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ABSTRACT 

Silica glass is an important material in optoelectronics because of its low transmission 

loss, low fabrication cost, high optical damage threshold and possible optical fiber 

compatibility. However, silica glass is also a material with macroscopic inversion symmetry, 

which means that it does not exhibit second-order nonlinearity. In this thesis study we 

investigate how to achieve second-order nonlinearity in silica glass D-shape optical fibers by 

means of the thermal poling method. Second harmonic generation from 1064nm to 532nm is 

observed in our preliminary experiments. 
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熱極化二階非線性光纖特性之研究 

 

研究生：吳金水                        指導老師：賴暎杰 博士 

 

國立交通大學光電工程研究所 

 

 

摘要 

    矽玻璃因具有低損耗、便宜、耐高強度光、和可能與光纖相容等優點，

使它成為光電子領域中主要的應用物質。不過因為矽破璃具反轉對稱性，

故無二階非線性光學特性。在本論文中我們研究如何利用熱極化的方法來

在 D-shape 光纖中產生二階非線性效應，也在初步的實驗中成功地觀測到

由 1064 nm 波長的入射光轉換成 532 nm 波長光的二次倍頻現象。 
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Chapter 1  Introduction 

1.1 History of second-order nonlinearity in optical fibers 

In 1986, Osterberg and Margulis reported the first second-harmonic generation (SHG) in 

a Ge-doped single mode fiber irradiated by a CW 1064 nm Q-switched and mode-locked 

Nd:YAG laser [1]. At first, it was just a very week green light output from the end of the 

optical fiber. After a few hours, the green light intensity was increasing exponentially with the 

irradiated time and was saturated after 12 hours irradiation. The second-harmonic (SH) 

conversion efficiency could be as high as 5%. This is the first discovery that self-organized 

growth of green second harmonic light can be observed in optical fibers with infrared light 

input. The next year, 1987, Stolen and Tom generated SH lights from a Ge-doped single-mode 

fiber after a few minutes of seeding with 532nm harmonic lights along with the 1064nm 

fundamental lights [2]. After seeding for 5 minutes and then removing the seeding source, it 

was found that one can still see the green output lights from the end of the fiber. These 

experiments suggest that there is a mechanism that can break the inversion symmetry of silica 

materials and can produce a self-organized (2)χ  grating that is automatically phase-matched 

to the input lights. 

In 1988, Bergot et al. observed large permanent enhancement in the second-order optical 

nonlinearity of silica materials by applying of a transverse dc electric poling field in the 

presence of high-intensity lights [3]. The external dc electric poling field has an effect on the 
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defects, similar to that of the internal light field in previous experiments. Because of the 

applied external fields can be 5 orders of magnitude larger than the light fields, it can be more 

effective. Significant frequency doubling occurs despite the absence of the phase matching. 

The SH signals grow quadratically with the poling field, and above ~4V/µm they get 

saturated.  

After 3 years, in 1991 Myers et al. found that large and stable second-order nonlinear 

susceptibility approaching 1 pm/V could be created in fused silica by means of the thermal 

poling technique [4]. The thermal poling condition was performed at 250-325oC under an 

applied electrical field, and the second-order nonlinearity appears in a thin layer of fused 

silica plate just under the anode. Since 1991, second-order nonlinearities in the order of 1 

pm/V have been achieved in glasses by a variety of different techniques including thermal 

poling [4], corona poling [5], and electron implantation [6]. 

In 1999 Pruneri et al. [7] fabricated second-order nonlinear gratings in D-shape 

germanosilicate fibers by thermal poling with periodic electrodes defined by standard 

photolithography. The grating length is 75 mm long and it is suitable for the 

quasi-phase-matched (QPM) frequency doubling of 1.532 mµ  lights. The SH power was 6.8 

mW and the SH peak power greater than 1.2 kW at 766 nm was generated, in which the 

average and peak conversion efficiencies are as high as 21% and 30%, respectively.  

The second-order nonlinearity in poled fused silica can be erased by heating [2], electron 
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beam [8], ultraviolet (UV) [9,10], or near infrared (NIR) [11]. These mechanisms can be used 

to implement quasi-phase-matched SHG. In 2000, Bonfrate et al. exposed UV lights through a 

periodic amplitude mask to a uniformly poled fiber and successfully demonstrated periodic 

UV erasure of second-order nonlinearity for achieving quasi-phase-matched SHG in optical 

fibers [12]. However, the second-order nonlinearity generation mechanism in glasses still 

remains not to be identified completely. 

 

1.2 Motivation of the research 

Second-order nonlinearity in optical fibers can be used to develop linear electrooptic 

modulation, switching, and parametric frequency conversion. The thermally poled optical 

fibers offer larger bandwidth and low group-velocity mismatch, and therefore the relatively 

low value of the nonlinear coefficient (compared with polar crystals waveguide, such as 

lithium niobate, potassium titanyl phosphate) can be compensated for by an increase in the 

length of the fiber so that it is suitable for the pulsed frequency conversion. 

 

1.3 Organization of the thesis 

The thesis consists of four chapters. Chapter 1 gives an introduction of the second-order 

nonlinearity in optical fibers and explains our motivation for doing this research. Chapter 2 

describes the basic concept of SHG, and the mechanisms of thermal poling and UV erasure in 
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optical fibers. Chapter 3 presents the experiment procedures and results. In Chapter 4 we 

make a brief conclusion and discuss possible future research directions. 
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Chapter 2 Basic concept of second-harmonic generation in 

optical fibers 

2.1 Principle of nonlinear optics 

The first working laser was made by Theodore H. Maiman in 1960 [13]. He used a 

solid-state flash-lamp-pumped ruby crystal to produce red laser lights at 694nm. The 

invention of the laser enabled us to examine the behavior of lights in optical materials at 

higher intensities. In fact, the beginning of the field of nonlinear optics is often taken to be the 

discovery of SHG by Franken et al. in 1961 [14]. 

Nonlinear optics is the study of phenomena that occur as a consequence of the 

modification of the optical properties of a material system by the presence of lights [15, 16]. 

They occur when the response of a material system to an applied optical field depends on a 

nonlinear manner upon the strength of the optical field, and the intense laser field can cause 

the polarization of the medium to develop new frequency components that are not present in 

the incident field. These new frequency components of the polarization act as sources of new 

frequency components of the electromagnetic field. 

The nonlinear processes also have to satisfy the conditions of conservation of energy and 

conservation of momentum, in order to get the optimum conversion efficiency. Fig. 2.1 

illustrates the relation between the energy-level and the momentum vectors. 
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(a)       (b) 

Fig. 2.1 (a) Energy-level, conservation of energy ( 1 2 3ω ω ω+ = ), 

Fig. 2.1 (b) Momentum vectors, conservation of momentum ( 1 2 3k k k+ = ). 

 

 As an example of nonlinear optical interaction, let us consider the process of 

sum-frequency generation, which is illustrated schematically in Fig. 2.2. A weak light (ω1) 

and an intense pump light (ω2) are incident into a nonlinear medium simultaneously. After the 

sum frequency generation process, a light (ω3) which frequency is the sum of ω1 and ω2, 

emits from the nonlinear medium.  

213 ωωω +=               (2.1) 

This process is known as the up-conversion and equation (2.1) is the condition of 

conservation of energy. 

On the other hand, 

123 kkkk
→→→→

−−=∆             (2.2)   

is called the wave vector (or momentum) mismatch, which describes how good the phase 
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matching (momentum conservation) is achieved. If the process satisfy the phase matching 

condition ( 0=∆k ), it will be under the optimum working condition. 

 

Fig. 2.2 Sum-frequency generation, where d  is the second-order nonlinear coefficient and 

(2)χ  is the second-order nonlinear susceptibility. 

 

2.1.1 Nonlinear susceptibility 

A linear dielectric medium is characterized by a linear relation between the polarization 

(P) and the electric field (E),  

EP )1(
0χε=               (2.3) 

where 0ε  is the permittivity of free space and )1(χ is the linear electric susceptibility of the 

medium. The relation between the dielectric constant, refractive index and )1(χ is as below, 

 )1(

0

2 1 χ
ε
ε

+==n              (2.4) 

 But in a nonlinear dielectric medium, the polarization can be a power series of the 
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electric field, which can be expressed as 

......][ 3)3(2)2()1(
0 +++= EEEP χχχε          (2.5) 

The first term, which is linear, dominates at small electric field E. The second term represents 

a quadratic effect, where )2(χ is the second-order nonlinear susceptibility. The third term 

represents third-order nonlinearity and )3(χ is the third-order nonlinear susceptibility. Actually 

the linear susceptibility )1(χ is a second-rank tensor and the n-order nonlinear susceptibility 

( )nχ  is a (n+1)th - rank tensor. 

 The second-order nonlinear optical interaction can occur in a noncentrosymmetric media 

only. That is, they do not exist in symmetric media. On the other hand, the third-order 

nonlinear optical interaction can occur in both centrosymmetric and noncenrosymmetric 

media.  

 

 2.1.2 Tensor 

 In a noncenrosymmetric medium, we can describe the Cartesian components of the 

second-order nonlinear polarization density and the second-order nonlinear susceptibility as 

(2)
iP  and ijkχ , respectively, where i, j and k are the Cartesian coordinates x, y and z. We 

introduce the second-order susceptibility tensor  

ijkijkd χ2
1=               (2.6) 

 For sum frequency generation, 
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 (2) (2)
0, ,

( ( ); , ) ( ) ( )
ijki m n m n j m k nj k m n

P E Eε χ ω ω ω ω ω ω= Σ Σ − +             (2.7)  

and for second harmonic generation,  

(2) (2)
,2 0

,
(2 ) ( 2 ; , ) ( ) ( )

ijki j m k n
j k

P E Eω ω ε χ ω ω ω ω ω= −∑                    

)()(),;2(2 0,
ωωωωωε kjijkkj

EEd −Σ=        (2.8) 

where jE and kE  are the electric fields in y and z directions, respectively. 

According to the Kleinman symmetry condition, the ijkd  is with the intrinsic 

permutation symmetry, where the last two indices j and k can be interchanged freely without 

altering the nonlinear susceptibility tensor, i.e. ikjijk dd = . Therefore the following contracted 

notation is used 

jk : 11  22  33  23,32 31,13 12,21 

  l :  1      2      3       4       5       6 

ijkd  can be defined as ild  and become a 3X6 matrix,  

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

363534333231

262524232221

161514131211

dddddd
dddddd
dddddd

dil          (2.9) 

For sum frequency generation, 

  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)()()()(
)()()()(
)()()()(

)()(
)()(
)()(

2
)(
)(
)(

2121

2121

2121

21

21

21

363534333231

262524232221

161514131211

0

3

3

3

ωωωω
ωωωω
ωωωω

ωω
ωω
ωω

ε
ω
ω
ω

xyyx

xzzx

yzzy

zz

yy

xx

z

y

x

EEEE
EEEE
EEEE

EE
EE
EE

dddddd
dddddd
dddddd

P
P
P

  (2.10) 

For SHG, 
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2

2

11 12 13 14 15 16 2

0 21 22 23 24 25 26

31 32 33 34 35 36

( )
( )

(2 )
( )

(2 ) 2
2 ( ) ( )

(2 )
2 ( ) ( )
2 ( ) ( )

x

y
x

z
y

y z
z

x z

x y

E
E

P d d d d d d
E

P d d d d d d
E E

P d d d d d d
E E
E E

ω
ω

ω
ω

ω ε
ω ω

ω
ω ω
ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (2.11) 

 The material of our thermally poled optical fibers is fused silica, which the point group is 

∞ mm and the interaction frequencies are far away from the absorption frequencies. 

According to the Kleinman symmetry condition, the second-order susceptibility tensor is 

 
31

31

31 31 33

0 0 0 0 0
0 0 0 0 0

0 0 0
il

d
d d

d d d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

         (2.12) 

therefore the SHG of thermal-poled optical fibers is 

 
31

0 31
2 2 2

31 31 33

(2 ) 2 ( ) ( )
(2 ) 2 2 ( ) ( )
(2 ) ( ) ( ) ( )

x z x

y y z

z x y z

P d E E
P d E E
P d E d E d E

ω ω ω
ω ε ω ω
ω ω ω ω

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

      (2.13) 

 Stolen and Tom [2] proposed that an effective (2)χ  originates from the interaction 

between the third-order susceptibility (3)χ  and a built-in static electrical field lE , that is  

 (2) (3)( 2 ; , ) 3 ( 2 ; , ,0)
ijk ijkl lEχ ω ω ω χ ω ω ω− = −         (2.14) 

because 
3333

(3) (3)
31133χ χ=  for the centrosymmetric medium, therefore 

 33 313d d=               (2.15) 

 

 2.1.3 Coupled wave equation 

In a lossless and nonlinear medium, the propagation of lights can be described by 
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Maxwell’s equations, 

 DH
t

∂
∇× =

∂
   0H∇× =  

 0
HE
t

µ ∂
∇× = −

∂
  0D∇× =          (2.16) 

where  0D E Pε= +  

    (1)
0L NL NLP P P E Pε χ= + = +  

    0B Hµ=               (2.17) 

NLP  is the nonlinear polarization vector. 

Because 2( )E E E∇×∇× = ∇ ∇⋅ −∇          (2.18) 

Therefore, 
22

2
0 2 2( )NLPEE

t t
µ ε ∂∂

∇ = +
∂ ∂

          (2.19) 

where (1)
0 (1 )ε ε χ= + , equation (2.19) is the wave equation. 

 If we consider the sum frequency generation 3 1 2ω ω ω= + , the total electric field can be 

represented as   

1 2 3( , , ) ( , , ) ( , , )E E z t E z t E z tω ω ω= + +  

 
3

( )

1

1 [ ( ) . .]
2

j ji t k z
j

j
E z e c cω −

=

= +∑           (2.20) 

According to the slowly varying envelope approximation (SVEA), 

2

2

( ) ( )
| | | |j j

j

E z E z
k

z z
∂ ∂

>>
∂ ∂

            (2.21) 

so 
2

2

( )jE z
z

∂

∂
 can be neglected. 

From equations (2.17) and (2.18), we get 

01

1

*1
3 22

( ) ( ) ( )i i kz
eff

E z d E z E z e
z

µω
ε

∆∂
= −

∂
         (2.22) 
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 2 02

2

*
*

1 32

( )
( ) ( )i i kz

eff

E z
d E z E z e

z
µω
ε

∆∂
=

∂
         (2.23) 

 3 0

3

3
1 22

( ) ( ) ( )i i kz
eff

E z d E z E z e
z

ω µ
ε

∆∂
= −

∂
         (2.24) 

where 3 2 1k k k k∆ = − −  is the wave vector mismatch and (2)1
2eff effd χ=  is the effective value 

of nonlinear coefficient. Equations (2.22), (2,23) and (2,24) are the coupled waves equations. 

 

 2.1.4 Second-harmonic generation 

For SHG, if a wave propagating in the z direction with frequency 1 2ω ω ω= =  is normal 

incident into a lossless and nonlinear medium, its SH wave is with the frequency 

3 1 2 2ω ω ω ω= + = . Fig 2.3 shows the schematic of SHG. From equation (2.24), we have 

0

2

22
2

( ) [ ( )] i kz
eff

E z i d E z e
z ω

µω
ωεω ∆∂

= −
∂

         (2.25) 

where 4
3 1 2 22 2 ( )k k k k k n n

ω

π
ω ω ω ωλ∆ = − = − = −          (2.26) 

 In the undepleted-pump approximation, E (z)ω  is constant. If E (0)=0ω  is the initial 

condition, 2E (0)ω  is equal to zero. 

Therefore,  

 
2

0

2

2

E (L)
22

2 2 2
E (0)=0 0 0

E ( )E (L)= E [ ( )]
L L

i kz
eff

zd dz i E z d e dz
z

ω

ω

ω

µω
ω ω ωεω ∆∂

= = −
∂∫ ∫ ∫    (2.27) 

where L is the length of the medium. 

 We can express the SH power as 

22
2 2

0

1 E
2

P Aω
ω ω

ε
µ

=  
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3 2222
0

2
2 2 0

P2
L

i kz
effd e dz

n n A
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where 
0

n ω
ω

ε
ε

= , 2
2

0

n ω
ω

ε
ε

=  and A is the beam-size of beam.  

Fig. 2.3 Second-harmonic generation. 

 

 2.1.5 Quasi-phase matching 

 From equation (2.28), we observe that the SH power 2P ω  is proportional to 2
effd , 2L  

and sinc2
2( )kL∆ , Fig. 2.4 shows the relation between sinc2

2( )kL∆  and 2
kL∆ . If the process satisfy 

the phase matching condition ( 0=∆k ), we can get the maximum of SH power. 
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Fig. 2.4 2
2sin ( )kLc ∆  vs 2

kL∆ . 

 Typically, three-wave mixing is done in a birefringent crystalline material, in which the 

refractive index depends on the polarization and direction of the lights that passes through. 

For satisfying the phase-matching condition, the polarization of the fields and the orientation 

of the crystal have to be chosen correctly. Such a phase-matching technique is called the angle 

tuning.  

One undesirable effect of angle tuning is that the optical frequencies involved are not 

collinear with each other. This is due to the fact that the extraordinary wave propagating 

through a birefringent crystal possesses a Poynting vector which is not parallel with the 

propagation vector (critical phase-matching). This would lead to the beam walkoff which 

limits the nonlinear optical conversion efficiency.  
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Another phase-matching technique is called temperature tuning. The crystal is controlled 

at a certain temperature to achieve the phase matching condition. Beam walkoff is avoided by 

forcing all frequencies to propagate at the angle 90o with respect to the optical axis of the 

crystal(non-critical phase-matching). 

 Quasi-phase matching scheme allows the choice of the largest nonlinear coefficient with 

non-critical phase-matching. To obtain a quasi-phase matching structure, one may periodically 

modulate the nonlinear coefficient by altering the crystal symmetry in the nonlinear optical 

material. A class of materials called ferroelectric crystal (such as lithium niobate and lithium 

tantalate) possesses a spontaneous polarization inside the crystal. If one applies an external 

field larger than the intrinsic field in the crystal, it may flip the crystal symmetry and change 

the sign of the nonlinear coefficient. Fig. 2.5(a) shows the periodic structure, the relation 

between the SH intensity and the interaction length for ferroelectric crystals, and Fig. 2.5(b) 

also shows the periodic structure, the relation between the SH intensity and the interaction 

length for thermally poled silica fibers as a comparison. 

 From the Fourier expansion, the periodically modulated second-order nonlinearity ( )d z  

can be written as 

( ) ( ) [ ]mik z
eff eff eff m

m
d z d g z d G e

+∞
−

=−∞

= = ∑          (2.29) 

where 2
m

mk π
=

Λ
 is the periodically modulated grating wave vector ,Λ  is the modulated 

period and mG  is the Fourier coefficient. 
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From equation (2.29), we have 

( ) [ ]mik zi kz i kz
eff eff m

m
d z e d G e e

+∞
−∆ ∆

=−∞

= ∑           (2.30)  

When mk k= ∆ , we can get the quasi-phase matching. The modulated period is 

2 2 cm ml
k
π

Λ = =
∆

, where the coherent length is 
24( )cl k n n

ω

ω ω

λπ
= =
∆ −

.   

For periodically poled lithium niobate, assuming the duty cycle of the modulated ( )effd z  

is 50% ( 50%lD = =
Λ

, where l  is the length of second-order nonlinearity) and the 

second-order nonlinearity is a constant, then the Fourier coefficient can be calculated to be 

2 sin( )mG m D
m

π
π

=             (2.31) 

where m is the order of quasi-phase matching. In this way, the effective nonlinearity of 

quasi-phase matching structure is  

 QPM eff md d G=               (2.32) 

For 1st  order quasi-phase matching, because it is a (1,-1) type quasi-phase matching, and the 

effective second-order nonlinearity is  

 2
QPM effd d

π
=               (2.33) 

On the other hand, the quasi-phase matching structure of periodically poled optical fiber is 

(1,0) type. The effective second-order nonlinearity is thus 

 
2
m

QPM eff
Gd d=              (2.34) 

Or equivalently,  

 eff
QPM

d
d

π
=               (2.35) 
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Fig. 2.5 (a) First-order quasi-phase matching of ferroelectric crystal 



 

 18

 

Fig. 2.5 (b) First-order quasi-phase matching of thermally poled silica fiber 

 

2.2  Quasi-phase-matched second-harmonic generation in periodically  

poled fibers 

 The modulation for the second-order nonlinearity in thermally poled is the type (1, 0), 

which is different from ferroelectric crystal. Quasi-phase matching occurs when the period Λ  

for the modulation of the nonlinear coefficient d  is a multiple integer of 2 cl , where cl is the 

coherent length. The unpoled sections permit free evolution of the interacting fields without 

energy exchange and their relative phase shift due to propagation can compensate the phase 

mismatch, in the previous half period for the continuing growth of the SH intensity.  
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 The QPM SHG in thermally poled optical fibers is different from the thermally poled 

glass. The quasi-phase matching waveguide condition establishes the dependence of the 

period Λ  as a function of the fundamental wavelength ( ωλ ), core radius (a) and numerical 

aperture (NA) [17, 18], 

 
,2 ,2[ ( , , ) ( , , )]eff effn a NA n a NAω ω ω ω

λ
λ λ

Λ =
−

        (2.36) 

where ,2effn ω  and ,effn ω  are the effective refractive indices at the SH wavelength and 

fundamental wavelength respectively. 

 For the quasi-phase matching waveguide geometry with a low fundamental light 

depletion, the SH power 2P ω  is given by 

 
2 2 2

2
2 2 3

, ,2 0 0

8 1P sin ( )
2

eff

eff eff OVL

d p L
n n c A

ω
ω

ω ω

ω β ρ
ε β

∆
=

∆
        (2.37) 

where 2P ω  is the fundamental power, effd  is the nonlinear coefficient which includes the 

overlap factor between the poled region and the interacting modes as well as the 1
mπ

 

reduction factor associated with the mth-order quasi-phase matching. L is the length of the 

periodical poled region, 2

1
OVL

OVL

A
I

=  is an equivalent area that depends on the overlap factor 

OVLI  between the interacting fields, ,2 ,
0

2 [ ]eff effn n
c ω ω
ωβ∆ = −  is the wave-vector mismatch, 

and ρ  is an enhancement factor that takes account of the multimode nature of our 

fundamental source. 

 Because of the large quasi-phase matching bandwidth and low group-velocity mismatch 

(GVM) between pulses at different frequencies in optical fibers, it allows us to use long 



 

 20

devices without compromising the frequency stability and is suitable for pulsed frequency 

conversion. 

 

2.3 Mechanism of thermal poling 

Silica optical fibers are amorphous material with macroscopic inversion symmetry and 

inherently have no second-order nonlinearity. In 1986, the first report of SHG in silica fibers 

was reported by Osterberg and Margulis [1], who discovered that prolonged exposure of 

fibers to infrared light causes the self-organized growth of green SH lights. Since then, 

wide-ranging studies are engaged on the mechanism and properties of this unexpected 

photoinduced phenomenon. 

Since 1991, second-order nonlinearities of order 1 pm/V have been achieved in glasses 

using a variety of different techniques including thermal poling [4,9,10], corona poling [5] 

and electron implantation [6]. Here, we just discuss about the mechanism of second-order 

optical nonlinearity in thermally poled optical fibers. 

The mechanism behind the formation of second order nonlinearity in thermally poled 

optical fibers is not yet fully understood. Until now, there are three types of explanation for 

the mechanism. The first explanation is most widely used. 

(1) During the thermal poling procedure, ions such as Na+ , H + , 3H O+  or holes 

migrate toward the negative electrode with a relatively high mobility at a high 
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temperature, which leaves Si O−≡ −  in a near-surface layer contacted with the 

positive electrode. The ions reaching the negative electrode must be neutralized by 

electrons injected from the negative electrode. A high electric field arises in this 

region, between the negatively charged region and the anode, and this field creates 

second-order nonlinearity. The second-order nonlinear susceptibility (2)χ  is 

related to the third-order nonlinear susceptibility (3)χ  [2,4] and the relation between 

them is 

  (2) (3)3 dcEχ χ=            (2.38) 

where dcE  is a permanent built-in electric field induced by charge       

migration.  

(2) The orientation of hyperpolarizable entities (bonds or defects) in the optical  

  fibers is realigned under the applied electric field and the formation of    

  second-order optical nonlinearity (2)χ  is [19], 

  (2) ( )N Lχ β ρ∝            (2.39) 

where N is the concentration of hyperpolarizable entities, β  is the     

second-order hyperpolarizability, and ( )L ρ is an orientation factor ( 0 1L≤ ≤ ) 

under the total electric-field E within the optical fiber. L can be written as a sum of 

Langevin functions. .m E
kT

ρ = , where m  is the dipole moment, E  is the 

electrostatic field, T  is the absolute temperature, and k  is Boltzmann constant. 
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(3) The last explanation combines explanation (1) and explanation (2) [20], for which 

the effective (2)χ  is created via both the interaction of the intense electric field 

through (3)χ  and the dipole orientation. When the electrostatic field E < 1 V/nm, 

the dipole orientation plays the main role in the formation of (2)χ , whereas the 

interaction through (3)χ  is the dominant factor for larger fields. When E > 3V/nm, 

the poling temperature must be over a threshold value, and there exists an optimal 

temperature. Therefore, the second-order nonlinearity from the combination of the 

orientation of the dipole and (3)χ  is 

  (2) (3)
333 3333 33 ( )E N Lχ χ β ρ= +         (2.40) 

  (2) (3)
311 3113 1 33 0.5 [ ( ) ( )]E N L Lχ χ β ρ ρ= + −       (2.41) 

 The key factors determining the values of (2)
333χ and (2)

311χ  are the  electrostatic 

field E and the dipole density N  in the poled region. Here 1( )L ρ  and 3( )L ρ  are 

the first-order and third order Langevin functions, respectively. When ρ  is small, 

the 1( )L ρ  and 3( )L ρ  can be represented  as, 
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0
1
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0

cos sin
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e d
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e d
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∫
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 where θ  is the polar angle between the electric field E  and the molecular 
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 dipole. 

 Fig. 2.6 illustrates the formation process of the depletion region near the anode surface of 

the thermally poled fused silica [21]. Under thermal poling process, the Na+ ions are with 

energies in excess of the potential barrier under the high temperature about 2800C and thus 

can move into the SiO2 network. While a high dc voltage is applied, alkali metal ions (such as 

Na+ ions) will drift to the cathode where most of them are neutralized by the incoming 

electrons, as shown in Fig. 2.6(a). If all Na+ ions within about 5 µm of the anode surface in 

the fused silica is depleted, an intense electric field E of about 107 V/cm is established at this 

very thin region, and H3O+ is generated by the chemical reaction of Si OH≡ −  with H2O, as 

described by equation (2.44), 

 2 3Si OH H O Si O H O− +≡ − + ↔ − +           (2.44) 

 Due to the thermal fluctuations, some of the ions will also drift to the cathode and are 

neutralized, as shown in Fig. 2.6(b). With both of the H3O+ and Na+ ions drifting to the 

cathode, then Si O−−  ions are left. Over there a negative space charge is generated near the 

anode surface, and a negative depletion layer is also formed. After that, H3O+ continues 

drifting to the cathode and the negative depletion layer slowly extends into the interior of the 

fused silica. Thereafter, because of the thermal fluctuations, the water molecules H2O in the 

air diffuse into the fused silica and react with the fused silica network to form immobile 

hydroxyl (OH), Si OH≡ − ,  
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 20 2Si Si H O Si OH≡ − − ≡ + ↔ ≡ −          (2.45) 

After that, Si OH≡ −  react with H2O to generate H3O+ under an intense electric field near 

the anode surface, as by equation (2.44). Then this H3O+ builds a positively charged layer. On 

the other hand, the thermal fluctuations and the intense electric field cause the fused silica to 

ionize, and the ionized electrons drift to anode and are neutralized, as shown in Fig. 2.6(c). 

After the thermal poling process is accomplished, the maximum electric field exist in the 

region between the positively charged region and the negative depletion layer in the depletion 

region, and thus this region is most greatly ionized, as shown in Fig. 2.6(d). Fig. 2.7 (a) and 

Fig. 2.7 (b) show the planar schematic diagram of fused silica network before poling and after 

poling, respectively. 

 

Fig.2.6 Formation process of the depletion region near the anode surface of the 

thermally poled fused silica 
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Fig. 2.7 (a) Planar schematic diagram of fused silica network before poling 

 

Fig. 2.7 (b) Planar schematic diagram of fused silica network after poling 
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2.4 Mechanism of ultraviolet erasure 

 The thermally poled optical fiber can be erased by heating [2], electron beam [8], 

ultraviolet [9,10], or near infrared [11], which could be used to achieve the QPM SHG in 

optical fibers. Here, we just discuss about the UV erasure. The second-order nonlinearity in 

thermally poled optical fibers can be erased by UV simply because of the vanishment of the 

built-in electric field. When the UV lights are exposed to the thermally poled optical fiber, 

Si O−≡ −  is destroyed by the one-photon absorption process. Holes from the conduction 

band are considered to be trapped at Si O−≡ − sites and thus the space charges of 

Si O−≡ − are neutralized. In this way the nonlinearity is erased after the UV exposure. 
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Chapter 3  Experimental procedures and results 

3.1 Introduction 

Silica optical fibers are amorphous material with macroscopic inversion symmetry and 

inherently have no second-order nonlinearity. But in 1986, Osterberg and Margulis reported 

that the Ge-doped fiber irradiated by intense 1064nm laser can exhibit SHG with the SH 

conversion efficiency as high as 5% [1]. Later, Myers et al. found that large and stable 

second-order nonlinear susceptibility (2)χ  (~1 pm/V) could be created in fused silica by 

means of thermal poling [4]. Since then, there have been intensive researches on the poling of 

glass materials and glass fibers. In this chapter we report our experimental results on using 

D-shape optical fibers for achieving the second order nonlinearity through thermal poling. 

 

3.2 D-shape optical fiber 

 In our experiment, the fibers we used were called the D-shape optical fibers. The shape 

of these fibers looks like a D character as shown in Fig. 3.1. The core of the D- shape fibers is 

in an elliptical shape and its index is higher than the surrounding cladding. The D-shape 

optical fibers are polarization maintaining fibers, which employ the property of geometrical 

birefringence to achieve the polarization preserving characteristics. The fibers are constructed 

of high-grade silica materials and various high purity dopants, such as germanium (Ge). This 

also offers significant advantages, including low loss and high polarization maintaining. Some 
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of the important parameters of the D-shape fibers are listed in the Table 3.1. 

 

Fig. 3.1 D-shape fiber 

 

 Nominal Operating Wavelength 
(nm) 

1550 

Single Mode Operating Band (nm) 1360-1680 
Cut-off Wavelength (nm) 1160±70 
Attenuation, dB/km 2-5 
Polarization Holding (h), dB-m ≧40 
Normalized Birefringence 1.5×10-4 

Fiber Diameter (microns) ± 3 125 
Center of Core to Flat (microns) 16 
Coating Diameter (microns) ± 15 245 

Table 3.1 The parameters of the D-shape fibers 

 

3.3 Experimental procedures 

 In this section, we describe the procedure of thermal poling in optical fibers. Before the 
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thermal poling, we used the BOE solution (HF: NH4F = 1: 6) to etch the optical fibers so that 

the plane surface is very close to the core region.  

 

3.3.1 Etching of D-shape fibers  

 The D-shape fiber used in our experiment has an outer diameter of 125 mµ  and the 

distance between the plane surface and the core region is 16 µm. Before proceeding the 

thermal poling, we have to etch the fiber with the BOE solution so that the flat surface to fiber 

core distance is reduced to 1 mµ ~5 mµ , as shown in Fig. 3.2. In this way, after poling, the 

nonlinear layer under the anodic surface is inside the core region. The etching rate is about 

1.75 m/10 minµ . 

 

Fig. 3.2 Ecthed D-shape fiber 
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3.3.2 Thermal poling  

The etched fiber was sandwiched between two electrodes with the anodic electrode on 

the flat surface of etched fiber. The electrodes were made by n-type {1, 0, 0} silicon wafer. 

One of them was placed on the fused silica plate with a dimension 20 mm X 20 mm X 1 mm  

(length X wide X depth). Fig. 3.3 shows the diagram of the thermal poling system. The 

temperature sensor is a K-type thermo-coupler and the maximum heating temperature is 

400 0C  , where the temperature is controlled by a temperature controller (Omega, 

CNi1633-c24). The heater is isolated by ceramic and its periphery is covered with thermal 

insulated cotton. The heating current is about ~6A. 

 According to the reported conditions of thermal-poled fused silica as shown in Fig 3.4 

[18], our thermal poling is carried out at 4.0 kV and 280 0C  for 30 minutes. The temperature 

is varied from the room temperature to 280 0C by the heater for about 1 hour, and thereafter 

the electrodes are applied with a voltage of 4kV for 30 minutes. The heater is then turned off 

and cooled down to room the temperature in 120 minutes with the high voltage still applied. If 

the applied voltage is above 4.2kV, air breakdown is observed. 
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Fig. 3.3 The diagram of the thermal poling system. 

 

Fig 3.4 SH signal vs poling time at 280 0C , in Ref. [18] 

 3.3.3 Second-harmonic generation measurement 

 In the experimental setup, a 1064 nm Nd:YAG laser is used as the light source, which is 

operated in a pulsed mode and has a 2kHz repetition rate with ~20 ns pulse width. An isolator 
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is placed after the Nd:YAG laser to reject the reflected light from optical components. After 

that, the light passes through a half-wave plate through which we can adjust the polarization 

of the laser light. After passing through a focus lens, the light is focused into an objective lens 

and then coupled into the thermally poled D-shape fiber.   

 An objective lens is placed after the end of the D-shape fiber to collimate the output light, 

and a dichromic mirror reflects the SH light to a 532 nm band pass filter, which can filter out 

the 1064 nm lights from the mixing wavelength lights. After that we use a high sensitive 

power detector to make the measurement. The whole experimental setup is shown in Fig. 3.5. 

 

Fig. 3.5 SH measurement experimental setup 

 

 3.3.4 Ultraviolet erasure  

 Fig. 3.6 illustrates the UV erasure experimental setup. The pump laser was a 

diode-pumped Q-switched Nd:YAG laser. Its wavelength is 1064nm, the repetition rate is 
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4kHz and the pulse-width is about 20ns. A half-wave plate is used to adjust the polarization 

orientation of the 1064nm lights for optimizing the harmonic generation processes. After a 

focus lens, the fundamental laser beam is incident into the SHG crystal, a 3X3X5 mm3 type-II 

KTP, which end faces are dual antireflection coated for 1064nm and 532nm. A type-I BBO 

crystal with dual antireflection coating for 532nm and 266 nm is use as a second-harmonic 

generation crystal so that we can get 90mW of 266nm UV light from the 3.5W pump source. 

We use two cylindrical lenses to broaden and collimate the UV lights. The beam size of the 

UV light is about 8 mm (e-1). A shutter is placed before the focusing lens, which is used to 

control the exposure time. For fabricating the UV periodic grating, the experimental setup is 

shown in Fig. 3.7. The thermally poled fiber is put close to the amplitude mask, which has 84 

patterns with grating periods from 30 µm to 71.5 µm and with the duty cycle=50%. We can 

choose the suitable grating period to fabricate quasi-phase matching periodical thermally 

poled optical fibers. 

 Before choosing the grating period, we use the Sellmeier’s equation of fused silica to 

estimate the quasi-phase matching period with difference mol% of doped GeO2. The quasi- 

phase matching periods for fused silica doped with GeO2 with different mol% are listed in 

Table 3.2. We observe that the quasi-phase matching period becomes shorter when the mol% 

of doped GeO2 is increased.  
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Fig.3.6 Experimental setup of UV erasure system 

 

 

Fig. 3.7 Experimental setup of UV periodic grating 

 

 

 

 

e-1~8 mm 
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Material Phase-matched period(µm) 

Fused silica 48.114 

Fused silica doped GeO2 6.3 mol% 45.7904 

Fused silica doped GeO2 8.7 mol% 44.7474 

Fused silica doped GeO2 11.2 mol% 44.2789 

Fused silica doped GeO2 15 mol% 42.995 

Fused silica doped GeO2 19.3 mol% 41.0121 

Table 3.2 Quasi- phase matching period for fused silica with difference mol% of doped GeO2 

 

3.4 Results and conclusion 

 In this section, we show the results of the pump power dependence and the polarization 

dependence for the SH power. Some discuss about the results are also given.  

 

3.4.1 Thermally poled fused silica plate 

In order to confirm our thermal-poling system is working, we fabricate a thermal-poled 

fused silica plate [22, 23]. The fused silica plate is sandwiched between the electrodes make 

of the n-type {1, 0, 0} silicon wafers. The poling temperature is raised to 280 0C and the 4kV 

voltage is applied for 60 minutes. The heater is then turned off and cooled down to room 

temperature in 120 minutes with the high voltage still applied. The scheme of thermally poled 

fused silica plate is shown in Fig. 3.8. 

Because the UV lights can erase the nonlinearity of thermal-poled fused silica [9,10], we 

use an amplitude mask with a period about 150 mµ  and a phase mask with sub-micron period 
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for periodic UV exposure. The erasure UV source is a CW 244 nm UV light from a 

frequency-doubled Argon laser with 150 mW average power and 6 mm ( 1e− ) Gaussian beam 

size. Because the etching rate of thermally poled fused silica plate is slower than the unpoled 

one, after an attack of BOE solution for 10 minutes, the long and short periodic domain 

patterns can be seen, as shown on Fig. 3.9 (a) and Fig. 3.9(b), which are viewed under an 

optical microscope and an atomic force microscope (AFM) scanning, respectively. 

Fig. 3.8 The diagram of thermally poled fused silica plate 
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Fig. 3.9 (a) The surface of the etched thermally poled fused silica plate viewed under 

an optical microscope. 

 

 Fig. 3.9 (b) The surface of the etched thermally poled fused silica plate   

    viewed under an AFM scanning 
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. 3.4.2 Pump power dependence for second-harmonic        

   generation power 

 Fig 3.10 shows the SHG power 2P ω versus the fundamental pump power Pω . From 

equation (2.28), we know that the SHG power is proportional to 2Pω . In the figure, we fitted 

the S S→  curve with a second-order polynomial function and got the following expression: 

 2
2P  = 0.77892 + -0.0679 P  + 0.00278 Pω ω ω× ×       (3.1) 

From equation (3.1), the third term in the right hand side is a quadratic function, which is the 

main dominant term of the equation. In this way, we verify that it is a indeed quadratic 

relation between the SHG power and the fundamental pump power. 

 

Fig. 3.10 SH power vs fundamental power for S S→  and P S→   conversion. 
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 3.4.3 Polarization dependence for second-harmonic generation  

   power 

 In the experiment, by tuning the angle of the half-wave plate, we found that the SHG 

power is changed with the tuning angle. It is because when the polarization of the 

fundamental laser beam is parallel to the direction of poling electric field, we can get the 

maximum SHG power. If the direction of the polarization is perpendicular to the direction of 

poling electric field, the SHG power is minimum. Fig 3.11 shows the SH power versus the 

tuning angle of half-wave plate.   

 Fig. 3.11 SH power vs tuning angle of half-wave plate 
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 3.4.4 Estimation of 33d  

 We can now roughly estimate the value of 33d  for our thermally poled fiber based on 

the results from reference [7]. From the reference, the grating of the sample was 75 mm long. 

A peak SH power of 1.2 kW was generated from 4.0 kW peak fundamental power and the 

estimated effd  was 0.014 pm/V. From equations (2.15) and (2.28), we know that 33d  is 

equal to 313d  and the SH power is proportional to 2
effd , 2L  and 2Pω . In our experiment, 

the peak SH power we get is 0.136825 mW, for which we assume that the SH pulse is of a 

similar duration to the fundamental pulse rather than being shorter (the reduction factor would 

be 2 ) and the peak fundamental power is 1.35 kW. After the calculation, we estimate the 

33d  for our thermally poled fibers should be about 0.023 pm/V. 

 
 3.4.5 UV erasure and UV periodic grating 

 In order to achieve QPM, we try to use UV erasure method to fabricate the second 

nonlinearity grating. We first fabricate a thermally poled fiber of which the poled region is 6 

mm long we then exposed the poled region to the UV lights with the beam size of 8 mm (e-1) 

to erase the second-order nonlinearity in the fiber. We observe that when the fiber is exposed 

for 10 minutes, the second-order nonlinearity in the fiber is totally erased. 

 We have also tried to fabricate periodic grating in the fiber with different periods of 

amplitude masks. Unfortunately so far we have not been able to observe the quasi-phase 

matching effect in the fabricated fiber devices. It may be due to the incorrect grating period 
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we use such that the phase-matched wavelength is not close enough to the 1064 nm. 
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Chapter 4  Conclusions 

4.1  Summary of results 

We have successfully induced second-order nonlinearity in optical fibers by means of the 

thermal poling technique. From the SHG measurement, we observe that the SH power is 

proportional to the square of the fundamental pump power and the SH power generate from 

d31 is lower than the SH power generate from d33. These observations agree with the 

expectation from the principles of nonlinear optics. We also observe that the SH power is 

varied by tuning the angle of the half-wave plate. This is conform to the characteristics of the 

half-wave plate, for which if the polarization of the incident light makes an angle θ with the 

axis of the half-wave plate, the polarization of the laser light rotates by an angle -2θ. We thus 

observe that the maximum and the minimum SH powers occur at angles that differ by 450. 

The rough estimation of the achieved 33d  is about 0.023 pm/V. By the UV erasure and BOE 

solution etching, we can obtain the periodic pattern on the surface of thermally poled fused 

silica plate. It confirms that the UV erasure method should be applicable in fabricating QPM 

SHG devices in optical fibers. Finally, we observe that the second-order nonlinearity in 

thermally poled optical fiber can be totally erased by the UV erasure of 10 minutes. 

 

4.2 Future work 

The final goal of this study is to fabricate poled QPM fiber devices. Because of the low 
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dispersion and low group-velocity mismatch possibly achieved in optical fibers, the relatively 

low value of the nonlinear coefficient can be compensated by an increase in the length of the 

poled fiber and by the technique of QPM. Poled QPM optical fibers also can be used for the 

generation of entangled photon-pairs by parametric down-conversion, which can be useful for 

achieving all-fiber quantum information applications. Due to the incorrect grating period we 

use, we have not observed the QPM effects so far. In the future we will continue to actually 

fabricate poled QPM fiber devices and to explore their applications. 
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