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Abstract in English

In this thesis, defect modes of two-dimensional photonic crystal nano-cavity are an-
alyzed. The defect is formed by removing a single air hole from array of air holes of
hexagonal lattice arrangement on a dielectric slab. First, the finite difference time do-
main method with various boundary conditions is introduced. Second, symmetry analysis
of defect modes and design rules for high quality factor cavities are presented. Finally,
techniques of the simulation and the results 6f.the simulation, like photonic band struc-

tures, resonant frequencies, mode profiles, -and quality factors are exhibited.
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Chapter 1

Introduction

1.1 Background

In 1987, Yablonovitch and John generalized the idea of distributed Bragg reflec-
tion(DBR), which is the reflection of electromagnetic waves in periodic arrangement of
multilayer films of different dielectric constants, from one dimension to multi-dimension|[1].
The generalization inspired the name “photonic crystal”. DBR is an example of one-
dimensional photonic crystals.«If the materials are periodic in two directions, they are
called two-dimensional photonic erystals. Threesdimensional photonic crystals imply that
the periodicity of material is in all directions[2]. Photonic crystals have many interesting
phenomenons like photonic band gap, defect modes, negative refraction, superprism ef-
fect, etc. Photonic band gap prohibits light with certain frequencies to propagate, which
is the analogue to band gap of electron states in crystalline materials. Here we term the
“air band” corresponding to the conduction band and “dielectric band” to the valence
band. Defect modes result from locally changing of dielectric constant as a perturbation
of the periodic dielectric structure, which is the analogue to defect states of electron states
in crystalline materials.

Applications of photonic crystals to the development of semiconductor lasers have
been addressed in recent years. In 1999, Painter proposed a new structure of photonic
crystal laser by the use of defects in two-dimensional(2D) photonic crystal slabs[3]. The
optical cavity is formed by removing a single air hole from array of air holes of hexagonal
lattice arrangement on a dielectric slab. And the optical gain is provided by the layers of

quantum wells within the slab pumped by light. Defect cavities in 2D photonic crystal



slab confine light through two mechanisms. One is total internal reflection in the vertical
direction, and the other is DBR in plane. Schematic depiction of Painter’s work is shown

is Figure 1.1.

Total internal reflection (TIR)
Distributed Bragg reflection (DBR)

e m=-

Defect region A/2 waveguide (n = 3.4)
— Active region (4 QWs) Etched Air Holes (n = 1)
InP Substrate (n = 3.2) Undercut Region (n = 1)

Figure 1.1: Painter’s structure. (Adopted from reference [3])

Several improvements of the phﬂtgnlmrystal lasers have been fabricated and investi-
T,

gated by modifying the geometryr of théjﬁhﬁ)tomc dirystal patterns. For examples, Painter

et al. split the doubly degenerater'drl,pole m’éffes by enlarglng or shifting the air holes next
LR

ark et 8&1 modified six nearest neighbor holes

to the single defect[3], [4]. Hong (}y'{
around the defect to observe the ﬁmnopg_le de.f%ct mode[5], [6]. Vuckovié¢ et al. used a
type of defect by elongating holes along the symmetry axes to improve the vertical loss[7],
[8]. Po-Tsung Lee et al. made low threshold photonic crystal lasers for room temperature
operation by lithographic tuning of cavities of 19 missing holes[9], [10]. Future efforts will

be focused on electrically driven structures with a good heat sink to solve heat problems.

1.2 Motivation

Purcell made a prediction that the rate of spontaneous emission may be enhanced in

a resonant cavity[11]. The Purcell factor F}, is defined as

l T0
FF=—=— 1.1
p FO 7_7 ( )

where I' is the spontaneous emission rate and 7 is the lifetime. In optimal quantum well

structures it can be derived explicitly by[12]

- 27?;%f (%)3 (12)




where () is the quality factor of the resonant cavity, ¢ is the mode degeneracy, A is the
resonant wavelength, n is the refractive index of the materials, and V. is the effective

mode volume defined by
[ e(r)E*(r)d’r
max(e(r)E?(r))’

where FE is the electric field, and ¢ is the permittivity of the material. Therefore the

Verr = (1.3)

design of an optical cavity for higher quality factor and smaller mode volume is the key

to refine photonic crystal lasers.

1.3 Thesis Overview

In this chapter, we have a brief introduction of photohic crystals and their application
to semiconductor lasers. We begin in chapter 2 by introducing the method of finite differ-
ence time domain(FDTD) developed by Yee, and some techniques used in my simulations
like Heaviside Lorentz unit system. The dmplement of various boundary conditions and
expressions of Poynting vector ahd electromagnetic energy density in Yee’s lattice will
be addressed. In chapter 3 a study of symmetry analysis and design rules for high qual-
ity factor photonic crystal cavities will‘be discussed. Simulation procedure and results
by both the methods of plane wave €xpansion(PWE) and FDTD are demonstrated in

chapter 4. In the end, the final conclusion'will be presented in chapter 5.



Chapter 2

Simulation Principles for the FDTD
Method

2.1 Maxwell’s Equations

Consider a region of space which is seurce-free, Maxwell’s curl equations are given by

B /
A Pr £

~—=VXE—=—H,
ot I I
o) DI | o
—_— = — H~-—E. 2.1
ot 5v ~ € (2.1)

in MKS unit system where E is the electric field in volts/meter; H is the magnetic field in
amperes/meter, ¢ is the electrical permittivity in farads/meter, o is the electrical conduc-
tivity in ohms/meter(siemens/meter), p is the magnetic permeability in henrys/meter,
and p’ is an equivalent magnetic resistivity in ohms/meter. The magnetic resistivity term
is provided to yield symmetric curl equations and allow for the possibility of a magnetic
field loss mechanism.

Because of small variation of magnetic permeability in materials, the effect of mag-
netization is ignored. So the magnetic permeability of materials p is assumed to be a
constant as the magnetic permeability in vacuum, say po. The material is taken to be
lossless for simplicity, which implies that ¢ and p’ are 0. Moreover, ¢ is assumed to be
nondispersive and isotropic. The following scalar equations is equivalent to Maxwell’s
curl equations in the rectangular coordinate system (z,y, z).

OH, 1 0B, OE.

ot MU(W oy )




OH, 1 0E. OE,
ot po Oxr 0z )
OH, 1 ,0E, OB,
ot o Oy ~ o )
0E, 1 ,0H. OH,
TR oy 0z )
oE, 1,0H, OH,
a2 ar o)
OE. 1,0H, OH,
o o Ay )

(2.2)

The six coupled partial differential equations forms the basis of the FDTD algorithm
for electromagnetic field interactions with general three-dimensional objects. Before pro-
ceeding with the details of the algorithm, it is informative to consider one important sim-
plification of the full three-dimensional case. Assuming that neither the incident plane
wave excitation nor the modeled geometry has any variation in the z-direction (i.e., all
partial derivatives with respect to z equal zero), Maxwell’s curl equations reduce to two
decoupled sets of scalar equations. Theserdecoupled sets which are termed the transverse
magnetic (TM) mode and the transverseselectrie, (TE) mode describe two-dimensional
wave interactions with objects:  Another viewpoint of classification of electromagnetic
fields which gets the same resultiwill bé-addressed in Section 3.2. The relevant equations
for each case are as follow:

-TM case (Ez, Hx, and Hy field components only)

OH,  10E,

ot o Oy’

OH, 1 0E,

ot g Oz’

OoE, 1,0H, O0H,

ot €< ox Jy ) (23)

-TE case (Hz, Ex, and Ey field components only)
OE, 10H,
o e oy’
OE,  10H,
o e ox’
0H, 1 0E, O0E,
L e e 3 2.4

ot o Oy ox ) (24)



2.2 Yee’s Algorithm

In 1966, Yee introduced a set of finite-difference equations for equations (2.2). Follow-

ing Yee’s notation, we denote a space point in a rectangular lattice as

(i, k) = (iAz, jAy, kAz), (2.5)
F"(i,j, k) = F(iAx, jAy, kAz,nAt), (2.6)

where Az, Ay, and Az are the lattice space increments in the z-, y-, z-coordinate di-
rections, At is the time increment, and i, j, k, and n are integers. Yee used centered
finite-difference expressions for the space and time derivatives that are both simply pro-

grammed and second-order accurate in the space and time increments respectively:

8F”(i,j, k) _ Fn(i"i_ %7j> k) _Fn(i - %7j?k)

2
o o +O(Az?), (2.7)
OF™(i,j,k)  F"3(i,5,k) — F""3(i, 5, k) )
5 = o~ +O(AB). (2.8)

To achieve the accuracy of (2:7) andstemealize all of the required space derivatives of
equations (2.2), Yee positioned:the.components of E and H in an unit cell of the lattice as
shown in Figure 2.1. To achievehe accuracy of (2.8), Yee used a leap-frog algorithm which
evaluates E and H at alternate half time steps..The followings are sample finite-difference
time-stepping expressions for a magnetic and an electric field component resulting from

these assumptions[13]:

8 .
o "y Hy(i-1/2,j,k+1/2)
VA > = — "
o & 77 N
ut ,,,,,,, &
S 7 ¢ | =
| , SN o
| Z L ! T
| TRyQ+1/2,],k41/2) - I b,
- | | | | N
< ! ! | g ! AL
= ! S sl I R I
= oy ] [ ~ o E
I 1,7 (I | = |-
= ~> 9 I v
5# o \\,‘p ! Ejt//‘m'] 1/2,k)
= P -
E o R e T - —== |
| &y 1 | |
| | | |
| | |
! T —> T N
| ! | ¥
| | 1,’ ‘-x\\’\/
”””” T AT TR
I S
i
Hy(i+1/2,j,k-1/2)

Figure 2.1: Yee’s unit cell.



n+ L 1 1 n—L 1 1 At
Hx+2.. R IO TR S At
(0] +5.k+3) (4] + 3 +2)+M0
L | |
X{E[Ey(zv.]—i_iuk—i_l)_Ey<l7j+§7k>]
1 1 1
—|E™(i, 7 —)— E"(i,4 — 2.
B2+ 5) = B2k + 3l (29)
1 1 At
EN i g k4 =) = EXiyj b+ =) + ————
) S R ) R D
L 1 n-t 1 1
(g2 - Sl W & I -
1 n+l . 1 1 n+i, .. 1 1
—H: 2 ) __>k =) —Hy 2 ) ) a .

(2.10)

With the system of finite-difference equations, the new value of a field vector compo-
nent at any lattice point depends only on its previous value and on the previous values of

the components of the other field veetor atladjacent points.

2.3 Heaviside-Lorentz Unit System

Under the consideration for aumerical precision and the efficiency of calculation, we
will use Maxwell’s equations in the Heaviside-Lorentz unit system and set the velocity of
light in vacuum ¢y equal to 1 in practice. Table 2.1 shows the definitions of g, g, D, H,
macroscopic Maxwell’s equations, and Lorentz force per unit charge in various systems
of units. Now the sample update expressions (2.9) and (2.10) in Heaviside-Lorentz unit

system reduce to:

ntd, o1 1 n-t 1 1
Hx+2(’l,j+§,]€—|——):Hx i gkt )+ A

2 2
A= (BN (i, j + 2 k1) = E™(i,j + = k)
Az Y 2 Y 2
B2 K+ ) — B2k + ) (211)
B i, 5,k + %) =E"(i,j, k + %) + &:@f—/z+§)
X {Aix[ﬂﬁ(i + %]k + %) —H - %Jk‘ + %)]
bR = okt ) I gk ) (212)

where ¢, is dielectric constant of the material.



Table 2.1: Comparison of Maxwell’s equations in different unit systems.

System MKS Gaussian Heaviside-Lorentz

€0 e 1 1

1o Ar x 1077 1 1

D D=c¢E+P D =E + 47P D=E+P

H H:u—loB—M H=B - 4rM H=B-M
V-D=p V-D =4mp V-D=p

Maxwell’s VxH=J+2 VxH=%2J4+1® vxH=1J+2)

Equations VxE+2 =0 VxE+12 =0 VxE+1%8=0
V-B=0 V-B=0 V-B=0

Lorentz Force E+vxB E+ I xB E+YxB

2.4 Sullivan’s Implement for Perfectly Matched Layer
Absorbing Boundary::Conditions

The size of domain that can be simulated using the FDTD method is limited by the
computer resources. And thesvector field components at the lattice truncation planes
cannot be computed using the<gentred-differencing approach discussed earlier because
of the absence of known field data at; points outside of the lattice truncation. In our
problem the boundary condition must be consistent with Maxwell’s equations in that an
outgoing scattered wave must exit the simulated domain without nonphysical reflection,
to simulate extending the finite size domain to infinity, just as if the lattice truncation is
invisible. Therefore a suitable absorbing boundary condition(ABC) of the computation
domain must be employed.

One of the most efficient ABCs is the perfectly matched layer(PML) developed by
Berenger[14], who employed a fictitious, directionally dependent pair of electric and mag-
netic conductivities for the purpose of absorbing outgoing waves and minimizing the
reflection back into the problem domain.

In 1996, Sullivan proposed an easier, and more efficient method to implement the
PML ABCJ15]. The initial implementation of PML required the E and H fields to be
split. By the introduction and delicate arrangement of the ¢g’s and f’s coefficients in his

paper, Sullivan used an unsplit PML scheme in the three-dimensional(3D) FDTD method.



In addition, he used displacement fields instead of electric fields in the traditional FDTD
iteration. This required one more step during the iteration to calculate electric fields from
the displacement fields, thus more time of calculation. The following shows the update

expressions of D, and H, in z-direction for example:

-D, case:
nol 1 1 n—1 1 1
lih:[HZ 2 (e _7' _7k _HZ 2(e _7-__7]{:
cur (Z+2j+2 ) (Z+2j 5 )
n-t 1 1 n-t 1 1
_H?J 2(Z+§ajak+§)+Hy 2(Z+§7]ak_§):|7
1 1 1
I (i+ 300 k) =Ip"(i+ 310 k)4 0.5 x gil(i + 5) x curl_h,
1 1 1
D™(i + 5 k) =D (i + 59 k) + 0.5 x (curl-h + I}, (i + 5 k)) (2.13)
-H, case:

1 1
curl_e :[E;;(z',j 5.k 1) = Byl + 5, )

1 1
SB S k 4+ 5) + B2k +5)].

ntd o1 1 =A% 1 L
IHZQ(z,j+§,k+§) :IHwQ(z,j—i-é,k—Fé)—i-O.S X fil(i) x curl_e,
ol 1 1 i 1 1
G ik I i L e !
(0] + 5.k +35) Ud g B 5)
n—i—l .. 1 1
+0.5 % (curle + I, 2(@,j+§,k+§)) (2.14)

For good absorption, Sullivan’s g’s and f’s coefficients in the PML region are verified

experimentally to be[16]:

fil(i) = zn(i), (2.15)
gi2(i) = (HTln(@)> (2.16)
gi3(i) = (%28) (2.17)

i

W)g fori=1,2,...,length_pml and length_pml is the number

where zn(i) = + x (
of layers of PML as it goes from the PML region in z-direction into main problem domain.
Throughout the main problem domain, fil is zero, gi2 and gi3 are 1, thus the update
expressions reduce to the typical update expressions (2.9) and (2.10) in Yee’s algorithm.

gil, fi2, and fi3 are similar but with some slight differences, only in that they are
computed at the half intervals (i + 3).



2.5 My Implement for PML ABC

Sullivan used equal grid sizes in z-, y-, and z-directions and MKS unit system in
his paper. I've made some modifications in his code to adapt the conditions of unequal
grid sizes and Heaviside-Lorentz unit system. In addition, I’ve made a simplification in
my simulation. The electric fields are directly calculated without calculating displacement

fields first. The followings are sample code for implements for £, and H, for all directions.

-E, case:
nl . nol .
A R N Ea X Rt (e S R )
_ Ay ,
nol . nl .
dthy:[_Hy 2<Z+%7j7k+%)+Hy (2+%7]7k_%)]
— AZ )
1 1 1
1 1 1
I&w@%—?jjﬂ:JE$@+—?j$ﬂ+thgﬂ@—%§)xdﬁjw,
1 1
+95207) Bgk20E) e L
- i salit 57, k)
. . gl - P
X [dszhz -+ d’lf-hy i [Em,z(l 2% 5?]7 k) + IEoc,y(Z + Ea]? k)] : (218)
-H, case:
ErGi,j+ i k+1)—-ErG,j+ 31k
dz’f,ey:[ y (6,7 + 5 ) y (] + 5 )],
dz
—E"(i, 5+ 1L, k+ Y +E, 5 k+ 1
dz’f,ez:[ 20+ Lkt 5) + B, +2)],
dy
e FTIPUE SPUNE A DO D NP
IHz7y<Z,j—{—§, —1—5) :IHx,y(Z7J+§7 +§)+ t x fil(i) x dif_ey,
ntt 1 1 n-t . . 1 1 . .
[foz(z,j + §,k+ 5) :[foz(z,j + §,k+ 5) +dt x fil(i) x dif ez,
ntt, .1 1 - n-1. . . 1 1
HE 2(27j+§7k+§) :fj?)(])Xf/{}g(k’)XHx 2(Z7j+§ak+§)
172(5) % fR2(k) x dt x [dz'f,ey+ dif ez
S | 1 | 1
+&£@J+§$+§%ﬁ%éﬁd+§$+§». (2.19)

10



2.6 Bloch’s Boundary Conditions for Periodic Struc-

tures

Bloch’s theorem tells us that if the electromagnetic fields are in a dielectric structure
which is infinitely extended periodic in some direction, we can express the fields as the
compositions of plane waves propagating along that direction and modulated by a periodic
function in that direction.

Figure 2.2 shows an illustration of the implement of Bloch’s boundary conditions in
the FDTD method. The structure is infinitely extended periodic in z- and y-directions
with unit cell of length L, and width L,. The specified wave vector is k = (k,, k). For +x
direction, the field leaves the right boundary and re-enter from the left boundary with a
iky Lo

phase shift of e~ . The phase shift is e*®*=£= in the opposite direction. The argument

for y-direction is similar.

| & |
| exp (—iksLy) |

|
\

Ly

exp (_ikyLy)

exp (iksLx)

Figure 2.2: Bloch’s boundary conditions.

Bloch’s boundary conditions are usually used in calculating the band structures of

photonic crystals. More details will be discussed in Section 4.1.3.

2.7 Symmetric Boundary Conditions

Symmetric boundary conditions are used when one is interested in a problem that

exhibits one or more planes of symmetry. For the case of symmetry, the reflected tan-

11



gential components of electric fields with respect to the plane of symmetry keep the same
and the reflected normal components of electric fields are reversed. Whereas the reflected
tangential components of magnetic fields with respect to the plane of symmetry are re-
versed and the reflected normal components keep the same. In the case of asymmetric
boundary conditions, the situations of reflected electric fields and magnetic fields are just
exchanged.

As a conclusion, symmetric boundary behaves like a mirror for the electric field, and
anti-mirror for the magnetic field. On the contrary, an asymmetric boundary behaves like
a mirror for the magnetic field, and anti-mirror for the electric field. A visual explanation
of a symmetric boundary condition is shown in Figure 2.3 below. Careful consideration
must be given to whether symmetric or asymmetric boundary conditions are requested,
given the vector symmetry of the desired solution. More symmetry analyses will be

addressed in the next chapter.

symmetric_boundary. #asymmetric boundary

Electric T * T i
Field < =2 - | <
Components ® ® ® ®
Magnetic T l T T
Field -— - - —
Components ® ® ® ®

Figure 2.3: Symmetric boundary conditions.

In the FDTD method, applying one symmetric/asymmetric boundary condition re-
duces the size of computation domain to half of the origin, thus half the time of simulat-
ing the whole domain is saved. In Yee’s algorithm, at most three symmetry/asymmetry
boundary conditions can be applied because of the orthogonal lattice. Therefore we may
improve the speed of calculation at most eight times faster in some situation.

To calculate the tangential components of electric fields in the plane of symmetry,

the field data at points just outside of the plane of symmetry are needed for the finite

12



difference scheme. The data can be derived from the symmetry property of the data at
points just inside of the plane of symmetry. In the plane of asymmetry, the tangential
components of electric fields are set to zero directly, just as a perfect electric conductor
boundary.

For example, if we take the plane of symmetry to be the z-plane in the middle of
the whole problem domain, the computation domain is restricted to be the lower part
of the domain. For the symmetric boundary, the first term in right hand side of the
second procedure in the sample code of E, in previous section, expressed as —H;L 7%(2' +
%, 7, %k + %) where nk is the maximum index at the symmetry boundary in +z direction,
is located outside the symmetric boundary. According to the principles of symmetry, it

should be transferred to H; C2(i+ %, 7 ”—2’“ — %) Finally the modified dif _hy term becomes

"—% -1 snk_ 1
2H, *(it3.5,% —3)

o 2 depending on only the data points inside the computation domain.

2.8 Poynting Vector and:EM-Energy in Yee’s Lattice

Sometimes it is necessary tostudy the energy. flows and electromagnetic energies stored
in the structure. But the vector field components in-Yee’s lattice aren’t positioned at same
locations so it needs some tricks to implement the electromagnetic energy and Poynting
vector in Yee’s lattice.

First of all we define two operators. Let A be any component of electric fields and

magnetic fields, the differencing operator dg and averaging operator m, are defined as

follows:
. A(. .. LAE )= A(.. E=LIAE ...
QA €. ) = ALttt >A§( . (2.20)
1 1
mg[A(---,5,---)]:A(""§+§A§"”);A(””§ 2A£,...)’ (2.21)

with £ is defined for z, y, 2z, t.

The discrete Poynting vector now is written as [17]:

~

my[mHC(Ey)mt(Hz)] - mz[mt(Hy>mx(Ez)]
S=ExH =\ .y (E.)m(H,)] — [y (H. )ity (E )] (2.22)
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Note that the spatial and temporal allocations of the individual field components of
Poynting vectors are the same as those of electric fields in Yee’s algorithm. The electric

field and the magnetic field energy density are expressed as:
e|E]® = g (eEL?) + 1ty (e E)?) + . (e EL?) (2.23)

1 gl
plH|? = vy, (nHy H”*2)+m$mz(uﬂ 2Hn+2)+mzmy(u]:l: PHYTE). (2.24)

In continuous world, the power radiated from a close volume V can be expressed as the
integral of Poynting vector on the boundaries of V, said S: Preq = [,,(V-S)dr = §;S-da.
The radiated power from a box in Yee’s lattice, in analogy to real world, is expressed as

a summation:

i1 1 k1
Proa = AMZ/AZ{ > i > D S} (2.25)

i=io j=jo k=ko
where D = (dx,ciy,dz) is the discretized divergence operator, 7o and i; are the indices
of lower and upper bounds of the box in z-direction, respectively, jo, j1, ko, and k; are
similar for y— and z—directions. Simplifying this we get a much easier and faster way for
computing energy flows in to ot out of this box.

k1

J1
AyAZ = z1+
5 e )Y St
—Jok ko
Z
AzAx Z Z |J 31+5
vlj ]0—5
k=kg i=19

Al’Ay i1 J1 e k1+
DD el (2.26)

=10 j=Jjo

2.9 Time Step Issues

There are some issues of the time step At. First, At must satisfy the inequality of

Courant’s stability condition[18]:

Cmas A < , (2.27)

where ¢4, is the maximum electromagnetic wave phase velocity within the media being
modeled. Here ¢4, is 1 in Heaviside-Lorentz unit system. For the purely TE and TM
cases, it can be shown that the modified time-step limit for numerical stability is obtained

simply by setting Az = co. Second, At is relevant to the Nyquist frequency. The sampling

14



time for digital filter process is equal to the time step At in FDTD algorithm, therefore the

corresponding sampling frequency is 3% = ﬁ Hz, since ¢y is assumed to be 1 in Heaviside-

1

Lorentz unit system. The Nyquist frequency is then 54

Hz by the sampling theorem,
which represents the highest frequency that the data can produce without the effect of
aliasing. So if you want to get the information at higher frequencies, you will needed the
smaller time step interval. Finally, the more time steps going, the finer resolution in the

frequency domain. This can be derived directly from the basic theorem of discrete Fourier

transform.
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Chapter 3
Symmetry Analysis

Physical systems exhibit intrinsic symmetries which can be used to simplify the so-
lution of the equations governing these systems. Group theory is a mathematical tool
to investigate the classification of the solutions within the symmetry. In this chapter we
will focus on the Cg, group as an example which is the symmetry group of 2D photonic

crystals of hexagonal lattice.

3.1 Some Terminologies-and Useful Theorems

In this section I will give some basie knowledge of group theory and some related useful
theorems that are needed to analyze the symmetry property of photonic crystals. Instead
of rigorous definitions and theorems, I shall give some loose definitions and theorems of
group theory with examples to help us understanding the language of group theory. People

who are interested in the details of group theory may consult books of group theory|[19].

3.1.1 Basic Concepts of Group

A set G of elements A, B, C, ...is called a group if there exists an operation which
associates any ordered pair in G with a third element in G. This operation, often called

W

multiplication or product, and marked as “-”, satisfies the following requirements:
1. The associative law: A-(B-C)=(A-B)-C.

2. There exists an identity element E so that the product of ' and any element in G,
said A, is A itself.
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3. For every element A in G, there exists an inverse element A~! so that the product

of A and A~! is identity.

An element B in G is said to be conjugate to A if there exists a group element R such
that B = RAR™'. A class is a collection of mutually conjugate elements of a group. The
number of elements in G is the order of the G. A group is a finite group if this group has
a finite number of elements.

A physically important example of a finite group is the set of symmetry operations
which are the covering operations of a symmetrical object. By a covering operation, we
mean a transformation which would bring the object into a form indistinguishable from the
origin one. In a crystalline structure, the covering operations are consisted of translations
of multiples of integer of lattice vector(which is called primitive translations), rotations,
reflections, and compositions of them. The complete set of covering operations is called
the space group of the crystal. The group of operations which is obtained by setting all
translations in the space group elements €qual to zero is called the point group of the
crystal. It has been shown that .there afé/only. 32 point groups in a crystal system[19].

The symmetry group of hexagonal latticé is the-point group Cs, = {F, Cs, Cg ', Cs,
Cit,Cy 0,0, 0" 0, a,,0,}. The gyfrmetry operations are shown in Figure 3.1. The
classes of Co, = {(E), (Cs, C ') (€5, C5"), (g3,07,,0%), (Ca), (04,0, 0))}, or written by
Cev = {E,2Cs,2C5,Cy, 304, 30, }.

Figure 3.1: Symmetry operations for two-dimensional hexagonal lattice.

In momentum space the first Brillouin zone of a hexagonal lattice, as shown in Figure
3.2, is a hexagon. Therefore the point group in momentum space, denoted by M, is again

Csy. The star of k (xk) is the set of wave vectors generated by applying all the operators
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of M to k. When k touches the zone boundary, two wave vectors of xk may be equivalent
if there is a displacement of a reciprocal lattice vector G between them. They must be
treated as identical. For example, kg, kg, and kg, are treated as identical one because
there is a difference of a reciprocal lattice between them. And the set of wave vectors

kr,, kk,, and kg, are similar. So xky is {kg,, kx, }
ky

Ke M; K
M6 M2

Ks Ky Ky

Figure 3.2: First Brillouin zone of a hexagonal lattice. K stands for the set of all K; and

M stands for the set of all M; fordi=1---6.

The point group of a given wave vector k, denoted by My, is the subgroup of the
point group of M that consists’of all*the rotations of M that rotate k into itself or its

equivalent vectors. We can easily verify that: My,, is Cs, and My, is Cs,.

3.1.2 Representation of a Group

Two groups are isomorphic when an unique, one-to-one correspondence exists between
their elements in such a way that products correspond to products. A (faithful) represen-
tation of a group is a matrix group to which the group to be represented is isomorphic.
Thus, it consists of the assignment of a matrix [ to each group element in such a way
that I'(Ry)['(R2) = I'(R1R2) holds true for all matrices I'.© The number of rows and
columns in a representation matrix is called the dimension of the representation. Simi-

larity transformation of I" is to multiply a non-singular matrix S in front of I' and S™1

after T'.
I'' and I'? are two representations of G with dimensions /; and l5. A new representation
Fl
can be generated. I' = The representation I' is called the direct sum of the
0 I?
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representations I'' and I'?, expressed as I' = I'" @ I'"2. Representations which can be
transformed into direct sums by similarity transformations are called reducible. If such a
transformation is not possible, the representation is called irreducible.

Each irreducible representation has its own spatial symmetry which is expressed by
its character. We define the character of the representation I' of group element R as the
trace of the matrix I'(R), indicated by x(R). It is interesting to know that the character
of the representation will be invariant during a similarity transformation. It is convenient
to display the characters of the various representations in a character table for any given
group. The columns are labeled by the various classes, and the number of elements in the
class. The rows are labeled by the irreducible representations. The entries in the table

are the characters of corresponding representations and classes. The character table of

Cs, 1s shown in Table 3.1.

Table 3.1: Character table for the Cj,.

Coo | B 205102C5 Cy 30, 30,
Ay | A 1 1 1 1 1
As 'l 1 el -1 -1
By £l -t 1 -1 1 -1
By | 1 -1 101 -1 1
B2 1T 2 0 o0
Bl 2 -1 -1 2 0 0

Here are some important theorems for the characters of representations:

e The number of inequivalent irreducible representations of a group G is equal to the

number of classes of G.
e The characters of group elements in the same class are equal.

e The dimension of the representations is equal to the character of the identity ele-

ment.

e The sum of the squares of the dimensions of all irreducible representations is equal

to the order of the group.

e Two representations are equivalent if their character systems are equivalent.
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e A representation is irreducible if ) |X(R)|2 is equal to the order of the group G.
Reg

e Two orthogonality relations:

D X' (RN (R) = g6y, (3.1)
Reg

. 90ij
;Xk(Ti) X (T;) = N, (3.2)

where x* stands for the character of I'?, ¢ is the order of the group, and N; is the

number of elements conjugate to T;.

For any reducible representation there is an unique way to reduce it into direct sum
of irreducible representations. So if you can find a combination that works it is right.
Here is a simple way to check the multiplicity m;(T") of the irreducible representation I
contained in a reducible representation I.

1 % *
mi(T) = =3 " x(R)X'(R)", (3:3)
9 Reg
where y stands for the character of I, %/ for the character of I'?, and g for the order of

the group.

3.1.3 Basis Functions and Proejection Operators

Now we define the basis functions of the i** irreducible representation I'? for an arbi-
trary scalar function ¢(r)(¢ for simplicity). Two labels are needed for a basis function.
One is for the irreducible representation and the other is for the row within the represen-
tation. Let a basis function belonging to the n'* row of I'* be denoted by ¢! . The other
functions ¢!, required to complete the basis for the representation are called the partners
of the given function.

The acting of a symmetry operation, said R, on ¢ can be expressed as PR¢(I') =
¢(R~'r). When R acts on a vector field ®(r), both the field vector and the argument are
altered accorading to: Pr®(r) = R®(R~'r). By this definition the result of operating
with an element R of the group on ¢! can be expressed as a linear combination of ¢!, and

its partners as follows:
l;
Prgt, = > ¢4 (R)mn, (3.4)
m=1

where [; is the dimension of the representation.
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L
¢ may be expanded as a sum of basis functions: ¢ = > > ¢!. We should note that
i n=1
this is not an expansion like the Fourier series. We don’t expand a function with respect
to an orthonormal complete set of functions here. The set of functions ¢! depends on ¢

itself. They can be found by means of the so-called projection operators.

. ll . o
9 RegG
Prnd = ¢, (3.6)

where g is the order of group G. The partners of ¢! are then obtained by ¢! = P & .

Also note that the operator P!, requires the information of the full representation
matrices. There is an easier projection operator, denoted by P?, which brings less-detailed
results by using the information of only the characters of the representation. P* carries ¢
into the part of the i** representation.

P = WPl % > X'(R)"Pr (3.7)

REg

P (3.8)

As a trivial example, consider thegroup €', consisting of the identity and the re-
flection operator o which takes z/imto. —x. This group has two classes and has two

one-dimensional irreducible representations. The character table is Table 3.2.

Table 3.2: Character table for the Cy.

Clh FE o
A 1 1
B 1 -1

(E—6).
(o(x) +
¢(—x)) and P2¢(z) = 1(¢(z) — ¢(—x)). It reflects the fact that any function can be

Hence, the projection operator of I'! is P! = %(E—l—&), and that of I'? is P? =

N—= N

Operating on an arbitrary function ¢(z) yields the basis functions Pl¢(x) =

expressed as the sum of odd and even functions constructed as above and that any odd

function is orthogonal to any even function.
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3.2 Classification of Defect Modes in Hexagonal Lat-

tice

3.2.1 Symmetry Group of Photonic Crystals

The eigenvalue equations of Maxwell’s equations in photonic crystals are given by[20]:

1 w?
LuH(r) =V x (er(r)v x H(r)> = SH), (3.9)
LpE(r) = grtr)v x (v x E(r)) - CZ—QE(r), (3.10)

Analogue to the case in quantum mechanics, the group of these equations is formed by
the space group of the photonic crystal which transforms e, (r) into itself when the group
of Schrodinger’s equation is determined by the potential function V(r).

One can prove that any symmetry operator belonging to the point group of 3D pho-
tonic crystals commutes with L5 and £y Lhis exhibits the ability to classify the modes
of equations (3.10) Ey,(r) and +Hy,(r)-accordinig to the irreducible representations of
the group My in momentum space, just as+the. treatment to Schrodinger’s equation in
quantum mechanics.

However, there is something important to besnoted. The symmetry of the magnetic
field and that of the electric field are generally different from each other, as the former is
an axial vector field whereas the latter is a polar vector field. The character for magnetic
field differs from that of electric field by a multiple of the determinant of the operation.
The determinant is +1 when the operation is proper transformation, wheras a determinant
of —1 is derived for improper transformations. That means the characters of improper
transformations for magnetic fields need to change sign from the origin.

Electromagnetic fields can be classified into pure TE or TM modes when the structure
has mirror symmetry and continuous translational symmetry in z-direction. In other
words, the dielectric constant of the structure remains constant and extends to infinity in
z direction. Now the eigenvalue problems for TE and TM modes in 2D photonic crystals

are given by[20]:
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2) __ (9L 9 9 1 9 _w
‘CH HZ(W) - <a£L‘ 87«(1‘”) or + ay €r<rH> ay)HZ(rH) - 2 HZ<r||)7 (3'11)
1 0? 0? w?
Ly B (r)) = “o (@ + a—yg)Ez(rO = 5 L)), (3.12)

respectively, where r| denotes the in-plane position vector (z,y).

Like the 3D case of photonic crystals, we should note that Eg) and £g) commute with
the 2D symmetry operations belonging to the point group of the 2D photonic crystal.
Therefore the electromagnetic fields can be classified according the irreducible represen-
tations of the k-group My.

Since no 2D symmetry operation changes F, or H,, we can observe the symmetry
properties of the modes just from the scalar field E, for the TM polarization and the

scalar field H, for the TE polarization for 2D photonic crystals for convenience.

3.2.2 Symmetry of 2D Photonic¢:Crystals of Finite Thickness

In actual case the 2D photonic ¢rystal slabs.are surrounded by air in the z direction.
The symmetry group of this structure is Dg,, which is a direct product of Cy. and Cyy,
point groups:

Dep=1C¢y < Cyy,

where ('}, consists of the identity operation and the mirror reflection by the middle plane
of the slab, .. The character table of C};, is shown in Table 3.2. Thus the middle plane
of the slab can be taken as a symmetry boundary for o, = +1 to save the computation
time. On the contrary, it can be taken as an asymmetry boundary for 0, = —1. The
modes for o0, = +1 are the so-called TE-like modes. And those for o, = —1 are TM-like
modes. The dominant components of electromagnetic fields of TE-like modes are E,, E,,
and H, while other components are small and close to zero for a slab thickness around
A/2. Here we take the A to be around the mid-gap. The situation of TM-like modes is
similar, the dominant components are H,, H,, and E,.

From now on we will focus on the discussion of symmetry to TE-like modes, which is

pure TE mode and has only magnetic component H, in the middle plane of the slab.
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3.2.3 Symmetry of Defect Modes

A small variation of dielectric constant in a small region within the photonic crystals
can be seen as a perturbation of modes of photonic crystals without defects. Enlarging a
hole creates acceptor modes in photonic crystal band gap, which is the analogue to the
acceptors in electronic states in a crystal. Similarly, reducing the radius of hole creates
donor modes in analogy to donors in electronic states in a crystal[21]. The easiest way to
create donor modes is to remove single air hole from array of holes of hexagonal lattice
arrangement. For the coordinate system in which origin is at the defect center, the space
group and the point group are still C, as before. The defect modes are attributed to
the irreducible representations of the Cj, point group. There are four one-dimensional
representations and two two-dimensional representations for the Cg, point group.

The modes at photonic band edges are used as a symmetry basis to generate approxi-
mated forms of defect modes[4]. The minimum in air band occurs at M-points. Therefore
donor modes can be approximated hy tthe unperturbed Bloch modes in air band edges.
On the contrary, acceptor modescan besapproximated by the unperturbed Bloch modes
in dielectric band edges.

Let us find the symmetry hasis of inperturbed Bloch modes at the band edges first.
A symmetry basis for the modes of the photoni¢ crystal at the M-point can be found by
projecting the seed Bloch modes B,y,, to the representations of the group of the wave
vector My, (=Cs,). The B! corresponds to the dielectric band mode and B} to the air

band mode. A set of basis functions for modes in air band edges can be found:

sin(kar, - 7))
CB% =z sin(k’M2 . r”) , (313)
SiIl(kZMS : 7’||)
where the superscript stands for the wave vectors and the subscript stands for the repre-

sentations of the corresponding group of those wave vectors. Similarly, the basis functions

for modes in the dielectric band edges should be:

« efikKl-rH _i_efing-rH + efikKS-rH
VBE =z § . § (3.14)
e R T L e T WKL T | T KT
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The representation of the C’Bfg1 basis under the operations of Cg, can be written as

the following six matrices:

100 -1 0 0 0 0 1
g (E)=1010 |[.TgC)=] 0 -1 0 |[,Ie@)=| -1 0 0],

001 0 0 -1 0 —1 0

0 10 1 0 0 -100

I'e(C)=1 0 01 [, Teg(o)=]10 0 -1 [.Te()=]| 0 01

-1 00 0 -1 0 0 10

This representation equals to £y @ BY. Using the projection operators on C’B%, a set of

basis functions for £ and BY appears as follows:

B%li, = Z(sin(kar, - 7)) — sin(kag, - 7)) + sin(kag, - 7)), (3.15)
B | = z(2sin(ka, - ry) + sin(kag, - ry) — sin(kag, - 7)), (3.16)
BE = Z(sin(kyy, - r) + sin(kag, - 7). (3.17)

The B]‘i,li/ mode transforms liké a hexapole, whereas the doubly degenerate modes B

transform as an (x, y)-dipole pait.

3.3 Some Design Rules

In real space the design of cavities of high quality factors lies in maximalizing the
overlap of the defect mode and the dielectric region to obtain the maximal optical gain.
In actual case, the quality factor is limited by radiation loss in the vertical direction while
the horizontal confinement can be greatly enhanced as the number of surrounding layers
of air holes increases.

In momentum space, one way to reduce the vertical radiation loss is to minimize the
power of the electromagnetic fields within the light cone of the slab. The light cone is
defined as w > c|ky||, as shown in Figure 3.3. The fields inside the light cone are radiative,
whereas those outside the light cone are guided within the slab.

If the slab thickness is too large, the structure has multi-mode in the vertical direction
which is undesirable. If the slab is too thin, the mode is not confined well within it

vertically. When the slab thickness increases, we would expect the increase of (), and the
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light cone

Figure 3.3: light cone

decrease of (). The increase of ), is due to the lowering of frequencies of defect modes
in a thicker slab causing the shrinking of the size of the light cone. The decrease of Q)
is predicted because the in-plane bandgap shrinks in size as the slab thickness increases.
Thus the control of slab thickness is important. A typical value of slab thickness of around
A/2 is usually used, where A is the:'deélengfh around the mid-gap in the material.
There is a tradeoff between the modé’ 'v:omme éhd the quality factor. The localization

of the mode in real space causes a spread of the mode in momentum space and a portion

of the mode intersecting the light Coﬁé cases) radiation loss vertically. We can improve
this by utilizing larger cavities like Seven missing holes or nineteen missing holes. But

doing this may complicate the modes in the cavity.
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Chapter 4

Simulation Results

4.1 Photonic Band Structures

Band structures of photonic crystals are dispersive relations of photonic crystals which
are often simulated by the PWE method jhecause of their periodic dielectric structures.
Besides, the FDTD method can be usedsto.calculate the photonic band structures, which
is widely used to investigate the scattering of waves in specific structures. In this section
we exhibit the results of simulation ‘of“photonic band structures using both PWE and
FDTD methods. A brief introduction of the PWE method can be found in the excellent
book written by Sakoda[20].

4.1.1 2D PWE Method

2D PWE method is used to simulate those structures which are periodic in two direc-
tions. Band gaps of TE modes are preferred by the virtue of etching periodic air holes on
materials[2], so let us focus on the 2D PWE simulations of TE modes.

Figure 4.1 shows a typical band structure of hexagonal lattice. The structure param-
eters are as follows: the reflective index of the material is 3.4, the hole radius is 0.3a, and
slab thickness is 0.4a, where a is the lattice constant. The effective index of fundamental
TE mode of this slab is evaluated to be 2.65 by the method of finite difference scheme[22].

Mode profiles can also be derived from the PWE method. Figure 4.2 shows the mode

profiles at first band edge at K-point and M-point.
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Figure 4.1: The TE band structure by 2D PWE method.

(a) K-point (b) M-point

Figure 4.2: H, mode profiles at band edges.

4.1.2 3D PWE Method

3D PWE method is typically used for the analysis of photonic band structures of 3D
photonic crystals. However, it can also be used to calculate 2D photonic crystal slabs via
some techniques. When defining the dimension of supercell in the direction perpendicular
to the slab, a margin of air of at least twice broader than the slab thickness is needed above
and below the slab. It benefits from that the coupling between the modes of adjacent
slabs is negligible. Figure 4.3 shows the band structure of the identical structure as in
Section 4.1.1. Note that we have chosen the symmetry plane to be at the middle of the
slab. Thus it is a band structure of TE-like modes of the slab.
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Figure 4.3: The TE-like band structure by 3D PWE.

4.1.3 3D FDTD Method

In Yee’s lattice, it is difficult to'form i unit cell of hexagonal lattice which is a
rhombus in orthogonal grids. Thus we use a rectangular domain containing two unit cells
shown in Figure 4.4:

We assume the in-plane periodicity extends to infinity for the convenience to apply
Bloch’s boundary conditions with"a specific wave vector at all four sides of the domain.
The procedure of Bloch’s boundary conditions is discussed in Section 2.6. Open boundary
conditions such as PML ABCs are applied to the upper and lower boundaries in the

directions outward and inward to this paper.

@ source

M monitor

Figure 4.4: Double unit cell and the locations of sources and monitors.
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A short impulse is used as the excitation source. One should note that the source
should have a dual source at the other unit cell in the domain. And there is a phase
shift of e~ between them, where a is the lattice vector of unit cell. To avoid neglecting
all possible modes, time monitors are randomly chosen at three positions to record the
time signals. Then we collect the three time signals and add them as a new signal.
Normalize this signal with maximal amplitude. Apodize them using Gaussian function to
exclude the undesired frequencies. Chirp z-transform the signal with a range of frequency
of interest to observe the frequency response. To obtain the band structure we have to
repeat the procedure of Bloch’s boundary conditions with wave vectors along the edges of
irreducible Brillouin zone in k-space. As an example, the band structure of a hexagonal
lattice is shown in Figure 4.5. The TE-like photonic band gap is ranged from a/\ = 0.288
to a/\ = 0.364. Note that the missing points may result from the abandoning of small

signals of 1/1000 smaller than the maximum peak.
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0351 T
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Figure 4.5: The band structure by the FDTD method. (r/a = 0.3, d/a = 0.4, n = 3.4)
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4.2 Defect Systems

In this section, the refractive index of the material is fixed to be 3.4. This implies that
here we are not concerned with the dispersive media and lossy materials so that n is taken
to be a frequency-independent real constant. The ratio between the slab thickness and
the lattice constant d/a is chosen to be 0.4. The defect is formed by removing a single
air hole from array of holes of hexagonal lattice arrangement on a dielectric slab. The
number of layers surrounding the defect is five.

We have also designed some new structures by gradually increasing or decreasing
the hole radii as the surrounding layers go outward the defect. Figure 4.6 shows these
designs. The ranges of photonic band gaps of photonic crystal slabs of hexagonal lattice
without defects vs different r/a are listed in table 4.1 for references of our structures. The

calculation procedure has been described in previous sections.

Table 4.1: Comparison of photonic band. gaps using different methods. The frequencies

are taken to be normalized (a/\):

method r/a 0:26 - 028 030 0.32 0.34
2D PWE air band edge 0.303/20.318 0.336 0.356 0.378
(negs = 2.65) | dielectric ‘band-edge 170262 0.265 0.269 0.275 0.282
3D PWE air band edge 0:330 0.335 0.337 0.340 0.343

dielectric band edge | 0.283 0.286 0.291 0.297 0.304
3D FDTD air band edge 0.330 0.346 0.364 0.385 0.408
dielectric band edge | 0.279 0.282 0.288 0.293 0.305

4.2.1 Resonant Frequencies of Defect Modes

The PWE method is still useful to determine the resonant frequencies of the defect
cavity by the use of so-called supercell scheme, which defines a larger size of unit cell
containing the defect region. The spirit of supercell scheme lies in the periodic arrange-
ment of supercell and the enough space apart from each other for small coupling between
defect modes. Figure 4.7 shows an example of the band structure of the defect system by
2D and 3D PWE methods. A supercell containing 7 by 7 unit cells and a single defect
is used. In 3D PWE method a margin of air of twice broader than the slab thickness is
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Figure 4.6: Various patterns by changing hole radii. The radius of holes of most inner
layer is 0.3a. (a) r/a gradually decrease by 0.02 per layer outward. (b) r/a gradually
decrease by 0.01 per layer outward. (c) typical pattern without changing the hole radii.
(d) r/a gradually increase by 0.01 per layer outward. (e) r/a gradually increase by 0.02

per layer outward.
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Figure 4.7: The band structures of defect system Type C(Z is fixed to be 0.3) by the 2D
and 3D PWE methods.

used in the direction perpendicular to the slab. In 2D case, Two degenerate defect modes
of normalized frequency around 0.31 in the photonic band gap are observed. In 3D case
this frequency is around 0.323.

Now adding a defect provides the existence of the defect modes inside the gap though
it breaks the translational symmetry. So Bloch’s boundary conditions can no more be
applied to obtain the band structure by the FDTD method. Although the band diagrams
of defect structures cannot be simulated by the FDTD method with Bloch’s boundary
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Figure 4.8: Excitation Signal. (o = 1024 and f; = 0.015)

conditions. There are still some tricks to locate the frequencies of the defect modes inside
the photonic band gap.

We use an excitation of a magnetic point source located at a low symmetric point
in the cavity in order to excite all defect modes in the cavity. The polarization of the
source is set to be TE polarization in which we are interested. The temporal distribution
is a short Gaussian pulse covering the $pectrum of the whole band gap and with a central
frequency located at the mid-gap frequency. The source signal can be expressed as H,(t) =
sin(27 fot) - e=*(=t0) where f 18 taken around the mid-gap frequency, ¢ and t, is in unit
of At, and « is the coefficient foriapedizing the original sine function exponentially.
Figure 4.8(a) shows the signal ag:a function.of time steps and Figure 4.8(b) shows the
corresponding spectrum. Parameters used in the calculation are listed in table 4.2.

Some data processes are performed to analyze the results. First of all, we record the
time evolution of the H, field at three chosen low symmetry positions inside the cavity

for 33792 time steps, to detect all possible defect modes. The positions of the source and

monitor 1

@ source
B monitor 2 W monitors

Figure 4.9: The locations of source and monitors.
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Table 4.2: Parameter table.

parameter value
Ax 1
Ay V3/2
Az 1
At 0.54

size of domain (number of grids) 260 x 260 x 88

lattice constant a 20
number of PML layers 8
mesh refinement 1000
source shift* (7,3,0)
monitor 1 shift* (5,7,0)
monitor 2 shift* (3,-8,0)
monitor 3 shift* (—1,1,0)

tNumber of small grids for smoothingthe distribution of dielectric constant in each Yee’s unit cell.

*The shifts are from the center of thelstrueture i.unit of the corresponding grid sizes.

the monitors are shown in Figure 4.9. -Then we do fast Fourier transformation to the
collected time domain signals te. get the frequency responses. The results are shown in
Table 4.3 and Figure 4.10. Two interesting phenomenons are observed. There exists a
shift of frequencies as the hole radii changes. And the donor mode seems to be enhanced
as the hole radii increasing per layer outward, whereas the acceptor mode seems to be
suppressed. Moreover, the changing of the radii of holes reduces the first peak greatly. To
describe the effect explicitly, we have to use the quantity “Q” to measure the “quality”

of the modes in the cavity[23]. We'll discuss this later.

4.2.2 Mode Profiles

In 2D PWE method, the eigenvectors of the problem correspond to the mode profiles.
Some mode profiles at high symmetry points in momentum space are shown in Figure
4.11.

The mode profiles can also be generated by the 3D FDTD method. Typically it
is convenient to choose a random field as an excitation. The fields not belonging to

resonant frequencies will disappear in a short time, and any fields which can oscillate in
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Table 4.3: Normalized peak frequencies. monior 1
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Figure 4.10: The corresponding spectrums.

the resonator become resonant modes. But it is difficult to remove the undesired modes
completely. And the ratio of components of composite modes depends on the choice of
initial field.

Since Painter et al.[4] showed that the defect modes behave like F; mode under the
symmetry group of Cg,. The cavity mode is excited by TE-polarized magnetic point

sources(H,) narrowly peaked around the desired mode’s frequency and placed in the

36



(a) supercell

(b) T-point(1) (¢) T-point(2)

(d) K-point(1), (intensitW' (e) K-point(2), (intensity)

(f) M-point(1) (g) M-point(2)

Figure 4.11: Definition of domain of supercell and profiles of doubly degenerate defect
modes by 2D PWE method.

same symmetry as the mode of interest to avoid exciting the undesired modes.
We can further classify these modes according to (0,,0,) = (—1,+1), and (o,,0,) =
(+1,—1), which can be named as z-dipole mode and y-dipole mode respectively. Thus

the point sources of z-dipole mode are located at a shift of magnitude +3Ay and —3Ay
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Figure 4.12: Dipole modes by73D EDTD method. Light cone is shown in red circle.

in y-direction from the center with a phase difference of 7 between them to match the
symmetry conditions. For y-dipole mode the point sources are shifted from center by
+3Ax and —3Az in z-direction. And a phase difference of 7 is still needed.

Figure 4.12 shows the doubly degenerate defect modes labelled by E; symmetry and
the corresponding Hz fields in momentum space. One should note that the dipole mode
profiles in momentum space are consistent with the criterion of symmetry analysis of
donor modes equations (3.16) and (3.17). The dominant Fourier component of x-dipole
mode is £ky;,. The second dominant Fourier components of z-dipole mode are £k,

and *kys,. While the dominant Fourier components of y-dipole mode are just £k, and

hing,
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4.2.3 Quality Factors

The quality factor(Q) of a defect mode is defined as follows: @ = woU/P, where wy is
the resonant frequency of the mode, U is the stored electromagnetic energy, and P is the
radiated power, both U and P are time-averaged. () can be further divided into in-plane

part () and vertical part @ :

1 P PP 1 1

= = + :__i__,
Q wlU wU wU Qi Q

where ()| stands for the degree of confinement in-plane and (), stands for that in vertical
directions. This definition of () is equivalent to that found by fitting parameters from
U=Upe 2"

The quality factor can be derived from the FDTD simulations. The excitation is the
same as that described in the previous section. The defect mode is excited using point
sources narrowly peaked at the resonant frequency of the mode and located according to
the symmetry of the mode to excite the'mode:of interest. Then we record the electromag-
netic energy stored in the cavityzand théintegral of the Poynting vectors over the surface
of the domain as the radiated power. P, is‘measured at +2a above and below the slab,
where a is the lattice constant. ‘AndiPis measured-on the other four sides of the domain.

The simulation results are shown#in:1able 4.4.

Table 4.4: The quality factors.
Type | Q1 Q Qe QF
Type A | 282 443 172 170

Type B | 276 1032 218 213
Type C | 287 1325 236 231
Type D | 303 1524 253 247
Type E | 321 1671 269 264

*Q' is derived from fitting parameters

We can observe that @) increases as the radii increase per layer outward. It can
be interpreted that this effect is originated from the increase of averaged a_% as T goes
away from the defect center, which acts as the character of potential function in quantum

mechanics, providing the effect in analogy to quantum well structures.
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Chapter 5

Summary

First the techniques for the FDTD method including Yee’s algorithm and various
boundary conditions used for the simulation for photonic crystals are introduced. Then a
brief introduction of symmetry analysis by group theory and design rules of defect modes
of photonic crystal nano-cavities are,investigated. The modes in single defect in 2D
photonic crystal slab are doubly.degenerate dipole modes. Numerical simulations of the
band structures, mode profiles; and resonant: frequencies are obtained by both the PWE
method and the FDTD method with|various boundary conditions. Some techniques like
supercell scheme or domain containing two unitcells are employed.

For the defect modes, quality factors are‘also derived by the FDTD method. Proper
excitation is needed. The excitation of point sources narrowly peaked around the fre-
quency of the desired mode are placed according to the symmetry property of the mode.
The simulated mode profiles are consistent with the criterion of symmetry analysis.

For the design of the cavity for high quality factors, we also try to compare slightly
different structures by gradually increasing or decreasing the hole radii per layer outward.
Numerical experiments showed that a gradually increase of radii of holes per layer out-
ward may increase the in-plane quality factor of donor modes, just as the case of the

enhancement of confining electrons by quantum wells.
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