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多台攝影機之靜態與動態校正技術 

 

 

研究生：陳宜賢                          指導教授：王聖智博士 

 

國立交通大學電子工程學系電子研究所  博士班 

 

摘要 

在本論文中，我們提出兩個新穎且有效的攝影機校正技術。第一個是多台攝影機

的靜態校正方法，其以同一平面上的簡單物體之影像，投影回空間為基礎;另一

個則是多台攝影機的動態校正技術，其以單一攝影機所拍之畫面在時間軸上的變

化，以及多台攝影機之間的相對方位為基礎。我們所採用的系統模型，能普遍適

用於大部分配有多台攝影機的監控系統，不論是靜態或動態校正方法，都不需要

特別的系統架設或使用特定的校正樣本。值得一提的是，我們的動態校正技術不

用作複雜的特徵點對應技術。 

此論文所提的多台攝影機之靜態校正，是指尋找攝影機之間的相對位置和方

向。一開始我們先推導在攝影機傾斜角度的變化下，三度空間和攝影機影像的座

標轉換關係，此對應關係建立之後，再透過攝影機觀察水平面上的簡單物體，來

估測此攝影機的擺放高度及其傾斜角度。接著，依據每台攝影機所估測的傾斜角

度和高度，我們將各攝影機所觀測到的同一向量，投影回三度空間中，藉著比較

此向量的空間座標，各攝影機之間的相對方位即可很容易地被估測出來。就某個

方面來看，我們的方法可被視為將 homography 矩陣的運算，拆解成兩個簡單的

校正過程，因此可以減少多台攝影機校正的運算量。除此之外，不需要使用到座
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標化的校正樣本，而我們的校正結果可以提供較直接的幾何感覺。本論文亦討論

關於參數波動和測量誤差的敏感性分析，我們將數學分析的結果和電腦模擬的結

果都呈現出來以驗證我們的分析，實際影像的實驗結果也展現此方法的功效和可

行性。 

至於動態校正的問題，我們推測多台攝影機的左右轉動角度（pan angle）和

傾斜角度（tilt angle）的變化情況。在這個部分中，我們將左右轉動角度的因素

考慮進來，並且重新建立在攝影機左右轉動、以及上下轉動的情況下，三維空間

中水平面和二維影像的對應關係，以此關係為基礎，利用影像特徵點的位移情

形，和多台攝影機之間所形成的 epipolar 平面的約束，來估測各台攝影機左右轉

動角度和傾斜角度的變化。此方法不需要複雜的特徵點對應技術，而且也允許移

動物體出現在校正場景中，這樣的動態校正過程，對於主動式之視訊監控的相關

應用將會非常地有用。此外，我們也從數學上去探討了關於測量誤差和前次估測

誤差的敏感性分析，從模擬的結果，證明了左右轉動角度和傾斜角度的變化之估

計誤差，在實例中是可被接受的。而此方法的功效和可行性也在實際場景的實驗

中展現出來。 
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Abstract 

In this dissertation, we present two new and efficient camera calibration techniques. 

The first one is the static calibration for multiple cameras, which is based on the 

back-projections of simple objects lying on the same plane. The other one is the 

dynamic calibration for multiple cameras, which is based on the temporal information 

on a single camera and the relative space information among multiple cameras. We 

adopt a system model that is general enough to fit for a large class of surveillance 

systems with multiple cameras. Both our static and dynamic calibration methods do 

not require particular system setup or specific calibration patterns. It is worthwhile to 

mention that, for our dynamic calibration, no complicated correspondence of feature 

points is needed. Hence, our calibration methods can be well applied to a wide-range 

surveillance system with multiple cameras.  

In the problem of static calibration for multiple cameras, we infer the relative 

positioning and orientation among multiple cameras. The 3D-to-2D coordinate 

transformation in terms of the tilt angle of a camera is deduced first. After having 

established the 3D-to-2D transformation, the tilt angle and altitude of each camera are 
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estimated based on the observation of some simple objects lying on a horizontal plane. 

With the estimated tilt angles and altitudes, the relative orientations among multiple 

cameras can be easily obtained by comparing the back-projected world coordinates of 

some common vectors in the 3-D space. In some sense, our approach can be thought 

to have decomposed the computation of homography matrix into two simple 

calibration processes so that the computational load becomes lighter for the 

calibration of multiple cameras. Additionally, no coordinated calibration pattern is 

needed and our calibration results can offer direct geometric sense. In this dissertation, 

we also discuss the sensitivity analysis with respect to parameter fluctuations and 

measurement errors. Both mathematical analysis and computer simulation results are 

shown to verify our analysis. Experiment results over real images have demonstrated 

the efficiency and feasibility of this approach.  

In the problem of dynamic calibration, we infer the changes of pan and tilt angles 

for multiple cameras. In this part of the thesis, we take the pan angle factor into 

account and re-build the mapping between a horizontal plane in the 3-D space and the 

2-D image plane on a panned and tilted camera. Based on this mapping, we utilize the 

displacement of feature points and the epipolar-plane constraint among multiple 

cameras to estimate the pan-angle and tilt-angle changes for each camera. This 

algorithm does not require a complicated correspondence of feature points. It also 

allows the presence of moving objects in the captured scenes while performing 

dynamic calibration. This kind of dynamic calibration process can be very useful for 

applications related to active video surveillance. Besides, the sensitivity analysis of 

our dynamic calibration algorithm with respect to measurement errors and 

fluctuations in previous estimations is also discussed mathematically. From the 

simulation results, the estimation errors of pan and tilt angle changes are proved to be 

acceptable in real cases. The efficiency and feasibility of this approach has been 



 v

demonstrated in some experiments over real scenery. 
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CHAPTER 1 

 

 

 

Introduction 
______________________________________________ 

1.1 Dissertation Overview 
For a surveillance system with multiple cameras, the poses of cameras may be 

changed from time to time to acquire different views of the monitored scene. 

Whenever the poses of cameras are changed, the relative positioning and orientation 

among cameras may need to be recalibrated. In practice, the rotatory encoders of most 

conventional cameras are not sufficiently accurate, while cameras with high accuracy 

encoders are rather expensive. For example, for the cameras we use in our 

experiments, a request of 1-degree rotation may cause a 0.1-degree error in panning or 

a 0.25-degree error in tilting. Even though we may correct this error via an off-line 

training, we may still face a synchronization problem. This synchronization problem 

is caused by the fact that a camera keeps capturing images when it is under panning or 

tilting. That is, during the period of one rotation request, the camera may have 

captured tens of image frames. Even if we may correct the angle error for each 

rotation request, we still have difficulty in estimating the camera pose for each frame 
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unless we know the exact timing of camera’s movement and the sampling instant of 

each image frame. With multiple cameras, the synchronization problem becomes even 

more complicated. In this case, the use of pre-encoder may not offer instantaneous 

multi-view geometry information at any time instant. Hence, instead of the rotatory 

encoder, we seek to recalibrate a set of multiple cameras based on the feedback of 

visual information in the captured images. 

Up to now, various kinds of approaches have been developed to calibrate static 

camera’s intrinsic and/or extrinsic parameters, such as the techniques proposed in 

[1]-[43]. Nevertheless, it is impractical to repeatedly perform these elaborate 

calibration processes over a camera when the camera is under panning or tilting all the 

time. On the other hand, [9]-[11] have proposed plane-based calibration methods 

specially designed for the calibration of multiple cameras. However, for a wide-range 

surveillance system with multiple active cameras, these planar calibration objects may 

not be properly observed by all cameras when cameras are under movement. For 

dynamic camera calibration, some methods have been proposed in the literature 

[38]-[43]. However, they are not general enough to be applied in a wide-range 

surveillance system with multiple active cameras. Besides, [42] and [43] require the 

correspondence of feature points on the image pair. For surveillance systems with 

wide-range coverage, the matching of feature points is usually a difficult problem.  

In this thesis, we first demonstrate a new and efficient approach to calibrate 

multiple cameras without movement. For the static calibration, we estimate the tilt 

angle and altitude of each camera as a starting point. The concept of our approach 

originated from the observation that people could usually make a rough estimate 

about the tilt angle of the camera simply based on some clues revealed in the captured 

images. Based on our approach, once a set of cameras are settled, we can simply place 

a few simple patterns on a horizontal plane. These patterns can be A4 papers, books, 
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boxes, etc.; and the horizontal plane can be a tabletop or the ground plane. The whole 

procedure does not need specially designed calibration patterns. For example, with the 

image shown in Fig. 1.1, with the shape of the tabletop and these A4 papers on the 

table, we can easily infer that the camera has a pretty large tilt angle, which is 

expected to be larger than 45 degrees. Once the tilt angle and altitude of each camera 

are estimated, we will show that the relative positions and orientations among these 

cameras can be easily calibrated, without the need to calculate the homography matrix. 

It is worthwhile to mention that, in some sense, our approach can be thought to have 

decomposed the computation of homography matrix into two simple calibration 

processes so that the computational load becomes lighter for the calibration of 

multiple PTZ cameras. 

 

Fig. 1.1  An example of images captured by a camera mounted on the ceiling. 

 

So far as we know, most calibration algorithms require corresponding feature 

points, special calibration patterns, or known landmarks in the three dimensional 

space. To dynamically calibrate multiple cameras, calibration patterns and landmarks 

are not always applicable since they may get occluded or even move out of the 
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captured scenes when cameras pan or tilt. On the other hand, if using the 

correspondence of feature points, we need to keep updating the correspondence of 

feature points when cameras rotate. For a wide-range surveillance system with many 

cameras, the correspondence of feature points cannot be easily solved. Take Fig. 1.2 

as an example, the captured scenes of two cameras are quite different. We show three 

pairs of corresponding epipolar lines on these two images. It can be observed that 

feature points on each pair of corresponding epipolar lines may not originate from the 

same 3-D points. For this kind of image pair, the matching of feature points is not a 

simple task. Hence, after the static calibration of multiple cameras, we seek to 

recalibrate multiple cameras without specific calibration patterns and without 

complicated correspondence techniques. 

 

Fig. 1.2  An image pair with two different views. Green lines indicate three pairs of 

corresponding epipolar lines. 

 

Based on the result of our static calibration of multiple cameras, we begin to 

perform dynamic calibration when the cameras are under movement. The concept of 

our approach originated from the observation that people can usually identify the 

directions of the pan and tilt angles, and even make a rough estimate about the 

changes of pan and tilt angles, simply based on some clues revealed in the captured 

images. The major advantage of our dynamic calibration algorithm is that it does not 
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require a complicated correspondence of feature points. As cameras begin to pan or 

tilt, we keep extracting and tracking feature points based on the 

Kanade-Lucas-Tomasi (KLT) algorithm [45]. Next, we utilize the displacement of 

feature points and the epipolar-plane constraint among multiple cameras to infer the 

changes of pan and tilt angles for each camera. Compared with [42], we only need the 

correspondence of epipolar lines but not the exact matching of feature points. The use 

of epipolar lines greatly simplifies the correspondence process and makes our 

approach suitable for complicated surveillance environments. Our algorithm also 

allows the presence of moving objects in the captured scenes while performing 

dynamic calibration. This property makes our approach practical for general 

surveillance systems.  

1.2 Organization  
The following chapters in this dissertation are organized as follows.  

 In Chapter 2, we first introduce the basic camera projection geometry, including 

the perspective projection, the epipolar geometry and the homography concept. 

Next, a few literatures are briefly reviewed.  

 In Section 3.1, the camera model of our surveillance system is first described. 

Next, in Section 3.2, we develop the mapping between the 3-D space and the 2-D 

image plane in terms of tilt angle, under the constraint that all observed points 

are lying on a horizontal plane. Based on the back projection formula, the tilt 

angle and altitude of a camera can thus be estimated by viewing some simple 

patterns on a horizontal plane. Then, we will introduce how to utilize the 

estimation results to achieve the calibration of multiple cameras in Section 3.3. 

In addition, the sensitivity analysis with respect to parameter fluctuations and 

measurement errors will be discussed in Section 3.4. In Section 3.5, some 
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experimental results over real data are demonstrated to illustrate the feasibility of 

the proposed static calibration method. 

 In Section 4.1, based on the results of our static calibration, we explain how we 

utilize the displacement of feature points and the epipolar-plane constraint to 

infer the changes of pan angle and tilt angle. Then, in Section 4.2, we describe 

how to filter out undesired feature points when moving objects are present. After 

that, the sensitivity analysis with respect to measurement errors and the 

fluctuations of previous estimations will be addressed in Section 4.3. In Section 

4.4, the efficiency and feasibility of this dynamic calibration approach are 

demonstrated in some experiments over real scenery. 

 Finally, conclusions are drawn in Chapter 5. 
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CHAPTER 2 
 

 

 

Backgrounds 
______________________________________________ 
 

To understand camera calibration, we start by briefly introducing the camera 

projection geometry that relates the world coordinate system with camera’s image 

coordinate system. In Section 2.1, the perspective projection commonly used for 

camera calibration will be introduced first. Next, we will show the geometric 

relationship of two views ⎯ the epipolar geometry and the homography. Then, in 

Section 2.2, we roughly classify some existing calibration methods [1]-[43] based on 

the usage of the calibration objects. Additionally, some dynamic calibration 

approaches are briefly introduced in Section 2.3.  

2.1 Projective Geometry 
The commonly used camera model for camera calibration is the pinhole camera 

model, which is also called the perspective projection model. Although real cameras 

are usually equipped with lenses, the perspective projection model often approximates 

well enough to an acceptable camera projection process. In Section 2.1.1, we first 
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introduce the perspective projection and the camera parameters that relate the world 

coordinate system with the image coordinate system. Then, for multiple cameras, we 

extend our discussion to the two-view geometry, the epipolar geometry and the 

homography in Section 2.1.2 and Section 2.1. 

2.1.1 Perspective Projection 

The pinhole perspective projection model was first proposed by Brunelleschi at the 

early 15th century [3, pp. 3-6], as illustrated in Fig. 2.1. For the sake of convenience, 

we consider a virtual image in front of the pinhole, instead of the inverted image 

behind the pinhole. The distances from this virtual image to the pinhole and from the 

pinhole to the actual image are the same. Figure 2.2 illustrates the perspective 

projection system [3, p. 28-30]. The origin O is the camera projection center (pinhole). 

The ray passing through the projection center and perpendicular to the image plane is 

called the optical axis. The optical axis interacts the image plane at the image center C. 

Assume P=[X, Y, Z]T denotes the world coordinates of a 3-D point P and its image 

coordinates are denoted as p= [x, y]T. Under perspective projection, we have 

,

.

X Xx kf
Z Z

Y Yy lf
Z Z

α

β

⎧ = =⎪⎪
⎨
⎪ = =
⎪⎩

       (2.1) 

Here, the image point is expressed in pixel units. The scale parameters k and l relate 

from a distance level to a pixel level. To simplify the equations, we replace kf and lf 

with α and β, respectively. 
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Fig. 2.1  Pinhole imaging model [3, p. 4]. 

 

Fig. 2.2  Perspective projection coordinate system [3, p. 28]. 

 

Generally, the origin of the image coordinate system is not at the image center C 

but at the lower-left or upper-left corner C0. Hence, we add (u0, v0) in (2.2) to 

represent the principal point C in pixel units.  

0

0

Xx u
Z
Yy v
Z

α

β

⎧ = +⎪⎪
⎨
⎪ = +
⎪⎩

        (2.2) 

Moreover, due to the manufacturing errors, the two image axes may have an angle θ 

which is not equal to 90 degrees. This makes (2.2) to be  

0

0

cot
.

sin

X Yx u
Z Z

Yy v
Z

α α θ

β
θ

⎧ = − +⎪⎪
⎨
⎪ = +
⎪⎩

      (2.3) 
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These parameters α, β, u0, v0, and θ are called the intrinsic parameters of a camera. 

Usually, the perspective image plane will be moved to the front of the pinhole 

with a unit distance. For such a normalized coordinate system, the perspective 

projection can be expressed by  

0

0

cot

1 [  ] ,  where 0 .
sin

0 0 1

u

p K P K v
z

α α θ

β
θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0     (2.4) 

 

In (2.4), We reassume P=[X, Y, Z, 1]T denotes the homogeneous world coordinates of 

P and p= [x, y, 1]T denotes the homogeneous image coordinates of p’s perspective 

projection. Additionally, if the world coordinate system of P does not coincide with 

that in the camera projection system, the mapping between the image plane and the 

3-D space becomes  

1 [  ] .p K R t P
z

=        (2.5) 

Here, R is a rotation matrix and t is a translation vector. They are called extrinsic 

parameters. 

2.1.2 Epipolar Geometry 

Now considering a more complicated situation, we introduce the geometric 

relationship between two views of the same scene [3, p. 216-219]. We assume two 

cameras are observing the scenery. For these two cameras, their projection centers, O 

and O’, together with a 3-D point P, determine an epipolar plane ∏, as shown in Fig. 

2.3. This epipolar plane ∏ intersects the image planes of the cameras to form two 

epipolar lines l and l’. The epipolar line l passes through the epipole e while l’ passes 

through e’. The epipole e is the projection of O’ observed by the first camera, while e’ 
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is the projection of O observed by the second cameras. If p and p’ are the projected 

points of P on these two image planes, they must lie on l and l’, respectively. This 

epipolar constraint implies that O, O’, p, and p’ are coplanar. For calibrated cameras 

with known intrinsic parameters, this constraint can be expressed as  

[ ]=0. Op OO O p′ ′ ′⋅ ×        (2.6) 

If we choose the first camera coordinate system as the reference coordinate 

system and consider the coordinate transformation of the second one, (2.6) can be 

rewritten as 

[ ( )] 0.Tp t Rp p Ep′ ′× ≡ =⋅       (2.7) 

Here, p and p’ are homogeneous image coordinate vectors, t is the translation 

vectorOO′ , and R is the rotation matrix. If a vector has the coordinates v’ in the 

second camera coordinate system, from the view of the first one, this vector has the 

coordinates v = Rv’. Moreover, E t R= ×  is called the essential matrix [3, p. 217]. 

By (2.7), Ep’ and ETp can be interpreted as the homogeneous coordinates of the 

epipolar lines l and l’ in terms of the image points p and p’, respectively. 

 
Fig. 2.3  Illustration of epipolar-plane constraint. 

 

Furthermore, when we consider the intrinsic parameters of these two cameras, 

based on (2.4), the world coordinates of P observed by the first camera (second 
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camera) can be represented by K-1p (K’-1p’) up to a scale. In this way, (2.7) is 

rewritten as 

1 0.T T Tp K EK p p Fp− −′ ′ ′≡ =       (2.8) 

Equation (2.8) is called the Longuet-Higgins equation and F is called the fundamental 

matrix [3, pp. 218-219]. Similar to E, Fp’ and FTp can be interpreted as the epipolar 

line l and l’, respectively. Therefore, F can be considered as the mapping from an 

image point on one view to the epipolar line on the other view. 

The epipolar constraint plays an important role and is often used in the camera 

calibration. Based on the information of the point correspondence among multiple 

views of image frames, we may extract the intrinsic parameter K or/and the extrinsic 

parameters R and t. 

2.1.3 Homography  

Because a homography is often used to calibrate multiple views of cameras, we also 

briefly describe it here. We will also introduce the combination of the epipolar 

constraint and homography [44, pp. 325-343]. 

 

Fig. 2.4  A homography between two views [44, p. 325]. 
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As shown in Fig. 2.4, a homography HΠ that is induced by a plane Π in the 3-D 

space can map the image points p and p’ between two views. To be more 

apprehensible, through the transformation H2Π, we first back-project the image point 

p’ on the second frame to the space point PΠ on the plane Π. Then, PΠ is projected to 

the image point p on the first frame by the transformation H1Π. This procedure can be 

expressed as  

1
1 2 .p H H p H p−
Π Π Π′ ′= =       (2.9) 

In theory, the 3×3 matrix HΠ can be obtained by four image point correspondences 

between two views. However, a homography needs to conform to the epipolar 

constraint so that the mapping of the two image planes can obey the projective 

geometry.  

 

Fig. 2.5  A homography compatible with the epipolar geometry [44, pp. 328]. 

 

Figure 2.5 shows the projective geometry combining a homography induced by a 

plane Π and the epipolar plane constraint. In the homogeneous forms, the epipolar 

line l can be represented by  

[ ] ( ).l e p e H p× Π ′= × =       (2.10) 

As mentioned in Section 2.1.2, the epipolar constraint related with one image point on 
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one view and one epipolar line on the other view can be expressed as l = Fp’. 

Combining this constraint with (2.10), we can obtain 

[ ] .H× Π=F e        (2.11) 

This formula is illustrated in Fig. 2.6. 

 
Fig. 2.6 The fundamental matrix can be represented by [ ] H× Π=F e , where HΠ  is 
the projective transform from the second to the first camera, and [ ]×e represents the 
fundamental matrix of the translation [44, p. 250]. 

 

Here, we simply mention the concept of a homography and add the epipolar 

constraint on it. Some papers [7], [10], [11], [14]-[36] have developed their camera 

calibration methods based on this compatibility constraint.  
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2.2 Camera Calibration 
Up to now, plenty of camera calibration methods have already been developed in the 

literature [1]-[36]. According to their calibration objects, these methods can be 

roughly classified into four categories: calibration with three-dimensional objects, 

calibration with planar objects, calibration with one-dimensional objects, and 

self-calibration (with no specific objects). These methods will be briefly introduced in 

Section 2.2.1- 2.2.4.  

2.2.1 Calibration with Three-Dimensional Objects 

This type of calibration methods [1]-[3, pp. 38–53] uses 3-D objects or 3-D reference 

points with known world coordinates to calibrate cameras. Among these methods, O. 

Faugeras [2] proposed an approach that uses the calibration pattern as shown in Fig. 

2.7. Such a calibration object usually contains two or three planes orthogonal to each 

other so that the object forms a reference world coordinate system. Some regularly 

arranged rectangles are on these planes. In this way, the coordinates of the corner on 

these rectangles are exactly known. Based on these reference correspondences 

between the world coordinate system and the image coordinate system, the projective 

map M which is called the camera matrix can be obtained by minimizing the 

geometric distance errors as follows: 

2ˆ( , )i i
i

d p p∑ .       (2.12) 

In (2.12), i is the number of corresponding points, and ˆ i ip MP= . Finally, the intrinsic 

and extrinsic parameters can be estimated by decomposing M. Beside this approach, 

[1] uses different sets of 3-D reference points for calibration, while [3] offers some 

other optimization processes to estimate the intrinsic and extrinsic parameters. 
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Basically, these approaches tried to build the mapping between the 3-D coordinate 

system and the image coordinate system. 

In summary, these methods based on 3-D reference points usually need special 

set-ups. Moreover, they can hardly be applied to the calibration of multiple cameras 

since the 3-D calibration object has to be in the view of all cameras. Especially, for 

dynamic calibration, it is even more difficult to calibrate cameras based on these 

methods 

 

Fig. 2.7  A 3-D calibration pattern with regularly arranged rectangles. 

 

2.2.2 Calibration with Planar Objects 

Since planar objects can usually be observed in the scene and are easier to be patched 

with some specific geometric features, some calibration methods [4]-[11] have been 

proposed by using planar calibration objects. Compared with the 3-D calibration 

objects, planar objects are more suitable for the calibration of multiple cameras 

[8]-[11].  
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In principle, the majority of these plane-based calibration methods built the 

homography between a viewed plane in the 3-D space and its projection on the image 

plane. Based on sufficient point correspondences, this homography can be estimated. 

Furthermore, by changing the rotation and translation of this calibration plane several 

times, we have several homographies, where the same camera intrinsic parameters are 

embedded. From these homographies, the intrinsic parameters can be extracted by 

applying some constraints. The differences among different methods lie on the 

adopted conditions, such as a known structure of planar features or a known external 

motion of the calibration plane.  

We take [4] as an example, due to its flexibility and easier implementation. 

Under perspective projection, based on (2.5), the principle procedure mentioned 

above can be formulized by  

1 2 [  ] [ ] ,
1 1

X X
p K R t P K r r t Y H Yλ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    (2.13) 

where λ is an arbitrary scale factor; and r1 and r2 are the first two column vectors of 

the rotation matrix R. Note that because P is on a plane, its coordinates can be 

simplified to be [X, Y, 1]T without loss of generality. In addition, from the fact that r1 

and r2 are orthogonal to each other, the other two constraints of the homography and 

the intrinsic parameters can be obtained as 

1
1 2 0T Th K K h− − =         (2.14) 

and                1 1
1 1 2 2
T T T Th K K h h K K h− − − −= .      (2.15) 

In (2.14) and (2.15), h1, h2, and h3 are the three column vectors of H. However, there 

are 6 extrinsic parameters, 3 for rotation and 3 for translation; while a homography 

has 8 degrees of freedom. Having one homography provides only two constraints on 
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the intrinsic parameters. Hence, we need at least three different views to solve 6 

intrinsic parameters. In [4], an additional parameter, lens distortion, was considered.  

Other plane-based methods [8]-[11] have been specially designed for the 

calibration of multiple cameras. The work in [8] calibrates the intrinsic parameters 

with a planar grid first. Then, relative to a reference grid on the floor, the position of 

each camera is estimated. However, this method needs to take several image views to 

complete the calibration task. In comparison, [9] needs fewer views. In [9], the 

proposed process is like an integration of static camera calibration and “moving” 

camera calibration. It needs a multi-camera rig to change the specific orientation of 

cameras to capture two or more views of a calibration grid. With such a known 

condition of camera motion, this approach needs at least two views to recover the 

fixed intrinsic parameters and the extrinsic parameters of cameras. On the other hand, 

the approaches proposed in [10] and [11] belong to factorization-based methods. In 

[10], the cameras are assumed to be well calibrated beforehand. The author recovered 

the poses of multiple planes and multiple views relative to a global 3-D world 

reference frame by using coplanar points with known Euclidean structure. The 

method in [11] is an extension of [7]. Both intrinsic and extrinsic parameters can be 

estimated via factorization of homography matrices.  

However, for surveillance systems with multiple cameras, these elaborate 

processes and the adopted constraints do not seem to be practical choices. Even 

though such 2-D calibration objects are simpler than the 3-D calibration object 

mentioned in Section 2.2.1, specific planar calibration objects with known structure 

are still needed to achieve the calibration task. As the number of cameras increases, or 

for wide-range multi-camera systems, a planar object may not be simultaneously 

observed by all cameras. Thereafter, more calibration objects are needed and more 

image frames need be captured to complete the calibration process. Besides, for 
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dynamic calibration, it is not an efficient way to repeatedly adopt these methods to 

recalibrate cameras.  

2.2.3 Calibration with One-Dimensional Objects 

Recently, Zhang [12] proposed a camera calibration method that used a 

one-dimensional object with three points on it. The length of this object L and the 

relative positions between these points are known in advance. In addition, one of 

these points is fixed in the 3-D space. The camera imaging system of these collinear 

space points A, B, and C is illustrated in Fig. 2.8. With these constraints, some 

equations are deduced as follows. 

2 2B A L− =        (2.16) 

A BC A Bλ λ= +       (2.17) 

Based on (2.5), when [R t] were chosen as [I 0], the following equation is obtained. 

1 1 1, ,  and A B CA z K B z K C z K− − −= = =a b c    (2.18) 

In (2.18), zA, zB, and zC are the unknown depths of A, B, and C, respectively. Based 

on (2.18), (2.17) is rewritten as 

C A A B Bz z zλ λ= +c a b       (2.19) 

By applying cross-product with c on (2.19), (2.20) is obtained. 

( ) ( ) 0A A B Bz zλ λ× + × =a c b c      (2.20) 

Finally, based on (2.16), (2.18) and (2.20), a basic camera calibration constraint by 

using a 1-D object is obtained as follows. 

2 1 2T T
Az h K K h L− − = .       (2.21) 

In (2.21), ( ) ( ) .
( ) ( )

A

B

h λ
λ

× ⋅ ×
= +

× ⋅ ×
a c b ca b
b c b c

 Hence, with the known length of the calibration 

bar, the known position of the point C with respect to A and B, and a fixed point A, 
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the 5 intrinsic parameters of the camera together with zA can be estimated by using at 

least six different views of the calibration bar. Such a calibration operation with a 

fixed space point is shown in Fig. 2.9. A more detailed discussion of this calibration 

method can be found in [13]. 

 
Fig. 2.8  Camera imaging system of a one-dimensional object [12]. 

 

Fig. 2.9  An example of the calibration operation by using a 1-D object with a fixed 

point [12]. 

 

Since a 1-D object with known geometry is easy to be constructed and is more 

likely to be observed by multiple cameras at the same time, this calibration method 

seems to be potentially suitable for the calibration of multiple cameras. However, 

during the calibration, it still needs manual operations. That is, we need to fix a 3-D 
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point and change the direction of the calibration stick. Otherwise, a special calibration 

pattern will be required. For active cameras that may change their poses from time to 

time, such a technique does not seem to be a practical choice either.  

2.2.4 Self-Calibration 

Several research works about self-calibration [14]-[37] have been done in the last 

decade. The theory of self-calibration was first introduced by Maybank and Faugeras 

[14]. Very different from the aforementioned calibration methods, self-calibration 

methods do not require either calibration objects with known structure or the motion 

information of a camera. Based on the epipolar constraint produced by the 

displacement of an uncalibrated camera, the camera can be calibrated via the absolute 

conic Ω.  

Here, we briefly describe the major kind of self-calibration techniques. The 

absolute conic is defined to be a conic of purely imaginary points on the plane at 

infinity. It can be expressed as 

2 2 2
1 2 3

4

1 2 3 1 2 3

0,   
                  

( , , ) ( , , ) 0,

where .

T

X X X

X

X X X X X X

⎫+ + ⎪ =⎬
⎪⎭

=

=

Ω

Ω I

    (2.22) 

The absolute conic has an important property that its image ω is invariant under rigid 

motions of a camera. Under perspective projection, the dual matrix of ω can be 

represented by TKKω∗ = . Figure 2.10 shows the epipolar constraints of ω between 

two image frames. The first camera constraint is that the epipolar line l = e×p is 

tangent to ω if and only if 

( ) ( ) 0.Te p e pω∗× × =       (2.23) 

The second camera constraint is that the epipolar line l’ = Fp represented by the 
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corresponding point p on the first image and the fundamental matrix F is tangent to ω’ 

if and only if 

0.T Tp F Fpω ∗′ =        (2.24) 

Equations (2.23) and (2.24) are the so-called Kruppa equations [37]. If the intrinsic 

parameters are constant, (2.23) and (2.24) can be further combined into (2.25).  

[ ] [ ] .Te e F Fω ω∗ ∗
× × =       (2.25) 

From at least three different views where each F can be obtained based on point 

correspondences between two views, the intrinsic parameters of the camera can be 

extracted. 

 

Fig. 2.10  The epipolar tangency to the absolute conic images [18]. 

 

In fact, self-calibration techniques are mainly concerned with the intrinsic 

parameters of cameras. Most self-calibration approaches [14]-[26] were proposed 
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concerning constant intrinsic parameters. Among these methods, [22]-[26] solve their 

problem with additional camera motion restrictions. On the other hand, much 

extended research [27]-[35] has been developed to solve varying intrinsic parameters. 

Some of them [31]-[35] additionally utilize camera motion constraints to achieve 

calibration work. The further detail discussions of camera self-calibration approaches 

can be found in [36]. 

Although self-calibration has no or fewer assumptions about the camera motion 

information and doesn’t require specific calibration objects, the computational load is 

heavy and the calibration work is too elaborate to be applied to the dynamic 

calibration of multiple cameras. 
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2.3 Dynamic Camera Calibration 
Up to now, very few research works [38]-[43] have been proposed for dynamic 

camera calibration. Most existing dynamic calibration techniques concern with 

extrinsic parameters of cameras. Jain et al [38] proposed an off-line method, where 

they tried to find the relationship between the realized rotation angle and the 

requested angle. In [39], the pose of a calibrated camera is estimated from a planar 

target. However, both [38] and [39] only demonstrate the dynamic calibration of a 

single camera, but not the calibration among multiple cameras. In [40], the authors 

utilize the marks and width of parallel lanes to calibrate PTZ cameras. In [41], the 

focal length and two external rotations are dynamically estimated by using parallel 

lanes. Although these two methods are practical for traffic monitoring, it is not 

general enough for other types of surveillance systems. In [42], a dynamic camera 

calibration with narrow-range coverage was proposed. For a pair of cameras, this 

method performs the correspondence of feature points on the image pair and uses 

coplanar geometry for camera calibration. In [43], the relative pose between a 

calibrated camera and a projector is determined via plane-based homography. The 

authors took two steps to recalibrate the pose parameters. They first estimated the 

translation vector and then found the rotation matrix. They also offered analytic 

solutions. Nevertheless, this approach requires the correspondence of feature points.  

So far as we know, most calibration algorithms require corresponding feature 

points, special calibration patterns (coplanar points with known structure or parallel 

lines), or known landmarks in the three dimensional space. However, to dynamically 

calibrate multiple cameras, calibration patterns and landmarks are not always 

applicable since they may get occluded or even are out of the captured scenes when 

cameras pan or tilt. On the other hand, in the correspondence of feature points, we 
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need to keep updating the correspondence of feature points when cameras rotate. For 

surveillance systems with a wide-range coverage, the matching of feature points is 

usually a difficult problem. Hence, in this thesis, we develop a new algorithm for the 

dynamic calibration of multiple cameras, without the need of a complicated 

correspondence of feature points. 
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CHAPTER 3 
 

 

 

Static Calibration of Multiple 
Cameras 
______________________________________________ 
 

I In this chapter, we introduce how to efficiently calibrate the extrinsic parameters of 

multiple static cameras. In Section 3.1, the camera model of our surveillance system is 

first described. Next, in Section 3.2, we will deduce the 3D-to-2D coordinate 

transformation in terms of the tilt angle of a camera. In [46], a similar scene model 

based on pan angle and tilt angle has also been established. In this paper, however, we 

will deduce a more complete formula that takes into account not only the translation 

effect but also the rotation effect when a camera is under a tilt movement. After 

having established the 3D-to-2D transformation, the tilt angle and altitude of a camera 

can thus be estimated based on the observation of some simple objects lying on a 

horizontal plane. Then, we will introduce how to utilize the estimation results to 

achieve the calibration of multiple cameras in Section 3.3. In addition, the sensitivity 

analysis with respect to parameter fluctuations and measurement errors will be 
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discussed in Section 3.4. In Section 3.5, some experimental results over real data are 

demonstrated to illustrate the feasibility of the proposed static calibration method.  

3.1 Introduction of Our Camera Model System 
In this section, we give a sketch of our system overview, camera setup model and the 

basic camera projection model. Although the camera model is built based on our 

surveillance environment, this model is general enough to fit for a large class of 

surveillance scenes, which are equipped with multiple cameras. 

3.1.1 System Overview 

In the setup of our indoor surveillance system, four PTZ cameras are mounted on the 

four corners of the ceiling in our lab, about 3 meters above the ground plane. The lab 

is full of desks, chairs, PC computers, and monitors. All the tabletops are roughly 

parallel to the ground plane. These cameras are allowed to pan or tilt while they are 

monitoring the activities in the room. Figure 3.14(a) shows four images captured by 

these four cameras. We will first estimate the tilt angle and altitude of each camera 

based on the captured images of some prominent features, such as corners or line 

segments, on a horizontal plane. Once the tilt angles and altitudes of these four 

cameras are individually estimated, we will perform the calibration of multiple 

cameras. Figure 3.1 shows the flowchart of the proposed static calibration procedure.  
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Fig. 3.1  Flowchart of the proposed static calibration procedure. 

3.1.2 Camera Setup Model 

Figure 3.2 illustrates the modeling of our camera setup. Here, we assume the observed 

objects are located on a horizontal plane ∏, while the camera lies above ∏ with a 

height h. The camera may pan or tilt with respect to the rotation center OR. Moreover, 

we assume the projection center of the camera, denoted as OC, is away from OR with 

distance r. To simplify the following deductions, we define the origin of the rectified 

world coordinates to be the projection center OC of a camera with zero tilt angle. The 

Z-axis of the world coordinates is along the optical axis of the camera, while the X- 

and Y-axis of the world coordinates are parallel to the x- and y-axis of the projected 

image plane, respectively. When the camera tilts, the projection center moves to OC’ 

and the projected image plane is changed to a new 2-D plane. In this case, the y-axis 

of the image plane is no longer parallel to the Y-axis of the world coordinates, while 

the x-axis is still parallel to the X-axis. 

Assume P=[X, Y, Z, 1]T denotes the homogeneous coordinates of a 3-D point P 

in the world coordinates. For the case of a camera with zero tilt angle, we denote the 

perspective projection of P as p= [x, y, 1]T. Under perspective projection, the 
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relationship between P and p can be expressed as Equation (2.5), 1  [  ] .p K R t P
z

=  

With respect to the rectified world coordinate system, the extrinsic term [R t] becomes 

[I 0]. To further simplify the mathematical deduction, we ignore the skew angle and 

assume the image coordinates have been translated by a translation vector (-u0, -v0). 

Hence, (2.5) can be simplified as  

0 0
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1 0 0 1

x X
y Y
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,      (3.1) 

or in a reverse way as 
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      (3.2) 

 

 
Fig. 3.2  Model of camera setup. 
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3.2 Pose Estimation of a Single Camera 
In this section, we first deduce the projection equation to relate the world coordinates 

of a 3-D point p to its image coordinates on a tilted camera. Then, under the constraint 

that all observed points are located on a horizontal plane, the mapping between the 

3-D space and the 2-D image plane is further developed. Finally, we deduce the 

formulae for the pose estimation of a camera. 

3.2.1 Coordinate Mapping on a Tilted Camera 

When the PTZ camera tilts with an angle φ, the projection center OC translates to a 

new place OC’ with OC’ =[0 -rsinφ -(r-rcosφ)]T. Assume we define a tilted world 

coordinate system (X’, Y’, Z’) with respect to the tilted camera, with the origin being 

the new project center OC’, the Z’-axis being the optical axis of the tilted camera, and 

the X’- and Y’-axis being parallel to the x’- and y’-axis of the new projected image 

plane, respectively. Then, it can be easily deduced that in the tilted world coordinate 

system the coordinates of the 3-D point P become 

 

1 0 0
0 cos sin sin
0 sin cos (1 cos )

       cos sin sin
sin cos (cos 1)

X X
Y Y r
Z Z r

X
Y Z r

Y Z r

φ φ φ
φ φ φ

φ φ φ
φ φ φ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥− + + −⎣ ⎦

.

    (3.3) 

 

After applying the perspective projection formula, we know that the homogeneous 

coordinates of the projected image point now move to  
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3.2.2 Constrained Coordinate Mapping 

In the rectified world coordinates, all points on a horizontal plane have the same Y 

coordinate. That is, Y = -h for a constant h. The homogeneous form of this plane ∏ 

can be defined as T[0 1 0 ]hπ = . Assume the camera is tilted with an angle φ. 

Then, in the tilted world coordinate system, the homogeneous form of this plane ∏ 

becomes T[0 cos sin ( sin )]h rπ φ φ φ′ = − − , as shown in Fig. 3.3. 

 
Fig. 3.3  Geometry of a horizontal plane ∏ with respect to a tilted camera. 

 

Assume a 3-D point p is located on the horizontal plane ∏. Then, in the rectified 

world coordinate system, we have 0Pπ ⋅ = , where P = [X, Y, Z, 1]T. Similarly, in the 

tilted world coordinate system, we have 0Pπ ′ ′⋅ = , where P’ = [X’, Y’, Z’, 1]T. With 

(3.2), Z’ can be found to be  
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cos sin
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′ −
      (3.5) 

Moreover, the tilted world coordinates of p become 
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With (3.3) and (3.6), we may transfer [X’, Y’, Z’]T back to [X, Y, Z]T to obtain  
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If the principal point (u0, v0) is taken into account, then (3.7) can be reformulated 

as 

0
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   (3.8) 

 

This formula indicates the back projection formula from the image coordinates of a 

tilted camera to the rectified world coordinates, under the constraint that all the 

observed points are lying on a horizontal plane with Y = -h. 
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3.2.3 Pose Estimation Based on the Back-Projections 

As aforementioned, in real life, based on the image contents of a captured image, 

people can usually have a rough estimate about the relative position of the camera 

with respect to the captured objects. In this section, we demonstrate that, with a few 

corners or a few line segments lying on a horizontal plane, we can easily estimate the 

tilt angle of the camera based on the back projection of the captured image. 

3.2.3.1  Back-projected Angle w.r.t. Guessed Tilt Angle 

Suppose we use a tilted camera to capture the image of a corner, which is located on a 

horizontal plane. Based on the captured image and a guessed tilt angle, we may use 

(3.8) to back-project the captured image onto a horizontal plane on Y = -h. Assume 

three 3-D points, PA, PB, and PC, on a horizontal plane form a rectangular corner at PA. 

The original image is captured by a camera with φ = 16 degrees, as shown in Fig. 

3.4(a). In Fig. 3.4(b), we plot the back-projected images for various choices of tilt 

angles. The guessed tilt angles range from 0 to 30 degrees, with a 2-degree step. The 

back-projection for the choice of 16o is plotted in red, specifically. It can be seen that 

the back-projected corner becomes a rectangular corner only if the guessed tilt angle 

is correct. Besides, it is worth mentioning that a different choice of h only causes a 

scaling effect of the back-projected shape.  

To formulate this example, we express the angle ψ at PA as  

,
cos .

A B A C

A B A C

P P P P

P P P P
ψ =

×
       (3.9) 

After capturing the image of these three points, we can use (3.8) to build the relation 

between the back-projected angle and the guessed tilt angle.  



 35

1cos {{( )
( cos sin ) ( cos sin )

               ( )
( cos sin ) ( cos sin )

( sin cos ) ( sin cos )            ( )
cos sin cos sin

               (

B A

B A

C A

C A

B A

B A

x x
y y

x x
y y

y y
y y

β βψ
α φ β φ α φ β φ

β β
α φ β φ α φ β φ

φ β φ φ β φ
φ β φ φ β φ

− ′ ′
= −

′ ′− −
′ ′

× −
′ ′− −

′ ′+ +
+ −

′ ′− −

×

2

12 2

( sin cos ) ( sin cos ))}
cos sin cos sin

          {( )
( cos sin ) ( cos sin )
( sin cos ) ( sin cos )               ( ) }

cos sin cos sin

     

C A

C A

B A

B A

B A

B A

y y
y y

x x
y y
y y
y y

φ β φ φ β φ
φ β φ φ β φ
β β

α φ β φ α φ β φ
φ β φ φ β φ
φ β φ φ β φ

−

′ ′+ +
−

′ ′− −
′ ′

× −
′ ′− −
′ ′+ +

+ −
′ ′− −

2

12 2

     {( )
( cos sin ) ( cos sin )
( sin cos ) ( sin cos )               ( ) } }

cos sin cos sin

C A

C A

C A

C A

x x
y y
y y
y y

β β
α φ β φ α φ β φ

φ β φ φ β φ
φ β φ φ β φ

−

′ ′
× −

′ ′− −
′ ′+ +

+ −
′ ′− −

  (3.10) 

Note that in (3.10) we have ignored the offset terms, u0 and v0, to reduce the 

complexity of the formulation. 

In Fig. 3.5, we show the back-projected angle ψ with respect to the guessed tilt 

angle, assuming α and β are known in advance. In this simulation, the red and blue 

curves are generated by placing the rectangular corner on two different places of the 

horizontal plane. Again, the back-projected angle is equal to 90 degrees only if we 

choose the tilt angle to be 16 degrees. This simulation demonstrates that if we know in 

advance the angle of the captured corner, we can easily deduce camera’s tilt angle. 

Moreover, the red curve and the blue curve intersect at (φ, ψ) = (16 , 90). This means 

that if we don’t know in advance the actual angle of the corner, we can simply place 

that corner on more than two different places of the horizontal plane. Then, based on 

the intersection of the deduced ψ-v.s.-φ curves, we may not only estimate the tilt angle 

of the camera but also the actual angle of the corner.  
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(a) 

 

(b) 

Fig. 3.4  (a) Rectangular corner captured by a tilted camera (b) Illustration of 

back-projection onto a horizontal plane on for different choices of tilt angles. 
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Fig. 3.5  Back-projected angle with respect to guessed tilt angles. 

3.2.3.2  Back-projected Length w.r.t. Guessed Tilt Angle 

Assume two 3-D points, PA and PB, on a horizontal plane form a line segment with 

length L. Similarly, we can build a similar relationship between the back-projected 

length and the guessed tilt angle by setting the constraint: .A BP P L=  Based on this 

constraint and (3.8), we can deduce that 
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Similarly, if α, β, r, and h are known in advance, we can deduce the tilt angle directly 

based on the projected value of L.  

Note that in (3.11), the right-side terms contain a common factor (rsinφ-h)2. This 

means the values of r and h only affect the scaling of L. Hence, we can rewrite the 

formula of the L-v.s.-φ curve as  
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  (3.12) 

 

Then, even if the values of r and h are unknown, we may simply place more than two 

line segments of the same length on different places of a horizontal plane and seek to 

find the intersection of these corresponding L-v.s.-φ curves, as shown in Fig. 3.6.  
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Fig. 3.6  Back-projected length with respect to guessed tilt angle. Each curve is 

generated by placing a line segment on some place of a horizontal plane.  

 

As mentioned above, the tilt angle can be easily estimated from the ψ-v.s.-φ 

curves or L-v.s.-φ curves. However, in practice, due to errors in the estimation of 

camera parameters and errors in the measurement of (x’, y’) coordinates, the deduced 

ψ-v.s.-φ curves or L-v.s.-φ curves do not intersect at a single point. Hence, we may 

also seek to perform parameter estimation based on an optimization process. Here, we 

take (3.11) as an example. We assume several line segments with known lengths (not 

necessary of the same length) are placed on different positions of a horizontal plane 

and we use a tilted camera to capture the image. Assume the length of the ith segment 

is Li, then we aim to find a set of parameters {α, β, u0, v0, φ, r, h} that minimize  
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In this way, camera parameters can also be easily estimated. In the optimization 

process, we adopt the Levenberg-Marquardt algorithm. Under our scene model, the 

tilt angle φ and altitude h can be roughly estimated simply based on visual 

observations. In our experiments, the error range for the guessed tilt angle φ is within 

±20 degrees and the error range for the guessed altitude h is within ±1.5 meters. With 

these initial guesses, the optimization process is very stable and the estimation results 

are satisfactorily accurate. 

3.3 Calibration of Multiple Static Cameras 

3.3.1 Static Calibration Method of Multiple Cameras 

In our camera model, each camera has its own world coordinate system. If a vector in 

the 3-D space, like a line segment on a tabletop, is observed by several cameras at the 

same time, we can achieve the calibration of these cameras by mapping the individual 

back-projected world coordinates of this vector to a common reference world 

coordinates. In Fig. 3.7, we take two calibrated cameras as an example. Fig. 3.7(a) 

shows the scene model of these two cameras. Fig. 3.7(b) shows the vector locations in 

the world coordinates of these two cameras, respectively. Based on the estimated φ 

and h, and the image projections of the vector points, we can get the world 

coordinates of points Aref, Bref, and A’, B’ from (3.8). The difference of the rotation 

angle ω between the two world coordinate systems can then be easily computed by 

,
cos .ref ref

ref ref

A B A B

A B A B
ω

′ ′
=

′ ′ ×
      (3.14) 

 

After applying the rotation to point A’, the position translation t between these two 

cameras can be expressed as 
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= reft A A      (3.15) 

Hence, the 3-D relationship between these two cameras can be easily deduced. 

 

(a) 

 

(b) 

Fig. 3.7  (a) Top view of two cameras and a vector in the space (b) The world 

coordinates of the vector with respect to these two cameras. 
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3.3.2 Discussion of Pan Angle 

Notice that, in the above deductions, we don’t care about the pan angles of cameras. 

This is because, in the back-projection process, to guess a pan angle only implies to 

rotate the X and Z coordinates in our camera model. It does not change the space 

relationship between the camera and the back-projected objects. In Fig. 3.8 we show 

such an example. In Fig. 3.8(a), we show the image captured by a camera with three 

corner points being marked in blue. Fig. 3.8(b) shows the top view (i.e. X-Z plane) of 

the back-projected corner points with respect to four guessed pan angles, 0o, 30o, 60o, 

and 90o. The arrows indicate the optical axes of the camera with respect to these four 

pan angles. It can be seen that the space relationship between the optical axis and the 

back-projected corner points is almost the same when the camera pans. The little 

variation comes from the fact that the panning center is not the same as the projection 

center. However, since the rotation radius r is so small if compared with the distance 

between the camera and the object, this small variation can actually be ignored.  
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(a) 

 
(b) 

Fig. 3.8  (a) Three points marked in the image captured by a PTZ camera (b) Top 

view of the back-projected corners and the optical axes with respect to different 

guessed pan angles. 
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3.4 Sensitivity Analysis 
The tilt angle of a camera is the key factor in our multi-camera calibration method. It 

affects the back-projections of image coordinates, the information utilized to calibrate 

cameras. In this section, we try to analyze how sensitive the estimation of tilt angle is 

with respect to parameter fluctuations and measurement errors. Among these 

parameters, the distance r between the camera center and the rotation center has no 

impact over (3.10) and (3.12). Even in (3.11), r tends to have negligible impact since 

the term rsinφ is usually much smaller than h. Hence, the parameter r can be ignored 

or be estimated via direct measurement. This means (3.13) can be reformulated as 
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′ ′= −∑
    (3.16) 

Besides, several parameters tangle together in a fairly complicated way in the 

formulae relating the back-projected angle and length with respect to the guessed tilt 

angle. Hence, we figure out the variations of the tilt angle caused by several 

parameters via computer simulations in addition. In this section, the values of {u0, v0, 

α, β} are estimated to be {348, 257, 770, 750} based on Zhang’s calibration method 

[4].  

3.4.1 Mathematical Analysis of Sensitivity 

We assume the total variation of φ or h is the summation of the individual variation 

with respect to different parameter fluctuation. It leads to equation (3.17) as follows, 
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where we use the second order of Taylor series to approximate the variations. Next, 

the terms of right hand side, such as 
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,etc., are deduced. 

For estimations of φ and h, the optimization of (3.16) conforms to the following 

equations: 
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By eliminating the multiple of 2 in (3.18), we define f1 and f2 as 
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Hence, the estimated φ and h satisfy f1(φ, h) = 0 and f2(φ, h) = 0. Now, we apply the 

implicit function theorem to (3.19) to find how φ and h deviate with respect the 
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measurement error in xi'. Equation (3.20) is the differential of (3.19) with respect to xi’ 

by using the chain rule. 
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The matrix form of (3.20) is 
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Then we can obtain 
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     (3.22) 

 

If we assume the total variations of φ and h are caused by individual variations with 

respect to parameter fluctuations in 0 0{ , , , }u vα β and measurement errors in { ', '}i ix y , 

then we have 
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Note that we ignore the second differential terms because the variations can be 

approximated by only the first differential terms appropriately.  

3.4.2 Sensitivity Analysis via Computer Simulations 

We verify the prediction of the variation deduced in the previous sub-section via 

computer simulations. Ideally, when we place several corners or line segments on a 

horizontal plane, the deduced ψ-v.s.-φ curves or L-v.s.-φ curves should intersect at a 

single point. However, due to errors in the estimation of camera parameters and errors 

in the measurement of (xi’,yi’), these curves usually do not intersect at a single point. 

Hence, in practice, we estimate φ and h based on (3.16) by using the optimization of 

Levenberg-Marquardt algorithm. 

In the following simulations, two line segments are placed as Fig. 9(a). The 

lengths are both equal to 0.283 meters. Moreover, the images are assumed to be 

captured by a camera with tilt angle φ = 60 degrees. We change the values of camera 

parameters and the measurement of (xi’,yi’) individually. Again, φ and h are estimated 

via LM optimization. The variations of these estimation results, together with the 

variations deduced by (3.23) and (3.24) are listed in Table 3.1. It can be seen that the 

deduced variations based on (3.23) and (3.24) well approximate the simulation results. 

Besides, we figure out L-v.s.-φ curves and apply the simulation results to ψ-v.s.-φ 

curves. For ψ-v.s.-φ curves, the corners are placed as Fig. 9(b). We can find that the 

variations of tilt angle in the ψ-v.s.-φ figures match those in the L-v.s.-φ figures. 
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(a) 

 

(b) 

Fig. 3.9  (a) Top view of line segments placed on a horizontal plane (b) Top view of 

corners placed on a horizontal plane. 
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3.4.2.1  Sensitivity w.r.t. u0 and v0 

As indicated in (3.12), the parameter u0 only affects the numerate part of the 

back-projected X coordinate. Since the calculations of ψ and L depend on the distance 

between back-projected points, but not the absolute positions, this parameter has little 

impact over the deduced ψ-v.s.-φ curves and L-v.s.-φ curves. Even if the value of u0 is 

changed by an amount of 100, the deduced tilt angle only changes about 0.1 degrees. 

On the other hand, the parameter v0 has a larger, but still acceptable impact over the 

estimation of tilt angle. In Fig. 3.10, we plot the deduced ψ-v.s.-φ curves and L-v.s.-φ 

curves for the example in Fig. 3.9, with respect to different choices of v0. It can be 

seen in Fig. 3.10 that a change of ±20 pixels in v0 may cause only a 1-degree 

deviation in the estimated tilt angle. 

3.4.2.2  Sensitivity w.r.t. α and β 

Similarly, as the value α is changed by the amount of ±20, the estimated tilt angle is 

found to have a ±1.5-degree fluctuation. On the other hand, as the value β is changed 

by the amount of ±20, the estimated tilt angle is found to have a ±2-degree fluctuation, 

as shown in Fig. 3.11. 

3.4.2.3  Sensitivity w.r.t. ∆xi’ and ∆yi’ 

The values of xi’ and yi’ may also affect the construction of ψ -v.s.-φ curves and L 

-v.s.-φ curves. As shown in Fig. 3.12, a fluctuation of ±4 pixels in x1’ or y3’ (x’ 

coordinate of P1 or y’ coordinate of P3 shown in Fig. 3.9(a)) causes the estimated tilt 

angle to change by the amount of ±3- or ±4-degree, respectively. In practice, the 

fluctuations of xi’ and yi’ are likely to be much less than 4 pixels. Hence, the 

estimation error caused by the measurement error of xi’ and yi’ is expected to be 

smaller than 3 or 4 degrees. 
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3.4.2.4  Sensitivity w.r.t. different choices of tilt angle 

In the second simulation, we change the tilt angle φ from 15 to 75 degrees, with a 

15-degree step. Table 3.2 demonstrates that (3.23) and (3.24) conform to the 

variations of the simulation results for a wide rage of tilt angle φ. In practice, the 

fluctuations of camera parameters are likely to be less than 20 and the measurement 

errors of (xi’, yi’) are likely to be less than 4 pixels. Hence, the estimation errors of φ 

and h are expected to be acceptable in real cases. 

 

Table 3.1  Variations of Tilt Angle and Altitude with respect to Different 

Parameter Fluctuations and Measurement Errors. 
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(a) 

 

(b) 

Fig. 3.10  Variations of the (a) L-v.s.-φ curves and (b) ψ -v.s.-φ curves with respect to 

the variation of v0. 
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(a) 

 

(b) 

Fig. 3.11  Variations of the (a) L-v.s.-φ curves and (b) ψ -v.s.-φ curves with respect 
to the variation of β. 
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Fig. 3.12.  Sensitivity w.r.t. fluctuations of xi’ and yi’. 
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Table 3.2  Variations of Tilt Angle and Altitude with respect to Different Choices 

of Tilt Angle. 
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3.5 Experiments over Real Images 
In this section, some experimental results over real data are demonstrated. We show 

the pose estimation of a PTZ camera first. Then, the calibration of multiple PTZ 

cameras will be performed. Finally, we give some discussions and a comparison with 

the conventional calibration method based on homography. 

3.5.1 Calibration Results 

In this section, some static calibration results of multiple cameras on real data are 

demonstrated. In this simulation, the test images are captured by a camera mounted on 

the ceiling with an unknown tilt angle. The image resolution is 320 by 240 pixels. A 

few A4 papers are randomly placed on a horizontal table, as shown in Fig. 3.13. The 

corners of these A4 paper sheets can be easily identified either by hand or by a corner 

detection algorithm. In our experiment, we identify these corners manually and we 

have developed a software package to facilitate the identification of corners and line 

segments in images. In the 3-D space, all the corners are 90 degrees, while the length 

and width of an A4 paper are 297 mm and 210 mm, respectively. In Fig. 3.13(b) and 

(c), we show the deduced ψ-v.s.-φ curves and L-v.s.-φ curves based on the corners and 

the boundaries of these two A4 papers. The tilt angle is then estimated to be around 52 

degrees. Note that there are two intersection points in Fig. 13(c) whose vertical 

coordinate correspond to the length and width of an A4 paper, respectively. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.13  (a) Test image (b) Deduced ψ-v.s.-φ curves (c) Deduced L-v.s.-φ curves. 
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Table 3.3  Upper Table: Estimation of Tilt Angle and Altitude. 

           Lower Table: Spatial Relationship among Cameras. 

 

 

The upper part of Table 3.3 lists some experimental results for the calibration of 

multiple cameras. Here, the intrinsic parameters {α, β, u0, v0} of each camera are 

estimated in advance, based on Zhang’s calibration method [4]. The parameter r can 

be estimated via direct measurement. Hence, equation (3.13) includes only 2 unknown 

variables: φ and h. Each row of Table 3.3 lists the mean and standard deviation of the 

estimated parameters for a single camera. To calculate the mean and standard 

deviation, five observations are made with each observation including 8 selected line 

segments on the boundary of these A4 papers, as shown in Fig. 3.14(a). It can be seen 

that all the estimated parameters have an acceptably small standard deviation. 

In the lower part of Table 3.3, each row corresponds to the estimations of the 

position and orientation of each camera with respect to Camera 2. The relative 

position and orientation are computed based on the mean value of φ and h and one 

common vector in Fig. 3.14(a). The top view of the relative positions in the 3D space 
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is illustrated in Fig. 3.14(b). The eight chosen corners of the A4 papers in Fig. 3.14(a) 

are also plotted in Fig. 3.14(b) to offer a clearer geometric sense. 

To evaluate the calibration results, we randomly pick up a few test points in the 

image captured by Camera 2 and use the calibration result to find the corresponding 

points on the other three images. The results are shown in Fig. 3.15, with all 

corresponding points being represented in the same color. It can be seen that all the 

corresponding relationships are quite reasonable. This verifies the credibility of the 

proposed calibration method. 
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(a) 

 

(b) 

Fig. 3.14  (a) Test image captured by four cameras. (b) Top view of the relative 

positions between four cameras. 
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Fig. 3.15  Evaluation of calibration results. 

3.5.2 Discussion and Comparison with the Homography 

Technique 

In practice, a commonly used technique for camera pose estimation is to find the 

homography matrix between a reference plane in the 3-D space and the camera’s 

image plane. The rotation and translation matrices can then be extracted by applying 

the SVD method over the homography matrix. In the homography approach, we need 

to define a reference world coordinate system and need to pick up a few spatial points 

with known reference world coordinates in advance. In other words, not only the 

distances but also the relative spatial information among the calibration points needs 

to be known. In comparison, our approach does not need to know the world 

coordinates of these calibration objects. We only need to measure the lengths or 



 61

angles of the calibration objects. Hence, the preparation of calibration objects 

becomes much easier in our approach. 

Besides, we may use fewer spatial points for the calibration of camera pose. This 

is because there is an implicit constraint in our approach. In a typical setup of PTZ 

cameras, the horizontal axis of the camera’s image coordinate system is usually 

parallel to the ground plane. This parallelism is kept all the time even though the 

camera is under the panning, tilting, and zooming operations from time to time. 

Moreover, in our approach, we do not actually care about the exact pan angle of the 

camera. These two constraints correspond to the constraints over the rotation about 

the Z axis and the rotation about the Y axis in our rectified world coordinate system. 

Hence, our method may lead to stable pose estimations even when we only use a few 

calibration points. 

 

 

Fig. 3.16  Test images with a rectangular calibration pattern. 

 

To compare with the homography technique, we marked 20 points on the ground 

floor to form a rectangular pattern, as shown in Fig. 3.16. Five of these 20 points are 

chosen to be the calibration points, as marked by the circles in Fig. 3.17. The asterisk 

markers in Fig. 3.17(a) show the point correspondence based on the calibration result 
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of the homography technique using the OpenCV library. On the other hand, the 

asterisk markers in Fig. 3.17(b) show the point correspondence based on our approach 

using five segments with known lengths. Besides, we calibrated these two cameras 

twenty times by randomly choosing five of these 20 points as the calibration points. 

We then checked the point correspondence in the image captured by Camera 4 based 

on these 20 image points of Camera 2 and the calibration results. Table 3.4 shows the 

mean absolute distance and standard deviation of the point-wise correspondence. It 

can be easily seen that our approach offers a more reliable and stable calibration result 

even when we only use a few calibration points. When all twenty points are used, on 

the other hand, there would be no obvious difference between the performance of the 

homography technique and the performance of our approach. Nevertheless, for 

general surveillance environments, it will be difficult to place this kind of specific 

patterns for calibration. Hence, in general, simple calibration objects or a small 

amount of calibration points without known reference spatial coordinates will be 

preferred. 
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(a) 

 

(b) 

Fig. 3.17  Evaluation of calibration results by using five points. (a) Point 

correspondence based on the homography technique. (b) Point correspondence based 

on the proposed method. 

 

 

Table 3.4  Mean Absolute Distance and Standard Deviation of 

the Point-wise Correspondence. 
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Another advantage of our method is the comprehensible sense of camera pose. 

The tilt angle, altitude, and orientation of the camera offer more direct physical sense 

about the camera pose in the 3D space, especially when the PTZ cameras are under 

panning or tilting operations from time to time. In our approach, we derive some 

explicit formula to describe how the tilt angle and altitude of a PTZ camera affects the 

3D-to-2D projection. This makes the calculation of 2D-to-3D back-projection much 

easier without the need of indirect depth computation. Besides, based on the 

comprehensible space sense, the relationships among multiple cameras can be easily 

obtained without complicated computations. In comparison, if using the conventional 

homography technique, the relative position and orientation between each pair of 

cameras offer less comprehensible sense about the setting of multiple cameras. 

Although these relative coordinate systems may still be transformed into an integrated 

coordinate system, the work for the calibration of multiple cameras will become more 

and more elaborate when the number of cameras increases.
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CHAPTER 4 
 

 

 

Dynamic Calibration of Multiple 
Cameras 
______________________________________________ 
 

In this chapter, based on the results of our static calibration, a new algorithm for 

dynamic calibration of multiple cameras is proposed. After the setup of PTZ cameras, 

we perform static camera calibration first based on the calibration method proposed in 

Chapter 3. As cameras begin to pan or tilt, we keep extracting and tracking feature 

points based on the Kanade-Lucas-Tomasi (KLT) algorithm [45]. In Section 4.1, we 

explain how we utilize the displacement of feature points and the epipolar-plane 

constraint to infer the changes of pan angle and tilt angle. This algorithm does not 

require a complicated correspondence of feature points. Our algorithm also allows the 

presence of moving objects in the captured scenes while performing dynamic 

calibration. In Section 4.2, we describe how to filter out undesired feature points when 

moving objects are present. In Fig. 4.1, we show an overall picture of the proposed 

dynamic calibration algorithm. Besides, the sensitivity analysis with respect to 

measurement errors and the fluctuations of previous estimations will be addressed in 
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Section 4.3. Finally, in Section 4.4, the efficiency and feasibility of this approach has 

been demonstrated in some experiments over real scenery.  

 

Fig. 4.1  Flowchart of the proposed dynamic calibration algorithm. 

4.1 Dynamic Calibration of Multiple Cameras 
In this section, we explain how we perform dynamic calibration process based on 

temporal and 3-D spatial information. In Section 4.1.1, we first deduce the formulae 

related to the mapping between the 3-D space and the image plane on a tilted and 

panned camera. Next, we will introduce how to calibrate a dynamic camera based on 

the displacement of feature points in the temporal domain in Section 4.1.2. After that, 

in Section 4.1.3, we will apply the epipolar-plane constraint over each pair of cameras 

to obtain more robust calibration.  
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4.1.1 Coordinate Mapping on a Tilted and Panned 

Camera 

In Section 3.3.2, we indicated that the pan angles of cameras do not need to be 

considered when performing our static calibration. In this section, however, we 

further deal with the problem of dynamic calibration. In Section 3.2, we have deduced 

the back projection formula from the image coordinates of a tilted camera to the 

rectified world coordinates, under the constraint that all of the observed points are 

lying on a horizontal plane with Y = -h. Here, we slightly modify the equations in 

Section 3.2 to take into account both tilt angle and pan angle.  

When a camera has a tilt angle φ and a pan angle θ with respect to its rectified 

pose, the projection center moves to a new position OC’, with OC’ = [rcosφsinθ  

-rsinφ  r(cosφcosθ-1)]T. With respect to the tilted and panned camera, we define a 

new world coordinate system (X’, Y’, Z’), with the origin being the new project center 

OC’, the Z’-axis being along the optical axis of the camera, and the X’- and Y’-axis 

being parallel to the x- and y-axis of the new projected image plane, respectively. Via 

straightforward calculations, it can be deduced that in the new world coordinate 

system the coordinates of the 3-D point p become 

1 0 0 cos 0 sin cos sin
0 cos sin 0 1 0 sin
0 sin cos sin 0 cos (1 cos cos )

cos sin sin
        sin sin cos sin cos sin cos

cos sin sin

X X r
Y Y r
Z Z r
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X Y Z r

X Y

θ θ φ θ
φ φ φ
φ φ θ θ φ θ

θ θ θ
φ θ φ φ θ φ θ

φ θ φ

′ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− −
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−

.
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + −⎣ ⎦

  (4.1) 

After perspective projection, the homogeneous coordinates of the projected image 

point become 
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cos sin sin'
cos sin sin cos cos (cos cos 1)'
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 (4.2) 

Furthermore, via a straightforward deduction similar to that in Section 3.2.2, we 

may deduce (4.3) to express the back projection function B(p, θ, φ, h, Ω) from the 

image coordinates p = (x, y) on a tilted and panned camera to the rectified world 

coordinate system, under the constraint that the observed 3-D point is lying on a 

horizontal plane with Y = -h.   
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   (4.3) 

 

Here, Ω represents the set of intrinsic parameters of the camera. Note that in (4.3) we 

have ignored the offset terms, u0 and v0, to simplify the formulation. 

4.1.2 Dynamic Calibration of a Single Camera Based on 

Temporal Information 

Assume we have a set of PTZ cameras. At the beginning, we calibrate the 3-D pose of 

each camera via the static calibration method introduced in Chapter 3. After that, we 

allow each PTZ camera to pan and tilt freely.  

As a camera starts to pan or tilt, its image content changes. To recalibrate the new 

pose of the camera, we check the temporal displacement of a few feature points in the 
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image content. Here, we use the KLT method [45] to extract and track feature points 

in consecutive images. We also assume all extracted feature points correspond to 

some unknown static points in the 3-D space.  

Typically, we may assume the rotation radius r is far smaller than the distances 

between these 3-D points and the camera. We also assume the changes of pan angle 

and tilt angle are very small during the capturing of two successive images. With 

these two assumptions, the projection center of the camera can be thought to be fixed 

with respect to the 3-D points while the camera is panning or tilting. In other words, 

the projection lines, which connect the projection center to each of these observed 3-D 

points, are fixed in the 3-D space, as long as these 3-D points stay static during the 

capture of images. By using these projection lines as a reference, we may recalibrate 

the new pose of the camera. Moreover, as illustrated in Fig. 4.2, if three 3-D points, 

PA, PB and PC, are replaced by another three points, ˆ
AP , ˆ

BP  and ˆ
CP , on their 

projection lines, there is no influence on the projected points on the image plane. 

Hence, even if we do not actually know the real locations of these 3-D points, we may 

simply back project all feature points in the image onto a 3-D pseudo plane with a 

constant Z coordinate, as shown in Fig. 4.2.  

In our approach, based on a few feature points on a pair of successive images It-1 

and It, we first back project these feature points in It-1 onto a 3-D pseudo plane with a 

constant Z. Then, we try to find a new pose of the camera that can map the 

corresponding feature points in It onto the same 3-D pseudo points. That is, if we 

assume the camera has the pan angle θ t-1 and the tilt angle φ t-1 while capturing It-1, 

and has the pan angle θ t-1+∆θ t and the tilt angle φ t-1+∆φ t while capturing It, we try to 

find the optimal ∆θ t and ∆φ t that minimize the following formula: 

2

1 1 1 1
1

ˆ ˆˆ( , , ) ( , , ) .
K

k t t t t k t t
k

D B p B pθ θ φ φ θ φ− − − −
=

= + ∆ + ∆ −∑     (4.4) 
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In (4.4), B̂  represents the back projection function of an image feature point onto a 

pseudo 3-D plane Π’. Here, we especially use “hat” to denote that the back-projection 

is restricted to a vertical pseudo plane Π’. Besides, kp  denotes a feature point in It-1 

and ˆ kp denotes the same feature point in It. K is the total number of image feature 

points for calibration. Note that in (4.4), we ignore the altitude parameter h of these 

back-projected points. This is because the altitude h can be obtained from (4.3) once if 

the Z coordinate is fixed. We also ignore the intrinsic parameters Ω since they are not 

changed when the camera pans and tilts. 

 

Fig. 4.2.  Illustration of a pseudo plane Π’. 

4.1.3 Dynamic Calibration of Multiple Cameras Based on 

Epipolar-Plane Constraint 

In the previous section, we assume the projection center of a single camera is fixed 

during panning and tilting. The projection lines are then used as a reference to 

calibrate the new pose of that camera. To further increase the accuracy of calibration, 

we add on the 3-D spatial relationship among cameras.  
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In Fig. 4.3, we show the epipolar geometry for a pair of cameras [3, pp. 216-219]. 

For these two cameras, their projection centers, OC1 and OC2, together with a 3-D 

point PA, determine an epipolar plane ∏. This epipolar plane ∏ intersects the image 

planes of the cameras to form two epipolar lines l1 and l2. If pA
1 and pA

2 are the 

projected points of PA on the image planes, they must lie on l1 and l2, respectively. 

This epipolar constraint implies that OC1, OC2, pA
1, and pA

2 are coplanar and the 

epipolar plane ∏ can be expressed as  

 

1 1 1 1 1 1
1 2 2 1 1

2 2 2 2 2 2
1 2 1 2 2or

( , , , , ) ( , , ) 

 ( , , , , ) ( , , ).

C C A C C C A

C C A C C C A

O O p O O O B p

O O p O O O B p

π θ φ θ φ

π θ φ θ φ

≡ ×

≡ ×
    (4.5) 

 

In (4.5), we use the B(.) function defined in (4.4). Note that we ignore the altitude 

parameter h because the formation of epipolar plane is actually independent of h. That 

is, no matter what value h is, the epipolar plane is still the same. 

 
Fig. 4.3  Illustration of epipolar-plane constraint. 
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On the other hand, if some other points lie on the same pair of epipolar lines, like 

pB
1 and pC

1 on l1 and pD
2 and pE

2 on l2, the back-projected points of these points also 

have to lie on the same epipolar plane ∏. Traditionally, when we deal with the 

calibration of this camera pair, we try to figure out the pair-wise correspondence 

between {pA
1, pB

1, pC
1} and {pA

2, pD
2, pE

2}. If we may place some pre-defined 

calibration patterns or landmarks in the 3-D scene, the correspondence of feature 

points can be easily achieved. However, in real cases, especially when cameras are 

panning and tilting all the time, calibration patterns or landmarks may get occluded or 

move out of image scopes.  

If we do not have calibration patterns or landmarks with us, one possible way to 

achieve dynamic calibration is to automatically extract new feature points from the 

image contents and use them as pseudo landmarks. However, this kind of approach 

requires point-wise correspondence between each image pair and this point-wise 

correspondence has long been recognized as a cumbersome problem in computer 

vision, especially when a lot of feature points are involved. Moreover, for a 

wide-range video surveillance system, the image contents of different cameras may be 

very different. In this case, the correspondence of image feature points among 

different cameras is even more difficult. 

In this section, we adopt a different approach to avoid the troublesome point-wise 

correspondence. As illustrated in Fig. 4.3, we assume a pair of camera has initially 

been calibrated via some kind of calibration algorithm. We assume a few features, like 

pA
1, pB

1, pC1, pA
2, pD

2, and pE
2, are located on a pair of corresponding epipolar lines. 

Without performing point-wise correspondence, we do not actually know where these 

feature points are projected from. However, we are still confident of the fact that these 

3-D points must be “somewhere on the epipolar plane”. As long as these 3-D points 

remain static in the 3-D space, this epipolar plane is fixed. Hence, the epipolar planes 
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that have been identified at the previous moment can be used as a reference for the 

calibration of cameras at the current moment.  

In Fig. 4.3, we assume a pair of cameras has been calibrated at the time instant t-1 

and an epipolar pane ∏ has been identified. Assume at that time instant t-1, the pan 

and tilt angles of Camera-1 are θ 1
t-1 and φ 1

t-1, while the pan and tilt angles of 

Camera-2 are θ 2
t-1 and φ 2

t-1. Camera-1 captures the image I1
t-1, while Camera-2 

captures I2
t-1. On the other hand, at the time instant t, Camera-1 rotates to a new pan 

angle (θ 1
t-1+∆θ 1

t) and a new tilt angle (φ 1
t-1+∆φ 1

t), while Camera-2 rotates to (θ 2
t-1 

+∆θ 2
t) and (φ 2

t-1+∆φ 2
t). Here, we only discuss the calibration of Camera-1. The 

calibration of Camera-2 can be implemented in a similar way. 

For Camera-1, assume a prominent feature point 1
Ap  has been extracted from 

I1
t-1. This feature moves to 1ˆ Ap  in I1

t. Based on 1
Ap , θ 1

t-1, and φ 1
t-1, we may form an 

epipolar plane Π. At the time instant t, we then seek to find the angles (θ 1
t-1+∆θ 1

t) 

and (φ 1
t-1+∆φ 1

t) such that 1ˆ Ap  still locates on the same epipolar plane. That is, we 

seek to find ∆θ 1
t and ∆φ 1

t such that 

1 1 1 1 1 1 1 1
1 1 1 2 1 1ˆ( , , ) ( , , , , ) 0.A t t t t C C A t tB p O O pθ θ φ φ π θ φ− − − −+ ∆ + ∆ ⋅ =    (4.6) 

Similarly, for 1
Bp  and 1

Cp  that share the same epipolar line with 1
Ap , we have 

1 1 1 1 1 1 1 1
1 1 1 2 1 1

1 1 1 1 1 1 1 1
1 1 1 2 1 1

ˆ( , , ) ( , , , , ) 

ˆand ( , , ) ( , , , , ).

B t t t t C C A t t

C t t t t C C A t t

B p O O p

B p O O p

θ θ φ φ π θ φ

θ θ φ φ π θ φ

− − − −

− − − −

+ ∆ + ∆ ⋅

+ ∆ + ∆ ⋅
   (4.7) 

Note that in (4.6) and (4.7), the projection center OC2 may have a slight movement 

when Camera-2 rotates. That movement can be taken into account to achieve more 

accurate calibration. Here, we simply ignore that part to simplify the formulation.  

For Camera-1, assume we have extracted m epipolar lines. Moreover, on the jth 

epipolar line, where j = 1, 2, …, m, we have extracted nj feature points 
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1 1 1
,1 ,2 ,{ , ,..., }

jj j j np p p  on I1
t-1. These nj feature points move to 1 1 1

,1 ,2 ,ˆ ˆ ˆ{ , ,..., }
jj j j np p p  on 

I1
t. Besides, we assume 1

jp  denotes one of the feature points in 1 1 1
,1 ,2 ,{ , , ..., }

jj j j np p p . 

Based on the epipolar-plane constraint, we can estimate the optimal ∆θ1
t and ∆φ1

t that 

minimize  

21 1 1 1 1 1 1 1 1
, 1 1 C1 2 1 1

1 1

ˆ( , , ) ( , , , , ) .
jnm

t j i t t t t C j t t
j i

G B p O O pθ θ φ φ π θ φ− − − −
= =

= + ∆ + ∆ ⋅∑∑   (4.8) 

Furthermore, by integrating (4.4) and (4.8), the changes of pan angle and tilt angle of 

Camera-1 can be estimated by minimizing the following formula: 

21 1 1 1 1 1 1 1 1
, 1 1 , 1 1

1 1

21 1 1 1 1 1 1 1
, 1 1 1 2 1 1

1 1

ˆ ˆˆ( , , ) ( , , )  

ˆ       ( , , ) ( , , , , ) .

j

j

nm

t j i t t t t j i t t
j i

nm

j i t t t t C C j t t
j i

F B p B p

B p O O p

θ θ φ φ θ φ

λ θ θ φ φ π θ φ

− − − −
= =

− − − −
= =

= + ∆ + ∆ −

+ + ∆ + ∆ ⋅

∑∑

∑∑
  (4.9) 

Similarly, the changes of pan angle and tilt angle of Camera-2 can be estimated by 

minimizing 

22 2 2 2 2 2 2 2 2
, 1 1 , 1 1

1 1

22 2 2 2 2 2 2 2
, 1 1 1 2 1 1

1 1

ˆ ˆˆ( , , ) ( , , )  

ˆ       ( , , ) ( , , , , ) .

j

j

nm

t j i t t t t j i t t
j i

nm

j i t t t t C C j t t
j i

F B p B p

B p O O p

θ θ φ φ θ φ

λ θ θ φ φ π θ φ

− − − −
= =

− − − −
= =

= + ∆ + ∆ −

+ + ∆ + ∆ ⋅

∑∑

∑∑
 (4.10) 

Here, λ is a parameter to weight the contributions of temporal clues and 3-D spatial 

clues. In our experiments, we simply set λ = 1. In theory, for each camera, one feature 

point is sufficient for the first right term of (4.9) or (4.10) to solve ∆θ t and ∆φ t. That 

term assumes the [X, Y, Z] coordinates of a back-projected point is fixed when a 

camera is under panning or tilting. Since each 3-D point is with a fixed Z coordinate, 

a feature point may offer two constraints over the X and Y coordinates and these two 

constraints can be used to solve ∆θt and ∆φt. On the other hand, whenever a pair of 

epipolar lines can be determined, any feature point on the epipolar lines can be used 
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for the second right term of (4.9) or (4.10) to make the estimation more robust.  

To deduce ∆θ 1
t, ∆φ 1

t, ∆θ 2
t, and ∆φ 2

t, we adopt the Levenberg-Marquardt (LM) 

algorithm. In our experiments, the initial guesses of pan/tilt angle changes are set to 

be zero degrees. Note that for a pair of corresponding epipolar lines, Camera-1 and 

Camera-2 may have very different numbers of feature points. That is, the nj in (4.9) 

may be different from the nj in (4.10). This is because we do not actually seek to 

perform the correspondence of feature points. Instead, we seek for a consistent 

matching of epipolar lines between It-1 and It. This strategy greatly simplifies the 

correspondence problem. Moreover, Formulae (4.9) and (4.10) can also be merged 

together into a single formula during the optimization process.  

 
(a) 

 
(b) 

Fig. 4.4  Image pairs captured at two different time instants. Green lines indicate 

three pairs of corresponding epipolar lines. 
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In summary, for the proposed dynamic calibration algorithm, we perform the 

following steps. 

Step 1. After the setup of multiple cameras, we perform static camera calibration 

based on the method introduced in Chapter 3. After that, cameras are allowed 

to pan and tilt freely. 

Step 2. On each image, a few feature points are extracted and tracked based on the 

KLT algorithm [45]. Feature points moving out of the image are removed, 

while new feature points entering the image are added. 

Step 3. For each pair of cameras, based on the previous calibration results, we 

generate pairs of epipolar lines that pass through these extracted feature points. 

Actually, as long as a feature point is within a predefined distance from an 

epipolar line, we say that feature point is passed through by the epipolar line. 

Step 4. Based on the extracted feature points and the information of epipolar lines, we 

calibrate the new pan angle and tilt angle for each pair of cameras by 

optimizing (4.9) and (4.10). After that, go back to Step 2. 

The above procedure is repeated to acquire the new poses of all cameras. In Fig. 

4.4(a) and (b), we show images captured by two different cameras at two different 

time instants, overlapped by three pairs of epipolar lines. Note that even though the 

feature points on these epipolar lines come from different 3-D points, we may still be 

able to achieve reliable dynamic calibration based on the matching of epipolar lines. 
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4.2 Dynamic Calibration with Presence of Moving 

Objects 
So far, we have assumed all the feature points used for calibration correspond to some 

fixed 3-D points in the scene. However, in real applications, such as object tracking or 

3-D positioning, people or moving objects may enter or leave the scene while cameras 

are capturing images. To guarantee accurate calibration, we need to get rid of these 

feature points related to moving objects. 

In Fig. 4.5, we show two successive image frames where the camera tilts up by 

0.5-degrees. For each feature point, we calculate its spatial displacement (dx, dy). The 

distribution of (dx, dy) is plotted in Fig. 4.6, where most displacements cluster around 

(0, -4). These clustered displacements correspond to the movements of static feature 

points caused by camera rotation. On the other hand, there exist some outlier 

displacements which correspond to the movement of feature points lying on the 

moving person.  

 

 

 

 



 78

 

(a) 

 

(b) 

Fig. 4.5  (a) Image captured by a camera with 55.1o tilt angle. (b) Image captured by 

a camera with 54.6o tilt angle. Red crosses represent feature points extracted by the 

KLT algorithm. 
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Fig. 4.6  The distribution of spatial displacement for the extracted feature points in 

Fig. 4.5. 

 

However, the displacement of feature points depends not only on the pose of camera 

but also on the contents inside the 3-D scene. Theoretically, by taking the partial 

derivative of (4.2) with respect to the pan angle θ, we have (4.11), which indicates 

how the location of a feature point varies with respect to the change of pan angle. To 

simplify the formula, we assume φ = 0 to ignore the influence of tilt angle. The 

simplified formula is expressed in (4.12). Similarly, by ignoring the effect of pan 

angle, (4.13) indicates how the location of a feature point varies with respect to the 

change of tilt angle. Both (4.12) and (4.13) indicate the crucial role of the 3-D 

location (X, Y, Z) in the displacement of feature points. Hence, for different scenes, 

we expect different degrees of feature point displacements. 
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2
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(4.13) 

 

Furthermore, we illustrate the term Xcosθ-Zsinθ-rsinθ and Xsinθ+Zcosθ 

+r(cosθ-1) of (4.12) in Fig 4.7. Assume there is a 3-D point P with the world 

coordinates [X, Y, Z]T. In Fig 4.7, when the camera rotates with a pan angle θ, its 

projection center Oc moves to Oc’ and the world coordinates (X, Y, Z) changes to (X’, 

Y’, Z’). The term Xcosθ-Zsinθ-rsinθ represents the distance between P and Z’ axis, 

while the term Xsinθ+Zcosθ +r(cosθ-1) represents the distance between P and X’ axis. 

In other words, from the view of a camera, (4.12) depends on the relative positions 

between the observed objects and the projection center. Formula (4.12) can also be 
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expressed as  

 
2

2

2

' (1 )
' '

' '
'

x X r
Z Z

y X Y
Z

α α
θ

β
θ

∂ ⎡ ⎤⎡ ⎤
− − +⎢ ⎥⎢ ⎥∂ ⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥∂
⎢ ⎥⎢ ⎥

∂⎣ ⎦ ⎣ ⎦

.      (4.14) 

 

If r is far smaller than Z’, r/Z’ in (4.14) can be ignored. For our cameras, r is with a 

centimeter level (about 3.5 centimeters), while most of the observed scenes are away 

from the cameras with a meter level. The situation about tilt angle is similar to that 

about pan angle. Hence, we may simply dismiss r here. 

 

Fig. 4.7  Illustration of the coordinate system when camera is panning. If r is far 

smaller than Z’, we may simply dismiss r. 
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(a) 

 

(b) 

Fig. 4.8  (a) The displacements of feature points observed by two different 

cameras. Both cameras are under a 1-degree pan-angle change, while their tilt angles 

are fixed at 34.8o. (b) The displacements of feature points observed by the same 

camera but with different pan-angle changes. (Blue: 0.6-degree pan-angle change. 

Red: 1-degree pan-angle change.) 

 

Figure 4.8 shows two simulation results that demonstrate the effects of 3-D scene 

and camera pose over the value of displacement. In Figure 4.8(a), we plot the 
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displacement of feature points observed by cameras at two different locations. Both 

cameras are under a 1-degree change of pan angle, while their tilt angles are fixed at 

34.8o. Due to the different observed scenes, the displacements of feature points are 

different. On the other hand, Figure 4.8(b) shows the displacement observed by the 

same camera but with two different pan-angle changes. It can be observed that not 

only the displacement magnitudes are different; the distributions of displacement are 

also different. The distribution with a smaller pan angle change is more compact.  

Since the distribution of the displacement highly depends on the observed scene 

and the magnitude of angle change, we obtain the characteristics of displacement via a 

learning process for each camera. In the training stage, we intentionally pan and tilt 

each camera to capture a sequence of images, without the presence of moving objects. 

In our experiments, four cameras are used and Fig. 4.11(a) shows an example of 

images captured by these four cameras. In Fig. 4.9, we show the x-component 

displacement of feature points with respect to the change of pan angle for each of our 

four cameras. It can be observed that Camera-1 and Camera-3 have roughly the same 

statistical behaviors, while Camera-2 and Camera-4 have similar behaviors. In Fig. 

4.10(a), we further plot the relationship between the standard deviation of dx and the 

median of dx when cameras are under panning. Again, Camera-1 and Camera-3 have 

roughly the same statistical behaviors, while Camera-2 and Camera-4 have similar 

behaviors. Even though different cameras may have very different statistical 

behaviors, the relationship between the standard deviations of dx and the median of 

dx is roughly linear for each camera. Similarly, Figure 4.10(b) shows the statistical 

relationship between the standard deviation of dy and the median of dx. On the other 

hand, for the tilting case, we also observed similar statistical behaviors between the 

standard deviation of dx (or dy) and the median of dy. All these statistical 

relationships offer useful knowledge about the displacement of feature points when 
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the 3-D scene is stationary.  

When moving objects are present, these feature points caused by the moving 

objects usually have very different statistical behaviors. Hence, in the dynamic 

calibration process, we may calculate the median of displacements for all feature 

points. Based on the median, we estimate the standard deviation of displacement 

according to these already learned statistical relationships. When the displacement of 

a feature point is away from the median by three standard deviations, that feature 

point is treated as an undesired feature point and is discarded in the dynamic 

calibration process.  

 

(a)         (b) 

Fig. 4.9  The x-component displacement of feature points with respect to the changes 

of pan angle for four different cameras, without the presence of moving objects. The 

statistical relationships for Camera-1, Camera-2, Camera-3, and Camera-4 are plotted 

in red, blue, green, and magenta, respectively.  
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(a) 

 

(b) 

Fig. 4.10  (a) Standard deviation of dx with respect to the median of dx when 

cameras are under panning. (b) Standard deviation of dy with respect to the median of 

dx when cameras are under panning. 
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4.3 Sensitivity Analysis 
Based on (4.9) and (4.10), we can dynamically estimate the changes of pan angle and 

tilt angle while a camera is rotating. In this section, we will analyze how sensitive our 

algorithm is with respect to the calibration errors at the previous time instant and the 

measurement errors at the current time instant. Here, we assume there could be some 

errors in the calibration results at the previous time instant t-1. Moreover, there could 

be some errors in the extraction of feature points, including tracking errors and the 

departure of feature points from the epipolar lines. 

Without loss of generality, we only discuss the sensitivity of our algorithm in the 

dynamic calibration of Camera-1. In theory, for the estimation of 1
tθ∆  and 1

tφ∆ , the 

optimization of (4.9) conforms to 0
)( 1

1

1 =
∆∂
∂

≡
t

tF
f

θ
 and 0

)( 1

1

2 =
∆∂
∂

≡
t

tF
f

φ
. Note that 

in (4.9), the projection center OC2 actually has a slight movement when Camera-2 

rotates. This is because the rotation center is not exactly the same as the projection 

center. To simplify the formulation of (4.9), we intentionally ignored that part in 

Section 4.1. However, in the implementation of our algorithm, we actually had taken 

this fact into account to achieve more accurate calibration. Hence, in the following 

analyses, f1 and f2 depend not only on 1
1tθ −  and 1

1tφ − , but also on 2
1tθ −  and 2

1tφ − . On 

the other hand, f1 and f2 also depend on the measurement errors of ,1 ,2 ,ˆ ˆ ˆ{ , ,..., }
j

k k k
j j j np p p , 

where j = 1, 2, …, m and k = 1 or 2. Here, m denotes the number of epipolar-lines 

used for dynamic calibration. 

To find how 1
tθ∆  and 1

tφ∆  deviate with respect to the fluctuations of 1
k
tθ − , 

where k = 1 or 2, we may apply the implicit function theorem over f1 and f2 to get 
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   (4.15) 

Similarly, we can deduce the formulae for 
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If we assume the total variations of 1
tθ∆  and 1

tφ∆ are the combination of 

individual variation with respect to the fluctuations in 1
k
tθ −  and 1

k
tφ − and the 

measurement errors in 1 1 1
,1 ,2 ,ˆ ˆ ˆ{ , ,..., }

jj j j np p p , we have 
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and 
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To verify the above formulae, we perform the following simulations. Here, two 

cameras are assumed to have been accurately calibrated. Camera-1 is hung at a height 

2.06 meters. If Camera-1 is translated by -0.69, -0.13 and 6.25 meters along X-, Y- and 

Z-axis, respectively, and then rotated by -143.64 degrees about Y-axis, Camera-1 will 

coincide with Camera-2. At first, Camera-1 has the pan angle 1
0 0θ = and tilt angle 

1
0 20φ = , while Camera-2 has the pan angle 2

0 0θ = and tilt angle 2
0 40φ = . Moreover, 

based on the rectified world coordinate system of Camera-1, we assume there is an 

epipolar plane Π with the homogeneous coordinates π = [0.63, 0.77, 0.09, 0.01]. 

Based on this plane Π, we deduce the corresponding epipolar lines on the image 

planes of these two cameras. On each of these two epipolar lines, we randomly choose 
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three image points 1,1 1,2 1,3{ , , }k k kp p p as the feature points, with k = 1 or 2. After that, the 

tilt angle of Camera-1 is changed to 20.5 degrees so that the feature points on the 

image plane of Camera-1 will move to the new positions 1 1 1
1,1 1,2 1,3ˆ ˆ ˆ{ , , }p p p . Besides, the 

intrinsic parameters {α1, β1, α2, β2} are set to be {392, 388, 392.3, 385}.  

In the simulation, we change individually the initial pan and tilt angles 

{ 1
0θ , 1

0φ , 2
0θ , 2

0φ }of Camera-1 and Camera-2 to see how the estimated values of 1
1θ∆  

and 1
1φ∆ vary. Moreover, we also change the measurement 1

1,1p̂  whose coordinates 

are defined as ( 1
1,1x̂ , 1

1,1ŷ ) to see how 1
1θ∆  and 1

1φ∆  vary. Here, the LM algorithm is 

applied to (4.9) for the estimation of 1
1θ∆  and 1

1φ∆ . The variations of these 

estimation results, together with the variations deduced by (4.16) and (4.17) are listed 

in Table 4.1. Besides, we also show in Table 4.2 how 1
1θ∆  and 1

1φ∆  vary with 

respect to the distance fluctuation d in epipolar lines. In our simulation, we change the 

measurement 1
1,1p̂ to be away from its epipolar line. The deduced variations can be 

expressed as  
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ˆ ˆ( ) ( )( ) ( )( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

t t
t

x y
d d

x d y d
θ θδ θ δ δ

∂ ∂∂ ∆ ∂ ∆
∆ ≈ +

∂ ∂ ∂ ∂
   (4.18) 

and 

1 11 1
1,1 1,11

1 1
1,1 1,1

ˆ ˆ( ) ( )( ) ( )( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

t t
t

x y
d d

x d y d
φ φδ φ δ δ

∂ ∂∂ ∆ ∂ ∆
∆ ≈ +

∂ ∂ ∂ ∂
.   (4.19) 

It can be seen that the all deduced variations in Table 4.1 and 4.2 well approximate the 

simulation results. 
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Table 4.1 Variations of Estimation Results with respect to Previous Estimation 

Errors and Measurement Errors. 

  

Table 4.2  Variations of Estimation Results with respect to Distance 

Fluctuations in Epipolar Lines. 
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Additionally, when the number of epipolar line pair doubles, the errors of 

estimated 1
1θ∆  and 1

1φ∆ caused by the fluctuations of the feature points are roughly 

halved. On the other hand, the errors of estimated 1
1θ∆  and 1

1φ∆ caused by the 

fluctuations of { 1
0θ , 1

0φ , 2
0θ , 2

0φ } have no apparent changes. Besides, if we change the 

value of 1
1φ∆ up to 5 degrees, the variations of estimated 1

1θ∆  and 1
1φ∆ caused by 

the fluctuations of { 1
0θ , 1

0φ , 2
0θ , 2

0φ } and 1 1 1
1,1 1,2 1,3ˆ ˆ ˆ{ , , }p p p  still confirm to that in Table 

4.1 and 4.2. Finally, we also change the tilt angle 1
0φ  from 20 to 80 degrees with a 

20-degree step, and repeat the simulation. The variations of the simulation results also 

confirm to that in Table 4.1 and 4.2. In practice, the initial static calibration is usually 

accurate enough so that the fluctuations of { 1
0θ , 1

0φ , 2
0θ , 2

0φ } are usually less than 0.5 

degrees. Moreover, the measurement errors of 1 1 1
1,1 1,2 1,3ˆ ˆ ˆ{ , , }p p p  are likely to be less 

than 2 pixels. Hence, the estimation errors of 1
1θ∆  and 1

1φ∆  are expected to be 

acceptable in real cases. 
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4.4 Experiments over Real Scenes 
To verify the effectiveness of our dynamic calibration algorithm, we performed the 

following experiments over real scenes. In the first experiment, test images were 

captured by four cameras mounted on the ceiling. These four cameras kept panning 

and tilting while capturing images. In total, each camera captured 1000 test images, 

with the resolution of 320 by 240 pixels. Besides, in order to evaluate the calibration 

results, we placed test landmarks in the scene with a 100-frame interval. That is, we 

capture 100 image frames; stop and place some landmarks in the scene; capture an 

image with the presence of landmarks; stop and remove these landmarks; and then 

resume image capturing for another 100 frames. This procedure was repeated till we 

captured all 1000 images for every camera. Figure 4.11(a) shows an example of 

captured images by these four cameras. In comparison, Fig. 4.11(b) shows the same 

images but with the presence of landmarks.   

At the beginning of the experiment, the static calibration introduced in Chapter 3 

was applied to calibrate the initial setup of these 4 cameras. The static calibration 

results are listed in Table 4.3. The left part of Table 4.3 lists for each camera the 

estimated tilt angle and its altitude above the brown table in the scene. The right part 

of Table 4.3 lists for each camera the estimated position and orientation with respect 

to Camera-2. To evaluate the static calibration result, we use the landmarks in the 

image captured by Camera-2 to infer the corresponding points on the other three 

images. The results are shown in Fig. 4.12. It can be seen that the correspondences are 

reasonably accurate. In addition, we also calculated the 3-D coordinates of these 

landmarks and used them as a ground truth for the evaluation of our dynamic 

calibration algorithm. 
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(a) 

 
(b) 

Fig. 4.11  (a) Test images captured by four cameras. (b) Test images with the 

presence of landmarks. The images captured by Camera-1, Camera-2, Camera-3, and 

Camera-4 are arranged in the left-to-right, top-to-bottom order. 
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Table 4.3  Results of the Static Calibration. 

 

 
Fig. 4.12  Evaluation of initial calibration. 

 

As cameras began to pan and tilt, we extracted 50 prominent feature points from 

each of these four initial images and tracked these feature points by the KLT method. 

Based on (4.9) and (4.10), we performed dynamic calibration for every image pair. In 

our experiment, we calibrated six camera pairs {Camera-k, Camera-k’}, with {k, k’} 

∈ {{2, 1}; {2, 3}; {2, 4}; {4, 1}; {4, 3}; {1, 3}} and averaged the calibration results 

for each camera.  



 94

To evaluate the results of dynamic calibration, we performed static calibration at 

the period of every 100 frames, based on these images with the presence of landmarks. 

The result was verified by projecting the aforementioned 3-D landmarks onto the 

image plane of each camera. Figure 4.13 shows the differences of the estimated pan 

angles and tilt angles between the dynamic calibration results and the static calibration 

results. Note that the static calibration results are performed based on the 3-D 

landmarks that have been well calibrated at the beginning of the experiment. In Fig. 

4.13, it shows that the differences gradually increase when the frame number 

increases. However, the deviation at the 1000th frame is still acceptable and is within 

the range of ±3 degrees. Moreover, based on the results of dynamic calibration, we 

may also directly pick up a few landmark points in the image captured by Camera-2 

and project them onto the other three images, as shown in Fig. 4.14. 

Furthermore, if we fixed one of the four cameras while let the other three cameras 

pan and tilt freely, it turns out the results of dynamic calibration become even more 

reliable, as shown in Fig. 4.15. Now the differences of pan angles and tilt angles are 

within the range of ±1.5 degrees. Besides, the differences do not gradually increase 

this time. 
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(a) 

 
(b) 

Fig. 4.13  (a) Differences of the pan angles between the dynamic calibration results 

and the static calibration results. (b) Differences of the tilt angles between the 

dynamic calibration results and the static calibration results. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.14  Evaluations of dynamical calibration at (a) the 300th frame, (b) the 600th 

frame, and (c) the 1000th frame. 
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(a) 

 
(b) 

Fig. 4.15  (a) Differences of the pan angles and (b) differences of the tilt angles 

between the dynamic calibration results and the static calibration results, with one of 

the cameras being fixed all of the time. 
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We also test the situation when a moving object is present during the dynamic 

calibration process. Limited by our camera control system, we cannot simultaneously 

control four cameras in real time. Hence, we only allow two cameras to pan and tilt in 

this experiment. Again, we captured 1000 frames for each camera and Fig. 4.16 shows 

a sample of the captured sequence. In Fig. 4.17, we show the corresponding 

relationship of the 1000th frame based on our dynamic calibration result. This 

reasonable correspondence demonstrates the effectiveness and feasibility of our 

dynamic calibration algorithm 

 

Fig. 4.16  One sample of the test sequence with the presence of a moving person. 

 

Fig. 4.17  Evaluated corresponding relationship of the 1000th frame in the test 

sequence with a moving person. 
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CHAPTER 5 
 

 

 

Conclusions 
______________________________________________ 
 

In this dissertation, we present two new and efficient pose calibration techniques: 1) 

the static calibration for multiple cameras based on the back-projections of simple 

objects lying on the same plane, and 2) the dynamic calibration for multiple cameras 

with no complicated point correspondence technique.  

In the problem of static calibration for multiple cameras, we infer the relative 

positioning and orientation among multiple cameras. We first deduced the 3D-to-2D 

coordinate transformation in terms of the tilt angle of a camera. After having 

established the 3D-to-2D transformation, the tilt angle and altitude of each camera are 

estimated based on the observation of some simple objects lying on a horizontal plane. 

With the estimated tilt angles and altitudes, the relative orientations among multiple 

cameras can be easily obtained by comparing the back-projected world coordinates of 

some common vectors in the 3-D space. If compared with these conventional 

calibration approaches which extract the homography matrix and the rotation matrix, 

our approach offers apprehensible geometric sense and can simplify the calibration 
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process. No coordinated calibration pattern is needed and the computational load is 

light. In this dissertation, the sensitivity analysis with respect to parameter 

fluctuations and measurement errors is also discussed. Both mathematical analysis 

and computer simulation results are shown to verify our analysis. Experiment results 

over real images have demonstrated the efficiency and feasibility of this approach.  

In the problem of dynamic calibration for multiple cameras, we added the pan 

angle factor on the mapping between a horizontal plane in the 3-D space and the 2-D 

image plane on a panned and tilted camera. Based on the mapping, we utilize the 

displacement of feature points and the epipolar-plane constraint among multiple 

cameras to infer the changes of pan and tilt angles for each camera. This algorithm 

does not require a complicated correspondence of feature points. It also allows the 

presence of moving objects in the captured scenes while performing dynamic 

calibration. This kind of dynamic calibration process can be very useful for 

applications related to active video surveillance. The sensitivity analysis of our 

dynamic calibration algorithm with respect to measurement errors and fluctuations in 

previous estimations is also discussed mathematically. From the simulation results, 

the estimation errors of pan and tilt angle changes are proved to be acceptable in real 

cases. The efficiency and feasibility of this approach has been demonstrated in some 

experiments over real scenery.  

In this dissertation, we adopt a system model that is general enough to fit for a 

large class of surveillance systems with multiple cameras. Both our static and 

dynamic calibration methods do not require particular system setup or specific 

calibration patterns. In some sense, our static calibration can be thought to have 

decomposed the computation of homography matrix into two simple calibration 

processes so that the computational load becomes lighter for the calibration of 

multiple cameras. In addition, the major advantage of our dynamic calibration is that 
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no complicated correspondence of feature points is needed. Hence, our calibration 

methods can be well applied to a wide-range surveillance system with multiple 

cameras. However, in this thesis, we do not combine our calibration algorithm into the 

related applications of surveillance systems with multiple cameras. The calibration 

results would offer useful three-dimensional information for surveillance applications, 

such as object tracking or 3-D positioning. Besides, the zooming effect is not 

discussed in this dissertation. It should be worthwhile to study these two topics in the 

future. 
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