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Abstract

By using tight-binding-theory of-solid-state physics, we can analytically
describe the dispersion relation:iof the propagation in a photonic crystal
waveguide (PCW). In turn, we can derive the dispersion curves of two coupled
identical PCWs..

Due to not only the transverse coupling as the conventional coupled
waveguides but also the longitudinal coupling of two coupled identical PCWs.
“Band-crossing” may occur at which the PCWs will not couple with each other
(or decoupled) when the coupled PCWs are placed close enough to each other.
By employing the tight-binding theory to this problem, we can accurately
determine the decoupling frequency as well as calculate the coupling length for
every frequency. We have designed a wavelength division multiplexer which
can route three wavelengths into different channels with the power ratio of all

outputs reach 20 dB, the specification of optical communication.
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Chapter 1  Introduction

1-1 Background

During the past decade the use of photonic crystals (PhCs) has been studied and risen
from an indistinct technology to a prominent field of research [1,2]. This is mainly because
of their potential ability to well control the propagation of light. Eli Yablonovitch [3] and
Sajeev John [4] initially predicted the idea that a periodic structure consisting of materials
with different dielectric constants possesses bandgaps for certain ranges of the frequency, in
much the same way as an electronic bandgap exists in semiconductor materials. Photonic
crystal with defects can be found much mofe,applications. Defects in photonic crystals
means the points or places different from .perfectly arrayed structures. Defects just like
missing a point, line or dislocations can cteate defect modes within the photonic band gap.
Using this property, photonic crystals can modify the spontaneous emission efficiency and the
propagation of light, leading to novel applications in splitter, waveguides (Fig. 1-1),
defect-mode light-emitters, electro-optical switch [5], Mach-Zehnder interferometer [6], and
micro-cavity lasers (Fig. 1-2) [7-10], etc. This is why many scholars believe that the PhCs
bring us a possible solution and unlimited vision of creating large-scale photonic integrated
circuits (PICs) in the future and have done more and more studies on photonic crystals.
Numbers of reports focusing on the design of PhC’s devices in PICs have been published in

the last few years [11].
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Two-dimension photonic crystals are regarded as the hottest topic nowadays, because
they offer the possibility of fabricating high-Q cavities [12-13] and waveguide devices [14] on
the scale of the wavelength in the semiconductor-based structures (i.e. GaAs/AlGaAs or SOI).
Photonic integrated circuits of similar integration density so far only known as electronic
VLSI (Very Large Scale Integrated Circuits) can be imagined. Photonic crystal waveguide
(PCW) is an important basic element in PICs [15, 16] as important as the electric wire in the
electric circuits. It is the key component of interconnect between optical circuits. Optical
waveguiding in two-dimension photonic crystals is achieved by introducing line defects in the
structure that is otherwise periodic in two dimensions.

When we take photonic crystal as basic structure of waveguide, another important
characteristic of photonic crystal is its unusual dispersion property. Group velocity
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dispersion of line defect in photonic crystal slabs is experimentally proved to be extremely
large, and can be tuned via adjusting the widths of defects [17]. In conventional total
internal reflection (TIR) waveguide, the bending angle for changing light propagation
direction cannot be over 1°, otherwise the loss will be quite big. Different from the
conventional waveguides, photonic crystal band gap (PBG) and large group velocity of PCWs

can still keep well guiding the signal even if they form sharp-bend, as shown in Fig. 1-3.

A ey .
Fig. 1-3 Distribution of the real part of electric field in a 90° bend of
the dielectric rods PCs. The red color shows positive

amplitude of electric field and the blue for negative amplitude.

Two closely parallel waveguides can be used as a directional waveguide coupler [18-22].
A directional waveguide coupler is also one of key components for optical communication.
They can be used as wavelength-selective power dividers, switches, modulators, etc. [23, 24]
Besides, it might be desirable to decouple the two waveguides to minimize cross talk between
them, for example, when envisioning closely packed photonic wires in integrated optical
circuits [25].

Other phenomena of two-dimension PhCs had also been widely discussed, including
coupling/decoupling, energy flow [26], and extremely low group velocity [27-28]. All of
those researches make us getting closer and closer to entirely grasp this new technologies.
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1-2 Motivation

In order to prepare for arrival of the next-generation optical communication, many
scholars try to develop new optical devices which possess tiny scale, high efficiency,
integrabilility and easy fabrication. Fortunately, people found some kinds of man-made
materials called photonic crystals that make all our imagination realizable. By introducing
different defects into perfect photonic crystals, many abilities such as wave-guiding,
light-trapping, filtering, slowing light and light coupling could all be generated at will. ~With
integrating such devices in a single chip, large photonic integrated circuits provide a wide
view of future information technology. People even predict the coming of the photonic
computer in the next ten years.

For optical communication. systems used now,-the size of the wavelength dependent
power splitter is about hundreds' of imicrometer. If one can reduce the size of photonic
crystal directional coupler devices to ten of micfometers, it should provide a great advantage
for wavelength division multiplexing (WDM) systems. This provides the motivation to
develop an effective numerical method for analyzing coupling between channel waveguides
in a two-dimension photonic crystal. In the previous research, a photonic crystal waveguide
is formed by a chain of point defects, so the waveguide can be regarded as a coupled-cavity
waveguide (CCW), in which the energy can hop from a cavity to the neighbor one. The
propagation of wave through a CCW is exactly the classical wave analog of the tight-binding
(TB) method in solid state physics. It also indicates that there exists a large potential in
designing various compact photonic devices by using the large dispersion of coupled mode
splitting. According to this idea, we can do the design of PhC devices applying in optical
communication with micrometer scale. In the following chapter, we will present two topics
focusing on physical insight in PhC waveguides with tight-binding theory and optical devices

4.



such as WDM based on photonic crystal with silicon rod array. In order to design WDM, we
need to know the coupling length at each frequency. According to the coupling length
formula L=n/ Ak, we must know the value of Ak in order to calculate the coupling length.
Although we can obtain a band structure through the plane wave expansion (PWE) method, it
needs to extensive calculation to generate good resolution of dispersion curve, especially for
the decoupling point of two identical photonic crystal waveguides (PCWs). By using the
dispersion function derived from the tight-binding theory, we can well fit the calculated
dispersion curves of the derived dispersion function. In turn, we can easily calculate the
coupling length at corresponding frequency using the dispersion relation function. Therefore,
few data of dispersion relation calculated from the PWE are enough to determine the

dispersion function and the decoupling point.

1-3 Organization of the thesis

We divided this thesis into four chapters:. ‘We have narrated a brief statement to the
background and history of the photonic crystal and also our research motivations in chapter 1.
The main theory and numerical analysis methods we depended will put in chapter 2. After
that, in the chapter 3 we will describe our approaches to the coupling problem between PCWs
and our PhC optical device design and the simulation results. In the end, the final

conclusion will be presented in chapter 4.



Chapter 2  Calculation Method and Theory

As same as all studies of the electromagnetism, analyses to the propagation of light in a

photonic crystal also start with four macroscopic Maxwell’s equations. In cgs units, they are

1 0B

V.B=0 VxE+o—r=0 o
V-D=dnp VXH_1@=4_”J’
cot ¢

where E and H are the macroscopic electric and magnetic fields, D and B are the electric
displacement and magnetic induction fields, and p and J are free charge and current densities,
respectively. Here we are concerned with the behavior of an electromagnetic wave in a

source-free region where free charge p and free current J in Eq. (2.1) are both zero.

2-1 Introduction

In order to solve the wave equations derived from Maxwell’s equations, we need the
constitution equations relating D to E‘and B'to H. Since we do not deal with magnetic
material, we assume the magnetic permeability p is very close to unity and we may set
B(r,t)=H(r,t).

As for D and E, quite generally the components Dj of the displacement field are related

to the electric field components E; by the following power series [1]:

D, = > &,E; + > kyy,E;E, +O(E’). (2.2)
j j

To simplify the question, we make four assumptions. First we usually assume the field
strengths are small enough so that we are in the linear regime. It means y and all higher
order terms can be ignored. Second, we assume the material is macroscopic and isotropic,

so that E(r,w) and D(r,w) are related by a scalar dielectric constant &(r,®). Third,
any explicit frequency dependence of the dielectric constant are also been ignored. The last

-6-



assumption is that we focus only on low-loss dielectrics, which means &(r) is treated as
pure real. Hence, we have a brief expression relating D and E fields as
D(r) = e(r)E(r). (2.3)

With four assumptions above, the Maxwell’s equations [Eq. (2.1)] become

) 1aH(nY _
V-H(r,t)=0 v E(r’t)+0 ot ’ (2.4)
V. &(r)E(r,t) = 0 VxH(ry - SO ECD '

ot
The field functions E and H generally are both complicated functions of time and space, but
thanks to the linearity of Maxwell's equation, it is convenient to look for solutions in form of

harmonic fields:

H(r,t) = H(r)e"

. 2.5
E(r,t) = E(r)e' (@2)

Because there is no free chargé and curtent,. the electromagnetic waves considered to be

transverse. By substituting Eq.(2.5):into"'Eq. (2.4) we can obtain the following equations:

0.E(r)= L_v x{VxE(T)}= "’—22 E(T) (2.6)
e(r) C
O, H()=Vx{ I)VXH(r)}=i’—jH‘(r). (2.7)

e(r

Solving Egs. (2.6) and (2.7) is to solve the eigen-value problems, and ®,, is a Hermitian

operator. The eigenvectors H(r) and E(r) (where E( r)=./&(r)E(r)) are the field patterns

of the harmonic modes, and the eigenvalues (—)> are proportional to the square frequencies
C

of those modes.
The Maxwell’s equations are the most important kernel of following calculations (both
PWE and FDTD) and analyses in the next chapter except only the tight-binding

approximation by solid-state physics that we’ll discuss later.



2-2 Plane-wave expansion method

Photonic crystals is a periodically arranged structure (i.e., its dielectric constant is
periodic distributed), so we assume that the dielectric constant is real, isotropic, perfectly
periodic with the spatial coordinate T, and does not depend on frequency. Hence we can
write its dielectric function as

e(M=e(+a), 1=123, (2.8)
where {a,} are the primitive lattice vectors of the photonic crystal. Because of the spatial
periodicity, we introduce the primitive reciprocal lattice vectors {b; ; i=1,2,3} and the
reciprocal lattice vector can be defined as {G}:

a,-b | = 27r5ij

and G=1b, +1,b, +1Lb,, (2.9)

where {I;} are arbitrary integers:and | J; s the Kronecker’s delta function. We can expand

& '(T) into Fourier series as

%r): S k(G)exp(iG ). (2.10)

Because ¢ is a periodic function of the spatial coordinate r, we can apply Bloch’s theorem

to Egs. (2.6) and (2.7). E(r) and H(r) are thus characterized by a wave vector K in the

first Brillouin zone and a band index n and expressed as

E(r) = B (1) = Uy, (Ne™’ (2.11)

H(r)=H,(r)=v,(re*", (2.12)
where U, (r) and v, (r) are periodic vectorial functions:

Uy, (T +8;) = Uy, (1) (2.13)

Vi, (r+a,)=v,(r), for i=123. (2.14)

These periodic functions can be expanded in Fourier series as ¢'(r) in Eq. (2.10). The



two Fourier expansions of the fields can be derived as the following form of the

eigenfunctions:
Eqp(r) =2 E(G)explik +G)-r} (2.15)
Hkn(r):ZHkn(G)exp{i(k+G)-r}. (2.16)

The expansion coefficients in reciprocal lattice space, i.e., E, (G)and H, (G) are
denoted by the same symbols as the original ones in real space. Substituting Eq. (2.15),

(2.16), (2.11) and (2.12) into (2.6) and (2.7), we obtain the following eigenvalue equations for

the expansion coefficients { E, (G) } and {H, (G) }:

_ZK(G -G ) {k+G")x(k+G")xE, (G")} = a;én E.(G) (2.19)
- ZK‘(G -GK+G)x{(k+G")xH(G")} = a;'g“ H.(G), (2.20)

where @,, denotes the eigen-angular|frequency of E, (r) and H,, (r). The vector
electromagnetic field in the 2D-photonic lattice can-be decomposed into two independent
polarization components, i.e., an ‘E polarization (FM mode) for which the electric field is
parallel to the rod axis (E; only), and an H polarization (TE mode) for which the magnetic
field is parallel to the rod axis (H; only). In two-dimensional photonic crystals, Eq. (2.19)

and Eq. (2.20) reduce to

2
@
C';” E.(G), (2.21)

Y |k+G'|[k+Gle ' (G-G)E,(G")} =

G'

where Eq. (2.21) is the master equation of TM mode. Similarly, the master equation of TE

mode can be written as

2
a)kn
CZ

Z(k+G')E(k+G)g’1(G—G')Hkn(G N} =—"H,,(G). (2.22)

For the photonic band calculating, the expansion coefficients { £ '(G) } in Eq. (2.10) is
necessary to be calculated by the plane-wave expansion method. The inverse Fourier

transform gives

£(G) = vi j dre™ (r)exp(—iGT), (2.23)
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where V is the volume of the unit cell of the photonic crystal. In general, this integral should
be numerically evaluated by FFT method. However, if the shapes of the dielectric

components in the unit cell are simple enough, we can calculate it analytically.

2-3 Finite-difference time domain method (FDTD) [29]

The finite-difference time-domain method is introduced by Yee in 1966 [30]. During
the 1970s and 1980s, several defense agencies working in the areas motivated large-scale
solutions of Maxwell’s equations. The entire field of computation electrodynamics is
shifting rapidly in high-speed communications and computing. In 1990, engineers in the
general electromagnetic community became aware of the modeling capabilities afforded by
FDTD and related techniques, and the interest in this area has expanded well beyond defense
technology. The main reason tosintroduee-FDTD - method to solve photonic crystal is that
when the structure is too complex, 'it is hard to solve Maxwell’s equation in frequency domain.
FDTD provide a straight forward:way: to solve it in'time domain. With this method, we can
see the field distribution in photonic crystals.” " In addition, there are several advantages in
FDTD method. First, FDTD is accurate and robust. The sources of error are well known.
Second, being a time domain technology, FDTD treats impulsive behavior and nonlinear
behavior naturally. Third, FDTD uses no linear algebra. Being a fully explicit computation,
FDTD avoids the difficulties with linear algebra that limit the size of frequency-domain
integral-equation.

When the differential forms of Maxwell's equations are examined, it can be seen that the
time derivative of the E field is related to the curl of the H field (VxH ). This can be
simplified to state that the rate of the change in the E field (the time derivative) depends on
the change in the H field across space (the curl). The results in the basic FDTD equations

are that the new value of the E field is related to the old value of the E field (hence the
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difference in time) and the difference of old values of the H fields on either side of the E field

point in space. Naturally, this is a simplified description as illustrated in Fig. 2-1.

»
»

Z
xY
ES k2 ‘ k-1 ‘ K k+1 ‘ K42 ‘
_ H," ‘ k-3/2 ‘ k-12 | k12 | k+3/2 | k+5/2
time
E n+1/2
X k-2 k-1 k k+1 k+2

Fig. 2-1 Interleaving of the E and H fields in space and time in the FDTD

formulation.

2-3.1 FDTD method in One-dimensional case
Now we will start with simple one-dimensional differential equations. The

time-dependent Maxwell’s curl equations in free space are

a—E=iVx H (2.24)
ot g

a—H:—LVXE. (2.25)
ot Hy

Here E and H are vectors in three dimensions. When we consider only in one dimension

case, E and H simply have E, and H, components, so Eq. (2.24) and (2.25) become

°E, =— L oA, (2.26)
ot e(re, oz

A, =—L8EX . (2.27)
ot H, Oz

Above equations mean the electric field oriented in the X direction and the magnetic field
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oriented in the y direction both traveling in the z direction. Taking the central difference

approximation for both the temporal and spatial derivatives gives

N2 gy _ 2 H 'k +1/2)~H"(k —1/2
EFC(0-EN 1 H( )—HJ( ) (2.28)
At g(Ne, Az
H™ (k+1/2)~H"(k +1/2 n41/2 _ M
y (kK+172)-Hy(k+1/2) 1 EF"*(k+1)-E; (k) (2.29)

At My Az

In these two equations, “n” actually means a time t=At-n. The term “n+1” means one
time step later; “k” actually means the distance zZ=Az-k. The formula of Egs. (2.28) and
(2.29) assume that E and H fields are interleaved in both space and time. H uses the
arguments K+1/2 and k—1/2 to indicate that the H field values are assumed to be
located between the E field values. Similarly, superscript Nn+1/2 or n—1/2 indicates

that it occurs slightly after or before n,wespectively. Eq. (2.28) and (2.29) can be rearranged

as
n+l/2 n-1/2 At n n
E;'?(k)=Ef" 2 (K)-————+[Hi(k + 1/2)= H] (k- 1/2)] (2.30)
e(rg, - Az
Hi(k+1/2)=H](k+1/2) = ) A.tAZ [EM" (k +1)— EM2 (k). (2.31)
0

The calculations are interleaved in both space and time. This is the fundamental paradigm of
the finite-difference time-domain (FDTD) method. Egs. (2.30) and (2.31) are very similar,
but because gy and p differ by several orders of magnitude. This is circumvented by making

the following change of variables:

E= |%oE, (2.32)
Hoy

Substituting (2.32) into (2.30) and (2.31) gives

! ﬂ[H;(kH/z)—H;(k—l/z)] (2.33)

ENE My Az

HM(k+1/2) = H (k +1/2) -

E:Jrl/Z (k) — E;FI/Z (k) _

! £[|§:+”2(|< +1)—EM2(K)]. (2.34)

VEoky Az
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If the cell size Az is chosen, the time step At can be determined by

AZ
2-c,

At > (2.35)

where Cp is the light speed in free space. The reason why we determined the time step At
to Eq. (2.30) related to the stability of the FDTD method. An electromagnetic wave

propagating in free space cannot go faster than the speed of light. To propagate a distance of

.. . Az . .
one cell Az needs a minimum time of At=—_When we get to two-dimensional

CO
simulation, we have to allow for the propagation in the diagonal direction, which brings the
. . Az . . . . . .
time requirement to At= \/_T . Obviously, three-dimensional simulation requires
CO

At = \/Ag—z This is summarized by the well-known “Courant Condition” [31, 32]:
CO

Az
At < s
Jd -c,

(2.36)

where d is the dimension of the¢ simulation. . 'Hence we will determine At in Eq. (2.37).

This is not necessarily the best formula!-~Therefore,

1 At Az/2-c, 1
=C, - Y —_Z

= - 2.37
ey A2 Az 2 (237
Substituting (2.35) into (2.33) and (2.34), those equations become
EM2(k) = E:“/z(k)—E(H;(k +1/2)=HJ(k—1/2)) (2.38)
£
n+ n =n+1/2 =n+1/2
H, "(k+1/2)= Hy(k+1/2)-0.5E; Pk+1D)-EM?(K)] (2.39)

Besides the last two iterative equations, we still need to add incident wave source
condition and absorbing boundary condition. It is a great subject in dealing with the wave
source condition. For simplicity, we divide it into two categories in 1-D case: hard source
and soft source. In a hard source, a propagation wave will see that value and be reflected,
because the hard value of E, looks like a metal wall to FDTD. However a soft source is

added to Ey at a certain point and a propagating pulse will just pass through. In calculating
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photonic crystal, we must consider the field scattering from the material. Therefore we use a
soft source.

pulse =sin(2z f *dt *t)

E, =E, + pulse (240)

In order to keep outgoing E and H fields from being reflected by the calculation
boundary and back into the problem space, so the absorbing boundary conditions (ABC) are
necessary to consider. The fields at the edge must be propagating outward. In one time

step of the FDTD algorithm it travels

MM

distance =c, - At =c¢, - .
2-¢, 2

(2.41)

This equation basically explains that it takes two time steps for a wave front to cross one cell.

So a common sense approach tells us thatan’ABC might be

EX(0)=E; (D)

2.42
EP (k)= E7(k—1), (2:42)

where 0 and k are the end points andn is a time step: Simply store a value of Ex(1) two time
steps before in E4(0). Boundary conditions such as these have been implemented at both
ends of the E4 array. Below are the examples of C computer code in one-dimensional
absorbing boundary conditions. Additional parameters are used to store the boundary value
for two time steps during the calculation loop.

ex[0] = ex_low m?2;

ex low m2=ex low ml;

ex_low ml =ex[1];

(243)

ex[KE-1]=ex high m2;

ex_high m2 =ex high ml;

ex_high ml = ex[KE-2];

-14-



2-3.2 Two-dimensional photonic crystal formulation and perfectly matched
layer (PML) boundary condition

We start again with the normalized Maxwell’s equations:

D_ 1 yiH (2.45)
ot ety

D(w) = ¢, (»)- E(w) (2.46)
H 1 -

=— v xE. (2.47)

E Véot

where E = iE and D= !

Hy \VEoHy

six different fields. One is the transverse magnetic (TM) mode, which is composed of EZ,

D. In two dimension cases, there exist two groups of

H,,and H v Another is the transverse electrie (TE) mode, which is composed of EX , Ey ,

andH,. InTM mode, therefore, Eq. (2.44) ~(2.47) are reduced to

oH
oD, _ 1 My aHX) (2.48)
ot e, X Oy
D, (@)= ¢, (@) E,(®) (2.49)
oH, 1 0E, (2.50)
ot \/goluo oy .
H, - aEZ. (2.51)
o e, X

The two-dimensional systemic interleaving of the calculated fields is more complex than one

dimension. That is illustrated in Fig. 2-2 below.
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Fig. 2-2  Interleaving of the E and H fields for the
two-dimensional TM formulation.

Put Egs. (2.48), (2.50) and (2.51) into the finite difference scheme, and take equivalent

incremental step in x and y direction; these equations become

D™2(i, j)— D™, j) _ 1 (H;(i+1/2, j)—H;’(i—l/Z,j))
At \/‘90,“0 AX

1 (H:(i,j+1/2)—H:(i,j—l/2)
\/50/% AX

) (2.52)

Hi'(L,j+1/2)-HJG, j+1/2) 1 EF'2(0, j+D-E(, j)
At ey AX

) (2.53)

H;‘”(i+1/2,j)—H;‘(i+1/2,j): 1 EM™23i+1, ))—EM(, )
At NE AX

). (2.54)

We have briefly mentioned the issue of absorbing boundary conditions (ABCs) in
discussion of one dimension. In the two-dimensional simulations, the program contains

two-dimensional matrices for the values of all the fields (i.e. dz, ez, hx and hy). Assume we
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are simulating a wave generated from a point source propagating in the free space. As the
wave propagates outward, it will eventually come to the edge of the allowable space, which is
dictated by how the matrices have been dimensioned in the program. If we had done nothing
about this, reflections would be produced and would go back the problem space. Then we
will have no way to differentiate between the real wave and the reflected wave. This is why
the ABCs must exist. The most effective ABCs is the perfectly matched layer (PML)
developed by Berenger [32]. How PML works can be easily understood by the following
description. If a wave propagating in medium A and it impinges upon medium B, the

amount of reflection can be determined by the intrinsic impedances of two media

r="1"" (2.55)
Ma+ 1

where the impedance is77 = \/Z . If.p’changed with € so n still remained a constant, I would
g

be zero and no reflection will occur. ' But'this. is still helpless to our problem, because waves
will continue propagating in the new medium.__-We really want is a medium that is also lossy
so the wave will decrease before it hits the boundary. Hence we mark both ¢ and p of
complex due to their imaginary parts causing decay.

To simulate a plane wave propagating in a 2D FDTD program, the space of problem will
be divided into two regions, the total field and the scattered field (Fig. 2-3). There are two
reasons for doing this: (1) The propagating plane wave should not interact with the absorbing
boundary conditions; (2) the load on the absorbing boundary conditions should be minimized.
These boundary conditions are not perfect. By subtracting the incident field, the amount of

the radiating field hitting the boundary is minimized, thereby reducing the calculation error.
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Fig. 2-3 Total field/scattered field of the two-dimensional problem space.

Incident plane wave is

— subtracted out here.

2-4 Tight binding method. in solid state physics

In the later discussion of the coupling between the photonic crystal waveguides we will
apply the tight binding approximation to support our argument. So we here do a simple
introduction of what is the tight binding method-and its meaning in solid state physics [33].

In atoms the electrons are tightly bound to their nuclei. If the atoms are so close that
their separations become comparable to the lattice constant in solids, their wave functions will
overlap each other. If we consider only two atoms, their combined wave functions are
watyg. The electron energy of state w,+y, is lower than one of state w, —y;.
After they approach to each other, the Coulomb force between nucleuses and electrons can
cause the energy level splitting and becomes energy band. The approximation method to
obtain the energy band structure by calculating the free atomic wave functions is called tight
binding approximation (TB) or linear combination of atomic orbitals (LCAO). In covalently
bonded semiconductors the valence electrons are concentrated mainly in the bonds.

Therefore the wave functions of valence electrons should be very similar to bonding orbitals
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found in molecules. In addition to being a good approximation for calculating the valence
bond structure, the TB method has the advantage that the band structure can be defined in
terms of a small number of overlap parameters. The overlap parameters have a simple
physical interpretation as representing interactions between electrons of adjacent atoms.

Assume that an electron with ground state ¢(r) exercises within a single atom’s
potential U(r), where ¢(r) denotes as the S state. It is too complex if we solve the energy
band problem by using degenerated atomic energy levels. Therefore, we assume that the
influence between two atoms is quite small, and then the wave function can be expanded as

following :

V(1) =2.Cyp(r—r)). (2.56)
]

If C,;=N 126" in Eq. (2.56) is fot a‘crystal with N atoms, the Bloch form of the above

equation can be expressed as

wi() =N exp(ik - Np(r <) (1 + T)= exp(ik - Ty, (1), (2.57)

where T is the primitive vector connecting two lattice points. To calculate the 1% level

energy by doing the Hamiltonian matrix diagonalization as follow:

(k|H[k) = N> > explik - (r; = 1, [H| 0;), (2.58)
j om
where ¢, =o(r—-r,). Let p, =r, —r;,then
(k|H[K) =X exp(ik - p,) [ dVp*(r = p, ) He(r). (2.59)

In Eq. (2.59), we do the integration to only an atom and other atoms nearby which are tied up

by p. We can rewrite it as:
[dVe*(NHp(r =-a; [dVe*(r-p)He(r) =—y (2.60)

Toset (k|k)=1, the 1" level energy is
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<k|H|k>=—a—yZexp(ik-pm):gk. (2.61)

The relation between overlapping energy » and atomic spacing p in two hydrogen atoms
which are both in the Is state can be clearly calculated. Using the Rydberg-energy unit,
Ry =me*/2#4°, we have

y(Ry)=2(1+p/a,)exp(-p/a,). (2.62)
Considering to a simple cubic structure, the positions of the closest atoms are

o, = (£3,0,0); (0,£a,0); (0,0,xa). (2.63)
So Eq. (2.61) becomes

g =—-a—2y(coska+coska+k,a). (2.64)
Other example likes the fcc structure which has twelve closest atoms and its band structure
can be described as
& =—-a-— 47/(cosl k,a cosl K,a+ cosl k,a c:osl k a+ cosl k.a cosl k,a). (2.65)

2 2 2 2 2 2

Hence the tight-binding approximation method provides a very simple way to do the atomic
energy band structure analysis. This way can also be applied to discussion of the small

coupling effect inside a photonic crystal coupled-cavities waveguides (CCWs).
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Chapter 3 Simulation and Discussion

In this chapter, we will bring up a series of research focusing on both waveguide
properties and 2-D photonic crystals devices. Two subjects have been discussed in
the following text, including tight-binding theory of coupling behavior in the PhC
waveguides and WDM design using resonant ring devices. Many related and

additional points have also been analyzed.

3-1. Long-range interaction of defect modes between coupled
identical photonic crystal waveguides

When two identical photonic crystal waveguides (PCWs) are placed close to
each other, a “band-crossing” property could be found in the dispersion relation. We
use MIT photonic band code to-investigate the band structures with void and reduced
line-defects in square and triangular-lattices-and coupling between two PCWs in
silicon rod array. By using theo' tight-binding (TB) approximation, we fit the
dispersion curves very well and accurately define the crossing point of dispersion

curves.

3-1.1  Single line defect photonic crystal waveguides and
tight-binding approximation

The PCW couplers consist of plural adjacent PCWs in which the guided modes

are overlapped, resulting the splitting of dispersion curves. That is in common with

its counterpart built with conventional optical waveguides. However, there is certain

fundamental dissimilarity between these two categories of couplers. One remarkable

example is the decoupling of the adjacent waveguides. Decoupling occurs where the

dispersion curves of the split guided modes cross, namely the degeneracy has not be
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removed at a certain frequency. To generate decoupling is an exhausting task to
conventional waveguides, but a direct effect for PCWs [35-37].

Typically, the dispersion curves of the PCW couplers can be obtained
numerically from the solutions of Maxwell’s equations by the plane wave expansion
(PWE) method [38]. However, the PWE does not provide enough insights to the
coupling mechanism of PCWs. Also, there are very few literatures discussing this
mechanism. In this thesis, we explain the PCW coupling with the long-range
interactions among the eigenmodes of individual defects and derive the evolution
equation of the guided modes. The split of the dispersion curves is attributed to the
cross-waveguide coupling to the nearest neighboring (NN) defects and the next NN
defects in the second PCW. The dispersion curves cross due to the cancellation of
these two couplings, causing the decoupling of the PCWs.

A point defect, acts as=-an.optical resonator (cavity), can be created by
introducing a single defect inte a photonic-crystal that locally trap photons with a
certain frequency inside the defect.volume (Fig. 3-1(a)). The coupled cavity
waveguide (also referred to as coupled resonator optical waveguide) composed of
well-separated defects in PhC (Fig. 3-1(b)) has been proposed and demonstrated
recently [39, 40]. It is assumed the defects are weakly coupled due to the
overlapping of the individual evanescent eigenmodes (here referred to as defect
modes) and the dispersion relation can be obtained by the formalism developed from
the tight-binding (TB) approximation in solid state physics (Fig. 3-2). Only the
couplings with the nearest neighboring (NN) defects are taken into account in this
approximation as the defect modes are localized in the defect sites. The defects

beyond the NN ones are ignored.
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Fig. 3-1 (a) A single point defect, in which the photon in resonance
frequency is trapped inside the point defect. (b) A diagram of coupled cavity
waveguide (CCW).

Localized
Mode

-

Evanescent wave o 4 Overlapping \Dcﬁ:ut )
A R Cavity

Fig. 3-2 Schematics of propagation of photons by the coupled
evanescent defect modes.

Conceivably, a PCW can be regarded as a chain of consecutive defects, and the
dispersion relations of the guided modes result from the superposition of longitudinal
shifted defect modes. The coupling concept of the TB approximation is borrowed to
model the dispersion relation in PCWs. Notably, the consecutive defects are still too
close and the coupling beyond the NN defects is significant, which cannot be ignored
in the evolution equation [41]. As the couplings to the remote defects are taken into

account, the evolution equation extended from the TB approximation can be written
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igun = (WO +6¥)Un +chl (un+l +un—|) (3'1)
1=1

un represents the Bloch function at site n, wy is the resonant frequency of a single
cavity, aris a small shift (arising from the presence of neighboring defect) in the
eigenfrequency of the single point defect and cp is the coupling coefficient of the

defect at site n with the I-th neighboring defects as illustrated in Fig. 3-3.

Coupling within PCW

e N
O OO w O O O

-3 =2 -1 I=+1 ¥2 +3

Fig. 3-3  The defect at site n coupling with the Ith neighboring defects

Let u,(t)=u,exp(ikna—iwt), where Kk is the propagating constant, a is the
lattice constant, and w; is the eigenfrequency-of the single PCW. By substituting Un(t)
into Eq. (3.1), we obtained the dispersion curve as

W, =W, +a+ 22 c,; cos(lka) (3-2)
-

The formula is applied to fit the dispersion curve of a single PCW derived from
PWE. Two-dimensional (2D) PhCs consisting of a triangular lattice and a square
lattice of dielectric rods with the lattice constant a in air were considered. Assume
the PCW is formed by a line defect of void (Rg=0a) and reduced rods (R¢=0.1a) in a
two dimensional PhC of both array of circular rods. Let the dielectric constant of the
rod is 12 and the radius of the rod is 0.2a. The dispersion curves derived from PWE
(the dotted curve in Fig. 3-4) is fitted with Eq. (3-2) (the dash curve) as only the
couplings with NN defects (I = 1) are involved. Obviously, the NN couplings are

insufficient to accurately determine the dispersion curve, and the mode functions in a
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PCW appear not well-localized. The curve is well fitted as long as the long-range
couplings up to the third NN defects are taken into account, presented as the solid

curve in Fig. 3-5. Therefore, Eq. (2) is recast as

w, =Q+2c, cos(ka)+2c,, cos(2ka)+2c,, cos(3ka), (3-3)

where Q is the sum of w, and . c¢,, C,,, and C,; are the TB parameters

determined from splitting of several coupled cavities or the width of defect band.

Equation (3.3) states the different strength of each evanescent waves coupling to the

neighbors. Each fitting parameters in different orders are shown in Table 3-1 below.
Lattice Defect Q 2Cn1 2Cn2 2¢u3
type type
reduced 0.322156 0.0574397
Square 0.32164 0.0572285 | 0.00825559 | 0.00179545
void 0.372517 0.0737741
0.375729 0.0802634 | 0.00755291 | 0.000129329
reduced 0.331878 0.0396954
Triangular 0.331622 0:0396419 | 0.00409485 | 0.000454774
void 0.393989 0.0585895
0.394934 0.0606635 | 0.00280332 | 0.000899578

Table 3-1 Fitting curve function of a single PCW
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(d)

Fig. 3-4 (a) (b) The dispersion of the reduce and remove line-defect mode in square
lattice and the fitting curve with NN approximation. (¢) (d) The dispersion of the
reduce and remove line-defect mode in triangular lattice and the fitting curve with NN

approximation.
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Fig. 3-5 (a) (b) The dispersion of the reduce and remove line-defect mode in square

(¢) (d) The dispersion of the

lattice and the fitting curve with NNNN approximation.

defect mode in triangular lattice and the fitting curve with

reduce and remove line

NNNN approximation.
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3-1.2  Tight-Binding Theory of Coupling of Identical Photonic
Crystal Waveguides

The behavior of dispersion relation along the I'-X direction in single waveguide
has been introduced earlier before. Naturally, the coupling concept can be applied to
all general case of defects in PhCs such as the coupled PCWs. We applied the
long-range coupling to handle the interaction between two coupled identical PCWs
when two waveguides are placed in close vicinity. Therefore, the couplings to the
defects in the other PCW (referred to as the cross-PCW coupling) are included. We
found the interaction is dominated by the cross-PCW coupling of defect at site n with
NN defect (I = 0 defect) and the next nearest neighboring defects (I = +1 and -1
defects) in the other PCW as shown in Fig. 3-6. The evolution equations for two

coupled parallel identical PCWs are expressed as

. 0 3
S, = () U+ D g # U PN £V, 4V, ). (4)
=1
a 3
iavn = (WO +0() Vi +chl (Vn+| +Vn—|)+ﬁ Uj +}/(Un+] +un—1) > (3'5)
1=1

respectively, where Vv, represents the Bloch function in the other PCW, and S and
v separately represent the cross-PCW coupling coefficients with | = 0 and | = *1

defects.

Cross-PCW coupling Fig. 3-6 The defect at the nth

O O O O O O site coupling with the Ith
defect in the other PCW.
ONONO ‘3 O O

4 I=0 1

Let u,(t)=u,exp(ikna—iw,t) and v, (t)=v,exp(ikna—iw,t) with w, being the

eigenfrequency of the coupled PCWs and substituted into Egs. (3-4) and (3-5), then
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the equations become
(W, —w,) U, =[S +2ycos(ka)]v, =0, and (3-6)
(W, —wW,)V, — [ +2ycos(ka)]u, =0 (3-7)
Therefore, the dispersion relations of the coupled PCWs can be obtained from the
dependent Egs. (3-6) and (3-7) as

w, =W, £[B+2ycos(ka)]. (3-8)

The dispersion curve of w; is split into two curves denoted as w, and w,
corresponding to an even and an odd supermode which will be mentioned later, due to
the presence of cross-PCW coupling. Obviously, the coupling with | = 0
neighboring defect leads to a vertical shift by £ merely, and couplings with | = 1 and
-1 neighboring defects lead to the cosine modulation.

We applied Eq. (3-8) to fit the dispersion curves of the coupled PCWs derived
from the PWE method. The coupled teduced-rod PCWs in a square lattices, shown
in Fig. 3-7 (b) are treated. ~ Since the eoupling coefficients in w; had been determined
from fitting the dispersion curve of a single PCW with Eq. (3-3), the dispersion curves
of w, and w, were fitted by Eq. (3-8) with the known w;. The cross-PCW
coupling coefficients, £ and y, were obtained as 0.0094 and 0.00375. Evidently, the
coupling of PCWs can be represented by cross-PCW couplings with | = 0 and *1
defects in the second PCW. On the other hand, the curves of w, and w, in a
triangular lattice can be fitted by the same approach as in Fig. 3-7 (d) to determine the
coefficients, £ and y (0.0082 and 0.0054, respectively) as well. Here, we only
include the cross-PCW coupling with | = 0 and %1 defects, since they are dominant
for the splitting of the dispersion curve. More cross-PCW coupling with farther
defects should be included as more accurate determination of dispersion curves is

demanded. It is noteworthy that the curves w, and w, in a triangular lattice
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intersect, while it does not happen in the square lattice. Actually, all the three curves
of w;, w, and W, intersect at one point in Fig. 3-7 (d). The triple intersection
indicates that the split guided modes are degenerate and the PCWs are decoupled at

the crossing point as if the adjacent PCW does not exist. All the fitting parameters

of whole cases are shown in Table 3-2.

Fig. 3-7 The energy band structures and their electric field patterns of the
defect modes of two coupled linear PCWs with both cases of remove and
reduce rods in square lattice (a) (b) and triangular lattice (c) (d), which are

split into two eigenmodes. The center lines are the defect of single PCW.
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Fig. 3-8 The energy band structures and their electric field patterns of the
defect modes of two coupled linear PCWs with both cases of remove and
reduce rods in square lattice (a) (b) and triangular lattice (c) (d), which are

split into two eigenmodes. The center lines are the defect of two PCWs.

We conclude that the curves exhibit the competition between £ and y. The
intersection occurs at k =[cos™'(=f3/2y)]/a, where B + 2y cos(ka) = 0 that means
the effect of the couplings with | = 0 and %1 defects are cancelled with each other.

Accordingly, these three curves of wi,w, and w, are bound to intersect at one point.

The inequality | ﬂ| < |2}/| is a necessity for the intersection, it implies that the sum of

the coupling strength with the | = *1 neighboring defects surpasses the coupling

strength with the | = 0 defect. £(0.0094) > 2(0.0075) in the square lattice and
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£(0.0082) <2y(0.0108) in the triangular lattice support this argument.
Substituting Eq. (3-8) into Egs. (3-6) and (3-7), we have the Bloch functions, Uy

and Vo, of W; and w, expressed as

(o)1) = G-
Vv, 1 v, -1

respectively. It indicates the functions of w, appear to be even parity, while that of
w, has the odd parity. The parities are in accordance with the results by the PWE
method. In fact, which one of w, and w, is the lowest guided mode is
determined by the sign of f. The f coefficients are positive in both of the square and
triangular lattice cases. Therefore, the lowest guided mode is the odd-parity w; ,
opposite to the common understanding to conventional optical waveguides, in which
the lowest mode is even. The lowest guided mode is even, if f is negative. The
coupling coefficients represent-the. spatial integrations of the eigenfields involved.

Hence, the spatial relationship of the:eigenfield,patterns can account for the parity of

the lowest guided modes of the coupled PCWs:

Table 3-2 Fitting curve function of two PCWs

Defect type B 2y Mode | Crossing
change point

Sq-reduce-1row 0.0093722 0.00747703 NO NO

Sq-reduce-2row 0.00344394 | 0.00369485 NO NO
Sq-remove-1row 0.00914204 0.0131291 Yes 0.373191

Sq-remove-2row 0.00369654 | 0.00321742 No No
Tri-reduce-1row 0.00822751 0.0108092 Yes 0.383087
Tri-reduce-2row 0.00292783 0.0043047 Yes 0.366605
Tri-remove-1row 0.00905432 0.0155465 Yes 0.356311
Tri-remove-2row | 0.00113095 | 0.00692431 Yes 0.287898
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3-1.3 Summary

In summary, we have applied the concept of defect mode coupling to formulate
the evolution equations of the coupled PCWs. The cross-PCW couplings to the 0"
and *1* neighboring defects in the other PCW account for the splitting of the
dispersion curve of the coupled PCWs in both square and triangular lattices. The
curves are modulated as a result of the competition between the couplings to the 0™
and 1 neighboring defects. Decoupling exists while those two couplings cancel
each other. The parities of the Bloch functions also can be determined from the

evolution equations.
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3-2  Photonic crystal WDM design for application of coupling
Wavelength division multiplexing (WDM) plays an important role in optical
communication. It allows network operators to more efficiently utilize bandwidth by
aggregating separate wavelengths or channels onto a single optical fiber and offers an
attractive solution to increasing the bandwidth of fiber network without disturbing the
existing employed fiber trunk system. In order to develop the photonic integrated
circuits (PICs) in the future, the device sizes are expected to be drastically reduced to
a scale of a few tens of micrometers. Using photonic crystal devices may be a most
possible solution to achieve integrated circuit. In this section, we will make a
skeleton design of photonic crystal WDM using resonant rings. The simulation
results are obtained using a finite difference time-domain method (FDTD) and a

simpler coupled-mode theory.

3-2.1 Coupling of the directional-coupler

We start with a device called photonic.erystal directional coupler. When two
PCWs are brought in close vicinity of each other they will form what is known as a
directional coupler, shown in Fig. 3-9. Under proper conditions, the electromagnetic
waves launched into one of the PCW can completely couple to the nearby waveguide.
Under a precise calculation, two light waves can be split resulting from their own
coupling length. According to this, a PhC WDM might be possibly fabricated.
Although directional coupler has good transmission, unfortunately, based on the
severe standard of extinction ratio in optical communication (20 dB is required in
normal application), by using a usual directional coupler is pretty hard to achieve that
performance. Figure 3-10 helps to catch on to this argument. In addition,
directional coupler having large channel spacing is also a difficult to form WDM with

more channels, even DWDM.

34



:47 Directional Coupler 4pi

2ssss
23
i

y --1 - - IITI-

HE .o
essesasessatcase ittt

'« CouplingLengthl, ——p'

X
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Fig. 3-10. A diagram of the fault in power ratio in usual PhC

directional coupler.

Here we consider a band structure of two coupled PCWs which composed of

dielectric rods in air on triangular array with lattice constant A, as shown in Fig. 3-11,
where the radius and the refractive index of rods are, respectively, taken as r=0.15A
and n=3.46. From Fig. 3-11, the extended modes and the defect modes of the
TM-polarization (the electric field parallels the rod axis) along the I'-K direction are

calculated. The bandgap ranges from the normalized frequency (f) 0.3 to 0.52 and

35



the dispersion curves of defect lie within the bandgap. Using the function derived
from the tight-binding theory, we fit the dispersion curves of defect and obtain the

dispersion functions separately as

0.430411 -0.0501594Cos[27x]+0.00662485Cos[47x]-0.00104994Cos[67x]

3-9
0.409736-0.0829236Cos[2nx]+0.0134319Co0s[47x]-0.00227637Cos|67x]. G

Using these two functions, we get the decoupling point at frequency ~ 0.463.

Fig. 3-11.  The band structure of two PCWs. The radius and the refractive
index of rods are, respectively, taken as r=0.15A and n=3.46. The

decoupled point is at {=0.463

Coupling length L can be well described by the eigenmode expansion and can be

written as
A
L=——o, 3-10
2Ak ( )

where Ak =(k, —k,), and k; and k, are the normalized wavevectors. Using Eq.
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(3-10), L as the function of f can be plotted by PWE in Fig. 3-12. The value of L is
sensitive to frequency near the decoupling point for the coupled PCWs, and this range
of frequencies is good for WDM design by using quite different coupling lengths. In
addition, if we choose the frequency of short coupling length, its power ratio will be
very small because of backward coupled wave. In order to improve this drawback,

we had better to choose the frequencies near the decoupling point to design WDM.
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Fig. 3-12 The plot of the coupling length L as the function of frequency f.

The coupling length at the range of the ring is sensitive to frequency.

However, it is a very rough estimation in Fig. 3-12, especially near the
decoupling frequency. It is too difficult to find the exact decoupling frequency by
PWE. Using Eq. (3-9), we can easily obtain Ak near the decoupling. For
example, the coupling length is about 27 A at the frequency 0.4485.

We design a directional coupler with coupling region 27A as shown Fig. 3-13.
The frequency with the best power contrast (P2/P3) is f3=0.4489 which is slightly
different from the result derived from Eq. (3-9) and the power contrast is only 18 dB

which is lower than the required 20 dB.  With increasing the operation frequency, the
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contrast would change oscillatorily as shown in Fig. 3-14. That may result from
interference of the multiple reflection waves in the finite PC structure. At {=0.4618
which is very close to the decoupling frequency 0.463, the power contrast eventually

as high as 20 dB. Figure 3-14 indicates that the directional coupler with large

channel spacing has a disadvantage for designing WDM with more channels.

p=0.448

Fig. 3-13 A directional coupler made:by silicon rod array. The coupling

region is 27A:
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Fig. 3-14 The plot of the power ratio (P2/P3) as the function of frequency f.

the biggest power ratio is only 18 dB and its channel spacing is

0.0127.
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3-2.2 Coupling ring device between PCWs

We therefore propose a novel design to deal with the large channel spacing and
power contrast. We make it a hexagonal loop with the coupling length of 27 A, as
shown in Fig. 3-15. When the wave of {=0.4494 from output 1 incident into the
structure, it couples to the ring then to the other PCW to output 2 as shown in Fig.
3-16(a). The output power ratio of fg increases to 21.5 dB (Fig. 3-16(a)) and the
power ratios of f=0.4493 ~ 0.4495 are all over 20 dB. Besides, injecting the optical
wave of f3 into output 2, the power ratio (output 1/output 3) can reach 23 dB (Fig.

3-16(b)).

f 0 449'2;l.lburpm 1"0“'i'..‘.‘."l.l'......O'U'l.O.l-O'.'O.U'i.O.‘.l.O".U'....l.".flfOflf.fif"‘jﬂthutﬁ?if;.‘

(L D0 B8 DU DL B0 B0 DU DR DN DR B0 DR DR D0 28 DR DL 00 20 D0 DN DA B BN L DL O B K 0 % j"l'..l.'l'l'.'.l'..'.
-—b

L0 2 D8 B DY BN | 5 .
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‘..0.....“.‘...“0‘. ,._]
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Fig. 3-15 A resonant ring coupler made by silicon rod array. The

coupling region is 27A.
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Fig. 3-16  (a) The field distribution of forward wave. The frequency of the

injected wave is 0.4494. its power ratio is 21.5 dB.
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Fig. 3-16(b) The field distribution of backward wave. The frequency of the

injected wave is 0.4494. its power ratio is 23 dB.

In addition, if the wave of other frequencies which are not accurate to this

coupling length will propagate partially through the ring and couple region again to
.' ‘-U 1£

the PCW of output 3. Furthemw;e the resdﬂﬁm rmg coupler possesses narrower

P |.\' R
transmission bandwidth as co : reii l~t§)¢g: direc‘ﬁlonal coupler. As fs =0.4583,

3’4"7.-—'

the power ratio decreases to -259 dB —W“’évca,hﬂ*get smaller channel spacing as
"-4‘; "\I.':_]_._".u.r_ 1

shown in Fig. 3-17 with decreasnfgﬁ.!; o fnomsg 0127 to 0.0089. It is an advantage

gL
for designing WDM with more channels near the decoupling point using resonant ring
structures.
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Besides coupling region can affect power contrast in this resonant ring coupler,
the factor of ring width must also be considered. Because there is index difference
between the device and outside world, the reflection wave will propagate back to
device to cause interference. Therefore, the peak of optimal power ratio would
slightly shift with the different ring width. Here we show the spectra and field
distribution of two widths of 5 A and 7 A in Fig. 3-18. We found although the peaks
of optimal power ratio are shifted, but the power ratio still have 20 dB. These results

explain the interference of reflection wave is a very important factor of designing this

resonant ring coupler.
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Fig. 3-18. (a) The spectrum of the width 5 A of the resonant ring coupler. The
peak is shift from frequency 0.4494 to 0.4511. (b) The spectrum of the width 7 A

of the resonant ring coupler. The peak is shift to frequency 0.4499.

3-2.3 WDM design and FDTD simulation

We try integrating the resonant rings into the line defect PCW to complete the
WDM design. The structure is made by a 2-D triangular lattice with lattice constant
A and the material is silicon (¢ = 12). Silicon rod radius is 0.15 A. In the
beginning, we selected the smaller resonant ring with coupling region 27 A in our first

coupler. Because the larger frequency defect mode needs longer coupling region, it
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will not couple into the small ring. We therefore put a larger resonant ring after the
small ring for the larger frequency mode. In order to get better power discrimination,
we choose the second splitting ring with more than twice of the coupling length of the
smaller one. After the optimum design, the structure is shown in Fig. 3-19 with
coupling region 70 A to guide larger frequency. . The length of all WDM device is

only 90 pm

Fig. 3-19 WDM made up of two rings. Thete are two rings in the WDM. The

coupling region of small one 1s:27 A. - The coupling region of big one

is 70 A.

We plot the coupling length versus the normalized frequency in Fig. 3.20. Let
f4a=0.4618 correspond to Ax = 1300nm, fg = 0.4575 for Ag = 1312nm, and fc = 0.4575
for Ac = 1336nm if A = 0.6 um. Using FDTD simulation to calculate the field
distribution and Poynting vector while individually injecting the Gaussian waves of
Aa, Ag and Ac into the input port, we can get the field distributions and their power
ratios as shown in Fig. 3-21, Fig. 3-22 and Fig. 3-23. The power ratios have also
been listed in Table 3-3.

From Table 3-3, the three waves with different wavelengths are successfully
divided into the three outputs. Each of power ratios achieves 20 dB which satisfies
the standard of optical communication. In order to find the bandwidth with each

output, we calculate the power ratios for the whole range of operating frequency.
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Fig. 3-24 indicates the frequency whose power ratio in the outputl exceeding 20 dB is
in the range of 0.4493~0.4495 that correspond to wavelength of 1334.8 nm~1335.4
nm covering over about 0.6 nm. Fig. 3-25 indicates the frequency whose power
ratio in output2 exceeding 20 dB is in the range of 0.45755~0.45765 with
corresponding wavelengths of 1311.1 nm~1335.5 nm covering 0.4 nm. The
bandwidth of output2 is smaller than that of outputl because the coupling length is
sensitive to frequency. Finally, Fig. 3-26 indicates the frequency having power ratio
of output3 exceeding 20 dB in the range of 0.4618~0.463 that correspond to

wavelengths of 1300 nm~1296 nm with bandwidth of about 4 nm.
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Fig. 3-20 The plot of the coupling length L as the function of frequency f.
The frequency f3=0.4575 corresponding to the coupling length 70 A
and the frequency fc=0.4493 corresponding to the coupling length

27 A.
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1s 20 dB and P3/P2 is 30.6 dB.

Input
wavelength | py vs P2 (dB) | P1vs P3 (dB) | P2 vs P3 (dB)
(A=0.6 xm)
1336 nm 26.5 32.2
1312 nm 22.3 20.1
1300 nm 20 30.6

Table 3-3 Output power ratios of WDM.
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Fig. 3-24 The plot of the power.ratio P1/P2 and P1/P3 as the function
of frequency f. The bandwidth is about0.6 nm.
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Fig. 3-25 The plot of the power ratio P2/P1 and P2/P3 as the function
of frequency f. The bandwidth is about 0.4 nm.
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Fig. 3-26 The plot of the power ratio. P3/P1 and P3/P2 as the function
of frequency f. The bandwidth is about 4 nm.

3-2.4  Summary

Wavelength division multiplexing. (WDM)*is indispensable in communication
industry nowadays. However, it is still keeping in the scale of centimeters in the
present. That makes the goal of optical integrated circuit becoming hard to achieve.
On the other hand, the main advantage of photonic crystal WDM is its ability of
reducing the device’s scale to micrometer and realizes the “on-chip” prospect.
According to our analysis above, we find the power ratio of general directional
coupler having large channel spacing is not suitable for WDM application. By using
resonant ring, we can decrease the channel spacing and increase its power ratio.
Several wavelengths can be successfully separated by using the resonant rings in our

WDM design that may be a useful idea of the future on-chip WDM design.
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Chapter 4 Conclusion and perspectives

In this thesis, we have applied the concept of defect mode coupling to formulate
the evolution equations of the coupled PCWs. The cross-PCW couplings to the 0"
and +1% neighboring defects in the other PCW account for the splitting of the
dispersion curve of the coupled PCWs in both square and triangular lattices. The
curves are modulated as a result of the competition between the couplings to the 0™
and *1* neighboring defects. So we demonstrate the dispersion relation of two
coupled PCWs separated by 1 and 2 rows with reduced rods and void rods in
triangular lattices and square lattices can be well fitted by TB approximation.
Decoupling exists while those two couplings ¢ancel each other. The parities of the
Bloch functions also can be détermined: from ‘the ‘evolution equations. Using the
derived dispersion functions, we can determine where the exactly cross point is.

In order to design high transmission WDM, Wwe use coupler to divide waves with
different wavelengths and we choose the frequencies near the decoupled point which
almost no backward couple wave. So we need smaller channel spacing device.
However, the channel spacing of the general directional coupler is too big. Using
resonant ring, we can decrease the channel spacing. By employing resonant ring to
form WDM, we can successfully separate the waves which are A,=1300 nm, Ag=1312
nm and Ac=1336 nm. All of the power ratios can achieve 20 dB.

In the future, we hope to design more effective WDM for example with reduce
rods of resonant ring device. In addition, we may also hope to design the WDM

with more channels during small range of frequency, even DWDM.
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