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Abstract

In this thesis we report two new application cases for the Artificial Neuron Network
they are focus on the laser plus characterization and the locating of light spot. By
using the learning ability and the function approximation, we report a method to
retrace the phase in the frequency domain of the origin light field by the second
harmonic generate spectrum, and also provide a possible experimental setup for
realizing this measurement. On the other hand, by training Artificial Neuron Network
to learn the position of a light spot within an image and combining the search method,

the location of multiple light spot can be realized.
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Chapter 1 General Introduction

1.1 Fundamental Principle of Optical Metrology

In the field of optical metrology, two fundamental issues encountered are: how to
characterize the light to be used, and how to measure the optical signal to extract the
information of the measurement. As shown in Fig. 1.1, by analyzing the difference
between the intrinsic properties of the light source used and the optical signal from the
object under test, the information of the object can be revealed. By analyzing the data
we can further construct a model to explain the behavior of the object. After this model
is refined with improved knowledge from the data analysis, we can use to model to
predict the object behaviors which are still unknown to researchers. In a more aggressive
attitude, researchers or engineers can invoke the knowledge accumulated to control or
produce the desired response of a physical system by applying a proper waveform of

stimulant on the system.



Decoding

Observable
Natural
System
Prediction
Measurement

Fig. 1.1. The schematic showing the relationship of measurement, model construction,

and the control of a physical system.

The fundamental properties of a light field including the amplitude, phase

(revealing via frequency or wavelength), and the state of polarization can be invoked in

optical metrology. For examples, as illustrated in Figure 1.2, the amplitude of an optical

field can be modified by a material and the information can be used to reveal how much

light energy is absorbed as the light beam passes through the medium, which relates to

the band structure of material. Furthermore, by detecting the frequency shift of a light

field as it reflects from a moving object, we can deduce the information about the

velocity of the object, which is known as the Doppler Effect. The direction and the state

of polarization of a light field after passing through a transparent medium such as a thin

film of liquid crystal will be changed and the polarization variation carries the

information about the orientational profile of the liquid crystal molecules in the film.



Al

Light amplitude is decreased due to an absorption of photon by matter.

RO

Frequency shift of a light field after reflecting from a moving object

=

Polarization direction of a light field is changed by a liquid crystal film

Fig. 1.2. Examples showing the information of physical properties of a medium can be

embedded in the three fundamental characteristics of a light field.

Among a variety of the light-matter interaction processes such as optical absorption
by crystalline silicon, the absorption of an incident photon with energy larger than the
band gap of the medium can readily create an electron-hole pair and results in
photocurrent. As the strength of the optical field increases, numerous nonlinear optical

effects can be detected and be employed to form a variety of measurement techniques. If
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one can tightly focus the light beam on a medium with a field-concentrating tip, the
signal to be detected will mainly originate from the illuminated area under the tip. By
using such a tip, we can achieve an extremely high spatial resolution beyond the optical
diffraction limit. On the other hand as shown in Fig. 1.3, if one can employ optical
pulses with duration down to a few femto-seconds to probe a medium, the deep insight
into the ultrafast dynamics of the excited medium may be yielded. When optical pulses
with ultra short duration are used for probing materials, dynamic studies of materials,
such as the dynamic processes of a chemical reaction, photosynthesis, interaction
between proteins and substrates, photo-excited electron-hole relaxation, shall become
possible. However, to realize the potential of optical metrology at the femtosecond

scales, techniques that can be employed fully characterize the ultrafast light field must

be developed.
|
4 A Conduction band A
Valence band . T

Fig. 1.3. Schematic showing an optical absorption process of broadband light by a
medium. The information about the band structure of the medium and the
dynamics of light-matter interaction can be embedded into the dynamic

spectrum of the light after passing through the medium.



A proper characterization of the light field to be used in ultrafast optical metrology

is not a simple task. In the past few decades, several methods had been developed in

order to solve the issue. Optical intensity autocorrelation (AC) [1] is the first technique

to deduce the temporal profile of a laser pulse. Although the autocorrelation can yield

pulse information in time domain, the profile deduced is not the real field profile of the

optical pulse. Furthermore, the biggest disadvantage of the technique is that it carries no

information about the phase of the optical pulse. To fully characterize an optical pulse

field, several two-dimensional methodology such as frequency-resolved optical gating

(FROG) [2] and spectral phase interferometry for direct electric-field reconstruction

(SPIDER) [3] had been developed in the past two decades. The schematic setups of

FROG and SPIDER are illustrated in Figs. 1.4.

FROG is similar to the autocorrelation except that it detects the transient spectra of

an optical pulse instead of intensity. We use FROG to acquire the spectra with different

time delays and assemble a time-frequency distribution of the pulse. We then retrieve

the phase information from the time-frequency distribution by using an iteration

algorithm. SPIDER is based on the concept of spectral-shearing interferometer; the

optical pulse to be measured is split into two parts, with the time delay and phase delay

to be adjusted separately. And then the two parts of the pulse can be recombined to

generate a set of fringe patterns. The major advantage of SPIDER is that the set of fringe



patterns can be used to retrieve the spectral phase of the pulse field in a direct way

without invoking any iteration procedure. Therefore, the information retrieving speed

from data of SPIDER can be very fast.

> Pulse

Beam Splitter

Detector used in
AC: power meter;
FROG: spectrometer.

Gate Pulse

Signal Pulse

S\

SHG Crystal

Detector

-
Delay Stage (1)

/\

Probe Pulse

Mirror

Fig. 1.4. Typical experimental setup for frequency resolved optical gating
(FROG, top) and spectral phase interferometry for direct electric-field
reconstruction (SPIDER, bottom).



To characterize the structure of a heterogeneous material such as the organization
and distribution of molecules or subcellular objects in a cell raises the need to precisely
localize these objects. The position and velocity of a nano object can be determined by
localizing the corresponding light spots in a 2D photo-detector in an optical microscope.
By tracing the particle in real time, important mechanisms in a live cell had been
revealed. The light spots can be originated from either light scattering or fluorescent
emission from nanoparticles. The technique that can accurately localize nano particles is
also an important tool in the material structural determination, especially for

nanostructured materials.

Fig. 1.5. Schematic shows the concept of concentrating the light field on a

medium with a tip. The signal to be detected will mainly
originate from the illuminated area under the tip, yielding the
possibility to localize particles with high spatial resolution.

To localize nanoparticles with the nanometer accuracy, we first have to excite the

particles at very low level such that two light spots from neighboring excited particles

are separated on CCD camera at least by one full width of the point spread function of
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the optical microscope used. The central positions of the light spots are then fitted to 2D

Gaussian profiles [4] or with the center-of-mass method. The fitting of a light spot to a

2D Gaussian function in principle can determine the sub-pixel center of the light spot.

Unfortunately, the localization accuracy with the method is time consuming and

sensitive to the signal-to-noise ratio of the data.

For the center-of-mass method, the center-of-mass of a light spot can be calculated

as the weighted position of all pixels involved in the spot. For the case shown in Fig. 1.6

the mean value can be (1*1+2*2+3*2.5+4*1)/(1+2+2.5+1)=2.5385.

Fig. 1.6. A 1D example of the center-of-mass method

1.2 Overview of Artificial Neural Network

An Artificial Neural Network (ANN) [5] is an algorithm designed to simulate the

capabilities of learning and data processing of the neuron network in our brain. ANN

b



simulates our brain on two aspects; firstly, the knowledge learning from the data can be

updated and stored in the weighting parameters of ANN. Second, the set of optimal

weighting parameters can be deduced through a learning process. The schematic of the

overall process is depicted in Fig. 1.7. The input data is first converted into an output,

and then the calculated output is compared with the desired output to generate an error,

which can be feedback to adjust the weighting parameters of ANN in order to further

reduce the error. By this way, the output can approach the desired performance.

Error feedback to

adjust weight of ANN

Desired Output

Fig. 1.7. Flow chart of the learning process of an ANN.

ANN can be invoked to offer several useful functionalities, including data

classification, functional approximation, and series prediction, etc. [6-8]. Usually, one

can start with data analysis, and then based on the results to construct a preliminary

model. After testing and verification involved in the learning process, the trained ANN

can be used to predict the future behaviors of the system under study. Especially, when
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the data is complex and cannot yield sufficient information to expose the underlying

structures, ANN could be very valuable in this case.

1.3 Motivation and Outline of this Thesis

In this thesis, we will apply ANN for producing an intelligent learning system to

improve the measurement accuracy or generating new functionality of an apparatus in

optical metrology, namely the complete characterization of ultrashort laser pulses and

nanometer localization in real time for an optical microscope. The techniques needed to

implement artificial neuron network for the two applications will be developed.

We also like to implement the learning ability of artificial neuron network into an

optical apparatus to accumulate the user experiences and improving the prediction

accuracy of the ANN as more data are taken. To achieve this goal, this thesis is

organized as follows:

In chapter 2, we will first review the general concepts of ANN and introduce the

skills needed for the applications. We will introduce the most useful functionalities of

ANN, some illustrative application examples are prepared too.

In chapter 3, we will combine ANN with a second-harmonic generation

spectroscopy to retrieve the spectral phase profile of ultrashort optical pulse field and

yield the complete field information of the pulse. Feasibility of this application is

-10-



demonstrated and difficulties encountered are discussed.

In chapter 4, we will develop an ANN scheme to search and locate the position of
particles with an optical microscope. The feasibility of artificial neuron network to find
the central position of a light spot was revealed. Higher accuracy, faster localization
process and more immune to the noise than that does by the 2D Gaussian fitting were
demonstrated.

Finally, conclusions and future works of this thesis research are presented.
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Chapter 2 Introduction to Artificial Neural Network

In Section 2.1, we review the development history and some background of
artificial neural network. We will describe how does the artificial neural network work in
Sections 2.2 to 2.4 and then present application examples to illustrate the important
functionalities of ANN, including classification, functional approximation and time

series prediction. A brief summary will be given in Section 2.5.

2.1 Overview of Artificial Neural Network
2.1.1 Historical Development of ANN

Inspired by the structure of neuron and the connection topology in brain, the first
mathematical model of neural network was reported in 1943 by Warren McCulloch and
Walter Pitts [9]. In 1958, Frank Rosenblatt developed the first practical network with
related learning rules, which is now named as the artificial neural network structure of
perceptron [10]. From 1967-1982, Marvin Minsky and Seymour Papert discovered some
limitations of existing neural networks [11], such as that ANN cannot perform some
complex logical operations for example XOR, and new learning algorithms were not put
forward causing researches to suspect the limited functionality of ANN. However, the

development stagnation of ANN finally broke in 1980s. Several new architectures of

-12 -



ANN and theorems had been discovered, including the self-organizing map structure by

Teuvo Kohonen in 1982 [12], the Hopfield neural network by John J. Hopfield in 1983

[13], and David Rumelhart’s group reported back-propagation neuronal network in 1986

[14]. Furthermore, in 1991 Stephen Grossberg developed the adaptive resonance theory

[15] that can significantly improve the learning capability of an artificial neural network.

Thanks to these progresses, artificial neural network has been widely used in the pattern

recognition, identification, and data classification.

Hossein reported in 1989 [16] that if the weights of a backward-propagating ANN

are initially set to be high values, the learning performance of the ANN will be improved

and the best initial values depend on the problem. Kruschke [17] inserted a gain into a

backward propagation network and found a regularization effect on the weights, which

improves the performance of backward ANN. Sarker [18] found by tuning the weights

the oscillation occurring in ANN can be reduced. Kubat [19] used a determination tree to

guiding the construction of a backward-propagating ANN. Wu [20] developed a method

of optimizing the hidden layers’ outputs (OHLO) to isolate each neural layer and then to

modify the weights and inputs. Leung [21] combined the weight evolution method with

a new generalized back-propagation method to accelerate the convergence and avoid the

problem of trapping into a local minimum.

-13-



2.1.2 Technical Background of ANN

Artificial neural network is an algorithm that simulates the function of brain. In

order to make an artificial neural network function properly, the algorithm must be

divided into two major steps: the first step is called a learning phase and the second step

is a retrieving phase. In the learning phase, we need to adjust the system parameters of

an artificial neural network such as weights or bias. In the retrieving phase, we can use

the artificial neural network to predict the result based on new input data.

The neuron in an artificial neural network functions similarly as a neuron in a brain. The

schematic showing the analog can be found in Figure 2.1.

Nucleus
dendrltes
\\—?\
synapse

() —PY

Xi is the input, i=1... n. A typical structure of neuron

Wi is the weights, i=1... n. Dendrites: input from other neuron

P is the bias.
f () is the active function.

Y is the output

Axon: output connect to other neuron
Synapse: the gap between the neurons

Cell, Nucleus: body of neuron

Fig. 2.1. Schematic shows the analog of artificial neuron and brain neuron structure.
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As shown in Fig. 2.1, the {Xi}, i=1,...,n denotes an excitation from other neuron,

and {Wi}, i=1,...,n represents a set of weighting coefficients denoting the connection

strength between neurons, P denotes a threshold level beyond which a neuron will fire.

And Y is the excitation to other neurons. Depending on the performance desired, a

variety of active functions have been adopted in different artificial neural networks.

Several useful forms of active function are step function, sign function, hyperbolic

tangent function, or sigmoid function, which is defined as

Sigmoid = o Hyper tangent = tanh(X—b). b: the intercept on x axis. (2-1)
T L ¥
a4 5 <
# X
5 0 5 :
Step function Sign function
T LT
5 - a3
& pA
1 =5 0 5
Hyper tangent Sigmoid

Fig. 2.2. Some useful forms of activation function for ANN
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2.2 Typical Structures of ANN and the Corresponding Application
Examples
2.2.1 The Perceptron Architecture
Perceptron is the first practical ANN, typically used for data classification. Figure

2.3 shows the structure of a perceptron with a structure of input layer and output layer.

Perceptrons
228 W X ERROR<-
FRROR<«<——
FRROR<«——
4 [

Q is a normal node with Y = X @ is a neural node with Y = f(X)

Fig. 2.3. A typical perceptron structure

A perceptron ANN usually uses either a step function or a sign function as its
active function depending on the training data set used. Denoting X; to be the input of
the i-th input node, Wj; the weighting coefficient the i-th input node and the j-th neural

N
node, then the input of the j-th neural node can be expressed asY; = z XW; +P, . Here
i=l

N is the total number of input nodes, P; is the bias of the neural node, and Y; is the output

of the j-th neural node. Let D; be the desired output at the j-th node, E; is the difference
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between Y; and D;. We can use E to adjust the ANN system parameters W;; and P; by

following the learning rule shown below:

W; (t+1) =W, () +n E; X, (2-2)

P.(t+D =P M) +7nE;, (2-3)

where 1 denotes the learning rate with a typical magnitude ranging between 0 and 1, E;

= D; - Y;, and t is the iterations.

The training process can be set up by dividing the process into the following steps:

1. First, random numbers between zero and one are used to initialize the weighting
coefficients and biases.

2. An input data pattern is inserted at the input, and the output and related errors E are
calculated.

3. Using the errors and the learning rules to update the weighting coefficients and
biases.

4. Repeat the steps 2 and 3 until the desired result is achieved with a satisfactorily

small error.

2.2.2 Application Example of Perceptron
In this section, we will apply a perceptron for data classification to illustrate how

this network works. The application example is to classify the 26 English alphabets. The
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26 English alphabets were presented in a figure format of 12x12 pixels figure at the
input of the perceptron. Figure 2.4 presents some of the letter figures. The output of the
ANN is shown by an array of twenty six digits such that the output of alphabet A is

(100000...0), B 1s (010000...0), C 1s (001000...0).. .etc.

AFEFUTZ

Fig. 2.4. Some English alphabet figures used in this example.

We converted each alphabet figures (from first to the last pixel) into an integer
array of 144 elements and used the array for the input data. If the pixel is black, the
corresponding integer is one. Otherwise it is zero. We therefore have 26 input data sets
with each data being one dimensional array of 144 components of ones or zeros. For the
output, we use a 26x26 identity matrix with each row corresponding to the desired
output, resulting in a perceptron of 144 input neurons and 26 output neurons. The
learning rate is set to be 0.5. The weight coefficients are set to be 0.25 by adjusting the
bias. As the result, the learning process can converge with a learning curve shown in Fig.
2.5, indicating that the mean square error (MSE) can approach zero. As shown in Fig.
2.6, the ANN can successfully recognize the alphabet letters with an extremely low

failure, revealing with a diagonal form of confusion matrix.
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Fig. 2.6. The Confusion matrix (X
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Fig. 2.5. The learning curve of the perceptron ANN for the 26 alphabet letters




The learning curve is different for each training cycle of the alphabet letters

because the initial weighting coefficients are generated by random number generator and

they are of course different for each training cycle. Nevertheless, the final results with

different initial set of weighting coefficients are similar.

The weighting coefficients and biases can be represented by matrices with the

dimensions of 144x26 and 26x1, respectively. Fig. 2.7 presents the original matrix form

of weighting coefficients. Fig. 2.8 shows the reshaped form of the weighting matrix with

dimension of 12x312 with the weighting coefficients at the same pixel position in each

alphabet letter figures. It was found that the weighting coefficients have large

magnitudes at the positions corresponding to the positions of the black pixels in the

alphabet letter figures. The weighting coefficients with larger magnitudes reveal those

important pixels in the alphabet letter figures. The ANN after training may invoke those

pixels to recognize the characteristic features of the alphabet letters. We found that those

important pixels are clustered in the central region.
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Fig. 2.8. English alphabets and the corresponding reshaped weighting matrices

For example, if an ANN tries to distinguish the alphabets O from X. It may firstly

examine the pixels locating at the central region of the letters to find some important

indicators, leading to the large weighting coefficients in the central region. But this may
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not be the only way to distinguish. There may have several possible forms of weighting

matrix to meet our goal. The weighting matrix, which yields a power of recognition, is a

solution to an equation that connects the desire output vector to the multiplication of the

input vector and the weighting matrix. Since there are 26 alphabet letters, we have a set

of linear equations with 144x26 variables and 26x26 constraints. It is not surprising that

many solutions may exist. In the case that the equations do not have a solution, the

training process would fail and no satisfied weighting matrix could be produced.

Although a perceptron structure is suited for data classification and recognition, it

cannot be used for function approximation. Researchers in the past had developed

another type of ANN structure, called back-propagation neuron network to expand the

applicability of ANN.

2.2.3 Back-Propagation Artificial Neuron Network

Back-propagation artificial neuron network is useful in many applications of ANN.

The typical structure of a back-propagation ANN is illustrated in Figure 2.9, which has a

multilayer configuration. Here W is the matrix of weighting coefficients of the ANN.

For using an input data X, the ANN can generate an output Y with the desired output D.

Back-propagation ANN typically possesses a structure of three to four layers, including

one input layer, one output layer and one or two hidden layers. The active function
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implemented in back-propagation ANN is sigmoid function in both hidden layers and

output layer to enhance the performance in the learning phase with nonlinear data

structure.

Back-propagation
X~V ~W

=
i
)

Fig. 2.9. Typical configuration of a back-propagation artificial neuron network

The learning procedure of a back-propagation ANN is summarized as follows:

Firstly, the input data and the corresponding desired output are sent to the ANN. The

input data propagates forward layer by layer from the input layer, hidden layers to the

output layer. The resulting error, which is defined to be the difference between the

output and the desired response, is calculated. The weighting coefficients and biases of

the ANN are then adjusted in order to minimize the error. Because the ANN has a

multi-layer structure, we need to invoke chain rule to calculate the gradient of the
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system parameters used in the error function.

The learning rule of back-propagation ANN is described as follows. We denote Wiy
to be the weighting coefficient between the j-th hidden neuron and the k-th output
neuron. The bias of the j-th hidden neuron and the k-th output neuron is denoted as P;
and Py, respectively. Yy is the output from the k-th output neuron with Dy the desired

output, and H; is the output from the j-th hidden neuron. Therefore, Y and H; can be

given by
H, = F(Z_l: X, W; +P,) = F(net,) (2-4)
Y, =FQ_H,W, +R)=F(net) . (2-5)

j=t

Here F is the active function. The sum of the variables in the active function is defined
as a new variable “net”, and n and m are the number of input neuron and the number of
hidden neuron, respectively. Error function will be defined as
- 2
E==>(D.-Y,), (2-6)
255
where | is the number of output neuron.
We used the gradient descent algorithm to minimize the error function, leading to

the following equations to be used for adjusting the weighting coefficients and bias

parameters.
oE
ij(t"'l):ij(t)_na\N ) (2-7)
ik
ok
Pt+1)=B(t)-n—, 2-8
x(t+1) =R P (2-8)
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where t is the iterations and 7 is the rate constant of learning process.

By using the chain rule, we can calculate the partial derivatives in Egs. 2.7 and 2.8,
which lead to (detail in appendix I)

W, t+1) =W, ) +no,H;, (2-9)
P.t+)=R M) +nd,, (2-10)
where o, =(D, —Y,)F'(net,), let 5, be the error of the k-th output neuron and we can
use O, to adjust the bias at the nodes in the hidden layer and the weighting coefficients
between input layer and hidden layer by

W; (t+1) =W () + 10, X, (2-11)

P, (t+1)=P;t)+7n9;, (2-12)
where 0 =F '(net j)lz oW, . Because the active function used is a sigmoid function,

k=1

we can simplify F'(net;) to a multiplication of sigmoid functions as shown below

d d 1 1 1
T O= T - e = PO =F ). (2-13)

Eqgs. 2-10 and 2-11 form the basis of learning needed to train the ANN.

2.2.4 Application of Back-Propagation Artificial Neuron Network for Function

Approximation

The function approximation is the most useful feature of ANN. This functionality

of ANN can be use to approximate the relationship between input and output of a
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physical system. Here we consider a simple application example of back-propagation
ANN to approximate the relationship between the critical angles of the interface
between two media, which is known as the Snell’s law. The critical angle of light
passing through an interface of two media is known to be

O =sin"'(n,/n,), (2-13)
where n ,n, are the refractive indices of the two medium. For this case, we construct a
back-propagation ANN with two input nodes, four hidden nodes and one output node.
The learning rate is set to be 0.1 for all weighting and bias parameters. As shown in Fig.
2.10, the convergence of the learning process is poor if the number of hidden nodes is
less than three, whereas no further improvement in the convergence can be yielded when

the number of hidden nodes is more than 4.

0'35__ nodel

0.30 + ‘ node?2

1 node3

0.25 - node4

| node5

L(an 0.20 ] nodel0
0.15 4
= ]
0.10 4
0.05 4
0.00

0 500 1000 1500 2000 2500
iterations

Fig. 2.10. Learning curve of a back-propagation ANN with different number of hidden
nodes.
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After training, the ANN can simulate the training data and predict the test data as

shown in Figure 2.11. The predicted values of ANN agree very well with the theoretic

curve.
i 2
train data resull  r?-o050 test data result = -osss0

15 L5
el ki o2
= ol >
=X + Outange . ¢ Outangle
= — #HE (Out angle) % — ##% (Out angle)
j=n =
3 3

0.5
02 0.5 1 15
0.5 1 15
desired angle (rad) desired angle(rad)

Fig. 2.11. The input-to-output characteristic curve of the back-propagation ANN with
(a)the training data and (b) the test data.

2.2.5 Application of Back-Propagation Artificial Neuron Network for Time Series
Prediction

Time series prediction is useful for the prediction of weather temperature, the

periods of sunspot, and chaos, etc. Time series prediction is very similar to functional

approximation. Here we will focus on the issue of how to use ANN to predict the

behavior of a chaotic series. We created a chaotic series with the follow formulas:

Y0 =0.01 (2-14)
Yt+1 = 4Yt (I_Yt) ’

which is results in a logistic map with r=4.
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For time series prediction, the input to an ANN is the data we have prepared. For

example, we can use Y; to Y3 from Eq. 2-14 as the input data and Y, as the desired output

of the ANN. Similarly, we can shift one position and take Y, to Y4 as the input and Ys as

the desired output. In this way, we can prepare numerous dataset to train the ANN. We

chose the learning rate to be 0.01 for all weighting and bias parameters. The learning

curves with different sets of system parameters are presented in Figure 2.12. After

training, we can use the ANN to predict the data remaining in the time series data. The

predicted values of the test data and training data by the ANN are plotted in Fig. 2.13,

indicating the performance of the ANN is excellent with the predicted values almost

1dentical to the real values in the chaotic series.

0.6 one input

0.5 —two mput

] — three input
0.4
m 4
) 0.3-
2 ]
0.2
0.1
0.0~

(I) ' 5(|)O ' 10|00 ' 15|00 ' 20|00

iterations

Fig. 2.12(a) The learning curves of an ANN used for time series prediction. During the
learning phase, the data prepared for training the ANN is single, two serial

numbers, three serial numbers, respectively.
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Fig 2.12(b) The learning curves of an ANN with different number of hidden nodes.
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Fig. 2.13. The time series (top) and the input-to-output characteristic curves (bottom) of
a back-propagation ANN with the training data (left) and the test data (right).
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2.3 Summary

From the case studies shown in this chapter, we found that ANN is useful for
numerous applications. Most of the applications of ANN use the back-propagation
structure. Function approximation is useful to simulate the behavior of a physical system,
which the underlying processes inside the system are unclear. We can build an ANN to
simulate the relationship between the input and output of a physical system. The most
sensitive issue of ANN relates to the training process. The training process requires
much CPU time and may yield poor performances if an inappropriate ANN structure is

implemented and is trained with inappropriate data sets.
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Chapter 3 Complete Characterization of Ultrashort
Coherent Optical Pulses with SHG Spectral

Measurement

3.1 Introduction

As explained in Chapter 1, the complete field characterization of coherent optical
pulses is the first step to invoke these optical pulses for optical metrology. Several
techniques had been developed to offer the complete characterization of coherent optical
phases, such as frequency-resolved optical gating (FROG) first reported by D. Kane and
R. Trebino [2], and spectral-phase interferometry for direct electric field reconstruction
(SPIDER) developed by T. Tanabe, et al. [3].

The basic concept of FROG is quite similar to the autocorrelation measurement but
FROG measures the spectrums at different time delays instead of optical intensity only.
Retrieving the spectral phases and then yielding a complete-field information of the
coherent pulse under study is via an iteration algorithm. SPIDER can directly measure
the spectral phase of a coherent pulse with a spectral-shearing interferometer, which
separates the incoming coherent pulse into two parts and sent one part through a linear
spectral phase modulator, and the other through a linear temporal phase modulator. And

then by superpose these two parts together to yield a spectral-shearing interferogram.
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The spectral phase and therefore the complete field information of the coherent pulse

can be deduced directly from the interferogram without involving any further iterative

calculation.

Along the development of complete coherent pulse characterization, Dorrer, et al.

had invoked a self-referencing device based on the concept of shearing interferometry in

the space and frequency domains to perform the spatio-temporal characterization of

ultrashort light pulses [22]. Weiner et al. [23] had demonstrated the spreading of

femtosecond optical pulses into picosecond-duration pseudo-noise bursts. In this case,

pulse spreading was accomplished by encoding pseudorandom binary phase codes onto

the optical frequency spectrum. Subsequently, decoding of the spectral phases restores

the original pulse. Shelton et al. have generated a coherently synthesized optical pulse

from two independent mode-locked femtosecond lasers, providing a route to extend the

coherent bandwidth available for ultrafast science [24]. Applications of coherent light

pulse characterization techniques in femto-chemistry had been well reviewed in [25].

Another attractive approach to characterize coherent laser pulse is to use an

adaptive feedback-controlled apparatus to tailor the spectral phase of a coherent pulse to

achieve the maximum second harmonic generation output from a nonlinear optical

crystal [26]. In this way, the compensating spectral phases carry the spectral phase

information about the coherent pulse under study.
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Control the quantum evolution of a complex system is an important advance in

optical metrology. The technique has now been coined as coherent or quantum control.

Adaptive coherent pulse control [27-30] is the most successful scheme to be used for

quantum control. Several algorithms have been developed to tailor a coherent optical

field for a specific target on the basis of fitness information [31-36]. In this regard, a

freezing phase concept had been proposed for adaptive coherent control with a

femtosecond pulse shaper [26].

Our main goal of this study is to develop an artificial neuron network (ANN) model

which can be used to retrieve the spectral phase of a coherent pulse directly from the

spectrum of the second harmonic generation (SHG) with a nonlinear optical crystal. The

SHG spectrum is affected by both the SHG process and the spectrum of the incident

light pulse. In this chapter, we will develop an ANN to help us retrieving the spectral

phase and therefore the complete-field information of a coherent pulse (phase and

spectrum) with the measured spectrum of second harmonic generation.

Assuming the temporal profile of a coherent pulse is known, therefore we only

need to adjust the spectral phase of the input pulse to generate the maximum SHG

output from a nonlinear crystal. From the measured SHG spectrum, we retrieve the

spectral phase of the input coherent pulse with an artificial neuron network. If the

approach is successful, we can simply retrieve the complete field information of a
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coherent pulse in real time directly from a measured SHG spectrum without
time-consuming computation. The apparatus needs only NLO (Nonlinear Optics) crystal
and a spectroscope.
3.2 Theory

Considering an incident coherent optical pulse E(®)= A(®) e with a
spectrum of A(w) and spectral phase distribution of ¢(w). The second harmonic
generation spectrum can be expressed as
s Q0)r|[ Ewr+ ) E(w-A)dA[ (3-1)
Assuming the spectrum of the coherent pulse to be Gaussian, and the spectral phase
profile can be properly depicted with a polynomial of order 6, usually factor the phase of

a high order is much small than the low order we cut it off at the order six.

A(w) =exp(-0’ / o}), (3-2)
6

p(0)=) a,0" (3-3)
n=0

In general, the phase terms of order zero and one do not have any effect on SHG. The

spectral phase profile can be further simplified by including terms from two to six only.

Note that from the point of view of theory, it shall be impossible to retrieve the

spectral phase of a coherent pulse directly from the SHG spectrum of a coherent pulse.

Therefore, in the following we will conduct some simulations to test the feasibility of

the concept.
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3.3 Simulation 1

3.3.1 Preparation of the training data set

To prepare the training process of ANN, we sampled the spectrum and phase of a

coherent Gaussian pulse to generate 64 data points. The second harmonic spectrum is

presented with a data array of 127 data points because the second harmonic spectrum

was calculated via a convolution operation.

The schematic of the training process is detailed in Fig 3.1. The input into a

back-propagation artificial neuron network is the data of the second harmonic generation

pulse comprising a spectral profile array and a spectral phase array.

BPANN i |  Error

SHG Spectrum
Desired Phase

Fig. 3.1. The schematic showing the training process of a back-propagation
artificial neuron network. The input data to the ANN is prepared from the
SHG Spectrum generated by a coherent pulse with a Gaussian amplitude

profile and a desired phase profile.
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3.3.2 Creation of a Backward Propagation Artificial Neuron Network

The input layer of the BP ANN was designed to accommodate the 127 inputs of the

second harmonic generation spectrum. The output layer generates the retrieved spectral

phase profile for the coherent pulse under study. A typical training data for the coherent

pulse under study is shown in Fig. 3.2. The resulting SHG spectrum obtained from the

training data is presented in Figure 3.3. We had investigated BP ANN with different

numbers of hidden nodes and different learning parameters to find out the best learning

performance of the artificial neuron network. The results will be discussed in the

following section.
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Fig. 3.2. Typical training data prepared for the BP ANN. The data comprises
the spectrum and the spectral phase of the coherent pulse under study.
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Fig. 3.3. The resulting SHG spectrum obtained from the training
data shown in Fig. 3.2.

3.3.3 Results and Discussion of Simulation 1

In this simulation, we used a two-layer BP ANN to find out how many hidden
nodes are needed to yield a satisfactory learning performance. The active function of
each node was chosen to be the sigmoid function and the rate constant of learning rate
was set to be 0.1 for the first and the second weighting layers. In the learning phase, we
trained the network by 1000 epochs. To evaluate the performance of the training, we

used a correlation coefficient r, which is define as

r=—2 . (3-4)
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n

z (% —=X)(Y; —Y¥), and S, Sy are the standard deviations of X, Y.

Here S, = 1
n—-1{73

The correlation coefficient can reveal the underlying relation between two sets of data. It
value lies between -1 and 1 with value one implies a prefect linear dependence. In our

case, r=1 means the output of the ANN is same as the desired output.

400
380;
360;
340;
320;
300:

—=— Test Set
——e— Data Set

280

260
240

Num. of sampler >0.9

220 T T T T T L T X T 2 T T T T 1
0 10 20 30 40 50 60 70

Hidden Node Num.

Fig. 3.4.The curves showing the relation of the population number
with r > 0.9 in 1000 data points with the number of hidden
nodes in the BP ANN.

Figure 3.4 presents a plot of the population number with r > 0.9 in 1000 data points
as a function of the number of hidden nodes used in the BP ANN. We can find that by
increasing the number of hidden nodes the number of data points with the correlation
coefficient higher than 0.9 increases, implying that the predicted values with ANN can

approach to the target phase. As the number of hidden nodes is larger than 20, the
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increasing tendency becomes stagnated. Therefore, the best choice is a BP ANN with

each hidden layer containing about 20 hidden nodes.

B data
400 4 B test

Num. of sample

-10 -0.8 -06 -04 -0.2 00 0.2 04 06 0.8 1.0
r

Fig. 3.5. The resulting distribution of r with 1000 test data points , and 1000

test data samples. The number of hidden nodes used is 32.

From the distribution of r presented in Fig 3.5, we found that only about 35% of the

predicted values of spectral phase has a correlation coefficient higher than 0.9.

Apparently, the learning performance of this SP ANN is not satisfactory. In view that the

spectral phases used are expressed in terms of polynomials, we may be able to solve the

problem with an increase of the information content in the training data by including

more orthogonal phase profiles. Therefore, in the next section, we will try to express the

spectral phase profile in terms of Legendre polynomials of order 2 to 6, which are shown
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in Figure 3.6.
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Fig. 3.6. L2, L3, L4, L5, L6: the Legendre polynomials of order 2 to 6.

3.4 Simulation 2
3.4.1 Preparation of the Training Data Set

Legendre polynomials form a complete set of orthogonal basis for a continuous
function. By expanding the spectral phase profile of a coherent pulse into Legendre
polynomials, we can significantly increase the information content with a minimum
number of Legendre polynomials. Indeed as shown in Fig. 3.7, by including Legendre
polynomials of order 2 to 6 in the spectral phase profile ¢(w), more complicated SHG

spectrum can be synthesized. The method significantly increases the degrees of freedom
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in the phase retrieval procedure. Six SHG spectra are prepared for the training of BP

ANN by including more Legendre polynomials in the spectral phase are shown in Figure

3.7.
—— No Add
—— .2 Add
0.03- —+— L3 Add
—— L4 Add
. —— L5 Add
s 0.024 L6 Add
S
0.01-
O-OO 1 T I ' =T | T T | T ':‘“' I T ) T 1
0 20 40 60 80 100 120 140

pixel

Fig 3.7. Six SHG spectra are prepared by including more Legendre
polynomials in the spectral phase.

3.4.2 Creation of the Backward Propagation Artificial Neuron Network

For this study, we built another BP ANN which contains 762 input nodes and 64
output nodes. The 762 (6x127=762) input nodes are designated for the six SHG
spectrums and 64 output nodes are for the retrieval spectral phase of the coherent pulse
under study. The learning rate is set to 0.1 for both the first weighting layer and the

second weighting layer. The data-flow schematic for the training is shown as Fig 3.8.
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Error

Six SHG spectrums

Desire Phase

Fig 3.8. The data-flow schematic for the BP ANN training. Six SHG Spectra as

shown in Fig. 3.7 were used.

3.4.3 Results and Discussion of Simulation 2

The simulation results showing the relation of the population number with r > 0.9
in 1000 data points with respect to the number of hidden nodes in the BP ANN used are
presented in Fig. 3.9. The results are quite encouraging in view that the number of the
predicted phases with a correlation coefficient r> 0.9 can reach more than 90% of the

test samples.
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Fig 3.9. The curves showing the plot of the population number with r >
0.9 in 1000 data points as a function of the number of hidden
nodes in the BP ANN.

We presented in Fig. 3.10 some representative profiles with r>0.9 to give some hints of
how well the BP ANN performs. From this Figure, we can see that the phase profile

retrieved by our ANN agrees very well with the target profile.
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Fig 3.10. A representative phase profile retrieved from the BP ANN with r>0.9
is plotted to reveal the close agreement with the target phase profile.

3.5 The Proposed Experimental Setup

For an experimental realization of the technique, one may concern how to conduct
the training of BP ANN and then how use the trained ANN to perform the complete field
characterization of a coherent pulse experimentally. We proposed an advanced apparatus
with a pulse shaper to yield an adaptive feedback control loop as depicted in Fig. 3.11.
By using this apparatus, we can first measure the spectrum of the laser pulse under study.
We can produce many possible phase distorted versions of the coherent pulse by
combining the measured spectrum with a variety of spectral phases expressed as a series

of Legendre polynomials. A variety of SHG spectra are then synthesized to train the BP
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ANN. After training, the trained ANN can be invoked to retrieve the spectral phase of

the coherent pulse with the measured SHG spectrum. The apparatus offers a possibility

to perform a complete-field characterization of a coherent excitation and quantum

control of a physical system in a single setup.

Plus
SHG crystal l

ANN System

l

[
FPhase retrieve

»
»

Phase information

Fig. 3.11. Proposed Experimental setup.

3.6 Conclusions

We developed a BP ANN which can be invoked to retrieve the spectral phase of a

coherent pulse from the measured SHG spectrum. We proposed a setup to be used for

the experimental realization of the concept. By using this apparatus, we only need to

measure the spectrum of the coherent pulse under study and then combine the spectrum

with a variety of spectral phase profiles to prepare the SHG spectra for training the BP

ANN. The trained BP ANN can be invoked to retrieve the spectral phase profile for the

complete field characterization of a coherent pulse. From a simulation study, we found
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the predicted phases can achieve the target profile with more than 90% confidence.
Thanks to the computation efficiency of BP ANN, the technique developed in this study
offers a possibility to perform a complete-field characterization of a coherent excitation

to a physical system and quantum control of the system in a single setup.
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Chapter 4 Real-Time Localization of Nano Objects at

the Nanometer Scales

4.1 Introduction

An isolated fluorescent molecule or nano object will be observed like a light spot
under an optical microscope. The spatial profile of the light spot simply reveals the point
spread function of the optical microscope used. The peak position of the light spot can
be determined with an accuracy of 1 nm if the signal-to-noise ratio of the detection is
high enough. This impressive feature of nanometer localization with optical microscopy
had recently inspired many applications including Fluorescence Imaging with One
Nanometer Accuracy (FIONA) [37], sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM) [38], and fluorescence photoactivation localization
microscopy (FPALM) [39], etc. Important biophysical mechanisms at the subcelluar
scales had been discovered [40].

In the historical point of view, we noticed that a modified Hough transformation
had been developed to detect a circular object [41] for recognizing and classifying
interesting features present in a phase-contrast (PC) cytological image. Fillard, et al. had
invoked the frequency dependence of the argument of Fourier transform to analyze an

in-focus two-dimensional Airy disk [42]. Alexander, et al. proposed a method to
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eliminate the systematic error in centroid estimation and achieved a subpixel accuracy

[43]. It is interesting to know that a diffractive optical element (DOE) [44] had been

applied to effectively locate a laser spot on a projection screen. The method could be

invoked to achieve nanometer localization for optical microscopy. Anderson had

presented an algebraic solution to the problem of localizing single fluorescent particle

with sub-diffraction-limit accuracy [45]. Qu, et al. [46] had demonstrated nanometer

localization of multiple single-molecules (NALMS) by using fluorescent microscopy

and photobleaching properties of fluorophores. Cui, et al. [47] had devised an optimized

algorithm useful for localizing light spots in high noise background. A method [48]

combining the radial basis network with anisotropic Gaussian basis function had been

used to detect the position of a fluorescent protein. Fillard [49] relied on the Fourier

phase frequency dependence to achieve sub-pixel localization accuracy of a light spot.

Enderlein [50] had proposed a method useful for tracking single fluorescent molecules

diffusing in a two-dimensional membrane by invoking a rotating laser focus to track the

position of the molecule. More information about single-molecular imaging and

spectroscopy can be found in [51].

Based on the technical review, we found the major issue in the localization and

tracking of nano objects is how to localize these objects accurately and rapidly with

minimum invasiveness. To achieve the goal, many algorithms had been developed.
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Fitting the light spot to a 2D Gaussian function is the most popular technique in this
field. Another useful technique is to retrieve the peak position of a light spot via a
center-of-mass approach [4]. However, to invoke these two techniques to localize a light
spot with large size often fails to yield an accurate result. Therefore, in this chapter we
will develop an ANN model to rapidly localize multiple light spots with high accuracy.
We invoked the feature of function approximation of ANN. We expect that the
localization accuracy of ANN can be further improved when more data are accumulated.
Comparing to the 2D Gaussian fitting method, our ANN localization method is also less

sensitive to noise influence.

4.2 Data Preparation for Training the Artificial Neuron Network
Localization Model
To train and test the performance of an ANN localization model, we prepared an
image of 10 bright spots with 256x256 pixels as shown in Figure 4.1. The brightness
profile of the light spots is Gaussian. The main target of this study is to construct a
trained ANN model which can be invoked to yield the peak positions with a localization

error less than one pixel.

- 49 -



Fig 4.1. An image of 10 bright spots prepared for training the artificial neuron

network localization model.

4.3 First Test Run of the Artificial Neuron Network Localization Model

In this study, we constructed a BP ANN for localizing bright spots in an observing

region. To serve this purpose, we began at an image of one spot with 25x25=625 pixels

shown in Fig. 4.2. We input this image into the BP ANN. The output is the coordinates

(X, y) of the spot. Therefore, the BP ANN possesses a total of 625 input nodes, 2 output

nodes, and a hidden layer of 30 nodes. The activation function of the hidden layer is

chosen to be hyperbolic tangent (tanh), while the activation function of the output layer

is sigmoid function. We set the rate constant of learning to be 1.0 and 0.1 for the first

and the second weighting layer, respectively.
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Fig. 4.2. One of the images with 25x25=625 pixels and containing single bright

spot, used for training the artificial neuron network localization model.

The performance of the BP ANN trained by 10000 epochs with 1000 samples is

shown in Figure 4.3. The distribution of the localization error deduced from the results

with a training set of 1000 images or 1000 test images reveals that the localization error

can be smaller than one pixel. However, in this example, we did not take into account

the noise influence and only single bright spot is included.
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Fig. 4.3. The distribution of the localization error deduced from a run with either

1000 training images or 1000 test images.
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4.3.1 Difficulty Encountered by the Artificial Neuron Network to
Localize Multiple Light Spots

In the previous section, we found that the BP ANN can be used to successfully
localize a single bright spot with a localization error less than one pixel. However, it is
difficult to use single BP ANN to searching an area with multiple light spots. In fact, in a
real situation, we do not know how many spots are involved in the beginning. Therefore,
we try to combine two BP ANNs with the first ANN to determine how many spots are
involved in a large region, and divide the region into a series of smaller domains with
each containing single spot only. And then the second ANN will take over to localize
each spot with high accuracy. The second BP ANN can be the same as the one described
in the previous section. Thus, we separate the ANN localization procedure into the ANN
searching step and the ANN localization step. We will detail each steps in the following

sections.

4.3.2 The ANN Searching Step: Searching Over an Entire Region to
Deduce the Number of Light Spots
In order to detect how many spots involved and their rough locations over an
image area, we design a BP ANN to search over the entire region to find out the pixels

with an intensity value exceeding a threshold value. Based on this searching result, we
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shall be able to deduce the number of light spots and roughly locate their positions.

4.3.3 The ANN Localization Step: Localize a Smaller Region to Yield
the Coordinates with High Accuracy
We had demonstrated in Section 4.3 that a light spot in a region of 25x25 pixels
can be localized to subpixel accuracy. For a quantitative analysis, we draw all the
coordinates deduced in the learning phase over the image area of 25x25 pixels in Figure

4.4. The average inter-spot distance is about one pixel; the localization error is 0.5 pixel.
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Fig 4.4. Distribution of the peak position of light spot taken from 1000 training

data over an image area of 25x25 pixels.

4.4 Training ANN over a Small Image Region with Higher Data Density

In this section, we aim to reduce the localization error to less than 0.1 pixel. To
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achieve this goal, we build a BP ANN and apply it to analyze images with 11x11 pixels
as shown in Figure 4.5. Furthermore, to reduce the localization error, we increase the

number of training data to 10000.

.y

Fig. 4.5. One of the training images with 11x11 pixels and single bright spot.

The BP ANN we created contains 121 input nodes and 2 output nodes. The

activation function of the input layer is chosen to be hyperbolic tangent (tanh) and that

of the output layer is sigmoid function. The learning rates are 1.0 and 0.1 for the input

and output weighting layers, respectively.
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Fig. 4.6. Distribution of the peak position of light spot taken from 10000

training data over an image area of 11x11 pixels.

The peak positions of the 10000 training data are presented in Figure 4.6. The

average inter-spot distance is much smaller than one pixel. After training 7500 epochs,

the result of localization error is shown in Figure 4.7.
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Fig. 4.7. The distribution of localization error taken from either 1000 training data
or 1000 test data after the ANN has been trained for 7500 epochs.

From this figure, we can conclude that the spots in an image area of 11x11 pixels

can be localized by the ANN to within an error of 0.1 pixel.

4.5 Comparison between ANN Localization Model and 2D Gaussian
Profile Fitting Method

In the single molecular research with nanometer localization and tracking
technique, the two-dimensional Gaussian fitting technique used is often limited to an
image size of 11x11 pixels due to the compromise between speed and localization
accuracy. Therefore, it is interesting to study the performance comparison between our

ANN localization model and the 2D Gaussian fitting method in the same image size of
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11x11 pixels.

The typical localization error of the 2D Gaussian fitting method is zero and it takes
about 0.03 sec to complete the fitting process for each spot. On the other hand, the
average localization error of our ANN is about 0.05 pixel but the localization time for
each spot is negligible. The 2D Gaussian fitting method can be rendered into a linear
algebraic problem and the computation time will increase rapidly as the number of the
unknown parameters increases. Therefore, as show in Fig 4.8, we can find that the
difference of the computation time between the two methods becomes significant as the

image size and therefore the number of spots involved increases.
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Fig. 4.8. Comparison showing the localization time of our ANN localization model
and the 2D Gaussian profile fitting method as a function of the number of

spots.
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4.6 Noise Influence

For a real application with ANN, we shall consider the influence of noise that is
unavoidable in experimentally measured data. In this section, we will study the influence
of noise on the performance in more detail.

We prepared a set of test images by adding into the images with a noise level from
10 % to 50 % of the peak height of the light spot. The resulting images after adding

noise are shown in Figure 4.9.

Fig. 4.9. Images showing the influences of noise on the training data. The noise level
is set to be 0%, 10 %, 20 % , 30%, 40% and 50 % of the peak height (from
top left to right bottom), respectively.

We used these images as a template and varies the spot position to generate a training set

of 10000 images. We trained an ANN with structure the same as that to be described in

Section 4.7. After training, the learning performances are shown in Figure 4.10.
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Fig. 4.10. The distribution of localization error taken from 1000 most populated
test data among the set of 10000 data used in our ANN model. The test
data are affected by noise with 10%, 20%, 30%, 40%, and 50% of peak
height.
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Fig. 4.11. The average localization error as a function of noise level in the test
data.
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We can find that the localization error increases as the noise level of the test images is

increases. However, as shown in Fig. 4.11, even the noise level has been raised to 50%

the average localization error can still be kept below 1 pixel.

For a fair comparison, we will examine the influence of noise on the 2D Gaussian

fitting method by using the same test data set. The result is presented in Figure 4.12.

Because our test spot was generated from 2D Gaussian profile, the resulting localization

error with the 2D Gaussian fitting method is zero when noise is negligible. The

localization error increases as noise level is increased. If we focus on the cases with the

localization error below 1 pixel, the performance with the 2D Gaussian fitting method is

almost identical to the ANN. However, as the noise level is above 30%, the probability

that the 2D Gaussian fitting method fails to yield a peak position is larger than 20%,

leading to that the average localization error becomes larger than 1 pixel as shown in

Figure 4.13.
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Fig 4.12. The distribution of localization error taken from 1000 most
populated test data among the set of 10000 data used in the 2D
Gaussian fitting method. The test data are affected by noise with
0%, 10%, 20%, 30%, 40%, and 50% of peak height.
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Fig 4.13. The distribution of localization error taken from 1000 most populated test data
among the set of 10000 data used in the 2D Gaussian fitting method. The test
data are affected by noise with 30%, 40%, and 50% of peak height.
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4.7 The ANN Localization Model Suited for Large Area Searching

As mentioned in Section 4.3.1, we divide our ANN localization process into two
steps. In the first stage, we use the first ANN to determine how many spots are involved
in the entire region. For an image as shown in Figure 4.14, depending on the hardware,
the complete localization (shown in Fig. 4.15) of all light spots may take less than 0.3

SEC.

Fig. 4.14. An image of 10 bright spots in a size of 256x256 pixels prepared for

testing the artificial neuron network localization model.
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Fig. 4.15. The target positions (red circles) and the positions (black dots)
retrieved with our ANN localization model.

In the second stage, we isolate a squared region around each spots within which
the pixel value is larger than 90% of the peak value. The images of these isolated
domains with each occupying 11x11 pixels are sent to the ANN to locate the peak
position of each light spot with high accuracy.

In the following, we will analyze the influence of noise on the performance to
assess the potential for a real application. The test image is added with a noise level of

10 % and 20 % of the peak height, respectively. The trained ANN model is used to

localize the light spots. The results are shown in Figure 4.16.
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Fig. 4.16. The same run as Fig. 4.15 except that the test images are affected with
different noise levels: (a) 10%; (b) 30%.

4.8 Conclusions

From these case studies reported in this chapter, we can conclude that localization

of light spots with ANN is feasible with a performance better than that with the 2D

Gaussian fitting method. This is true, especially when high noise level is involved in the

images. The ANN also requires less computation effort in comparison with the Gaussian

fitting method. Although the training procedure of an ANN takes a lot of computation
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time, this procedure only needs to be done once before its use.
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Chapter 5 Conclusions and Future Work of This Thesis

5.1 Conclusion of This Thesis

In this thesis, we aim to implement the learning ability of artificial neuron network
into an optical apparatus to accumulate the user experiences and improve the prediction
accuracy of the artificial neuron network as more data are collected. We demonstrated
that artificial neuron network can improve the measurement accuracy or generate new
functionality of an apparatus. We focus on two case studies in optical metrology,
including the complete characterization of ultrashort laser pulses and nanometer
localization in real time for an optical microscope. From the first case study, we
conclude that a trained back-propagation artificially neuron network can be invoked to
retrieve the spectral phase profile of a coherent pulse from a measured SHG spectrum.
The technique developed in this study offers a possibility to perform a complete-field
characterization of a coherent excitation to a physical system and quantum control of the
system in a single setup.

From the second case study, we developed a two-stage ANN strategy by first
determining how many spots involved in the entire image. And then we invoked the
second ANN to further process a set of squared domains around each spots to localize

each spot. We successfully used the two-stage ANN strategy to localize multiple light
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spots in a large area with high accuracy. We concluded that localization of light spots

with ANN is feasible with a performance better than that with the 2D Gaussian fitting

method. This is true, especially when high noise level is involved in the images. In

addition, the ANN localization model also requires less computation effort in

comparison with the Gaussian fitting method.

5.2 Future Work

Although we have successfully applied ANN in two cases in optical metrology, the

following issues related to the current work remain unsolved and worth further study:

(1) How many hidden nodes should one use in an ANN to reach the best performance

for a specific application?

(2) Since the ANN is powerful for modeling a nonlinear system, it is possible to

combine ANN with other solvers for nonlinear equations such as Landsweber

iteration method to enhance the iteration performance.

(3) The initial guesses of the weighting parameters and biases may influence the

learning speed and thereby the convergence. How to set up a better initial guess

worth further study.

(4) In this thesis, we applied ANN to localize multiple bright spots in an optical

microscopic image. It is also very interesting to develop an ANN to recognize a
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complex object in an image. A related issue is how to distinguish the object from its

environment (i.e., how to determine the boundary of the object?) Or how to derive a

criterion to guide a computer to determine the boundary of an object automatically?
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Appendix I: Technical Details of BP ANN

To help understanding the implementation of a back-propagation artificial neuron
network (BP ANN) reported in this thesis, some useful information is presented in this
Appendix.

From the configuration of BP ANN shown in Fig. 2.9, the output from jth hidden node

can be expressed as

HjZF(iXiWij-i-Pj):F(netj) . (2-4)

i=1

The output of the kth output node becomes

Y, =FOH,W, +P)=F(net,) . (2-5)

i=1

The deviation of the real output Y from the desired output D can be found
R )

E==>(D.-Y,)’. (2-6)
255

We update the weighting parameters of BP ANN by using the gradient descent method

to minimize E, yielding

oE

W t+1) =W () -7 W (2-7)
i
oE
R(t+1)= Pk(t)—ﬂa—Pk- (2-8)

To estimate , we invoke the chain rule and in

ik
Case 1: the weighting parameters between the hidden and output layer are found to be

0E  OE OY, onet,
oW, oY, onet, oW,

=—(D, —Yk)*F’l(ne'[k)"‘Hj :

In Case 2: we can derive the weighting parameters between the input and hidden layer
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2.
3.

as

OH. Onet,
oF _ oF J J OF % F*I(net,,) * Xj , where
8W” aH. 8net' 8W.' aHj J '

OE onet, OE oY 7
_Zﬁnet Z@Y 6nei i = 2.~ (D =Y ) *F(net W, .
k k k

Define &, = (D, —Yk) F'(net,) and &, =F'(net;) > 6,W, , we obtain
7
Eq. (2-9) and Eq. (2-11)
W, (t+1) =W, () +n5H|, (2-9)
W, (t+1) =W, () +75,X; . (2-11)

Similar procedure can be employed to obtain Eq. (2-10) and Eq. (2-12) by simply

onet. onet .
onet o U i D0 ng
W, oW oP, P

1

replacing
j

Since both of the derivatives are equal to one, therefore

P.t+)=R M) +nd,, (2-10)
P;(t+1)=P;(t)+70;. (2-12)
During the training stage, Eq. (2-4) and Eq. (2-5) are used to obtain the output of
BPANN. Egs. (2-9) to (2-12) are then employed to update the weighting parameters of
the BP ANN until the error E is small enough or the limit number of training loop is
arrived. During the application stage of BP ANN, only Eq. (2-4) and Eq. (2-5) are used.

The detailed steps are summarized in the following:

Initialize the weighting parameters Ws and Ps of BP ANN with random numbers.
Input a training data set X and D and invoke Eq. (2-4) and Eq. (2-5) to derive Y.
Calculate the value of error with Eq. (2-6). If the value is small enough stop the
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training process, otherwise continue to the next step.

Calculate the error for the output layer 9, .

Update the weighting parameters of the BP ANN for W, and B, with Eq. (2-9)

and Eq. (2-10).

Calculate the error for the hidden layer &;.

Update the weighting parameters of the BP ANN for W, and B, with Eq. (2-11)

and Eq. (2-12).

Go to step 2 for next
training data set or stop the
training process if the limit
number of training loop is

arrived.

The Flow Chart of the
Training Process of a BP
ANN

Initialize

\ 4

Input sample

Update weight
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Appendix Il: The Code for Preparing the Data
Used in This Thesis

To retrieve the phase information of a coherent optical pulse from its SHG spectral

Intensity, we follow the following procedure:

Stepl: Generate a Gaussian spectral profile with the code of
for w=1:64

A(w)=exp(-((w-32.5)/15)"2);
end

Step2: Prepare the polynomial form of phase with

mask=[11111; 1111-1; 111-11; 11-111;
1-1111; -11111; Iy N 11-11-1;
1-111-1; -1111-1; 11-1-11; 1-11-11;
-111-11; 1-1-111; -11-111; -1-1111;
-1-1-1-1-1; -1-1-1-11; -1-1-11-1; -1-11-1-1;
-11-1-1-1; 1-1-1-1-1; -1-1-111; -1-11-11;
-11-1-11; 1-1-1-11; -1-1-111; -1-11-11;
-11-1-11; 1-1-1-11; -111-1-1; 1-11-1-1;7;

row=fix(rand(1)*32+1);

paramater=10*mask(row,:).*rand(1,5);

Phase=zeros(1,64);

for i=1:64
x=(i-32.5)/32;
Phase(i)=paramater(1)*x"2+paramater(2)*x"3+paramater(3)*x"4 ...

+paramater(4)*x"5+paramater(5)*x"6;
end

Step3: Add the phase some Legendre polynomials and yield the associated SHG spectral

intensity with

PhaseAdd=[
00000000000000000000000000000000000000000000000
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00000000000000000;

6.2832 5.6943 5.1244 45735 4.0416 3.5287

1.667
-1.1446
-2.7403
-3.1202
-2.2844
-0.23271
3.0347

-6.2832 -5.1334 -4.0755 -3.1067

0.50902
2.7661
2.032
-0.14954
-2.2346
-2.6792

1.249
-1.4105
-2.8543
-3.0822
-2.0944
0.10923
3.5287

1.0075
2.8063
1.8068
-0.4471
-2.4115
-2.5426

0.060332 0.70356

6.2832 4.4275 2.8361

-2.5096
-1.4022
1.4028

2.3029

0.44053
-2.2974
-1.2793

-6.2832 -3.6098

2.4206
-1.0832
-1.9665
0.55507
2.1684
-0.26336
-2.427
6.2832

-2.6546
-1.0441
1.6634
2.2089
0.07757
-2.5005

0.85011
-1.6575
-2.9493
-3.0252
-1.8854
0.47017

0.47017
-1.8854
-3.0252
-2.9493
-1.6575
0.85011

0.10923
-2.0944
-3.0822
-2.8543
-1.4105
1.249

40416 4.5735 5.1244

1.4382
2.8027
1.562
-0.74015
-2.5598
-2.3532
1.4237

-2.6921

1.804
2.7584
1.3006
-1.0257
-2.6765
-2.108
2.2237

1.4888 0.36615

-2.6363

-2.2237

2.108
2.6765
1.0257
-1.3006
-2.7584
-1.804
3.1067

-2.5005

3.0347

2.5598 2.1039

-0.23271 -0.55566 -0.8596

-2.2844
-3.1202
-2.7403
-1.1446
1.667
5.6943

2.3532
2.5598
0.74015
-1.562
-2.8027
-1.4382
4.0755

-0.55052 -1.2793

-2.2974

-0.67247 -0.29589 0.07757 0.44053
1.8868 2.0695 2.2089

2.0695

1.8868

1.6634

-0.29589 -0.67247 -1.0441

-2.6363

-2.6921

-2.6546

-0.55052 0.36615 1.4888 2.8361

2.1108

-1.4367
-1.7724
0.90767
2.0944

-0.7608
-1.9726

1.7104
-1.7264
-1.5257
1.2344
1.9467
-1.2512
-1.2036

-1.5204 0.06077 1.2036

1.2512
-1.9467
-1.2344
1.5257
1.7264
-1.7104

0.7608
-2.0944
-0.90767
1.7724
1.4367
-2.1108

1.9726

2.3029
1.4028
-1.4022
-2.5096
4.4275

0.26336
-2.1684

-0.55507

1.9665
1.0832
-2.4206

-0.06077 1.5204 3.6098

-1.0785 -0.42916 0.20267 0.7769

2.0826

1.9989

1.8164

-0.42505 -0.81884 -1.1727

-1.8706

-1.7087

-1.4731

1.5495
-1.4731
-1.1727

2.7183 0.24698 -1.3414 -2.2315 -2.5836

1.2645
1.2153
-1.7087

-0.81884 -0.42505 -0.0070076
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1.6463
0.8318
-1.8706

2.427

-2.5359

-2.4553
-3.1392
-2.6073
-0.8596
2.1039

6.2832;

2.5426
2.4115
0.4471
-1.8068
-2.8063
-1.0075
5.1334

-2.0392

-1.8377

-2.6073
-3.1392
-2.4553
-0.55566
2.5598

-1.4237 -0.70356 -0.060332

2.6792
2.2346
0.14954
-2.032
-2.7661
-0.50902
6.2832;
-2.2425
-1.7372

0.78629 1.1088

2.3503
1.1088
-1.7372
-2.2425
6.2832;

2.6211

2.3503

0.78629
-2.0392
-1.8377

2.6041

-0.22069 -0.6742

-2.1696

-2.1008

-0.18678 0.18678

2.1008
0.6742
-2.6041
6.2832;

1.9113

-2.2061

2.1696
0.22069
-2.6211

-1.693
2.0559

0.41806 -0.0070076

-1.9531

-1.9531
0.41806



0.8318 1.2153 15495 1.8164 1.9989 2.0826 2.0559 1.9113
1.6463 1.2645 0.7769 0.20267 -0.42916 -1.0785 -1.693 -2.2061
-2.5359 -2.5836 -2.2315 -1.3414 0.24698 2.7183 6.2832

I;

SHGI=zeros(1,127*6);

for phasecount=1:6
PhaseMod=Phase+PhaseAdd(phasecount,:);
SHGI(127*phasecount-126:127*phasecount)=SHG(A,PhaseMod);

end

Function SHG()

function Shgl=Shg(Ea,Ep)
Ew=Ea.*exp(i.*Ep);
ShgE=conv(Ew,Ew);
Shgl=ShgE.*conj(ShgE);

Finally, the training data for ANN are prepared with a pair of input SHGI(1,127*6) and
output Phase(1,64).

To localize the central position of an image of light spot with 11x11 pixels,
Stepl: Generate an image of light spot with random central position by
Size=11;

X0=rand(1,1)*Size;
YO=rand(1,1)*Size;

Step2: Prepare the image of 11*11 pixels with a 2D Gaussian profile
for X=1:Size
for Y=1:Size
G(X,Y)=exp(-((X-X0)"2+(Y-Y0)"2)/3"2)+exp(-((X-X1)"2+(Y-Y1)"2)[3"2);

end
end

Step3: Add random noise to the image
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noiselevel = (a value from 0 to 0.5)
for X=1:Size
for Y=1:Size
Gr(X,Y)=G(X,Y)+rand(1,1)* noiselevel- noiselevel/2;
end
end

Finally, the training data for ANN are prepared with a pair of input Gr(11,11) and output
X0,YO0.
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