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Static and Dynamic Calibration of Multiple Cameras

Student : [-Hsien Chen Advisor : Dr. Sheng-Jyh Wang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

In this dissertation, we present two,new-and efficient camera calibration techniques.
The first one is the static calibration for multiple ‘cameras, which is based on the
back-projections of simple objects lying on the same plane. The other one is the
dynamic calibration for multiple cameras, whichis-based on the temporal information
on a single camera and the relative space information among multiple cameras. We
adopt a system model that is general enough to fit for a large class of surveillance
systems with multiple cameras. Both our static and dynamic calibration methods do
not require particular system setup or specific calibration patterns. It is worthwhile to
mention that, for our dynamic calibration, no complicated correspondence of feature
points is needed. Hence, our calibration methods can be well applied to a wide-range
surveillance system with multiple cameras.

In the problem of static calibration for multiple cameras, we infer the relative
positioning and orientation among multiple cameras. The 3D-to-2D coordinate
transformation in terms of the tilt angle of a camera is deduced first. After having

established the 3D-to-2D transformation, the tilt angle and altitude of each camera are
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estimated based on the observation of some simple objects lying on a horizontal plane.
With the estimated tilt angles and altitudes, the relative orientations among multiple
cameras can be easily obtained by comparing the back-projected world coordinates of
some common vectors in the 3-D space. In some sense, our approach can be thought
to have decomposed the computation of homography matrix into two simple
calibration processes so that the computational load becomes lighter for the
calibration of multiple cameras. Additionally, no coordinated calibration pattern is
needed and our calibration results can offer direct geometric sense. In this dissertation,
we also discuss the sensitivity analysis with respect to parameter fluctuations and
measurement errors. Both mathematical analysis and computer simulation results are
shown to verify our analysis. Experiment results over real images have demonstrated
the efficiency and feasibility of this:approach.

In the problem of dynamic-calibration, we infer the changes of pan and tilt angles
for multiple cameras. In this part of the thesis, we take the pan angle factor into
account and re-build the mapping between a horizontal plane in the 3-D space and the
2-D image plane on a panned and tilted camera. Based on this mapping, we utilize the
displacement of feature points and the epipolar-plane constraint among multiple
cameras to estimate the pan-angle and tilt-angle changes for each camera. This
algorithm does not require a complicated correspondence of feature points. It also
allows the presence of moving objects in the captured scenes while performing
dynamic calibration. This kind of dynamic calibration process can be very useful for
applications related to active video surveillance. Besides, the sensitivity analysis of
our dynamic calibration algorithm with respect to measurement errors and
fluctuations in previous estimations is also discussed mathematically. From the
simulation results, the estimation errors of pan and tilt angle changes are proved to be

acceptable in real cases. The efficiency and feasibility of this approach has been
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demonstrated in some experiments over real scenery.
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CHAPTER 1

Introduction

1.1 Dissertation Overview

For a surveillance system with multiple cameras,-the poses of cameras may be
changed from time to time to ‘acquire different views of the monitored scene.
Whenever the poses of cameras are changed, the relative positioning and orientation
among cameras may need to be recalibrated. In practice, the rotatory encoders of most
conventional cameras are not sufficiently accurate, while cameras with high accuracy
encoders are rather expensive. For example, for the cameras we use in our
experiments, a request of 1-degree rotation may cause a 0.1-degree error in panning or
a 0.25-degree error in tilting. Even though we may correct this error via an off-line
training, we may still face a synchronization problem. This synchronization problem
is caused by the fact that a camera keeps capturing images when it is under panning or
tilting. That is, during the period of one rotation request, the camera may have
captured tens of image frames. Even if we may correct the angle error for each

rotation request, we still have difficulty in estimating the camera pose for each frame



unless we know the exact timing of camera’s movement and the sampling instant of
each image frame. With multiple cameras, the synchronization problem becomes even
more complicated. In this case, the use of pre-encoder may not offer instantaneous
multi-view geometry information at any time instant. Hence, instead of the rotatory
encoder, we seek to recalibrate a set of multiple cameras based on the feedback of
visual information in the captured images.

Up to now, various kinds of approaches have been developed to calibrate static
camera’s intrinsic and/or extrinsic parameters, such as the techniques proposed in
[1]-[43]. Nevertheless, it is impractical to repeatedly perform these elaborate
calibration processes over a camera when the camera is under panning or tilting all the
time. On the other hand, [9]-[11] have proposed plane-based calibration methods
specially designed for the calibration of multiple cameras. However, for a wide-range
surveillance system with multiple active cameras, these planar calibration objects may
not be properly observed by all cameras-when cameras are under movement. For
dynamic camera calibration, some methods-have been proposed in the literature
[38]-[43]. However, they are not general enough to be applied in a wide-range
surveillance system with multiple active cameras. Besides, [42] and [43] require the
correspondence of feature points on the image pair. For surveillance systems with
wide-range coverage, the matching of feature points is usually a difficult problem.

In this thesis, we first demonstrate a new and efficient approach to calibrate
multiple cameras without movement. For the static calibration, we estimate the tilt
angle and altitude of each camera as a starting point. The concept of our approach
originated from the observation that people could usually make a rough estimate
about the tilt angle of the camera simply based on some clues revealed in the captured
images. Based on our approach, once a set of cameras are settled, we can simply place

a few simple patterns on a horizontal plane. These patterns can be A4 papers, books,
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boxes, etc.; and the horizontal plane can be a tabletop or the ground plane. The whole
procedure does not need specially designed calibration patterns. For example, with the
image shown in Fig. 1.1, with the shape of the tabletop and these A4 papers on the
table, we can easily infer that the camera has a pretty large tilt angle, which is
expected to be larger than 45 degrees. Once the tilt angle and altitude of each camera
are estimated, we will show that the relative positions and orientations among these
cameras can be easily calibrated, without the need to calculate the homography matrix.
It is worthwhile to mention that, in some sense, our approach can be thought to have
decomposed the computation of homography matrix into two simple calibration
processes so that the computational load becomes lighter for the calibration of

multiple PTZ cameras.

Fig. 1.1 An example of images captured by a camera mounted on the ceiling.

So far as we know, most calibration algorithms require corresponding feature
points, special calibration patterns, or known landmarks in the three dimensional
space. To dynamically calibrate multiple cameras, calibration patterns and landmarks

are not always applicable since they may get occluded or even move out of the



captured scenes when cameras pan or tilt. On the other hand, if using the
correspondence of feature points, we need to keep updating the correspondence of
feature points when cameras rotate. For a wide-range surveillance system with many
cameras, the correspondence of feature points cannot be easily solved. Take Fig. 1.2
as an example, the captured scenes of two cameras are quite different. We show three
pairs of corresponding epipolar lines on these two images. It can be observed that
feature points on each pair of corresponding epipolar lines may not originate from the
same 3-D points. For this kind of image pair, the matching of feature points is not a
simple task. Hence, after the static calibration of multiple cameras, we seek to

recalibrate multiple cameras without specific calibration patterns and without

complicated correspondence techniques.

Fig. 1.2 An image pair with two different views. Green lines indicate three pairs of

corresponding epipolar lines.

Based on the result of our static calibration of multiple cameras, we begin to
perform dynamic calibration when the cameras are under movement. The concept of
our approach originated from the observation that people can usually identify the
directions of the pan and tilt angles, and even make a rough estimate about the
changes of pan and tilt angles, simply based on some clues revealed in the captured

images. The major advantage of our dynamic calibration algorithm is that it does not
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require a complicated correspondence of feature points. As cameras begin to pan or
tilt, we keep extracting and tracking feature points based on the
Kanade-Lucas-Tomasi (KLT) algorithm [45]. Next, we utilize the displacement of
feature points and the epipolar-plane constraint among multiple cameras to infer the
changes of pan and tilt angles for each camera. Compared with [42], we only need the
correspondence of epipolar lines but not the exact matching of feature points. The use
of epipolar lines greatly simplifies the correspondence process and makes our
approach suitable for complicated surveillance environments. Our algorithm also
allows the presence of moving objects in the captured scenes while performing
dynamic calibration. This property makes our approach practical for general

surveillance systems.

1.2 Organization

The following chapters in this dissertation-are.organized as follows.

€ In Chapter 2, we first introduce the basie ‘¢éamera projection geometry, including
the perspective projection, the epipolar geometry and the homography concept.
Next, a few literatures are briefly reviewed.

€ In Section 3.1, the camera model of our surveillance system is first described.
Next, in Section 3.2, we develop the mapping between the 3-D space and the 2-D
image plane in terms of tilt angle, under the constraint that all observed points
are lying on a horizontal plane. Based on the back projection formula, the tilt
angle and altitude of a camera can thus be estimated by viewing some simple
patterns on a horizontal plane. Then, we will introduce how to utilize the
estimation results to achieve the calibration of multiple cameras in Section 3.3.
In addition, the sensitivity analysis with respect to parameter fluctuations and

measurement errors will be discussed in Section 3.4. In Section 3.5, some
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experimental results over real data are demonstrated to illustrate the feasibility of
the proposed static calibration method.

€ In Section 4.1, based on the results of our static calibration, we explain how we
utilize the displacement of feature points and the epipolar-plane constraint to
infer the changes of pan angle and tilt angle. Then, in Section 4.2, we describe
how to filter out undesired feature points when moving objects are present. After
that, the sensitivity analysis with respect to measurement errors and the
fluctuations of previous estimations will be addressed in Section 4.3. In Section
4.4, the efficiency and feasibility of this dynamic calibration approach are
demonstrated in some experiments over real scenery.

€ Finally, conclusions are drawn in Chapter 5.



CHAPTER 2

Backgrounds

To understand camera calibration, we start by briefly introducing the camera
projection geometry that relates the worldreoordinate system with camera’s image
coordinate system. In Section 2.1; the.perspective projection commonly used for
camera calibration will be introduced first. Next, we will show the geometric
relationship of two views — the epipolar geometry and the homography. Then, in
Section 2.2, we roughly classify some existing calibration methods [1]-[43] based on
the usage of the calibration objects. Additionally, some dynamic calibration

approaches are briefly introduced in Section 2.3.

2.1 Projective Geometry

The commonly used camera model for camera calibration is the pinhole camera
model, which is also called the perspective projection model. Although real cameras
are usually equipped with lenses, the perspective projection model often approximates

well enough to an acceptable camera projection process. In Section 2.1.1, we first
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introduce the perspective projection and the camera parameters that relate the world
coordinate system with the image coordinate system. Then, for multiple cameras, we
extend our discussion to the two-view geometry, the epipolar geometry and the

homography in Section 2.1.2 and Section 2.1.

2.1.1 Perspective Projection

The pinhole perspective projection model was first proposed by Brunelleschi at the
early 15" century [3, pp. 3-6], as illustrated in Fig. 2.1. For the sake of convenience,
we consider a virtual image in front of the pinhole, instead of the inverted image
behind the pinhole. The distances from this virtual image to the pinhole and from the
pinhole to the actual image are the same. Figure 2.2 illustrates the perspective
projection system [3, p. 28-30]. The origin O is the camera projection center (pinhole).
The ray passing through the projection center-and.perpendicular to the image plane is
called the optical axis. The optical axis‘interacts.the image plane at the image center C.
Assume P=[X Y, Z]T denotes the ‘world. coordinates of a 3-D point P and its image

coordinates are denoted as p= [x, y]'. Under perspective projection, we have

x=lf =0l
YZ YZ @.1)
:Z —_—= —_
y fZ ﬂZ

Here, the image point is expressed in pixel units. The scale parameters k and / relate
from a distance level to a pixel level. To simplify the equations, we replace kf and /f

with a and p, respectively.



Virtual image

. Pinhole
Aciual image

Fig. 2.1 Pinhole imaging model [3, p. 4].

Fig. 2.2 Perspective projection-coordinate system [3, p. 28].

Generally, the origin of the image coordinate system is not at the image center C
but at the lower-left or upper-left corner Cy. Hence, we add (uo, vo) in (2.2) to

represent the principal point C in pixel units.

X
X=a—+u,
Z 2.2)
:,BZ+V
Y 7

Moreover, due to the manufacturing errors, the two image axes may have an angle 6

which is not equal to 90 degrees. This makes (2.2) to be

X Y
x=a—-acotd—+u,
4 2.3)




These parameters a, 3, uo, vo, and @are called the intrinsic parameters of a camera.
Usually, the perspective image plane will be moved to the front of the pinhole
with a unit distance. For such a normalized coordinate system, the perspective

projection can be expressed by

[a —acotd u,]
1 B
p=—[K 0P, where K =| 0 — v, |. 2.4)
z sin @
0o 0 1

In (2.4), We reassume P=[X, ¥, Z, I]" denotes the homogeneous world coordinates of
P and p= [x, y, /]" denotes the homogeneous image coordinates of p’s perspective
projection. Additionally, if the world coordinate system of P does not coincide with
that in the camera projection system, themmapping between the image plane and the

3-D space becomes

pelk AP (2.5)
Z:

Here, R is a rotation matrix and ¢ is a translation vector. They are called extrinsic

parameters.

2.1.2 Epipolar Geometry

Now considering a more complicated situation, we introduce the geometric
relationship between two views of the same scene [3, p. 216-219]. We assume two
cameras are observing the scenery. For these two cameras, their projection centers, O
and O, together with a 3-D point P, determine an epipolar plane [], as shown in Fig.
2.3. This epipolar plane [] intersects the image planes of the cameras to form two
epipolar lines / and I’. The epipolar line / passes through the epipole e while /” passes

through e’. The epipole e is the projection of O’ observed by the first camera, while e’

10



is the projection of O observed by the second cameras. If p and p’ are the projected
points of P on these two image planes, they must lie on / and /’, respectively. This
epipolar constraint implies that O, O’, p, and p’ are coplanar. For calibrated cameras
with known intrinsic parameters, this constraint can be expressed as
Op -[00'x 0'p'1=0. (2.6)
If we choose the first camera coordinate system as the reference coordinate
system and consider the coordinate transformation of the second one, (2.6) can be
rewritten as
pltx(Rp"]=p'Ep'=0. (2.7)
Here, p and p’ are homogeneous image coordinate vectors, ¢ is the translation
vector OO’ , and R is the rotation matrixsf.a vector has the coordinates v’ in the
second camera coordinate systeni; from the view of the first one, this vector has the
coordinates v = Rv’. Moreovet, E =itx R -is called the essential matrix 3, p. 217].
By (2.7), Ep’ and E'p can be“interpreted-as the homogeneous coordinates of the

epipolar lines / and /”’in terms of the image poemts p and p’, respectively.

P
*

P
\ V
y € ’ o’
e \ : .

Fig. 2.3 Illustration of epipolar-plane constraint.

Furthermore, when we consider the intrinsic parameters of these two cameras,

based on (2.4), the world coordinates of P observed by the first camera (second
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camera) can be represented by K'p (K’'p’) up to a scale. In this way, (2.7) is
rewritten as
p'KTEK''p'=p"Fp'=0. (2.8)
Equation (2.8) is called the Longuet-Higgins equation and F is called the fundamental
matrix [3, pp. 218-219]. Similar to E, Fp’ and F'p can be interpreted as the epipolar
line / and /', respectively. Therefore, F can be considered as the mapping from an
image point on one view to the epipolar line on the other view.
The epipolar constraint plays an important role and is often used in the camera
calibration. Based on the information of the point correspondence among multiple
views of image frames, we may extract the intrinsic parameter K or/and the extrinsic

parameters R and 7.

2.1.3 Homography

Because a homography is often-used.to.calibrate multiple views of cameras, we also
briefly describe it here. We will -alse.intreduce the combination of the epipolar

constraint and homography [44, pp. 325-343].

Fig. 2.4 A homography between two views [44, p. 325].
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As shown in Fig. 2.4, a homography Hpy that is induced by a plane IT in the 3-D
space can map the image points p and p’ between two views. To be more
apprehensible, through the transformation Har, we first back-project the image point
p’ on the second frame to the space point Py on the plane I'T. Then, Py is projected to
the image point p on the first frame by the transformation H;1. This procedure can be

expressed as

p=HHyp'=Hyp' (2.9)
In theory, the 3x3 matrix Hyy can be obtained by four image point correspondences
between two views. However, a homography needs to conform to the epipolar

constraint so that the mapping of the two image planes can obey the projective

geometry.

Fig. 2.5 A homography compatible with the epipolar geometry [44, pp. 328].

Figure 2.5 shows the projective geometry combining a homography induced by a
plane IT and the epipolar plane constraint. In the homogeneous forms, the epipolar
line / can be represented by

[ =exp=[el.(Hyp"). (2.10)

As mentioned in Section 2.1.2, the epipolar constraint related with one image point on

13



one view and one epipolar line on the other view can be expressed as / = Fp’.
Combining this constraint with (2.10), we can obtain
F=[e] H,. (2.11)

This formula is illustrated in Fig. 2.6.

[

Fig. 2.6 The fundamental matrix ican be reptesented by F =[e] H,, where H 1is
the projective transform from the second to the first camera, and [e], represents the

fundamental matrix of the translation [44, p. 250].

Here, we simply mention the concept of a homography and add the epipolar
constraint on it. Some papers [7], [10], [11], [14]-[36] have developed their camera

calibration methods based on this compatibility constraint.
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2.2 Camera Calibration

Up to now, plenty of camera calibration methods have already been developed in the
literature [1]-[36]. According to their calibration objects, these methods can be
roughly classified into four categories: calibration with three-dimensional objects,
calibration with planar objects, calibration with one-dimensional objects, and
self-calibration (with no specific objects). These methods will be briefly introduced in

Section 2.2.1- 2.2 4.

2.2.1 Calibration with Three-Dimensional Objects

This type of calibration methods [1]-[3, pp. 38-53] uses 3-D objects or 3-D reference
points with known world coordinates to calibrate'cameras. Among these methods, O.
Faugeras [2] proposed an approach.that uses.the calibration pattern as shown in Fig.
2.7. Such a calibration object usually.contains-two ©r three planes orthogonal to each
other so that the object forms a reference world coordinate system. Some regularly
arranged rectangles are on these planes. In this way, the coordinates of the corner on
these rectangles are exactly known. Based on these reference correspondences
between the world coordinate system and the image coordinate system, the projective
map M which is called the camera matrix can be obtained by minimizing the

geometric distance errors as follows:
2.4 b)) (2.12)

In (2.12), i is the number of corresponding points, and p, = MP. Finally, the intrinsic

and extrinsic parameters can be estimated by decomposing M. Beside this approach,
[1] uses different sets of 3-D reference points for calibration, while [3] offers some

other optimization processes to estimate the intrinsic and extrinsic parameters.
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Basically, these approaches tried to build the mapping between the 3-D coordinate
system and the image coordinate system.

In summary, these methods based on 3-D reference points usually need special
set-ups. Moreover, they can hardly be applied to the calibration of multiple cameras
since the 3-D calibration object has to be in the view of all cameras. Especially, for
dynamic calibration, it is even more difficult to calibrate cameras based on these

methods

(7 [T [T [T
[/ [T [T [T
(7 [T [T [T

AVANE VAR VAN WY
[ 7 [7[T

AVANR VA U WA U WA
AL VAR WA R W

A VANR VAR VAN WA

- .

Fig. 2.7 A 3-D calibration pattern with regularly arranged rectangles.

X Y

2.2.2  Calibration with Planar Objects

Since planar objects can usually be observed in the scene and are easier to be patched
with some specific geometric features, some calibration methods [4]-[11] have been
proposed by using planar calibration objects. Compared with the 3-D calibration

objects, planar objects are more suitable for the calibration of multiple cameras

[8]-[11].
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In principle, the majority of these plane-based calibration methods built the
homography between a viewed plane in the 3-D space and its projection on the image
plane. Based on sufficient point correspondences, this homography can be estimated.
Furthermore, by changing the rotation and translation of this calibration plane several
times, we have several homographies, where the same camera intrinsic parameters are
embedded. From these homographies, the intrinsic parameters can be extracted by
applying some constraints. The differences among different methods lie on the
adopted conditions, such as a known structure of planar features or a known external
motion of the calibration plane.

We take [4] as an example, due to its flexibility and easier implementation.
Under perspective projection, based on (2.5), the principle procedure mentioned

above can be formulized by

X X
Ap=K [R{IP=K[r l—Aly |=H| Y |, (2.13)
1 1

where A is an arbitrary scale factor; and r; and r;, are the first two column vectors of
the rotation matrix R. Note that because P is on a plane, its coordinates can be
simplified to be [X, ¥, 1]" without loss of generality. In addition, from the fact that 7,
and r, are orthogonal to each other, the other two constraints of the homography and

the intrinsic parameters can be obtained as
WK'K"'h =0 (2.14)
and WKTK'h=hK"K'h,. (2.15)

In (2.14) and (2.15), hy, hy, and k3 are the three column vectors of H. However, there
are 6 extrinsic parameters, 3 for rotation and 3 for translation; while a homography

has 8 degrees of freedom. Having one homography provides only two constraints on
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the intrinsic parameters. Hence, we need at least three different views to solve 6
intrinsic parameters. In [4], an additional parameter, lens distortion, was considered.

Other plane-based methods [8]-[11] have been specially designed for the
calibration of multiple cameras. The work in [8] calibrates the intrinsic parameters
with a planar grid first. Then, relative to a reference grid on the floor, the position of
each camera is estimated. However, this method needs to take several image views to
complete the calibration task. In comparison, [9] needs fewer views. In [9], the
proposed process is like an integration of static camera calibration and “moving”
camera calibration. It needs a multi-camera rig to change the specific orientation of
cameras to capture two or more views of a calibration grid. With such a known
condition of camera motion, this approach needs at least two views to recover the
fixed intrinsic parameters and the extrinsic parameters of cameras. On the other hand,
the approaches proposed in [10] and [11] belong, to- factorization-based methods. In
[10], the cameras are assumed to be well-calibrated'beforehand. The author recovered
the poses of multiple planes and<multiple.views relative to a global 3-D world
reference frame by using coplanar points with known Euclidean structure. The
method in [11] is an extension of [7]. Both intrinsic and extrinsic parameters can be
estimated via factorization of homography matrices.

However, for surveillance systems with multiple cameras, these elaborate
processes and the adopted constraints do not seem to be practical choices. Even
though such 2-D calibration objects are simpler than the 3-D calibration object
mentioned in Section 2.2.1, specific planar calibration objects with known structure
are still needed to achieve the calibration task. As the number of cameras increases, or
for wide-range multi-camera systems, a planar object may not be simultaneously
observed by all cameras. Thereafter, more calibration objects are needed and more

image frames need be captured to complete the calibration process. Besides, for

18



dynamic calibration, it is not an efficient way to repeatedly adopt these methods to

recalibrate cameras.

2.2.3 Calibration with One-Dimensional Objects

Recently, Zhang [12] proposed a camera -calibration method that used a
one-dimensional object with three points on it. The length of this object L and the
relative positions between these points are known in advance. In addition, one of
these points is fixed in the 3-D space. The camera imaging system of these collinear
space points A, B, and C is illustrated in Fig. 2.8. With these constraints, some

equations are deduced as follows.
|B-4] =1 (2.16)
C = Ad+4, B (2.17)
Based on (2.5), when [R f] weré-chosen as [I0], the following equation is obtained.
A=z, K'aiB=z,K 'byand C=z.K 'c (2.18)

In (2.18), za, zB, and z¢ are the unknown depths of A, B, and C, respectively. Based
on (2.18), (2.17) is rewritten as

zee=z, Aa+z, b (2.19)
By applying cross-product with ¢ on (2.19), (2.20) is obtained.

z, A (axe)+z,4,(bxe)=0 (2.20)
Finally, based on (2.16), (2.18) and (2.20), a basic camera calibration constraint by
using a 1-D object is obtained as follows.

Z2WK'K ' h=0". (2.21)

A,(axe)-(bxc)

In (2.21), h=a+
Ag(bxc)-(bxc)

b. Hence, with the known length of the calibration

bar, the known position of the point C with respect to A and B, and a fixed point A,
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the 5 intrinsic parameters of the camera together with z, can be estimated by using at
least six different views of the calibration bar. Such a calibration operation with a
fixed space point is shown in Fig. 2.9. A more detailed discussion of this calibration

method can be found in [13].

A (fixed point)

Fig. 2.8 Camera imaging systém ofa oné-dimensional object [12].

Fig. 2.9 An example of the calibration operation by using a 1-D object with a fixed

point [12].

Since a 1-D object with known geometry is easy to be constructed and is more
likely to be observed by multiple cameras at the same time, this calibration method
seems to be potentially suitable for the calibration of multiple cameras. However,

during the calibration, it still needs manual operations. That is, we need to fix a 3-D
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point and change the direction of the calibration stick. Otherwise, a special calibration
pattern will be required. For active cameras that may change their poses from time to

time, such a technique does not seem to be a practical choice either.

2.2.4 Self-Calibration

Several research works about self-calibration [14]-[37] have been done in the last
decade. The theory of self-calibration was first introduced by Maybank and Faugeras
[14]. Very different from the aforementioned calibration methods, self-calibration
methods do not require either calibration objects with known structure or the motion
information of a camera. Based on the epipolar constraint produced by the
displacement of an uncalibrated camera, the camera can be calibrated via the absolute
conic Q.

Here, we briefly describe- the' major kind of self-calibration techniques. The
absolute conic is defined to be-a conic-of putely tmaginary points on the plane at

infinity. It can be expressed as

(X, X,, X,)Q(X,, X,,X,) =0, (2.22)

where Q =L
The absolute conic has an important property that its image  is invariant under rigid
motions of a camera. Under perspective projection, the dual matrix of @ can be
represented by @ = KK . Figure 2.10 shows the epipolar constraints of @ between
two image frames. The first camera constraint is that the epipolar line / = exp is
tangent to @ if and only if

(ex p) @ (ex p)=0. (2.23)
The second camera constraint is that the epipolar line /” = Fp represented by the
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corresponding point p on the first image and the fundamental matrix F is tangent to @’
if and only if

p'F'a"Fp=0. (2.24)
Equations (2.23) and (2.24) are the so-called Kruppa equations [37]. If the intrinsic

parameters are constant, (2.23) and (2.24) can be further combined into (2.25).
[e]l,@[e], = F ' &'F. (2.25)
From at least three different views where each F can be obtained based on point

correspondences between two views, the intrinsic parameters of the camera can be

extracted.

Fig. 2.10 The epipolar tangency to the absolute conic images [18].

In fact, self-calibration techniques are mainly concerned with the intrinsic

parameters of cameras. Most self-calibration approaches [14]-[26] were proposed
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concerning constant intrinsic parameters. Among these methods, [22]-[26] solve their
problem with additional camera motion restrictions. On the other hand, much
extended research [27]-[35] has been developed to solve varying intrinsic parameters.
Some of them [31]-[35] additionally utilize camera motion constraints to achieve
calibration work. The further detail discussions of camera self-calibration approaches
can be found in [36].

Although self-calibration has no or fewer assumptions about the camera motion
information and doesn’t require specific calibration objects, the computational load is
heavy and the calibration work is too elaborate to be applied to the dynamic

calibration of multiple cameras.
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2.3 Dynamic Camera Calibration

Up to now, very few research works [38]-[43] have been proposed for dynamic
camera calibration. Most existing dynamic calibration techniques concern with
extrinsic parameters of cameras. Jain et al [38] proposed an off-line method, where
they tried to find the relationship between the realized rotation angle and the
requested angle. In [39], the pose of a calibrated camera is estimated from a planar
target. However, both [38] and [39] only demonstrate the dynamic calibration of a
single camera, but not the calibration among multiple cameras. In [40], the authors
utilize the marks and width of parallel lanes to calibrate PTZ cameras. In [41], the
focal length and two external rotations are dynamically estimated by using parallel
lanes. Although these two methods are jpractical for traffic monitoring, it is not
general enough for other types of survgillance systems. In [42], a dynamic camera
calibration with narrow-range -coverage was proposed. For a pair of cameras, this
method performs the correspondence. of ‘featare points on the image pair and uses
coplanar geometry for camera calibration.' Tn [43], the relative pose between a
calibrated camera and a projector is determined via plane-based homography. The
authors took two steps to recalibrate the pose parameters. They first estimated the
translation vector and then found the rotation matrix. They also offered analytic
solutions. Nevertheless, this approach requires the correspondence of feature points.
So far as we know, most calibration algorithms require corresponding feature
points, special calibration patterns (coplanar points with known structure or parallel
lines), or known landmarks in the three dimensional space. However, to dynamically
calibrate multiple cameras, calibration patterns and landmarks are not always
applicable since they may get occluded or even are out of the captured scenes when

cameras pan or tilt. On the other hand, in the correspondence of feature points, we
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need to keep updating the correspondence of feature points when cameras rotate. For
surveillance systems with a wide-range coverage, the matching of feature points is
usually a difficult problem. Hence, in this thesis, we develop a new algorithm for the
dynamic calibration of multiple cameras, without the need of a complicated

correspondence of feature points.
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CHAPTER 3

Static Calibration of Multiple
Cameras

I In this chapter, we introduce how to efficiently calibrate the extrinsic parameters of
multiple static cameras. In Section 3.1, 'the’camera model of our surveillance system is
first described. Next, in Section 3.2, we will deduce the 3D-to-2D coordinate
transformation in terms of the tilt angle of a camera. In [46], a similar scene model
based on pan angle and tilt angle has also been established. In this paper, however, we
will deduce a more complete formula that takes into account not only the translation
effect but also the rotation effect when a camera is under a tilt movement. After
having established the 3D-to-2D transformation, the tilt angle and altitude of a camera
can thus be estimated based on the observation of some simple objects lying on a
horizontal plane. Then, we will introduce how to utilize the estimation results to
achieve the calibration of multiple cameras in Section 3.3. In addition, the sensitivity

analysis with respect to parameter fluctuations and measurement errors will be
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discussed in Section 3.4. In Section 3.5, some experimental results over real data are

demonstrated to illustrate the feasibility of the proposed static calibration method.

3.1 Introduction of Our Camera Model System

In this section, we give a sketch of our system overview, camera setup model and the
basic camera projection model. Although the camera model is built based on our
surveillance environment, this model is general enough to fit for a large class of

surveillance scenes, which are equipped with multiple cameras.

3.1.1 System Overview

In the setup of our indoor surveillance system, four PTZ cameras are mounted on the
four corners of the ceiling in our lab, about 3 meters above the ground plane. The lab
is full of desks, chairs, PC computers, and momnitors. All the tabletops are roughly
parallel to the ground plane. These ¢ameras-are allowed to pan or tilt while they are
monitoring the activities in the room. Figure-3.14(a) shows four images captured by
these four cameras. We will first estimate the tilt angle and altitude of each camera
based on the captured images of some prominent features, such as corners or line
segments, on a horizontal plane. Once the tilt angles and altitudes of these four
cameras are individually estimated, we will perform the calibration of multiple

cameras. Figure 3.1 shows the flowchart of the proposed static calibration procedure.
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Image 1 | = Extract Tilt Angle & Altitude

Image 2 | = [Extract Tilt Angle & Altitude

Image n | = [Extract Tilt Angle & Altitude

!

Fig. 3.1 Flowchart of the proposed static calibration procedure.

3.1.2 Camera Setup Model

Figure 3.2 illustrates the modeling of our camera setup. Here, we assume the observed
objects are located on a horizontal plane![lwhilé. the camera lies above [ with a
height 4. The camera may pan or tilt with respect to the rotation center Ogr. Moreover,
we assume the projection center-of the.camera; denoted as Oc, is away from Ogr with
distance r. To simplify the following deductions, we define the origin of the rectified
world coordinates to be the projection center O¢ of a camera with zero tilt angle. The
Z-axis of the world coordinates is along the optical axis of the camera, while the X-
and Y-axis of the world coordinates are parallel to the x- and y-axis of the projected
image plane, respectively. When the camera tilts, the projection center moves to O¢’
and the projected image plane is changed to a new 2-D plane. In this case, the y-axis
of the image plane is no longer parallel to the Y-axis of the world coordinates, while
the x-axis is still parallel to the X-axis.

Assume P=[X, Y, Z, 1]T denotes the homogeneous coordinates of a 3-D point P
in the world coordinates. For the case of a camera with zero tilt angle, we denote the

perspective projection of P as p= [x, y, 1]". Under perspective projection, the
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. 1
relationship between P and p can be expressed as Equation (2.5),p=—K [R t]P.
z

With respect to the rectified world coordinate system, the extrinsic term [R ¢] becomes
[I 0]. To further simplify the mathematical deduction, we ignore the skew angle and
assume the image coordinates have been translated by a translation vector (-ug, -vo).

Hence, (2.5) can be simplified as

x . a 0 0||X
y|= = 0 g 0||Y]| (3.1)
1 0 0 Z
or in a reverse way as
(3.2)

Fig. 3.2 Model of camera setup.
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3.2 Pose Estimation of a Single Camera

In this section, we first deduce the projection equation to relate the world coordinates
of'a 3-D point p to its image coordinates on a tilted camera. Then, under the constraint
that all observed points are located on a horizontal plane, the mapping between the
3-D space and the 2-D image plane is further developed. Finally, we deduce the

formulae for the pose estimation of a camera.

3.2.1 Coordinate Mapping on a Tilted Camera

When the PTZ camera tilts with an angle ¢, the projection center O¢ translates to a
new place O¢’ with O¢’ =[0 -rsing -(r-rcosg)]’. Assume we define a tilted world
coordinate system (X’, Y’, Z’) withirespect to the'tilted camera, with the origin being
the new project center O¢’, theZ -axis being the optical axis of the tilted camera, and
the X’- and Y’-axis being parallel to.the x---and y’-axis of the new projected image
plane, respectively. Then, it can be-easily deduced that in the tilted world coordinate

system the coordinates of the 3-D point P become

X' 1 0 0 X
Y |=|0 cos¢ sing Y +rsing
A 0 —sing cos¢ || Z+r(l—cosg)
X
= Ycosg+Zsing+rsing
—Ysing+Zcos@d+r(cosg—1)

(3.3)

After applying the perspective projection formula, we know that the homogeneous

coordinates of the projected image point now move to
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X', X
' aZ' —Ysing+ Zcosg+r(cosg—1)

X
Y Ycosg+ Zsing + rsin
y|=| gL |=| pLeosptZsingtrsng | (3.4)
] 7 —Ysing+ Zcos¢g+r(cosg—1)
1 1

3.2.2 Constrained Coordinate Mapping

In the rectified world coordinates, all points on a horizontal plane have the same Y
coordinate. That is, Y = -A for a constant 4. The homogeneous form of this plane []
can be defined as 7=[0 1 0 #k]". Assume the camera is tilted with an angle ¢.
Then, in the tilted world coordinate system, the homogeneous form of this plane []

becomes 7' =[0 cos¢ -—sing (h—rsing)]', as shown in Fig. 3.3.

TR H
h'={ h-rsing)

Fig. 3.3 Geometry of a horizontal plane [ | with respect to a tilted camera.

Assume a 3-D point p is located on the horizontal plane []. Then, in the rectified
world coordinate system, we have 7-P =0, where P=[X, ¥, Z 1]". Similarly, in the
tilted world coordinate system, we have z'-P'=0, where P'=[X", Y’, Z, l]T. With

(3.2), Z’ can be found to be
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7 P(rsing—h)
"~ y'cosg—Bsing’

Moreover, the tilted world coordinates of p become

X' B(rsing—h)
X a(y' cosg— [sin @)

o || _yesing-n
7 | y'cosg-—Bsing
P(rsing—h)

| y'cosg—fsing |

With (3.3) and (3.6), we may transfer [X”, Y’, Z’]" back to [X; ¥, Z]" to obtain

x'B(rsing—h)

X @(y'cosp=BFsin @)

Y |= —h

Z (y'sin@+6 cos d)(r-sin = h)
v cos g—psing

—r+rcosg

(3.5)

(3.6)

(3.7)

If the principal point (u, vo) is taken into account, then (3.7) can be reformulated

as

(x"—uy) B(rsing—h)

X al(v, —y')cos g — fsin @]

Y |= —h

Z (v, —»")sing + S cos@](rsing—h)
(v, =) cos - frsing

—r+rcosg

(3.8)

This formula indicates the back projection formula from the image coordinates of a

tilted camera to the rectified world coordinates, under the constraint that all the

observed points are lying on a horizontal plane with ¥ = -A.
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3.2.3 Pose Estimation Based on the Back-Projections

As aforementioned, in real life, based on the image contents of a captured image,
people can usually have a rough estimate about the relative position of the camera
with respect to the captured objects. In this section, we demonstrate that, with a few
corners or a few line segments lying on a horizontal plane, we can easily estimate the

tilt angle of the camera based on the back projection of the captured image.

3.2.3.1 Back-projected Angle w.r.t. Guessed Tilt Angle

Suppose we use a tilted camera to capture the image of a corner, which is located on a
horizontal plane. Based on the captured image and a guessed tilt angle, we may use
(3.8) to back-project the captured image onto a horizontal plane on Y = -h. Assume
three 3-D points, P, P, and Pc, onta horizontal plane form a rectangular corner at Pa.
The original image is captured-by.a camera.with ¢-= 16 degrees, as shown in Fig.
3.4(a). In Fig. 3.4(b), we plot the back-projected images for various choices of tilt
angles. The guessed tilt angles range from 0.to 30 degrees, with a 2-degree step. The
back-projection for the choice of 16° is plotted in red, specifically. It can be seen that
the back-projected corner becomes a rectangular corner only if the guessed tilt angle
is correct. Besides, it is worth mentioning that a different choice of h only causes a
scaling effect of the back-projected shape.

To formulate this example, we express the angle  at P4 as

PP, PP
cosy = < i C> . (3.9)
P,B,| x| P,F.

After capturing the image of these three points, we can use (3.8) to build the relation

between the back-projected angle and the guessed tilt angle.

34



X8 _ x,p )
a(yy cosgﬁ—ﬂsinyﬁ) a(y, cos?—ﬂsin@
(= - s )

a(yccosp—fsing) a(y,cos¢g—fsing)
+((y,'9 sing+ fcosg) (V) sin¢+ﬂcos¢))
yzcosgp—fsing ' cosg—fsing
x((y'c sing+ fcosgd) (V) sin¢+ﬁ’cos¢))}
Ve cos'¢—ﬂsin¢ v, cos¢'—ﬁsin¢ (3.10)
X{( xBﬂ _ xAﬁ )2
a(y, cosg—fising) a(y,cosg—Bsing)
+((yé sing+ fcosg) (v Sin¢+ﬂ005¢))z}%
Vi cos,¢ —fBsing Y cosg—fsing
M— R Y
a(yccosgp—fsing) a(y,cosg—fBsing)
 ULsing+ feosg) _ (Vsing+feosd) ., g,
yocosg—pfsing Y cosg— fsing

y =cos™ {{(

X

Note that in (3.10) we have ignored the offset terms, up and vy, to reduce the
complexity of the formulation.

In Fig. 3.5, we show the back-projected dngle yy with respect to the guessed tilt
angle, assuming o and 3 are known in advance. In this simulation, the red and blue
curves are generated by placing the rectangular corner on two different places of the
horizontal plane. Again, the back-projected ‘angle is equal to 90 degrees only if we
choose the tilt angle to be 16 degrees. This simulation demonstrates that if we know in
advance the angle of the captured corner, we can easily deduce camera’s tilt angle.
Moreover, the red curve and the blue curve intersect at (¢, y) = (16 , 90). This means
that if we don’t know in advance the actual angle of the corner, we can simply place
that corner on more than two different places of the horizontal plane. Then, based on
the intersection of the deduced y-v.s.-¢ curves, we may not only estimate the tilt angle

of the camera but also the actual angle of the corner.
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Fig. 3.4 (a) Rectangular corner captured by a tilted camera (b) Illustration of

back-projection onto a horizontal plane on for different choices of tilt angles.
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Fig. 3.5 Back-projected angle‘with respect to guessed tilt angles.

3.2.3.2 Back-projected Length'w.r.t. Guessed Tilt Angle
Assume two 3-D points, P, and Pg, on a horizontal plane form a line segment with

length L. Similarly, we can build a similar relationship between the back-projected

length and the guessed tilt angle by setting the constraint: HPAPBH = L. Based on this

constraint and (3.8), we can deduce that

(x5 —uy) B(rsing—h)
al(vy — yz)cosg— Bsing]
(X —u)B(rsing—h) .,
al(v, =y cos ¢ — Bsin @]
[(v, — ¥, )sin g+ B cos #](rsin g — h) (.11)
(v, — ¥, )cos - Bsin
vy —J/L)Sin¢+ﬂ005¢](rsin¢—h))z}é
(vy =Y )cosg— Bsing '

L=10(¢)=1(

+(
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Similarly, if a, B, 1, and h are known in advance, we can deduce the tilt angle directly
based on the projected value of L.

Note that in (3.11), the right-side terms contain a common factor (rsin(])—h)z. This
means the values of r and h only affect the scaling of L. Hence, we can rewrite the

formula of the L-v.s.-¢ curve as

L
rsing—h

Chmw)f (-u)p 2 612)
ol(v, - vy cosg—fsing]  al(v, ~ v, cosg~ fsing] |

+([(vO —y)sing+ Boosg] [(v, —y;)sin¢+ﬂcos¢]]2};.

1

(v~ Vi)cosg—fsing (v, —y,)cos g fsing

Then, even if the values of r and h ar¢ unknown,, we may simply place more than two
line segments of the same length on different places of a horizontal plane and seek to

find the intersection of these cotresponding L-v.s.-¢ curves, as shown in Fig. 3.6.
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Fig. 3.6 Back-projected length with respectto guessed tilt angle. Each curve is

generated by placing a line segmient on some place of a horizontal plane.

As mentioned above, the tilt angle can be easily estimated from the y-v.s.-¢
curves or L-v.s.-¢ curves. However, in practice, due to errors in the estimation of
camera parameters and errors in the measurement of (x’, y’) coordinates, the deduced
y-v.s.-¢ curves or L-v.s.-¢ curves do not intersect at a single point. Hence, we may
also seek to perform parameter estimation based on an optimization process. Here, we
take (3.11) as an example. We assume several line segments with known lengths (not
necessary of the same length) are placed on different positions of a horizontal plane
and we use a tilted camera to capture the image. Assume the length of the ith segment

is L;, then we aim to find a set of parameters {a, B, ug, vo, ¢, r, h} that minimize

’ ror i ’ '
F('xl’yl’XZ’yz""axmaymaaaﬂauoavo>¢ar>h)

B 3.13
:Z“Ei(x;,yi’,a’,,B,uO,VO,¢,I”,h)—L,~”2- ( )
i=1
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In this way, camera parameters can also be easily estimated. In the optimization
process, we adopt the Levenberg-Marquardt algorithm. Under our scene model, the
tilt angle ¢ and altitude % can be roughly estimated simply based on visual
observations. In our experiments, the error range for the guessed tilt angle ¢ is within
120 degrees and the error range for the guessed altitude / is within 1.5 meters. With
these initial guesses, the optimization process is very stable and the estimation results

are satisfactorily accurate.

3.3 Calibration of Multiple Static Cameras

3.3.1 Static Calibration Method of Multiple Cameras

In our camera model, each camerahas its own wozld coordinate system. If a vector in
the 3-D space, like a line segment on a tabletop, is observed by several cameras at the
same time, we can achieve the calibration-of-these cameras by mapping the individual
back-projected world coordinates <of.this. vector to a common reference world
coordinates. In Fig. 3.7, we take two calibrated cameras as an example. Fig. 3.7(a)
shows the scene model of these two cameras. Fig. 3.7(b) shows the vector locations in
the world coordinates of these two cameras, respectively. Based on the estimated ¢
and h, and the image projections of the vector points, we can get the world
coordinates of points Ay, Brer, and A’, B’ from (3.8). The difference of the rotation

angle o between the two world coordinate systems can then be easily computed by

A'B” Are Bre
cosw = < 4 f> . (3.14)
A'B'|x|4,,B,,

After applying the rotation to point A’, the position translation t between these two

cameras can be expressed as
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cosw 0 —-sinw
t=A .- 0 1 0 A (3.15)

sinw 0 cosw

Hence, the 3-D relationship between these two cameras can be easily deduced.

ref

(a)

A
‘&ref' Bref
—_—
'\FB!
O,r o’ i
= Xref - X

(b)
Fig. 3.7 (a) Top view of two cameras and a vector in the space (b) The world

coordinates of the vector with respect to these two cameras.
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3.3.2 Discussion of Pan Angle

Notice that, in the above deductions, we don’t care about the pan angles of cameras.
This is because, in the back-projection process, to guess a pan angle only implies to
rotate the X and Z coordinates in our camera model. It does not change the space
relationship between the camera and the back-projected objects. In Fig. 3.8 we show
such an example. In Fig. 3.8(a), we show the image captured by a camera with three
corner points being marked in blue. Fig. 3.8(b) shows the top view (i.e. X-Z plane) of
the back-projected corner points with respect to four guessed pan angles, 0°, 30°, 60°,
and 90°. The arrows indicate the optical axes of the camera with respect to these four
pan angles. It can be seen that the space relationship between the optical axis and the
back-projected corner points is almost the same.when the camera pans. The little
variation comes from the fact that the panning center-is not the same as the projection
center. However, since the rotation radius-r-is-so small if compared with the distance

between the camera and the object, this.small.vartation can actually be ignored.
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Fig. 3.8 (a) Three points marked in the image captured by a PTZ camera (b) Top

view of the back-projected corners and the optical axes with respect to different

guessed pan angles.
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3.4 Sensitivity Analysis

The tilt angle of a camera is the key factor in our multi-camera calibration method. It
affects the back-projections of image coordinates, the information utilized to calibrate
cameras. In this section, we try to analyze how sensitive the estimation of tilt angle is
with respect to parameter fluctuations and measurement errors. Among these
parameters, the distance r between the camera center and the rotation center has no
impact over (3.10) and (3.12). Even in (3.11), r tends to have negligible impact since
the term rsin¢ is usually much smaller than h. Hence, the parameter r can be ignored

or be estimated via direct measurement. This means (3.13) can be reformulated as
F(‘x;’yl,’x;’y;""’x:n’yr,n’a’ﬂ’uo’v0’¢9h)

. 3.16
Sl By L o
im1

Besides, several parameters tangle together in,a -fairly complicated way in the
formulae relating the back-projectediangle-and.length with respect to the guessed tilt
angle. Hence, we figure out the<variations’of the tilt angle caused by several
parameters via computer simulations in addition. In this section, the values of {uy, vo,

o, B} are estimated to be {348, 257, 770, 750} based on Zhang’s calibration method

[4].

3.4.1 Mathematical Analysis of Sensitivity

We assume the total variation of ¢ or h is the summation of the individual variation

with respect to different parameter fluctuation. It leads to equation (3.17) as follows,
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ox; 29

1

Ag= [6¢Ax +162¢(Ax)+R(Ax)¢J {(MA +la¢(A )+R(Ay1)¢J

oy, 2%y,
op 10 5 o], [ 99 ¢ ;

J{@a Aa+282a (Aa) +R(Aa)n] [ o5 AB+ 282,[)’ (A,B) +R(A,B)nj

[a‘b Au0+ 0’4 (A u,)’ + R(Au 0)¢j [a¢ Av +l 0’4 (Av,)’ +R(Av0)"’j
v,

ou, 2 d%u 2 0%, (3.17)
A = [5’1 ax/ 4L 2N +R(Ax, )’1} [ L (A )+R(Ay,)]

ox; 2 9%, 25
(SZA igh J (aﬂAﬂ ; B R(Aﬁ)J
+[%Au0+%%(m{0)2+R(Auo)zJ+(§—zA"o+ Lo G )+ R, ]

where we use the second order of Taylor series to approximate the variations. Next,

)
the terms of right hand side, such as 8_¢’ 8_¢, ,etc., are deduced.

b

oxi (0% %

For estimations of ¢ and h; the optimization of (3.16) conforms to the following

equations:

- ' ’ ol .
=2) (43 p/ @, Boug,ve. g h) = L1 =0,
-1 0¢
m 8€ (3.18)
=2) (03 v/ @, Boug,ves g h) = L1 =0,
i1 ah
By eliminating the multiple of 2 in (3.18), we define f; and 1 as
S (%
hi= Z Lag™
’m ot (3.19)
Zﬁ =0
P 8h

Hence, the estimated ¢ and % satisty fi(¢@, &) = 0 and f2(@, &) = 0. Now, we apply the

implicit function theorem to (3.19) to find how ¢ and 4 deviate with respect the
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measurement error in x;". Equation (3.20) is the differential of (3.19) with respect to x;’

by using the chain rule.

f(X,,¢(X) h(x)) =

fz(xn¢(

The matrix form of (3.20) is

9

!

ox;

1

94

!

ox,

1

Then we can obtain

ox! 0 ox' oh ox!

f 8f2 99 6f2 Oh _
8xl.' O0¢ oOx! 6h 8x

X)), h(x))) =

o a2
o¢ Oh || ox,

9% oh| on
o6 o || ax’

o e[
O~ 0h |- | Ox/
gl || ox!

o o0 A oh

(3.20)

(3.21)

(3.22)

If we assume the total variations of ¢ and h are caused by individual variations with

respect to parameter fluctuations in {«, 3,u,,v,} and measurement errors in {x,',y,'},

then we have

A~ Z( M)+Z(8¢A )+ ¢Aa+ 0f ApB

+%Au0

ou,

and

m

Ah =
Py 8;

+ ah Au, +
ou,

op
o

+——Av,
Yo

2 A )+%A +@Aﬁ
= oy oa op

ﬁ Av,.
ov,
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Note that we ignore the second differential terms because the variations can be

approximated by only the first differential terms appropriately.

3.4.2 Sensitivity Analysis via Computer Simulations

We verify the prediction of the variation deduced in the previous sub-section via
computer simulations. Ideally, when we place several corners or line segments on a
horizontal plane, the deduced y-v.s.-¢ curves or L-v.s.-¢ curves should intersect at a
single point. However, due to errors in the estimation of camera parameters and errors
in the measurement of (x;’,y;’), these curves usually do not intersect at a single point.
Hence, in practice, we estimate ¢ and h based on (3.16) by using the optimization of
Levenberg-Marquardt algorithm.

In the following simulations;*two line segments are placed as Fig. 9(a). The
lengths are both equal to 0.283 meters. Moreover; the images are assumed to be
captured by a camera with tilt angle '¢-=-60-degrees. We change the values of camera
parameters and the measurement of (Xi’,y;’).individually. Again, ¢ and h are estimated
via LM optimization. The variations of these estimation results, together with the
variations deduced by (3.23) and (3.24) are listed in Table 3.1. It can be seen that the
deduced variations based on (3.23) and (3.24) well approximate the simulation results.
Besides, we figure out L-v.s.-¢ curves and apply the simulation results to y-v.s.-d
curves. For y-v.s.-¢ curves, the corners are placed as Fig. 9(b). We can find that the

variations of tilt angle in the y-v.s.-¢ figures match those in the L-v.s.-¢ figures.
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Fig. 3.9 (a) Top view of line segments placed on a horizontal plane (b) Top view of

corners placed on a horizontal plane.
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3.4.2.1 Sensitivity w.r.t. uy and v,

As indicated in (3.12), the parameter uy only affects the numerate part of the
back-projected X coordinate. Since the calculations of y and L depend on the distance
between back-projected points, but not the absolute positions, this parameter has little
impact over the deduced y-v.s.-¢ curves and L-v.s.-¢ curves. Even if the value of u is
changed by an amount of 100, the deduced tilt angle only changes about 0.1 degrees.
On the other hand, the parameter v, has a larger, but still acceptable impact over the
estimation of tilt angle. In Fig. 3.10, we plot the deduced y-v.s.-¢ curves and L-v.s.-
curves for the example in Fig. 3.9, with respect to different choices of vy. It can be
seen in Fig. 3.10 that a change of +£20 pixels in vy may cause only a 1-degree

deviation in the estimated tilt angle.

3.4.2.2 Sensitivity w.r.t. o and

Similarly, as the value « is changed by the amount of +20, the estimated tilt angle is
found to have a +1.5-degree fluctuation. On the other hand, as the value £ is changed
by the amount of 20, the estimated tilt angle is found to have a £2-degree fluctuation,

as shown in Fig. 3.11.

3.4.2.3 Sensitivity w.r.t. Ax;” and Ay’

The values of x;” and y;” may also affect the construction of y -v.s5.-¢ curves and L
-v.s.-¢ curves. As shown in Fig. 3.12, a fluctuation of +4 pixels in x;” or y;" (x’
coordinate of P; or y’ coordinate of P; shown in Fig. 3.9(a)) causes the estimated tilt
angle to change by the amount of £3- or t4-degree, respectively. In practice, the
fluctuations of x;” and y;” are likely to be much less than 4 pixels. Hence, the
estimation error caused by the measurement error of x;’ and y;” is expected to be

smaller than 3 or 4 degrees.
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34.24 Sensitivity w.r.t. different choices of tilt angle

In the second simulation, we change the tilt angle ¢ from 15 to 75 degrees, with a
15-degree step. Table 3.2 demonstrates that (3.23) and (3.24) conform to the
variations of the simulation results for a wide rage of tilt angle ¢. In practice, the
fluctuations of camera parameters are likely to be less than 20 and the measurement
errors of (x;°, yi’) are likely to be less than 4 pixels. Hence, the estimation errors of ¢
and h are expected to be acceptable in real cases.

Table 3.1

Variations of Tilt Angle and Altitude with respect to Different

Parameter Fluctuations and Measurement Errors.

Ag -0 -10 +10 +20
gdmulated (A @, Ah) (000, 0.00) (000, 0.00y (000, 0.00)  (0.00, 0.00)
deduced (Ag, Ah) (000, 0.00) (000, 0.000 (000, 0.00)  (0.00, 0.00)

Avg -0 -10 +10 +
dmulated (A @, Ah)  (-1.05,000)  (0.52, 0000 ©.51, 000 (1.00, 0.00)
deduced (A, Ah) (102, 000 (051, 0000 @51, 000 (L.DZ, 0.00)

Fitys 20 -10 +10 +20
smulated (A @, Ah) (144, 0107 (072, D05 073,005 (147, 0.10)
deduced (A, Ah) (148, 0,113 (074, 005y 072,005  (141,0.10)

AR -0 -10 +10 +40
dmulated (A ¢, Ah) (185 0.05) 091,003 (085, 003 (-L72, 0.05)
deduced (A, Ay (1.72,0.05) 089,003 (D92, 003 (189 0.06)

by 4 -~ +2 +4
smulated (A ¢, Ah) (260, 0.18)  (-1.34, 0090 (1.45,0.1) (301, 0.21)
deduced (A g, Ah) (284, 0200 (141, 0100 (1.39,0.1) (273, 0.19)

iy 4 2z +2 +4
dmulated (A ¢, Ah) (362, 0133 (<194, D07 (191,007 (3.90,0.13)
deduced (A, Ah) (445 017 (197, 007 (178,008 (325 0.11)
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Table 3.2 Variations of Tilt Angle and Altitude with respect to Different Choices

of Tilt Angle.
Tilt Angle

(&g, Ab) 15° 30 45° 60" ISk
simmlated  (0.02, 0000 ©.01, 000 @01, 000 000,000 ©.00, 000
B deduced  (0.00,000 (000,000 (000,000 Q00,0000 (000,000
simulated (182, 0.00)  (1.79,000)  (1.50,000) (100, 0.000 (0.46, 0.00)
Ao 2 deduced (1.51,0.00)  (1.80,000)  (1.51,0000 (102, 0.00) ©47, 000
. simulated  (1.50, Q.11 (1.49,011) (148, 0100 (147,0.10) (146,010
deduced (144, 0,100 (143,010 (142,010 (141,0.10) (140,010
A simulated (047, 005) (100, D05 (146, D05 (-1.72, 0.05)(-1.73, D05
= deduced (D46, 005 (105 D05 (<158, 006) (-1.89, 0.06)(-1.83, D06
hxp=4 simulated  (2.75, 015 (307,022 (316,022 (301,021 (265 019
deduced  (2.52,0.18) (78,0200 (2850200 (273,0.19) (243,017
Ay, 4 simlated (297, 0,100 (380,013 (415014 (390,0.13) (3.14,0.10
deduced  (2.58,009) (318,011 (342,011 (325011 271,009
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3.5 Experiments over Real Images

In this section, some experimental results over real data are demonstrated. We show
the pose estimation of a PTZ camera first. Then, the calibration of multiple PTZ
cameras will be performed. Finally, we give some discussions and a comparison with

the conventional calibration method based on homography.

3.5.1 Calibration Results

In this section, some static calibration results of multiple cameras on real data are
demonstrated. In this simulation, the test images are captured by a camera mounted on
the ceiling with an unknown tilt angle. The image resolution is 320 by 240 pixels. A
few A4 papers are randomly placed on a horizontal table, as shown in Fig. 3.13. The
corners of these A4 paper sheets can be easily identified either by hand or by a corner
detection algorithm. In our experiment;-we-identify  these corners manually and we
have developed a software package to facilitate. the identification of corners and line
segments in images. In the 3-D space, all the corners are 90 degrees, while the length
and width of an A4 paper are 297 mm and 210 mm, respectively. In Fig. 3.13(b) and
(c), we show the deduced y-v.s.-¢ curves and L-v.s.-¢ curves based on the corners and
the boundaries of these two A4 papers. The tilt angle is then estimated to be around 52
degrees. Note that there are two intersection points in Fig. 13(c) whose vertical

coordinate correspond to the length and width of an A4 paper, respectively.
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Table 3.3 Upper Table: Estimation of Tilt Angle and Altitude.

Lower Table: Spatial Relationship among Cameras.

Mean Deviation
pdegree) £(m) ¢ldegree) A(m)

Cameral 204 1.9% 1.5 0.12
Cameraz  5l.l 2.32 0.6 0.03
Camera3 248 1.95 1.2 0.17
Camerad 442 201 0.3 0.14
Relative position & orientation
X(m) Y (m) Z(m) @ (degree)

Camera 1 20 0.36 5.70 144.1
Camera 2 0 0 0 0
Camera3  4.27 037 1.93 87.1

Camera4 -164 031 32 -1354

The upper part of Table 3.3 lists:some-experimental results for the calibration of
multiple cameras. Here, the intrinsic parameters {o, 3, uo, vo} of each camera are
estimated in advance, based on Zhang’s calibration method [4]. The parameter r can
be estimated via direct measurement. Hence, equation (3.13) includes only 2 unknown
variables: ¢ and h. Each row of Table 3.3 lists the mean and standard deviation of the
estimated parameters for a single camera. To calculate the mean and standard
deviation, five observations are made with each observation including 8 selected line
segments on the boundary of these A4 papers, as shown in Fig. 3.14(a). It can be seen
that all the estimated parameters have an acceptably small standard deviation.

In the lower part of Table 3.3, each row corresponds to the estimations of the
position and orientation of each camera with respect to Camera 2. The relative
position and orientation are computed based on the mean value of ¢ and h and one

common vector in Fig. 3.14(a). The top view of the relative positions in the 3D space
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is illustrated in Fig. 3.14(b). The eight chosen corners of the A4 papers in Fig. 3.14(a)
are also plotted in Fig. 3.14(b) to offer a clearer geometric sense.

To evaluate the calibration results, we randomly pick up a few test points in the
image captured by Camera 2 and use the calibration result to find the corresponding
points on the other three images. The results are shown in Fig. 3.15, with all
corresponding points being represented in the same color. It can be seen that all the
corresponding relationships are quite reasonable. This verifies the credibility of the

proposed calibration method.
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Fig. 3.14 (a) Test image captured by four cameras. (b) Top view of the relative

positions between four cameras.
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3.5.2 Discussion and ﬁi&{mparlson Wlth the Homography

fiisaak
Technique

In practice, a commonly used technique for camera pose estimation is to find the
homography matrix between a reference plane in the 3-D space and the camera’s
image plane. The rotation and translation matrices can then be extracted by applying
the SVD method over the homography matrix. In the homography approach, we need
to define a reference world coordinate system and need to pick up a few spatial points
with known reference world coordinates in advance. In other words, not only the
distances but also the relative spatial information among the calibration points needs
to be known. In comparison, our approach does not need to know the world

coordinates of these calibration objects. We only need to measure the lengths or
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angles of the calibration objects. Hence, the preparation of calibration objects
becomes much easier in our approach.

Besides, we may use fewer spatial points for the calibration of camera pose. This
is because there is an implicit constraint in our approach. In a typical setup of PTZ
cameras, the horizontal axis of the camera’s image coordinate system is usually
parallel to the ground plane. This parallelism is kept all the time even though the
camera is under the panning, tilting, and zooming operations from time to time.
Moreover, in our approach, we do not actually care about the exact pan angle of the
camera. These two constraints correspond to the constraints over the rotation about
the Z axis and the rotation about the Y axis in our rectified world coordinate system.

Hence, our method may lead to stable pose estimations even when we only use a few

calibration points.

Fig. 3.16 Test images with a rectangular calibration pattern.

To compare with the homography technique, we marked 20 points on the ground
floor to form a rectangular pattern, as shown in Fig. 3.16. Five of these 20 points are
chosen to be the calibration points, as marked by the circles in Fig. 3.17. The asterisk

markers in Fig. 3.17(a) show the point correspondence based on the calibration result
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of the homography technique using the OpenCV library. On the other hand, the
asterisk markers in Fig. 3.17(b) show the point correspondence based on our approach
using five segments with known lengths. Besides, we calibrated these two cameras
twenty times by randomly choosing five of these 20 points as the calibration points.
We then checked the point correspondence in the image captured by Camera 4 based
on these 20 image points of Camera 2 and the calibration results. Table 3.4 shows the
mean absolute distance and standard deviation of the point-wise correspondence. It
can be easily seen that our approach offers a more reliable and stable calibration result
even when we only use a few calibration points. When all twenty points are used, on
the other hand, there would be no obvious difference between the performance of the
homography technique and the performance of our approach. Nevertheless, for
general surveillance environments; it will be difficult to place this kind of specific
patterns for calibration. Hence, in. general,~simple: calibration objects or a small
amount of calibration points without-known-reference spatial coordinates will be

preferred.
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Fig. 3.17  Evaluation " s by using five points. (a) Point
correspondence based on the homography technique. (b) Point correspondence based

on the proposed method.

Table 3.4 Mean Absolute Distance and Standard Deviation of

the Point-wise Correspondence.

Mean Abeclute Distance Deviation

(pizels) (pizels)
Homography technigue 6.0 5h
Propoesed method 3.4 14
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Another advantage of our method is the comprehensible sense of camera pose.
The tilt angle, altitude, and orientation of the camera offer more direct physical sense
about the camera pose in the 3D space, especially when the PTZ cameras are under
panning or tilting operations from time to time. In our approach, we derive some
explicit formula to describe how the tilt angle and altitude of a PTZ camera affects the
3D-to-2D projection. This makes the calculation of 2D-to-3D back-projection much
easier without the need of indirect depth computation. Besides, based on the
comprehensible space sense, the relationships among multiple cameras can be easily
obtained without complicated computations. In comparison, if using the conventional
homography technique, the relative position and orientation between each pair of
cameras offer less comprehensible sense about the setting of multiple cameras.
Although these relative coordinate 8ystems may still be transformed into an integrated
coordinate system, the work for-the.calibration of multiple cameras will become more

and more elaborate when the number of cameras increases.
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CHAPTER 4

Dynamic Calibration of Multiple

Cameras

In this chapter, based on the results-of-oursstatic calibration, a new algorithm for
dynamic calibration of multiple cameras.is-proposed. After the setup of PTZ cameras,
we perform static camera calibration first based on the calibration method proposed in
Chapter 3. As cameras begin to pan or tilt, we keep extracting and tracking feature
points based on the Kanade-Lucas-Tomasi (KLT) algorithm [45]. In Section 4.1, we
explain how we utilize the displacement of feature points and the epipolar-plane
constraint to infer the changes of pan angle and tilt angle. This algorithm does not
require a complicated correspondence of feature points. Our algorithm also allows the
presence of moving objects in the captured scenes while performing dynamic
calibration. In Section 4.2, we describe how to filter out undesired feature points when
moving objects are present. In Fig. 4.1, we show an overall picture of the proposed
dynamic calibration algorithm. Besides, the sensitivity analysis with respect to

measurement errors and the fluctuations of previous estimations will be addressed in
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Section 4.3. Finally, in Section 4.4, the efficiency and feasibility of this approach has

been demonstrated in some experiments over real scenery.

Static Calibration of Multiple Cameras

I

| .

Image 1 ||| = Extract Feature Pomts by KLT
—] .

Image 2 ||| = Extract Feature Pomts by KLT
_._______,_,-:--"'—'_'_

Image n ||| = Extract Feature Pomts by KLT
Ler

1l
Filter Out Undesired Feature Pomts

& %

Use Temporal Use Spatial
Information of a Smgle Information of a Pair
Camera of Cameras

Il
@namic Calibration Results

Fig. 4.1 Flowchart of the‘proposed-dynamic calibration algorithm.

4.1 Dynamic Calibration of Multiple Cameras

In this section, we explain how we perform dynamic calibration process based on
temporal and 3-D spatial information. In Section 4.1.1, we first deduce the formulae
related to the mapping between the 3-D space and the image plane on a tilted and
panned camera. Next, we will introduce how to calibrate a dynamic camera based on
the displacement of feature points in the temporal domain in Section 4.1.2. After that,
in Section 4.1.3, we will apply the epipolar-plane constraint over each pair of cameras

to obtain more robust calibration.
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4.1.1 Coordinate Mapping on a Tilted and Panned

Camera

In Section 3.3.2, we indicated that the pan angles of cameras do not need to be
considered when performing our static calibration. In this section, however, we
further deal with the problem of dynamic calibration. In Section 3.2, we have deduced
the back projection formula from the image coordinates of a tilted camera to the
rectified world coordinates, under the constraint that all of the observed points are
lying on a horizontal plane with ¥ = -h. Here, we slightly modify the equations in
Section 3.2 to take into account both tilt angle and pan angle.

When a camera has a tilt angle ¢ and a pan angle € with respect to its rectified
pose, the projection center moves.to- a new position O¢’, with O¢c’ = [rcos¢sind
-rsing r(cosgeos@-1)]". With respect to-the tilted and panned camera, we define a
new world coordinate system (X, Y, Z°); ' with the origin being the new project center
Oc¢’, the Z’-axis being along the“optical axis of the¢ camera, and the X’- and Y’-axis
being parallel to the x- and y-axis of the new projected image plane, respectively. Via
straightforward calculations, it can be deduced that in the new world coordinate

system the coordinates of the 3-D point p become

X' 1 0 0 |[cos@ 0 -—sind X —rcosgsiné
Y |=|0 cos¢ sing|| 0 1 0 Y+rsing
Z' 0 —sing cos¢|lsind@ 0 cos@ ||Z+r(l-cosgcosB)
X cos@—Zsin@—rsinf
=| Xsingsin@+Ycos@+Zsingcos@+rsingcosd
X cosgsin@—Ysing+Zcosgcos@+r(cosgcosd—1)

4.1)

After perspective projection, the homogeneous coordinates of the projected image

point become
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X' o Xcos@—Zsin@—rsinf
azv Xcosgsin@—Ysing+ Z cos@cos+r(cosgcosd—1)

Y' Xsingsin@+Y cos@+ Zsin¢@cos @+ rsin ¢ cos
MEyIS Ry 4 g+ Zsing 4 L@
1

Z' X cos@sin@—Ysing+Zcosgcos@+r(cosgpcosd—1)
1 1

Furthermore, via a straightforward deduction similar to that in Section 3.2.2, we
may deduce (4.3) to express the back projection function B(p, €, ¢, h, Q) from the
image coordinates p = (x, y) on a tilted and panned camera to the rectified world
coordinate system, under the constraint that the observed 3-D point is lying on a
horizontal plane with Y = -A.

[ Bxcos@(rsing—h)+aysinO(r —hsing)—afhcosgsind |
a(ycosd—LBsing)
—h
Pxsin B(h—rsin @)+ qycos @(r = hsin @)—afhcos ¢ cos b _,
a(ycosp— psing)

(4.3)

N~
Il

= B(p,0,4,h,Q)

Here, Q represents the set of intrinsic parameters of the camera. Note that in (4.3) we

have ignored the offset terms, uy and vy, to simplify the formulation.

4.1.2 Dynamic Calibration of a Single Camera Based on

Temporal Information

Assume we have a set of PTZ cameras. At the beginning, we calibrate the 3-D pose of
each camera via the static calibration method introduced in Chapter 3. After that, we
allow each PTZ camera to pan and tilt freely.

As a camera starts to pan or tilt, its image content changes. To recalibrate the new

pose of the camera, we check the temporal displacement of a few feature points in the
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image content. Here, we use the KLT method [45] to extract and track feature points
in consecutive images. We also assume all extracted feature points correspond to
some unknown static points in the 3-D space.

Typically, we may assume the rotation radius r is far smaller than the distances
between these 3-D points and the camera. We also assume the changes of pan angle
and tilt angle are very small during the capturing of two successive images. With
these two assumptions, the projection center of the camera can be thought to be fixed
with respect to the 3-D points while the camera is panning or tilting. In other words,
the projection lines, which connect the projection center to each of these observed 3-D
points, are fixed in the 3-D space, as long as these 3-D points stay static during the
capture of images. By using these projection lines as a reference, we may recalibrate

the new pose of the camera. Morgover, as illustrated in Fig. 4.2, if three 3-D points,

A

P, Pg and Pc, are replaced bytanother three points, P, ,

P, and P., on their
projection lines, there is no influence. onthe projected points on the image plane.
Hence, even if we do not actually know the real locations of these 3-D points, we may
simply back project all feature points in the image onto a 3-D pseudo plane with a
constant Z coordinate, as shown in Fig. 4.2.

In our approach, based on a few feature points on a pair of successive images I,
and [;, we first back project these feature points in I} onto a 3-D pseudo plane with a
constant Z. Then, we try to find a new pose of the camera that can map the
corresponding feature points in I; onto the same 3-D pseudo points. That is, if we
assume the camera has the pan angle &, and the tilt angle ¢.; while capturing I,

and has the pan angle 6, ,+A#; and the tilt angle ¢, ,+A¢ while capturing I;, we try to

find the optimal A@; and Ag, that minimize the following formula:

D= g”é(ﬁkﬂl +A0,.¢,, +A¢[)_I§(Pka‘9;71a¢;f1)uz~ 4.4)
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In (4.4), B represents the back projection function of an image feature point onto a

pseudo 3-D plane IT’. Here, we especially use “hat” to denote that the back-projection
is restricted to a vertical pseudo plane IT°. Besides, p, denotes a feature point in Iy

and p, denotes the same feature point in ;. K is the total number of image feature
points for calibration. Note that in (4.4), we ignore the altitude parameter h of these
back-projected points. This is because the altitude h can be obtained from (4.3) once if
the Z coordinate is fixed. We also ignore the intrinsic parameters € since they are not

changed when the camera pans and tilts.

O¢ Image plane

\ P
*C

Z=27 Ir

F 9

Fig. 4.2. TIllustration of a pseudo plane IT.

4.1.3 Dynamic Calibration of Multiple Cameras Based on

Epipolar-Plane Constraint

In the previous section, we assume the projection center of a single camera is fixed
during panning and tilting. The projection lines are then used as a reference to
calibrate the new pose of that camera. To further increase the accuracy of calibration,

we add on the 3-D spatial relationship among cameras.
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In Fig. 4.3, we show the epipolar geometry for a pair of cameras [3, pp. 216-219].
For these two cameras, their projection centers, Oc; and Oc,, together with a 3-D
point P4, determine an epipolar plane []. This epipolar plane [] intersects the image
planes of the cameras to form two epipolar lines /; and L. If pa' and pa” are the
projected points of P, on the image planes, they must lie on /; and ,, respectively.
This epipolar constraint implies that Oc;, Oca, pa', and pa” are coplanar and the

epipolar plane [] can be expressed as

ﬁ(OCl,Ocz,pL,Hl,#) = 0,0, % OC1B(pL:919¢l) @5)

or ”(001:002=pf1;92:¢2) =0.0, XOCZB(pj,02,¢2).

In (4.5), we use the B(.) function’defined in (4.4). Note that we ignore the altitude
parameter /4 because the formation.of epipolarplane is actually independent of 4. That

is, no matter what value 4 is, the eépipolarplane.is still the same.

Fig. 4.3 Illustration of epipolar-plane constraint.
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On the other hand, if some other points lie on the same pair of epipolar lines, like
ps' and pc' on 11 and pp’ and pg” on I, the back-projected points of these points also
have to lie on the same epipolar plane []. Traditionally, when we deal with the
calibration of this camera pair, we try to figure out the pair-wise correspondence
between {pa', ps’, pc'} and {pa’, po> pe’}. If we may place some pre-defined
calibration patterns or landmarks in the 3-D scene, the correspondence of feature
points can be easily achieved. However, in real cases, especially when cameras are
panning and tilting all the time, calibration patterns or landmarks may get occluded or
move out of image scopes.

If we do not have calibration patterns or landmarks with us, one possible way to
achieve dynamic calibration is to automatically extract new feature points from the
image contents and use them as pseudo landmarks. However, this kind of approach
requires point-wise correspondence between: each image pair and this point-wise
correspondence has long been-recognized-as.a cumbersome problem in computer
vision, especially when a lot of* feature points are involved. Moreover, for a
wide-range video surveillance system, the image contents of different cameras may be
very different. In this case, the correspondence of image feature points among
different cameras is even more difficult.

In this section, we adopt a different approach to avoid the troublesome point-wise
correspondence. As illustrated in Fig. 4.3, we assume a pair of camera has initially
been calibrated via some kind of calibration algorithm. We assume a few features, like
pal, ps’, pel, pAz, po’, and pg’, are located on a pair of corresponding epipolar lines.
Without performing point-wise correspondence, we do not actually know where these
feature points are projected from. However, we are still confident of the fact that these
3-D points must be “somewhere on the epipolar plane”. As long as these 3-D points

remain static in the 3-D space, this epipolar plane is fixed. Hence, the epipolar planes
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that have been identified at the previous moment can be used as a reference for the
calibration of cameras at the current moment.

In Fig. 4.3, we assume a pair of cameras has been calibrated at the time instant t-1
and an epipolar pane [] has been identified. Assume at that time instant t-1, the pan
and tilt angles of Camera-1 are Hlt_l and ¢ lt_l, while the pan and tilt angles of
Camera-2 are 62, and ¢2t_1, Camera-1 captures the image Ilt_l, while Camera-2
captures I%.;. On the other hand, at the time instant t, Camera-1 rotates to a new pan
angle (0'.+A0") and a new tilt angle (¢'.1+Ag",), while Camera-2 rotates to (67
+A02t) and (¢2t_1+A¢ zt). Here, we only discuss the calibration of Camera-1. The

calibration of Camera-2 can be implemented in a similar way.

For Camera-1, assume a prominent feature point p', has been extracted from

Ilt_l. This feature moves to f)lA in Ilt. Based on plA, Hlt_l, and ¢1t_1, we may form an
epipolar plane T1. At the time instant|t, we then seek to find the angles (0'.+A0")
and (¢'.1+A¢") such that p', still-locates on-the same epipolar plane. That is, we
seek to find A@', and Ag ! such that

B(p.,6,+A6),¢,+A8)-7(Op, Oy, Py 0, 4,) = 0. (4.6)
Similarly, for p), and p;. that share the same epipolar line with p',, we have

B(py. 0., + 70,4, +A8) 1(Oc, Oy, Py, 011,811

and B(ﬁlcae[; +A6’zla¢1171 +A¢zl)'7[(0019002’]9,14’9;71:@171)-

(4.7)

Note that in (4.6) and (4.7), the projection center Oc; may have a slight movement
when Camera-2 rotates. That movement can be taken into account to achieve more
accurate calibration. Here, we simply ignore that part to simplify the formulation.

For Camera-1, assume we have extracted m epipolar lines. Moreover, on the jth

epipolar line, where j = 1, 2, ..., m, we have extracted n; feature points
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{pll,pjz, ,p]n } on I'y;. These nj feature points move to {p}l,plz, ,f)lj,n/} on

1 . 1 . . 1 1 1
I'«. Besides, we assume p; denotes one of the feature points in {p;,,p;,,.-.P;, |-

Jon;

Based on the epipolar-plane constraint, we can estimate the optimal A0', and A¢', that
minimize

=2

j=1 i=1

p/’,i’etlfl +A‘9zls¢z171 +A¢tl)'”(00190czsp;» - 1’¢t 1)H (4.8)

Furthermore, by integrating (4.4) and (4.8), the changes of pan angle and tilt angle of

Camera-1 can be estimated by minimizing the following formula:

F =35 B5,.0 + a6lgl,+ 5g)-B(p), 06|
Jj=1 i=1

(4.9)
2 3 DB, 0L, + BGA D) 7O Onn. ) 0L

Jj=1i=l

Similarly, the changes of pan angle and tilt angle of Camera-2 can be estimated by
minimizing
B =3 S |B50+ A DRRY B0 )|

j=1 i=1

(4.10)
2 3 S B30, + A6 G+ G 7O Oune O 81

j=1 i=1

Here, A is a parameter to weight the contributions of temporal clues and 3-D spatial
clues. In our experiments, we simply set A = 1. In theory, for each camera, one feature
point is sufficient for the first right term of (4.9) or (4.10) to solve A&; and A¢,. That
term assumes the [X, Y, Z] coordinates of a back-projected point is fixed when a
camera is under panning or tilting. Since each 3-D point is with a fixed Z coordinate,
a feature point may offer two constraints over the X and Y coordinates and these two
constraints can be used to solve AB; and A¢.. On the other hand, whenever a pair of

epipolar lines can be determined, any feature point on the epipolar lines can be used
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for the second right term of (4.9) or (4.10) to make the estimation more robust.

To deduce AQ', Ag' A6, and Ag* we adopt the Levenberg-Marquardt (LM)
algorithm. In our experiments, the initial guesses of pan/tilt angle changes are set to
be zero degrees. Note that for a pair of corresponding epipolar lines, Camera-1 and
Camera-2 may have very different numbers of feature points. That is, the n; in (4.9)
may be different from the n; in (4.10). This is because we do not actually seek to
perform the correspondence of feature points. Instead, we seek for a consistent
matching of epipolar lines between I..; and I.. This strategy greatly simplifies the
correspondence problem. Moreover, Formulae (4.9) and (4.10) can also be merged

together into a single formula during the optimization process.

(b)

Fig. 44 Image pairs captured at two different time instants. Green lines indicate

three pairs of corresponding epipolar lines.
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In summary, for the proposed dynamic calibration algorithm, we perform the
following steps.

Step 1. After the setup of multiple cameras, we perform static camera calibration
based on the method introduced in Chapter 3. After that, cameras are allowed
to pan and tilt freely.

Step 2. On each image, a few feature points are extracted and tracked based on the
KLT algorithm [45]. Feature points moving out of the image are removed,
while new feature points entering the image are added.

Step 3. For each pair of cameras, based on the previous calibration results, we
generate pairs of epipolar lines that pass through these extracted feature points.
Actually, as long as a feature point is within a predefined distance from an
epipolar line, we say that feature point 15 ‘passed through by the epipolar line.

Step 4. Based on the extracted feature points and the-information of epipolar lines, we
calibrate the new pan -angle and-tilt.angle for each pair of cameras by
optimizing (4.9) and (4.10)."After that,;-go back to Step 2.

The above procedure is repeated to acquire the new poses of all cameras. In Fig.
4.4(a) and (b), we show images captured by two different cameras at two different
time instants, overlapped by three pairs of epipolar lines. Note that even though the
feature points on these epipolar lines come from different 3-D points, we may still be

able to achieve reliable dynamic calibration based on the matching of epipolar lines.
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4.2  Dynamic Calibration with Presence of Moving

Objects

So far, we have assumed all the feature points used for calibration correspond to some
fixed 3-D points in the scene. However, in real applications, such as object tracking or
3-D positioning, people or moving objects may enter or leave the scene while cameras
are capturing images. To guarantee accurate calibration, we need to get rid of these
feature points related to moving objects.

In Fig. 4.5, we show two successive image frames where the camera tilts up by
0.5-degrees. For each feature point, we calculate its spatial displacement (dx, dy). The
distribution of (dx, dy) is plotted in Fig, 4.6, where most displacements cluster around
(0, -4). These clustered displacements correspond to the movements of static feature
points caused by camera rotation. On the other hand, there exist some outlier
displacements which correspond to-the ‘mevement of feature points lying on the

moving person.
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(b)

Fig. 4.5 (a) Image captured by a camera with 55.1° tilt angle. (b) Image captured by
a camera with 54.6° tilt angle. Red crosses represent feature points extracted by the

KLT algorithm.
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Fig. 4.6 The distribution of spatial displacement for the extracted feature points in

Fig. 4.5.

However, the displacement of feature points depends not only on the pose of camera
but also on the contents inside-the=3-D"seene. Theoretically, by taking the partial
derivative of (4.2) with respect to the“pan‘angle 6, we have (4.11), which indicates
how the location of a feature point varies with respect to the change of pan angle. To
simplify the formula, we assume ¢ = 0 to ignore the influence of tilt angle. The
simplified formula is expressed in (4.12). Similarly, by ignoring the effect of pan
angle, (4.13) indicates how the location of a feature point varies with respect to the
change of tilt angle. Both (4.12) and (4.13) indicate the crucial role of the 3-D
location (X, Y, Z) in the displacement of feature points. Hence, for different scenes,

we expect different degrees of feature point displacements.
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Furthermore, we

| (=Y sing+Z cos p+r(cos g—1))’

—Ysing+Zcosg+r(cosg—1)

+ﬂ(l+

+
Xsin@+Zcos@+r(cosd—1)

|

(4.11)

|

(4.12)

(4.13)

illustrate the term Xcos@-Zsin@-rsind and Xsin@+Zcosd

+r(cosé-1) of (4.12) in Fig 4.7. Assume there is a 3-D point P with the world

coordinates [X, Y, Z]T. In Fig 4.7, when the camera rotates with a pan angle 6, its

projection center O, moves to O, and the world coordinates (X, Y, Z) changes to (X,

Y’, 7). The term Xcos&-Zsin6-rsinf represents the distance between P and Z” axis,

while the term Xsin6+Zcos 8 +r(cos 1) represents the distance between P and X” axis.

In other words, from the view of a camera, (4.12) depends on the relative positions

between the observed objects and the projection center. Formula (4.12) can also be
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expressed as

ax X 12

r
% - 7 —a(l+?)
= . (4'14)
oy X'Y'
00 P zZ"

If 7 1s far smaller than Z°, #/Z’ in (4.14) can be ignored. For our cameras, r is with a
centimeter level (about 3.5 centimeters), while most of the observed scenes are away
from the cameras with a meter level. The situation about tilt angle is similar to that

about pan angle. Hence, we may simply dismiss r here.

A P(X, Y,2) _
v Z

by

Fig. 4.7 [Illustration of the coordinate system when camera is panning. If » is far

smaller than Z’, we may simply dismiss 7.
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Fig. 4.8 (a) The displacements of feature points observed by two different
cameras. Both cameras are under a 1-degree pan-angle change, while their tilt angles
are fixed at 34.8°. (b) The displacements of feature points observed by the same

camera but with different pan-angle changes. (Blue: 0.6-degree pan-angle change.

Red: 1-degree pan-angle change.)

Figure 4.8 shows two simulation results that demonstrate the effects of 3-D scene

and camera pose over the value of displacement. In Figure 4.8(a), we plot the
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displacement of feature points observed by cameras at two different locations. Both
cameras are under a 1-degree change of pan angle, while their tilt angles are fixed at
34.8°. Due to the different observed scenes, the displacements of feature points are
different. On the other hand, Figure 4.8(b) shows the displacement observed by the
same camera but with two different pan-angle changes. It can be observed that not
only the displacement magnitudes are different; the distributions of displacement are
also different. The distribution with a smaller pan angle change is more compact.
Since the distribution of the displacement highly depends on the observed scene
and the magnitude of angle change, we obtain the characteristics of displacement via a
learning process for each camera. In the training stage, we intentionally pan and tilt
each camera to capture a sequence of images, without the presence of moving objects.
In our experiments, four camerastare used and'Fig. 4.11(a) shows an example of
images captured by these four cameras. In- Fig. 4.9, we show the x-component
displacement of feature points with respect-to.the change of pan angle for each of our
four cameras. It can be observed that €amera-1 and Camera-3 have roughly the same
statistical behaviors, while Camera-2 and Camera-4 have similar behaviors. In Fig.
4.10(a), we further plot the relationship between the standard deviation of dx and the
median of dx when cameras are under panning. Again, Camera-1 and Camera-3 have
roughly the same statistical behaviors, while Camera-2 and Camera-4 have similar
behaviors. Even though different cameras may have very different statistical
behaviors, the relationship between the standard deviations of dx and the median of
dx is roughly linear for each camera. Similarly, Figure 4.10(b) shows the statistical
relationship between the standard deviation of dy and the median of dx. On the other
hand, for the tilting case, we also observed similar statistical behaviors between the
standard deviation of dx (or dy) and the median of dy. All these statistical

relationships offer useful knowledge about the displacement of feature points when
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the 3-D scene is stationary.

When moving objects are present, these feature points caused by the moving
objects usually have very different statistical behaviors. Hence, in the dynamic
calibration process, we may calculate the median of displacements for all feature
points. Based on the median, we estimate the standard deviation of displacement
according to these already learned statistical relationships. When the displacement of
a feature point is away from the median by three standard deviations, that feature

point is treated as an undesired feature point and is discarded in the dynamic

calibration process.
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(a) (b)
Fig. 4.9 The x-component displacement of feature points with respect to the changes
of pan angle for four different cameras, without the presence of moving objects. The
statistical relationships for Camera-1, Camera-2, Camera-3, and Camera-4 are plotted

in red, blue, green, and magenta, respectively.
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4.3  Sensitivity Analysis

Based on (4.9) and (4.10), we can dynamically estimate the changes of pan angle and
tilt angle while a camera is rotating. In this section, we will analyze how sensitive our
algorithm is with respect to the calibration errors at the previous time instant and the
measurement errors at the current time instant. Here, we assume there could be some
errors in the calibration results at the previous time instant t-1. Moreover, there could
be some errors in the extraction of feature points, including tracking errors and the
departure of feature points from the epipolar lines.

Without loss of generality, we only discuss the sensitivity of our algorithm in the

dynamic calibration of Camera-1. In theory, for the estimation of A& and Ag,, the

OF! OF)

oAG) d /,=

= =(. Note that
A(Ag,)

optimization of (4.9) conforms t0  f; =

in (4.9), the projection center Ogy actually-has a slight movement when Camera-2
rotates. This is because the rotation center is'not exactly the same as the projection
center. To simplify the formulation of (4.9), we intentionally ignored that part in
Section 4.1. However, in the implementation of our algorithm, we actually had taken

this fact into account to achieve more accurate calibration. Hence, in the following
analyses, f; and f>depend not only on ', and ¢, but also on 6°, and ¢’,. On
the other hand, f; and /> also depend on the measurement errors of { ﬁf,l, f)fyz,..., ﬁf,n b,

where j =1, 2, ..., m and k£ = 1 or 2. Here, m denotes the number of epipolar-lines

used for dynamic calibration.
To find how A@ and Ag' deviate with respect to the fluctuations of 6,

where k=1 or 2, we may apply the implicit function theorem over f; and f, to get
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Similarly, we can deduce the formulae for

If we assume the total variations of A and Ag are the combination of
individual variation with respect to the fluctuations in &°, and ¢, and the

measurement errors in {p' ar p 250 p' 1, we have

J.n;

' dA@) aAﬁ m & O(AG)) N
S(AQ)) ~ Z{( ) 5(0F o )5<¢,1> ;25(” 5(p! } (4.16)

and

S(Ad) ~ Z{‘Z((M)) 565 aa((@“’ S+ 22‘2((5?”5(” } @17)

To verify the above formulae, we perform the following simulations. Here, two
cameras are assumed to have been accurately calibrated. Camera-1 is hung at a height
2.06 meters. If Camera-1 is translated by -0.69, -0.13 and 6.25 meters along X-, Y- and

Z-axis, respectively, and then rotated by -143.64 degrees about Y-axis, Camera-1 will

coincide with Camera-2. At first, Camera-1 has the pan angle ¢, =0and tilt angle

@ =20, while Camera-2 has the pan angle #; =0and tilt angle ¢ =40. Moreover,

based on the rectified world coordinate system of Camera-1, we assume there is an
epipolar plane IT with the homogeneous coordinates © = [0.63, 0.77, 0.09, 0.01].
Based on this plane I'l, we deduce the corresponding epipolar lines on the image

planes of these two cameras. On each of these two epipolar lines, we randomly choose
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three image points {p/,, p{,, p,} as the feature points, with k = 1 or 2. After that, the

tilt angle of Camera-1 is changed to 20.5 degrees so that the feature points on the

image plane of Camera-1 will move to the new positions {p,,, p,,, P} . Besides, the

intrinsic parameters {a;, i, aa, [} are set to be {392, 388, 392.3, 385}.

In the simulation, we change individually the initial pan and tilt angles

{6),8,,0;,4; +of Camera-1 and Camera-2 to see how the estimated values of A6
and Ag vary. Moreover, we also change the measurement p,, whose coordinates
are defined as (%], 7,) to sece how A@ and Ag vary. Here, the LM algorithm is

applied to (4.9) for the estimation of A# and Ag'. The variations of these
estimation results, together with the variations deduced by (4.16) and (4.17) are listed
in Table 4.1. Besides, we als6 show in Table 4.2-how A and Ag vary with
respect to the distance fluctuation d in epipelar-lines: In our simulation, we change the
measurement ]5111 to be away from its epipolar line. The deduced variations can be
expressed as

_a(AG) A o(AG)) 0(31,)

S(AO) ~ o(d ——25(d 4.18
B3 a@ " a6 a@) 0@ (*+.18)
and
L a(Ad) AR, a(Ad) 0L
O(A ~r——2 2 5d)+ —=——=25(d). 4.19
B=5G) a@ P a6 aw) T (+19)

It can be seen that the all deduced variations in Table 4.1 and 4.2 well approximate the

simulation results.
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Table 4.1 Variations of Estimation Results with respect to Previous Estimation

Errors and Measurement Errors.

(6L, &) =(0%209, (A8, Ad)=0° 05

| #y 2° #y -1° 5 +1° A
smulated AGS), AGE) | 052, 060 026, 030 027, D30 0.53, 060
_deduced AQ4), Ahg) | 049, 060 025 030 025 030 049, 059 _‘
| &5 2° & -1° &l +1° Ga+2°
drlated AGS'), AthgD | 039, 044 019, 022 019, 022 038, 0.4
deduced AGSD, AAE) | 039, 047 020, 023 020, 023 039, 047
| #,2pixels  Ry-lpixels Al pizels A2 pizels
simulated AGGY, AGd) | 008, DOL 004, D01 D04, 000 008, 001
deduced AGED, AAA) | 008, 002 004, 001 004, 001 008, 02
.P“ll,l-2 pixels ﬁll,l-l pixels Pl pixels P42 pizels
smulated AGg"), Athg) | 001, 009 001, H04 001, 004 001, 0.9
“deduced AGg), AGAGD | 001, 009 000, 004 000, 004 D0, 009
| @2 2° @2 -1° &7 +1° @r°
similated AQED, AGgd) | 049, D59 025 029 025 028 051, 054
deduced A(gh), Ad) | 049, D58 023, 028 023, 028 044, 053
,. a2 2° gi.1° is1° R A
smulated @Y, Aty | 027, D32 014, D16 0I5 016 030, 0.33
deduced A48, AAg) | 026, 032 013 016 013 016 027, 032

Table 4.2

Fluctuations in Epipolar Lines.

Variations of Estimation Results

with respect to Distance

(82, &) =(0°207, (Ad Ad ) =(0°05%

d (pizels)

-3

= -1

+1

+2

+3

stmulated A(AE), AGS) 005,006 004,004 002,002 0.02, 002 0.04, 004 005, 005
deduced AlAR), Ahd) 004,005 0.03, 004 002, 002 002, 002 004, 004 005, 005
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Additionally, when the number of epipolar line pair doubles, the errors of

estimated A and Ag caused by the fluctuations of the feature points are roughly
halved. On the other hand, the errors of estimated Af and Ag caused by the
fluctuations of {6,,4,,6; ,4; } have no apparent changes. Besides, if we change the
value of Ag up to 5 degrees, the variations of estimated A# and Ag caused by
the fluctuations of {6,,4,,6; .4, } and {p,,, P\, P} still confirm to that in Table

4.1 and 4.2. Finally, we also change the tilt angle ¢ from 20 to 80 degrees with a

20-degree step, and repeat the simulation. The variations of the simulation results also

confirm to that in Table 4.1 and 4.2. In practice, the initial static calibration is usually

accurate enough so that the fluctuations_of {@),¢.,6,,¢; } are usually less than 0.5
degrees. Moreover, the measurement errors of {p;.. py,,p,,} are likely to be less

than 2 pixels. Hence, the estimation errors of ‘Ad and Ag are expected to be

acceptable in real cases.

90



4.4 Experiments over Real Scenes

To verify the effectiveness of our dynamic calibration algorithm, we performed the
following experiments over real scenes. In the first experiment, test images were
captured by four cameras mounted on the ceiling. These four cameras kept panning
and tilting while capturing images. In total, each camera captured 1000 test images,
with the resolution of 320 by 240 pixels. Besides, in order to evaluate the calibration
results, we placed test landmarks in the scene with a 100-frame interval. That is, we
capture 100 image frames; stop and place some landmarks in the scene; capture an
image with the presence of landmarks; stop and remove these landmarks; and then
resume image capturing for another 100 frames. This procedure was repeated till we
captured all 1000 images for every camera, Figure 4.11(a) shows an example of
captured images by these four cameras, In comparison, Fig. 4.11(b) shows the same
images but with the presence of'landmarks.

At the beginning of the experiment, the static calibration introduced in Chapter 3
was applied to calibrate the initial setup ‘of these 4 cameras. The static calibration
results are listed in Table 4.3. The left part of Table 4.3 lists for each camera the
estimated tilt angle and its altitude above the brown table in the scene. The right part
of Table 4.3 lists for each camera the estimated position and orientation with respect
to Camera-2. To evaluate the static calibration result, we use the landmarks in the
image captured by Camera-2 to infer the corresponding points on the other three
images. The results are shown in Fig. 4.12. It can be seen that the correspondences are
reasonably accurate. In addition, we also calculated the 3-D coordinates of these
landmarks and used them as a ground truth for the evaluation of our dynamic

calibration algorithm.
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(b)
Fig. 4.11 (a) Test images captured by four cameras. (b) Test images with the

presence of landmarks. The images captured by Camera-1, Camera-2, Camera-3, and

Camera-4 are arranged in the left-to-right, top-to-bottom order.
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Table 4.3 Results of the Static Calibration.

Tilt Angle & Altitde| Eelative Position & Crientation
fidegress) h(m) | X () Y (m) Z (m) o (degress)
Camera 1 290 214 |25 011 504 1395
Cameraz | 512 03 | 000 000 000 0.0
Camera3d | 325 225 | 481 022 168 88
Camerad | 490 191 | -124 012 355 -l48.0

Fig. 4.12 Evaluation of initial calibration.

As cameras began to pan and tilt, we extracted 50 prominent feature points from
each of these four initial images and tracked these feature points by the KLT method.
Based on (4.9) and (4.10), we performed dynamic calibration for every image pair. In
our experiment, we calibrated six camera pairs {Camera-k, Camera-k’}, with {k, k’}

e {{2, 1}; {2, 3}; {2, 4}; {4, 1}; {4, 3}; {1, 3}} and averaged the calibration results

for each camera.
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To evaluate the results of dynamic calibration, we performed static calibration at
the period of every 100 frames, based on these images with the presence of landmarks.
The result was verified by projecting the aforementioned 3-D landmarks onto the
image plane of each camera. Figure 4.13 shows the differences of the estimated pan
angles and tilt angles between the dynamic calibration results and the static calibration
results. Note that the static calibration results are performed based on the 3-D
landmarks that have been well calibrated at the beginning of the experiment. In Fig.
4.13, it shows that the differences gradually increase when the frame number
increases. However, the deviation at the 1000™ frame is still acceptable and is within
the range of £3 degrees. Moreover, based on the results of dynamic calibration, we
may also directly pick up a few landmark points in the image captured by Camera-2
and project them onto the other thrée images, as'shown in Fig. 4.14.

Furthermore, if we fixed one of the four cameras-while let the other three cameras
pan and tilt freely, it turns out the results-ef-dynamic calibration become even more
reliable, as shown in Fig. 4.15. Now the differences of pan angles and tilt angles are
within the range of £1.5 degrees. Besides, the differences do not gradually increase

this time.
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Fig. 4.13 (a) Differences of the pan angles between the dynamic calibration results

and the static calibration results. (b) Differences of the tilt angles between the

dynamic calibration results and the static calibration results.
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Fig. 4.14 Evaluations of dynamical calibration at (a) the 300th frame, (b) the 600th

frame, and (c) the 1000th frame.
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Fig. 4.15 (a) Differences of the pan angles and (b) differences of the tilt angles

between the dynamic calibration results and the static calibration results, with one of

the cameras being fixed all of the time.
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We also test the situation when a moving object is present during the dynamic
calibration process. Limited by our camera control system, we cannot simultaneously
control four cameras in real time. Hence, we only allow two cameras to pan and tilt in
this experiment. Again, we captured 1000 frames for each camera and Fig. 4.16 shows
a sample of the captured sequence. In Fig. 4.17, we show the corresponding
relationship of the 1000"™ frame based on our dynamic calibration result. This
reasonable correspondence demonstrates the effectiveness and feasibility of our

dynamic calibration algorithm

Fig. 4.17 Evaluated corresponding relationship of the 1000th frame in the test

sequence with a moving person.
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CHAPTER S

Conclusions

In this dissertation, we present:two-new and-efficient pose calibration techniques: 1)
the static calibration for multiple cameras-based on the back-projections of simple
objects lying on the same plane, and 2).the-dynamic calibration for multiple cameras
with no complicated point correspondence technique.

In the problem of static calibration for multiple cameras, we infer the relative
positioning and orientation among multiple cameras. We first deduced the 3D-to-2D
coordinate transformation in terms of the tilt angle of a camera. After having
established the 3D-to-2D transformation, the tilt angle and altitude of each camera are
estimated based on the observation of some simple objects lying on a horizontal plane.
With the estimated tilt angles and altitudes, the relative orientations among multiple
cameras can be easily obtained by comparing the back-projected world coordinates of
some common vectors in the 3-D space. If compared with these conventional
calibration approaches which extract the homography matrix and the rotation matrix,

our approach offers apprehensible geometric sense and can simplify the calibration
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process. No coordinated calibration pattern is needed and the computational load is
light. In this dissertation, the sensitivity analysis with respect to parameter
fluctuations and measurement errors is also discussed. Both mathematical analysis
and computer simulation results are shown to verify our analysis. Experiment results
over real images have demonstrated the efficiency and feasibility of this approach.

In the problem of dynamic calibration for multiple cameras, we added the pan
angle factor on the mapping between a horizontal plane in the 3-D space and the 2-D
image plane on a panned and tilted camera. Based on the mapping, we utilize the
displacement of feature points and the epipolar-plane constraint among multiple
cameras to infer the changes of pan and tilt angles for each camera. This algorithm
does not require a complicated correspondence of feature points. It also allows the
presence of moving objects in . the captured scenes while performing dynamic
calibration. This kind of dynamic calibration, process can be very useful for
applications related to active wideo Surveillance; The sensitivity analysis of our
dynamic calibration algorithm withtéspect to-measurement errors and fluctuations in
previous estimations is also discussed mathematically. From the simulation results,
the estimation errors of pan and tilt angle changes are proved to be acceptable in real
cases. The efficiency and feasibility of this approach has been demonstrated in some
experiments over real scenery.

In this dissertation, we adopt a system model that is general enough to fit for a
large class of surveillance systems with multiple cameras. Both our static and
dynamic calibration methods do not require particular system setup or specific
calibration patterns. In some sense, our static calibration can be thought to have
decomposed the computation of homography matrix into two simple calibration
processes so that the computational load becomes lighter for the calibration of

multiple cameras. In addition, the major advantage of our dynamic calibration is that
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no complicated correspondence of feature points is needed. Hence, our calibration
methods can be well applied to a wide-range surveillance system with multiple
cameras. However, in this thesis, we do not combine our calibration algorithm into the
related applications of surveillance systems with multiple cameras. The calibration
results would offer useful three-dimensional information for surveillance applications,
such as object tracking or 3-D positioning. Besides, the zooming effect is not
discussed in this dissertation. It should be worthwhile to study these two topics in the

future.
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