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摘要 

 

 

在本論文中，我們首先提出一個環狀對稱之相位型濾波片的設計，用於緩和三階

與五階球差對系統成像品質所造成之影響。接續以上的概念，我們進一步將此設

計延伸至同時考量雙波長的情況下，改善系統對球差的容忍度。藉由使用所設計

的濾波片，光學系統對球差的容忍度已明顯地提高，但相對而言將使調制轉換函

數產生惡化。接著，我們提出一個具有四個環帶的濾波片之設計，用於使光學系

統在兩個不同的波長下，能同時達到超越繞射極限的效果。最後，我們對此論文

做了一個簡要的總結。 
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Abstract 

 

In this thesis, we first present a radially symmetric phase-only filter to help 

alleviate the effects caused by the fluctuation of the third- and fifth-order spherical 

aberrations simultaneously.  Furthermore, this idea is extended to the design of 

considering the system tolerance to spherical aberrations for dual wavelengths at the 

same time.  It has been detailed that the use of the proposed phase filter indeed 

enhances the system tolerance to spherical aberrations, but causes a reduction in 

intensity and the MTF, as a tradeoff.  Next, we present a method of designing a 

rotationally symmetric superresolving four-zone plate for dual wavelengths.  The 

system performance of the design is shown in this thesis, with discussions in details.  

In the end, we draw the conclusions. 
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Chapter 1 
 

Introduction 
 
 
1.1 Background Study 
 

Aberration theory has been a long-standing topic in the field of classical optics.  The 

elimination of aberrations is the key issue of optical design.  As we know, ray optics 

has been one important angle of view while dealing with this issue.  However, we 

may sometimes find it difficult to solve the facing problem with ray optics 

interpretation.  The wave property of light should also be carefully considered in 

most design cases.  It can be seen that, several analysis techniques, used to examine 

the image quality of an optics system, are generally developed up from Fourier optics.  

The methods of Fourier analysis play a key role in the field of optics.  Therefore, in 

the following pages, we will point out the key ideas of Fourier optics, briefly.  
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1.1.1 Linear Systems Theory Applied to Optical Imaging 

 

Within linear systems, like most of the optical systems we considered, there exist 

certain fundamental relationships, which are shown in Fig. 1.1.  The arrows indicate 

the operation required to obtain one function from another.  From what we already 

know about diffraction and the Fourier transforms, the optical systems can be 

describable with linear systems theory.  That is, a lens system forming an image of 

an object is operating within the framework of a linear system.  The lens transfers 

the spatial frequency information of the object plane to the image plane, with some 

alteration.  The impulse response translates each point of the object plane to a 

geometrically appropriate point in the image plane.   

 

 

Fig. 1.1 Linear Systems Theory Applied To Optical Systems 

 

1.1.2 Coherent Imaging 

If the waves to be added are from the same source, such that there exists a fixed 

relationship between the phases, we say that coherence is present.  Nowadays, with 

the advent of lasers, it becomes possible to obtain coherent light.  Based on the 

coherent property, the linear superposition of wave amplitudes will indeed be 
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meaningful.  If a scene is illuminated with coherent laser light and we image it with 

a lens, the following diagram, Fig. 1.2 is valid.  The spread functions and transfer 

functions are mathematical constructs which describe what the optical system does to 

the light, transferring it from object to image. 

 

 

Fig. 1.2 Imaging with coherent light, |magnification| =1. 

 

1.1.3 Incoherent Imaging 

If the waves are from effectively independent sources, even though monochromatic, 

the phase relationships of the waves converging to the image plane will not be fixed.  

The net effect can only be determined by statistical means like what a detector does.  

Thus, the only quantity describing the net effects is the average light irradiance 

(intensity), not amplitude, and this will require the linear superposition of irradiances 

(intensities).  In short, the distinction we are trying to make is between amplitude 

and intensity.  Fig. 1.3 is appropriate for incoherent illumination.  
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Fig. 1.3 Imaging with incoherent light, |magnification| =1. 

 

In both diagrams, Fig.1.2 and Fig.1.3, the symmetry of the Fourier transformations 

and inverse transformations are shown.  The Fourier transform operation makes it 

capable of producing the spatial frequency spectra of objects and images.  In the 

middle of both diagrams, an impulse response and an optical transfer function are also 

related by Fourier transforms; they are a necessary part of linear systems theory.   

 

 In Fig.1.4, the convolution theorem is applied to Fraunhofer diffraction for 

incoherent light.  Based on this diagram, the simulation results in section 4.6 of this 

thesis are computed. 

  

Fig.1.4 Fraunhofer diffraction via linear system. 
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1.2 Historical Review and  

Current Trends of Pupil Filters 
 

Optical systems designed to rearrange the energy distributions along three 

dimensional (3-D) paths near the focal spot have been analyzed extensively.  As 

what has been reported by several authors, pupil filters can be used to modify the 

three dimensional response of an optical system.  Different types of pupils, like 

amplitude-only, phase-only, or even complex-type, produce different image behavior.  

If these pupil filters satisfy certain symmetry condition, they can produce axial 

responses which are either identical or mirror reflected.  It could be very useful in 

the filter design to produce determined 3-D optical responses if we utilize the 

symmetry properties of the axial and transverse response properly.  

 

Usually, non-uniform amplitude-only filters produce effects like apodization or 

superresolution on the Point Spread Function (PSF) and they have been applied in 

several fields.  For examples, apodizers have been widely used to reduce the effect 

of aberrations.  And annular pupils have been used to achieve lateral superresolution.  

Other amplitude filters have also been applied in the fields like scanning imaging or 

microlithography.   

 

Recently, major works have been shifted to the design of phase-only filters 

because these filters may have some advantages over amplitude-only filters for some 

critical issues, such as intensity loss issue.  Different designs can be applied in 
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several fields like optical storage or scanning microscopy.  In short, the main goal of 

phase filters is to control the 3-D response of the optical system to produce lateral 

superresolution with a specific axial response.  In some cases, high depth of focus 

(DOF) is needed, while in other ones, axial superresolution is needed.  However, the 

proposed forms of the phase filters could be very complicated that limit their practical 

application.  In order to produce simple phase-filter profiles, annular phase filters or 

smooth varying phase functions are hence proposed.   

  

It should be noticed that while dealing with the design case of transverse 

superresolution with axial superresolution, the focal behavior was studied by the 

transverse and axial gains for amplitude filters.  These gains were later generalized 

for phase filters, working near the paraxial plane.  And with the use of a complex 

pupil filter, the best image plane can even be shifted away from that without filter, so 

that the gain parameters for complex filters are generalized in the surroundings of the 

shifted focus.  
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1.3 Surveys of the Previous Literatures 
 

1.3.1 Tables of Previous Literatures 

 

Year Publication Provenance 
1986  Annular apodizers for low sensitivity to defocus and to 

spherical aberration 

Opt. Lett 

1988  Axial behavior of pupil-plane filters J. Opt. A- Pure Appl. Opt

1995  Extended depth of field through wave-front coding Appl. Opt. 

1998  Phase pupil functions for focal-depth enhancement 

derived from a Wigner distribution function, 

Appl. Opt. 

 High focal depth with a pure-phase apodizer Appl. Opt. 2001 

 Electronic imaging using a logarithmic asphere Opt. Lett. 

2002  Phase-shifting apodizers for increasing focal depth Appl. Opt. 

 Combined amplitude and phase filters for increased 

tolerance to spherical aberration 

J. Modern Opt. 

 Computational imaging with the logarithmic asphere J. Opt. A- Pure Appl. Opt

 Extended depth of field using a logarithmic asphere J. Opt. A- Pure Appl. Opt

2003 

 Phase pupil functions for reduction of defocus and 

spherical aberrations 

Opt. Lett. 

 Symmetry properties with pupil phase-filters Opt. Express 2004 

 Phase plate to extend the depth of field of incoherent 

hybrid imaging systems 

Appl. Opt. 

Table 1.1 Almanac -- Previous Publications for the Topic of Phase Pupil Filters 
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Year Publication Provenance 
1988  Axial superresolution with phase-only pupil filters Opt. Comm. 

 Diffractive superresolution elements J. Opt. A- Pure Appl. Opt1997 

 Fundamental limits of optical superresolution Opt. Lett. 

2000  Superresolution in far-field imaging Opt. Lett. 

2001  New approach to superresolution  Opt. Eng. 

 Superresolution in far-field imaging J. Opt. A- Pure Appl. Opt2002 

 Theories for the design of diffractive superresolution 

elements and limits of optical superresolution 

J. Opt. A- Pure Appl. Opt

 Design of superresolving continuous phase filters Opt. Lett. 

 Design of Three-Dimensional Superresolution Filters 

and Limits of Axial Optical Superresolution 

Appl. Opt. 

 Theories for the design of a hybrid refractive-diffractive 

superresolution lens with high numerical aperture 

J. Opt. A- Pure Appl. Opt

2003 

 Transverse or axial superresolution in a 4Pi-confocal 

microscope by phase-only filters 

J. Opt. A- Pure Appl. Opt

 Comparison of superresolution effects with annular 

phase and amplitude filters 

Appl. Opt. 

 Design and comparison of amplitude-type and 

phase-only transverse super-resolving pupil filters 

Opt. Comm. 

 Simple expressions for performance parameters of 

complex filters, with applications to super-Gaussian 

phase filters 

Opt. Lett. 

 Superresolution in compensated telescopes Opt. Lett. 

2004 

 Three-dimensional control of the focal light intensity 

distribution by analytically designed phase masks 

Opt. Comm. 

 Design theories and performance limits of diffractive 

superresolution elements with the highest sidelobe 

suppressed 

J. Opt. A- Pure Appl. Opt2005 

 Three-dimensional superresolution by three-zone 

complex pupil filters 

J. Opt. A- Pure Appl. Opt

Table 1.2 Almanac -- Previous Publications for the Topic of Super-resolution 
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1.3.2 A Brief Summary of The Previous Literatures 

 

 For the Topic of Phase Pupil Filters: 

 

In 1986, J. Ojeda-Castaneta and P. Andres proposed some heuristic arguments for 

suggesting the use of annular apodizers with the purpose of increasing focal depth and 

decreasing the influence of spherical aberration.  They showed that some annular 

apodizers can be expected to produce low sensitivity to defocus and to spherical 

aberration.  Later on, in 1988, C. J. R. Sheppard and Z. S. Hegedus presented the 

relationship between the transverse and the on-axis behaviors of various pupil-plane 

filters.  And expressions for general energy constraints associated with these filters 

were also derived.  Then in the following years, several types of pupil filters, mainly 

based on amplitude modulation, were being proposed to help control the 3-D response 

of the optical system.  But, because of the intensity loss issue, major works were 

soon being shifted to the design of phase-only filters.  Several methods for obtaining 

phase-type pupil filters, providing optimization of the axial intensity distribution, and 

giving rise to an increase of the image focal depth, were proposed.    

 

In 2003, Mezouari and Harvey presented a succinct way to design a phase filter 

with application of stationary phase approximation. By essentially developed a 

differential equation of wavefront error coefficients, it leads to the phase pupil 

function for the desired filter.  And also in the same year, J. Campos, J. C. Escalera 

and M. J. Yzuel published their study of different pupil symmetries which would 

produce a predictable image behavior.  They showed that different pupil-filters, 

satisfying certain symmetry conditions, could produce axial responses which were 

either identical or mirror reflected.  Differences in the symmetry properties between 
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amplitude-only filters and phase-only filters had also been established. 

 

 For the Topic of Superresolution: 

 

Superresolution, being able to overcome the limits of resolution, has aroused 

considerable interest.  The study of the fundamental limits imposed on the 

performance of the superresolution strategy has been given by Sales and Morris in 

1997.  Later on, several methods have been proposed to the design of superresolving 

pupil filters.  For instance, the diffractive superresolution elements (DSEs) with 

binary and multiple-phase structures were proposed by Sales and Morris; the 

three-zone binary phase filters were reported by Wang and Gan; and the 

superresolving continuous smoothly varying phase-only filters, defined to describe the 

effect of general complex pupil functions, were proposed by Liu, and Sun.  The 

comparison of the performance between those proposed pupil filters has also been 

studied.  In 2003, Ding, Li and Zhou discussed and compared the super-resolving 

characters of the amplitude-type and phase-type of filters.  Later on, Luo and Zhou 

reported a comparison of the characteristics of annular amplitude and phase filters.  

They carefully analyzed he behavior of two-zone phase and amplitude filters.   

 

Notice that the sidelobe effect is still one of the tough issues in the design of 

superresolving filters.  Recently, Liu and Yan presented a theory which could be 

used to design a diffractive superresolution element (DSE) with the highest sidelobe 

suppressed. 
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1.4  Motivation of Thesis Work 
 

The motivation of the first half of this thesis comes from the paper published by 

Mezouari and Harvey [10], in which they presented a way to design a phase filter by 

analyzing the Strehl ratio with the application of stationary phase approximation.  

We are interested in the design case of large-aperture optical systems, where 

high-order spherical aberrations have to be included.  We try to derive the phase 

filter with improved tolerance of spherical aberrations.  And also based on the 

concept mentioned above, we are curious if we can find out a form of pupil phase 

functions to minimize the variation of Strehl ratio with defocus and third-order 

spherical aberration for dual wavelengths. 

 

The well-known three-zone filter and the structure of hybrid lens sparkle the 

motivation of the second half of this thesis.  With the proposed four-zone pupil 

masks, we wonder if it can be practically used to improve the performance of the 

DVD/CD pick-up head system, through simultaneously achieving superresolution for 

two different wavelengths.   

 

 

1.5 Organization of This Thesis 
 

This thesis is organized as follows.  In chapter 2, we first present a radially 

symmetric phase-only filter to help alleviate the effects caused by the fluctuation of 

third- and fifth-order spherical aberrations simultaneously.  A performance 

 11



evaluation, including modulation transfer function, has been carried out numerically 

for the verification of the analytical approach.  Following on, phase pupil filters 

employed in minimization of variation of Strehl ratio with defocus and third-order 

spherical aberration (SA3) for dual wavelengths are being discussed briefly.  Later in 

chapter 3, we present a rotationally symmetric four-zone pupil masks for the goal of 

achieving superresolution for two different wavelengths, for which may be practically 

applied to the DVD/CD pick-up head system.  In the final section, we draw our 

conclusion.  
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Chapter 2 
 

Phase pupil functions for superior tolerance of 

spherical aberrations in large-aperture optical 

systems 
 

 

2.1 Brief History Review 
 

Among a variety of aberrations, defocus and spherical aberration are common and are 

well-recognized and manipulated optical systems along the optical axis only.  

Defocus and spherical aberration becomes serious in a larger aperture, even when 

only considering ox-axis performance.  The use of phase-only filters has been 

reported in the literature to eliminate the effect of defocus and third order Seidel 

aberrations, especially the spherical aberration [1,2].  With the use of phase filters, the 

focal depth can be extended [3~10].  Recently, Mezouari and Harvey presented a 

succinct way to design a phase filter [10], by analyzing the Strehl ratio with the 

application of stationary phase approximation [11,12]. They essentially developed a 

differential equation of wavefront error coefficients, efficiently leading to phase pupil 

function for the desired filter.  Used in an imaging optical system, the designed phase 
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filter indeed improves the image performance, and enhances the tolerance to defocus 

and the third order spherical aberration [10].  However, in many cases of optics design, 

the fifth order spherical aberration (SA5) is coupled with the third order spherical 

aberration (SA3) [13], usually by being the negative pick-up value to each other.  In 

other words, balancing some equal amounts of SA3 and SA5 is crucial in designing a 

filter for optimized reduction of spherical aberration. 

 

In this chapter, when considering the on-axis intensity distribution of an optical 

system, we add one more term that corresponds to SA5 into the wave-aberration 

polynomial. . Following the approach of Mezouari and Harvey, by requiring the 

on-axis intensity to be insensitive to SA5, we derive the phase filter with optimized 

SA reduction.  For sake of self-completeness, we revisit the approach aberration 

variation equation with an extension to SA5.  Later, numerical verification is 

provided.  At the same time, in deducing optimized reduction of spherical aberration, 

we consider the classical treatment of Maréchal [14,15] and incorporate it with the 

approach of Mezouari and Harvey.  The result is shown in the following pages.  

Finally, we give our conclusion for this section. 

 

 

2.2 Basic Theory  
 

The Strehl ratio, defined as the ratio of the central intensity in the aberrated pattern to 

the central intensity in the unaberrated pattern, expresses the effects of the residual 

wavefront aberration on the image of a point source.  It is given as 

                           ,             (2.1) 2|]),([2exp{| dAWiS
pupil
∫∫= φρπ
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where ),( φρW  is the wavefront aberration expressed as a function of the pupil in the 

polar coordinate system; dA is the element of are expressed as a fraction of the total 

area of the pupil, that is  

                                        (2.2) ∫∫ ⋅⋅⋅⋅=
pupil

dddddA φρρφρρ /

For a circularly symmetric optical system, suffering from defocus, third- and 

fifth-order spherical aberration, which are W020, W040, and W060, respectively, in terms 

of the wavefront aberration coefficients, the on-axis intensity is given by   

26
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  (2.3) 

where ρ is the radial coordinate over the circular pupil, and ρ0 is the maximal radius of 

the pupil.  Here, p(ρ) is the added phase-only filter.  For a radially symmetric pupil, 

it can be represented as 

0
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≥
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⎨
⎧

=
i

p      (2.4) 

where θ(ρ) denotes the pupil phase function.  Inserting Eq.(2.4) into Eq.(2.3) with a 

change of variable, we will get the following term:  
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∞

∞−     (2.5) 

where , )2/1)/( 2
0 −= ρρξ ()( ρθξ =Φ , and C is a constant phase term which will 

not affect the observed intensity (the integral of Eq. (2.5)) and is included for 

mathematical consideration and further manipulation in designing the phase filter.  

The pupil function is nonzero for 0≦ρ≦ρ0, corresponding to -1/2 ≦ξ≦1/2.  

 

The stationary phase approximation method is then applied to evaluate the value 

of the integral, where the stationary points are given by 
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If the exponential term in Eq.(2.3) oscillates much more rapidly than the added phase 

filter term )(ρp , the axial irradiation distribution can be approximated as: 

    |
)23(6)("
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040060060

4
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060040020 WWW
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ss +++Φ

≅
ξξ

ρπ ,        (2.7) 

where  represents the second derivative of "Φ Φ .  If we want the on-axis 

irradiation distribution to be less sensitive to the variation of the fifth order spherical 

aberration, W060, then the following equation has to be established: 

            0|
236)("

1|
040060060060

=
+++Φ WWWdW

d
ξξ

             (2.8) 

Note that Eq.(2.8) only guarantees an extreme value, which means that in order to 

ensure that the use of the derived form of the phase filter can really enhance the 

system tolerance to SA5, a further check is necessary. 

 

 

2.3 Illustration and Simulation Verification 
 

2.3.1 A Phase Filter That Has Been Developed for W040=W020=0 

Here, for the purpose of illustration, we consider a phase filter that has been 

developed for W040=W020=0 as per Mezourari and Harvey [10].  Next, one additional 

phase filter is used to tolerate SA5.  In other words, the initial condition is: W060≠0, 

W040=W020=0. 

 

From Eq. (8), the relation between W060 and "Φ  can be derived as: 

                        α
ξ

−
+−

Φ
=

)36(
''

060W                        (2.9) 
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After some manipulations [see Appendix A.1], we have the phase pupil function as:  

)ln()()()(
0

6

0

6

0
0 ρ

ρ
ρ
ρβ

ρ
ρβρθ ⋅+=            (2.10) 

where β and β o provide two degrees of freedom. 

 

 
Fig. 2.1: The Strehl ratio as a function of aberration coefficient W060, with zero 

defocus and SA3 (W020=0 and W040=0). The solid curve represents an ideal lens, while 

the dashed one corresponds to the use of the phase filter (β= 7π; β o = 0.3*β) 

 

The performance of the phase filter of Eq. (2.10) is shown in Fig. 2.1.  As 

shown in Fig.2.1, with the use of the derived phase filter (β = 7π; β o = 0.3*β), the 

system has a higher tolerance to SA5.  The boundary of tolerance can be judged 

based on Rayleigh’s criterion, i.e., the normalized intensity of 0.8 is the limit for 

fine-correction imaging.  In other words, the limit for low aberration imaging against 

W060 ranges between -1.8 and 2.8, while it ranges between -0.25 and 0.25 for an 

“ideal” lens, which is nearly approaching the case of diffraction-limited condition.  

That is, the tolerance to SA5 is improved by a factor of nine.  The shape of phase 

pupil function is shown in Fig. 2.2 for reference.  Notice that the calculated phase is 
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extended to a range from –π to π. 

 

Fig. 2.2 The shape of the designed pupil phase function. (see text) 

 

In Fig. 2.3, a plot of the transverse intensity distribution as a function of 

aberration coefficient W060 is shown.  It can be seen that, with the use of the designed 

phase filter, the transverse intensity distribution also becomes insensitive to the 

variation of the residual 5th order SA, though there is a reduction in intensity because 

of an increase of size of the point-spread function (PSF).   
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Fig. 2.3 The transverse intensity distribution as a function of aberration coefficient 

W060, (the range explored here is -2.5 to 2.5) (a) with clear aperture (b) with the filter  

 

To illustrate more clearly, let us take a look at the computed modulation transfer 

function (MTF) at different SA5s. As shown in Fig. 2.4, the MTF of an ideal circular 

lens is quite sensitive to the variation of the residual 5th order SA.   

 

 

Fig. 2.4: Computed MTF with initial setting W020=0 and W040=0. (a) Ideal lens and (b) 

with the proposed phase filter, in which the solid curve: W060=0, the dashed curve: 

W060=0.5λ, the dotted curve: W060=λ, and the dash-dot curve: W060=2λ. 
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The MTF drops rapidly as the value of the 5th order SA increases, which implies 

that the image quality is badly damaged in the case of fine resolution with a higher 

spatial frequency.  With the use of the phase filter, the MTF becomes less sensitive to 

the variation of SA5 and hence stabilizes the final image quality, although of course it 

causes a reduction in the MTF.   

 

It must be noted that there is also a reduction of 40% in the effective cut-off 

spatial frequency in the case of an ideal lens.  These reductions are a baseline in 

using the filter for practical applications of imaging optics.  For instance, in some 

metrology applications, certain amounts of contrast (35%) and image resolution 

(30lp/mm) are required for accurate image edge detection.  When applying the phase 

filter to the lens system, one should first be careful about the baselines.  Although 

the use of phase filter drops down the MTFs than those of an ideal lens, the MTFs 

become much less sensitive to the aberration and contain no zeros.  The zero-free of 

MTFs makes it possible for digital restoration of the recorded image, which permits 

an almost diffraction-limited PSF to be retrieved. 

 

 

 

2.3.2  Optimized Reduction of Spherical Aberration  
with Maréchal Treatment 

 

In this section, we will discuss the development of a phase-only filter with the initial 

condition of a fixed ratio of W040/W060.  It is known that when the axial irradiation 

distribution I is greater than 0.8, it may be approximated as 

                     2
2

2

|)2(1| EI
λ
π

−=                         (2.11) 
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where  

                                  (2.12) 22 ]),([),( ∫∫∫∫ −=
pupilpupil

dArWdArWE φφ

is the variance of ),( φrW  over the pupil of the optical system [14,15].  Based on 

Maréchal’s treatment of the tolerance theory, the value of variance E may serve as a 

useful criterion in designing a high-quality optical system [14,15].  

Cross-referencing to Eq. (2.1), W is the residual wave-front aberration on the exit 

pupil.  In this section, the main aberrations of concern are defocus, SA3, and SA5, 

and as such the wave-aberration polynomial W will be expressed as:  

                    ,                  (2.13) )0.1( 64
46

2
26 ρρρ ++= BBfW

where  and  represent the ratios of  and  

respectively, and f  is the aberration scaling factor, which is proportional to the value 

of W

26B 46B 060020 /WW 060040 /WW

060 in Eq. (2.2).  The use of the aberration scaling factor f permits the argument 

of the exponential function in Eq. (2.1) to be varied.  This helps us to analyze the 

influence on the Strehl ratio of aberrations of different magnitudes.  Maréchal has 

shown that, for spherical aberration the best form of correction (with ) 

is determined by the condition W

0/ 040 =∂∂ WE

040/W060 = -1.5 [16].  First, as a simple illustration, 

the scaling factor f is taken to be 1.  Then we take a close look at the variation of the 

maximal value of the on-axis intensity by varying the value of .  As shown in 

Fig. 2.5, the maximum occurs when the value of  is equal to -1.5, which 

corresponds exactly to the statement of 

46B

46B

Maréchal.  
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Fig. 2.5 Maximal on-axis intensity versus BB46 

 

In quite a similar way shown in section 2.3.1, we derive the pupil phase function 

for the case that  is fixed to be -1.5.  From Eq. (2.8), the relation between W46B 060 

and  can be derived as "Φ

                           α
ξ
−

−
Φ

=
6

''
60W                         (2.14) 

After some manipulations [see Appendix A.2], the pupil phase function is expressed 

as the following form: 
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ρβρθ ⋅+=                  (2.15) 

 

Now, we fix the value of  to be -1.5 and vary the value of the aberration 

scaling factor f, so that f is from 1 to 6.  With a suitable range of  values, the 

variations of the Strehl ratios are observed.   

46B

26B
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Fig. 2.6 Plot of the Strehl ratio versus B26 for different aberration scaling factors 

f, with B46 = -1.5.  (a) Ideal lens and (b) with the proposed phase filter. 

 

The computed Strehl ratios I vs  curves are shown in Fig. 2.6.  For an ideal 

lens, the maximum value of the Strehl ratio, occurs around the value of = 0.6 for 

each curve.  As the value of the aberration scaling factor increases, the maximum 

value of the Strehl ratio drops rapidly.  With the application of the phase filter, where 

β = 5π; β

26B

26B

 o = 0.3*β, the Strehl ratio of the optical system becomes much more 

“condensed” at = 0.6, although it causes a reduction in magnitude.  Furthermore, 

as shown in Fig. 2.7, with the use of the filter, even if the value of the scaling factor f 

becomes ten times larger, the normalized on-axis intensity still remains at 75% of the 

maximum value, while it drops to only 20% of the maximum value in the case of an 

ideal lens.  Therefore, with the application of the phase filter, the optical system 

26B
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becomes less sensitive to the variation of the 5th order SA.  The shape of phase pupil 

function is shown in Fig. 2.8 for reference. 

 

 

Fig. 2.7 The Strehl ratio as a function of aberration scaling factor f, with B26 =0.6 and 

BB46 = -1.5. The solid curve represents an ideal lens, while the dashed one corresponds 

to the use of the phase filter (β = 5π; βo = 0.3*β) 

 

 

Fig. 2.8 The shape of the designed pupil phase function (see text). 
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Let us now shift our focus to the issue of trade-off. The transverse intensity 

distribution as a function of the aberration scaling factor f is shown in fig. 2.9.  When 

the designed phase filter is applied, the transverse intensity distribution becomes 

insensitive to the variation of the scaling factor f. However, as a trade-off, the 

magnitude of the on-axis intensity has dropped to about one-third of the original one 

with a clear aperture.  

 

 

 

Fig. 2.9 The transverse intensity distribution as a function of the aberration scaling 

factor f  (the range explored here is 0 to 10) (a) with clear aperture (b) with the filter  
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Next, we look at the MTF performance for different values of the scaling factor, 

namely f = 0, 2, 4, 6, and 8, where = 0.6, = -1.5 are fixed correspondingly.  

As shown in Fig. 2.10, the MTF of an ideal circular lens fluctuates greatly with the 

variation of the scaling factor. When the phase filter is applied, the MTF becomes 

much more insensitive to the variation of the scaling factor, although it causes a 

reduction in the MTF, and the effective cut-off frequency now becomes 70% of the 

ideal lens case.   

26B 46B

 

 

 

Fig. 2.10 Computed MTF with (a) the ideal lens and (b) the proposed phase filter. 
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2.4   Conclusions 
 

In conclusion, we derived a radially symmetric phase-only filter that enhances the 

system tolerance to an SA5 by using the method of stationary phase approximation 

similar to the approach of Mezouari and Harvey.  Two different implementations 

have been provided. The proposed approaches of extension and its deduced phase 

filters will be especially useful in the case when the imaging optical system has a 

large size of aperture. Which one is better is, of course, dependent on the inherent 

characteristics of optical systems over the leading and different orders of aberration. 

Inclusion of Maréchal treatment in the approach of Mezouari and Harveis is an 

efficient method to deduce a phase filter with superior tolerance in defocus and 

spherical aberration as well as better system performance of imaging quality. 

 

The critical issue of trade-off is worthwhile to be readdressed; it has been 

detailed that the use of the proposed phase filter causes a reduction in intensity and 

the MTF. These reductions form the baselines in practical applications of the use of 

phase filter. Optimization has to be reconsidered in developing the filters to meet the 

performance requirements and/or system specifications. It is worth noting that the 

pupil phase function in a logarithmic form is in fact a particular solution of the 

developed differential equations. That is to say, this solution form has been obtained 

by assigning the added constants to some particular values. This is the freedom and 

the advantage of the approach of Mezouari and Harvey in deducing an optimized 

solution of phase filter. In this section, in contrast, it is the capability of “superior 

tolerance” to be addressed. In other words, one of main goals of this section is to 
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investigate how “superior” can be established in tolerance based on the approach of 

Mezouari and Harvey (an approach with solving the different equations of aberration 

coefficients). Finally, as a comment, it is a simple and straightforward matter to 

determine the extension to a higher order spherical aberration (say, the seventh order 

spherical aberration, SA7), which could be more critical in the systems with larger 

aperture.   
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Chapter 3 
 

Phase pupil filters employed in minimization of 

variation of Strehl ratio with defocus and spherical 

aberration for dual wavelengths 
 

 

3.1 Basic theory 
 

For the collimated light passing through an objective lens and a phase-shifting 

apodizer and then converging through onto an optical disk, the normalized amplitude 

distribution in the image side can be defined as [1-3]: 

              rdrruixperJrpuG
r

⋅−⋅⋅= ∫ ]
2

[)()(),( 2

0
0

max

ρρ              (3.1) 

ρ and u are the simplified radial and axial coordinates, respectively, on the image side: 

                 ZNAuRNA ⋅=⋅= 2)(2)(2
λ
π

λ
πρ                (3.2) 

where R and Z are the radial and axial coordinates on the image side. NA is the 

numerical aperture of the objective lens.  Here, P(r) represents the generalized pupil 

function, which for a radially symmetric pupil can be represented as 
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Therefore, the on-axis amplitude distribution function in the focal region can be 

expressed as: 
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Now, if we mainly consider about the effect of defocus and third order spherical 

aberration (SA3) to the on-axis performance of an optical system, the on-axis 

intensity distribution is then given by: 
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As the frequency of the incident collimated light varies, the resulting magnitude of 

defocus (or SA3) will change.  Here comes an important issue that we have to find 

out a relationship between those aberration terms and the frequencies.  If the amount 

of variation of the frequency is small, it is reasonable to state that there still remains a 

linear relation between the aberration terms and the frequency. 

  

 Note that the primary aberration terms, up to fourth order in pupil and object or 

image coordinates, can be expressed as [4-8]: 

   (3.6) θθθθ cos''cos'cos')';,( 32222234 rharharharharahrW tsdsascsss ++++=

where those five terms refer to spherical aberration, coma, astigmatism, Petzval 

curvature and distortion.  To evaluate the on-axis performance of an optical system, 

we mainly pay our attention to the first term, SA3.  And for a thin lens system, the 

coefficient ass, is given by: 
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where p and q are called the position and shape factors, respectively.  
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                     '/211)/2( SfSfp −=−=                      (3.8) 

                      )/()( 1212 RRRRq −+=                        (3.9) 

S and S’ refer to the object distance and the image distance, and R1 and R2 are the 

radii of curvature of the two surfaces of the lens. 

  

If the position factor is given, the value of the shape factor which minimizes the 

spherical aberration is given by the condition: 
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∂
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q
ass                            (3.10) 

Thus, we obtain 
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For the case that an object is at infinity and the image is at the focal plane of the lens, 

the value of the position factor p is set to be 1.  Substituting the above Eq. 3.11 into 

Eq.3.7, hence the corresponding minimum spherical aberration is obtained:  
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Thus, the wave-front aberrations for two different incident light frequencies can be 

expressed as:  
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With a change of variable, ξ= r2-1/2, we get: 
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By employing the stationary phase approximation, the axial irradiation distribution is 

given by:  

           |
)("2

1|2),(
0402

4
0

3
40201

sWa
WWI

ξ
ρπ

Φ+
≅                (3.16-1) 

               |
)("2

1|2),(
0402

4
0

3
40202

sWb
WWI

ξ
ρπ

Φ+
≅                (3.16-2) 

Notice that the stationary points for both frequencies are given by: 
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If the added phase filter is used to enhance the system tolerance to SA3 for both 

wavelengths, the following equations must be satisfied simultaneously: 
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Then the resulti e optical system is 

at the best focal plane will be written as: 
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Similarly, the independenc stribution on defocus aberration e of the axial irradiation di

                    (3.20-1) 

                    (3.20-2) 

 

 reduce the defocus erro

ible yield: 
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                     (3.21-2) 

.2  Illustration and Simulation Verification 

laser 

ple here.  Now, in order to lower down the sensitivity of 

leads to the following equations: 

Then the resulting phase functions that r when SA3 is 

neglig
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 A DVD/CD optical pick-up head system, containing 635 and 785 nm 

diodes, is taken as an exam

the on-axis intensity of this optics system to SA3, the circular symmetric logarithmic 

phase filter, described in Eq.3.19, is employed.  We first consider about the system 

performance for the wavelength which is equal to the average value of the two 

wavelengths.  How the parameters of the pupil function are determined depends on 

the system requirement of the magnitude of on-axis intensity and the range of 
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tolerance.  For instance, if we want to enhance the tolerance to SA3 for at least five 

times and still keeps the magnitude of the on-axis intensity at least one- tenth of the 

original value, we may find it a good option to set the parameters α1= 5.6π and α2= 

0.401*α1.   Then we pay attention to the variation of the intensity and the tolerance 

to the deviation of the wavelength, as shown in Fig. 3.1.  It can be seen that the 

corresponding changes of those terms to the deviation of the wavelength are still 

under control.  

 

 

Fig. 3.1 Relation among 1) the intensity and 2) the enhanced factor of tolerance to the 

deviation of the wavelength with the use of the designed filter 

ystem tolerance to SA3 

for DVD is enhanced for about seven times, as shown in Fig.3.1 (a).  Meanwhile, the 

corre

 

By setting A1 = α1*(1+0.112) and A2=α2*(1+0.112), the s

sponding values of B1 and B2 are also determined, where B1=α1*(1-0.112) and 

BB2=α2*(1-0.112), and the tolerance to SA3 for CD is improved by a factor of 6, as 

shown in Fig.3.2 (b).  However, it should be noticed that the application of the phase 

filter will shift away the position of the central peak in both cases. 
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Fig. 3.1 (a) 

 

Fig. 3.2 The Strehl ratio as a function of aberration coefficient W040, with zero 

defocus (W020=0). The solid curve represents an ideal lens, while the dashed one 

transfer function (MTF) for 

different values of SA3 for these two wavelengths is displayed in Fig. 3.3.  

Orig

corresponds to the use of the phase filter (where α1= 5.6π and α2= 0.401*α1)   

(a) for the case: A1 =α1*(1+0.112) and A2=α2*(1+0.112)  

(b) for the case: B1=α1*(1-0.112) and B2=α2*(1-0.112)  

 

A comparison between the computed modulation 

inally, the MTF is sensitive to the variation of the amount of additional SA3.  

When the designed logarithmic phase filter is used, the MTF becomes less sensitive to 
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SA3 in both cases.  However, there is a reduction of the effective cut-off frequency 

of about 45%, and a reduction in the signal-to-noise ratio. 

 

 

 

Fig. 3.3 Computed MTF with initial setting W020=0 with the proposed phase filter 

(where α1= 5.6π and α2= 0.401*α1), in which the solid curve: W0 =0, the dashed 40

curve: W040=0.5λ, the dotted curve: W040=λ, and the dash-dot curve: W040=2λ.)   

(a) for the case: A1 =α1*(1+0.112) and A2=α2*(1+0.112)  

(b) for the case: B1=α1*(1-0.112) and B2=α2*(1-0.112),  
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3.3 Conclusions 
 

 to implement the minimization of variation of Strehl 

tio with defocus and spherical aberration for dual wavelengths.  By using the 

 

In this chapter, we present a way

ra

proposed phase pupil filters, we can see that the system tolerance to SA3 is, indeed, 

enhanced.  However, as a trade-off, the use of the phase filters will inevitably drop 

down the central peak of the intensity and also the effective cut-off frequency, which 

leads to worsen the image quality.  It should be noticed that, we make some 

simplification and put some constraints in the deduction of the pupil function, which 

will also limit the use of the designed phase filters. 
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Chapter 4 

esigned for simultaneously achieving 

super-resolution for two different wavelengths 
 

 

4.1 Brief History Review 
 

ssed by Toraldo di Francia in 1952 [1].  Being 

ed by diffraction in optical systems, 

is idea has aroused considerable interest, especially in the fields of optical storage 

plitude (variab

 

Pupil filters d

Superresolution was first being discu

able to overcome the limits of resolution impos

th

and optical microscopy [2,3].  One can enhance the storage capability of a single 

compact disk by reducing the size of the focusing laser spot.  Thereby, lots of 

methods have been proposed to designing superresolving pupil filters.  At first, these 

filters were based on am le-transmittance) pupils [4-7].  Later on, 

attention has been shifted to develop pure-phase filters in order to overcome some 

drawbacks of amplitude filters: for instance, intensity loss issue [8-12].  Many phase 

profiles that achieve transverse superresolution are based on annular designs, such as 

the diffractive superresolution elements (DSEs) proposed by Sales and Morris [2], and 
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the three-zone binary phase filters reported by Wang [13,14].  For the design of 

continuous superresolving phase-only profiles, the global/local united search 

algorithm (GLUSA) is generally used [15].  However, it requires extremely complex 

phase masks to achieve the wanted performance.  In order to conquer that difficulty, 

superresolving continuous smoothly varying phase-only filters, obtained by using a 

series of figures of merit which are properly defined to describe the effect of general 

complex pupil functions, were proposed [16].  The advantages of these kinds of filters 

are that they don’t produce energy absorption and they are easy to build with a 

phase-controlling device such as a deformable mirror. 

 

 In this chapter, we present a way of how a rotationally symmetric four-zone pupil 

 is being designed, to both achieve superresolution property for two different 

.2 Basic theory for super-resolution 

 
T on for small 

displacements of the focus position from geometrical focus 

The diff  the 

tationally symmetric amplitude pupil functions, can be analyzed as follows.[17]  

filter

wavelengths.  The problems that we face in the design will be carefully discussed in 

the following pages.   

 

 

4

4.2.1 he 2nd order expansion of the intensity distributi

 

racted intensity distribution near the geometrical focus, while applying

ro

The general complex pupil function can be written as: 

                        )]exp))( (ρ[iT(ρρP ϕ⋅=                      (4.1) 
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where T(ρ) is the transmittance function, and φ(ρ) is the phase function.  Then the 

itude U in the focal reg

              

normalized complex field ampl ion can be written as: 

∫ −=
1

0

2

0 2
ρiu )exp()()(),( ρρυρρυ dJPuU               (4.2) 

Here υ and u are radial and axial optical coordinates, respectively 

                   );
2

(sin4;sin 2 ααυ ⋅=⋅= kzukr                  (4.3) 

ial and 

focal plane, the diffracted field distr

                     )()(2)0,( ρρυρρυ dJPU                     (4.4) 

Notice that the above equation is the Hankel transform of the pupil function.  Along 

the axis, we will get: 

                    

Where sin α is the numerical aperture of the system, and r and z denote the rad

axial distances.  In the ibution will be: 

∫=
1

0
0

∫ −=
1 2ρiu

0

)
2

exp()(),0( ρρρ dPuU                   (4.5) 

Now we involve the variable t = ρ2, and the pupil function P(ρ) can be written as Q(t). 

Then the field distribution along the axis can be written as:  

                      ∫ −=
1

0 2
iut )exp()(),0( dttQuU                     (4.6) 

 

Therefore, it’s clear to see that the above equation is the Fourier transform of the 

equivalent pupil function Q(t).  The pupil function is assumed as P(ρ) =1 for the case 

of achieving the diffraction limit .  Somehow, if we carefully modify the pupil 

function P(ρ), super-resolution can be realized. 
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According to the theories of Sheppard and Hegedus and De Juan et al. [7], within 

the 2nd order approximation, the transverse and axial intensity distributions can be 

expressed as: 

                     2
10

2
0 )Re(1||)0,( υυ ∗−= IIII                     (4.7) 

2
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10210

2
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4
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where * denotes the complex conjugate and In is the nth moment of the pupil function 

                          =
0

)(2 ρρρ dPIn                       (4.9) 

It can be seen that the transverse intensity is symmetrical with respect to the 

geometrical focus (v = 0, u = 0) [see Appendix B.1].  However, for the axial intensity 

this 

        

given by: 

∫ +
1

12n

is not true in general.  The displacement of focus in the axial direction and the 

Strehl ratio are given by: 
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The transverse and axial gains, which are defined as the ratio between the 
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GT and GA are greater than unity for transverse or axial superresolution, respectively.   

 

 

 41



It should be noted that Eq. 4.10 is valid only for small displacements of the focus 

position from the geometrical focus, where the second-order expansion of the 

.2.2 The 2nd order expansion of the intensity distribution to the case 

in which the best image plane is not near the paraxial focus 

J.Camp xial 

nd the transverse gain to the case in which the best image plane is not near the 

                      

intensity distribution is a good approximation to describe the focal behavior.  The 

position of the maximum intensity is given by the coordinates (0, uF).  Analogously 

to the development by Sheppard and Hegedus, expressions for the transverse and 

axial gains corresponding to complex pupil functions are obtained from the 

second-order expansion of the intensity with respect to this point. 

 

 

4

 

os, J. C. Escalera, and M. J. Yzuel have extended the expressions for the a

a

paraxial focus [see Appendix B.2].  They first search for the maximum of the on-axis 

intensities, and then they develop up to the second order superresolution factors 

around that point, say umax.  The generalized expressions for those factors are 

expressed as below:  
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Note that u0 is measur  at ued from the BIP centered

to zero for most functions of an optical system.   

 

sverse intensity distributions directly 

 the basic diffraction theory.  The transverse intensity distribution of the image 

p

.3 Structure of Hybrid Dual Focus Lens 

 CD for 

D

max, so its values will be close 

 

4.2.3 Fourier Optical Transformations 

 

It is necessary for us to give a check to the tran

from

intensity can be obtained by directly convoluting the object intensity distribution 

function with the point spread function of the optical system.  However, it could be a 

terrible job, implementing the convolution operation [19].  As an alternative choice, 

we take the Fourier transform of the object intensity distribution function first, and 

then multiply it with the optical transfer function of the o tical system.  Next, by 

taking an inverse Fourier transform of it, the transverse intensity distribution is 

obtained.  Avoiding taking the convolution operation but alternatively implementing 

the FFT (inverse FFT), it’ll help save lots of computing time.   

 

 

4
 

A dual focus objective lens of combining aspheric surfaces of DVD and

DVD/C  pick-up head has been proposed in 1996 [18].   
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Fig. 4.1 Schematics of (a) the single-ring and (b) the double-ring dual focus lens. 

 

As shown in Fig. 4.1 (a), for a lens consisting of two zones, the CD aspheric surface is 

located in the central region, while the DVD aspheric surface is located in the outward 

region.  In this way, the objective lens for both CD and DVD can be made into a 

single lens. However, as a drawback, the lens used in DVD will suffer an obvious 

side-lobe of the focusing spot.  In order to reduce the side-lobe effect of the DVD 

spot, a four-zone scheme is used, which is shown in Fig. 4.1 (b).  The CD aspheric 

surface portion is composed of the central circle area and the middle zone, while the 

inner and outward zones form an aspheric surface for DVD lens. 

 

The quality of focus spot of the designed objective lens is a function of the width 

and position of these zones, which can be numerically calculated based on the scalar 

diffraction model.  Theoretically, the focus spot of DVD and CD can be calculated 

independently when the focus lengths of DVD and CD are different.  Therefore, to 

calculate the focus spot of DVD, the region of CD is viewed as a mask, and vice 

versa.   

 

In fig. 4.2, we show the resulting schematic of ray tracing, for which light 

propagates through a singlet lens with hybrid structure designed for two wavelengths.  
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The simulated result of the transverse intensity distribution at the focal plane is shown 

in Fig. 4.3.  It tells that the intensity near the optical axis is so strong so that that the 

effect introduced by the defocusing light can entirely be neglected.  This result 

confirms the validity of making the previous assumptions in the last paragraph. 

 

Fig. 4.2 Schematic of the ray trace of a hybrid lens system 

 

Fig. 4.3 Raial intensity distribution of a hybrid lens system at the focal plane 

 

4.4  Set-up of The Four-zone Pupil Filter 
 

In order to both obtain the super-resolution property for the two DVD/CD 

wavelengths, the objective lens system is modified by adding a complex pupil filters.  

The structure of the complex pupil filter is shown in Fig. 4.4.  
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Fig. 4.4 Structure of the four-zone pupil filter 

 

For the portion of CD surface, as shown in Fig. 4.5, since the second zone 

corresponds to the region of DVD surface, the transmittance of the second zone is 

assumed to be zero.  The transmittances of the first zone and the third zone are 

assumed to be t1 and t3; and the corresponding phases of the first zone and the third 

zone are ψ1 and ψ3.  The radii are a, b, and 1.  The pupil function for CD can be 

expressed as: 
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Fig. 4.5 Schematics of the portions of the filter for CD 
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Then the following moments of the pupil function for CD are obtained:  
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For the portion of DVD surface, as shown in Fig. 4.6, since the first and third zone 

correspond to the region of CD surface, so the transmittance of these two zones are 

assumed to be zero.  The transmittances of the second zone and the fourth zone are 

T2 and T4; and the corresponding phases of the second zone and the fourth zone are 

Ψ2 and Ψ4.  The radii are c∙a, c∙b, c, and 1.  The pupil function for CD can be 

expressed as: 
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Fig. 4.6 Schematics of the portions of the filter for DVD 
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Then the following moments of the pupil function for DVD are obtained: 
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Substituting those moments into Eqs. 4.11 and 4.12, the Strehl ratio, the transverse 

and the axial gains will be expressed as: 
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On this condition, substituting Eqs. 4.14 and 4.18 into Eqs. 4.4 and 4.5, the expression 

of the transverse amplitudes for CD and DVD are obtained: 

For CD:   

         )}()]()([)4.0{exp(2)0,( 111 υυυπ
υ

υ aJaaJbJiu ⋅+⋅−⋅⋅=         (4.30) 

For DVD:   

)]}()([)]()([)35.0{exp(2)0,( 1111 υυυυπ
υ

υ ⋅⋅−⋅⋅+⋅−⋅⋅= caJcacbJcbcJcJiu  (4.31) 

 

According to 

       )0,(*)0,()0,( υυυ UUI ⋅=                     (4.32) 

Thus, we can obtain the intensity distributions along the transverse direction. 
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4.5  Illustration and Simulation Verification 
 

4.5.1 Design procedure 
 

The design procedure that we propose here has the following steps: 

 

Step 1:  

 After carefully setting up all the parameters, like the radius and transmittance of 

each zone, we use the second order approximation theory, mentioned in section 4.2.1, 

to calculate the superresolution factors, like the transverse gain, the Strehl ratio, and 

the displacement of axial focus.  Then we can narrow down the range of the 

parameter in which the wanted superresolution property may be possibly achieved. 

 

Step 2: 

 To check the accuracy of the computed result gotten in step 1, the transverse 

intensity distributions are computed directly from the basic diffraction theory without 

any approximation.  We make radial intensity scans at various axial coordinates to 

find out in where the best image plane (BIP) appears with the applicant the designed 

filter. 

 

Step 3: 

 Once the location of the BIP is found, we calculate the gain parameters for the 

filter in the surrounding of the shifted focus, as what is mentioned in section 4.2.2.  

Then we fine tune the parameters, like the transmittances of the zones, and observe 
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the corresponding changes of the superresolution factors. 

 

Step 4: 

 Similar to the action we list in step two, we give a further check to see if the 

transverse intensity distributions really achieve transverse superresolution for both 

wavelengths.  If yes, the goal is accomplished. 

 

4.5.2 Simulation Verification 
 

Step 1: 

With the condition a2+b2=1, we adjust the phase factors and the radii of these 

four zones.  For CD surface, t1 and t3 are still assigned both to be 1; and φ1 and φ3 are 

assigned to be 0 and 0.4π.  For DVD surface, T2 and T4 are also assigned both to be 

1; and Ψ2 and Ψ4 are assigned to be 0 and 0.35π.  The value of radius c is first 

assumed to be 0.7, while the value of radius a varies from 0.4 to 0.6, and the value of 

radius b is obtained from the relation b= (1-a2)1/2.   

 

With all the factors being settled down, we obtain the relation among the radius a 

and the transverse gains and Strehl ratio of such a system for both CD and DVD cases, 

as shown in Fig. 4.7(a) and 4.7(b), respectively.  It can be observed that with 

increase in radius a, the transverse gain decreases for CD, while one increases first 

and then decreases for DVD.  In the range that a∈[0.4, 0.6], the gains are all greater 

than 1, which means that superresolution property can be realized simultaneously for 

both CD and DVD.  It can also be seen that, for the case of CD, the Strehl ratio 

increases with the increment of the radius a, but decreases for the case of DVD.      
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Fig. 4.7: 1) Relation among the transverse gain and the radius of the first zone.  

    2) Relation among the Strehl ratio and the radius of the first zone. 

       (a) for the case of CD  (b) for the case of DVD 

 

 Figures 4.8(a) and 4.8(b), respectively show the transverse intensity distributions 

for three particular solutions for CD and DVD, corresponding to three different kinds 

of set-up of the pupil filter, in comparison to the case of clear pupil.  The intensity 

has been normalized to the clear pupil size. 

 

It should be carefully minded that the simulated results of the intensity 

distribution, shown in Fig. 4.8, disagree with those derived from Eqs. 4.11 and 4.12.  

For instance, when assuming the value of radius a to be 0.6, the predicted value of the 

Strehl ratio for CD derived from Eq. 4.11 is about 0.9, while that for DVD is 

approximately equal to 0.5.     
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Fig. 4.8: The transverse intensity distributions 1) with the clear pupil, 2) with the 

designed filter, for a=0.5 (solid curve), a=0.57 (dashed curve), a=0.6 (dotted curve)  

(a) for the case of CD  (b) for the case of DVD. 

 

However, as shown in figure 4.8, the central peak value of the normalized 

intensity distribution for CD is, in fact, less than 0.4, while that for DVD is less than 
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0.5.  Besides, for CD, the set-up of the filter doesn’t achieve the goal of 

superresolution, but even enlarges the spot size in the focal plane.  For DVD, though 

transverse superresolution is obtained, the transverse side-lobe is tremendously 

worsened in the focal plane.  It is noticed that, for both cases of CD and DVD, the 

contrast is worsened, which makes it much more difficult in the practical application 

of reading the data from the disk. 

 

    

                 (a)                               (b) 

Fig. 4.9: Relation among the displacement of focus in the axial direction and 

the radius of the first zone. (a) for the case of CD  (b) for the case of DVD 

 

 It can be clearly be seen in Fig. 4.9 that the computed value of the axial 

displacement, uF, is in fact quite apart from zero for both cases of CD and DVD.  

The place where maxima intensity occurs has been shifted away from the geometric 

focus, so that the derived forms of Strehl ratio and transverse gain, based on 2nd-order 

approximation, become incorrect in describing the focal behavior for the designed 

cases here. 

  

Step 2: 

Now, the intensity distributions along the transverse direction for CD and DVD 
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at the paraxial focus are obtained directly from the computation of the diffraction 

theory, shown in Fig. 4.10(a) and (b), respectively.  We can see that the results 

correspond to what we have shown in Fig. 4.6.  For CD, the goal of superresolution 

isn’t achieved, but even enlarges the spot size; for DVD, though transverse 

superresolution is obtained, the transverse side-lobe is worsened.   

 

 

 

Fig. 4.10 (a) 
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Fig. 4.10(b) 

Fig. 4.10: The transverse intensity distributions 1) with the clear pupil, 2) with  

the designed filter, for a=0.6  (a) for the case of CD (b) for the case of DVD. 

 

We are now interested in where the best image plane (BIP) appears after we add 

the designed filter into the system.  Radial intensity scans at various axial 

coordinates are shown in Fig. 4.11(a) and(b), for CD and DVD, respectively.  The 

range of axial coordinates, u, explored here is -5 to 5, which would certainly seem to 

cover the transition region we are interested in.  From the figure, it seems reasonable 

to state that the BIP, where best image performance is gotten for both CD and DVD, 

occurs around u= 3.   

 

For CD, we can see that the peak value of the main lobe is 0.5 and the side-lobe 

is extremely small when the radial distance, v, ranges between -10 to 10.  The size of 

blur circle remains the same as the one without adding the filter.  For DVD, 
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transverse superresolution is obtained, but the increased transverse side-lobe will still 

be a big concern. The contrast of the system performance will be lowered down.   

 

 
 

 
Fig. 4.11: Radial intensity scans at various planes (the range of axial coordinates, u,  

explored here is -6 to 6)  (a) for the case of CD (b)  for the case of DVD 
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Step 3: 

When dealing with the case in which the best image plane is not near the paraxial 

focus, it’ll be more proper to use the modified 2nd order approximation method.  For 

CD, we find that the BIP has been shifted to u=3.527, while that occurs at u=3.1 for 

DVD.  Once the location of the BIP is found, we then fine tune the transmittances of 

the zones. Here, in this case, we set the transmittance of first zone for CD surface to 

be 0.7. The computed results of the superresolution factors are shown in Fig. 4.12.   

 

         
               (a)                                     (b) 

Fig. 4.12: 1) Relation among the displacement and the radius of the first zone.  

2) Relation among the transverse gain and the radius of the first zone.  

     3) Relation among the Strehl ratio and the radius of the first zone. 

        (a) for the case of CD   (b) for the case of DVD 
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It can be seen that the computed value of the axial displacement is very close to 

zero when the radius of the first zone is set to be 0.6.  The values of transverse gains 

are all greater than 1 for CD and DVD, which means that superresolution property can 

be achieved in this case.  However, as a drawback, the Strehl ratios for both CD and 

DVD have dropped greatly, lower than half value of that without a filter.  

 

Step 4: 

Similar to what we have done in step 2, now we try to verify the accuracy of the 

computed results gotten in step 3.  The intensity distributions along the transverse 

direction for CD and DVD at the shifted focus are shown in Fig. 4.13(a) and (b), 

respectively. 

 

       

Fig. 4.13 The transverse intensity distributions 1) with the clear pupil, 2) with the 

designed filter, for radius a=0.5 ; transmittance t1= 0.7 (a) for the case of CD (b) for 

the case of DVD. 
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  For CD, we find that the transverse gain, in fact, is equal to 1.038, being lower than 

the expected value; while for DVD, that is equal to 1.259.  Besides, the size of the 

main-lobe of the diffracted pattern has been narrowed down, achieving 

superresolution in both cases.   

 

Within the range , we can see that, for CD, the transverse side-lobes 

become relatively smaller than the central peak value (being approximately 1% of the 

central peak value).  But, for DVD, the transverse side-lobe isn’t alleviated but 

enhanced, which leads to worsen the contrast of the final image. 

]10,10[' −∈u

 

 

4.6 Conclusions 
 

In this section, we have shown that, with the use of a rotationally symmetric four-zone 

pupil filter, transverse superresolution can be both realized for two different 

wavelengths.  Notice that the expressions of the factors, like gains, Strehl ratio, and 

axial displacement, have to be modified for the case in which the best image plane is 

not near the paraxial focus.  It should also be mentioned that, the transverse sidelobe 

is somehow troublesome, especially for the case of DVD.  In the future work, the 

main aim in optical superresolution is to reduce the main-lobe size of the point-spread 

function while increasing the central intensity and suppressing the sidelobes. 
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Chapter 5 
 

 

5.1 Conclusions 
 

In the first part of this thesis, we have first presented a radially symmetric phase-only 

filter to help alleviate the effects caused by the fluctuation of third- and fifth-order 

spherical aberrations simultaneously.  It can be clearly seen that the system tolerance 

to SA5 is improved by several times.  Meanwhile, the trade-off issue, i.e., a 

reduction in intensity and the MTF, has also been discussed in details.  These 

reductions form the baselines in practical applications of the use of phase filter.  

 

Following the ideas mentioned above, we get interested in seeking a way to 

enhance the tolerance of the system to defocus or SA3 for both wavelengths.  Phase 

pupil filters used to minimize the variation of Strehl ratio with defocus and third-order 

spherical aberration (SA3) for dual wavelengths are being discussed.  Notice that if 

the amount of variation of the frequency is small, we may find a form of pupil phase 

function to achieve that goal. 

 

In the last part of this thesis, we have presented a four-zone filter to help achieve 

transverse superresolution for two different wavelengths, simultaneously.  There still 
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remains some room for improvement.  While reducing the main-lobe size of the 

point-spread function, we need to search for a way to increase the central intensity 

and suppress the sidelobes. 

   

 

5.2 Future Work 
 

For the work in Chapter 2: 

It’s interesting that if we can derive the form of the pupil phase function that 

extended to even higher order spherical aberration (say, the seventh order spherical 

aberration, SA7) by using the method we mentioned here.  Besides, an investigation 

similar to that above may also be carried out for the odd-aberration case, i.e., the focal 

shift, primary and secondary circular coma. 

  

For the work in Chapter 3: 

It may be worthwhile of considering the use of hybrid surface lens, an objective 

lens of combining aspheric surfaces of DVD and CD.  In that way, for those two 

different frequencies, the tolerance of the axial intensity to defocus or SA3 may be 

simultaneously enhanced.     

 

For the work in Chapter 4: 

 A global optimization process is needed in the design of the superresolving pupil 

plate.  Once we develop up a reliable optimization method, it’ll be much easier for 

us to find out the best set-up configuration to meet the requirement.  
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Appendix A: Derivation of The Pupil Phase Functions 

A.1 Derivation of the phase filter that has been developed for W040=W020=0 

By substituting of Eq.(2.9) into Eq.(2.6), it leads to the expression:  
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The solution of the above equation will be:  
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By choosing α=-5, C = -3/8, and C1=0, a simple solution form will be obtained, which 

is expressed as:  
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Note that Eq.(A 1.7) is a particular solution of Eq.(A 1.6), being one of the possible 

pupil phase functions.  With a change of variables, we have the phase pupil function 

as:  
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where β and β o provide two degrees of freedom and play the role of C2 and C3 

respectively in Eq.(B 1.7) 
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A.2 Derivation of the phase filter with Maréchal treatment 

By substituting Eq.(2.14) into Eq.(2.6) leads to the expression: 
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The solution of the above equation will be:  
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For simplicity, let B26=0.75 α=5, C=C1=C2=0, we then get the similar form:  
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Notice that . With a change of variables, the pupil phase function 

is expressed as the following form: 
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Appendix B: More Information for 2nd order Approximation Theory 

B.1 Further Discussion to The 2nd-order Approximation Theory 

We now reexamine the derivation of Eqs. 4.10 to 4.13.  As a reminder, in the 

focal plane, the field distribution can be expressed as [7]: 
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with a change of variable: t = ρ2, we get: 
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Notice that the Bessel function of the first kind is expressed as:   
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For small distances from the focus, we can expand the expressions for the focal-plane 

and axial amplitudes as a power series:   
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Omitting the higher order terms, we get: 
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Similarly, the axial intensity will be: 
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B.2 Modification to The Expressions of The Axial and The Transverse Gain 

In the recent study, Silvia Ledesma and Juan Campos have extended the 

expressions for the axial and the transverse gain to the case in which the best image 

plane is not near the paraxial focus [20].  The content of the study is shown below. 

 

For the case in which the best image plane is not near the paraxial focus, the 

expressions for the axial gain, transverse gain, and the Strehl ratio need some 

modifications.  Recall that the field along the axis is: 

                                       (B 2.1) ∫=
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Where u is the axial coordinate centered at the focal plane without the filter.  By 

evaluating |U(0,u)2| numerically from Eq. B 2.1, we find the position umax where the 

axial intensity is maximum.  Then we calculate those factors of superresolution by 

use of the expansions around this point. 

The second-order expansion for the axial response around umax will be: 
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The nth moments of the pupil around umax is defined as: 
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Now the terms taken into account is just up to second order in u’= u- umax, Then the 

axial intensity is approximated as: 
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For transverse response, we expand the field to second order corresponding to umax: 
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Then the transverse intensity can be expressed as 
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Note that u0 corresponds to the center of the parabola defined in Eq. 4.41: 
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Since u0 is measured from the BIP centered at umax, so its values will be close to zero 

for most functions of an optical system.  Thus, the superresulution factors around 

umax result in: 
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Appendix C:           MTLAB Source Codes 

C.1: The Strehl ratio as a function of aberration coefficient W060 

 

% -----------   TOPIC:  Strehl ratio, S(w20,w40,w60), v.s. W060   ----------- % 

% -----------      Drafted by Chih-Yun Chan, 2nd version, test ok    ----------- %  

% ----------                 Used in Section 2                 ----------- % 

 

u1 = zeros(81,1);   % Field u1 -- with ideal aperture 

u2 = zeros(81,1);   % Field u2 – with the designed filter 

I1 = zeros(81,1);   % Intensity I1 -- with ideal aperture 

I2 = zeros(81,1);   % Intensity I2 -- with ideal aperture 

B = 7*pi;         % assign parameters  

Bo = 0.3*7*pi; 

 

% implementing the integral 

for i = 0 : 1 : 80 

    for x = 0 : 0.001 : 1   

    y1 = x*exp(j*2*pi*(((i./10)-4)*(x^6))); 

    y2 = x*exp(j*2*pi*(((i./10)-4)*(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

    u1(i+1)= u1(i+1)+ 0.001*y1;  

    u2(i+1)= u2(i+1)+ 0.001*y2;  

    end 

end 

 

I1 = u1.*conj(u1)*4*pi*pi/10; 

I1 = I1/max(I1);  % Normalize the intensity 

I2 = u2.*conj(u2)*4*pi*pi/10; 

I2 = I2/max(I2);  % Normalize the intensity 

 

k = -4 : 0.1 : 4; 

plot(k,I1,k,I2) 
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Appendix C:       MATLAB Source Codes  (CONTINUED) 

C.2: Plot of the shape of the designed pupil phase function  

 

% -----------   TOPIC:  The shape of the designed pupil phase function   ----------- % 

% -----------        Drafted by Chih-Yun Chan, 1st version, test ok      ----------- %  

% ----------                   Used in Section 2                   ----------- % 

 

Th = zeros(1001,1);  %Thickness as a function of the radius 

B = 5*pi; 

Bo = 0.3*B; 

     

for m = 1:1:1001 

        Th(m,1)=(Bo*((((m-501)/500)^2)^3)+B*((((m-501)/500)^2)^3)*log(((m-501)/500) +1e-8)); 

     end 

 

k=-1:2/1000:1    % Normalized radial coordinate 

 

plot(k,Th); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 68



Appendix C:       MATLAB Source Codes  (CONTINUED) 

C.3: Computed MTF with initial setting W020=0 and W040=0 

 

% -----------   TOPIC:  Computed MTF with initial setting W020=0 and W040=0   ----------- % 

% -----------            Drafted by Chih-Yun Chan, 2nd version, test ok        ----------- %  

% ----------                        Used in Section 2                    ----------- % 

 

Q1= zeros(201,201);  % Field Q1 -- with w060=0 lambda 

Q2= zeros(201,201);  % Field Q2 -- with w060=0.5 lambda 

Q3= zeros(201,201);  % Field Q3 -- with w060=1 lambda 

Q4= zeros(201,201);  % Field Q4 -- with w060=0 lambda 

mtf1 = zeros(80,1);   % MTF1 -- with w060=0 lambda 

mtf2 = zeros(80,1);   % MTF1 -- with w060=0 lambda 

mtf3 = zeros(80,1);   % MTF1 -- with w060=0 lambda 

mtf4 = zeros(80,1);   % MTF1 -- with w060=0 lambda 

B = 7*pi;           % assign parameters 

Bo = 0.3*B; 

 

for m = 0:1:200 

    for n = 0:1:200 

        if(((m-100)*(m-100)+(n-100)*(n-100))<1600) 

            

Q1(m,n)=exp(j*2*pi*(Bo*((((m-100)/40)^2+((n-100)/40)^2)^3)+B*((((m-100)/40)^2… 

+((n-100)/40)^2)^3)*log((((m-100)/40)^2+((n-100)/40)^2)^0.5 +1e-8))); 

            

Q2(m,n)=exp(j*2*pi*(Bo*((((m-100)/40)^2+((n-100)/40)^2)^3)+B*((((m-100)/40)^2… 

+((n-100)/40)^2)^3)*log((((m-100)/40)^2+((n-100)/40)^2)^0.5 +1e-8))); 

            

Q3(m,n)=exp(j*2*pi*(Bo*((((m-100)/40)^2+((n-100)/40)^2)^3)+B*((((m-100)/40)^2… 

+((n-100)/40)^2)^3)*log((((m-100)/40)^2+((n-100)/40)^2)^0.5 +1e-8))); 

            

Q4(m,n)=exp(j*2*pi*(Bo*((((m-100)/40)^2+((n-100)/40)^2)^3)+B*((((m-100)/40)^2… 

+((n-100)/40)^2)^3)*log((((m-100)/40)^2+((n-100)/40)^2)^0.5 +1e-8))); 

        end       

    end 

end 
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for m = 0:1:200 

    for n = 0:1:200    

        if(((m-100)*(m-100)+(n-100)*(n-100))<1600) 

            Q1(m,n)=Q1(m,n)*exp(j*2*pi*((((m-100)/40)^2+((n-100)/40)^2)^3)*0); 

            Q2(m,n)=Q2(m,n)*exp(j*2*pi*((((m-100)/40)^2+((n-100)/40)^2)^3)*0.5); 

            Q3(m,n)=Q3(m,n)*exp(j*2*pi*((((m-100)/40)^2+((n-100)/40)^2)^3)*1); 

            Q4(m,n)=Q4(m,n)*exp(j*2*pi*((((m-100)/40)^2+((n-100)/40)^2)^3)*2); 

        end       

    end 

end 

 

otf1=conv2(Q1,conj(Q1)); 

otf2=conv2(Q2,conj(Q2)); 

otf3=conv2(Q3,conj(Q3)); 

otf4=conv2(Q4,conj(Q4)); 

 

for n = 1:80 

    mtf1(n)=abs(otf1((n+198),199)); 

    mtf2(n)=abs(otf2((n+198),199)); 

    mtf3(n)=abs(otf3((n+198),199)); 

    mtf4(n)=abs(otf4((n+198),199)); 

end 

 

% Normalization 

mtf1= mtf1/max(mtf1); 

mtf2= mtf2/max(mtf2); 

mtf3= mtf3/max(mtf3); 

mtf4= mtf4/max(mtf4); 

 

x1=0:(2/80):(2-2/80); 

plot(x1,mtf1,x1,mtf2,x1,mtf3,x1,mtf4) 
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Appendix C:       MATLAB Source Codes  (CONTINUED) 

C.4: Maximal on-axis intensity versus BB46 . 

 

% -----------   TOPIC:  Maximal on-axis intensity versus BB46   ----------- % 

% -----------       Drafted by Chih-Yun Chan, 1st version, test ok      ----------- %  

% ----------                    Used in Section 2                 ----------- % 

 

u1 = zeros(161,1);   % Field 

I1 = zeros(161,1);   % Intensity 

maxi = zeros(81,1);  % Max. intensity v.s. B46 

 

for B46 = 0: 1 : 80  

    for B26 = 0 : 1 : 160 

        for x = 0 : 0.001 : 1  

             y1 = x*exp(j*2*pi*1*((B26./20 -4)*(x^2)+(B46./20-3.5)*(x^4)+(x^6))); 

            u1(B26+1)= u1(B26+1)+ 0.001*y1;  

        end 

    end 

     

I1 = u1.*conj(u1)*4*pi*pi/10; 

    maxi(B46+1)=max(I1); 

     

u1 = zeros(161,1); 

    I1 = zeros(161,1); 

     

end 

 

 

k= -3.5:0.05:0.5; 

plot(k,maxi) 
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Appendix C:       MATLAB Source Codes  (CONTINUED) 

C.5: Plot of the Strehl ratio versus B26 for different aberration scaling factors f,  

with B46 = -1.5 

 

% -----------   TOPIC:  Strehl ratio versus B26 for different f, with BB46 = -1.5   ----------- % 

% -----------       Drafted by Chih-Yun Chan, 1st version, test ok      ----------- %  

% ----------                    Used in Section 2                 ----------- % 

 

u0 = zeros(101,1); u1 = zeros(101,1); u2 = zeros(101,1); u3 = zeros(101,1); 

u4 = zeros(101,1); u5 = zeros(101,1); u6 = zeros(101,1);           % field with ideal lens 

 

u02 = zeros(101,1); u12 = zeros(101,1); u22 = zeros(101,1); u32 = zeros(101,1); 

u42 = zeros(101,1); u52 = zeros(101,1); u62 = zeros(101,1);        % field with the filter 

 

I0 = zeros(101,1); I1 = zeros(101,1); I2 = zeros(101,1); I3 = zeros(101,1); 

I4 = zeros(101,1); I5 = zeros(101,1); I6 = zeros(101,1);            % intensity with ideal lens 

 

 

I02 = zeros(101,1); I12 = zeros(101,1); I22 = zeros(101,1); I32 = zeros(101,1); 

I42 = zeros(101,1); I52 = zeros(101,1); I62 = zeros(101,1);         % intensity with the filter 

 

B46=-1.5;          % assign parameters 

B = 3.9*pi; 

Bo = 0.55*B; 

 

    for B26 = 0 : 1 : 100           % doing the integration 

        for x = 0 : 0.001 : 1  

        

        y0 = x*exp(j*2*pi*0.5*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y02 = x*exp(j*2*pi*0.5*((B26./100)*(x^2)+B46*(x^4)... 

+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u0(B26+1)= u0(B26+1)+ 0.001*y0;  

        u02(B26+1)= u02(B26+1)+ 0.001*y02;  

                        

        y1 = x*exp(j*2*pi*1*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y12 = x*exp(j*2*pi*1*((B26./100)*(x^2)+B46*(x^4)... 
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+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u1(B26+1)= u1(B26+1)+ 0.001*y1;  

        u12(B26+1)= u12(B26+1)+ 0.001*y12;  

                 

        y2 = x*exp(j*2*pi*2*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y22 = x*exp(j*2*pi*2*((B26./100)*(x^2)+B46*(x^4)... 

+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u2(B26+1)= u2(B26+1)+ 0.001*y2;  

        u22(B26+1)= u22(B26+1)+ 0.001*y22;  

         

        y3 = x*exp(j*2*pi*3*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y32 = x*exp(j*2*pi*3*((B26./100)*(x^2)+B46*(x^4)... 

+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u3(B26+1)= u3(B26+1)+ 0.001*y3;  

        u32(B26+1)= u32(B26+1)+ 0.001*y32;  

         

        y4 = x*exp(j*2*pi*4*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y42 = x*exp(j*2*pi*4*((B26./100)*(x^2)+B46*(x^4)... 

+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u4(B26+1)= u4(B26+1)+ 0.001*y4;  

        u42(B26+1)= u42(B26+1)+ 0.001*y42;  

         

        y5 = x*exp(j*2*pi*5*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y52 = x*exp(j*2*pi*5*((B26./100)*(x^2)+B46*(x^4)... 

+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u5(B26+1)= u5(B26+1)+ 0.001*y5;  

        u52(B26+1)= u52(B26+1)+ 0.001*y52;  

         

        y6 = x*exp(j*2*pi*6*((B26./100)*(x^2)+B46*(x^4)+(x^6))); 

        y62 = x*exp(j*2*pi*6*((B26./100)*(x^2)+B46*(x^4)... 

+(x^6)))*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        u6(B26+1)= u6(B26+1)+ 0.001*y6;  

        u62(B26+1)= u62(B26+1)+ 0.001*y62;  

         

        end 

    end 

 

I0 = u0.*conj(u0)*4*pi*pi/10; 

 73



I1 = u1.*conj(u1)*4*pi*pi/10; 

I2 = u2.*conj(u2)*4*pi*pi/10; 

I3 = u3.*conj(u3)*4*pi*pi/10; 

I4 = u4.*conj(u4)*4*pi*pi/10; 

I5 = u5.*conj(u5)*4*pi*pi/10; 

I6 = u6.*conj(u6)*4*pi*pi/10; 

 

I02 = u02.*conj(u02)*4*pi*pi/10; 

I12 = u12.*conj(u12)*4*pi*pi/10; 

I22 = u22.*conj(u22)*4*pi*pi/10; 

I32 = u32.*conj(u32)*4*pi*pi/10; 

I42 = u42.*conj(u42)*4*pi*pi/10; 

I52 = u52.*conj(u52)*4*pi*pi/10; 

I62 = u62.*conj(u62)*4*pi*pi/10; 

 

 

k = 0 : 0.01 : 1.0; 

plot(k,I12,k,I22,k,I32,k,I42,k,I52,k,I62) 
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Appendix C:       MATLAB Source Codes  (CONTINUED) 

C.6: The Strehl ratio as a function of aberration scaling factor f, with  

BB26 =0.6 and B46 = -1.5. 

 

% -----------   TOPIC: Strehl ratio as a function of f, with B26 =0.6 and B46 = -1.5.   ----------- % 

% -----------            Drafted by Chih-Yun Chan, 2nd version, test ok          ----------- %  

% ----------                        Used in Section 2                      ----------- % 

 

u1 = zeros(101,1);    % field with ideal lens 

u2 = zeros(101,1);    % field with the phase filter 

I1 = zeros(101,1);    % intensity with ideal lens 

I2 = zeros(101,1);    % intensity with the phase filter 

 

B46=-1.5;          % assign parameters 

B = 5*pi; 

Bo = 0.3*B; 

 

for f = 0 : 1 :100       % doing the integration 

        for x = 0 : 0.001 : 1  

        y1 = x*exp(j*2*pi*f/10*(0.6*(x^2)+B46*(x^4)+(x^6)))… 

*[exp(j*2*pi*(Bo*(x^6)+B*(x^6)*log(x+1e-6)))]; 

        y2 = x*exp(j*2*pi*f/10*(0.6*(x^2)+B46*(x^4)+(x^6))); 

        u1(f+1)= u1(f+1)+ 0.001*y1;  

        u2(f+1)= u2(f+1)+ 0.001*y2;  

        end 

end     

 

I1 = u1.*conj(u1)*4*pi*pi/10; 

I1= I1/max(I1);                     % Normalization 

I2 = u2.*conj(u2)*4*pi*pi/10; 

I2= I2/max(I2);                     % Normalization 

 

k = 0 : 0.1 : 10; 

plot(k,I1,k,I2) 

 

Appendix C:       MATLAB Source Codes (CONTINUED) 
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C.7: 1) Relation among the transverse gain and the radius of the first zone.  

2) Relation among the Strehl ratio and the radius of the first zone 

     -- For CD 

% -----------     TOPIC:  SR v.s. radius a; GT v.s. radius a  (for CD)  ----------- % 

% -----------       Drafted by Chih-Yun Chan, 2nd version, test ok      ----------- %  

% ----------                    Used in Section 4                 ----------- % 

 

double NUM;         % number of points in the interval a: 0.4~0.6 

double a(NUM+1);     % radius of the 1st zone 

double b(NUM+1);     % radius of the 2nd zone 

double t1;             % transmission of zone 1 

double t2;             % transmission of zone 3 

double phi;            % phase difference of the zones 

double I0(NUM+1); double a0(NUM+1); double b0(NUM+1); 

double I1(NUM+1); double a1(NUM+1); double b1(NUM+1); 

double I2(NUM+1); double a2(NUM+1); double b2(NUM+1); 

double uF(NUM+1); 

double SR(NUM+1); 

double GT(NUM+1); 

double GA(NUM+1); 

 

t1= 1;            % assign the parameters 

t2= 1; 

phi=0.4 

NUM = 200; 

 

for i = 0 : NUM  

    a(i+1) = 0.4 + (0.2/NUM).*i; 

    b(i+1) = sqrt(1-a(i+1).*a(i+1)); 

    I0(i+1) = exp(j*0*pi)*(t1.*(a(i+1).^2)) + t2.*exp(j*phi*pi)*(1-(b(i+1).^2)); 

    a0(i+1) = real(I0(i+1));  

    b0(i+1) = imag(I0(i+1)); 

    I1(i+1) = 0.5*exp(j*0*pi)*(t1.*(a(i+1).^4)) + t2.*0.5*exp(j*phi*pi)*(- (b(i+1).^4) +1); 

    a1(i+1) = real(I1(i+1));  

    b1(i+1) = imag(I1(i+1)); 

    I2(i+1) = (1/3)*exp(j*0*pi)*(t1.*(a(i+1).^6))+ t2.*(1/3)*exp(j*phi*pi)*(- (b(i+1).^6) +1); 

    a2(i+1) = real(I2(i+1));  
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    b2(i+1) = imag(I2(i+1)); 

 

% the displacement of the focus 

    uF(i+1) = 2*(a1(i+1).*b0(i+1)-a0(i+1).*b1(i+1))./( (a2(i+1).*a0(i+1)+b2(i+1).*b0(i+1))… 

 - (a1(i+1).*a1(i+1)+b1(i+1).*b1(i+1)) ); 

 

% the Strehl ratio 

    SR(i+1) = a0(i+1).*a0(i+1) + b0(i+1).*b0(i+1)… 

    - uF(i+1).*(a0(i+1).*b1(i+1)-a1(i+1).*b0(i+1)); 

 

% the transverse gain 

    GT(i+1) = 2*( (a1(i+1).*a0(i+1)+b0(i+1).*b1(i+1))… 

 - uF(i+1).*(-a2(i+1).*b0(i+1)+a0(i+1).*b2(i+1)) )./SR(i+1); 

 

% the axial gain 

    GA(i+1) = 12*( (a2(i+1).*a0(i+1)+b0(i+1).*b2(i+1))… 

 - (a1(i+1).*a1(i+1)+b1(i+1).*b1(i+1)) )./SR(i+1); 

end     

 

m = 0.4: (0.2/NUM): 0.6; 

subplot(2,1,1); plot(m,uF); 

subplot(2,1,2); plot(m,SR); 
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Appendix C:       MATLAB Source Codes (CONTINUED) 

C.8: 1) Relation among the transverse gain and the radius of the first zone.  

2) Relation among the Strehl ratio and the radius of the first zone 

     -- For DVF 

% -----------     TOPIC:  SR v.s. radius a; GT v.s. radius a (for DVD)  ----------- % 

% -----------       Drafted by Chih-Yun Chan, 2nd version, test ok      ----------- %  

% ----------                    Used in Section 4                 ----------- % 

 

double NUM;         % number of points in the interval a: 0.4~0.6 

double a(NUM+1);     % radius of the 1st zone 

double b(NUM+1);     % radius of the 2nd zone 

double t1;             % transmission of zone 2 

double t2;             % transmission of zone 4 

double phi;            % phase difference of the zones 

double I0(NUM+1); double a0(NUM+1); double b0(NUM+1); 

double I1(NUM+1); double a1(NUM+1); double b1(NUM+1); 

double I2(NUM+1); double a2(NUM+1); double b2(NUM+1); 

double uF(NUM+1); 

double SR(NUM+1); 

double GT(NUM+1); 

double GA(NUM+1); 

 

c= 0.7;        % assign parameters 

t1=1; 

t2=1; 

phi=0.35; 

NUM = 200; 

 

for i = 0 : NUM  

    a(i+1) = 0.4 + (0.2/NUM).*i; 

    b(i+1) = sqrt(1-a(i+1).*a(i+1)); 

    I0(i+1) = t1.*exp(j*0*pi)*((c.*b(i+1)).^2-(c.*a(i+1)).^2) + t2.*exp(j*phi*pi)*(1-(c).^2); 

    a0(i+1) = real(I0(i+1));  

    b0(i+1) = imag(I0(i+1)); 

    I1(i+1) = (1/2)*(t1.*exp(j*0*pi)*((c.*b(i+1)).^4-(c.*a(i+1)).^4) + t2.*exp(j*phi*pi)*(1-(c).^4)); 

    a1(i+1) = real(I1(i+1));  
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    b1(i+1) = imag(I1(i+1)); 

    I2(i+1) = (1/3)*(t1.*exp(j*0*pi)*((c.*b(i+1)).^6-(c.*a(i+1)).^6) + t2.*exp(j*phi*pi)*(1-(c).^6)); 

    a2(i+1) = real(I2(i+1));  

    b2(i+1) = imag(I2(i+1)); 

 

% the displacement of the focus 

    uF(i+1) = 2*(a1(i+1).*b0(i+1)-a0(i+1).*b1(i+1))… 

./( (a2(i+1).*a0(i+1)+b2(i+1).*b0(i+1)) - (a1(i+1).*a1(i+1)+b1(i+1).*b1(i+1)) ); 

 

% the Strehl ratio 

SR(i+1) = a0(i+1).*a0(i+1) + b0(i+1).*b0(i+1) - uF(i+1).*(a0(i+1).*b1(i+1)-a1(i+1).*b0(i+1)); 

 

% the transverse gain 

    GT(i+1) = 2*( (a1(i+1).*a0(i+1)+b0(i+1).*b1(i+1))… 

 - uF(i+1).*(-a2(i+1).*b0(i+1)+a0(i+1).*b2(i+1)) )./SR(i+1); 

 

% the axial gain 

GA(i+1) = 12*( (a2(i+1).*a0(i+1)+b0(i+1).*b2(i+1)) … 

-(a1(i+1).*a1(i+1)+b1(i+1).*b1(i+1)) )./SR(i+1); 

end     

 

m = 0.4: (0.2/NUM): 0.6; 

%subplot(2,1,1);  

plot(m,uF); 

%subplot(2,1,2); plot(m,SR); 
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Appendix C:       MATLAB Source Codes (CONTINUED) 

C.9: The transverse intensity distributions      -- For CD 

% -----------     TOPIC:  the transverse intensity distributions (for CD)   ----------- % 

% -----------        Drafted by Chih-Yun Chan, 2nd version, test ok       ----------- %  

% ----------                     Used in Section 4                  ----------- % 

 

v = (0:0.01:10)';   % radius distance 

double a(3);       % radius of the 1st zone 

double b(3);       % radius of the 2nd zone 

double U(1001,3);  % field with the clear aperture 

double Ut(1001,3);  % field with the designed filter 

double I(1001,3);   % intensity with the clear aperture 

double It(1001,3);   % intensity with the designed filter 

 

a(1)=0.5; a(2)=0.57; a(3)=0.6; 

b(1)=sqrt(1-a(1).*a(1)); b(2)=sqrt(1-a(2).*a(2)); b(3)=sqrt(1-a(3).*a(3)); 

 

warning off; 

 

for k = 1:3            

    for i = 0 : 1000 

        U(i+1,k)  = (2./v(i+1))*besselj(1,v(i+1)); 

        Ut(i+1,k) = (2./v(i+1))*( a(k).*besselj(1,(a(k).*v(i+1)))… 

  +  exp(j*0.1*pi).*( besselj(1,v(i+1)) - b(k).*besselj(1,(b(k).*v(i+1))) ) ); 

        end 

end 

 

for k= 1:3            

    I(1:1001,k) = U(1:1001,k).*conj(U(1:1001,k)); 

    It(1:1001,k) = Ut(1:1001,k).*conj(Ut(1:1001,k)); 

    end 

 

subplot(2,1,1); plot(v,I(:,1),v,I(:,2),v,I(:,3)); 

subplot(2,1,2); plot(v,It(:,1),v,It(:,2),v,It(:,3)); 

 

warning on; 
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Appendix C:       MATLAB Source Codes (CONTINUED) 

C.10: The transverse intensity distributions      -- For DVD 

% -----------     TOPIC:  the transverse intensity distributions (for DVD)   ----------- % 

% -----------        Drafted by Chih-Yun Chan, 2nd version, test ok        ----------- %  

% ----------                     Used in Section 4                   ----------- % 

 

v = (0:0.01:10)';   % radius distance 

double a(3);       % radius of the 1st zone 

double b(3);       % radius of the 2nd zone 

double U(1001,3);  % field with the clear aperture 

double Ut(1001,3);  % field with the designed filter 

double I(1001,3);   % intensity with the clear aperture 

double It(1001,3);   % intensity with the designed filter 

 

a(1)=0.5; a(2)=0.57; a(3)=0.6; 

b(1)=sqrt(1-a(1).*a(1)); b(2)=sqrt(1-a(2).*a(2)); b(3)=sqrt(1-a(3).*a(3)); 

c=0.7; 

 

warning off; 

 

for k = 1:3 

    for i = 0 : 1000 

        U(i+1,k)  = (2./v(i+1))*besselj(1,v(i+1)); 

        Ut(i+1,k) = (2./v(i+1))*( c.*b(k).*besselj(1,(c.*b(k).*v(i+1)))… 

-c.*a(k).*besselj(1,(c.*a(k).*v(i+1)))… 

      + exp(j*0.35*pi).*(besselj(1,v(i+1))-c.*besselj(1,(c.*v(i+1))) ) ); 

        end 

end 

 

for k= 1:3 

    I(1:1001,k) = U(1:1001,k).*conj(U(1:1001,k)); 

    It(1:1001,k) = Ut(1:1001,k).*conj(Ut(1:1001,k)); 

    end 

 

subplot(2,1,1); plot(v,I(:,1),v,I(:,2),v,I(:,3)); 

subplot(2,1,2); plot(v,It(:,1),v,It(:,2),v,It(:,3)); 

warning on; 
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Appendix C:       MATLAB Source Codes (CONTINUED) 

C.11: Radial intensity scans at various planes (FFT method) 

% -----------     TOPIC:  Radial intensity scans at various planes (FFT)   ----------- % 

% -----------        Drafted by Chih-Yun Chan, 2nd version, test ok        ----------- %  

% ----------                    Used in Section 4                    ----------- % 

 

sq=zeros(1000);       % field with the clear aperture 

sq1=zeros(1000);      % field with the designed fillter 

double u; 

u = 3; 

for m = 0 : 1 : 1000       % generate the pupil function 

    for n = 0 : 1 : 1000 

        if(((m-500)*(m-500)+(n-500)*(n-500))^0.5<10*0.6) 

           sq1((m+1),(n+1))=1*exp(-j*u*((m-500)*(m-500)+(n-500)*(n-500))/2/100) ; 

        end 

         

        if(((m-500)*(m-500)+(n-500)*(n-500))^0.5>10*(sqrt(1-0.6*0.6))) 

           if(((m-500)*(m-500)+(n-500)*(n-500))^0.5<10) 

          sq1((m+1),(n+1))=exp(j*0.35*pi)*… 

exp(-j*u*((m-500)*(m-500)+(n-500)*(n-500))/2/100) ; 

           end     

        end 

         

        if(((m-500)*(m-500)+(n-500)*(n-500))^0.5<10) 

                sq((m+1),(n+1))=1 ; 

        end 

    end 

end 

 

sqft=fftshift(fft2(fftshift(sq))); 

sqft1=fftshift(fft2(fftshift(sq1))); 

I=sqft.*conj(sqft); 

I1=sqft1.*conj(sqft1); 

 

k= -500*1.22*pi/61: 1.22*pi/61 : 1.22*pi/61*499; 

subplot(2,1,1); plot(k,(I(:,501)./max(I(:,501)))); 

subplot(2,1,2); plot(k,(I1(:,501)./max(I(:,501)))); 
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