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Abstract

The Ing1GagoN/Ing02GagosN LD structures using quaternary InAlGaN with variant Al
and In compositions as electronic blocking layers are numerically investigated. Varying the
aluminum (Al) composition in InAlGaN electronic blocking layer with a fixed indium (In)
value (Al:In=5:1) indicates that lower threshold current and higher characteristic temperature
(Tp) value can be obtained when the Al compositions in InAlGaN are 20%-35%. The results
indicate that using quaternary InAlGaN provides lower threshold current but lower Ty value
than conventional Aly,GaggN electronic blocking layer.

We also construct 368nm LED structure using quaternary InAlGaN as active region by
simulation. The simulation results fit experiment characteristics very well. Base on agreement
of experiment characteristics to simulationiresults, we also numerically investigate by using
different number of quantum wells and different electronic blocking layer structures to discuss
output characteristic changes. The results“indicate that although more quantum wells and
electronic blocking layer with enough Al composition can suppress leakage current from high

temperature. But output power loss is still large as temperature increasing.
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2.2 fcRE iR

LASTIP#:# 5 & 7 = Mehfi & My ~ #k ~ LA F a5 > 2 i
m (transversal plane)it % % - B B L E P T kw2 ¥ hE £
Ft BTG v i feB G BT A mER T piEd g e 71 TRk

3z A& 4 eJoule heating ~ recombination heat ~ Thomson heat ~ Peltier heat %

\\\

B0

# APSYS#Hic#8 » 24 7 = ‘&m§\+ @ﬁﬂ B3 3T R kAR GE s
3l o @@?ﬁiﬂl Fmo# 70 RS fon F anEk i (drift) o3 7 (diffusion) sk
J& ~ Fermi statistics ~ £ 46 cifgeitdrdudp + 40 > 12 F g+
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221 Eo-EAT/ A8 4 #03](Drift-Diffusion/Hydrodynamic Models)
AL HEMY F LSRRG ZEY A i) 2 it o drift-diffusion
model ¥ - BH: L b it JfERF % ¢ wonL Hpl ~ 2ol A an- B

A > Fp b~ 2 efF L 0 ¥ L &€ Poisson’s equation B 4

V(ALY = —nt p+ Ny(- ) - AfA+Z s—f) @D
q

AR e T ki S A

Vuh—zyﬁ—RW—Rﬁ—KW+GWUﬁl%+Ab@£ 2.2)
j ot ot
] 0 0

Ved, + 2R+ R, R, R, ~ G, (- §+N£3 23)

V- nfeps B £ T B~ 490 Fak R o Np ~ Ny~ Ny & shallow
donors ~ shallow acceptorsfrdeeprlevel trapsik & > fp ~ f ~ £ & & 7 ik
g e Jp-InZi T+ THIRFRR R VR, R, R, AHEETF
7 JF eideep level trap » spontaneous > stimulated * Augers g & o gl

AR E I REETEPARY T FHEFLE 0
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2.2.2 ¥ & #-31(Gain Model)

- A E RIS SR (bulk)fr® F F a0 R
Trif 2 ¥ ARG AR e R R DS o d TR M E 1k ke
fien i T Be(dielectric constant) © % AlGaInN 2 + g ek 3 5 384 .4

Coulomb enhanced gain spectral function[2] % 3+ &

g(hw) = real{ I, - jlo((EE:Vv,)hw) {1 g Er — hW}L(hw —E.)dE., } (2.4)
B ipil

iagEE,, oM Ee)| fe(Ege) + fi(Ee) =1 ,
G(Ecy,liw) = mjo e T L G (2.5)
]
Ok, i) = P~ do— -+ Crikana®i327 N3 S0 4+ k"= 2Kk cos b, (2.6)

1+q/k+Cpkaoqh?322N2p

He 05w kifrk’T w4 B o gyE.) A_spectral wave function » &

A =

51 gEL)ES j B % 3 = it P (/"-subband electrons)fr % i B F ik = it Ff

oy

(ith—subband holes) transition 2z %,fr o I',, #_* & Lorenzian width » % %

)+

hit, > 3B @t 83 eahw e E,of B P A PR - BE

% = ¥ #ic o qp 5 exciton Bohr radius ’ ay= % - Ey 5 Rydberg energy ° E.,
e m,,
—"n%\”/_‘r‘;“5'-E‘cv(k):Ewg"'AEwg"'E‘cjk"'E‘vik",":j‘‘:1 Eqk 'fr' i {é’-iﬁ"’? ' 'Ell_';'

#9555 % BETF P gk i P -subband of conduction band)fr % i



W E ¥ ¢ eh= i 1F(("-subband of valence band) 5 #718 ¥ T F v &

M j,~|2 #_ transition matrix element © C,; £ & Flj¥_ 1 I 4 08 =% # -

Nop=nx(quantum well thickness) > * % A& & tho i

& 2¥# & 11 Lorenzian function 4 E B &7 ¢



223 p ¥+ B & #-3](Self-Consistent Carrier Density Model)

% it # (potential well) &3¢ = 07 HF T > 4o/BR F H(piezoelectric field)
B gEg s fkg Ao — o RBUTL Sy §RFA T -
## > optical transition =77 3 ,T}ug PRI T g 3, T gt A
m:fﬁr']“i,ik g A4 - BB 223() 5 LT BT IR L+ Bl Rl 2.2.3(b)
RREFERLF Y > FIPFHETA G o FF R - BRI R LA

55 ok o0k o

Electrical
—
+g field _g

(a) (b)

®] 2.2.3-1 (a)Without polarization (b)With polarization
a4 R R

@ p 46§47+ % & H573] (self-consistent carrier density model) - fi*u%ﬁﬂ* % f2

MERS P PRTH S KRBT A F ok Sl o

mop(5,) = g1 () pYkTIn {1 +exp[ (E,,(x, )~ E))/KT) ]}, 2.7
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HY TH G AT 5 47F hik'Li (confined states) 0 g/(y) 2 BRER £+ F T
7 X fhenT ok Slic o pr 52 B R &R (2D density of states) » E; 5 confined
level o
A op s EARAS & T IARR
(DF X -Tirps > B4 * Thaid 3 2 ¢ @3- BAdoehii

AN

Q)T kE* pRPETRARED > XRE - B @I F o
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2.2.4 ##-3|(Thermal Model)

BT b ER A S AR AR ERE L TP AR S
BT B kR R BRIk B A S g F L3S
PAL O R R I G M 0 TR T A0 ARHCA Y kY g [3-4] -

RGBT BA S T A A2

Cpp%—];:V-KtVT+H (2.8)

C, ®_specific heat » o EH# % & - £ A #E 5 > H L3 &k k(heat source) °
# K ik (heat source) s Hg e 7 LT

Joule heat— ¢ 7 4% is (steady state)® 2 MAF T H- > £ 7 &

J: 9,
H]oule de — —+ (29)
qu.n  qu,p

e B3EpF > € F] 5 MR e jc 3R Joule heat s 4 > F)pt X H 4l
F &P pFRIE 4 (internal loss)s R 5 €EF R AP MAT > A2 B RTH
F 7 B e Joule heat -

H = Sha* no, |W [P Ik, < & >) (2.10)

Joule—op

W& oscillating field » S% 8+ # P » o ¥ _oscillation frequency of radiation

fields » a;%_internal loss > n; & # L endr b+ F o
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Recombination heat— 4 % + T F ¥1.% & (hpFiz ¢ 2 24 £ 3 (radiative) & 'ﬁ

f#& % % # (non-radiative) » A F % e # ¢ < % #iespontaneous radiative

IS

Y

recombination sk F+ §F A4k L 2 A B s 7P R 5 # o @A L radiative
recombination®c sk (L H Y T 5o BB P ek AR JRIE2 b 2 F g

3|t — # kR o Recombination heat% 7+ %

Hrec = (Rtmp + RAug + Rspon) (Efn . Efp) (2 1 1)
Thomson and Peltier heat— H ¢ 7 Thomson heat ¥_d # 7 # X
(thermoelectric power) % # #7514 ¥ 2 F R F HR & hpFriz s L& T &

HT: thotalT(Pp - Pn) (212)

P, ~ P, & thermoelectric power for hole and electrons ° Peltier heat & % ¥ 7 & %

Vs ’ 2 = 2 + Y
HET RV S

H,=-T(J,VP,+J,VP) (2.13)
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(V,n,p,S, W, g) (n, p, lambda, W, g)
Hole Continuity Equation:
Hole Flow-Recomb. Relation ~=
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<
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<
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3.1 f§ 4

i M4 £ < Crosslight > @ 57 B 2 chficsz 048 Lastip ™2 2 Apsys 7 &
1B B A E bk - R I8 T AR GRS A 47 - LASTIP (Laser
Technology Integrated Program) > & - & % KK~ 27X T &~ 2
Z RS S A B § 4 785474 § % (Edge Emitting Laser diode ) #15& ¢
PRI s VU RERFEDL TR o

¥ - fitH 5 APSYS ( Advanced,Physical Models of Semiconductor
Devices) » i % S 4t £ 2 X HEB v §3 <~ % > 4 : OLED ~ LED ~ PD

( Photodetectors ) ~ HBT ( Heterojunction Bipolar Transistors ) ~ HEMT (High
Electron Mobility Transistors ) % > 32v &7 ~ 2 Ak ~ 7 ~ B M a0 47

BAHY P AR R EE K R

3-1



3.2 AlInGaN as electron blocking layer for 405nm LD

321 m 3 &%

— B e % H 2003 # d Asano ¥ * A IEEE JSTQE« 8 # 7 % 1 - &
FHO] ke 2 MG St B9 - BER TG RUF 18T
(active region)* 3T 1% # (strain) o

- B AL EMI MY €3 - & MAIGaN T L R F 235 & (electron

blocking layer)» # X [ b 3 & % c4F | & & B 42 ¢ A (In desorption)

Y 5 B Ak Y g o (carrier orerflow) o — AR WRE T senks Hede )
32.1-1%7771 o
p-AlGaN
electron blocking
i p-(AIGaN/GaN)
SLs cladding
n-AlGaN
cladding GaN
Ec GaN guiding guiding
GalnN 3QWs

B 3.2.0-1 - S X EHF S

LIRS - FBATEGSH > 4o Bl 3.2.1-2 #1m  ht- R

She
o
e
—
-
Erl
A

% quantum barrier {= electron blocking layer 2 f¥ 4r » 7 — & InGaN- & % &

interlayer °
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p-AlGaN
electron blocking

=1 p-(AlGaN/GaN)
n-AlGaN SLs cladding

cladding
GaN
Ec guiding

GalnN interlayer
= guiding

GalnN 3QWs

Bl 3.2.1-2 % 7 — & InGaN sh #4835t 4241

SERAPT KR 3.2.3 i 0 ¥ interlayer B &R # ¥ 4 > TR R
i % R (threshold current density)s g2 F "% (B 3.2.1-3 a) » F BF slope
efficiency 3 v ([§] 3.2.1-3 b)° T’F—*ﬁ ¥ Z1=" interlayer 5 A& 3 4o X p >t electron

blocking layer erji 4 -] > iEmidde L HRE T Sendd i o

. 45 — T T T T_ T _ T
NE - 20°C CW ['=3.5%x10" 4
g =
£ 40f -
= | .
O n
= | ®
o 5 H L
3 35 ° s
e} i
o] °
-
W
o
g i
3.0 R TN N N S R

0 10 20 30 40 50 60 70 80
Thickness of interlayer (nm)

(a)
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1.5

20°C CW '=3.5x%x102
E L o
—_ [ ]
é L
ok - °
&
:c:) 1 -O »
i=
5 i
@
o L
ko)
w) L

| 1 | i | 1 1

O'50 10 20 30 40 50 60 70 80
Thickness of interlayer (nm)

(b)

Bl 3.2.1-3 interlayer & & ¥ (a)T@f 7 i (b)slope
efficiency

A i@ d > UE AF - TV e AP, NiFe it & AllnGaN
> BdRqodr) £ B dRiT 501 BF o & 1 ¥ #ik(lattice constant) € fr
GaN 7 fe(match) o io7 10 ¥ ke 0 > d 3T 2 B2 b B Z B 0 U7
B o FP LB BA PR e it &b f (P Rk

Biz > RV RSS2 RS REF R RS IR iR



Yo 3.2.2 U7 R HER Y AR Y DB BAK L5 R 3 um o
n-GaN» ¥ 7 & < i 4 3 B H.3% - B n-contact FH& H T & el ? I

% 5 ¥ Ef§(Ohmic contact) » @ T F inac 592 5 ¥ 0 & e » L EpR

At & -k 5 n-type e Algp;GagesN » 5 & #_ 1 pm ¢ % & (cladding
layer) » H_k §l 2 505 M A ek 5y 43 B ' iE 1 ® (active region)p o ?ﬁjﬁ%%
4_n-type (7 GaN 5 & 5 0.1 wm en¥ 51k (guiding layer)> i®% 87 12 & /&4
(R TR I SRLY (A SR N R RN ST PR e
(gain) > 2 # % (active layer) =i 5 =4 Iny Gag oN/Ing ,Gag ogN » 14 B & 2.5
nm 7Iny GagoN ¥ 1% quantum well> '2 & & 5 nm #71ng0nGagogN ¥ % quantum
barrier > 1395 Frt i & B LA £ & 405 nm -

B s - & chquantum barrier £ F £ % i B R RS T 3 IEIE A
(electron blocking layer) » & & B #H < ¢ 11 = = (AlGaN)fre = g4t
(AlInyGay yN)& B (F4F s 45 foit g o b = a2 5 p-type GaN %51
B0 BB A 0.lum > 2% p-type Aloo7GagesN & B A > B & 5 0.7 um o B 13
- & #_p-type GaN> & & % 0.1pum> # } chip-contact £+ & 3K %% Ohmic

contact » " wm 7T [ o
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/vity length

d 3 E_fg 53] § #4(edge emitting laser) » 2% ¥ 2% T_F S & FrIpaE K

(cavity length) 5 500 um> @ * J=3%ens plF &5 2 WK 25 0.18 2 % 0.5

- et s 5 - G ¢ @ % Bk S (anti-reflection coating)"# X & S

i

» ¥ — 6 ¢ % * F F Si(high-reflection coating)#k B & &3 > 145 4o ) 5k
i € o o X FAR G Sengd o ¥ ook A g $Rendf 4 (internal loss) 5 45

cm’! o
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Layer Material Thickness(nm) | Doping(10'°cm™)
contact layer GaN 100 0.5(p)
cladding layer Alj 07Gag 3N 700 0.1(p)
guiding layer GaN 100 0.1(p)
blocking layer | AliInyGa;.« N |20 0.2(p)
quantum barrier | Ing¢,GagosN 5 0.2(n)
quantum well Ing ;GayoN 2.5 0.2(n)
quantum barrier | Ing¢yGagosN 5 0.2(n)
quantum well Iny ;Gag 9N 2.5 0.2(n)
quantum barrier | Ing¢,GagogN 5 0.2(n)
guiding layer GaN 100 2(n)
cladding layer Alj 07Gag 3N 1000 2(n)
Substrate GaN 3000 2(n)

1322 BHRY hiEE FH0) 4
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323 A AHH dik

d 3k ¥ A0 % i InN 0 B2 H i M (energy bandgap)¥ask it
A fl.8e-2.1eV » & E A F F o Hjirehre A > TP E P o gam

ijs InN#hi B2 T 5 0.7-0.8 eV 2 % [2-4]° Bt FIE_F 5 B3 15 & o

v}
Vel
g
-
N+

#INNE & = & 5 H & & (single-crystalline layer) - ¥ it € 2) = 4Fpng * 4 >
® R IRE o BlAcIngOsefie I A 3.1 eV © o MEF o Firenge 2 @
Ew it InN= £ 5 24l S & 0 » @ FInNei 2 & 50.7-08 eV o

Bt By €75 HBhhifit 2 o €5 L Fangd > pav
AT e Al Sl o A& 328971 [5] & ¥ @ * Varshni formula % 12 i it

BAER B M % ehEr o
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Parameter Symbol  Unit InN GaN AIN

Electron eff. mass(c-axis) my” mo 0.07 0.2 0.32
Electron eff. mass(transversal) me mo 0.07 0.2 0.3
Hole eff. mass parametrt A - -8.81 -7.21 -3.86
Hole eff. mass parametrt A; - -0.68 0.44 -0.25
Hole eff. mass parametrt Aj - 7.57 6.68 3.58
Hole eff. mass parametrt Ay - -5.23 -3.46 -1.32
Hole eff. mass parametrt As - -5.11 -3.40 -1.47
Hole eff. mass parametrt Ag - -5.96 -490 -1.64
Direct bandgap at 300K Eg eV 0.71 3.355  6.11
Spin-orbit energy Nso eV 0.005 0.01 0.019
Crystal-field energy AN eV 0.04 0.017 -0.169
Lattice constant a A 3.545 3.1890  3.112
Elastic constant Cs3 GPa 224 398 373
Elastic constant Cps GPa 92 106 108
Hydrost. deform.  Potential

(interband) a eV -3.5 -11.3 -11.8
Hydrost. deform. Potential (E;) "*'ag eV -3.5 -4.9 -34
Shear deform. potential D, eV -3.7 -3.7 -17.1
Shear deform. potential D, eV 4.5 4.5 7.9
Shear deform. potential Ds eV 8.2 8.2 8.8
Shear deform. potential Dy eV 4.1 4.1 -3.9
Spontaneous polarization Py, C/m* -0.042 -0.034 -0.09
Varshni parameter a mevK  0.245 0.909  1.799
Varshni parameter B K 624 830 1462

# 3.2.3 Band structure parameters for wurtzite nitride binaries.
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Varshni formula
AP d NEBINERARCHEH A TR agFRER DR M
A R BRI R - REHAMTEAR - §

r4 Varshni formula % £ 77 :

o2
Eg(T)=Eg(T=0)- ﬂ (3.1)

gt s8¢ g (meV/K) ~ B (K)#E2 % Varshni parameter > T &% i & > 125V R
B (Kelvin, K)# 77 o 8583 @ 7 arg BRI chpFiF > 2 55 o T
PAPT EIAERERT TN B SN P AL AT E AT D

BRET  HEEMHIARAFF H o

324 s ety

- o) &P AP e 4 %0 Varshni formula s gt - 258 F 0 Az -

- At EF P s P Ty B~ v it £ 4 i Varshni

o

Jui

d

formula » F]yt $3% = CEPRMaRE > R FEH ARG o A
L &4 s o & % % bowing parameter %k ¥ | & Fx i B E o et =

~ et At AlLGa N 5 6
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e AlGaN=(1-x)xe GaN+xxe AIN+(1-x)xxxbow AlGaN (3.2)

X = Alenz & > e AlGaN 3 AlGaN e [4 8 > e GaN ~ e AIN 4 &5 &
B % GaN~AIN 5% 4 & > bow AlGaN :\]"ﬁ{ft%“l'-:%‘: AlGaN ;i [4 & 77 bowing
parameter © M A fpie K E > LAt - BB I kAT o B

TA AP ¢ * e bowing parameter 4o % 3.2.4[4]#77 o

Parameters InGaN AlGaN AlInN
E,' (eV) 2.4 0.7 2.5
E,'(eV) 0.69 0.61 0.61
E, (eV) 1.84 0.8 0.8

% 3.2.4 bowing parameters for GalnN, AlGaN, and AlInN.
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3.2.5 #& i* & j= (polarization charge) 3+ &

T AE AR - BER A GG R T B Tk

Je o b M-V *Reng 4 &4 wurtzite $H¢ 0 ML AR - BEROREDL

(polarization)3f. % [6-8] » v* — % KR i & 3
1.p % |+ 14& it (spontaneous polarization, Py,)

d 3 wurtzite SRR AL 0 R B F 1 AHE A LR R 5

FPBICILG TR T AS B ?ﬁ‘#ig‘i é?’ﬁ o i 7 Je ek &

-~ 2 N
m tL.S%‘Eg ™ &

S (000D)A2 A P ERTH - TR T REEEIPE -

AC
[0001]
ey a3 ] — R-face
& ‘\
Lo |
|
Il
)
| A1
[0001]
/q—h
dp 11758 &)
=4758 A

8]3.2.5-1 Wurtzite ‘.%;H%
2.8 7} 14& it (piezoelectric polarization, P,,)
A LR T ISR Y SR SRR FE Y
EFRTEEIRE o SRV EALIAES 7 T ROERAEL O RT R

e RAREE 0 B A BB P e
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poEFBtE
A A RBRIEORIRGE T Eant B 2 N § x5 F. Bernardini and V.
Fiorentini 7 2002 3 % ¢h2 F[6]c — 4= sl p Fimis <] > @ #

5 ke ™ [5]

Parameter Symbol  Unit InN GaN AIN

spontaneous polarization P, C/m* -0.042 -0.034 -0.09

% 3.25-1 = 2 p F & Sk

N

Mz A p F A& K] Py & 2 % bowing parameter © F|pt 3 e

P, (A.B_.N)=xP,(AN)+(=x)B, +b" x(1 - x) (3.3)

P3P xEHRE AL B PR(AN) ~ Po(BN)A B % 4 7 b ih§ it 4= o bAP

% bowing parameter o #% £ * cfibowing parameter#ic & 4o [5] ¢

Parameter Unit GalnN AlGaN AlInN

bowing parameter C/m’ -0.037 -0.021 -0.07

% 3.2.5-2 = ~ 41 p B M 4& 1t 57 bowing parameter
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BT ALE T E
AR AR T AR % Py
PV = _1.808¢, +5.62457  for s <0
PN = _1.808s, —7.8885> fors >0
PN = 0.918¢, +9.541¢]

P =—1.373¢ +7.559¢;

g1 4_#73} hbasal strain > E & 4T -

£1(0)~(@"112a69)/a(x)

(3.4)

(3.5)

(3.6)

(3.7)

a%Mra(x) A 8] % k17 (substrate)fe g e K e 1 F B v P BR AN K

E GaNf b oo o w 29Nt = o g 7\3]%{'* pren SRR T R

fgp e

ABN __ AN BN
P =xP " +(1-x)P;

(3.8)

B b kE L& 5 Ali3Gag Nk it 7 j (polarization charge) » 3 45 7

moengTit o AP LI p MR R ) 0 F g deT

Py(AIN)=-0.09
Py(GaN)=-0.034

b**=0.019
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A E D] p B R ht )
Py, (AlGaN) =0.3x(-0.09)+0.7x(-0.034)+0.019%0.3x0.7
=-0.04681
BT ORPHRTRIES ]
P,,(AlGaN)=-0.014868
s o e b A 0 A 5

P+ P,,=-0.061678 (C/m)
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Confinement Energy

Material Strain
factor I bandgap(eV)
Al0.251n0.01gan 0.49% 4.08% 3.884
Al0.251n0.03gan 0.27% 4.26% 3.825
Al0.251n0.04gan 0.16% 4.34% 3.794
Al0.251n0.05gan 0.04% 4.43% 3.763
Al0.25in0.06gan -0.06% 4.52% 3.731
Al0.251n0.07gan -0.17% 4.61% 3.698

% 3262 FzAldz £ i Ind A chstrain ~ % BUFF fop
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B 0 # % e Aefhg AllnGaN (75 % 3 ik 0 Al £ £ & 20-35%
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3.3 365nm LED structure using AllnGaN alloys

LA E P AR e A5 AllnGaN 3 A & 4002 APSYS $iRE
FLED ~ 2 nL-1 #1418 &2 b - LR Lde 3 & FFah~E
WA LED ~ it §d 1Ak v kR L HAY SR E S - B FPlen

e Ad AP %R OEPR AT o

Ohmic contact > 7= n-GaN

AlGaN #i4 » # ¢ &

(cladding layer) °

Blocking layer materials:
Alp.19Gag gN

p-GaN 10nm
Alp09Gago1N 125nm /
Blocking layer 25nm
AllInGaN MQWs

Alo_ 1-0_14GaN 50nm
n-GaN 3um

B 3.3.1 #k- it WEHER
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—~
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Appendix B. code for AlInGaN as electron blocking layer for
405nm LD

*.layer

begin_layer

$

column column_num=1 w=2. mesh_num=5 r=1.

column column_num=2 w=2 mesh_num=10 r=1

column column_num=3 w=2. mesh_num=5 r=1.

column column_num=4 w=2 mesh_num=2 r=1.

column column_num=5 w=2 mesh_num=5 r=1.

top_contact column_num=2 from=0 to=2 contact_num=1 contact_type=ohmic

top_contact column_num=5 from=0 to=2 contact_num=2 contact_type=ohmic

$

layer_mater macro_name=gan.temp column_ num=1 var1=300

layer_mater macro_name=gan.temp column_num=2.var1=300

layer_mater macro_name=gan.temp column_num=3var1=300

layer_mater macro_name=gan.temp column: num=4 var1=300

layer_mater macro_name=gan.temp column-num=5 var1=300

layer d=2.5 n=5 r=1 n_doping1=2.00e+024 n_doping2=2.e+24 n_doping3=2.e+24 &&
n_doping4=2.e+24 n_doping5=2e+24

$

layer_mater macro_name=gan.temp column_num=1 var1=300

layer_mater macro_name=gan.temp column_num=2 var1=300

layer_mater macro_name=gan.temp column_num=3 var1=300

layer_mater macro_name=air column_num=4

layer_mater macro_name=void column_num=5

layer d=0.5 n=5r=1. n_dopingl=2.e+24 n_doping2=2.e+24 n_doping3=2.e+24

$

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=1

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=2

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=3

layer_mater macro_name=air column_num=4

layer_mater macro_name=void column_num=5

layer d=1.0 n=5r=1 n_doping1=2.e+24 n_doping2=2.e+24 n_doping3=2.e+24

$

VIl



layer_mater macro_name=gan.temp column_num=1 var1=300.
layer_mater macro_name=gan.temp column_num=2 var1=300.
layer_mater macro_name=gan.temp column_num=3 var1=300.
layer_mater macro_name=air column_num=4
layer_mater macro_name=void column_num=5
layer d=0.1 n=5r=1.00 xp2=1 n_dopingl=2.e+24 n_doping2=2.e+24 &&
n_doping3=2.e+24
$
layer_mater macro_name=ingan.temp column_num=1 var1=0.02 var2=300
layer_mater macro_name=ingan.temp column_num=2 var1=0.02 var2=300
layer_mater macro_name=ingan.temp column_num=3 var1=0.02 var2=300
layer_mater macro_name=air column_num=4
layer_mater macro_name=void column_num=5
layer d=0.005 n=10 r=1 xp1=1 xp2=1 n_dopingl=2.e+23 n_doping2=2.e+23 &&
n_doping3=2.e+23
$
layer_mater macro_name=ingan.temp_celumn;num=1 var1=0.1 var2=300. &&
active_macro=InGaN/InGaN avar1=0.l avar2=0.02 avar3=300.
layer_mater macro_name=ingan.temp column_num=2 var1=0.1 var2=300. &&
active_macro=InGaN/InGaN-avar1=0.1-avar2=0.02 avar3=300.
layer_mater macro_name=ingan.temp column-1num=3 var1=0.1 var2=300. &&
active_macro=InGaN/InGaN avari=0.1 avar2=0.02 avar3=300.
layer_mater macro_name=air column_num=4
layer_mater macro_name=void column_num=5
layer d=0.0025 n=10 r=1.00 xp1=1 xp2=1 n_dopingl=2.e+23 n_doping2=2.e+23 &&
n_doping3=2.e+23
$
layer_mater macro_name=ingan.temp column_num=1 var1=0.02 var2=300
layer_mater macro_name=ingan.temp column_num=2 var1=0.02 var2=300
layer_mater macro_name=ingan.temp column_num=3 var1=0.02 var2=300
layer_mater macro_name=air column_num=4
layer_mater macro_name=void column_num=5
layer d=0.005 n=10 r=1 xp1=1 xp2=1n_dopingl=2.e+23 n_doping2=2.e+23 &&
n_doping3=2.e+23
$
layer_mater macro_name=ingan.temp column_num=1 var1=0.1 var2=300. &&
active_macro=InGaN/InGaN avar1=0.1 avar2=0.02 avar3=300.
layer_mater macro_name=ingan.temp column_num=2 var1=0.1 var2=300. &&



active_macro=InGaN/InGaN avar1=0.1 avar2=0.02 avar3=300.

layer_mater macro_name=ingan.temp column_num=3 var1=0.1 var2=300. &&
active_macro=InGaN/InGaN avar1=0.1 avar2=0.02 avar3=300.

layer_mater macro_name=air column_num=4

layer_mater macro_name=void column_num=5

layer d=0.0025 n=10 r=1.00 xp1=1 xp2=1 n_dopingl=2.e+23 n_doping2=2.e+23 &&

n_doping3=2.e+23

$

$

layer_mater macro_name=ingan.temp column_num=1 var1=0.02 var2=300

layer_mater macro_name=ingan.temp column_num=2 var1=0.02 var2=300.

layer_mater macro_name=ingan.temp column_num=3 var1=0.02 var2=300.

layer_mater macro_name=air column_num=4

layer_mater macro_name=void column_num=5

layer d=0.005 n=10 r=1 xp1=1 xp2=1 n_dopingl=2.e+23 n_doping2=2.e+23 &&

n_doping3=2.e+23

$

layer_mater macro_name=algan.temp column, num=1 var1=0.2 var2=300.

layer_mater macro_name=algan.temp column._num=2 var1=0.2 var2=300.

layer_mater macro_name=algan:temp column_num=3:var1=0.2 var2=300.

layer_mater macro_name=air column_num=4

layer_mater macro_name=void coltmn_num=5

layer d=0.02 n=5r=1. p_dopingl=1.e+23'p doping2=1e+23 p_doping3=1.e+23

$

layer_mater macro_name=gan.temp column_num=1 var1=300.

layer_mater macro_name=gan.temp column_num=2 var1=300.

layer_mater macro_name=gan.temp column_num=3 var1=300.

layer_mater macro_name=air column_num=4

layer_mater macro_name=void column_num=5

layer d=0.1 n=5r=1 p_dopingl=1.e+23 p_doping2=1.e+23 p_doping3=1.e+23

$

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=1

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=2

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=3

layer_mater macro_name=air column_num=4

layer_mater macro_name=void column_num=5

layer d=0.5 n=5r=1.00 p_dopingl=1.e+23 p_doping2=1.e+23 &&
p_doping3=1.e+23



layer_mater macro_name=void column_num=1

layer_mater macro_name=algan.temp var1=0.07 var2=300 column_num=2
layer_mater macro_name=void column_num=3

layer_mater macro_name=void column_num=4

layer_mater macro_name=void column_num=5

layer d=0.2 n=5r=1.00 p_doping2=1.e+23

$

layer_mater macro_name=void column_num=1

layer_mater macro_name=gan.temp column_num=2 var1=300.
layer_mater macro_name=void column_num=3

layer_mater macro_name=void column_num=4

layer_mater macro_name=void column_num=5

layer d=0.1 n=5 r=1. p_doping2=0.5e+24

$

end_layer

* 50l

begin

self_consistent wave_range=0.001

$

interface model=charge fix_charge=-3e15 y=4.1

interface model=charge fix_charge=-1.2e16 y=4.105
interface model=charge fix_charge=+1.2e16 y=4.1075
interface model=charge fix_charge=-1.2e16 y=4.1125
interface model=charge fix_charge= +1.2e16 y=4.115
interface model=charge fix_charge= +1.26e+16 y=4.12
interface model=charge fix_charge=-9.5e15 y=4.14
temperature temp=300

active_temper ref_temper=300 delta_active loss=4500
contact num= 1 type=ohmic thermal_type=1 lattice_temp=300
contact num= 2 type=ohmic thermal_type=1 lattice_temp=300
set_active_reg active_loss=4500 thickness=0.0025

$

load_mesh mesh_inf=a0526a.msh

include file=a0526a.mater

include file=a0526a.doping

output sol_outf=a0526a.out

Xl



newton_par damping_step=5 max_iter=100 print_flag=3
optical_field profile=effective_index
sor_par max_iter=3000 print_sor=noprint
equilibrium
wave_boundary point_IlI=[ 0 3 ] &&
point_ur=[6 5.04]
init_ wave length=500 backg_loss=4500 &&
boundary type=[1111] init wavel=0.41 front_back=[0.18 0.5] &&
wavel_range=[ 0.38 0.43]
direct_eigen
multimode mode_num=3
newton_par damping_step=5 &&
max_iter=150 opt_iter =75 stop_iter=20 print_flag=3
scan var=voltage_ 2 value_to=-0.35E+01 print_step= 0.35E+01 &&
init_step= 0.4E+00 min_step=1.e-3 max_step=0.8
scan var=current_2 value_to=350 print_step=35 &&
init_step=0.5 min_step=1.e-4 max ,step=10
end

*.plt

begin_pstprc

plot_data plot_device=postscript

get data main_input=A0526a.so0l &&
sol_inf=A0526a.out  xy data=[12 12] scan_data=[1 12]

plot_1d variable=band from=[3 0.] to=[3 5.341] &&
data_file=band.txt

plot_1d variable=band from=[3 4] to=[ 3 4.41] &&
data_file=band-ex.txt

plot_1d variable=real_index from=[3 0] to=[3 5.341] &&
data_file=real index.txt

plot_1d variable=wave_intensity from=[3 0] to=[3 5.341] &&
data_file=wave_intensity.txt

plot_1d variable=elec_conc from=[3 0] to=[3 5.341] &&
data_file=elec_conc.txt

plot_1d variable=hole_conc from=[3 0] to=[3 5.341] &&
data_file=hole_conc.txt

plot_1d variable=elec_curr .y from=[3 0] to=[3 5.341] &&

Xl



data_file=elec_curr_y.txt

plot_1d variable=joule_heat from=[3 0] to=[3 5.341] &&
data_file=joule_heat.txt

plot_1d variable=recomb_heat from=[3 0.] to=[3 5.341] &&
data_file=recom_heat.txt

plot_1d variable=recomb_rad from=[3 0.] to=[3 5.341] &&
data_file=recom_rad.txt

plot_1d variable=recomb_st from=[3 0.] to=[3 5.341] &&
data_file=recom_st.txt

plot_1d variable=local_gain from=[3 0.] to=[3 5.341] &&
data_file=local_gain.txt

plot_1d variable=optic_heat from=[3 0.] to=[3 5.341] &&
data_file=optic_heat.txt

plot_1d variable=thomson_heat from=[3 0.] to=[3 5.341] &&
data_file=thomson_heat.txt

plot_1d variable=peltier_heat from=[3 0.] to=[3 5.341] &&
data_file=peltier_heat.txt

$

plot_2d variable=wave_intensity~ &&

point II=[0 0] &&

point_ur=[ 10 5.341] data_fileswaver2d:txt

plot_scan scan_var=current_2 scal€ curr=2 &&

variable=laser_power facet=front data_file=L_I.txt

plot_scan scan_var=voltage 2 &&

variable=total curr_2 data_file=l_V.txt

get data main_input=A0526a.so0l &&
sol_inf=A0526a.out &&

Xy data=[ 1 12] convert_data=yes

end_pstprc
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Appendix C. code for 365nm LED structure using AlinGaN
alloys

*.layer

$ -

begin_layer

$

independent_maqw

column column_num=1w=200 mesh_num=10 r=0.85
column column_num=2 w=100 mesh_num=8 r=1.15
top_contact column_num=1 from=0.0 to=50 contact_num=2
top_contact column_num=2 from=0 to=100 contact_num=1

layer_mater macro_name=algan.temp var1=0 var2=300 column_num=1
layer_mater macro_name=algan.temp varl=0nar2=300 column_num=2
layerd=2 n=4 r=1

$

layer_mater macro_name=algan:temp varl=0 var2=300 column_num=1
layer_mater macro_name=algan.temp varl=0rvar2=300 column_num=2
layer d=0.5 n=4 r=0.8 n_dopingl=5e24 n doping2=5e24

$

layer_mater macro_name=algan.temp var1=0 var2=300 column_num=1
layer_mater macro_name=void column_num=2

layer d=0.5 n=4 r=0.9 n_dopingl=5e24

$ cladding layer

$

layer_mater macro_name=algan.temp grade_var=1 &&
grade_from=0.1 grade_t0=0.14 var2=300 column_num=1

layer_mater macro_name=void column_num=2

layer d=0.05 n=5 r=1n_dopingl=5e24

$ ----first barrier

layer_mater macro_name=gaalinn.temp var1=0.05 var2=0.01 var3=300 &&
column_num=1

layer_mater macro_name=void column_num=2

layer d=0.003 n=8 r=1 xp1=1 xp2=1 n_doping1=8e22
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$

include file=ganled.qw

include file=ganled.qw

include file=ganled.qw

$ -

$blocking layer

layer_mater macro_name=algan.temp var1=0.19 var2=300 column_num=1
layer_mater macro_name=void column_num=2

layer d=0.025 n=4 r=1.0 p_doping1=8e23

$p-

layer_mater macro_name=algan.temp  var1=0.09 var2=300 column_num=1
layer_mater macro_name=void column_num=2

layer d=0.125n=4 r=1.0 p_dopingl=2e23

$p+

layer_mater macro_name=algan.temp var1=0 var2=300 column_num=1
layer_mater macro_name=void column_num=2

layer d=0.01 n=4 r=1.0 p_dopingl=5e23

$
end_layer
ganled.qw

layer_mater macro_name=gaalinn.temp var1=0.06 var2=0.075 var3=300 &&
column_num=1 active_macro=GaAlInN/GaAlInN &&

avar1=0.06 avar2=0.075 avar3=0.05 avar4=0.01 avar5=300

layer_mater macro_name=void column_num=2 active_macro=void

layer d=0.0025 n=8 r=1 xpl=1 xp2=1

$

layer_mater macro_name=gaalinn.temp var1=0.05 var2=0.01 var3=300 column_num=1
layer_mater macro_name=void column_num=2

layer d=0.003 n=8 r=1 xp1=1 xp2=1
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*.sol
$file:ganled.sol

$ *khkkkkikkk
begin
self_consistent wave_range=0.003
$10% polarization charge
interface model=charge fix_charge=-5.4e+15 y=3.05
interface model=charge fix_charge=-1.086e+16 y=3.053
interface model=charge fix_charge= +1.086e+16 y=3.0555
interface model=charge fix_charge=-1.086e+16 y=3.0585
interface model=charge fix_charge= +1.086e+16 y=3.061
interface model=charge fix_charge=-1.086e+16 y=3.064
interface model=charge fix_charge= +1.086e+16 y=3.0665
interface model=charge fix_charge= +9.53e+15 y=3.0695
interface model=charge fix_charge=-5.8e+15 y=3.0945
temperature temp=300
$new added
active_temper ref_temper=300 delta_active 10ss=1000
heat_flow damping_step=1
contact num=2 type=ohmic thermal. type=3&&
thermal_cond=10. extern_temp=300
contact num=1 type=ohmic thermal_type=1 " lattice_temp=300
set_active_reg active_loss=1000 thickness=0.0025 dip_factor=1
load_mesh mesh_inf=ganled.msh
output sol_outf=ganled.out
$ *khkkkkikkk
include file=ganled.doping
include file=ganled.mater
led_control wavelength=0.37 efficiency_model=uniform &&
refl_y1=0.18 refl _y2=0.18 delta_wavel=0.02 &&
led_xrange=(0 200) group_index=2.34
$
$
sor_par max_iter=0 print_sor=noprint
wave_boundary point_II=(0, 0) point_ur=(200, 3.2295)
init_wave length=300 backg_loss=1000 &&
boundary type=(1111) init_ wavel=0.37 mirror_ref=0.18 &&
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wavel_range=(0.36, 0.39)
optical_field profile=gaussian &&
x_prof=(0200 0.10.1)y prof=(33.22950.10.1)
$multimode mode_num=1
$
$ start solvinge
$
newton_par damping_step=5. max_iter=150 print_flag=3
equilibrium
newton_par damping_step=1. print_flag=3 var_tol=1.e-4
scan var=voltage 1 value_to=-2.5 print_step=1.5 &&
init_step=0.1 min_step=1e-3 max_step=1
scan var=current_1 value_to=150. print_step=5 &&
init_step=0.1 min_step=1e-3 max_step=2
end

*.plt
$file:ganled.plt

$ *khkkkkhkkkkhkhkkikkikikkikk

begin_pstprc

plot_data plot_device=postscript

$plot_data plot_device=data_file

get data main_input=ganled.sol sol_inf=ganled.out &&
scan_data=(1 13]

plot_scan scan_var=voltage 1 variable=total _curr_1 scale_horizontal=-1 &&

data_file=total curr_1.txt

plot_scan scan_var=total_curr_1 variable=led_power &&
data_file=led_power.txt

plot_scan scan_var=total_curr_1 variable=led_effi &&

data_file=led_effi.txt

get_data main_input=ganled.sol sol_inf=ganled.out &&
Xy _data=(13 13]

plot_1d variable=band from=(100. 1.04) to=(100. 1.08) &&

data_file=band.txt

plot_1d variable=band from=(100. 1) to=(100. 1.2) &&

data_file=band2.txt
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plot_1d variable=real_index from=[100 0] to=[ 100 2.4] &&
data_file=real index.txt

plot_1d variable=wave_intensity from=[ 100 0] to=[ 100 2.4] &&
data_file=wave_intensity2.txt

plot_1d variable=elec_curr_y  from=[100 0] to=[100 24] &&
data_file=elec_curr_y.txt

led_spectrum data_file=spectrum.txt
gain_spectrum variable=gain data_file=gain.txt

end_pstprc

XVIII



