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中文摘要 

　在此論文中，我們研究了多晶矽電晶體中的電流扭結現象並且建立了從漏

電區，次臨界區，線性區到飽和區等一系列的模型。首先，從利用不同製程的薄

膜條件和操作環境，我們發現倍增率和臨界能量與薄膜品質是強相關。因此，我

們考慮缺限的分佈來修正了臨界能量，並將它導入我們所推導出已經包含了汲極

致使能障下降效應的導通區電流。至於缺限分佈, 我們乃是用計算所得與實際量

測的活化能比較所得。接著，一個可以正確表達急速導通現象的物理模型被發展

出。考慮缺限相關的表面位能和寄生BJT效應，基板電壓可被正確的模擬。最後，

我們將一經驗電場代入SRH產生-復合關係式中，並且考慮缺限態之分佈，可以

得到一新的漏電流模型。此模型可以大量減少人造參數並給予正確的物理概念。 
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Abstract 

  In this thesis, we investigated the current kink phenomenon in polysilicon 

thin-film transistors and built a series of models from turn-off, subthreshold, linear to 

the saturation regime. Firstly, through utilizing the samples from different process and 

operation condition we find that the multiplication factor and threshold energy are 

strongly related to the film quality (or trap density). Therefore, we modified the 

threshold energy by the trap state distribution and combined it into our above 

threshold current model which already includes the drain induced barrier lowering 

effect. As to the trap state distribution was obtained from a computer minimization 

method that is based on field-effect conductance measurements. Secondly, a 

physically based numerical simulation that accurately models the abruptly switch-on 

behavior of n-type poly-Silicon thin-film transistor (TFT) has been developed. 

Considering both the trap dependent surface electrostatic potential model and the 

parasitic BJT effect correlated with floating body potential, the abnormal subthreshold 

swing at high drain bias in short channel devices can be modeled successfully. Based 

on this model, body voltage can be raised even by the diffusion current under lower 

gate bias. Finally, the new leakage current model of Poly-Si thin-film transistor had 

been proposed. We introduced an empirical electrical field and the defect state 

distribution in the traditional leakage current model which is based on SRH 

generation-recombination model. This model could reduce fitting parameters 

dramatically and enhance the insight of physics. 
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shrinks to 0.5µm.  
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= 5µm (c) L = 2µm. The channel width W is kept as 10µm. 

Fig. 2-3-4. ID-VD characteristics for SPC and two hours NH3-passivation time 
n-channel poly-Si TFTs with various channel lengths: (a) L = 10µm, (b) L 
= 5µm (c) L = 2µm. The channel width W is kept as 10µm. 
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channel lengths: (a) L = 13.5µm (b) L = 4.5µm (c) L = 3.5µm. The channel 
width W is kept as 12µm. 

Fig. 2-3-6. (a) The extracted excess kink current versus the gate voltage with different 
drain voltage. As-deposited, 2hr NH3-passivation time and W/L = 10/10 
(µm). (b) The multiplication factor versus the gate voltage with different 
drain voltage. As-deposited, 2hr NH3-passivation time and W/L = 10/10 
(µm).  

Fig. 2-3-7. (a) The extracted excess kink current versus the gate voltage with different 
drain voltage. SPC, 2hr NH3-passivation time and W/L = 10/10(µm). (b) 
The multiplication factor versus the gate voltage with different drain 
voltage. SPC, 2hr NH3-passivation time and W/L = 10/10 (µm). 
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Fig. 2-3-8. (a) The extracted excess kink current versus the gate voltage with different 
drain voltage. ELA, 2hr NH3-passivation time and W/L = 13.5/12 (µm). (b) 
The multiplication factor versus the gate voltage with different drain 
voltage. ELA, 2hr NH3-passivation time and W/L = 13.5/12 (µm). 

Fig. 2-3-9. (a) Threshold energy extracted figure form empirical ionization rate. 
As-deposited, 2hr NH3-passivation time and W/L = 10/10 (µm). (b) 
Threshold energy extracted figure form empirical ionization rate. SPC, 2hr 
NH3-passivation time and W/L = 10/10 (µm). (c) Threshold energy 
extracted figure form empirical ionization rate. ELA, 2hr NH3-passivation 
time and W/L = 13.5/12 (µm).  

Fig. 2-3-10. Multiplication factor for n-channel poly-Si TFTs with different film 
re-crystallized process. The channel length and width are both 5µm. 

Fig. 2-3-11. Threshold energy for n-channel poly-Si TFTs with different film 
re-crystallized process. 

Fig. 2-3-12. Multiplication factor versus gate voltage with different NH3-passivation 
time. SPC and the channel length is 5µm and width is 10µm. 

Fig. 2-3-13. Threshold energy versus gate voltage with different NH3-passivation 
time. SPC and the channel length is 5µm and width is 10µm. 

Fig. 2-3-14. Multiplication factor vs. gate voltage under different ambient 
temperature. SPC, 2hr NH3-passivation, and channel length and width 
are both 10µm. 

Fig. 2-3-15. Threshold energy vs. gate voltage under different ambient temperatures. 
SPC, 2hr NH3-passivation, and channel length and width are both 10µm. 
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Fig. 3-0-1. The model derivation flow. 
Fig. 3-1-1. The relationship between saturation voltage and the square root of 

saturation current is traced on one straight line means that the saturation 
point occurs due to the conduction channel collapses. 

Fig. 3-1-2. The saturation voltage VD,SAT and VG-VTH versus the gate voltage VG. 
Fig. 3-1-3. The threshold voltage increases with increasing trap density and 

decreasing grain size. 
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Fig. 3-2-3. Dependence of IT-1 on temperature. 
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Fig. 3-2-4. The solid line is the best fit of the experimental data with the theory for the 
bulk and interface states distribution parameters. 

Fig. 3-2-5. Energy distribution of bulk states of the SPC and 2hr NH3-passivation time 
undoped polysilicon TFT. 

Fig. 3-3-1. (a) A high energy entering electron hits the neutral trap which is above the 
quasi-Fermi level and subsequently generated an electron-hole pair. (b) A 
high energy entering electron hits the negative charged trap which is under 
the quasi-Fermi level and subsequently “lift” this electron to the 
conduction band edge. 

Fig. 3-5-1. Comparison between measured and calculated ID-VDS characteristics for 
n-channel poly-Si TFT’s with W/L=10µm /10µm. 

Fig. 3-5-2. Comparison between conventional threshold energy(1.68eV) and our 
simulated threshold energy for n-channel poly-Si TFT’s with W/L=10µm 
/10µm 

 

Chapter 4 
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Fig. 5-3-4. Leakage current versus gate voltage (at VDS = 5V) for different values of 
parameter β  for our model. 
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Table 3-2-1. Parameters of the bulk state distribution of the SPC and 2hr 

NH3-passivation polysilicon TFTs. 
Table 3-5-1. The parameters set that is used in our numerical model. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


