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摘要 

 

利用固態物理中的能帶緊束縛(Tight-binding)理論，可以正確地描述

一個光子晶體波導的傳輸行為。利用此理論得到的光子晶體波導的色散關

係方程式，可以進一步去描述兩條耦合光子晶體波導的傳輸行為和色散關

係方程，並正確地計算其耦合長度(coupling length)，進而用以設計光通

訊元件。 

當兩個相同的光子晶體波導彼此靠得很近時，其能帶便會由於波導之

間的耦合效應，而分裂為偶對稱與奇對稱的本徵模。由於耦合光子晶體波

導與普通耦合光波導不同，除了橫向之耦合效應外，並具有縱向(傳播方向)

之耦合，導致此兩種模態會發生能帶交叉的現象。因此，我們可以利用緊

束縛理論所推導出來的色散關係方程式找到正確非耦合頻率(decoupled 

frequency)。利用此耦合波導的特殊特性，我們用“時域有限差分法

(FDTD)＂之數值模擬，完成了多工分波器(WDM)元件的設計。本論文中，我

們可以將三道不同波長的光分開，且均達到光通訊的標準。 
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Abstract 

 

By using tight-binding theory of solid-state physics, we can analytically 

describe the dispersion relation of the propagation in a photonic crystal 

waveguide (PCW).  In turn, we can derive the dispersion curves of two coupled 

identical PCWs . 

Due to not only the transverse coupling as the conventional coupled 

waveguides but also the longitudinal coupling of two coupled identical PCWs. 

“Band-crossing” may occur at which the PCWs will not couple with each other 

(or decoupled) when the coupled PCWs are placed close enough to each other.  

By employing the tight-binding theory to this problem, we can accurately 

determine the decoupling frequency as well as calculate the coupling length for 

every frequency.  We have designed a wavelength division multiplexer which 

can route three wavelengths into different channels with the power ratio of all 

outputs reach 20 dB, the specification of optical communication.  
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Chapter 1   Introduction 

1-1 Background  

During the past decade the use of photonic crystals (PhCs) has been studied and risen 

from an indistinct technology to a prominent field of research [1,2].  This is mainly because 

of their potential ability to well control the propagation of light.  Eli Yablonovitch [3] and 

Sajeev John [4] initially predicted the idea that a periodic structure consisting of materials 

with different dielectric constants possesses bandgaps for certain ranges of the frequency, in 

much the same way as an electronic bandgap exists in semiconductor materials.  Photonic 

crystal with defects can be found much more applications.  Defects in photonic crystals 

means the points or places different from perfectly arrayed structures.  Defects just like 

missing a point, line or dislocations can create defect modes within the photonic band gap.  

Using this property, photonic crystals can modify the spontaneous emission efficiency and the 

propagation of light, leading to novel applications in splitter, waveguides  (Fig. 1-1), 

defect-mode light-emitters, electro-optical switch [5], Mach-Zehnder interferometer [6], and 

micro-cavity lasers (Fig. 1-2) [7–10], etc.  This is why many scholars believe that the PhCs 

bring us a possible solution and unlimited vision of creating large-scale photonic integrated 

circuits (PICs) in the future and have done more and more studies on photonic crystals.  

Numbers of reports focusing on the design of PhC’s devices in PICs have been published in 

the last few years [11].   
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(a)                              (b) 

                                                 

Fig. 1-1 (a) splitter  
(b) waveguide 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-2  Photonic-crystal micro-cavity laser 

 

Two-dimension photonic crystals are regarded as the hottest topic nowadays, because 

they offer the possibility of fabricating high-Q cavities [12-13] and waveguide devices [14] on 

the scale of the wavelength in the semiconductor-based structures (i.e. GaAs/AlGaAs or SOI). 

Photonic integrated circuits of similar integration density so far only known as electronic 

VLSI (Very Large Scale Integrated Circuits) can be imagined.  Photonic crystal waveguide 

(PCW) is an important basic element in PICs [15, 16] as important as the electric wire in the 

electric circuits.  It is the key component of interconnect between optical circuits.  Optical 

waveguiding in two-dimension photonic crystals is achieved by introducing line defects in the 

structure that is otherwise periodic in two dimensions.   

When we take photonic crystal as basic structure of waveguide, another important 

characteristic of photonic crystal is its unusual dispersion property.  Group velocity 
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dispersion of line defect in photonic crystal slabs is experimentally proved to be extremely 

large, and can be tuned via adjusting the widths of defects [17].  In conventional total 

internal reflection (TIR) waveguide, the bending angle for changing light propagation 

direction cannot be over 1o, otherwise the loss will be quite big.  Different from the 

conventional waveguides, photonic crystal band gap (PBG) and large group velocity of PCWs 

can still keep well guiding the signal even if they form sharp-bend, as shown in Fig. 1-3. 

 

 

 

 

 

 

 

 

             
Fig. 1-3  Distribution of the real part of electric field in a 90o bend of 

the dielectric rods PCs.  The red color shows positive 

amplitude of electric field and the blue for negative amplitude.
 

 

Two closely parallel waveguides can be used as a directional waveguide coupler [18-22].  

A directional waveguide coupler is also one of key components for optical communication.  

They can be used as wavelength-selective power dividers, switches, modulators, etc. [23, 24]  

Besides, it might be desirable to decouple the two waveguides to minimize cross talk between 

them, for example, when envisioning closely packed photonic wires in integrated optical 

circuits [25]. 

Other phenomena of two-dimension PhCs had also been widely discussed, including 

coupling/decoupling, energy flow [26], and extremely low group velocity [27-28].  All of 

those researches make us getting closer and closer to entirely grasp this new technologies. 
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1-2 Motivation 

In order to prepare for arrival of the next-generation optical communication, many 

scholars try to develop new optical devices which possess tiny scale, high efficiency, 

integrabilility and easy fabrication.  Fortunately, people found some kinds of man-made 

materials called photonic crystals that make all our imagination realizable.  By introducing 

different defects into perfect photonic crystals, many abilities such as wave-guiding, 

light-trapping, filtering, slowing light and light coupling could all be generated at will.  With 

integrating such devices in a single chip, large photonic integrated circuits provide a wide 

view of future information technology.  People even predict the coming of the photonic 

computer in the next ten years.  

For optical communication systems used now, the size of the wavelength dependent 

power splitter is about hundreds of micrometer.  If one can reduce the size of photonic 

crystal directional coupler devices to ten of micrometers, it should provide a great advantage 

for wavelength division multiplexing (WDM) systems.  This provides the motivation to 

develop an effective numerical method for analyzing coupling between channel waveguides 

in a two-dimension photonic crystal.  In the previous research, a photonic crystal waveguide 

is formed by a chain of point defects, so the waveguide can be regarded as a coupled-cavity 

waveguide (CCW), in which the energy can hop from a cavity to the neighbor one.  The 

propagation of wave through a CCW is exactly the classical wave analog of the tight-binding 

(TB) method in solid state physics.  It also indicates that there exists a large potential in 

designing various compact photonic devices by using the large dispersion of coupled mode 

splitting.  According to this idea, we can do the design of PhC devices applying in optical 

communication with micrometer scale.  In the following chapter, we will present two topics 

focusing on physical insight in PhC waveguides with tight-binding theory and optical devices 
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such as WDM based on photonic crystal with silicon rod array.  In order to design WDM, we 

need to know the coupling length at each frequency.  According to the coupling length 

formula L=π/Δk, we must know the value of Δk in order to calculate the coupling length.  

Although we can obtain a band structure through the plane wave expansion (PWE) method, it 

needs to extensive calculation to generate good resolution of dispersion curve, especially for 

the decoupling point of two identical photonic crystal waveguides (PCWs).  By using the 

dispersion function derived from the tight-binding theory, we can well fit the calculated 

dispersion curves of the derived dispersion function.  In turn, we can easily calculate the 

coupling length at corresponding frequency using the dispersion relation function.  Therefore, 

few data of dispersion relation calculated from the PWE are enough to determine the 

dispersion function and the decoupling point.  

 

1-3 Organization of the thesis 

We divided this thesis into four chapters.  We have narrated a brief statement to the 

background and history of the photonic crystal and also our research motivations in chapter 1.  

The main theory and numerical analysis methods we depended will put in chapter 2.  After 

that, in the chapter 3 we will describe our approaches to the coupling problem between PCWs 

and our PhC optical device design and the simulation results.  In the end, the final 

conclusion will be presented in chapter 4. 
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Chapter 2   Calculation Method and Theory  

 

As same as all studies of the electromagnetism, analyses to the propagation of light in a 

photonic crystal also start with four macroscopic Maxwell’s equations.  In cgs units, they are 

πρ4
0

=⋅∇
=⋅∇

D
B

      
,41

01

J
ct

D
c

H

t
B

c
E

π
=

∂
∂

−×∇

=
∂
∂

+×∇
                                (2.1) 

where E and H are the macroscopic electric and magnetic fields, D and B are the electric 

displacement and magnetic induction fields, and ρ and J are free charge and current densities, 

respectively.  Here we are concerned with the behavior of an electromagnetic wave in a 

source-free region where free charge ρ and free current J in Eq. (2.1) are both zero.  

 

2-1 Introduction 

In order to solve the wave equations derived from Maxwell’s equations, we need the 

constitution equations relating D to E and B to H.  Since we do not deal with magnetic 

material, we assume the magnetic permeability µ is very close to unity and we may set 

. ),(),( trHtrB vvvv =

As for D and E, quite generally the components Di of the displacement field are related 

to the electric field components Ei by the following power series [1]: 

.)( 3∑ ∑ Ο++=
j j

kjijkjiji EEEkED χε                                     (2.2) 

To simplify the question, we make four assumptions.  First we usually assume the field 

strengths are small enough so that we are in the linear regime.  It means χ and all higher 

order terms can be ignored.  Second, we assume the material is macroscopic and isotropic, 

so that ),( ωrE  and ),( ωrD  are related by a scalar dielectric constant ),( ωε r .  Third, 

any explicit frequency dependence of the dielectric constant are also been ignored.  The last 
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assumption is that we focus only on low-loss dielectrics, which means )(rε  is treated as 

pure real.  Hence, we have a brief expression relating D and E fields as 

).()()( rErrD ε=              (2.3) 

With four assumptions above, the Maxwell’s equations [Eq. (2.1)] become 

0),()(
0),(
=⋅∇

=⋅∇
trEr

trH
ε

      
.0),()(),(

0),(1),(

=
∂

∂
−×∇

=
∂

∂
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trE

c
rtrH

t
trH

c
trE

ε
   (2.4) 

The field functions E and H generally are both complicated functions of time and space, but 

thanks to the linearity of Maxwell's equation, it is convenient to look for solutions in form of 

harmonic fields: 

ti

ti

erEtrE
erHtrH
ω

ω

)(),(
)(),(

=

=
.                                                   (2.5) 

Because there is no free charge and current, the electromagnetic waves considered to be 

transverse.  By substituting Eq. (2.5) into Eq. (2.4) we can obtain the following equations: 

)()}({
)(

1)( 2

2

rE
c

rE
r

rEE
vvvv

v
vv ω

ε
=×∇×∇≡Θ                                  (2.6) 

)()}(
)(

1{)( 2

2

rH
c

rH
r

rHH
vvvv

v
vv ω

ε
=×∇×∇≡Θ .                               (2.7) 

Solving Eqs. (2.6) and (2.7) is to solve the eigen-value problems, and  is a Hermitian 

operator.  The eigenvectors H(r) and 

HΘ

)(~ rE  (where )()()(~ rErrE ε= ) are the field patterns 

of the harmonic modes, and the eigenvalues 2)(
c
ω  are proportional to the square frequencies 

of those modes. 

The Maxwell’s equations are the most important kernel of following calculations (both 

PWE and FDTD) and analyses in the next chapter except only the tight-binding 

approximation by solid-state physics that we’ll discuss later.  
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2-2 Plane-wave expansion method 

Photonic crystals is a periodically arranged structure (i.e., its dielectric constant is 

periodic distributed), so we assume that the dielectric constant is real, isotropic, perfectly 

periodic with the spatial coordinate rv , and does not depend on frequency.  Hence we can 

write its dielectric function as 

( ) ( )ir rε ε= + avv v ,                                              (2.8) ,3,2,1=i

where  are the primitive lattice vectors of the photonic crystal.  Because of the spatial 

periodicity, we introduce the primitive reciprocal lattice vectors {b

{ }iav

i ; i=1,2,3} and the 

reciprocal lattice vector can be defined as {G}: 

2i j ijπδ⋅ =a b  

and                                               (2.9) 1 1 2 2 3 3,l l l= + +G b b b

where { } are arbitrary integers and il ijδ  is the Kronecker’s delta function.  We can expand 

 into Fourier series as  )(1 rv−ε

∑ ⋅=
G

riGG
r

)exp()(
)(

1 κ
ε

.                                            (2.10) 

Because ε  is a periodic function of the spatial coordinate r , we can apply Bloch’s theorem 

to Eqs. (2.6) and (2.7).   and  are thus characterized by a wave vector k in the 

first Brillouin zone and a band index n and expressed as 

)(rE )(rH

rik
knkn erurErE ⋅== )()()(                                              (2.11) 

rik
knkn ervrHrH ⋅== )()()( ,                                            (2.12) 

where  and  are periodic vectorial functions: )(rukn )(rvkn

)()( ruaru knikn =+                                                   (2.13) 

)()( rvarv knikn =+ ,   for .3,2,1=i                                     (2.14) 

These periodic functions can be expanded in Fourier series as  in Eq. (2.10).  The )(1 r−ε
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two Fourier expansions of the fields can be derived as the following form of the 

eigenfunctions: 

})(exp{)()( rGkiGErE
G

knkn ⋅+= ∑                                      (2.15) 

})(exp{)()( rGkiGHrH
G

knkn ⋅+= ∑ .                                    (2.16) 

The expansion coefficients in reciprocal lattice space, i.e., and are 

denoted by the same symbols as the original ones in real space.  Substituting Eq. (2.15), 

(2.16), (2.11) and (2.12) into (2.6) and (2.7), we obtain the following eigenvalue equations for 

the expansion coefficients { } and { }: 

( )knE G ( )knH G

( )knE G ( )knH G

)()}'()'()'){('( 2

2

'

GE
c

GEGkGkGG kn
kn

kn
G

ωκ =×+×+−−∑                   (2.19) 

)()}'()'{())('( 2

2

'

GH
c

GHGkGkGG kn
kn

kn
G

ωκ =×+×+−−∑ ,                 (2.20) 

where knω  denotes the eigen-angular frequency of  and .  The vector 

electromagnetic field in the 2D photonic lattice can be decomposed into two independent 

polarization components, i.e., an E polarization (TM mode) for which the electric field is 

parallel to the rod axis (E

)(rEkn )(rHkn

z only), and an H polarization (TE mode) for which the magnetic 

field is parallel to the rod axis (Hz only).  In two-dimensional photonic crystals, Eq. (2.19) 

and Eq. (2.20) reduce to 

          
2

1
2

'

| ' || | ( ') ( ')} (kn
kn kn

G

k G k G G G E G E G
c
ωε −+ + − =∑ ) ,                  (2.21) 

where Eq. (2.21) is the master equation of TM mode.  Similarly, the master equation of TE 

mode can be written as 
2

1
2

'
( ') ( ) ( ') ( ')} (kn

kn kn
G

k G k G G G H G H G
c
ωε −+ + − =∑ � ) .                 (2.22)  

 For the photonic band calculating, the expansion coefficients { } in Eq. (2.10) is 
necessary to be calculated by the plane-wave expansion method.  The inverse Fourier 
transform gives 

1( )Gε −

          1 11( ) ( ) exp( )
V

G dr r iG
V

ε ε− −= ∫ �r− ,                                 (2.23) 
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where V is the volume of the unit cell of the photonic crystal.  In general, this integral should 

be numerically evaluated by FFT method.  However, if the shapes of the dielectric 

components in the unit cell are simple enough, we can calculate it analytically.   

 

2-3 Finite-difference time domain method (FDTD) [29] 

The finite-difference time-domain method is introduced by Yee in 1966 [30].  During 

the 1970s and 1980s, several defense agencies working in the areas motivated large-scale 

solutions of Maxwell’s equations.  The entire field of computation electrodynamics is 

shifting rapidly in high-speed communications and computing.  In 1990, engineers in the 

general electromagnetic community became aware of the modeling capabilities afforded by 

FDTD and related techniques, and the interest in this area has expanded well beyond defense 

technology.  The main reason to introduce FDTD method to solve photonic crystal is that 

when the structure is too complex, it is hard to solve Maxwell’s equation in frequency domain. 

FDTD provide a straight forward way to solve it in time domain.  With this method, we can 

see the field distribution in photonic crystals.  In addition, there are several advantages in 

FDTD method.  First, FDTD is accurate and robust.  The sources of error are well known. 

Second, being a time domain technology, FDTD treats impulsive behavior and nonlinear 

behavior naturally.  Third, FDTD uses no linear algebra.  Being a fully explicit computation, 

FDTD avoids the difficulties with linear algebra that limit the size of frequency-domain 

integral-equation. 

When the differential forms of Maxwell's equations are examined, it can be seen that the 

time derivative of the E field is related to the curl of the H field ( ).  This can be 

simplified to state that the rate of the change in the E field (the time derivative) depends on 

the change in the H field across space (the curl).  The results in the basic FDTD equations 

are that the new value of the E field is related to the old value of the E field (hence the 

H×∇
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difference in time) and the difference of old values of the H fields on either side of the E field 

point in space.  Naturally, this is a simplified description as illustrated in Fig. 2-1. 

 

 

Z 
Ex

n-1/2
k-2      k-1      k      k+1     k+2 

Hy
n 

k-3/2    k-1/2    k+1/2   k+3/2    k+5/2 
time 

Ex
n+1/2

k-2      k-1      k      k+1     k+2 

Fig. 2-1  Interleaving of the E and H fields in space and time in the FDTD 
formulation. 

 

2-3.1 FDTD method in One-dimensional case 

Now we will start with simple one-dimensional differential equations. The 

time-dependent Maxwell’s curl equations in free space are 

H
t
E

×∇=
∂
∂

0

1
ε

                                                    (2.24) 

.1

0

E
t

H
×∇−=

∂
∂

µ
                                                  (2.25) 

Here E and H are vectors in three dimensions.  When we consider only in one dimension 

case, E and H simply have Ex and Hy components, so Eq. (2.24) and (2.25) become 

z
H

rt
E yx

∂

∂
−=

∂
∂

0)(
1
εε

                                                (2.26) 

.1

0 z
E

t
H xy

∂
∂

−=
∂
∂

µ
                                                  (2.27) 

Above equations mean the electric field oriented in the x direction and the magnetic field 
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oriented in the y direction both traveling in the z direction.  Taking the central difference 

approximation for both the temporal and spatial derivatives gives 

z
kHkH

rt
kEkE n

y
n
y

n
x

n
x

∆

−−+
−=

∆
− −+ )2/1()2/1(

)(
1)()(

0

2/12/1

εε
                (2.28) 

.)()1(1)2/1()2/1( 2/12/1

0

1

z
kEkE

t
kHkH n

x
n
x

n
y

n
y

∆
−+

−=
∆

+−+ +++

µ
              (2.29) 

In these two equations, “n” actually means a time ntt ⋅∆= .  The term “n+1” means one 

time step later; “k” actually means the distance kzz ⋅∆= .  The formula of Eqs. (2.28) and 

(2.29) assume that E and H fields are interleaved in both space and time.  H uses the 

arguments  and  to indicate that the H field values are assumed to be 

located between the E field values.  Similarly, superscript 

2/1+k 2/1−k

2/1+n  or  indicates 

that it occurs slightly after or before n, respectively.  Eq. (2.28) and (2.29) can be rearranged 

as 

2/1−n

)]2/1()2/1([
)(

)()(
0

2/12/1 −−+
∆⋅

∆
−= −+ kHkH

zr
tkEkE n

y
n
y

n
x

n
x εε

             (2.30) 

)].()1([)2/1()2/1( 2/12/1

0

1 kEkE
z

tkHkH n
x

n
x

n
y

n
y

+++ −+
∆⋅

∆
−+=+
µ

            (2.31) 

The calculations are interleaved in both space and time.  This is the fundamental paradigm of 

the finite-difference time-domain (FDTD) method.  Eqs. (2.30) and (2.31) are very similar, 

but because ε0 and µ0 differ by several orders of magnitude.  This is circumvented by making 

the following change of variables: 

.~
0

0 EE
µ
ε

=                                                         (2.32) 

Substituting (2.32) into (2.30) and (2.31) gives 

)]2/1()2/1([1)(~)(~

00

2/12/1 −−+
∆
∆

−= −+ kHkH
z
tkEkE n

y
n
y

n
x

n
x µεε

              (2.33) 

)].(~)1(~[1)2/1()2/1( 2/12/1

00

1 kEkE
z
tkHkH n

x
n
x

n
y

n
y

+++ −+
∆
∆

−+=+
µε

         (2.34) 
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If the cell size  is chosen, the time step z∆ t∆  can be determined by 

02
zt
c

∆
∆ ≥

⋅
                                                        (2.35) 

where c0 is the light speed in free space.  The reason why we determined the time step t∆  

to Eq. (2.30) related to the stability of the FDTD method.  An electromagnetic wave 

propagating in free space cannot go faster than the speed of light.  To propagate a distance of 

one cell  needs a minimum time of z∆
0c
zt ∆

=∆ .  When we get to two-dimensional 

simulation, we have to allow for the propagation in the diagonal direction, which brings the 

time requirement to 
02c

zt ∆
=∆ .  Obviously, three-dimensional simulation requires 

03c
zt ∆

=∆ .  This is summarized by the well-known “Courant Condition” [31, 32]: 

,
0cd

zt
⋅

∆
≤∆                                                       (2.36) 

where d is the dimension of the simulation.  Hence we will determine  in Eq. (2.37). 

This is not necessarily the best formula!  Therefore, 

t∆

2
12/1 0

0
00

=
∆
⋅∆

⋅=
∆
∆

z
czc

z
t

µε
                                         (2.37) 

Substituting (2.35) into (2.33) and (2.34), those equations become 

1/ 2 1/ 2 0.5( ) ( ) ( ( 1/ 2) ( 1/ 2))n n n n
x x y yE k E k H k H k

ε
+ −= − + − −% %                        (2.38) 

1 1/ 2( 1/ 2) ( 1/ 2) 0.5[ ( 1) ( )]n n n n
y y x xH k H k E k E k+ ++ = + − + −% % 1/ 2+                     (2.39) 

Besides the last two iterative equations, we still need to add incident wave source 

condition and absorbing boundary condition.  It is a great subject in dealing with the wave 

source condition.  For simplicity, we divide it into two categories in 1-D case: hard source 

and soft source.  In a hard source, a propagation wave will see that value and be reflected, 

because the hard value of Ex looks like a metal wall to FDTD.  However a soft source is 

added to Ex at a certain point and a propagating pulse will just pass through.  In calculating 
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photonic crystal, we must consider the field scattering from the material.  Therefore we use a 

soft source. 

sin(2 * * )

x x

pulse f dt t
E E pulse

π=
= +                                            (2.40) 

In order to keep outgoing E and H fields from being reflected by the calculation 

boundary and back into the problem space, so the absorbing boundary conditions (ABC) are 

necessary to consider.  The fields at the edge must be propagating outward.  In one time 

step of the FDTD algorithm it travels 

distance =
22 0

00
x

c
xctc ∆

=
⋅
∆

⋅=∆⋅ .                                      (2.41) 

This equation basically explains that it takes two time steps for a wave front to cross one cell. 

So a common sense approach tells us that an ABC might be 

2

2

(0) (1)

( ) ( 1),

n n
x x
n n
x x

E E

E k E k

−

−

=

= −
                                                 (2.42) 

where 0 and k are the end points and n is a time step.  Simply store a value of Ex(1) two time 

steps before in Ex(0).  Boundary conditions such as these have been implemented at both 

ends of the Ex array.  Below are the examples of C computer code in one-dimensional 

absorbing boundary conditions.  Additional parameters are used to store the boundary value 

for two time steps during the calculation loop. 

ex[0] = ex_low_m2; 

ex_low_m2 = ex_low_m1; 

ex_low_m1 = ex[1]; 

(243) 

ex[KE-1] = ex_high_m2; 

ex_high_m2 = ex_high_m1; 

ex_high_m1 = ex[KE-2]; 
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2-3.2 Two-dimensional photonic crystal formulation and perfectly matched 

layer (PML) boundary condition 

We start again with the normalized Maxwell’s equations: 

H
t
D

×∇=
∂
∂

00

1~

µε
                                                 (2.45) 

)(~)()(~ ωωεω ED ⋅= r                                                 (2.46) 

.~1

00

E
t

H
×∇−=

∂
∂

µε
                                               (2.47) 

where EE
v

0

0~
µ
ε

=  and DD
v

00

1~
µε

= .  In two dimension cases, there exist two groups of 

six different fields.  One is the transverse magnetic (TM) mode, which is composed of zE~ , 

, and .  Another is the transverse electric (TE) mode, which is composed of , xH yH xE~ yE~ , 

and .  In TM mode, therefore, Eq. (2.44) ~ (2.47) are reduced to zH

)(1

00 y
H

x
H

t
D xyz

∂
∂

−
∂
∂

=
∂
∂

µε
                                          (2.48) 

)()()( ωωεω zrz ED ⋅=                                               (2.49) 

y
E

t
H zx

∂
∂

−=
∂
∂

00

1
µε

                                                (2.50) 

.1

00 x
E

t
H zy

∂
∂

=
∂
∂

µε
                                                (2.51) 

The two-dimensional systemic interleaving of the calculated fields is more complex than one 

dimension.  That is illustrated in Fig. 2-2 below. 
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Y 
yHyH

 

Put Eqs. (2.48), (2.50) and (2.51) into the finite difference scheme, and take equivalent 

incremental step in x and y direction, these equations become 

)
),2/1(),2/1(

(1),(),(

00

2/12/1

x
jiHjiH

t
jiDjiD n

y
n
y

n
z

n
z

∆
−−+

=
∆
− −+

µε
 

))2/1,()2/1,((1

00 x
jiHjiH n

x
n
x

∆
−−+

−
µε

          (2.52) 

)),()1,(1)2/1,()2/1,( 2/12/1

00

1

x
jiEjiE

t
jiHjiH n

z
n
z

n
x

n
x

∆
−+

−=
∆

+−+ +++

µε
       (2.53) 

).),(),1(1),2/1(),2/1( 2/12/1

00

1

x
jiEjiE

t
jiHjiH n

z
n
z

n
y

n
y

∆
−+

=
∆

+−+ +++

µε
        (2.54) 

We have briefly mentioned the issue of absorbing boundary conditions (ABCs) in 

discussion of one dimension.  In the two-dimensional simulations, the program contains 

two-dimensional matrices for the values of all the fields (i.e. dz, ez, hx and hy).  Assume we 

X 

1+j

j

1−j

1+i 2+i  1−i i

 

 

 

xH

zEzEzEzE

zEzEzEzE

zEzEzEzE

yH

xH xH xH  
yHyH yH

xH xH xH xH  
yH yHyH

xH xH xH xH  

Fig. 2-2  Interleaving of the E and H fields for the 
two-dimensional TM formulation. 
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are simulating a wave generated from a point source propagating in the free space.  As the 

wave propagates outward, it will eventually come to the edge of the allowable space, which is 

dictated by how the matrices have been dimensioned in the program.  If we had done nothing 

about this, reflections would be produced and would go back the problem space.  Then we 

will have no way to differentiate between the real wave and the reflected wave.  This is why 

the ABCs must exist.  The most effective ABCs is the perfectly matched layer (PML) 

developed by Berenger [32].  How PML works can be easily understood by the following 

description.  If a wave propagating in medium A and it impinges upon medium B, the 

amount of reflection can be determined by the intrinsic impedances of two media 

BA

BA

ηη
ηη

+
−

=Γ ,                                                       (2.55) 

where the impedance is .
ε
µη =   If µ changed with ε so η still remained a constant, Γ would 

be zero and no reflection will occur.  But this is still helpless to our problem, because waves 

will continue propagating in the new medium.  We really want is a medium that is also lossy 

so the wave will decrease before it hits the boundary.  Hence we mark both ε and µ of 

complex due to their imaginary parts causing decay.  

To simulate a plane wave propagating in a 2D FDTD program, the space of problem will 

be divided into two regions, the total field and the scattered field (Fig. 2-3).  There are two 

reasons for doing this: (1) The propagating plane wave should not interact with the absorbing 

boundary conditions; (2) the load on the absorbing boundary conditions should be minimized. 

These boundary conditions are not perfect.  By subtracting the incident field, the amount of 

the radiating field hitting the boundary is minimized, thereby reducing the calculation error. 
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PML
Incident plane wave 
is subtracted out 
here.

Total field 

Calculation samples 

Incident plane wave is 
subtracted out here. 

Scattered field 

Fig. 2-3  Total field/scattered field of the two-dimensional problem space. 

 

 

2-4 Tight binding method in solid state physics 

In the later discussion of the coupling between the photonic crystal waveguides we will 

apply the tight binding approximation to support our argument.  So we here do a simple 

introduction of what is the tight binding method and its meaning in solid state physics [33]. 

In atoms the electrons are tightly bound to their nuclei.  If the atoms are so close that 

their separations become comparable to the lattice constant in solids, their wave functions will 

overlap each other.  If we consider only two atoms, their combined wave functions are 

BA ψψ ± .  The electron energy of state BA ψψ +  is lower than one of state BA ψψ − .  

After they approach to each other, the Coulomb force between nucleuses and electrons can 

cause the energy level splitting and becomes energy band.  The approximation method to 

obtain the energy band structure by calculating the free atomic wave functions is called tight 

binding approximation (TB) or linear combination of atomic orbitals (LCAO).  In covalently 

bonded semiconductors the valence electrons are concentrated mainly in the bonds.  

Therefore the wave functions of valence electrons should be very similar to bonding orbitals 
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found in molecules.  In addition to being a good approximation for calculating the valence 

bond structure, the TB method has the advantage that the band structure can be defined in 

terms of a small number of overlap parameters.  The overlap parameters have a simple 

physical interpretation as representing interactions between electrons of adjacent atoms.   

Assume that an electron with ground state )(rϕ  exercises within a single atom’s 

potential , where )(rU )(rϕ  denotes as the s state.  It is too complex if we solve the energy 

band problem by using degenerated atomic energy levels.  Therefore, we assume that the 

influence between two atoms is quite small, and then the wave function can be expanded as 

following： 

∑ −=
j

jkjk rrCr )()( ϕψ .                                               (2.56) 

If  in Eq. (2.56) is for a crystal with N atoms, the Bloch form of the above 

equation can be expressed as 

jrik
jk eNC ⋅−= 2/1

,

∑ −⋅= −

j
jk rrrikNr )()exp()( 2/1 ϕψ , )()exp()( rTikTr kk ψψ ⋅=+ ,           (2.57) 

where T is the primitive vector connecting two lattice points.  To calculate the 1st level 

energy by doing the Hamiltonian matrix diagonalization as follow: 

,)](exp[1
jm

j m
mj HrrikNkHk ϕϕ∑∑ −⋅= −                           (2.58) 

where )( mm rr −≡ ϕϕ .  Let jmm rr −=ρ , then 

∑ ∫ −⋅=
m

mm rHrdVikkHk )()(*)exp( ϕρϕρ .                          (2.59) 

In Eq. (2.59), we do the integration to only an atom and other atoms nearby which are tied up 

by ρ .  We can rewrite it as: 

∫ −= arHrdV )()(* ϕϕ ;                        (2.60) ∫ −=− γϕρϕ )()(* rHrdV

To set 1=kk , the 1st level energy is 
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∑ =⋅−−=
m

kmikakHk εργ )exp( .                                   (2.61) 

The relation between overlapping energy γ  and atomic spacing ρ  in two hydrogen atoms 

which are both in the 1s state can be clearly calculated.  Using the Rydberg-energy unit, 

, we have 24 2/ hmeRy =

)/exp()/1(2)( 00 aaRy ρργ −+= .                                      (2.62) 

Considering to a simple cubic structure, the positions of the closest atoms are 

);0,0,( am ±=ρ   );0,,0( a± ),0,0( a± .                                    (2.63) 

So Eq. (2.61) becomes 

)cos(cos2 akakaka zyxk ++−−= γε .                                   (2.64) 

Other example likes the fcc structure which has twelve closest atoms and its band structure 

can be described as 

)
2
1cos

2
1cos

2
1cos

2
1cos

2
1cos

2
1(cos4 akakakakakaka yxxzzyk ++−−= γε .        (2.65) 

Hence the tight-binding approximation method provides a very simple way to do the atomic 

energy band structure analysis.  This way can also be applied to discussion of the small 

coupling effect inside a photonic crystal coupled-cavities waveguides (CCWs).  
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Chapter 3   Simulation and Discussion 

In this chapter, we will bring up a series of research focusing on both waveguide 

properties and 2-D photonic crystals devices.  Two subjects have been discussed in 

the following text, including tight-binding theory of coupling behavior in the PhC 

waveguides and WDM design using resonant ring devices.  Many related and 

additional points have also been analyzed. 

 

3-1.    Long-range interaction of defect modes between coupled 

identical photonic crystal waveguides 

When two identical photonic crystal waveguides (PCWs) are placed close to 

each other, a “band-crossing” property could be found in the dispersion relation.  We 

use MIT photonic band code to investigate the band structures with void and reduced 

line-defects in square and triangular lattices and coupling between two PCWs in 

silicon rod array.  By using the tight-binding (TB) approximation, we fit the 

dispersion curves very well and accurately define the crossing point of dispersion 

curves. 

 

3-1.1  Single line defect photonic crystal waveguides and  

tight-binding approximation 

The PCW couplers consist of plural adjacent PCWs in which the guided modes 

are overlapped, resulting the splitting of dispersion curves.  That is in common with 

its counterpart built with conventional optical waveguides.  However, there is certain 

fundamental dissimilarity between these two categories of couplers.  One remarkable 

example is the decoupling of the adjacent waveguides.  Decoupling occurs where the 

dispersion curves of the split guided modes cross, namely the degeneracy has not be 
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removed at a certain frequency.  To generate decoupling is an exhausting task to 

conventional waveguides, but a direct effect for PCWs [35-37].  

Typically, the dispersion curves of the PCW couplers can be obtained 

numerically from the solutions of Maxwell’s equations by the plane wave expansion 

(PWE) method [38].  However, the PWE does not provide enough insights to the 

coupling mechanism of PCWs.  Also, there are very few literatures discussing this 

mechanism.  In this thesis, we explain the PCW coupling with the long-range 

interactions among the eigenmodes of individual defects and derive the evolution 

equation of the guided modes.  The split of the dispersion curves is attributed to the 

cross-waveguide coupling to the nearest neighboring (NN) defects and the next NN 

defects in the second PCW.  The dispersion curves cross due to the cancellation of 

these two couplings, causing the decoupling of the PCWs. 

A point defect, acts as an optical resonator (cavity), can be created by 

introducing a single defect into a photonic crystal that locally trap photons with a 

certain frequency inside the defect volume (Fig. 3-1(a)). The coupled cavity 

waveguide (also referred to as coupled resonator optical waveguide) composed of 

well-separated defects in PhC (Fig. 3-1(b)) has been proposed and demonstrated 

recently [39, 40].  It is assumed the defects are weakly coupled due to the 

overlapping of the individual evanescent eigenmodes (here referred to as defect 

modes) and the dispersion relation can be obtained by the formalism developed from 

the tight-binding (TB) approximation in solid state physics (Fig. 3-2).  Only the 

couplings with the nearest neighboring (NN) defects are taken into account in this 

approximation as the defect modes are localized in the defect sites.  The defects 

beyond the NN ones are ignored. 
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Conceivably, a PCW can be regarded as a chain of consecutive defects, and the 

dispersion relations of the guided modes result from the superposition of longitudinal 

shifted defect modes.  The coupling concept of the TB approximation is borrowed to 

model the dispersion relation in PCWs.  Notably, the consecutive defects are still too 

close and the coupling beyond the NN defects is significant, which cannot be ignored 

in the evolution equation [41].  As the couplings to the remote defects are taken into 

account, the evolution equation extended from the TB approximation can be written 

as 

Fig. 3-1  (a) A single point defect, in which the photon in resonance 
frequency is trapped inside the point defect. (b) A diagram of coupled cavity 
waveguide (CCW). 

Evanescent wave 

Fig. 3-2  Schematics of propagation of photons by the coupled 
evanescent defect modes. 
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∑
=

−+ +++=
∂
∂

1
0 )( )(

l
lnlnnlnn uucuwu

t
i α                 (3-1) 

un represents the Bloch function at site n, w0 is the resonant frequency of a single 

cavity, α is a small shift (arising from the presence of neighboring defect) in the 

eigenfrequency of the single point defect and cnl is the coupling coefficient of the 

defect at site n with the l-th neighboring defects as illustrated in Fig. 3-3.  

  

 

 

 

 

Fig. 3-3   The defect at site n coupling with the lth neighboring defects 

 

Let , where k is the propagating constant,  is the 

lattice constant, and w

)exp()( 10 tiwiknautun −= a

1 is the eigenfrequency of the single PCW.  By substituting un(t) 

into Eq. (3.1), we obtained the dispersion curve as 

∑
=

++=
1

01 )cos( 2
l

nl lkacww α                       (3-2) 

The formula is applied to fit the dispersion curve of a single PCW derived from 

PWE.  Two-dimensional (2D) PhCs consisting of a triangular lattice and a square 

lattice of dielectric rods with the lattice constant  in air were considered.  Assume 

the PCW is formed by a line defect of void (R

a

d=0 a ) and reduced rods (Rd=0.1 a ) in a 

two dimensional PhC of both array of circular rods.  Let the dielectric constant of the 

rod is 12 and the radius of the rod is 0.2 .  The dispersion curves derived from PWE 

(the dotted curve in Fig. 3-4) is fitted with Eq. (3-2) (the dash curve) as only the 

couplings with NN defects (l = 1) are involved.  Obviously, the NN couplings are 

insufficient to accurately determine the dispersion curve, and the mode functions in a 

a
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PCW appear not well-localized.  The curve is well fitted as long as the long-range 

couplings up to the third NN defects are taken into account, presented as the solid 

curve in Fig. 3-5.  Therefore, Eq. (2) is recast as 

)3cos( 2)2cos( 2)cos( 2 3211 kackackacw nnn +++Ω= ,        (3-3) 

where  is the sum of  and α.  , , and  are the TB parameters 

determined from splitting of several coupled cavities or the width of defect band.  

Equation (3.3) states the different strength of each evanescent waves coupling to the 

neighbors.  Each fitting parameters in different orders are shown in Table 3-1 below. 

Ω 0w 1nc 2nc 3nc

 

 
Table 3-1  Fitting curve function of a single PCW 

 

 

 

 

 

 

 

 

 

Lattice 
type 

Defect 
type 

Ω 2cn1 2cn2 2cn3

0.322156 0.0574397   reduced 
0.32164 0.0572285 0.00825559 0.00179545

0.372517 0.0737741   

 
Square 

void 
0.375729 0.0802634 0.00755291 0.000129329
0.331878 0.0396954   reduced 
0.331622 0.0396419 0.00409485 0.000454774
0.393989 0.0585895   

 
Triangular 

void 
0.394934 0.0606635 0.00280332 0.000899578
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Fig. 3-4  (a) (b) The dispersion of the reduce and remove line-defect mode in square 

lattice and the fitting curve with NN approximation.  (c) (d) The dispersion of the 

reduce and remove line-defect mode in triangular lattice and the fitting curve with NN 

approximation. 
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Fig. 3-5  (a) (b) The dispersion of the reduce and remove line-defect mode in square 

lattice and the fitting curve with NNNN approximation.  (c) (d) The dispersion of the 

reduce and remove line-defect mode in triangular lattice and the fitting curve with 

NNNN approximation. 
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3-1.2 Tight-Binding Theory of Coupling of Identical Photonic 

Crystal Waveguides 

The behavior of dispersion relation along the Γ-X direction in single waveguide 

has been introduced earlier before.  Naturally, the coupling concept can be applied to 

all general case of defects in PhCs such as the coupled PCWs.  We applied the 

long-range coupling to handle the interaction between two coupled identical PCWs 

when two waveguides are placed in close vicinity.  Therefore, the couplings to the 

defects in the other PCW (referred to as the cross-PCW coupling) are included.  We 

found the interaction is dominated by the cross-PCW coupling of defect at site n with 

NN defect (l = 0 defect) and the next nearest neighboring defects (l = +1 and -1 

defects) in the other PCW as shown in Fig. 3-6.  The evolution equations for two 

coupled parallel identical PCWs are expressed as 
3

0 1
1

( ) ( )  (n n nl n l n l n n
l

i u w u c u u v v v
t

α β+ − + −
=

∂
= + + + + + +

∂ ∑ 1)nγ ,           (3-4) 

3

0 1
1

( ) ( )  (n n nl n l n l n n
l

i v w v c v v u u u
t

α β γ 1)n+ − +
=

∂
= + + + + + +

∂ ∑ − ,           (3-5) 

respectively, where vn represents the Bloch function in the other PCW, and β and 

γ separately represent the cross-PCW coupling coefficients with l = 0 and l = ±1 

defects.   

 

 

 

 

 

 

Let  and)exp()( 20 tiwiknautun −= )exp()( 20 tiwiknavtvn −= with w2 being the 

eigenfrequency of the coupled PCWs and substituted into Eqs. (3-4) and (3-5), then 

Fig. 3-6  The defect at the nth 

site coupling with the lth  

defect in the other PCW. 
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the equations become 

0 )]cos(2[ )( 0012 =+−− vkauww γβ ,     and                      (3-6) 

0 )]cos(2[ )( 0012 =+−− ukavww γβ                                (3-7) 

Therefore, the dispersion relations of the coupled PCWs can be obtained from the 

dependent Eqs. (3-6) and (3-7) as 

)]cos(2[12 kaww γβ +±=± .                                     (3-8) 

 

The dispersion curve of w1 is split into two curves denoted as  and  

corresponding to an even and an odd supermode which will be mentioned later, due to 

the presence of cross-PCW coupling.  Obviously, the coupling with l = 0 

neighboring defect leads to a vertical shift by β merely, and couplings with l = 1 and 

-1 neighboring defects lead to the cosine modulation. 

+
2w −

2w

We applied Eq. (3-8) to fit the dispersion curves of the coupled PCWs derived 

from the PWE method.  The coupled reduced-rod PCWs in a square lattices, shown 

in Fig. 3-7 (b) are treated.  Since the coupling coefficients in w1 had been determined 

from fitting the dispersion curve of a single PCW with Eq. (3-3), the dispersion curves 

of  and  were fitted by Eq. (3-8) with the known w+
2w −

2w 1.  The cross-PCW 

coupling coefficients, β and γ, were obtained as 0.0094 and 0.00375.  Evidently, the 

coupling of PCWs can be represented by cross-PCW couplings with l = 0 and ±1 

defects in the second PCW.  On the other hand, the curves of  and  in a 

triangular lattice can be fitted by the same approach as in Fig. 3-7 (d) to determine the 

coefficients, β and γ (0.0082 and 0.0054, respectively) as well.  Here, we only 

include the cross-PCW coupling with l = 0 and ±1 defects, since they are dominant 

for the splitting of the dispersion curve.  More cross-PCW coupling with farther 

defects should be included as more accurate determination of dispersion curves is 

demanded.  It is noteworthy that the curves  and  in a triangular lattice 

+
2w −

2w

+
2w −

2w
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intersect, while it does not happen in the square lattice.  Actually, all the three curves 

of w1,  and intersect at one point in Fig. 3-7 (d).  The triple intersection 

indicates that the split guided modes are degenerate and the PCWs are decoupled at 

the crossing point as if the adjacent PCW does not exist.  All the fitting parameters 

of whole cases are shown in Table 3-2. 

+
2w −

2w
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Fig. 3-7  The energy band structures and their electric field patterns of the 
defect modes of two coupled linear PCWs with both cases of remove and 
reduce rods in square lattice (a) (b) and triangular lattice (c) (d), which are 
split into two eigenmodes. The center lines are the defect of single PCW. 
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We conclude that the curves exhibit the competition between β and γ.  The 

intersection occurs at , whereak /)]2/([cos 1 γβ−= − 0)cos(2 =+ kaγβ that means 

the effect of the couplings with l = 0 and ±1 defects are cancelled with each other.  

Accordingly, these three curves of w1, and  are bound to intersect at one point.  

The inequality 

+
2w −

2w

γβ 2<  is a necessity for the intersection, it implies that the sum of 

the coupling strength with the l = ±1 neighboring defects surpasses the coupling 

strength with the l = 0 defect.  β (0.0094)  > 2γ (0.0075) in the square lattice and 

c

(a) (b) 

(d) 
 ( ) 

Fig. 3-8  The energy band structures and their electric field patterns of the 
defect modes of two coupled linear PCWs with both cases of remove and 
reduce rods in square lattice (a) (b) and triangular lattice (c) (d), which are 
split into two eigenmodes. The center lines are the defect of two PCWs. 
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β (0.0082) < 2γ (0.0108) in the triangular lattice support this argument. 

Substituting Eq. (3-8) into Eqs. (3-6) and (3-7), we have the Bloch functions, u0 

and v0, of and  expressed as +
2w −

2w

⎟⎟
⎠

⎞
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0

0
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u

respectively.  It indicates the functions of  appear to be even parity, while that of 

 has the odd parity.  The parities are in accordance with the results by the PWE 

method.  In fact, which one of  and  is the lowest guided mode is 

determined by the sign of β.  The β coefficients are positive in both of the square and 

triangular lattice cases.  Therefore, the lowest guided mode is the odd-parity , 

opposite to the common understanding to conventional optical waveguides, in which 

the lowest mode is even.  The lowest guided mode is even, if β is negative.  The 

coupling coefficients represent the spatial integrations of the eigenfields involved. 

Hence, the spatial relationship of the eigenfield patterns can account for the parity of 

the lowest guided modes of the coupled PCWs. 

+
2w

−
2w

+
2w −

2w

−
2w

Table  3-2  Fitting curve function of two PCWs 

 

 

Defect type β 2γ Mode 
change

Crossing 
point 

Sq-reduce-1row 0.0093722 0.00747703 NO NO 

Sq-reduce-2row 0.00344394 0.00369485 NO NO 

Sq-remove-1row 0.00914204 0.0131291 Yes 0.373191 

Sq-remove-2row 0.00369654 0.00321742 No No 

Tri-reduce-1row 0.00822751 0.0108092 Yes 0.383087 

Tri-reduce-2row 0.00292783 0.0043047 Yes 0.366605 

Tri-remove-1row 0.00905432 0.0155465 Yes 0.356311 

Tri-remove-2row 0.00113095 0.00692431 Yes 0.287898 
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3-1.3 Summary 

In summary, we have applied the concept of defect mode coupling to formulate 

the evolution equations of the coupled PCWs.  The cross-PCW couplings to the 0th 

and ±1st neighboring defects in the other PCW account for the splitting of the 

dispersion curve of the coupled PCWs in both square and triangular lattices.  The 

curves are modulated as a result of the competition between the couplings to the 0th 

and ±1st neighboring defects.  Decoupling exists while those two couplings cancel 

each other.  The parities of the Bloch functions also can be determined from the 

evolution equations. 
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3-2 Photonic crystal WDM design for application of coupling 

Wavelength division multiplexing (WDM) plays an important role in optical 

communication.  It allows network operators to more efficiently utilize bandwidth by 

aggregating separate wavelengths or channels onto a single optical fiber and offers an 

attractive solution to increasing the bandwidth of fiber network without disturbing the 

existing employed fiber trunk system.  In order to develop the photonic integrated 

circuits (PICs) in the future, the device sizes are expected to be drastically reduced to 

a scale of a few tens of micrometers.  Using photonic crystal devices may be a most 

possible solution to achieve integrated circuit.  In this section, we will make a 

skeleton design of photonic crystal WDM using resonant rings.  The simulation 

results are obtained using a finite difference time-domain method (FDTD) and a 

simpler coupled-mode theory. 

 

3-2.1  Coupling of the directional coupler 

We start with a device called photonic crystal directional coupler.  When two 

PCWs are brought in close vicinity of each other they will form what is known as a 

directional coupler, shown in Fig. 3-9.  Under proper conditions, the electromagnetic 

waves launched into one of the PCW can completely couple to the nearby waveguide.  

Under a precise calculation, two light waves can be split resulting from their own 

coupling length.  According to this, a PhC WDM might be possibly fabricated.  

Although directional coupler has good transmission, unfortunately, based on the 

severe standard of extinction ratio in optical communication (20 dB is required in 

normal application), by using a usual directional coupler is pretty hard to achieve that 

performance.  Figure 3-10 helps to catch on to this argument.  In addition, 

directional coupler having large channel spacing is also a difficult to form WDM with 

more channels, even DWDM. 
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Here we consider a band structure of two coupled PCWs which composed of 

dielectric rods in air on triangular array with lattice constant Λ, as shown in Fig. 3-11, 

where the radius and the refractive index of rods are, respectively, taken as r=0.15Λ 

and n=3.46.  From Fig. 3-11, the extended modes and the defect modes of the 

TM-polarization (the electric field parallels the rod axis) along the Γ-K direction are 

calculated.  The bandgap ranges from the normalized frequency (f) 0.3 to 0.52 and 

Fig. 3-9.  Photonic crystal directional coupler consisting of two closely 
coupled PhC waveguides. 

λ1

λ2 

λ1 
λ2 

λ1
λ2

Coupling Length 

Fig. 3-10.  A diagram of the fault in power ratio in usual PhC 
directional coupler. 
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the dispersion curves of defect lie within the bandgap.  Using the function derived 

from the tight-binding theory, we fit the dispersion curves of defect and obtain the 

dispersion functions separately as 

 

0.430411 -0.0501594Cos[2πx]+0.00662485Cos[4πx]-0.00104994Cos[6πx] 

0.409736-0.0829236Cos[2πx]+0.0134319Cos[4πx]-0.00227637Cos[6πx].    

 

Using these two functions, we get the decoupling point at frequency ~ 0.463. 

 

 

 

 

 

 

 

 

 

  Fig. 3-11.   The band structure of two PCWs.  The radius and the refractive 

index of rods are, respectively, taken as r=0.15Λ and n=3.46.  The 

decoupled point is at f=0.463 

 

Coupling length L can be well described by the eigenmode expansion and can be 

written as 

k
L

∆
Λ

=
2

,                                                       (3-10) 

where , and k)( 21 kkk −=∆ 1 and k2 are the normalized wavevectors.  Using Eq. 

(3-9) 
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(3-10), L as the function of f can be plotted by PWE in Fig. 3-12.  The value of L is 

sensitive to frequency near the decoupling point for the coupled PCWs, and this range 

of frequencies is good for WDM design by using quite different coupling lengths.  In 

addition, if we choose the frequency of short coupling length, its power ratio will be 

very small because of backward coupled wave.  In order to improve this drawback, 

we had better to choose the frequencies near the decoupling point to design WDM. 

 

 

 

 

 

 

 

 

 

Fig. 3-12  The plot of the coupling length L as the function of frequency f.   

The coupling length at the range of the ring is sensitive to frequency.  

 

    However, it is a very rough estimation in Fig. 3-12, especially near the 

decoupling frequency.  It is too difficult to find the exact decoupling frequency by 

PWE.  Using Eq. (3-9), we can easily obtain Δk near the decoupling.  For 

example, the coupling length is about 27 Λ at the frequency 0.4485. 

We design a directional coupler with coupling region 27Λ as shown Fig. 3-13.  

The frequency with the best power contrast (P2/P3) is fB=0.4489 which is slightly 

different from the result derived from Eq. (3-9) and the power contrast is only 18 dB 

which is lower than the required 20 dB.  With increasing the operation frequency, the 
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contrast would change oscillatorily as shown in Fig. 3-14.  That may result from 

interference of the multiple reflection waves in the finite PC structure.  At f=0.4618 

which is very close to the decoupling frequency 0.463, the power contrast eventually 

as high as 20 dB.  Figure 3-14 indicates that the directional coupler with large 

channel spacing has a disadvantage for designing WDM with more channels. 

 

 

Fig. 3-13  A directional coupler made by silicon rod array.  The coupling 

region is 27Λ. 

 

 

 

 

 

 

 

 

Fig. 3-14  The plot of the power ratio (P2/P3) as the function of frequency f.  

the biggest power ratio is only 18 dB and its channel spacing is 

0.0127. 
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3-2.2    Coupling ring device between PCWs 

    We therefore propose a novel design to deal with the large channel spacing and 

power contrast.  We make it a hexagonal loop with the coupling length of 27 Λ, as 

shown in Fig. 3-15.  When the wave of f=0.4494 from output 1 incident into the 

structure, it couples to the ring then to the other PCW to output 2 as shown in Fig. 

3-16(a).  The output power ratio of fB increases to 21.5 dB (Fig. 3-16(a)) and the 

power ratios of �=0.4493 ~ 0.4495 are all over 20 dB.  Besides, injecting the optical 

wave of �B into output 2, the power ratio (output 1/output 3) can reach 23 dB (Fig. 

3-16(b)). 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3-16   (a) The field distribution of forward wave.  The frequency of the 

injected wave is 0.4494. its power ratio is 21.5 dB. 

 

Fig. 3-15  A resonant ring coupler made by silicon rod array. The 

coupling region is 27Λ. 

(a) 
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Fig. 3-16(b)  The field distribution of backward wave.  The frequency of the 

injected wave is 0.4494. its power ratio is 23 dB. 

 

In addition, if the wave of other frequencies which are not accurate to this 

coupling length will propagate partially through the ring and couple region again to 

the PCW of output 3.  Furthermore, the resonant ring coupler possesses narrower 

transmission bandwidth as compared with the directional coupler.  As �B =0.4583, 

the power ratio decreases to -20 dB.  So we can get smaller channel spacing as 

shown in Fig. 3-17 with decreasingΔ� from 0.0127 to 0.0089.  It is an advantage 

for designing WDM with more channels near the decoupling point using resonant ring 

structures. 

 

 

                                          

 

 

 

 

 

 

fB=0.4494 (b) 
P3 

P1 

fB=0.4494 output 3 

output 1 

  Fig. 3-17  The plot of the 
power ratio (P2/P3) as the 
function of frequency f.  the 
biggest power ratio reach 21.5 
dB and its channel spacing is 
only 0.0089. 
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    Besides coupling region can affect power contrast in this resonant ring coupler, 

the factor of ring width must also be considered.  Because there is index difference 

between the device and outside world, the reflection wave will propagate back to 

device to cause interference.  Therefore, the peak of optimal power ratio would 

slightly shift with the different ring width.  Here we show the spectra and field 

distribution of two widths of 5 Λ and 7 Λ in Fig. 3-18.  We found although the peaks 

of optimal power ratio are shifted, but the power ratio still have 20 dB.  These results 

explain the interference of reflection wave is a very important factor of designing this 

resonant ring coupler. 

 

 

(a)                               (b) 

 

 

 

 

Fig. 3-18.  (a)  The spectrum of the width 5 Λ of the resonant ring coupler.  The 

peak is shift from frequency 0.4494 to 0.4511.  (b)  The spectrum of the width 7 Λ 

of the resonant ring coupler.  The peak is shift to frequency 0.4499. 

 

3-2.3  WDM design and FDTD simulation 

We try integrating the resonant rings into the line defect PCW to complete the 

WDM design.  The structure is made by a 2-D triangular lattice with lattice constant 

Λ and the material is silicon (ε = 12).  Silicon rod radius is 0.15 Λ.  In the 

beginning, we selected the smaller resonant ring with coupling region 27 Λ in our first 

coupler.  Because the larger frequency defect mode needs longer coupling region, it 
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will not couple into the small ring.  We therefore put a larger resonant ring after the 

small ring for the larger frequency mode.  In order to get better power discrimination, 

we choose the second splitting ring with more than twice of the coupling length of the 

smaller one.  After the optimum design, the structure is shown in Fig. 3-19 with 

coupling region 70 Λ to guide larger frequency.  .  The length of all WDM device is 

only 90 μm 

 

 

 

 

 

Fig. 3-19  WDM made up of two rings.  There are two rings in the WDM.  The 

coupling region of small one is 27 Λ.  The coupling region of big one 

is 70 Λ. 

 

We plot the coupling length versus the normalized frequency in Fig. 3.20.  Let 

fA=0.4618 correspond to λA = 1300nm, fB = 0.4575 for λB = 1312nm, and fC = 0.4575 

for λC = 1336nm if Λ = 0.6 µm.  Using FDTD simulation to calculate the field 

distribution and Poynting vector while individually injecting the Gaussian waves of 

λA, λB and λC into the input port, we can get the field distributions and their power 

ratios as shown in Fig. 3-21, Fig. 3-22 and Fig. 3-23.  The power ratios have also 

been listed in Table 3-3. 

From Table 3-3, the three waves with different wavelengths are successfully 

divided into the three outputs.  Each of power ratios achieves 20 dB which satisfies 

the standard of optical communication.  In order to find the bandwidth with each 

output, we calculate the power ratios for the whole range of operating frequency.  

Output 2 

Output 3

Output 1 

Input  
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Fig. 3-24 indicates the frequency whose power ratio in the output1 exceeding 20 dB is 

in the range of 0.4493~0.4495 that correspond to wavelength of 1334.8 nm~1335.4 

nm covering over about 0.6 nm.  Fig. 3-25 indicates the frequency whose power 

ratio in output2 exceeding 20 dB is in the range of 0.45755~0.45765 with 

corresponding wavelengths of 1311.1 nm~1335.5 nm covering 0.4 nm.  The 

bandwidth of output2 is smaller than that of output1 because the coupling length is 

sensitive to frequency.  Finally, Fig. 3-26 indicates the frequency having power ratio 

of output3 exceeding 20 dB in the range of 0.4618~0.463 that correspond to 

wavelengths of 1300 nm~1296 nm with bandwidth of about 4 nm. 

 

 

 

 

 

 

 

 

Fig. 3-20  The plot of the coupling length L as the function of frequency f.  

The frequency fB=0.4575 corresponding to the coupling length 70 Λ 

and the frequency fC=0.4493 corresponding to the coupling length 

27 Λ. 
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λ=1336 nm 

Fig. 3-21  The field distribution of 
λC =1336 nm.  Its power ratio P1/P2 
is 26.5 dB and P1/P3 is 32 dB. 

λ=1312 nm 

Fig. 3-21  The field distribution of 
λB =1312 nm.  Its power ratio P2/P1 
is 22.3 dB and P2/P3 is 20.1 dB. 
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Table 3-3  Output power ratios of WDM. 

 

 

 

λ=1300 nm 

Fig. 3-22  The field distribution of 
λA =1300 nm.  Its power ratio P3/P1 
is 20 dB and P3/P2 is 30.6 dB. 

Power ratio (dB) Input 

wavelength 

(Λ＝0.6μm ) 

P1 vs P2 (dB) P1 vs P3 (dB) P2 vs P3 (dB) 

1336 nm 26.5 32.2  

1312 nm 22.3  20.1 

1300 nm  20 30.6 
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Fig. 3-24  The plot of the power ratio P1/P2 and P1/P3 as the function 
of frequency f.  The bandwidth is about 0.6 nm. 

Fig. 3-25  The plot of the power ratio P2/P1 and P2/P3 as the function 
of frequency f.  The bandwidth is about 0.4 nm. 
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3-2.4  Summary 

Wavelength division multiplexing (WDM) is indispensable in communication 

industry nowadays.  However, it is still keeping in the scale of centimeters in the 

present.  That makes the goal of optical integrated circuit becoming hard to achieve. 

On the other hand, the main advantage of photonic crystal WDM is its ability of 

reducing the device’s scale to micrometer and realizes the “on-chip” prospect.  

According to our analysis above, we find the power ratio of general directional 

coupler having large channel spacing is not suitable for WDM application.  By using 

resonant ring, we can decrease the channel spacing and increase its power ratio.  

Several wavelengths can be successfully separated by using the resonant rings in our 

WDM design that may be a useful idea of the future on-chip WDM design. 

 

Fig. 3-26  The plot of the power ratio P3/P1 and P3/P2 as the function 
of frequency f.  The bandwidth is about 4 nm. 
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Chapter 4   Conclusion and perspectives 

In this thesis, we have applied the concept of defect mode coupling to formulate 

the evolution equations of the coupled PCWs.  The cross-PCW couplings to the 0th 

and ±1st neighboring defects in the other PCW account for the splitting of the 

dispersion curve of the coupled PCWs in both square and triangular lattices.  The 

curves are modulated as a result of the competition between the couplings to the 0th 

and ±1st neighboring defects.  So we demonstrate the dispersion relation of two 

coupled PCWs separated by 1 and 2 rows with reduced rods and void rods in 

triangular lattices and square lattices can be well fitted by TB approximation.  

Decoupling exists while those two couplings cancel each other.  The parities of the 

Bloch functions also can be determined from the evolution equations.  Using the 

derived dispersion functions, we can determine where the exactly cross point is. 

In order to design high transmission WDM, we use coupler to divide waves with 

different wavelengths and we choose the frequencies near the decoupled point which 

almost no backward couple wave.  So we need smaller channel spacing device.  

However, the channel spacing of the general directional coupler is too big.  Using 

resonant ring, we can decrease the channel spacing.  By employing resonant ring to 

form WDM, we can successfully separate the waves which are λA=1300 nm, λB=1312 

nm and λC=1336 nm.  All of the power ratios can achieve 20 dB. 

    In the future, we hope to design more effective WDM for example with reduce 

rods of resonant ring device.  In addition, we may also hope to design the WDM 

with more channels during small range of frequency, even DWDM. 
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