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Abstract

In this thesis, we first discuss the material characteristics of the pentacene-based
OTFTs with different pentacene film thicknesses. The grain size and film quality can
be analyzed by AFM and XRD:measurements; respectively. The performances are the
best for the 1000A-thick device:

By changing the measurement temperatures, we find the drain current and
mobility get larger as the temperature increases. After the critical temperature, the
lattice vibration is more severe and the drain current decreases in the saturation region
due to scattering which is the so-called self-heating effect. We also extract the
activation energy from the measurements of different temperatures and find its gate
voltage dependence, which corresponds to the generally-used grain boundary barrier
lowering model.

The effect of contact resistance is especially serious in OTFTs. We extract the
contact resistance by using the relationship between the drain current and drain
voltage and channel length L. The dependence of the gate bias on the contact
resistance is also investigated.

Among the methods for improving the characteristics of the OTFTs, surface
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treatment is an effective one. We use HMDS (Hexamethyldisilazane) for surface

treatment and the performances of devices after surface treatment are much improved.
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