R2 and

Note that the results of Theorem 3 above cannot be
extended to a general multi-input case. An example is
given below to demonstrate the statement.

lim y*(t) =: lim x*(s(t)) =: x*(so) # O. (12)

This implies that x*(so) is an equilibrium point of system
(2). We can hence conclude that the origin of system (2)
is not asymptotically stable. Next, if lim/_oo set) =: co,
then the two systems (2) and (9) have common trajectory
y*(t) =: x*(s(t» with different time scales. According to
Corollary 2.1 of Koditschek and Narendra (1982), there
exists some trajectory x*(s) of system (9) to show that
the origin of system (9) is not asymptotically stable. Thus,
y*(t) =: x*(s(t» is also a solution of system (2) and can
be used to provide the non-asymptotic stability of the
origin of (2). The conclusion of Theorem 3 is hence
implied. D

y*(O) =: x*(s(O)) =: x*(O) =: X o'

d d ds
- y*(t) = - x*(s(t») ­
dt ds dt

=: g(x*(s(t)u(x*(s(t)))

=: g(y*(t))u(y*(t))

This results in y*(t) as the solution of system (2) with
initial state y*(O) =: xo' If set) has a finite limit as t
approaches co, say lim/_ oo set) =: so, then

(7)

Theorem 3: The origin ofsystem (2) is not asymptotically
stubilizab!e by any continl/ol/s state feedback for the case
of whicl, III =: I and II > I if the system dynamics g(x) are
a !lollloyeneol/s vector field of even order.

In the theorem below, we will show that the origin of a
general single-input system with even order ean never
be asymptotically stabilizable by any continuous state
feedback,

which the number of system states equals one (i.e. n =: 1),
the design is trivial since any homogeneous polynomial
of odd degree with sign opposite to the sign of system
dynamics can play an asymptotic stabilizer. However, for
a general case in which n > I, the conditions of Theorem
I cannot hold since xTpg(x) is a homogeneous poly­
nomial of odd degree. However, we cannot conclude
directly thai the origin of such a system is not asymp­
totically stabilizable because Theorem I only provides
sufficient conditions for determining the stabilizability of
system (2). An example given by Artstein (1983) and
Sontag (1989), as in (7) below, has been shown to be not
asymptotically stabilizable by any continuous state feed­
back from a topological point of view

Proof: Prove by contradiction to assume the origin is
asymptotically stable by some continuous state feedback
control law 1/ =: I/(x). Then, by Lemma 2, u cannot vanish
and change sign around a deleted neighbourhood of the
origin. Otherwise, by the Intermediate Value Theorem,
1/ will vanish at some point in any arc that joins those
two points if it has a sign change. This leads to the origin
as an accumulation point of system equilibrium points,
which contradicts the results of Lemma 2. Thus, without
loss of generality, we can assume

For any given Xo # 0, let x*(s) denote the unique
solution of the system

u(x) > 0 for all x # O. (8) It is easy to check that xT g(x) # 0 for all x # O. Thus,
by Theorem I, the origin is concluded to be asymptotic­
ally stabilizable. D

ds =: u(x*(s)) with s(O) =: O. (10)
dt

It is noted that solution of system (10) exists and set) is
a strictly increasing function since u(x) > 0 for all x # O.
Define

:< =: g(x) with x(O) =: X o'

Consider the differential equation

y*(t) =: x*(s(t)),

(9)

(II)

3.2. Planar systems of positive order

In this subsection, we consider the case in which g(x)
in system (2) is a single-input planar homogeneous
function of positive order. By the application of Theorem
I to provide the existence of an asymptotic stabilizer for
system (2), we need to have a non-zero value for xT Pg(x)
for all x around a deleted neighbourhood of the origin.
Instead of checking the values of xT Pg(x) for all x around
the deleted neighbourhood of the origin, for the planar
system we may only need to check the sign change
of xTpg(x) on some closed contour enclosing the
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Feedback stabilization of nonlinear driftless systems 177

origin while providing the existence of some X o # 0 with
x"[,Pg(xo) # O.

We have the next theorem.

Theorem 4: Suppose g(x) in system (2) is a continuous
homogeneous vector field of order p > 0 with n = 2 and
m = 1. Then the origin of system (2) is globally asymp­
totically stabilizable if the following two conditions hold.

vector field of order I, (x, y, z)g(x, y, z) = x 2 does not
change sign on the whole R3 and eTg(e,) = I # 0 for
e\ = (1,0, O)T. However, the origin is not asymptotically
stabilizable since every trajectory with initial states lying
on the YZ-plane is a periodic trajectory of the YZ-plane
regardless of the value .of control input u. D

(i) There exists a symmetric positive definite matrix P
such that xTPg(x) does not change sign on some closed
contour r enclosing the origin. Also, x"[,Pg(xo) # 0 for
some X o # O.

(ii) g(x) # 0 on the closed contour r.
Moreover, the asymptotic stabilizer u can be chosen by

u = - a(x) sgn (x"[,Pg(xo)), (14)

3.3. Linear systems and bilinear systems

In the following, we consider two special classes
of homogeneous type driftless systems, namely, linear
systems and bilinear systems. Stabilizability conditions
for these two classes of systems will be obtained to link
with existing known results.

First, consider the system dynamics of g(x) in (2) as a
constant matrix, say, g(x) = B. We have the next obvious
result.

Theorem 5: Suppose g(x) = B in system (2). Then the
following three statements are equivalent:

(i) the origin of system (2) is globally asymptotically
stabilizable;

(ii) there exists some symmetric positive definite matrix
P such that xTpB # ofor all x # 0;

(iii) the matrix B has rank n. D

The stabilization problem of the bilinear systems has
recently received considerable attention owing to a great
number of remarkable applications (e.g. see Luesink and
Nijmeijer 1989, Tsinias 1990, Bacciotti and Boieri 1991,
Celikovsky 1993). In the following, we will focus on the
study of the asymptotic stabilization problem of bilinear
driftless systems as given by

where x E R", Ui E Rand Bi E R" x n for each i.
For the case of single-input planar bilinear driftless

systems. Bacciotti and Boieri (1991) have shown that the
origin possesses a smooth asymptotic stabilizer if and
only if B is a definite matrix. For the general bilinear
system, the existence of an asymptotic stabilizer does not
require the definiteness of the matrix B, however, it does
require some properties of the autonomous term (or the
so-called 'drift term') of the system. Details can be
referred to the results of Bacciotti and Boieri (1991).
Obviously, the requirement of definiteness of matrix B
for the stabilization of bilinear driftless systems agrees
with the one stated in Theorem 1 of this paper. In the
next theorem, we extend the study of Bacciotti and Boieri
(1991) to general n-dimensional systems as given by

(17)

(18)x= uBx,

m

X = L «s,«,
i= 1

where x E R" and u is a scalar.

( 16)

where a(x) is a locally positive definite function or positive
constan t.

Remark 3: Suppose the homogeneous vector field g(x)
satisfies the so-called . Lyapunov condition' (see e.g.
Tsinias 1990), that is, xT Pg(x) ,,. 0 for all non-zero x in
the drift less system case. Then the results of Theorem 4
agree with those obtained by Tsinias (1990). However,
in Theorem 4 above, we allow xTPg(x) = 0 for some
x # O. Thus, Theorem 4 provides more relaxing condi­
tions for determining the stabilizability of planar-type
homogeneous driftless systems. D

Remark 4: In general, the results of Theorem 4 cannot
be extended to the case of which n > 2. A counter­
example can be given by g(x, y, z) = (x, -z, y)T E R3

• It
is observed that g(x, y, z) is a continuous homogeneous

Proof: Let V = !XTpX be the Lyapunov function can­
didate for system (2). We then have

Ii' = xTp.x = xTpg(x)u. (15)

From condition (i), for a homogeneous system we have
IxTpg(x)1 ~ 0 for all x E R2

• By choosing control u as
given in (14), we hence have that g(x)u is a continuous
function and

Since g(x) # 0 on the contour r enclosing the origin,
from property (iii) of Lemma 3 we then have g(x) # 0
for all x # O. Thus, the invariant set in the set
R ,={x I V(x) = O} only contains the point x = O. Refer­
ring to the invariant set theorem (see e.g. Hahn 1967),
we can conclude that the origin of (2) is globally
asymptotically stable while u is chosen as in (14). D

Note that it is not difficult to extend the result of
Theorem 4 above to the general multi-input case of
which each column of g(x) may have a different order.
Details are omitted.
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178 D.-C. Liaw and Y- W. Liang

Theorem 6: For single-input bilinear driftless systems as
in (18), the following three statements are equivalent.

(i) B is definite.

(ii) xTBx ;6 0 for all x ;6 0 (/lote that this is condition (i)
of Theorem I with P = I).

(iii) The oriqin of system (18) is qlobally asymptotically
stabilizable by a continuous time-invariant asymptotic
stabilizer.

(ii) Case of n+ > 0
If n+ > 0, that is, B has eigenvalues with a positive

real part, then there exists a symmetric positive definite
matrix P+ E RO

, x e , which solves B"';.P+ + P+B+ = 10 . ,

where 10 , is the n+ x n+ identity matrix. Choose P =
diag {P+, 0, O} E R O X O and V = yTpy, we have V> 0 on
M ,= the complement of {Oo, x ROO x R"-} with the
origin lying on the boundary of M. The time derivative
of V gives

for some f3 ;6 o. Consider the block matrix J associated
with the state variables Yi and Yi+ I. Define V = yJ + yJ+ I'

we have V = u(y)[2Yi(- f3Yi+ I) + 2Yi+ 1(py;)] = 0 for all
y = (Yt, ... , Yoyr E R O

• This implies that the motion of
the system states always lies on the level set of V. The
analysis is obviously effective for the case in which Bo
has Jordan block of J. Details are omitted.

o 0) (10 1 0 0)o 0 y = !U(y)yT 0 0 0
o 0 0 0 0

y > 0 on M (21)

since u(y) > 0 for all y ;6 O. Thus, by employing Chetaev's
Instability Theorem (see e.g. Hahn 1967), the origin is
concluded to be unstable.

From the discussions above, we can conclude that the
origin of (18) is not asymptotically stabilizable by any
continuous time-invariant asymptotic stabilizer if B is
indefinite. This results in (iii) => (i). 0

In the following, we will apply Theorem 6 above to
study the asymptotic stabilization problems of the general
bilinear driftless systems as defined in (17) in which
m;::1.

Next result follows readily from Theorem 6.

Theorem 7: Suppose the r matrices of B, in system (17)
are definite with r ;:: I. Then the oriqin of system (17) is
asymptotically stabilizable by the control in the form of(4)
or (5).

For the case of which none of the B, in (17) is a definite
matrix, coordinate transformation may provide a means
of determining the stabilizability of system (17). Suppose
there exists a non-singular matrix S by which more than
two B, can be simultaneously transformed into either
upper triangular matrices or lower triangular matrices.
We may then apply Theorem 7 to determine the asymp­
totic stabilizability of system (17) as in the next theorem.

Denote Re { .} the real part, (. )kk the k th diagonal
element of a matrix and ei the ith cartesian unit column
vector, respectively, which are used throughout the
remainder of this paper.

We have the following result.

Theorem 8: Suppose there exists a non-singular matrix
S such that S- I BiS are upper triangular matrices for
i = I, ... , P with P ::; m. If there is a set of real numbers
c" . . . , cp such that Re {Lj= I ciS· I BjS)kd < 0 for
k = I, ... , n, then the origin of (17) is globally asymp­
totically stabilizable by constant control u = LJ= I cjej or
by state feedback control u = - Lj=1 cJ(xTBj)ej.

The next result follows readily from Theorem 8.

(20)

(19)~)y.
Bo

Here, 2(8+) S;; CO +, ).(B.) S;; Co· and ).(Bo) S;;jw-axis.
In addition, B+ERo,'o" BoERoo'oo, B_ERo-'o-,
u., ~O,no~O,II. ~O,withn+ +110+11- =n,and).(-)
denotes the eigenvalues of the corresponding matrix. It
is noted that any continuous asymptotic stabilizer u
cannot change sign around some deleted neighbourhood
of the origin. Otherwise, there exists some extra equilib­
rium points within any neighbourhood of the origin,
which implies that the origin is not asymptotically
stabilizable. Without loss of generality, we can assume
u(y) > 0 on a deleted neighbourhood n of the origin.
Then, for the proof of the theorem, we only need to
consider the cases of which /1+ > 0 and/or /lo > O.

(i) Case of no > 0
If 8 contains zero eigenvalues, then the origin is not

asymptotically stabilizable since every point lying on the
eigenspace of B is an equilibrium point no matter what
u is chosen (see Lemma 2). Next, if B contains non-zero
pure imaginary eigenvalues. Then Bo contains a block
matrix in the form of

Proof It is clear that (i) => (ii). Moreover, the result of
(ii) => (iii) follows from Theorem 1. It remains to show
that (iii) => (i). Prove by contradiction to assume that
8 is not a definite matrix but system (18) possesses a
continuous asymptotic stabilizer u. Since the coordinate
transformation does not affect the stability property of
a dynamical system, we consider system (18) is trans­
formed into a block-diagonal form as given in (19) below
by some coordinate transformation,
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Feedback stabilization of nonlinear driftless systems 179

The following example illustrates the application of
Theorem 4.

Example 5: Consider a two-input bilinear driftless
system given by

(25)

(26)

(24)
sin X 2 )

-cosx2tanx l ·

cos X 2 sec XI

o

(

COS X 2

g(x) = si~ X 2 tan XI

-sm X 2 sec XI 0

i = g(x)u, with g(x) = (xi -x~x,x~),

where X = (XI' X 2)T. It is easy to check that

The next example illustrates the application of
Corollary 2.

is also a homogeneous function and xTg(x) > 0 except
for all X lying on the lines XI = ±x2• By the application
of Theorem 4, we can conclude that the origin of system
(25) is globally asymptotically stabilizable. Numerical
simulations are given in the Figure to demonstrate the
conclusions. In the Figure, the dotted line denotes the
timing trajectory corresponding to the initial position at
Xo = (I, 3)T and the solid line is that for the initial
position at X o = (3, I)T. In the simulations, the control
input is chosen as u = - I and the vertical varible of part
(a) of the Figure denotes the two-norm value of the state
variables. D

It is observed that g(O) has rank 3. This implies that
xTg(x) "#0 around some deleted neighbourhood of the
origin. Thus, the origin of the system (23) is concluded
to be asymptotically stabilizable by Lemma I (or by
Theorem I). Moreover, we have that xTg(x) = 0 holds
only at the origin. This leads to the global-like stabiliza­
tion of the origin while the control input is applied in
t~fu~cl~ D

Example 4: Consider a planar homogeneous system
of order 3 as given by

where (4), e, t/J)T denotes the Euler angles describing the
orientation and (WI' W 2, W 3)T denotes the rotational
control velocity, respectively. The model is only valid
locally for -n/2 < e< n/2 due to the fact that the
original system possesses a singularity at which cos e= O.

System (23) is an example of a driftless system with
x = (4), e, t/J)T, u = (WI' w2, W3)T and

Lemma 4 (e.g. Horn and Johnson 1985): Let
F s C" x n be a commuting family. Then there exists a
unitary matrix SeCn x n such that S-'AS is an upper
triangular matrix for all A e F.

A proof of Lemma 4 can be found in Horn and
Johnson (1985). For completeness and easier imple­
mentation, an algorithm is proposed in the Appendix
to construct such a unitary matrix S of Lemma 4.

Denote by Fs a commuting family of which all the
matrices in Fs can be simultaneously triangularizable by
matrix S. The next result follows readily from Lemma 4
and Theorem 8.

In general, it may not be easy to check the existence
of matrix S as defined in Theorem 8. A sufficient
condition for guaranteeing the existence of such a linear
transformation S is that matrices B" ... , Bp form a
commuting family. Here, a family of II x n matrices
F s C""" is called a commuting family if AB = BA for
any A, Be F.

We recall the nex t result.

Corollary 1: Suppose two matrices B, and B, in (17) can
be simultaneously triangularizable by S with

Re (S-IB,S)kd > Re {(S-IBjShk} for all k = I, ... , n.

Then the origin of system (17) is globally asymptotically
stabilizable by constant control u = c(ei - ej) for c < 0 or
state feedback control u = -c2[(xTB

ix)ei - (xTBjx)ej]
for c"# O.

Example 3: Consider the example of attitude stabiliza­
tion of a rigid body as adopted from Meyer (1971) and
Canudas de Wit and Sordalen (1992),

4. Illustrative examples

In this section, we consider three examples to demon­
strate the main results of the paper.

Corollary 2: Suppose in system (17) there are p matrices,
say BI, . . . , Bp which belong to a commuting family Fs. If
there is a set of real numbers c1, ••• , cp such that

Re tt CiS-I BjS)kk} < 0 for all k = I, ... , n, (22)

then the origin of system (17) is globally asymptotically
stabilizable by constant control u = Lf= I cjej or by state
feedback control u = Lf=I cJ(xT B)ej.

(23) (27)
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180 D.-C. Liaw and Y- W. Liang

3.S.-----........---.,.....-----.---~---~--~

3

~" ...

",
"

I.S """""

'"

32.S2I.SO.S
o.S'----~---~---~---~--~~------I

o

(a) Time

3.----~--~.,------~--~---.,.....--....,.,

-

O"',,'x

>-,

.'-:

.. '

.,,'....

xl = x2 .' ........

2

2.S

e;:: I.S

.--
O.S

32.S2I.So.s
°oL-------'----~--~---~---~-----.J

(b) xl

(a) Norm and (b) phase trajectories of Example 4.

with

81=(-~~ ~ -~) and B2=(=~ ~ -~).
1 0 -1 3 0 2

(28)

It is not difficult to check that both matrices B, and
8 2 are indefinite but commutative. From Lemma 4, we

know that these two matrices can be simultaneously
transformed into upper triangular matrices by some
unitary matrix 5. Following the algorithm as given in
the Appendix, one choice of such matrix 5 can be
obtained as 5 = 5, .52' where
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Feedback stabilization of nonlinear driftless systems 181

Now, we can construct an algorithm to derive matrix
S as follows.

where J' i E C, Bi E Cln - I J x In- I) and M, denotes some
matrix. Then, ftp = {BI, ... , Bp } is also a commuting
family of matrices of Cln - I) x (n - I).

Proof: The proof of this result can be found in Lemma
1.3.17 of Horn and Johnson (1985). Moreover, a con­
structive way of finding common eigenvector v can
also be found in problem 1.3.11 of Horn and Johnson
(1985). 0

~i)S-I.
B,

(A 3)

Since BiBj = BjBi, by (A 2) we have

~i), (J'j ~j)S-1 = s(J'j ~j)(J.,
Bi 0 Bj 0 e, 0

(
J.iAj AiMj~+~MiBj) = (J'/i J.jMi~+_MjB'). (A 4)
o BiBj 0 BjB,

Thus, we have BiBj = BjB" the conclusion is hence
impli~. 0

This results in

Proof:

s(~

Lemma 6: Let Fp = {B
"

... , Bp } be a commutillgfamily
of matrices of C" "". Suppose S is a unitary matrix
satisfying

S-IBiS = (~ ~')for all i = I, ... , p, (A 2)

(30)

We then have

S-'B'S~(:
-3

':)-I

0 -2
and

S'B,S ~ (i
-I ~6)

2 3 . (31)

0 -I

According to Theorem 8, we can choose the stabilizing
control laws of Ll i = 2 and Ll2 = - 3. Tn such a design,
the eigenvalues of the closed-loop system are obtained
as - 2, - 8 and - I. This leads 1:0 the asymptotic stability
of system (27). Note that, by Theorem 8, the state
feedback control law of u = -(4xTB

lx, 9xTB
2x)T can

be another choice for providing the stability of the
origin. 0

Another practical example of the driftless system
regarding the stabilization of a satellite's orbital motion
can be found in Ahmed and Sen (1980, 1981). The
stabilizability of that system can be determined by
Theorem 1 with the matrix P being an identity matrix.

The matrix S is hence calculated as

5. Conclusions

In this paper, we have established existence condi­
tions of the asymptotic stabilizer for nonlinear driftless
systems. The asymptotic stabilizers are explicitly obtained
either in state feedback form or in constant gain form.
These results are then applied to the study of homo­
geneous-type systems with positive order.

Step I. Let j = O.

Step 2. Given a commuting family of matrices in
<"'(n-j)x(n-j) {B B }
'L- , say Ii' ... , vi ):

Find a common eigenvector v of {B l j , ... , Bpj } . That
is, find v such that

Bijv = J.iv for some J' i E A(Bi;)

and for all i = I, ... , p. (A 5)

(A 6)

Appendix

Tn the following, we propose an algorithm to construct
a unitary matrix S of Lemma 4. First, we state the
following two results.

Lemma 5: Suppose any two matrices of the set
{B1, • • • , Bp } are commuting. Then there exists a common
eiqennector of BI, ... , Bp • That is, there exists a lion-zero
vector v satisfying

B,» = J.iv for some J'i E J.(B,) lindfor all i = I, ... ,p,

Step 3. Construct a unitary matrix Sj by placing v"
which is obtained in Step 1, in the first column. This
results in

Sj-IBijSj=(J'i M )foralli=I, ... ,P,
o Bi . j + 1

where ME C 1 x In- j-I) and B.. E c(n- l-: II X(n- j-l)
1.)+ l .

Step 4. If j = n - I, then go to Step 5. Otherwise, let
j = j + 1 and go to Step 2.

(A 1)

where J.(') denotes the eigenvalue of the corresponding
matrix.

Step 5.
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