
Computer Standards & Interfaces 31 (2009) 437-453

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r.com/ locate /cs i
A personal Web page tailoring toolkit for mobile devices

Yung-Wei Kao a,⁎, Tzu-Han Kao a, Chi-Yang Tsai a, Shyan-Ming Yuan a,b

a Department of Computer Science and Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
b Department of Computer Science, Asia University, Lioufeng Rd., Wufeng, Taichung County, Taiwan
⁎ Corresponding author.
E-mail addresses: ywkao@cs.nctu.edu.tw (Y.-W. Kao)

(T.-H. Kao), gis93532@cis.nctu.edu.tw (C.-Y. Tsai), smyuan

0920-5489/$ – see front matter © 2008 Elsevier B.V. Al
doi:10.1016/j.csi.2008.05.016
A B S T R A C T
A R T I C L E I N F O
Article history:
 It is common to browse we

Received 15 August 2007
Received in revised form 2 March 2008
Accepted 4 May 2008
Available online 18 May 2008

Keywords:
Mobile device
Web page
Personalization
b pages via mobile devices. However, most of the web pages were designed for
desktop computers equipped with big screens. When browsing on mobile devices, a user has to scroll up and
down to find the information they want because of the limited screen size. Some commercial products
reformat web pages. However, the result pages still contain irrelevant information. We propose a system to
personalize users’ mobile web pages. A user can determine which blocks in a web page should be retained.
The sequence of these blocks can also be altered according to individual preferences.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Preface

Nowadays, we can build a mobile Web application easily. Take the
ASP.NET mobile controls [1] (formerly known as MMIT, short for the
Microsoft Mobile Internet Toolkit) for example, it reduces the work
required for developers to develop applications that target different
types of mobile devices, like mobile phones and PDAs. At runtime,
MMIT will automatically detect the target device and return the
proper presentation format. Thus, the developers can focus on the
application logic without worrying about the presentation issues.

Similar academic researches on this topic include [2] and [3]. Both
of them provide plug-ins for famous IDEs, such as JBuilder and Visual
Studio.NET respectively, to assist developers to author a single generic
application. Accompanied with the PUML transformation technology
[4], this generic application can be further transformed into specific
target formats for different mobile devices.

1.2. Motivation

Widespread of mobile devices makes it common to browse
Web pages via them. However, most Web pages are mainly designed
for desktop computers that are equipped with big screens. When
browsing on mobile devices, a user might have to scroll up and down,
, gis89539@cis.nctu.edu.tw
@cis.nctu.edu.tw (S.-M. Yuan).

l rights reserved.
left and right all the time to find the information they want. Because of
the limited screen size, this kind of operation is really not user-friendly
at all.

Fortunately, some famous websites have another simplified
version of Web content specially provided for mobile devices, such
as Google Mobile [5] and Yahoo Mobile [6]. On the other hand, it is a
heavy burden on Web developers to craft and maintain multiple
versions of the same website. Even with the help of the fascinating
toolkits.

If we resize the original Web page to fit the width of mobile device,
the vertical scroll bar will be too long to view, and the information is
crowded. On the other hand, if we provide another version of the
original Web page, there may be some important information lost in
the mobile version, and the transformation of each page costs a lot for
Web page developers. Hence, in this research, we propose a system
that is designed to help users to personalize their mobile Web pages
for handheld device browsing.

1.3. Research objectives

In this sub-section, the four major research objectives are listed
and introduced briefly.

1.3.1. Easy-to-use
It does not make sense to launch another program other than the

browser to personalize a Web page. When a user surfs on the Internet
and finds a Web page that interests him/her, the configuration tool of
this system should be able to pop up in the browser window somehow
right away. Moreover, all the codes needed to accomplish this job
(i.e. personalize Web pages) should be downloaded on the fly when

mailto:ywkao@cs.nctu.edu.tw
mailto:gis89539@cis.nctu.edu.tw
mailto:gis93532@cis.nctu.edu.tw
mailto:smyuan@cis.nctu.edu.tw
http://dx.doi.org/10.1016/j.csi.2008.05.016
http://www.sciencedirect.com/science/journal/09205489


Fig. 1. Overview.

Fig. 2. Personalize Web pages using PC or laptop.

438 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
accessed, thus allowing a user to work on different computers at
different places.

1.3.2. Personalizing Web pages visually
Web pages are usually composed of header, footer, sidebar, and

content areas [7]. Parts of them are used to maintain a consistent style
for the website, and other parts of them are used for navigation. Some
renowned websites may even contain a lot of advertisements on it. In
many Web pages, only a few of information is really needed to be
shown on the mobile phone screen. This research also aims at
allowing a user to determine which parts of a Web page should be
retained while browsing this page with their mobile device.

A friendly user interface should thus be available for a user to
perform this task. For example, with appropriate visual aids (such as
highlight), a user can choose blocks in a Web page one by one with
different granularity. Through the operation of drag-and-drop, a user
can determine the relative position of the chosen blocks according to
his/her personal preferences. In short, a user can reconstruct a mobile
Web page simply with visual manipulations, and does not have to
write any line of code.

According to the browser market share survey [8], Microsoft
Internet Explorer is still by far the most dominant browser on the
Web, with 83.88% usage market share, and Firefox has increased its
share to 10.68%, with the other alternatives, such as Safari, Netscape,
Opera, and Mozilla, occupying the remaining share.

The downloaded mobile code should work with at least the top
two popular browsers, i.e. Microsoft Internet Explorer and Firefox
Web browser.

1.3.3. Reducing wireless bandwidth consumption
More than screen size constraints, the limited memory and

wireless network bandwidth also make it unsuitable for delivering the
entire Web page untailored to mobile devices. Before returning a Web
page tomobile devices, some adaptation must be taken to pre-process
a Web page according to a user's preferences. So that the volume of
data transmission to a mobile phone could be reduced, and thus
reduce the consumption of wireless bandwidth as well.

1.3.4. Automatic mobile Web page content extraction
The content adapting algorithm we proposed can automatically

adapt Web pages to mobile devices. Users always only care about a
part of the web content. Content adapting applications should provide
a function to extract these parts from a Web page.

1.4. Research contribution

This paper discusses the problems encountered and our correspond-
ing solutions. The major contributions of this research are listed below.

1. A cross-browser configuration tool is designed.
2. The web-based nature of our configuration tool allows a user to

configure the settings from different computers, and requires no
pre-installation of any software.

3. Blocks in a Web page can be chosen correctly under the premise
that the layout of a Web page does not change frequently.

4. A web-based management interface is provided.
5. An automatic algorithm formobileWebpage generation is proposed.

1.5. Outline of this paper

This paper is divided into seven sections. The following is a brief
description of the content of each section. In Section 2, an overview of
the proposed system and its three major components are given. In
Section 3, the System design details, problems encountered, and our



Fig. 3. Browse Web pages via mobile devices.

439Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
corresponding solutions are illustrated. Furthermore, we discuss our
mobile Web page generation algorithm in Section 4. In Section 5, some
tests are conducted to evaluate our system. A practical example showing
how tomake use of the proposed tool to eliminate unnecessary scrolling
is also presented. Several related works are discussed in Section 6.
Finally, in Section 7, we make the conclusion and discuss about the
future work.

2. System design

2.1. Overview

Basically, the personalizing process in our Web page tailoring
system comprises two steps (Fig. 1). First, user must specify his/her
preferences of a Web page using a PC or laptop. Second, he/she has to
configure the browser on his/her mobile device to go through a
Fig. 4. Page Tailor in Fir
specially made proxy, which is responsible for adjusting the content of
Web pages according to the preferences set in the first step. Two
pictures are given below to illustrate separately the relationship
between a user, our Web page tailoring system, and a remote Web
server (such as CNN.com) in each step.

Fig. 2 describes the interaction in the first step. When a user enters
a URL in his/her Web browser, a HTTP request is sent to (Line 1) the
corresponding Web server specified in the URL. After processing the
request by the server, a HTTP response is sent back (Line 1). If the user
wants to personalize that page, a program hosted on a tinyWeb server
included in our systemwould be downloaded (Line 2) and executed in
his/her browser. With the help of that program, the user can specify
his/her preferences simply by visual manipulations. After finishing the
job, preferences about this page will be sent back and stored in a
database for later use (Line 2).

Fig. 3 pictures the interaction in the second step. Since the user
would configure the browser on his/her mobile device to use a proxy
included in our system, we would snoop each HTTP request and
modify its corresponding response (Lines 3 and 4) in between. For
example, if the user visits a Web page that has been personalized
before, some actions would be taken to tailor the Web page to meet
the user preferences.

In order to achieve the above tasks, three components are designed
in our system: Page Tailor, Configuration Manager, and Mobile Proxy.
The purpose and functions of each component will be introduced
separately. System design details are presented in Section 3.

2.2. Page Tailor

Page Tailor in the form of mobile code can be downloaded and
executed in a user's browserwhenhe/she is about to personalize aWeb
page. It provides some visual manipulations for users to help them
specify their preferences about a Web page. The preferences here
include: blocks of a Web page that should be retained and their final
efox Web browser.



Fig. 5. Select blocks at different granularity.

440 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
arrangement. All the preferences about this page would be saved in a
remote database that is managed by Configuration Manager. Fig. 4 is a
snapshot when executing Page Tailor in a Firefox Web browser.

2.2.1. Execution and initialization
When browsing Web pages, a user can click on the installed

bookmarklet to download and execute Page Tailor. From the other
perspective of users, it seems that the Web page itself provides the
personalizing functions.

After the Page Tailor window is launched in the user's browser,
some actions are performed in the background automatically. First,
Page Tailor will connect with Configuration Manager to retrieve the
Fig. 6. Rearrange the
user preferences about this current visited page. If the user has
personalized this page before, Page Tailor would retrieve the old
preferences, and then use the data retrieved to reconstruct the past,
such as blocks that had been selected and their order.

On the contrary, if there are no preferences about this page,
nothing will happen, of course. The purpose of this action is to help
users accelerate the setting time; particularly when he/she only wants
to perform a slight modification.

2.2.2. Visual manipulations
In order to help a user specify his/her preferences about aWeb page,

Page Tailor provides some visual manipulations. Fig. 5 demonstrates
selected blocks.



Fig. 8. The communication between these three components.

Fig. 7. Internal expression of user preferences about a Web page.

441Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
the feature that a user can select a block in a Web page at different
granularity. For example, in the top half of this picture, a block
containing more information than that in the bottom is selected. A
selected block is highlighted in yellow.

Fig. 6 illustrates another feature — drag and drop. In this picture,
three views are shown from left to right. In the beginning, three blocks
have already been selected (left). Next, we switch the last two blocks
(middle), and then the final result comes out (right). The sequence of
blocks in the Page Tailor window would be the same as that in the
browsers on mobile devices.

2.2.3. User preferences
XPath [9] is a language that describes how to locate specific

elements in a document. This is the standard we adopted to store the
user preference. In our Web Page Tailoring system, the user pref-
erences stored are composed of XPath expressions. In other words,
when a user adds a block to the Page Tailor window, Page Tailor would
internally generate an XPath expression for that block. By using XPath
expressions, we can uniquely identify this block in the future provided
that if the layout of this page does not change too frequently.

As for the sequence of selected blocks, the XPath expressions of
selected blocks are concatenated together according to their order
in the Page Tailor window (separated by commas) to form the user
preferences about this page. Fig. 7 is a practical example.

2.3. Configuration Manager

The preferences specified by a user will be stored in a database.
Configuration Manager serves as a gatekeeper to control the access
to the backend database. It provides a Web-based interface) for a user
to manage his/her preferences base on the HTTP 1.0 Web protocol.
TwoWeb services are also exported to allow other components in this
system to access the preferences programmatically. One is used for
querying the database and the other for updating.

The reason why we adopted the Web service approach ultimately
is because of its language- and platform-specific nature. Hence, other
components utilizing the services in our system could be implemen-
ted in different programming languages that are more appropriate for
specific tasks.
2.4. Mobile Proxy

Mobile Proxy is a specially made proxy that is responsible for the
final step in completing the personalizing process. It would monitor
every HTTP request and makes Web service calls (query service) with
the request URL as the parameter to Configuration Manager. The
returned user preferences, if any, could then be employed to filter out
the unwanted Web page content and rearrange the remaining blocks.

Fig. 8 summarizes the communication between these three major
components. Page Tailor is first downloaded and executed in a user's
browser. Then the Web services exported by Configuration Manager
are used by it and Mobile Proxy to access the backend database where
user preferences are stored.

3. Detailed design, standards, and interfaces

In this section, we will describe the system design, standards, and
interfaces details of the three major components in our system and
the problems encountered. Also, our solutions to these problems are
depicted. The system components and their interfaces are shown in
Fig. 9.



Fig. 10. This is the bookmarklet used to launch Page Tailor.

Fig. 11. The containment hierarchy of elements.

Fig. 9. System components and their interfaces.

442 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453



Fig. 12. The selected block (a) and its corresponding subtree (b).

Fig. 13. How to load the user preferences (pseudo-code).

Table 1
Examples of origin comparisons

URL Result Description

http://store.company.com/dir2/other.html Success
http://store.company.com/dir/inner/another.html Success
https://store.company.com/secure.html Failure Different protocols
http://store.company.com:81/dir/erc.html Failure Different ports
http://news.company.com/dir/other.html Failure Different hosts

443Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
In Fig. 9, we can see that, almost all of the interfaces are iw, i.e.
HTTP1.0 Web interface. Because our system is designed for Web
application, the iw interface enables us to develop different system
components by different programming languages or platforms. Hence,
it provides cross-platform communication for system development.

3.1. Page Tailor

Page Tailor is designed to be implemented in JavaScript because of
the following considerations.

1. JavaScript was designed to add interactivity to HTML pages.
This point conforms to the first objective of this paper, i.e. easy-
to-use, since we can embed the configuration tool in a Web
page, so that users can configure their settings directly in the
browser.

http://store.company.com/dir2/other.html
http://store.company.com/dir/inner/another.html
https://store.company.com/secure.html
http://store.company.com:81/dir/erc.html
http://news.company.com/dir/other.html


Fig. 14. The response of query service (pseudo-code).

444 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
2. By using JavaScript, we can manipulate a Web page through the
DOM interface. DOM provides the interface between the JavaScript
and original Web pages. In other words, we can change the
appearance of a Web page to reflect the user's choice. This one
conforms to the second objective, i.e. personalizing Web page
visually.

3. JavaScript is one of the most popular scripting languages on the
Internet, and works in all major browsers, such as Internet Explorer
and Firefox. This one agrees with the third objective, i.e. support for
mainstream browsers.

3.1.1. Page Tailor bookmarklet
The interface between user and Page Tailor is bookmarklet. That is,

the ib interface between user and Page Tailor in Fig. 9. The source code
of this bookmarklet is shown in Fig. 10. When a user clicks that, an
element with tag name “script” is created (Line 2). After being created,
the new element contains no properties. The “src” property (Line 5) is
employed to indicate the location of a remote JavaScript file. A created
element exists only in the browser's memory, and not as part of this
Web page. In order to let the “script” element take effect, we have to
add it to the Web page. For that reason, we find the first occurrence of
“body” element (Line 6) in theWeb page, and then append the “script”
element as a child of it (Line 7).

By this method, we can dynamically load an external JavaScript file
on demand to do something with a Web page. It can also work for
other types of files such as CSS.

3.1.2. Loading external JavaScript Libraries
JavaScript has been used in many applications. Some open source

projects have already incorporated the commonly used functions such
as drag-and-drop and visual effects. In Page Tailor, we do not reinvent
the wheel but take advantage of the Script.aculo.us JavaScript frame-
work [10].

Although we can dynamically load these JavaScript files, the exact
time spent on loading, however, depends on the browsers. In other
words, even if we add the “script” elements to a Web page in some
Fig. 15. How to update the user
order, which is not equivalent to load the first JavaScript file and then
the second one. The results are still unexpected.

To address the above problem, we must postpone the loading of
scriptaculous.js until after prototype.js has been loaded. By selecting a
unique identifier from the file (prototype.js or scriptaculous.js) and
checking periodically whether the identifier has been defined or not,
we can indirectly deduce the current state of that file. In other words,
an identifier has been defined, which means that the file containing it
must have been loaded, too. For example, we choose the identifier
named Prototype in prototype.js and Draggable in scriptaculous.js.

3.1.3. Containment hierarchy of Page Tailor
After pagetailor.js is loaded, it would create the containment

hierarchy of elements that together compose the Page Tailor window,
and the entire hierarchy would be appended to the Web page. Fig. 11
shows the correspondence between each element and their ap-
pearance displayed on the browser. The tag name of each element
contained in this hierarchy is labeled on the left-hand side of thefigure.

3.1.4. Generating XPath expressions
The DOM tree and XPath standards are used to store the user

preferences. Page Tailor extracts the XPathes of blocks which users
interest in on Web pages, and store these XPathes to the Configuration
Manager. The degree of support for XPath over HTML varies in different
types and brands of browsers, so we must deal with the conversion
between a selected block and its corresponding XPath expression by
ourselves in Page Tailor. The XPath expressions contained in the user
preferences are restricted to internal use only. Then, we will make a
statement on how to generate the XPath expressions of a selected block.

As seen in Fig. 12, every selected block corresponds to a subtree of
the document. The way to find its XPath expression can be divided
into two steps. First, start from the selected block (or node) and walk
recursively up the tree to find all of its ancestors. Then, for each node
in the path count the number of its siblings that have the same tag
name as that of the node. With these two data, we can finally generate
the XPath expressions of the selected block.
preferences (pseudo-code).



Fig. 16. Produce a corresponding DOM tree.

445Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
3.1.5. Same origin policy
It is the XMLHttpRequest object that can be used by JavaScript to

transfer data to and from a Web server using HTTP. It is supported by
almost all popular browsers. For security reason, however, browsers
often impose some restrictions (also referred to as the “same origin
policy”) on this object.

The “same origin policy” dates from Netscape Navigator 2.0. This
policy prevents a document from one origin from getting or setting
properties of another document from a different origin. In general,
two documents are considered to have the same origin if they are
identical in three aspects: protocol, host, and optionally port. Table 1
lists some examples of origin comparisons with the URL “http://store.
company.com/dir2/other.html”.

From the comparisons in the above table, it is not difficult to
imagine that in Page Tailor, it is impossible to retrieve data from
Configuration Manager using the XMLHttpRequest object, because a
Web page surely comes from the Web server that is situated in a
different origin fromwhere Configuration Manager might live. Hence,
we do not use the XMLHttpRequest of AJAX standard in Page Tailor.

3.1.6. Accessing user preferences
Using the method using in 3.1.1, we can overcome the restriction

imposed by the “same origin policy”. In the Page Tailor bookmarklet,
we dynamically create a “script” element, assign some attributes to it,
and add this element to the Web page. After the remote file has been
Fig. 17. A new DOM tree (right) would be created to hold the
loaded, the JavaScript code written in that file would be executed
accordingly. Hence, the limitation of “same origin policy” of commu-
nication between the Page Tailor and Configuration Manager can be
overcome by the dynamical JavaScript loading mechanism in HTTP 1.0
standard.

However, the value assigned to its “src” attribute does not point to
a remote file. It points to the query service provided by Configuration
Manager. Therefore, adding this element to a Web page is equivalent
to using the query service. Moreover, since the type attribute of the
“script” element has a value of “text/javascript”, the response of the
query service should be in the form of JavaScript, or some runtime
errors might occur. As for how to make use of the response of query
service, we can see Fig. 13.

The pseudo-code is taken from pagetailor.js. When we need the
user preferences of a Web page, the function named query would be
invoked (Line 01). What the function does is as described in the last
paragraph. There are three parameters in the query string: url,
callback, and id. When Configuration Manager receives a request, it
would extract the values of each parameter. Among them, the value of
url is employed to query the database to find the corresponding user
preferences about this Web page. The value of callback contains the
name (“callback” in this case) of a function to process the response of
query service. And id, the last one, is utilized to identify the “script”
element that makes this request, since more than one “script” element
could be added to a Web page at the same time.
replicas of selected elements in original DOM tree (left).

http://store.company.com/dir2/other.html
http://store.company.com/dir2/other.html


Fig. 18. An overview of pattern-oriented scheme for mobile Web page generation.

Fig. 19. The VIPS tree construction algorithm.

Fig. 20. The algorithm of getting the AOC value.

446 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
As mentioned before, the response will be interpreted as Java-
Script. What the Configuration Manager returns is actually a function
invocation like the one in Fig. 14. The function name, “callback”, is
identical to the one involved in the query string. Two parameters are
passed to this function. The first one contains the user preferences
about the URL specified in the query string, the second one is the id
specified in the query string as well, which is left intact.

When the response is sent back to the client side, the function
named “callback”would be invokedwith the user preferences filled by
Configuration Manager. Since Page Tailor has obtained the user
preferences, the reconstruction of the past could be performed in the
body of this function. Finally, it comes to the id's turn. We can use the
id to find the “script” element that was added to the Web page to
trigger this series of events and remove it. Here the callback invocation
is sent back from the Configuration Manager to the Page Tailor
through the iw interface again.

The above descriptions illustrate how to load the user preferences
without being restricted by the “same origin policy”. Fig. 15, on the
contrary, illustrates how to update the user preferences. It is not
surprising that these two operations are very similar. They differ only
in two respects. First, one more parameter is involved in the query
string, which is the data required to update. Second, the callback
function only serves as a scavenger to remove the “script” element.

3.2. Configuration Manager

We adopt Ruby on Rails [11] to implement the Configuration
Manager. Controllers are the subprograms in a Rails application that
performs tasks. Controller actions are sequences of Ruby code that
correspond directly to the tasks this application can be asked to do.
When an action is executed, it not only has access to the data from a
submitted form but also to the models. In our system, two Web
services exported by Configuration Manager are implemented as
separate actions. That is, query_service and update_service. These two
interfaces enable the Page Tailor to manipulate the data stored in the
backend database.

3.3. Mobile Proxy

Mobile Proxy in our system is developed fromMuffin [12]. We can
modify the content of the Web page before it is sent back to the client
according the user preferences specified by the user. The interfaces in
the filter logic class depend on what kind of filtering we intend to
perform. There are two interfaces designed: RequestFilter and
ReplyFilter. The RequestFilter interface is to filter requests before
they are sent to a server. On the contrary, the ReplyFilter is to modify



Fig. 21. An example of VIPS tree construction.

447Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
replies after a server responds. These two interfaces follow the HTTP
1.0 standard of iw interface.

3.3.1. Pre-processing of Web Content
If a request issued by the client is destined for a URL that has

corresponding user preferences stored in our database, Mobile Proxy
would start a chain of processing steps. First of all, it would use a
HTML parser, NekoHTML [13] to parse that Web page and produce a
corresponding DOM tree (Fig. 16). After that, an XPath engine, Jaxen
[14] is employed to process XPath queries over the DOM tree. Some
specific elements would be selected at this time, and a new DOM tree
Fig. 22. An example of slic
would be created alongside to hold the replicas of these elements
(Fig.17). The sequence of the replicas in the newDOM treewould refer
to the sequence of the XPath expressions in the user preferences.

3.3.2. Transforming to XHTML
The result page (i.e. the new DOM tree) has already been

constructed now. However, it is not necessarily self-validating because
what we have done already is to find, clone and collect the blocks of
content directly. To further polish that, an open source utility, JTidy
[15], would be used. This tool was originally designed to fix mark-up
errors and also offers a means to convert existing HTML content into
ing tree construction.



Fig. 23. The algorithm of getting the node type.

448 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
well-formed XML, such as XHTML. After the process of JTidy, a well-
formed and validated result page is finally turned up.

4. Automatic mobile Web page generation

Our mobile Web page generation flow consists of four major steps:
page segmentation, pattern string generation, pattern matching and
page generation (Fig. 18). In the first step – page segmentation, we
Fig. 24. An example of patt
apply the VIPS algorithm into segment the target page into small
blocks and construct a VIPS tree. In the second step – pattern string
generation, we transform the VIPS tree into a slicing tree and generate
a pattern string – the Polish Expression [16] of this binary slicing tree.
In the third step – pattern matching, we compare this pattern string
with all existing pattern strings. If there is any existing pattern string
matched, we take the annotations of the existing pattern as result.
In the fourth step – page generation, we generate the result page
according to the source page and the annotations.

4.1. Page segmentation

In this step, we use parts of VIPS algorithm and change several
method of it for our purpose (Fig. 19). We segment theWeb page into
blocks and retain the hierarchical structure. In order to extract the
content blocks, we find explicit separators by analyzing the presence
of tags such as bTABLEN, bTRN, bTDN, and bDIVN. In general, every
node in the DOM tree can represent a visual block. Different from
VIPS algorithm, we used the AoC (Area of Content) value instead of
DoC (Degree of Coherence) value. Each node will be assigned an AoC
value to indicate how many areas are consumed by the content
within the node (Fig. 20). We extract the content blocks recursively
while the AoC value of the node is great than pre-defined AoC. After
all the blocks are processed, we obtain a vision-based content
structure tree (Fig. 21).

4.2. Pattern string generation

In order to represent the page structure in a string, we transform
the VIPS tree to a binary slicing tree (Fig. 22). After the binary slicing
tree is constructed, we perform a postorder traversal of it and obtain a
string — Polish Expression.

For transforming the VIPS tree to a slicing tree, we perform a level-
order traversal of the VIPS tree. In the traversal, we construct cor-
responding slicing tree node according to different states of VIPS tree
node. If the VIPS node has next sibling node, we construct an operator
nodeandput these twoVIPS tree node as its child nodes. If theVIPS node
has child nodes, we construct an operator node to the slicing tree.
Furthermore, if theVIPSnode is a left node,we construct a content node.
According to the tag name of the node, we assign the operator type to
each operator node. The node with tag name “TD” is assigned to a “⁎”

symbol, and the nodewith other tag is assigned to a “+” symbol (Fig. 23).
ern string generation.



Fig. 25. An example of pattern matching.

449Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
4.3. Pattern matching

The Polish Expression represents a slicing tree structure in a string
(Fig. 24). We can compare the tree structures by comparing their
Polish Expression strings. If two trees have the same Polish Expression
strings, they have the same tree structure. However, the tree structure
of Web pages is usually complex. It is difficult to find two pages that
have the same pattern string. For Web page similar comparisons, we
compare two pattern strings from beginning, and find out the number
of the same characters. We divide this number by the string length
and obtain a similar value. If this similar value is larger than the pre-
defined value, these two patterns are matched.

4.4. Page generation

After pattern matching process, we obtain a page annotation for
the Web page. As in Fig. 25, the annotation contains a sequence of
Fig. 26. An example of
block numbers. There are commas to separate the sequence. A block
number is the position of the block in the pattern string. Accord-
ing to this sequence, we represent these blocks as the output page
(Fig. 26).

When a mobile device accesses the Web page through the Mobile
Proxy for the first time, the mobile Web page will be automatically
generated following these four steps. At the same time, the result page
annotation will be stored into the Configuration Manager. The
customization of user's mobile Web page can be done by the Page
Tailor mentioned in the previous section.

5. Evaluation

In this section, we evaluate our Web page tailoring system in
different aspects. A practical example is also given to show how this
system can eliminate the unnecessary scrolling by filtering the un-
wanted Web page content.
page generation.



Fig. 27. Usability test (a) Page Tailor in Internet Explorer (b) Page Tailor in Firefox Web browser.

450 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
5.1. Usability test

To test the usability of Page Tailor on different browsers, we
personalize aWeb page in Internet Explorer and launch Page Tailor (on
the sameWeb page) in FirefoxWeb browser to check if the same result
can be obtained, and vise versa. Fig. 27 shows the result of the test.

5.2. Stability test

To test whether the user preferences of a Web page can really be
employed to extract accurately the blocks of content, we make a
Fig. 28. Stabi
continuous check on the result. Fig. 28 contains two snapshots that are
taken on different days without modifying the user preferences.

5.3. Example

In this sub-section, we show the unnecessary information
eliminated result using our system. Also, we compare our system to
Google Mobile Proxy. As seen in Fig. 29 (a), only parts of theWeb page
can be presented on the limited screen at one time. There is plenty
of room for scrolling in both horizontal and vertical directions. In
Fig. 29 (b), we personalize this Web page by selecting three blocks of
lity test.



451Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
content that are located in the middle of this page. After the
personalizing process (shown in Fig. 29 (c)), the unwanted Web
page content will be filtered. The result Web page of our system is
precise and users can read this page with a glance.

Compared to Google Mobile Proxy, which is shown in Fig. 30. We
can see that the result Web page of the Google Mobile Proxy is still too
long in length for scrolling up and down, as in Fig. 30 (c). There is still
some unimportant information that maybe the users are not
interested in, as in Fig. 30 (d). Compared to our result Web page, as
in Fig. 29 (c), our result page can be more personalized and precise for
page presentation.
Fig. 29. A practical example
6. Related works

In this section, content adaptation approaches were introduced.
Commercial products and related researches that fall into these three
categories were described subsequently. Unfortunately, most of the
adaptation results are not perfect. For example, it is hard to locate the
wanted information in the reformatted page. A user might have to
scroll through tons of irrelevant stuff before he/she can exactly find
what he/she wants. On the contrary, some results contain too few
information to view for users, users cannot find out what they want in
the shrunk mobile Web page.
of how to use our tool.



Fig. 30. The result page of Google Mobile Proxy.

452 Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
There are three categories of mobile content adaptation: client-
based application adaptation, client-server application adaptation,
and proxy-based application adaptation [17]. Content adaptation
can occur in the client device, on the content server or in an in-
termediate proxy server. In the client-based application adaptation,
the required transcoding is performed by the client device. In the
service-based application approach, one common way of providing
content to different devices is to store the content as XML, and then
use XSLT to convert the content to appropriate markup languages.
In the proxy-based application approach, a proxy server analyzes
and transcodes the content on-the-fly, before sending the result to
the client.

6.1. Client-based application adaptation

Opera's mobile browser includes Small-Screen Rendering technology
[18]. This technology intelligently reformats today's Web pages to fit the
screenwidthofmobiledevices, therebyeliminating theneed forhorizontal
scrolling. It is only the layout of the page that is changed. All the content
and functionality remain.A full-featuredOperaMini (Opera'sWebbrowser



453Y.-W. Kao et al. / Computer Standards & Interfaces 31 (2009) 437-453
product) simulator is available at Ref. [19]. Another company named
ACCESSalsohas theirproprietarybrowserproductNetFront. The rendering
technology adopted by this browser is what they call Smart-Fit Rendering
[20]. Smart-Fit Rendering, just like Opera's Small-Screen Rendering, also
renders Web pages to fit the narrow screenwidth of mobile devices.

6.2. Client-server application adaptation

Some of the optimal context adaptation model has been proposed,
such as Ref. [21], which is a server-based adaptive Web system. They
claim that the result of their adaptation is optimal, andboth the response
time and network traffic can be reduced. Also, Lum and Lau have
proposed an adaptation system based on decision policy [25]. They
designed thedecisionpolicy fromcontextual information to transcoding
strategies. This system computes scores of each possible version of
content. Moreover, Lee, Chandranmenon and Miller developed a
middleware-based content adaptation server, named GAMMAR [26].
GAMMAR use a table-driven architecture to manage the transcoding
service, which located among a cluster of network computers.

6.3. Proxy-based application adaptation

Google had released a service to the public, similar to Refs. [22] and
[23]. Since this service still lacks official statements, herewe temporarily
call it “Google Mobile Proxy” [24]. This proxy provides some distinctive
features, such as pagination and links collapsing. Pagination means the
process of dividing and numbering documents into pages.

7. Conclusion and future work

7.1. Conclusion

Motivated by the increasing needs of browsing Web pages on
mobile devices, this paper focuses on the inconvenience of limited
screen size of mobile device. This kind of inconvenience is the com-
mon feature of most of the mobile devices. We propose a Web page
tailoring tool to help end users to personalize their mobileWeb pages.
The contributions of this paper including:

1. A cross-browser configuration tool is designed.
2. The web-based nature of our configuration tool allows a user to

configure the settings from different computers, and requires no
pre-installation of any software.

3. Blocks in a Web page can be chosen correctly under the premise
that the layout of a Web page does not change frequently.

4. A web-based management interface is provided.
5. An automatic algorithm formobileWebpage generation is proposed.

7.2. Future work

There are several aspects could be improvedof ourWebpage tailoring
system. For example, the functionality of Mobile Proxy can be further
extended. At this point, it is only capable of generating XHTML, and the
mechanism for detecting the capabilities of mobile devices has not been
integrated yet. On the other hand, our system has not been completely
evaluated yet, we will accomplish the evaluation in the future.

References

[1] Mobile ASP.NET Web Applications, http://www.asp.net/default.aspx?tabIndex=
6&tabId44.

[2] Jen-Kai Wu, Shyan-Ming Yuan, “A Visualized Kit for Developing Applications on
Multiple Mobile Devices”, Department of Computer Science and Engineering
National Chiao Tung University Master Thesis, 2005 June.

[3] Chi-Han Kao, Shyan-Ming Yuan, “A Multi User-interface Generation Plug-in for
Visual Studio.NET”, Department of Computer Science and Engineering National
Chiao Tung University Master Thesis, 2005 June.
[4] Sheng-Po Shen, Shyan-Ming Yuan, “XML-based Mobile Application Development
Framework”, Department of Computer Science and Engineering National Chiao
Tung University Master Thesis, 2004 June.

[5] Google Mobile, http://www.google.com/mobile/index.html.
[6] Yahoo Mobile, http://mobile.yahoo.com/.
[7] JinlinChen, Baoyao Zhou, JinShi, Hongjiang Zhang, Qiu Fengwu, Function-based object

model towards website adaptation, Proceedings of the 10th international conference
on World Wide Web, May 01–05 2001, pp. 587–596, Hong Kong, Hong Kong.

[8] BrowserMarket Share Survey by NetApplications.com, http://netapplications.com.
[9] W3C. XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath.
[10] Script.aculo.us JavaScript framework, http://script.aculo.us/.
[11] Ruby on Rails, http://www.rubyonrails.org/.
[12] Muffin World Wide Web Filtering System, http://muffin.doit.org/.
[13] NekoHTML, http://people.apache.org/~andyc/neko/doc/html/index.html.
[14] Jaxen, http://jaxen.org/.
[15] JTidy, http://jtidy.sourceforge.net/.
[16] M. Lai and D. Wong. Slicing tree is a complete floorplan representation. In

DATE '01: Proceedings of the Conference onDesign, Automation and Test in Europe,
pages 228–232.

[17] Jin Jing, Abdelsalam Helal, Ahmed Elmagarmid, Client-server computing in mobile
environments, ACM Computing Surveys 31 (2) (1999) 117–157.

[18] Opera's Small-Screen Rendering ™, http://www.opera.com/products/mobile/
smallscreen/.

[19] Opera Mini™ simulator, http://www.opera.com/products/mobile/operamini/demo.dml.
[20] ACCESSSmart-FitRendering™ technology, http://www.access-us-inc.com/Products/

client-side/Prod_NetFront.html.
[21] Rong-Hong Jan, Ching-Peng Lin, Maw-Sheng Chern, An optimization model for

Web content adaptation, Computer Networks 50 (7) (2006) 953–965 (SCI, EI) (NSC
93-2219-E-009-002 and NSC 93-2752-E-009-005-PAE).

[22] Skweezer, http://www.skweezer.net/.
[23] IYHI, http://www.iyhy.com/.
[24] Google Mobile Content Proxy, http://www.google.com/gwt/n.
[25] Wai Yip Lum, Francis C.M. Lau, A context-aware decision engine for content

adaptation, IEEE Pervasive computing 1 (3) (July–September 2002).
[26] Yui-Wah Lee, Girish Chandranmenon and Scott C. “GAMMAR: A Content-

adaptation Server for Wireless Multimedia Applications”, Bell Laboratories.

Yung-Wei Kaowas born onMarch 12,1982 in Taipei, Taiwan,
Republic of China. He received his MBA degree in Depart-
ment of Information Management of National Central
University in 2006. His interests are in Web 2.0 and network
security.
Tzu-han Kao was born on December 20, 1976 in Taichung,
Taiwan, Republic of China. He received his BS degree in
Computer Science and Information Engineering from Chung
Hua University Taiwan, in 2000. He now received PHD
degree from Institute of Computer Science & Engineering, in
Department of Computer Science of National Chiao Tung
University in 2006. His interests are in Web 2.0, Context-
aware, Ubiquitous, and Pervasive Computing.
Shyan-Ming Yuan was born on July 11, 1959 in Mauli,
Taiwan, Republic of China. He received his BSEE degree
from National Taiwan University in 1981, his MS deg-
ree in Computer Science from University of Maryland,
Baltimore County in 1985, and his PhD degree in Computer
Science from the University of Maryland College Park in
1989. Dr. Yuan joined the Electronics Research and Service
Organization, Industrial Technology Research Institute as a

Research Member in October 1989. Since September 1990,
he has been an Associate Professor at the Department
of Computer and Information Science, National Chiao Tung
University, Hsinchu, Taiwan. He became a Professor in June
1995. His current research interests include Distributed Objects, Internet Technologies,
and Software System Integration. Dr. Yuan is a member of ACM and IEEE.

http://www.asp.net/default.aspx?tabIndex%3D6%26tabId%3D44
http://www.asp.net/default.aspx?tabIndex%3D6%26tabId%3D44
http://www.google.com/mobile/index.html
http://mobile.yahoo.com/
http://netapplications.com
http://www.w3.org/TR/xpath
http://script.aculo.us/
http://www.rubyonrails.org/
http://muffin.doit.org/
http://people.apache.org/~andyc/neko/doc/html/index.html
http://jaxen.org/
http://jtidy.sourceforge.net/
http://www.opera.com/products/mobile/smallscreen/
http://www.opera.com/products/mobile/smallscreen/
http://www.opera.com/products/mobile/operamini/demo.dml
http://www.access-us-inc.com/Products/client-side/Prod_NetFront.html
http://www.access-us-inc.com/Products/client-side/Prod_NetFront.html
http://www.skweezer.net/
http://www.iyhy.com/
http://www.google.com/gwt/n

	A personal Web page tailoring toolkit for mobile devices
	Introduction
	Preface
	Motivation
	Research objectives
	Easy-to-use
	Personalizing Web pages visually
	Reducing wireless bandwidth consumption
	Automatic mobile Web page content extraction

	Research contribution
	Outline of this paper

	System design
	Overview
	Page Tailor
	Execution and initialization
	Visual manipulations
	User preferences

	Configuration Manager
	Mobile Proxy

	Detailed design, standards, and interfaces
	Page Tailor
	Page Tailor bookmarklet
	Loading external JavaScript Libraries
	Containment hierarchy of Page Tailor
	Generating XPath expressions
	Same origin policy
	Accessing user preferences

	Configuration Manager
	Mobile Proxy
	Pre-processing of Web Content
	Transforming to XHTML


	Automatic mobile Web page generation
	Page segmentation
	Pattern string generation
	Pattern matching
	Page generation

	Evaluation
	Usability test
	Stability test
	Example

	Related works
	Client-based application adaptation
	Client-server application adaptation
	Proxy-based application adaptation

	Conclusion and future work
	Conclusion
	Future work

	References




