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類神經網路在光學量測方面之應用 

 

研究生：陳立志     指導教授：黃中垚 

 

國立交通大學光電工程研究所 

 

摘 要 

 

本論文提出兩種新的類神經網路應用於雷射脈衝特性診斷,以及點光

源的定位。利用類神經網路學習以及函數逼近的功能,提出一個方式

由二倍頻光譜去反推出原光場在頻域上的相位,並且提出可能實現此

量測方式的實驗架構。另一方面由類神經網路學習,從一個包含點光

源的圖像中告知點光源所在的位置,並以此方式結合搜索做到多數點

光源的定位。 
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Some Case Studies of the Application of Artificial Neuron 

Network in Optical Metrology 

 

Student：Li-Chih Chen                    Advisor：Jung Y. Huang 

 
Institute of Electro-Optical Engineering, National Chiao Tung University 

 
Abstract 

 

In this thesis we report two new application cases for the Artificial Neuron Network 

they are focus on the laser plus characterization and the locating of light spot. By 

using the learning ability and the function approximation, we report a method to 

retrace the phase in the frequency domain of the origin light field by the second 

harmonic generate spectrum, and also provide a possible experimental setup for 

realizing this measurement. On the other hand, by training Artificial Neuron Network 

to learn the position of a light spot within an image and combining the search method, 

the location of multiple light spot can be realized. 
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Chapter 1 General Introduction 

  

11..11  FFuunnddaammeennttaall  PPrriinncciippllee  ooff  OOppttiiccaall  MMeettrroollooggyy  

In the field of optical metrology, two fundamental issues encountered are: how to 

characterize the light to be used, and how to measure the optical signal to extract the 

information of the measurement. As shown in Fig. 1.1, by analyzing the difference 

between the intrinsic properties of the light source used and the optical signal from the 

object under test, the information of the object can be revealed. By analyzing the data 

we can further construct a model to explain the behavior of the object. After this model 

is refined with improved knowledge from the data analysis, we can use to model to 

predict the object behaviors which are still unknown to researchers. In a more aggressive 

attitude, researchers or engineers can invoke the knowledge accumulated to control or 

produce the desired response of a physical system by applying a proper waveform of 

stimulant on the system. 
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Fig. 1.1. The schematic showing the relationship of measurement, model construction, 

and the control of a physical system. 

 

The fundamental properties of a light field including the amplitude, phase 

(revealing via frequency or wavelength), and the state of polarization can be invoked in 

optical metrology. For examples, as illustrated in Figure 1.2, the amplitude of an optical 

field can be modified by a material and the information can be used to reveal how much 

light energy is absorbed as the light beam passes through the medium, which relates to 

the band structure of material. Furthermore, by detecting the frequency shift of a light 

field as it reflects from a moving object, we can deduce the information about the 

velocity of the object, which is known as the Doppler Effect. The direction and the state 

of polarization of a light field after passing through a transparent medium such as a thin 

film of liquid crystal will be changed and the polarization variation carries the 

information about the orientational profile of the liquid crystal molecules in the film. 

Measurement 

Formal 
Model 

Observable 

Natural 

System 

Decoding 

Prediction
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Fig. 1.2. Examples showing the information of physical properties of a medium can be 

embedded in the three fundamental characteristics of a light field. 

 

Among a variety of the light-matter interaction processes such as optical absorption 

by crystalline silicon, the absorption of an incident photon with energy larger than the 

band gap of the medium can readily create an electron-hole pair and results in 

photocurrent. As the strength of the optical field increases, numerous nonlinear optical 

effects can be detected and be employed to form a variety of measurement techniques. If 

Frequency shift of a light field after reflecting from a moving object 

Light amplitude is decreased due to an absorption of photon by matter. 

Polarization direction of a light field is changed by a liquid crystal film 
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one can tightly focus the light beam on a medium with a field-concentrating tip, the 

signal to be detected will mainly originate from the illuminated area under the tip. By 

using such a tip, we can achieve an extremely high spatial resolution beyond the optical 

diffraction limit. On the other hand as shown in Fig. 1.3, if one can employ optical 

pulses with duration down to a few femto-seconds to probe a medium, the deep insight 

into the ultrafast dynamics of the excited medium may be yielded. When optical pulses 

with ultra short duration are used for probing materials, dynamic studies of materials, 

such as the dynamic processes of a chemical reaction, photosynthesis, interaction 

between proteins and substrates, photo-excited electron-hole relaxation, shall become 

possible. However, to realize the potential of optical metrology at the femtosecond 

scales, techniques that can be employed fully characterize the ultrafast light field must 

be developed. 

 

 

 

 

Conduction band

Valence band

λ λ 

I 

T 

Fig. 1.3. Schematic showing an optical absorption process of broadband light by a 

medium. The information about the band structure of the medium and the 

dynamics of light-matter interaction can be embedded into the dynamic 

spectrum of the light after passing through the medium. 
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A proper characterization of the light field to be used in ultrafast optical metrology 

is not a simple task. In the past few decades, several methods had been developed in 

order to solve the issue. Optical intensity autocorrelation (AC) [1] is the first technique 

to deduce the temporal profile of a laser pulse. Although the autocorrelation can yield 

pulse information in time domain, the profile deduced is not the real field profile of the 

optical pulse. Furthermore, the biggest disadvantage of the technique is that it carries no 

information about the phase of the optical pulse. To fully characterize an optical pulse 

field, several two-dimensional methodology such as frequency-resolved optical gating 

(FROG) [2] and spectral phase interferometry for direct electric-field reconstruction 

(SPIDER) [3] had been developed in the past two decades. The schematic setups of 

FROG and SPIDER are illustrated in Figs. 1.4. 

FROG is similar to the autocorrelation except that it detects the transient spectra of 

an optical pulse instead of intensity. We use FROG to acquire the spectra with different 

time delays and assemble a time-frequency distribution of the pulse. We then retrieve 

the phase information from the time-frequency distribution by using an iteration 

algorithm. SPIDER is based on the concept of spectral-shearing interferometer; the 

optical pulse to be measured is split into two parts, with the time delay and phase delay 

to be adjusted separately. And then the two parts of the pulse can be recombined to 

generate a set of fringe patterns. The major advantage of SPIDER is that the set of fringe 
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patterns can be used to retrieve the spectral phase of the pulse field in a direct way 

without invoking any iteration procedure. Therefore, the information retrieving speed 

from data of SPIDER can be very fast. 

 

 

 

 

Detector used in 

AC: power meter; 

FROG: spectrometer. 

Detector

BS

Mirror LEN 

BS

BS

BS

LEN LENSLM

Spectrometer 

Fig. 1.4. Typical experimental setup for frequency resolved optical gating 

(FROG, top) and spectral phase interferometry for direct electric-field 

reconstruction (SPIDER, bottom). 
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To characterize the structure of a heterogeneous material such as the organization 

and distribution of molecules or subcellular objects in a cell raises the need to precisely 

localize these objects. The position and velocity of a nano object can be determined by 

localizing the corresponding light spots in a 2D photo-detector in an optical microscope. 

By tracing the particle in real time, important mechanisms in a live cell had been 

revealed. The light spots can be originated from either light scattering or fluorescent 

emission from nanoparticles. The technique that can accurately localize nano particles is 

also an important tool in the material structural determination, especially for 

nanostructured materials. 

  

 

 

 

To localize nanoparticles with the nanometer accuracy, we first have to excite the 

particles at very low level such that two light spots from neighboring excited particles 

are separated on CCD camera at least by one full width of the point spread function of 

Fig. 1.5. Schematic shows the concept of concentrating the light field on a 

medium with a tip. The signal to be detected will mainly 

originate from the illuminated area under the tip, yielding the 

possibility to localize particles with high spatial resolution. 



 - 8 -

the optical microscope used. The central positions of the light spots are then fitted to 2D 

Gaussian profiles [4] or with the center-of-mass method. The fitting of a light spot to a 

2D Gaussian function in principle can determine the sub-pixel center of the light spot. 

Unfortunately, the localization accuracy with the method is time consuming and 

sensitive to the signal-to-noise ratio of the data. 

For the center-of-mass method, the center-of-mass of a light spot can be calculated 

as the weighted position of all pixels involved in the spot. For the case shown in Fig. 1.6, 

the mean value can be (1*1+2*2+3*2.5+4*1)/(1+2+2.5+1)=2.5385. 

0

0.5

1

1.5

2

2.5

3

1 2 3 4

 

 

  

11..22  OOvveerrvviieeww  ooff  AArrttiiffiicciiaall  NNeeuurraall  NNeettwwoorrkk    

An Artificial Neural Network (ANN) [5] is an algorithm designed to simulate the 

capabilities of learning and data processing of the neuron network in our brain. ANN 

Fig. 1.6. A 1D example of the center-of-mass method 
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simulates our brain on two aspects; firstly, the knowledge learning from the data can be 

updated and stored in the weighting parameters of ANN. Second, the set of optimal 

weighting parameters can be deduced through a learning process. The schematic of the 

overall process is depicted in Fig. 1.7. The input data is first converted into an output, 

and then the calculated output is compared with the desired output to generate an error, 

which can be feedback to adjust the weighting parameters of ANN in order to further 

reduce the error. By this way, the output can approach the desired performance. 

 

 

 

ANN can be invoked to offer several useful functionalities, including data 

classification, functional approximation, and series prediction, etc. [6-8]. Usually, one 

can start with data analysis, and then based on the results to construct a preliminary 

model. After testing and verification involved in the learning process, the trained ANN 

can be used to predict the future behaviors of the system under study. Especially, when 

Input Output 

Desired Output 

Error 

Error feedback to 

adjust weight of ANN 

ANN 

Fig. 1.7. Flow chart of the learning process of an ANN. 



 - 10 -

the data is complex and cannot yield sufficient information to expose the underlying 

structures, ANN could be very valuable in this case. 

 

11..33  MMoottiivvaattiioonn  aanndd  OOuuttlliinnee  ooff  tthhiiss  TThheessiiss  

In this thesis, we will apply ANN for producing an intelligent learning system to 

improve the measurement accuracy or generating new functionality of an apparatus in 

optical metrology, namely the complete characterization of ultrashort laser pulses and 

nanometer localization in real time for an optical microscope. The techniques needed to 

implement artificial neuron network for the two applications will be developed. 

We also like to implement the learning ability of artificial neuron network into an 

optical apparatus to accumulate the user experiences and improving the prediction 

accuracy of the ANN as more data are taken. To achieve this goal, this thesis is 

organized as follows: 

In chapter 2, we will first review the general concepts of ANN and introduce the 

skills needed for the applications. We will introduce the most useful functionalities of 

ANN, some illustrative application examples are prepared too. 

In chapter 3, we will combine ANN with a second-harmonic generation 

spectroscopy to retrieve the spectral phase profile of ultrashort optical pulse field and 

yield the complete field information of the pulse. Feasibility of this application is 
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demonstrated and difficulties encountered are discussed. 

In chapter 4, we will develop an ANN scheme to search and locate the position of 

particles with an optical microscope. The feasibility of artificial neuron network to find 

the central position of a light spot was revealed. Higher accuracy, faster localization 

process and more immune to the noise than that does by the 2D Gaussian fitting were 

demonstrated. 

Finally, conclusions and future works of this thesis research are presented. 
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Chapter 2 Introduction to Artificial Neural Network 

 

In Section 2.1, we review the development history and some background of 

artificial neural network. We will describe how does the artificial neural network work in 

Sections 2.2 to 2.4 and then present application examples to illustrate the important 

functionalities of ANN, including classification, functional approximation and time 

series prediction.  A brief summary will be given in Section 2.5. 

 

2.1 Overview of Artificial Neural Network 

2.1.1 Historical Development of ANN 

Inspired by the structure of neuron and the connection topology in brain, the first 

mathematical model of neural network was reported in 1943 by Warren McCulloch and 

Walter Pitts [9]. In 1958, Frank Rosenblatt developed the first practical network with 

related learning rules, which is now named as the artificial neural network structure of 

perceptron [10]. From 1967-1982, Marvin Minsky and Seymour Papert discovered some 

limitations of existing neural networks [11], such as that ANN cannot perform some 

complex logical operations for example XOR, and new learning algorithms were not put 

forward causing researches to suspect the limited functionality of ANN. However, the 

development stagnation of ANN finally broke in 1980s. Several new architectures of 
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ANN and theorems had been discovered, including the self-organizing map structure by 

Teuvo Kohonen in 1982 [12], the Hopfield neural network by John J. Hopfield in 1983 

[13], and David Rumelhart’s group reported back-propagation neuronal network in 1986 

[14]. Furthermore, in 1991 Stephen Grossberg developed the adaptive resonance theory 

[15] that can significantly improve the learning capability of an artificial neural network. 

Thanks to these progresses, artificial neural network has been widely used in the pattern 

recognition, identification, and data classification. 

Hossein reported in 1989 [16] that if the weights of a backward-propagating ANN 

are initially set to be high values, the learning performance of the ANN will be improved 

and the best initial values depend on the problem. Kruschke [17] inserted a gain into a 

backward propagation network and found a regularization effect on the weights, which 

improves the performance of backward ANN. Sarker [18] found by tuning the weights 

the oscillation occurring in ANN can be reduced. Kubat [19] used a determination tree to 

guiding the construction of a backward-propagating ANN. Wu [20] developed a method 

of optimizing the hidden layers’ outputs (OHLO) to isolate each neural layer and then to 

modify the weights and inputs. Leung [21] combined the weight evolution method with 

a new generalized back-propagation method to accelerate the convergence and avoid the 

problem of trapping into a local minimum. 
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2.1.2 Technical Background of ANN 

Artificial neural network is an algorithm that simulates the function of brain. In 

order to make an artificial neural network function properly, the algorithm must be 

divided into two major steps: the first step is called a learning phase and the second step 

is a retrieving phase. In the learning phase, we need to adjust the system parameters of 

an artificial neural network such as weights or bias. In the retrieving phase, we can use 

the artificial neural network to predict the result based on new input data. 

The neuron in an artificial neural network functions similarly as a neuron in a brain. The 

schematic showing the analog can be found in Figure 2.1. 

 

 

 

Xi is the input, i=1… n.       

Wi is the weights, i=1… n. 

P is the bias.        

f ( ) is the active function. 

Y is the output 

Fig. 2.1. Schematic shows the analog of artificial neuron and brain neuron structure. 

 

A typical structure of neuron  

Dendrites: input from other neuron 

Axon: output connect to other neuron 

Synapse: the gap between the neurons 

Cell, Nucleus: body of neuron 
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As shown in Fig. 2.1, the {Xi}, i=1,…,n denotes an excitation from other neuron, 

and {Wi}, i=1,…,n represents a set of weighting coefficients denoting the connection 

strength between neurons, P denotes a threshold level beyond which a neuron will fire. 

And Y is the excitation to other neurons. Depending on the performance desired, a 

variety of active functions have been adopted in different artificial neural networks. 

Several useful forms of active function are step function, sign function, hyperbolic 

tangent function, or sigmoid function, which is defined as 

1

1 x b
Sigmoid

e 


, Hyper tangent tanh( )x b  .  b: the intercept on x axis.  (2-1) 

 

  

Step function                        Sign function    

  

       Hyper tangent                        Sigmoid 

Fig. 2.2. Some useful forms of activation function for ANN 
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2.2 Typical Structures of ANN and the Corresponding Application 

Examples 

2.2.1 The Perceptron Architecture 

Perceptron is the first practical ANN, typically used for data classification. Figure 

2.3 shows the structure of a perceptron with a structure of input layer and output layer. 

 

 

 

 

 

       is a normal node with Y = X           is a neural node with Y = f(X) 

Fig. 2.3. A typical perceptron structure 

 

A perceptron ANN usually uses either a step function or a sign function as its 

active function depending on the training data set used. Denoting Xi to be the input of 

the i-th input node, Wij the weighting coefficient the i-th input node and the j-th neural 

node, then the input of the j-th neural node can be expressed as
1

N

j i ij j
i

Y X W P


  . Here 

N is the total number of input nodes, Pj is the bias of the neural node, and Yj is the output 

of the j-th neural node. Let Dj be the desired output at the j-th node, Ej is the difference 
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between Yj and Dj. We can use E to adjust the ANN system parameters Wij and Pj by 

following the learning rule shown below: 

( 1) ( )ij ij j iW t W t E X                          (2-2) 

( 1) ( )j j jP t P t E   ,                             (2-3) 

where η denotes the learning rate with a typical magnitude ranging between 0 and 1, Ej 

= Dj – Yj, and t is the iterations. 

The training process can be set up by dividing the process into the following steps: 

1. First, random numbers between zero and one are used to initialize the weighting 

coefficients and biases. 

2. An input data pattern is inserted at the input, and the output and related errors E are 

calculated. 

3. Using the errors and the learning rules to update the weighting coefficients and 

biases. 

4. Repeat the steps 2 and 3 until the desired result is achieved with a satisfactorily 

small error. 

 

2.2.2 Application Example of Perceptron 

In this section, we will apply a perceptron for data classification to illustrate how 

this network works. The application example is to classify the 26 English alphabets. The 
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26 English alphabets were presented in a figure format of 12x12 pixels figure at the 

input of the perceptron. Figure 2.4 presents some of the letter figures. The output of the 

ANN is shown by an array of twenty six digits such that the output of alphabet A is 

(100000…0), B is (010000…0), C is (001000…0)…etc. 

 

 

Fig. 2.4. Some English alphabet figures used in this example. 

 

We converted each alphabet figures (from first to the last pixel) into an integer 

array of 144 elements and used the array for the input data. If the pixel is black, the 

corresponding integer is one. Otherwise it is zero. We therefore have 26 input data sets 

with each data being one dimensional array of 144 components of ones or zeros. For the 

output, we use a 26x26 identity matrix with each row corresponding to the desired 

output, resulting in a perceptron of 144 input neurons and 26 output neurons. The 

learning rate is set to be 0.5. The weight coefficients are set to be 0.25 by adjusting the 

bias. As the result, the learning process can converge with a learning curve shown in Fig. 

2.5, indicating that the mean square error (MSE) can approach zero. As shown in Fig. 

2.6, the ANN can successfully recognize the alphabet letters with an extremely low 

failure, revealing with a diagonal form of confusion matrix. 
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Fig. 2.5. The learning curve of the perceptron ANN for the 26 alphabet letters 

 

Fig. 2.6. The Confusion matrix (X: Output Y: Desired Output) 

 



 - 20 -

The learning curve is different for each training cycle of the alphabet letters 

because the initial weighting coefficients are generated by random number generator and 

they are of course different for each training cycle. Nevertheless, the final results with 

different initial set of weighting coefficients are similar. 

The weighting coefficients and biases can be represented by matrices with the 

dimensions of 144x26 and 26x1, respectively. Fig. 2.7 presents the original matrix form 

of weighting coefficients. Fig. 2.8 shows the reshaped form of the weighting matrix with 

dimension of 12x312 with the weighting coefficients at the same pixel position in each 

alphabet letter figures. It was found that the weighting coefficients have large 

magnitudes at the positions corresponding to the positions of the black pixels in the 

alphabet letter figures. The weighting coefficients with larger magnitudes reveal those 

important pixels in the alphabet letter figures. The ANN after training may invoke those 

pixels to recognize the characteristic features of the alphabet letters. We found that those 

important pixels are clustered in the central region. 
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Fig. 2.7. The matrix of weighting coefficients (in its origin form). 

 

Fig. 2.8. English alphabets and the corresponding reshaped weighting matrices 

 

For example, if an ANN tries to distinguish the alphabets O from X. It may firstly 

examine the pixels locating at the central region of the letters to find some important 

indicators, leading to the large weighting coefficients in the central region. But this may 
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not be the only way to distinguish. There may have several possible forms of weighting 

matrix to meet our goal. The weighting matrix, which yields a power of recognition, is a 

solution to an equation that connects the desire output vector to the multiplication of the 

input vector and the weighting matrix. Since there are 26 alphabet letters, we have a set 

of linear equations with 144x26 variables and 26x26 constraints. It is not surprising that 

many solutions may exist. In the case that the equations do not have a solution, the 

training process would fail and no satisfied weighting matrix could be produced. 

Although a perceptron structure is suited for data classification and recognition, it 

cannot be used for function approximation. Researchers in the past had developed 

another type of ANN structure, called back-propagation neuron network to expand the 

applicability of ANN. 

 

2.2.3 Back-Propagation Artificial Neuron Network 

Back-propagation artificial neuron network is useful in many applications of ANN. 

The typical structure of a back-propagation ANN is illustrated in Figure 2.9, which has a 

multilayer configuration. Here W is the matrix of weighting coefficients of the ANN. 

For using an input data X, the ANN can generate an output Y with the desired output D. 

Back-propagation ANN typically possesses a structure of three to four layers, including 

one input layer, one output layer and one or two hidden layers. The active function 
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implemented in back-propagation ANN is sigmoid function in both hidden layers and 

output layer to enhance the performance in the learning phase with nonlinear data 

structure. 

 

 

 

 

 

 

 

Fig. 2.9. Typical configuration of a back-propagation artificial neuron network 

 

The learning procedure of a back-propagation ANN is summarized as follows: 

Firstly, the input data and the corresponding desired output are sent to the ANN. The 

input data propagates forward layer by layer from the input layer, hidden layers to the 

output layer. The resulting error, which is defined to be the difference between the 

output and the desired response, is calculated. The weighting coefficients and biases of 

the ANN are then adjusted in order to minimize the error. Because the ANN has a 

multi-layer structure, we need to invoke chain rule to calculate the gradient of the 
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system parameters used in the error function. 

The learning rule of back-propagation ANN is described as follows. We denote Wjk 

to be the weighting coefficient between the j-th hidden neuron and the k-th output 

neuron. The bias of the j-th hidden neuron and the k-th output neuron is denoted as Pj 

and Pk, respectively. Yk is the output from the k-th output neuron with Dk the desired 

output, and Hj is the output from the j-th hidden neuron. Therefore, Yk and Hj can be 

given by 

1

( ) ( )
n

j i ij j j
i

H F X W P F net


             (2-4) 

1

( ) ( )
m

k j jk k k
j

Y F H W P F net


    .         (2-5) 

Here F is the active function. The sum of the variables in the active function is defined 

as a new variable “net”, and n and m are the number of input neuron and the number of 

hidden neuron, respectively. Error function will be defined as 

2

1

1
( )

2

l

k k
k

E D Y


  ,             (2-6) 

where l is the number of output neuron. 

We used the gradient descent algorithm to minimize the error function, leading to 

the following equations to be used for adjusting the weighting coefficients and bias 

parameters. 

( 1) ( )jk jk
jk

E
W t W t

W
 

  


,           (2-7) 

( 1) ( )k k
k

E
P t P t

P
 

  


,            (2-8) 



 - 25 -

where t is the iterations and η is the rate constant of learning process. 

By using the chain rule, we can calculate the partial derivatives in Eqs. 2.7 and 2.8, 

which lead to (detail in appendix I) 

( 1) ( )jk jk k jW t W t H   ,           (2-9) 

( 1) ( )k k kP t P t    ,            (2-10) 

where ( ) '( )k k k kD Y F net   , let k  be the error of the k-th output neuron and we can 

use k  to adjust the bias at the nodes in the hidden layer and the weighting coefficients 

between input layer and hidden layer by 

( 1) ( )ij ij j iW t W t X   ,           (2-11) 

( 1) ( )j j jP t P t    ,            (2-12) 

where 
1

'( )
l

j k jk
k

j F net W 


  . Because the active function used is a sigmoid function, 

we can simplify '( )jF net  to a multiplication of sigmoid functions as shown below 

1 1 1
( ) ( )(1 ) ( )(1 ( ))

1 1 1x x x

d d
F x F x F x

dx dx e e e      
  

.    (2-13) 

Eqs. 2-10 and 2-11 form the basis of learning needed to train the ANN. 

 

2.2.4 Application of Back-Propagation Artificial Neuron Network for Function 

Approximation 

The function approximation is the most useful feature of ANN. This functionality 

of ANN can be use to approximate the relationship between input and output of a 
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physical system. Here we consider a simple application example of back-propagation 

ANN to approximate the relationship between the critical angles of the interface 

between two media, which is known as the Snell’s law. The critical angle of light 

passing through an interface of two media is known to be 

1
1 2sin ( / )n n  ,             (2-13) 

where 1n , 2n  are the refractive indices of the two medium. For this case, we construct a 

back-propagation ANN with two input nodes, four hidden nodes and one output node. 

The learning rate is set to be 0.1 for all weighting and bias parameters. As shown in Fig. 

2.10, the convergence of the learning process is poor if the number of hidden nodes is 

less than three, whereas no further improvement in the convergence can be yielded when 

the number of hidden nodes is more than 4. 
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Fig. 2.10. Learning curve of a back-propagation ANN with different number of hidden 

nodes. 
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After training, the ANN can simulate the training data and predict the test data as 

shown in Figure 2.11. The predicted values of ANN agree very well with the theoretic 

curve. 

 

Fig. 2.11. The input-to-output characteristic curve of the back-propagation ANN with 

(a)the training data and (b) the test data. 

 

2.2.5 Application of Back-Propagation Artificial Neuron Network for Time Series 

Prediction 

Time series prediction is useful for the prediction of weather temperature, the 

periods of sunspot, and chaos, etc. Time series prediction is very similar to functional 

approximation. Here we will focus on the issue of how to use ANN to predict the 

behavior of a chaotic series. We created a chaotic series with the follow formulas: 

0

1

0.01

4 (1 )t t t

Y

Y Y Y


 

,              (2-14) 

which is results in a logistic map with r=4. 
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For time series prediction, the input to an ANN is the data we have prepared. For 

example, we can use Y1 to Y3 from Eq. 2-14 as the input data and Y4 as the desired output 

of the ANN. Similarly, we can shift one position and take Y2 to Y4 as the input and Y5 as 

the desired output. In this way, we can prepare numerous dataset to train the ANN. We 

chose the learning rate to be 0.01 for all weighting and bias parameters. The learning 

curves with different sets of system parameters are presented in Figure 2.12. After 

training, we can use the ANN to predict the data remaining in the time series data. The 

predicted values of the test data and training data by the ANN are plotted in Fig. 2.13, 

indicating the performance of the ANN is excellent with the predicted values almost 

identical to the real values in the chaotic series. 
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Fig. 2.12(a) The learning curves of an ANN used for time series prediction. During the 

learning phase, the data prepared for training the ANN is single, two serial 

numbers, three serial numbers, respectively. 
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Fig. 2.13. The time series (top) and the input-to-output characteristic curves (bottom) of 

a back-propagation ANN with the training data (left) and the test data (right). 
 

Fig 2.12(b) The learning curves of an ANN with different number of hidden nodes. 
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2.3 Summary 

From the case studies shown in this chapter, we found that ANN is useful for 

numerous applications. Most of the applications of ANN use the back-propagation 

structure. Function approximation is useful to simulate the behavior of a physical system, 

which the underlying processes inside the system are unclear. We can build an ANN to 

simulate the relationship between the input and output of a physical system. The most 

sensitive issue of ANN relates to the training process. The training process requires 

much CPU time and may yield poor performances if an inappropriate ANN structure is 

implemented and is trained with inappropriate data sets. 
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Chapter 3 Complete Characterization of Ultrashort 

Coherent Optical Pulses with SHG Spectral 

Measurement 

 

3.1 Introduction 

As explained in Chapter 1, the complete field characterization of coherent optical 

pulses is the first step to invoke these optical pulses for optical metrology. Several 

techniques had been developed to offer the complete characterization of coherent optical 

phases, such as frequency-resolved optical gating (FROG) first reported by D. Kane and 

R. Trebino [2], and spectral-phase interferometry for direct electric field reconstruction 

(SPIDER) developed by T. Tanabe, et al. [3]. 

The basic concept of FROG is quite similar to the autocorrelation measurement but 

FROG measures the spectrums at different time delays instead of optical intensity only. 

Retrieving the spectral phases and then yielding a complete-field information of the 

coherent pulse under study is via an iteration algorithm. SPIDER can directly measure 

the spectral phase of a coherent pulse with a spectral-shearing interferometer, which 

separates the incoming coherent pulse into two parts and sent one part through a linear 

spectral phase modulator, and the other through a linear temporal phase modulator. And 

then by superpose these two parts together to yield a spectral-shearing interferogram. 
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The spectral phase and therefore the complete field information of the coherent pulse 

can be deduced directly from the interferogram without involving any further iterative 

calculation. 

Along the development of complete coherent pulse characterization, Dorrer, et al. 

had invoked a self-referencing device based on the concept of shearing interferometry in 

the space and frequency domains to perform the spatio-temporal characterization of 

ultrashort light pulses [22]. Weiner et al. [23] had demonstrated the spreading of 

femtosecond optical pulses into picosecond-duration pseudo-noise bursts. In this case, 

pulse spreading was accomplished by encoding pseudorandom binary phase codes onto 

the optical frequency spectrum. Subsequently, decoding of the spectral phases restores 

the original pulse. Shelton et al. have generated a coherently synthesized optical pulse 

from two independent mode-locked femtosecond lasers, providing a route to extend the 

coherent bandwidth available for ultrafast science [24]. Applications of coherent light 

pulse characterization techniques in femto-chemistry had been well reviewed in [25]. 

Another attractive approach to characterize coherent laser pulse is to use an 

adaptive feedback-controlled apparatus to tailor the spectral phase of a coherent pulse to 

achieve the maximum second harmonic generation output from a nonlinear optical 

crystal [26]. In this way, the compensating spectral phases carry the spectral phase 

information about the coherent pulse under study. 
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Control the quantum evolution of a complex system is an important advance in 

optical metrology. The technique has now been coined as coherent or quantum control. 

Adaptive coherent pulse control [27-30] is the most successful scheme to be used for 

quantum control. Several algorithms have been developed to tailor a coherent optical 

field for a specific target on the basis of fitness information [31-36]. In this regard, a 

freezing phase concept had been proposed for adaptive coherent control with a 

femtosecond pulse shaper [26]. 

Our main goal of this study is to develop an artificial neuron network (ANN) model 

which can be used to retrieve the spectral phase of a coherent pulse directly from the 

spectrum of the second harmonic generation (SHG) with a nonlinear optical crystal. The 

SHG spectrum is affected by both the SHG process and the spectrum of the incident 

light pulse. In this chapter, we will develop an ANN to help us retrieving the spectral 

phase and therefore the complete-field information of a coherent pulse (phase and 

spectrum) with the measured spectrum of second harmonic generation. 

Assuming the temporal profile of a coherent pulse is known, therefore we only 

need to adjust the spectral phase of the input pulse to generate the maximum SHG 

output from a nonlinear crystal. From the measured SHG spectrum, we retrieve the 

spectral phase of the input coherent pulse with an artificial neuron network. If the 

approach is successful, we can simply retrieve the complete field information of a 
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coherent pulse in real time directly from a measured SHG spectrum without 

time-consuming computation. The apparatus needs only NLO (Nonlinear Optics) crystal 

and a spectroscope. 

3.2 Theory 

Considering an incident coherent optical pulse ( )( ) ( ) iE A e    with a 

spectrum of ( )A w  and spectral phase distribution of ( )j w . The second harmonic 

generation spectrum can be expressed as 

2

(2 ) ( )* ( )SHGI E E d       .        (3-1) 

Assuming the spectrum of the coherent pulse to be Gaussian, and the spectral phase 

profile can be properly depicted with a polynomial of order 6, usually factor the phase of 

a high order is much small than the low order we cut it off at the order six. 

2 2
0( ) exp( / )A     ,           (3-2) 

6

0

( ) n
n

n

a  


  .            (3-3) 

In general, the phase terms of order zero and one do not have any effect on SHG. The 

spectral phase profile can be further simplified by including terms from two to six only. 

Note that from the point of view of theory, it shall be impossible to retrieve the 

spectral phase of a coherent pulse directly from the SHG spectrum of a coherent pulse. 

Therefore, in the following we will conduct some simulations to test the feasibility of 

the concept. 
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3.3 Simulation 1 

3.3.1 Preparation of the training data set 

To prepare the training process of ANN, we sampled the spectrum and phase of a 

coherent Gaussian pulse to generate 64 data points. The second harmonic spectrum is 

presented with a data array of 127 data points because the second harmonic spectrum 

was calculated via a convolution operation. 

The schematic of the training process is detailed in Fig 3.1. The input into a 

back-propagation artificial neuron network is the data of the second harmonic generation 

pulse comprising a spectral profile array and a spectral phase array. 

 

 

 

 

Fig. 3.1. The schematic showing the training process of a back-propagation 

artificial neuron network. The input data to the ANN is prepared from the 

SHG Spectrum generated by a coherent pulse with a Gaussian amplitude 

profile and a desired phase profile. 

 

BPANN Error 

Desired Phase 

SHG Spectrum 



 - 36 -

3.3.2 Creation of a Backward Propagation Artificial Neuron Network 

The input layer of the BP ANN was designed to accommodate the 127 inputs of the 

second harmonic generation spectrum. The output layer generates the retrieved spectral 

phase profile for the coherent pulse under study. A typical training data for the coherent 

pulse under study is shown in Fig. 3.2. The resulting SHG spectrum obtained from the 

training data is presented in Figure 3.3. We had investigated BP ANN with different 

numbers of hidden nodes and different learning parameters to find out the best learning 

performance of the artificial neuron network. The results will be discussed in the 

following section. 
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Fig. 3.2. Typical training data prepared for the BP ANN. The data comprises 

the spectrum and the spectral phase of the coherent pulse under study. 
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3.3.3 Results and Discussion of Simulation 1 

In this simulation, we used a two-layer BP ANN to find out how many hidden 

nodes are needed to yield a satisfactory learning performance. The active function of 

each node was chosen to be the sigmoid function and the rate constant of learning rate 

was set to be 0.1 for the first and the second weighting layers. In the learning phase, we 

trained the network by 1000 epochs. To evaluate the performance of the training, we 

used a correlation coefficient r, which is define as 

x y

x y

S
r

S S
  .             (3-4) 

Fig. 3.3. The resulting SHG spectrum obtained from the training 

data shown in Fig. 3.2. 
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Here 
, 1

1
( )( )

1

n

x y i j
i j

S x x y y
n 

  
  , and Sx, Sy are the standard deviations of x, y. 

The correlation coefficient can reveal the underlying relation between two sets of data. It 

value lies between -1 and 1 with value one implies a prefect linear dependence. In our 

case, r=1 means the output of the ANN is same as the desired output. 
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Figure 3.4 presents a plot of the population number with r > 0.9 in 1000 data points 

as a function of the number of hidden nodes used in the BP ANN. We can find that by 

increasing the number of hidden nodes the number of data points with the correlation 

coefficient higher than 0.9 increases, implying that the predicted values with ANN can 

approach to the target phase. As the number of hidden nodes is larger than 20, the 

Fig. 3.4.The curves showing the relation of the population number 

with r > 0.9 in 1000 data points with the number of hidden 

nodes in the BP ANN. 
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increasing tendency becomes stagnated. Therefore, the best choice is a BP ANN with 

each hidden layer containing about 20 hidden nodes. 
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From the distribution of r presented in Fig 3.5, we found that only about 35% of the 

predicted values of spectral phase has a correlation coefficient higher than 0.9. 

Apparently, the learning performance of this SP ANN is not satisfactory. In view that the 

spectral phases used are expressed in terms of polynomials, we may be able to solve the 

problem with an increase of the information content in the training data by including 

more orthogonal phase profiles. Therefore, in the next section, we will try to express the 

spectral phase profile in terms of Legendre polynomials of order 2 to 6, which are shown 

Fig. 3.5. The resulting distribution of r with 1000 test data points , and 1000 

test data samples. The number of hidden nodes used is 32. 
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in Figure 3.6. 
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3.4 Simulation 2 

3.4.1 Preparation of the Training Data Set 

Legendre polynomials form a complete set of orthogonal basis for a continuous 

function. By expanding the spectral phase profile of a coherent pulse into Legendre 

polynomials, we can significantly increase the information content with a minimum 

number of Legendre polynomials. Indeed as shown in Fig. 3.7, by including Legendre 

polynomials of order 2 to 6 in the spectral phase profile ( )j w , more complicated SHG 

spectrum can be synthesized. The method significantly increases the degrees of freedom 

Fig. 3.6. L2, L3, L4, L5, L6: the Legendre polynomials of order 2 to 6. 



 - 41 -

in the phase retrieval procedure. Six SHG spectra are prepared for the training of BP 

ANN by including more Legendre polynomials in the spectral phase are shown in Figure 

3.7. 
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3.4.2 Creation of the Backward Propagation Artificial Neuron Network 

For this study, we built another BP ANN which contains 762 input nodes and 64 

output nodes. The 762 (6x127=762) input nodes are designated for the six SHG 

spectrums and 64 output nodes are for the retrieval spectral phase of the coherent pulse 

under study. The learning rate is set to 0.1 for both the first weighting layer and the 

second weighting layer. The data-flow schematic for the training is shown as Fig 3.8. 

Fig 3.7. Six SHG spectra are prepared by including more Legendre 

polynomials in the spectral phase. 
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3.4.3 Results and Discussion of Simulation 2 

The simulation results showing the relation of the population number with r > 0.9 

in 1000 data points with respect to the number of hidden nodes in the BP ANN used are 

presented in Fig. 3.9. The results are quite encouraging in view that the number of the 

predicted phases with a correlation coefficient r> 0.9 can reach more than 90% of the 

test samples. 

Fig 3.8. The data-flow schematic for the BP ANN training. Six SHG Spectra as 

shown in Fig. 3.7 were used. 
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We presented in Fig. 3.10 some representative profiles with r>0.9 to give some hints of 

how well the BP ANN performs. From this Figure, we can see that the phase profile 

retrieved by our ANN agrees very well with the target profile. 

 

Fig 3.9. The curves showing the plot of the population number with r > 

0.9 in 1000 data points as a function of the number of hidden 

nodes in the BP ANN. 
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3.5 The Proposed Experimental Setup 

For an experimental realization of the technique, one may concern how to conduct 

the training of BP ANN and then how use the trained ANN to perform the complete field 

characterization of a coherent pulse experimentally. We proposed an advanced apparatus 

with a pulse shaper to yield an adaptive feedback control loop as depicted in Fig. 3.11. 

By using this apparatus, we can first measure the spectrum of the laser pulse under study. 

We can produce many possible phase distorted versions of the coherent pulse by 

combining the measured spectrum with a variety of spectral phases expressed as a series 

of Legendre polynomials. A variety of SHG spectra are then synthesized to train the BP 

Fig 3.10. A representative phase profile retrieved from the BP ANN with r>0.9 

is plotted to reveal the close agreement with the target phase profile. 
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ANN. After training, the trained ANN can be invoked to retrieve the spectral phase of 

the coherent pulse with the measured SHG spectrum. The apparatus offers a possibility 

to perform a complete-field characterization of a coherent excitation and quantum 

control of a physical system in a single setup. 

 

 

 

3.6 Conclusions 

We developed a BP ANN which can be invoked to retrieve the spectral phase of a 

coherent pulse from the measured SHG spectrum. We proposed a setup to be used for 

the experimental realization of the concept. By using this apparatus, we only need to 

measure the spectrum of the coherent pulse under study and then combine the spectrum 

with a variety of spectral phase profiles to prepare the SHG spectra for training the BP 

ANN. The trained BP ANN can be invoked to retrieve the spectral phase profile for the 

complete field characterization of a coherent pulse. From a simulation study, we found 

SHG crystal

Spectrometer 
Phase 

Modulator 
Plus 

ANN System 
Phase information 

Phase retrieve  

Fig. 3.11. Proposed Experimental setup. 
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the predicted phases can achieve the target profile with more than 90% confidence. 

Thanks to the computation efficiency of BP ANN, the technique developed in this study 

offers a possibility to perform a complete-field characterization of a coherent excitation 

to a physical system and quantum control of the system in a single setup. 
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Chapter 4 Real-Time Localization of Nano Objects at 

the Nanometer Scales 

 

4.1 Introduction 

An isolated fluorescent molecule or nano object will be observed like a light spot 

under an optical microscope. The spatial profile of the light spot simply reveals the point 

spread function of the optical microscope used. The peak position of the light spot can 

be determined with an accuracy of 1 nm if the signal-to-noise ratio of the detection is 

high enough. This impressive feature of nanometer localization with optical microscopy 

had recently inspired many applications including Fluorescence Imaging with One 

Nanometer Accuracy (FIONA) [37], sub-diffraction-limit imaging by stochastic optical 

reconstruction microscopy (STORM) [38], and fluorescence photoactivation localization 

microscopy (FPALM) [39], etc. Important biophysical mechanisms at the subcelluar 

scales had been discovered [40].  

In the historical point of view, we noticed that a modified Hough transformation 

had been developed to detect a circular object [41] for recognizing and classifying 

interesting features present in a phase-contrast (PC) cytological image. Fillard, et al. had 

invoked the frequency dependence of the argument of Fourier transform to analyze an 

in-focus two-dimensional Airy disk [42]. Alexander, et al. proposed a method to 
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eliminate the systematic error in centroid estimation and achieved a subpixel accuracy 

[43]. It is interesting to know that a diffractive optical element (DOE) [44] had been 

applied to effectively locate a laser spot on a projection screen. The method could be 

invoked to achieve nanometer localization for optical microscopy. Anderson had 

presented an algebraic solution to the problem of localizing single fluorescent particle 

with sub-diffraction-limit accuracy [45]. Qu, et al. [46] had demonstrated nanometer 

localization of multiple single-molecules (NALMS) by using fluorescent microscopy 

and photobleaching properties of fluorophores. Cui, et al. [47] had devised an optimized 

algorithm useful for localizing light spots in high noise background. A method [48] 

combining the radial basis network with anisotropic Gaussian basis function had been 

used to detect the position of a fluorescent protein. Fillard [49] relied on the Fourier 

phase frequency dependence to achieve sub-pixel localization accuracy of a light spot. 

Enderlein [50] had proposed a method useful for tracking single fluorescent molecules 

diffusing in a two-dimensional membrane by invoking a rotating laser focus to track the 

position of the molecule. More information about single-molecular imaging and 

spectroscopy can be found in [51]. 

Based on the technical review, we found the major issue in the localization and 

tracking of nano objects is how to localize these objects accurately and rapidly with 

minimum invasiveness. To achieve the goal, many algorithms had been developed. 
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Fitting the light spot to a 2D Gaussian function is the most popular technique in this 

field. Another useful technique is to retrieve the peak position of a light spot via a 

center-of-mass approach [4]. However, to invoke these two techniques to localize a light 

spot with large size often fails to yield an accurate result. Therefore, in this chapter we 

will develop an ANN model to rapidly localize multiple light spots with high accuracy. 

We invoked the feature of function approximation of ANN. We expect that the 

localization accuracy of ANN can be further improved when more data are accumulated. 

Comparing to the 2D Gaussian fitting method, our ANN localization method is also less 

sensitive to noise influence. 

 

4.2 Data Preparation for Training the Artificial Neuron Network 

Localization Model 

To train and test the performance of an ANN localization model, we prepared an 

image of 10 bright spots with 256x256 pixels as shown in Figure 4.1. The brightness 

profile of the light spots is Gaussian. The main target of this study is to construct a 

trained ANN model which can be invoked to yield the peak positions with a localization 

error less than one pixel. 
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4.3 First Test Run of the Artificial Neuron Network Localization Model 

In this study, we constructed a BP ANN for localizing bright spots in an observing 

region. To serve this purpose, we began at an image of one spot with 25x25=625 pixels 

shown in Fig. 4.2. We input this image into the BP ANN. The output is the coordinates 

(x, y) of the spot. Therefore, the BP ANN possesses a total of 625 input nodes, 2 output 

nodes, and a hidden layer of 30 nodes. The activation function of the hidden layer is 

chosen to be hyperbolic tangent (tanh), while the activation function of the output layer 

is sigmoid function. We set the rate constant of learning to be 1.0 and 0.1 for the first 

and the second weighting layer, respectively. 

Fig 4.1. An image of 10 bright spots prepared for training the artificial neuron 

network localization model. 
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The performance of the BP ANN trained by 10000 epochs with 1000 samples is 

shown in Figure 4.3. The distribution of the localization error deduced from the results 

with a training set of 1000 images or 1000 test images reveals that the localization error 

can be smaller than one pixel. However, in this example, we did not take into account 

the noise influence and only single bright spot is included. 
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Fig. 4.3. The distribution of the localization error deduced from a run with either 

1000 training images or 1000 test images. 

Fig. 4.2. One of the images with 25x25=625 pixels and containing single bright 

spot, used for training the artificial neuron network localization model. 
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4.3.1 Difficulty Encountered by the Artificial Neuron Network to 

Localize Multiple Light Spots 

In the previous section, we found that the BP ANN can be used to successfully 

localize a single bright spot with a localization error less than one pixel. However, it is 

difficult to use single BP ANN to searching an area with multiple light spots. In fact, in a 

real situation, we do not know how many spots are involved in the beginning. Therefore, 

we try to combine two BP ANNs with the first ANN to determine how many spots are 

involved in a large region, and divide the region into a series of smaller domains with 

each containing single spot only. And then the second ANN will take over to localize 

each spot with high accuracy. The second BP ANN can be the same as the one described 

in the previous section. Thus, we separate the ANN localization procedure into the ANN 

searching step and the ANN localization step. We will detail each steps in the following 

sections. 

 

4.3.2 The ANN Searching Step: Searching Over an Entire Region to 

Deduce the Number of Light Spots 

In order to detect how many spots involved and their rough locations over an 

image area, we design a BP ANN to search over the entire region to find out the pixels 

with an intensity value exceeding a threshold value. Based on this searching result, we 
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shall be able to deduce the number of light spots and roughly locate their positions. 

 

4.3.3 The ANN Localization Step: Localize a Smaller Region to Yield 

the Coordinates with High Accuracy 

We had demonstrated in Section 4.3 that a light spot in a region of 25x25 pixels 

can be localized to subpixel accuracy. For a quantitative analysis, we draw all the 

coordinates deduced in the learning phase over the image area of 25x25 pixels in Figure 

4.4. The average inter-spot distance is about one pixel; the localization error is 0.5 pixel. 

0 5 10 15 20 25

0

5

10

15

20

25

 Data

Y
 P

o
s

 (
p

ix
e

l)

X Pos (Pixel)

 

 

 

4.4 Training ANN over a Small Image Region with Higher Data Density 

In this section, we aim to reduce the localization error to less than 0.1 pixel. To 

Fig 4.4. Distribution of the peak position of light spot taken from 1000 training 

data over an image area of 25x25 pixels. 
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achieve this goal, we build a BP ANN and apply it to analyze images with 11x11 pixels 

as shown in Figure 4.5. Furthermore, to reduce the localization error, we increase the 

number of training data to 10000. 

 

 

 

 

The BP ANN we created contains 121 input nodes and 2 output nodes. The 

activation function of the input layer is chosen to be hyperbolic tangent (tanh) and that 

of the output layer is sigmoid function. The learning rates are 1.0 and 0.1 for the input 

and output weighting layers, respectively. 

Fig. 4.5. One of the training images with 11x11 pixels and single bright spot. 



 - 55 -

3 4 5 6 7 8

3

4

5

6

7

8

 10000 train data

Y
 P

o
s(

P
ix

el
)

X Pos(Pixel)

 

 

 

The peak positions of the 10000 training data are presented in Figure 4.6. The 

average inter-spot distance is much smaller than one pixel. After training 7500 epochs, 

the result of localization error is shown in Figure 4.7. 

Fig. 4.6. Distribution of the peak position of light spot taken from 10000 

training data over an image area of 11x11 pixels. 
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From this figure, we can conclude that the spots in an image area of 11x11 pixels 

can be localized by the ANN to within an error of 0.1 pixel. 

 

4.5 Comparison between ANN Localization Model and 2D Gaussian 

Profile Fitting Method 

In the single molecular research with nanometer localization and tracking 

technique, the two-dimensional Gaussian fitting technique used is often limited to an 

image size of 11x11 pixels due to the compromise between speed and localization 

accuracy. Therefore, it is interesting to study the performance comparison between our 

ANN localization model and the 2D Gaussian fitting method in the same image size of 

Fig. 4.7. The distribution of localization error taken from either 1000 training data 

or 1000 test data after the ANN has been trained for 7500 epochs. 
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11x11 pixels. 

The typical localization error of the 2D Gaussian fitting method is zero and it takes 

about 0.03 sec to complete the fitting process for each spot. On the other hand, the 

average localization error of our ANN is about 0.05 pixel but the localization time for 

each spot is negligible. The 2D Gaussian fitting method can be rendered into a linear 

algebraic problem and the computation time will increase rapidly as the number of the 

unknown parameters increases. Therefore, as show in Fig 4.8, we can find that the 

difference of the computation time between the two methods becomes significant as the 

image size and therefore the number of spots involved increases. 
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Fig. 4.8. Comparison showing the localization time of our ANN localization model    

and the 2D Gaussian profile fitting method as a function of the number of 

spots. 
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4.6 Noise Influence 

For a real application with ANN, we shall consider the influence of noise that is 

unavoidable in experimentally measured data. In this section, we will study the influence 

of noise on the performance in more detail. 

We prepared a set of test images by adding into the images with a noise level from 

10 % to 50 % of the peak height of the light spot. The resulting images after adding 

noise are shown in Figure 4.9. 

 

 

We used these images as a template and varies the spot position to generate a training set 

of 10000 images. We trained an ANN with structure the same as that to be described in 

Section 4.7. After training, the learning performances are shown in Figure 4.10. 

Fig. 4.9. Images showing the influences of noise on the training data. The noise level   

is set to be 0%, 10 %, 20 % , 30%, 40% and 50 % of the peak height (from 

top left to right bottom), respectively. 



 - 59 -

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

N
u

m
. o

f 
sa

m
p

le

Localization Error (Pixel)

 rand  0%
 rand10%
 rand20%
 rand30%
 rand40%
 rand50%

 

 

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
ve

ra
g

e 
L

o
ca

li
za

ti
o

n
 E

rr
o

r 
(P

ix
el

)

Rand Level

 Test data

 

 

 

Fig. 4.11. The average localization error as a function of noise level in the test 

data. 

Fig. 4.10. The distribution of localization error taken from 1000 most populated 

test data among the set of 10000 data used in our ANN model. The test 

data are affected by noise with 10%, 20%, 30%, 40%, and 50% of peak 

height. 
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We can find that the localization error increases as the noise level of the test images is 

increases. However, as shown in Fig. 4.11, even the noise level has been raised to 50% 

the average localization error can still be kept below 1 pixel. 

For a fair comparison, we will examine the influence of noise on the 2D Gaussian 

fitting method by using the same test data set. The result is presented in Figure 4.12. 

Because our test spot was generated from 2D Gaussian profile, the resulting localization 

error with the 2D Gaussian fitting method is zero when noise is negligible. The 

localization error increases as noise level is increased. If we focus on the cases with the 

localization error below 1 pixel, the performance with the 2D Gaussian fitting method is 

almost identical to the ANN. However, as the noise level is above 30%, the probability 

that the 2D Gaussian fitting method fails to yield a peak position is larger than 20%, 

leading to that the average localization error becomes larger than 1 pixel as shown in 

Figure 4.13. 
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Fig 4.13. The distribution of localization error taken from 1000 most populated test data 

among the set of 10000 data used in the 2D Gaussian fitting method. The test 

data are affected by noise with 30%, 40%, and 50% of peak height. 

Fig 4.12. The distribution of localization error taken from 1000 most 

populated test data among the set of 10000 data used in the 2D 

Gaussian fitting method. The test data are affected by noise with 

0%, 10%, 20%, 30%, 40%, and 50% of peak height. 
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4.7 The ANN Localization Model Suited for Large Area Searching 

As mentioned in Section 4.3.1, we divide our ANN localization process into two 

steps. In the first stage, we use the first ANN to determine how many spots are involved 

in the entire region. For an image as shown in Figure 4.14, depending on the hardware, 

the complete localization (shown in Fig. 4.15) of all light spots may take less than 0.3 

sec. 

 

 

 

Fig. 4.14. An image of 10 bright spots in a size of 256x256 pixels prepared for 

testing the artificial neuron network localization model.  
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In the second stage, we isolate a squared region around each spots within which 

the pixel value is larger than 90% of the peak value. The images of these isolated 

domains with each occupying 11x11 pixels are sent to the ANN to locate the peak 

position of each light spot with high accuracy. 

In the following, we will analyze the influence of noise on the performance to 

assess the potential for a real application. The test image is added with a noise level of 

10 % and 20 % of the peak height, respectively. The trained ANN model is used to 

localize the light spots. The results are shown in Figure 4.16. 

Fig. 4.15. The target positions (red circles) and the positions (black dots) 

retrieved with our ANN localization model. 
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4.8 Conclusions 

From these case studies reported in this chapter, we can conclude that localization 

of light spots with ANN is feasible with a performance better than that with the 2D 

Gaussian fitting method. This is true, especially when high noise level is involved in the 

images. The ANN also requires less computation effort in comparison with the Gaussian 

fitting method. Although the training procedure of an ANN takes a lot of computation 

Fig. 4.16. The same run as Fig. 4.15 except that the test images are affected with 

different noise levels: (a) 10%; (b) 30%. 
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time, this procedure only needs to be done once before its use. 
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Chapter 5 Conclusions and Future Work of This Thesis  

 

5.1 Conclusion of This Thesis 

In this thesis, we aim to implement the learning ability of artificial neuron network 

into an optical apparatus to accumulate the user experiences and improve the prediction 

accuracy of the artificial neuron network as more data are collected. We demonstrated 

that artificial neuron network can improve the measurement accuracy or generate new 

functionality of an apparatus. We focus on two case studies in optical metrology, 

including the complete characterization of ultrashort laser pulses and nanometer 

localization in real time for an optical microscope. From the first case study, we 

conclude that a trained back-propagation artificially neuron network can be invoked to 

retrieve the spectral phase profile of a coherent pulse from a measured SHG spectrum. 

The technique developed in this study offers a possibility to perform a complete-field 

characterization of a coherent excitation to a physical system and quantum control of the 

system in a single setup. 

From the second case study, we developed a two-stage ANN strategy by first 

determining how many spots involved in the entire image. And then we invoked the 

second ANN to further process a set of squared domains around each spots to localize 

each spot. We successfully used the two-stage ANN strategy to localize multiple light 
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spots in a large area with high accuracy. We concluded that localization of light spots 

with ANN is feasible with a performance better than that with the 2D Gaussian fitting 

method. This is true, especially when high noise level is involved in the images. In 

addition, the ANN localization model also requires less computation effort in 

comparison with the Gaussian fitting method. 

 

5.2 Future Work 

Although we have successfully applied ANN in two cases in optical metrology, the 

following issues related to the current work remain unsolved and worth further study: 

(1) How many hidden nodes should one use in an ANN to reach the best performance 

for a specific application?  

(2) Since the ANN is powerful for modeling a nonlinear system, it is possible to 

combine ANN with other solvers for nonlinear equations such as Landsweber 

iteration method to enhance the iteration performance. 

(3) The initial guesses of the weighting parameters and biases may influence the 

learning speed and thereby the convergence. How to set up a better initial guess 

worth further study. 

(4) In this thesis, we applied ANN to localize multiple bright spots in an optical 

microscopic image. It is also very interesting to develop an ANN to recognize a 
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complex object in an image. A related issue is how to distinguish the object from its 

environment (i.e., how to determine the boundary of the object?) Or how to derive a 

criterion to guide a computer to determine the boundary of an object automatically? 
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Appendix I: Technical Details of BP ANN  

To help understanding the implementation of a back-propagation artificial neuron 

network (BP ANN) reported in this thesis, some useful information is presented in this 

Appendix. 

From the configuration of BP ANN shown in Fig. 2.9, the output from jth hidden node 

can be expressed as 

1

( ) ( )
n

j i ij j j
i

H F X W P F net


    .         (2-4) 

The output of the kth output node becomes 

1

( ) ( )
m

k j jk k k
j

Y F H W P F net


    .         (2-5) 

The deviation of the real output Y from the desired output D can be found 

2

1

1
( )

2

l

k k
k

E D Y


  .             (2-6) 

We update the weighting parameters of BP ANN by using the gradient descent method 

to minimize E, yielding 

( 1) ( )jk jk
jk

E
W t W t

W
 
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,           (2-7) 
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P t P t
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 

  


.            (2-8) 

To estimate 
jk

E

W




, we invoke the chain rule and in 

Case 1: the weighting parameters between the hidden and output layer are found to be 
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In Case 2: we can derive the weighting parameters between the input and hidden layer 
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as 
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Define k )( kk YD  )(1
knetF   and j )(1

jnetF  
k

jkkW , we obtain 

Eq. (2-9) and Eq. (2-11) 

( 1) ( )jk jk k jW t W t H   ,           (2-9) 

( 1) ( )ij ij j iW t W t X    .           (2-11) 

Similar procedure can be employed to obtain Eq. (2-10) and Eq. (2-12) by simply 

replacing 
jk

k

W

net


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 and 
ij

j
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net




 with 
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k

P

net


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net




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Since both of the derivatives are equal to one, therefore 

( 1) ( )k k kP t P t    ,            (2-10) 

( 1) ( )j j jP t P t    .            (2-12) 

During the training stage, Eq. (2-4) and Eq. (2-5) are used to obtain the output of 

BPANN. Eqs. (2-9) to (2-12) are then employed to update the weighting parameters of 

the BP ANN until the error E is small enough or the limit number of training loop is 

arrived. During the application stage of BP ANN, only Eq. (2-4) and Eq. (2-5) are used. 

The detailed steps are summarized in the following: 

1. Initialize the weighting parameters Ws and Ps of BP ANN with random numbers. 

2. Input a training data set X and D and invoke Eq. (2-4) and Eq. (2-5) to derive Y. 

3. Calculate the value of error with Eq. (2-6). If the value is small enough stop the 
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training process, otherwise continue to the next step. 

4. Calculate the error for the output layer k . 

5. Update the weighting parameters of the BP ANN for jkW  and kP  with Eq. (2-9) 

and Eq. (2-10). 

6. Calculate the error for the hidden layer j . 

7. Update the weighting parameters of the BP ANN for jkW  and kP  with Eq. (2-11) 

and Eq. (2-12). 

8. Go to step 2 for next 

training data set or stop the 

training process if the limit 

number of training loop is 

arrived. 

 

The Flow Chart of the 
Training Process of a BP 
ANN 

 

Initialize 

Stop 

DATA Input sample 

Error Check 

Update weight 

Loop Check 
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Appendix II: The Code for Preparing the Data 

Used in This Thesis 

 

To retrieve the phase information of a coherent optical pulse from its SHG spectral 

Intensity, we follow the following procedure: 

Step1: Generate a Gaussian spectral profile with the code of  

for w=1:64 

    A(w)=exp(-((w-32.5)/15)^2); 

end 

 

Step2: Prepare the polynomial form of phase with 

mask=[1 1 1 1 1;      1 1 1 1 -1;      1 1 1 -1 1;      1 1 -1 1 1; 

      1 -1 1 1 1;      -1 1 1 1 1;      1 1 1 -1 -1;      1 1 -1 1 -1; 

      1 -1 1 1 -1;      -1 1 1 1 -1;      1 1 -1 -1 1;      1 -1 1 -1 1; 

      -1 1 1 -1 1;      1 -1 -1 1 1;      -1 1 -1 1 1;      -1 -1 1 1 1; 

      -1 -1 -1 -1 -1;    -1 -1 -1 -1 1;      -1 -1 -1 1 -1;      -1 -1 1 -1 -1; 

      -1 1 -1 -1 -1;     1 -1 -1 -1 -1;      -1 -1 -1 1 1;      -1 -1 1 -1 1; 

      -1 1 -1 -1 1;      1 -1 -1 -1 1;      -1 -1 -1 1 1;      -1 -1 1 -1 1; 

      -1 1 -1 -1 1;      1 -1 -1 -1 1;      -1 1 1 -1 -1;      1 -1 1 -1 -1; ]; 

row=fix(rand(1)*32+1); 

paramater=10*mask(row,:).*rand(1,5); 

Phase=zeros(1,64);  

for i=1:64 

    x=(i-32.5)/32; 

    Phase(i)=paramater(1)*x^2+paramater(2)*x^3+paramater(3)*x^4 ... 

            +paramater(4)*x^5+paramater(5)*x^6; 

end 

 

Step3: Add the phase some Legendre polynomials and yield the associated SHG spectral 

intensity with 

 

PhaseAdd=[ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 

6.2832 5.6943 5.1244 4.5735 4.0416 3.5287 3.0347 2.5598 2.1039

 1.667 1.249 0.85011 0.47017 0.10923 -0.23271 -0.55566 -0.8596

 -1.1446 -1.4105 -1.6575 -1.8854 -2.0944 -2.2844 -2.4553 -2.6073

 -2.7403 -2.8543 -2.9493 -3.0252 -3.0822 -3.1202 -3.1392 -3.1392

 -3.1202 -3.0822 -3.0252 -2.9493 -2.8543 -2.7403 -2.6073 -2.4553

 -2.2844 -2.0944 -1.8854 -1.6575 -1.4105 -1.1446 -0.8596 -0.55566

 -0.23271 0.10923 0.47017 0.85011 1.249 1.667 2.1039 2.5598

 3.0347 3.5287 4.0416 4.5735 5.1244 5.6943 6.2832; 

-6.2832 -5.1334 -4.0755 -3.1067 -2.2237 -1.4237 -0.70356 -0.060332

 0.50902 1.0075 1.4382 1.804 2.108 2.3532 2.5426 2.6792

 2.7661 2.8063 2.8027 2.7584 2.6765 2.5598 2.4115 2.2346

 2.032 1.8068 1.562 1.3006 1.0257 0.74015 0.4471 0.14954

 -0.14954 -0.4471 -0.74015 -1.0257 -1.3006 -1.562 -1.8068 -2.032

 -2.2346 -2.4115 -2.5598 -2.6765 -2.7584 -2.8027 -2.8063 -2.7661

 -2.6792 -2.5426 -2.3532 -2.108 -1.804 -1.4382 -1.0075 -0.50902

 0.060332 0.70356 1.4237 2.2237 3.1067 4.0755 5.1334 6.2832; 

6.2832 4.4275 2.8361 1.4888 0.36615 -0.55052 -1.2793 -1.8377 -2.2425

 -2.5096 -2.6546 -2.6921 -2.6363 -2.5005 -2.2974 -2.0392 -1.7372

 -1.4022 -1.0441 -0.67247 -0.29589 0.07757 0.44053 0.78629 1.1088

 1.4028 1.6634 1.8868 2.0695 2.2089 2.3029 2.3503 2.3503

 2.3029 2.2089 2.0695 1.8868 1.6634 1.4028 1.1088 0.78629

 0.44053 0.07757 -0.29589 -0.67247 -1.0441 -1.4022 -1.7372 -2.0392

 -2.2974 -2.5005 -2.6363 -2.6921 -2.6546 -2.5096 -2.2425 -1.8377

 -1.2793 -0.55052 0.36615 1.4888 2.8361 4.4275 6.2832; 

-6.2832 -3.6098 -1.5204 0.06077 1.2036 1.9726 2.427 2.6211 2.6041

 2.4206 2.1108 1.7104 1.2512 0.7608 0.26336 -0.22069 -0.6742

 -1.0832 -1.4367 -1.7264 -1.9467 -2.0944 -2.1684 -2.1696 -2.1008

 -1.9665 -1.7724 -1.5257 -1.2344 -0.90767 -0.55507 -0.18678 0.18678

 0.55507 0.90767 1.2344 1.5257 1.7724 1.9665 2.1008 2.1696

 2.1684 2.0944 1.9467 1.7264 1.4367 1.0832 0.6742 0.22069

 -0.26336 -0.7608 -1.2512 -1.7104 -2.1108 -2.4206 -2.6041 -2.6211

 -2.427 -1.9726 -1.2036 -0.06077 1.5204 3.6098 6.2832; 

6.2832 2.7183 0.24698 -1.3414 -2.2315 -2.5836 -2.5359 -2.2061 -1.693

 -1.0785 -0.42916 0.20267 0.7769 1.2645 1.6463 1.9113 2.0559

 2.0826 1.9989 1.8164 1.5495 1.2153 0.8318 0.41806 -0.0070076

 -0.42505 -0.81884 -1.1727 -1.4731 -1.7087 -1.8706 -1.9531 -1.9531

 -1.8706 -1.7087 -1.4731 -1.1727 -0.81884 -0.42505 -0.0070076 0.41806
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 0.8318 1.2153 1.5495 1.8164 1.9989 2.0826 2.0559 1.9113

 1.6463 1.2645 0.7769 0.20267 -0.42916 -1.0785 -1.693 -2.2061

 -2.5359 -2.5836 -2.2315 -1.3414 0.24698 2.7183 6.2832 

]; 

SHGI=zeros(1,127*6); 

for phasecount=1:6     

    PhaseMod=Phase+PhaseAdd(phasecount,:); 

    SHGI(127*phasecount-126:127*phasecount)=SHG(A,PhaseMod); 

end 

 

Function SHG() 

 

function ShgI=Shg(Ea,Ep) 

Ew=Ea.*exp(i.*Ep); 

ShgE=conv(Ew,Ew); 

ShgI=ShgE.*conj(ShgE); 

 

Finally, the training data for ANN are prepared with a pair of input SHGI(1,127*6) and 

output Phase(1,64). 

 

To localize the central position of an image of light spot with 1111 pixels, 

Step1: Generate an image of light spot with random central position by 

 

Size=11; 

X0=rand(1,1)*Size; 

Y0=rand(1,1)*Size; 

 

Step2: Prepare the image of 11*11 pixels with a 2D Gaussian profile 

 

for X=1:Size 

    for Y=1:Size         

G(X,Y)=exp(-((X-X0)^2+(Y-Y0)^2)/3^2)+exp(-((X-X1)^2+(Y-Y1)^2)/3^2); 

    end 

end 

 

Step3: Add random noise to the image 
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noiselevel = (a value from 0 to 0.5) 

for X=1:Size 

    for Y=1:Size         

Gr(X,Y)=G(X,Y)+rand(1,1)* noiselevel- noiselevel/2; 

    end 

end 

 

Finally, the training data for ANN are prepared with a pair of input Gr(11,11) and output 

X0,Y0. 
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