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Chapter 2 

Theoretical Models of Dispersion 
Compensation and soliton compression 

in Fibers 
 

2.1 Introduction 
Ultra-short optical pulse generation from semiconductor lasers is of great 

importance for future high bit rate optical communication and soliton transmission 

systems.  There are two major techniques for generating short optical pulses from 

semiconductor lasers.  One is active mode locking which can produce very short 

optical pulses, and requires an extended cavity formed by an external mirror and hence 

is more sensitive to mechanical disturbances.  An alternative and straightforward 

approach is to directly modulate a Distributed Feedback Bragg (DFB) laser diode, 

and to excite only the first peak of the relaxation oscillation. This technique, 

which is called gain switching, can produce pulse trains up to the gigahertz (GHz) 

range and thus is practically more feasible for data transmission.  Typically the 

gain-switched pulses are in the range 20-30ps and are accompanied by an inherent 

frequency chirping [1-5].  These chirped pulses could be temporally compressed by 

compensating for the undesired chirp with a dispersive fiber or a grating pair. Among 

them, the fiber compression method is the most practical method for 

communications because of its simplicity. It is called Linearly pulse compression. 

After linearly pulses compression, the pulse nearly Fourier-transform-limited.  

The transform limit is due to the presence of nonlinear chirp that remains 

uncompensated for linear compression technique.  Then nonlinear pulse 
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compression is used.  The optical pulses at wavelengths exceeding 1.3 µm generally 

experience both SPM (Self-Phase Modulation) and anomalous GVD (Group Velocity 

Dispersion) during their propagation in silica fiber [6].  Such a fiber can act as a 

compressor by itself without the need of an external grating pair.  These solitons 

follow a periodic evolution pattern such that they go through an initial narrowing 

phase at the beginning of each period.  By an appropriate choice of the fiber length, 

the input pulse can be compressor is referred to as the soliton-effect compressor to 

emphasize the role of soliton. 

 

2.2 Theoretical Model of Dispersion Compensation 

2.2.1 Brief Introduction 

The linear optical pulse compression, it uses the dispersion compensation.  In 

our experimental, the Dispersion-Compensated-Fiber (DCF) satisfies the 

compression rule.  As a rule, semiconductor optical amplifier ring laser (SOAFL) 

emits chirped pulse.  Because refractive index has some changes during pulse 

generated.  The frequency chirp of SOAFL mode-locked pulses are negative and 

frequency decreases toward the trailing edge.  It means the chirp parameter C < 0 

and the instantaneous frequency increases linearly from the trailing edge to the 

leading edge. The DCF has large negative dispersion (dispersion parameter D) at 

1.5 µm wavelength.  It is in the normal-dispersion regime and β2 > 0.  The higher 

frequency (blue-shifted) components of an optical pulses travel slower than the 

lower frequency (red-shitted) components. This rule can be used linear pulse 

compression. 
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2.2.2 Chromatic Dispersion 

When an electromagnetic wave interacts with bound electrons of a dielectric, the 

medium response in general depends on the optical frequency ω.  This property, 

referred to as chromatic dispersion, manifests through the frequency dependence of the 

refractive index n(ω).  On a fundamental level, the origin of chromatic 

dispersion is related to the characteristic resonance frequencies at which the medium 

absorbs the electromagnetic radiation through oscillations of bound electrons. Far from 

the medium resonance, the refractive index is well approximated by the Sellmeier 

equation 
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where ω j is the resonance frequency and B j is the strength of jth resonance.  The sum 

in Equation (2.2.2-1) extends over all material resonance that contributes to the 

frequency range of interest. 

Fiber dispersion plays a critical role in propagation of short optical pulses since 

different spectral components associated with the pulse travel at different speeds given 

by C / n(ω).  Even when the nonlinear effects are not important, dispersion-induced 

pulse broadening can be detrimental for optical communication systems. 

Mathematically, the effects of fiber dispersion are accounted for by expanding the 

mode propagation constant β in a Taylor series about the center frequency ω0 ： 
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The pulse envelop moves at the group velocity (vg =β1
-1) while the parameter β2  is 
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responsible for pulse broadening.  The parameter β1 and β2 are related to the 

refractive index n and its derivatives through the relations 
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where ng is the group index. 

Figure (2.2.2.1) and (2.2.2.2) show the variation of n , ng , and β 2 with wavelength λ, 

for fused silica by using Equation (2.2.2-1),(2.2.2-4), and (2.2.2-5).  The most 

notable feature is that β2 vanishes at a wavelength of about 1.27µm and becomes 

negative for longer wavelengths.  The wavelength at which β2 = 0 is often referred 

to as the zero-dispersion wavelength λD. However, it should be noted that dispersion 

does not vanish at λ= λD.  Pulse propagation near λ= λD  requires the inclusion of 

the cubic term in Equation (2.2.2-2).  Such higher-order dispersive effects can 

distort ultra-short optical pulse both in the linear and nonlinear regimes.  Their 

inclusion is however necessary only when the pulse wavelength A approaches λD  to 

within a few nanometers.[ 7] [ 8] 

   
Figure 2.2.2.1 Variation of refractive index n and group index ng with wavelength for fused 

silica.  From: G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989) 
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The curves shown in Figure (2.2.2.1) and (2.2.2.2) are for bulk fused silica. The 

dispersion behavior of actual glass fibers generally deviates from that shown in these 

figures for the following two reasons. First, the fiber core may have small amounts 

of dopants such as GeO2 and P2O5 .  Equation (2.2.2-1) in that case should be used 

with parameters appropriate to the amount of doping levels.  Second, because of 

dielectric wave guiding, the effective mode index is slightly lower than the material 

index n(ω), with reduction itself being ω dependent.  This results in a waveguide 

contribution that must be added to the material contribution to obtain the total 

dispersion.  Generally, the waveguide contribution to β2 is negligible except near the 

zero-dispersion wavelength λD where the two become comparable.  The main effect 

of the waveguide contribution is to shift λD slightly toward longer wavelengths; λD 

～1.31 µm for typical fibers.  Figure (2.2.2.3) shows the measured total dispersion of 

a single-mode fiber. The quantity plotted is the dispersion parameter D that is 

commonly used in the fiber-optics literature in place of β2.  It is related to β2 by the 

relation 
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An interesting feature of the waveguide dispersion is that its contribution to D (orβ2) 

depends on the fiber-design parameters such as the core radius a  and the 

core-cladding index difference ∆.  This feature can be used to shift the 

zero-dispersion wavelength λD in the vicinity of 1.55 µm where the fiber loss is 

minimum.  Such dispersion-shift fibers have potential applications in optical 

communication systems. It is possible to design dispersion-flattened optical fibers 

having low dispersion over a relatively large wavelength range 1.3 - 1.6 µm.   This is 

achieved by the use of multiple cladding layers. 
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Figure 2.2.2.2 Variation of β2 and d12 with wavelength for fused silica. 

From: G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989) 

The non-linear effects in optical fibers can manifest a qualitatively different behavior 

depending on the sign of the dispersion parameter β2 or D . Since 
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β2 is generally referred to as the group-velocity dispersion (GVD) parameter. For 

wavelengths such that λ <λD, β2 >0, and the fiber is said to exhibit normal dispersion.  

In the normal-dispersion regime, the higher frequency (blue-shifted) components of 

an optical pulse travel slower than the lower frequency (red-shifted) components. By 

contrast, the opposite occurs in the so-called anomalous-dispersion regime in which β2 

<0.  As seem in Figure (2.2.2.2), silica fibers exhibit anomalous dispersion when 

the light wavelength exceeds the zero-dispersion wavelength (λ>λD). The 

anomalous-dispersion regime is of considerable interest for the study of nonlinear 

effects because it is in this regime that optical fibers can support solitons through a 

balance between the dispersive and nonlinear effects. 
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Figure 2.2.2.3 Measured variation of dispersion parameter D with wavelength for a 

single-mode fiber.  From: G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 

1989) 

 

An important feature of chromatic dispersion is that pulses at different wavelength 

propagate at different speeds inside the fiber because of the group-velocity mismatch. 

This feature leads to a walk-off effect that plays an important role in the description 

of the nonlinear phenomena involving more overlapping optical pulses. More 

specifically, the nonlinear interaction between two optical pulses ceases to occur when 

the faster moving pulse has completely walked through the slower moving pulse. The 

separation between the two pulses is governed by the walk-off parameter d12 defined 
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Where λ1 and λ2 are the center wavelengths of two pulses and β1 at these wavelengths is 

evaluated using Equation (2.2.2-4). For pulses of width T0, one can define the walk-off 

length Lw by the relation 
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2.2.3 Chirp Gaussian Pulse 
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For an initially unchirped Gaussian pulse, it shows that dispersion-induced 

broadening of the pulse does not depend on the sign of the GVD parameter β2.  

Thus, for a given value of the dispersion length LD , the pulse broadens by the same 

amount in the normal-dispersion and anomalous-dispersion regimes of the fiber. This 

behavior changes if the Gaussian pulse has an initial frequency chirp. For the case of 

linearly chirped Gaussian pulses, the incident field is given by 
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where C is a chirp parameter. It can be finds that the instantaneous frequency increases 

linearly from the leading the trailing edge (uP-chirp) for C > 0 while the opposite 

occurs (down-chirp) for C < 0 by the Equation. 

( ) ( ) ( )[ ]TziTzUTzU ,exp,, φ=                                (2.2.3-2) 

It is commons refer to the chirp, as positive or negative depending on whether C is 

positive or negative., The numerical value of C can be estimated from the spectral 

width of the Gaussian pulse. By substituting Equation (2.4.7-1) in Equation (2.2.3-3) 
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The spectral half-width (at 1/e -intensity point) from Equation (2.2.2-4) is given by 

( ) 2/12
0 1 CT +=×∆ω                                       (2.2.3-5) 

In the absence of frequency chirp (C=0), the spectral width is 

Fourier-transform-limited and satisfies the relation ∆ωT=1.  The spectral width is 

enhanced by a factor of (1+C2)1/2 in the presence of linear chirp. Equation (2.2.3-6) 
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can be used to estimate C  from measurements of ∆ν and T0. 

Even a chirped Gaussian pulse maintains its Gaussian shape on propagation.  The 

width T, after propagating a distance z is related to the initial width T0 by the relation 
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This equation shows that broadening depends on the relative signs of the GVD 

parameter β2 and the chirp parameter C [9].  Whereas a Gaussian pulse broadens 

monotonically with z if β2 C > 0, it goes through an initial narrowing stage when β2C < 

0 .  Figure (2.2.3.1) shows this behavior by plotting the broadening factor 01 /TT  

as a function of DLz / .  In the case β2 C < 0, the pulse width becomes minimum 

at 

DL
C

CZ 2min 1+
=                                           (2.2.3-7) 

The minimum value of the pulse width at z = zmin is given by 
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It can be fined the length z = zmin, the pulse width is Fourier-transform-limited since 

∆νT1
min =1. 

   
Figure 2.2.3.1 Variation of broadeningfactor with propagated dis ance for a chirped Gaussian 

pulse.  From: G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989) 

When the pulse is initially chirped and the condition β2C<0 is satisfied, the 
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dispersion-induced chirp is in opposite direction to that of the initial chirp.  As a 

result the net chirp is reduced leading to pulse narrowing. The minimum pulse 

width occurs at a point at which the two chirps cancel each other.  With a further 

increase in the propagation distance, the dispersion-induced chirp starts to dominate 

over the initial chirp, and the pulse begins to broaden. 

 

2.2.4 Fiber Compression 

Due to the nature of red-shift chirping, compression of this negatively chirped pulse in 

the time domain is possible if a fiber with normal dispersion (β2 = d2β /dω2 >0, β: 

propagation constant, ω: carrier angular frequency) is provided.  In such a fiber, the 
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1 of a shorter wavelength signal will be less than that of a 

longer wavelength signal.  Thus, if we mentally break up the chirped pulse into a 

number of segments, each with a slightly different group velocity, the leading edge of 

the negatively chirped pulse will travel slower than the trailing edge, resulting in 

temporal compression.  In order to establish a semi-quantitative understanding of the 

optimum compression condition, we analyzed the propagation of a chirped pulse in a 

dispersive fiber by assuming the optical output from the SOAFL to be with a 

Gaussian profile and linear chirping [10].  We found, at the first-order approximation, 

an explicit expression for the optimum compression condition as follows [11]: 

λ∆
∆

=−
tDL                                              (2.2.4-1) 

where D = -2πcβ2/λ2 is the fiber dispersion parameter in ps/km/nm, L is the fiber 

length, ∆t is the FWHM of the input pulse, and ∆λ is the chirped spectral width. 

 

2.3 Theoretical Model of Soliton Compression 

2.3.1 Brief Introduction 
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Pulse compression is achieved, in this scheme by taking advantage of a non-linear 

phenomenon in optical fibers known as SPM [20]. This nonlinear phenomenon is 

responsible for the spectral broadening of optical pulses in fibers, and will interact with 

GVD in the anomalous dispersion regime to produce optical solitons.  In the case of a 

fundamental or first-order soliton, the effects of SPM cancel the effects of anomalous 

GVD perfectly, and the soliton propagates whilst preserving its sec h2 shape in 

a loss less optical fiber.  A higher order soliton, on the other hand, changes its shape 

periodically as it propagates in a fiber.  Such a soliton always experiences an initial 

pulses narrowing phase before recovering its original sec h2 profile at integral multiples 

of the soliton period z0 , and this behavior is exploited to achieve pulse compression.  

Optimum compression is achieved when the higher order soliton leave the fiber just as 

it attains its narrowest width. 

 

2.3.2 SPM-Induced Spectral Broadening 

The propagation in the limit β2 =0 becomes 
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where α accounts for the fiber loss. The non-linear length 

( ) 1
0

−= PLNL γ                                             (2.3.2-2) 

where P0 is the peak power and γ is related to the nonlinear-index coefficient n2. 

Equation (2.4.8-1) is readily solved to obtain 

( ) ( ) ( )[ ]TziTUTzU NL ,exp,0, φ=                              (2.3.2-3) 

Equation (2.3.2-1) shows that SPM gives rise to an intensity-dependent phase shift 

while the pulse shape governed by ( ) 2,TzU remains unchanged.  The maximum phase 

shift φmax occurs at the pulse center located at T = 0.  Since U is normalized such that 

( ) 10,0 =U , it's given by 
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effNLeff zPLz 0max / γφ ==                                    (2.3.2-4) 

The physical meaning of the nonlinear length LNL is evident from Equation (2.4.8-4); it 

is the effective propagation distance at which φmax =1.  SPM-induced spectral 

broadening is a consequence of the time dependence of φNL(z,T).  This can be 

understood by noting that a temporally varying phase implies that the instantaneous 

optical frequency differs across the pulse from its central value ω0.  The 

difference δω is given by 
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The chirp is induced by SPM and increases in magnitude with the propagated 

distance.  In other words, new frequency components are continuously generated as 

the pulse propagates down the fiber.   

 

2.3.3 Soliton-Effect Pulse Compression 

In practice, soliton-effect compression is carried out by initially amplifying optical 

pulses up to power level required for the formation of higher order solitons. The 

peak optical power of the initial pulse required for the formation of an Nth -order 

soliton is given by 
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where β2 is the GVD parameter in units of ps2/Km,  γ  is the fiber non-linearity 

coefficient associated with SPM in units of W -1Km -1,  τ  is the Full-Width at 

Half-Maximum (FWHM) of the initial optical pulse, N is the soliton order, D  is the 

fiber dispersion parameter, λ is the optical wavelength, c is the velocity, and 

P N  is the peak power required to excite the Nth -order soliton in the fiber.  These Nth 

-order solitons are then passed through the correct length of optical fiber to finally 

yield highly compressed pulses. In general, the higher the order N, the shorter the 



 24

length of fiber required for the compression process [13].  The optical soliton is the 

result of interaction betweenthe group velocity dispersion (GVD) and the 

self-phasebmodulation (SPM) effects in a fiber with anomalous dispersion.  The 

soliton theory shows that for pulses with a sech2 profile and appropriate peak power, 

the two effects can cooperate in such a way that the fundamental solitons will travel in 

a lossless fiber without any temporal and spectral changes due to the balanced effects, 

and the higher order solitons will follow a periodic evolution patter, with the original 

shape recurring at multiples of the soliton period Z0 [14].  During the propagation of 

higher order solitons, SPM generates a frequency chirp such that the leading edge is 

red shifted and the trailing edge is blue shifted from the central frequency, while at the 

same time, the anomalous GVD will compensate for such frequency chirping at a 

certain propagation distance, resulting in a pulse compression over the central part of 

the pulse.  The soliton-effect compression is due to the initial narrowing phase 

through which all higher order solitons go before the initial shape is restored after one 

soliton period.  A crucial point for the successful realization of the soliton-effect 

compression is the appropriate choice of the fiber length to obtain optimum 

compression because the higher order solitons follow a periodic evolution pattern 

such that they go through an initial narrowing phase at the beginning of each period. 

The optimum fiber length Zopt corresponds to the location at which the width of the 

central spike is minimum.  From the theoretical analysis in [15], we found that the 

optimum soliton effects, the pulse narrowing is defined about z0 where 
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is the soliton period. 
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Figure 2.4.3.3 Calculated properties of the first optimal narrowing by means of the soliton 

effect in single-mode fibers and some related experimental data as a function of soliton 

number N.  From: G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989) 

 

The optimum length (for 10≤ N ≤ 50) can be estimated from the following empirical 

relation 
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where N is the soliton order and Z0 is the soliton period. Z0 can be elated back to the 

initial pulse width and GVD by the equation: 
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The optimum pulse compression factor, which is the ratio of the width of an optimally 

compressed pulse to its initial width, can also be estimated (for N ≤ 50)  from the 

following empirical formula: 

NFopt 1.4≈                                               (2.3.3-5) 

One difficulty faced when using the soliton-effect compression scheme, as alluded 

to previously, is pulses with high peak power are required for the formation of 

high-order solitons in conventional optical fibers.  
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2.3.4 Remove Pedestal  From  Nonlinear Pulse Compression 

We already know an inherent drawback of soliton-effect compression that the 

compressed pulses always consist of a sharp narrow spike centered on a broad low 

intensity pedestal that carries a large proportion of the pulse energy. This is 

undesirable because the broad pedestal will overlap with adjacent pulses, 

resulting in unacceptably high levels of crosstalk in a TDM system and limiting the 

achievable bit rates.  One method of eliminating the pedestal is to use the intensity 

dependent birefringence effect in optical fibers to realize intensity discrimination [16].  

In this work, we demonstrate that by using the fiber birefringence advantageously in 

conjunction with a wave plate, a polarizer and a polarization controller, the 

soliton-effect pulse compression can be realized with simultaneous suppression of the 

low intensity pedestal.  The wave plate is used to compensate for the phase shift and 

to reconstruct linear polarization states from circular or elliptical polarization states.  

Subsequent use of the polarizer then ensured that light in only one polarization state is 

produced at the output.  The polarization state of the input light and its launching 

angle with respect to the optic axes (also referred to as the fast and slow axes) of the 

fiber are also very crucial.  Therefore, a polarization controller is used at the fiber 

input to control the input polarization state of the light and launching angle into the 

fiber.  Intensity discrimination relies upon the intensity dependent polarization state 

of light in the fiber.  As the optical pulses propagate in the fiber, the narrowing 

process caused by the soliton-effect commences and the peak power of the pulse 

increases. At the optimum length (also called the point of optimum compression), 

each compressed pulse consists of an extremely high intensity peak and a low 

intensity pedestal. A schematic diagram in Figure 2.3.4.1 provides a qualitative 

description of the intensity discrimination. 
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Figure 2.3.4.1 mechanism in a birefringent fiber. Schematic diagram qualitatively 

explaining the pulse reshaping.  From: IEEE J. Quantum Electronics 1, 592 June 1995 

 

 As the pulses are launched into the fiber, their electric field can be considered as the 

result of the two orthogonal fields aligned along the two optic axes.  Due to the 

intensity-dependent nonlinear birefringence, the intense central peak and the weak 

pedestal experience different phase shifts, 1∆Φ and 2∆Φ respectively, as shown in 

the diagram.  Consequently, the high intensity peak and the low intensity pedestal 

will have different polarization states at the fiber output.  By rotating the wave plate 

at appropriate power levels, the phase shift of the intense central peak can be fully 

compensated for and changed to a linear polarization state while leaving the pedestal 

components in a different polarization state.  Subsequently, intensity discrimination 

against the pedestal can be realized with the help of a polarizer. 
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