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Design and Analysis of the Phase Plate Used in

The Applications of Optical Imaging System

Student: Chih-Yun Chan Advisor: Dr. Jyh-Long Chern

Institute of Electro-Optical Engineering

National Chiao Tung University

Abstract

In this thesis, we first presentsa radially: symmetric phase-only filter to help
alleviate the effects caused by the fluctuation of the third- and fifth-order spherical
aberrations simultaneously. Furthermore; this idea is extended to the design of
considering the system toleranceto spherical aberrations for dual wavelengths at the
same time. It has been detailed that the use of the proposed phase filter indeed
enhances the system tolerance to spherical aberrations, but causes a reduction in
intensity and the MTF, as a tradeoff. Next, we present a method of designing a
rotationally symmetric superresolving four-zone plate for dual wavelengths. The
system performance of the design is shown in this thesis, with discussions in details.

In the end, we draw the conclusions.
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Chapter 1

Introduction

1.1 Background Study

Aberration theory has been a long-standing topic in the field of classical optics. The
elimination of aberrations is the key issue of optical design. As we know, ray optics
has been one important angle of view while dealing with this issue. However, we
may sometimes find it difficult to solve the facing problem with ray optics
interpretation. The wave property of light should also be carefully considered in
most design cases. It can be seen that, several analysis techniques, used to examine
the image quality of an optics system, are generally developed up from Fourier optics.
The methods of Fourier analysis play a key role in the field of optics. Therefore, in

the following pages, we will point out the key ideas of Fourier optics, briefly.



1.1.1 Linear Systems Theory Applied to Optical Imaging

Within linear systems, like most of the optical systems we considered, there exist
certain fundamental relationships, which are shown in Fig. 1.1. The arrows indicate
the operation required to obtain one function from another. From what we already
know about diffraction and the Fourier transforms, the optical systems can be
describable with linear systems theory. That is, a lens system forming an image of
an object is operating within the framework of a linear system. The lens transfers
the spatial frequency information of the object plane to the image plane, with some
alteration. The impulse response translates each point of the object plane to a

geometrically appropriate point in the image plane.

Fourier Transformation

Input Function — Input Spectrum

Inverse Fourner

Transformation

(%) (X)

Transformation

Fourier Transformation

= Fourier Transformation e
5 . K
s Impulse e Transfer ©
= Response Inverse Fourier Function =
[=] =
© 2

_

Output -— Output
Function Inverse Fourier Spectrum

Transformation

Fig. 1.1 Linear Systems Theory Applied To Optical Systems

1.1.2 Coherent Imaging

If the waves to be added are from the same source, such that there exists a fixed
relationship between the phases, we say that coherence is present. Nowadays, with
the advent of lasers, it becomes possible to obtain coherent light. Based on the

coherent property, the linear superposition of wave amplitudes will indeed be

2



meaningful. If a scene is illuminated with coherent laser light and we image it with
a lens, the following diagram, Fig. 1.2 is valid. The spread functions and transfer
functions are mathematical constructs which describe what the optical system does to

the light, transferring it from object to image.

U, (x.y) 0AS
oI (E . Fourier Transformation (&.77)
Spafial Dist. of Object Object Amplitude Spectrum
Amplitude and Phase — of Spatial Frequencies
(Real or Complex) Inverse Fourier (Real or Complex)
‘The Object” _
Transformation
(%) (X
S Fourier Transformation 5
o —
= ASF(&,2) OTE(£.7) =
S | | Amplitude Spread Function| «———— | Optical Transfer Function 2
Z | | Amplitude Impulse Response Inverse Fourier for Coherent Light .g-
- Real or Complex S
Q Transformation ( plex) =
I I
Fourier Transformation

6% I —— IAS(#, )
Spatial Dist. of Image - Image Amplitude
Amplitude and Phase Inverse Fourier Spectrum
(Real ar Complex) Transformation of Spatial Frequencies
‘The Image” (Real or Complex)

Fig. 1.2 Imaging with coherent light, {magnification| =1.

1.1.3 Incoherent Imaging

If the waves are from effectively independent sources, even though monochromatic,
the phase relationships of the waves converging to the image plane will not be fixed.
The net effect can only be determined by statistical means like what a detector does.
Thus, the only quantity describing the net effects is the average light irradiance
(intensity), not amplitude, and this will require the linear superposition of irradiances
(intensities). In short, the distinction we are trying to make is between amplitude

and intensity. Fig. 1.3 is appropriate for incoherent illumination.



Fourier Transformation

AlxY) E(&.7)
Aperture (or Pupil) Function| Fraunhofer Amplitude
(Real or Complex) Inverse Fourier (Real or Complex)
Transformation
(%) (b
c . c
Fourier Transformation =]
2 A'(xy) (&%) =
] Complex conjugate -— Complex conjugate =
= of A(X.Y) Inverse Fourier of E*(&,%) 2
o =
Qo Transformation %

OTF(&,7) Fourier Transformation

. . PSF(£,7)
Optical Trans_fer Fl_.lnctlon — | Fraunhofer Irradiance of
For Imaging with Inverse Fourier Point Spread Function
Incoherent Light (Real)
{Real or Complex) Transformation

Fig. 1.3 Imaging with incoherent light, [magnification| =1.

In both diagrams, Fig.1.2 and Fig.1.3, the symmetry of the Fourier transformations
and inverse transformations are shown. The Fourier transform operation makes it
capable of producing the spatial frequency spectra of objects and images. In the
middle of both diagrams, an impulse response and an optical transfer function are also

related by Fourier transforms; they are a necessary part of linear systems theory.

In Fig.1.4, the convolution theorem is applied to Fraunhofer diffraction for
incoherent light. Based on this diagram, the simulation results in section 4.6 of this

thesis are computed.

Ofx.y) . .
Spatial Distribution of Fourier Transformation object I[r?grgfit:ynsz:ectrum
Object Intensity . of Spatial Frequencies
(Real) Inverse Faourier (Real or Complex)
“The Object”
Transformation
c (%) X c
= Fourier Transformation =
= PSF(£,7) OTE(. %) I
z Point Spread Function — | oOptical Transfer Function a
8 Intensity Impulse Response Inverse Fourier for Incoherent Light =
(Real) Transformation (Real or Complex) =
I I
Fourier Transformation
(%, v) - s(&,x7)
Spatial Distribution of - Image Intensity
Image Intensity Inverse Fourier Spectrum
(Real or Complex) Transformation of Spatial Frequencies
‘The Image” (Real or Complex)

Fig.1.4 Fraunhofer diffraction via linear system.



1.2 Historical Review and

Current Trends of Pupil Filters

Optical systems designed to rearrange the energy distributions along three
dimensional (3-D) paths near the focal spot have been analyzed extensively. As
what has been reported by several authors, pupil filters can be used to modify the
three dimensional response of an optical system. Different types of pupils, like
amplitude-only, phase-only, or even complex-type, produce different image behavior.
If these pupil filters satisfy certain symmetry condition, they can produce axial
responses which are either identical or mirrof .reflected. It could be very useful in
the filter design to produce determined 3-D optical responses if we utilize the

symmetry properties of the axial'and transverse response properly.

Usually, non-uniform amplitude-only filters produce effects like apodization or
superresolution on the Point Spread Function (PSF) and they have been applied in
several fields. For examples, apodizers have been widely used to reduce the effect
of aberrations. And annular pupils have been used to achieve lateral superresolution.
Other amplitude filters have also been applied in the fields like scanning imaging or

microlithography.

Recently, major works have been shifted to the design of phase-only filters
because these filters may have some advantages over amplitude-only filters for some

critical issues, such as intensity loss issue. Different designs can be applied in



several fields like optical storage or scanning microscopy. In short, the main goal of
phase filters is to control the 3-D response of the optical system to produce lateral
superresolution with a specific axial response. In some cases, high depth of focus
(DOF) is needed, while in other ones, axial superresolution is needed. However, the
proposed forms of the phase filters could be very complicated that limit their practical
application. In order to produce simple phase-filter profiles, annular phase filters or

smooth varying phase functions are hence proposed.

It should be noticed that while dealing with the design case of transverse
superresolution with axial superresolution, the focal behavior was studied by the
transverse and axial gains for amplitude filters. These gains were later generalized
for phase filters, working near the paraxial planc. And with the use of a complex
pupil filter, the best image planecan even be shifted.away from that without filter, so
that the gain parameters for complex filtets are generalized in the surroundings of the

shifted focus.



1.3 Surveys of the Previous Literatures
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superresolution lens with high numerical aperture
®  Transverse or axial superresolution in a 4Pi-confocal J. Opt. A- Pure Appl. Opt
microscope by phase-only:filters
2004 ®  Comparison of superresolution effects with annular Appl. Opt.
phase and amplitude filters
®  Design and comparisén of amplitude-type and Opt. Comm.
phase-only transverse super-resolving pupil filters
[ ) Simple expressions for performance parameters of Opt. Lett.
complex filters, with applications to super-Gaussian
phase filters
Superresolution in compensated telescopes Opt. Lett.
Three-dimensional control of the focal light intensity Opt. Comm.
distribution by analytically designed phase masks
2005 @  Design theories and performance limits of diffractive J. Opt. A- Pure Appl. Opt
superresolution elements with the highest sidelobe
suppressed
®  Three-dimensional superresolution by three-zone J. Opt. A- Pure Appl. Opt

complex pupil filters

Table 1.2 Almanac -- Previous Publications for the Topic of Super-resolution



1.3.2 A Brief Summary of The Previous Literatures

®  For the Topic of Phase Pupil Filters:

In 1986, J. Ojeda-Castaneta and P. Andres proposed some heuristic arguments for
suggesting the use of annular apodizers with the purpose of increasing focal depth and
decreasing the influence of spherical aberration. They showed that some annular
apodizers can be expected to produce low sensitivity to defocus and to spherical
aberration. Later on, in 1988, C. J. R. Sheppard and Z. S. Hegedus presented the
relationship between the transverse and the on-axis behaviors of various pupil-plane
filters. And expressions for general energy constraints associated with these filters
were also derived. Then in the following years; several types of pupil filters, mainly
based on amplitude modulation,’were being proposed to help control the 3-D response
of the optical system. But, because of the intensity loss issue, major works were
soon being shifted to the design of phase-only filters. Several methods for obtaining
phase-type pupil filters, providing optimization of the axial intensity distribution, and

giving rise to an increase of the image focal depth, were proposed.

In 2003, Mezouari and Harvey presented a succinct way to design a phase filter
with application of stationary phase approximation. By essentially developed a
differential equation of wavefront error coefficients, it leads to the phase pupil
function for the desired filter. And also in the same year, J. Campos, J. C. Escalera
and M. J. Yzuel published their study of different pupil symmetries which would
produce a predictable image behavior. They showed that different pupil-filters,
satisfying certain symmetry conditions, could produce axial responses which were

either identical or mirror reflected. Differences in the symmetry properties between



amplitude-only filters and phase-only filters had also been established.

®  For the Topic of Superresolution:

Superresolution, being able to overcome the limits of resolution, has aroused
considerable interest. The study of the fundamental limits imposed on the
performance of the superresolution strategy has been given by Sales and Morris in
1997. Later on, several methods have been proposed to the design of superresolving
pupil filters. For instance, the diffractive superresolution elements (DSEs) with
binary and multiple-phase structures were proposed by Sales and Morris; the
three-zone binary phase filters were reported by Wang and Gan; and the
superresolving continuous smoothly, varying phase-only filters, defined to describe the
effect of general complex pupil functions, were proposed by Liu, and Sun. The
comparison of the performance between'those proposed pupil filters has also been
studied. In 2003, Ding, Li and"Zhou discussed and compared the super-resolving
characters of the amplitude-type and phase-type of filters. Later on, Luo and Zhou
reported a comparison of the characteristics of annular amplitude and phase filters.

They carefully analyzed he behavior of two-zone phase and amplitude filters.

Notice that the sidelobe effect is still one of the tough issues in the design of
superresolving filters. Recently, Liu and Yan presented a theory which could be
used to design a diffractive superresolution element (DSE) with the highest sidelobe

suppressed.
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1.4 Motivation of Thesis Work

The motivation of the first half of this thesis comes from the paper published by

Mezouari and Harvey !'”!

, in which they presented a way to design a phase filter by
analyzing the Strehl ratio with the application of stationary phase approximation.
We are interested in the design case of large-aperture optical systems, where
high-order spherical aberrations have to be included. We try to derive the phase
filter with improved tolerance of spherical aberrations. And also based on the
concept mentioned above, we are curious if we can find out a form of pupil phase

functions to minimize the variation of Strehl tratio with defocus and third-order

spherical aberration for dual wavelengths.

The well-known three-zone filter-and the structure of hybrid lens sparkle the
motivation of the second half of this thesis. With the proposed four-zone pupil
masks, we wonder if it can be practically used to improve the performance of the
DVD/CD pick-up head system, through simultaneously achieving superresolution for

two different wavelengths.

1.5 Organization of This Thesis

This thesis is organized as follows. In chapter 2, we first present a radially
symmetric phase-only filter to help alleviate the effects caused by the fluctuation of

third- and fifth-order spherical aberrations simultaneously. A performance

11



evaluation, including modulation transfer function, has been carried out numerically
for the verification of the analytical approach. Following on, phase pupil filters
employed in minimization of variation of Strehl ratio with defocus and third-order
spherical aberration (SA3) for dual wavelengths are being discussed briefly. Later in
chapter 3, we present a rotationally symmetric four-zone pupil masks for the goal of
achieving superresolution for two different wavelengths, for which may be practically
applied to the DVD/CD pick-up head system. In the final section, we draw our

conclusion.
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Chapter 2

Phase pupil functions for superior tolerance of
spherical aberrations in large-aperture optical

systems

2.1 Brief History Review

Among a variety of aberrations, defocus andspherical aberration are common and are
well-recognized and manipulated optical systems along the optical axis only.
Defocus and spherical aberration becomes serious in a larger aperture, even when
only considering ox-axis performance. The use of phase-only filters has been
reported in the literature to eliminate the effect of defocus and third order Seidel
aberrations, especially the spherical aberration ['*.  With the use of phase filters, the

focal depth can be extended P~'%.

Recently, Mezouari and Harvey presented a
succinct way to design a phase filter ", by analyzing the Strehl ratio with the
application of stationary phase approximation !'"'? They essentially developed a

differential equation of wavefront error coefficients, efficiently leading to phase pupil

function for the desired filter. Used in an imaging optical system, the designed phase

13



filter indeed improves the image performance, and enhances the tolerance to defocus

and the third order spherical aberration '

However, in many cases of optics design,
the fifth order spherical aberration (SAS5) is coupled with the third order spherical
aberration (SA3) '*!, usually by being the negative pick-up value to each other. In

other words, balancing some equal amounts of SA3 and SAS is crucial in designing a

filter for optimized reduction of spherical aberration.

In this chapter, when considering the on-axis intensity distribution of an optical
system, we add one more term that corresponds to SA5 into the wave-aberration
polynomial. . Following the approach of Mezouari and Harvey, by requiring the
on-axis intensity to be insensitive to SAS, we derive the phase filter with optimized
SA reduction. For sake of self-completeness, we revisit the approach aberration
variation equation with an extension to SAS.. ' Later, numerical verification is
provided. At the same time, in-deducing-optimized reduction of spherical aberration,
we consider the classical treatment of Maréchal !'*"! and incorporate it with the
approach of Mezouari and Harvey. The result is shown in the following pages.

Finally, we give our conclusion for this section.

2.2 Basic Theory

The Strehl ratio, defined as the ratio of the central intensity in the aberrated pattern to
the central intensity in the unaberrated pattern, expresses the effects of the residual

wavefront aberration on the image of a point source. It is given as

S=| [[explizalW(p.p0aal @.1)

pupil
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where W (p,#) isthe wavefront aberration expressed as a function of the pupil in the
polar coordinate system; dA is the element of are expressed as a fraction of the total

area of the pupil, that is

dd=p-dp-dg/ [[p-dp-d¢ (2.2)

pupil

For a circularly symmetric optical system, suffering from defocus, third- and
fifth-order spherical aberration, which are Wy, Wy4, and Wys, respectively, in terms
of the wavefront aberration coefficients, the on-axis intensity is given by

1Py WoasWogy) =47° | [ pp)exp {izﬂ[mzo<pﬁ>2 o) + Wi () Typdp P (2.3)

0 0

where p is the radial coordinate over the circular pupil, and pyis the maximal radius of
the pupil. Here, p(p) is the added phase-only filter. For a radially symmetric pupil,

it can be represented as

()= {eXp[iZ(;ré’(p)] 0<p < p, 2.4)
L= P

where 0(p) denotes the pupil phase function. Inserting Eq.(2.4) into Eq.(2.3) with a

change of variable, we will get the following term:

o0 ] 3
TW 420 s Woso - Woso) = ”ng | J.exp {272[D(E) + W060§3 + (E Woso +Woso )gz
- (2.5)
3
+ (ZWoso + Wo4o + Wozo )ég + C]}dé |2

where &= (p/p,)" —1/2,®(E)=6(p), and C is a constant phase term which will

not affect the observed intensity (the integral of Eq. (2.5)) and is included for
mathematical consideration and further manipulation in designing the phase filter.

The pupil function is nonzero for 0= p=p,, corresponding to -1/2 =£=1/2.

The stationary phase approximation method is then applied to evaluate the value

of the integral, where the stationary points are given by
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d 3 3
d_f[q)(g) + W%oé:3 + (E Waso +Woao )52 + (Z Woso + Woao + Wing)S + C]g:gs =0. (2.6

If the exponential term in Eq.(2.3) oscillates much more rapidly than the added phase

filter term p(p), the axial irradiation distribution can be approximated as:

1
IV W W Y= 27 p , 2.7
(Woz0s Woao > W) Po | D" (&) + WS, + (BWy +2W,y0) | 7

where ®" represents the second derivative of ®© . If we want the on-axis
irradiation distribution to be less sensitive to the variation of the fifth order spherical

aberration, W060, then the following equation has to be established:

d 1
— =0 (2.58)
AWysy  D"(E) + W o& +3W gy +2W oy,

Note that Eq.(2.8) only guarantees an extreme value, which means that in order to
ensure that the use of the derived form of the phase filter can really enhance the

system tolerance to SAS, a further.check is necessary.

2.3 lllustration and'Simulation Verification

2.3.1  APhase Filter That Has Been Developed for Wos=Wq,0=0

Here, for the purpose of illustration, we consider a phase filter that has been

[10]

developed for Wy, =W;20=0 as per Mezourari and Harvey Next, one additional

phase filter is used to tolerate SAS5. In other words, the initial condition is: Wogo 70,

Wo4=W020=0.

From Eq. (8), the relation between Wysp and ®" can be derived as:

@H

Woso =m—a (2.9)
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After some manipulations [see Appendix A.1], we have the phase pupil function as:
0(p) = B + B In(£) (2.10)
Po Po Po

where £ and f, provide two degrees of freedom.

Normalized Intensity

Aberration Coefficient Wygp (Units in A )+

Fig. 2.1: The Strehl ratio as a function .of aberration coefficient Wy, with zero
defocus and SA3 (Wy20=0 and Wys=0)..The-selid curve represents an ideal lens, while

the dashed one corresponds to the use of the phase filter (B= 7x; B 0 = 0.3*p)

The performance of the phase filter of Eq. (2.10) is shown in Fig. 2.1. As
shown in Fig.2.1, with the use of the derived phase filter (B = 7xn; B,= 0.3*B), the
system has a higher tolerance to SAS5. The boundary of tolerance can be judged
based on Rayleigh’s criterion, i.e., the normalized intensity of 0.8 is the limit for
fine-correction imaging. In other words, the limit for low aberration imaging against
Wyeo ranges between -1.8 and 2.8, while it ranges between -0.25 and 0.25 for an
“ideal” lens, which is nearly approaching the case of diffraction-limited condition.
That is, the tolerance to SAS is improved by a factor of nine. The shape of phase

pupil function is shown in Fig. 2.2 for reference. Notice that the calculated phase is
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extended to a range from —x to 7.
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Fig. 2.2 The shape of the designed pupil phase function. (see text)

In Fig. 2.3, a plot of the transverse intensity distribution as a function of
aberration coefficient Wyeo is shown. | It.can be seen that, with the use of the designed
phase filter, the transverse infensity‘ ‘distrilé)‘l‘ltiqn also becomes insensitive to the
variation of the residual 5™ order SA, though there is a reduction in intensity because

of an increase of size of the point-spread function (PSF).

1 PN Intensity

f Transverse
08 / coordinate

067 / ; \ Lt
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Intensity

Transverse

coordinate

Fig. 2.3 The transverse intensity distribution as a function of aberration coefficient

Woeo, (the range explored here is -2.5 to 2.5) (a) with clear aperture (b) with the filter

"' " order SA.

(a) ideal lens | 09 (b) with filter |

08

07

Woe =02

Normalized MTF
o o
g th

Normalized MTF

0 02 04 06 0B 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Spatial frequency (normalized) Spatial frequency (normalized)

Fig. 2.4: Computed MTF with initial setting W,0=0 and Wy4,=0. (a) Ideal lens and (b)
with the proposed phase filter, in which the solid curve: Wys=0, the dashed curve:

Wo60=0.5X, the dotted curve: Wys=A, and the dash-dot curve: Wyso=2A.
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The MTF drops rapidly as the value of the 5™ order SA increases, which implies
that the image quality is badly damaged in the case of fine resolution with a higher
spatial frequency. With the use of the phase filter, the MTF becomes less sensitive to
the variation of SAS and hence stabilizes the final image quality, although of course it

causes a reduction in the MTF.

It must be noted that there is also a reduction of 40% in the effective cut-off
spatial frequency in the case of an ideal lens. These reductions are a baseline in
using the filter for practical applications of imaging optics. For instance, in some
metrology applications, certain amounts of contrast (35%) and image resolution
(30lp/mm) are required for accurate image edge detection. When applying the phase
filter to the lens system, one should first be careful about the baselines. Although
the use of phase filter drops dewn.the MTFs than those of an ideal lens, the MTFs
become much less sensitive to the abertation-and contain no zeros. The zero-free of
MTFs makes it possible for digital restoration of the recorded image, which permits

an almost diffraction-limited PSF to be retrieved.

2.3.2  Optimized Reduction of Spherical Aberration
with Maréchal Treatment

In this section, we will discuss the development of a phase-only filter with the initial
condition of a fixed ratio of Wy /Wyso. It is known that when the axial irradiation

distribution / is greater than 0.8, it may be approximated as

27t
12

191-(Z2)E) (2.11)
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where

E= ”Wz(r,¢)dA—[ ”W(r,¢)dA]2 (2.12)

pupil pupil

(14151 " Based on

is the variance of W(r,¢) over the pupil of the optical system
Maréchal’s treatment of the tolerance theory, the value of variance £ may serve as a
useful criterion in designing a high-quality optical system [14,15].
Cross-referencing to Eq. (2.1), W is the residual wave-front aberration on the exit

pupil. In this section, the main aberrations of concern are defocus, SA3, and SAS,

and as such the wave-aberration polynomial W will be expressed as:

W=f(B,p +Bp'+1.0p°%), (2.13)
where B,, and B, represent the ratios of W, /W,, and W,/ W,
respectively, and /* is the aberrationsscaling factor, which is proportional to the value
of Woeo in Eq. (2.2). The use of the aberration'scaling factor f permits the argument

of the exponential function in Eq. (2.1).to be varied. This helps us to analyze the

influence on the Strehl ratio of aberrations of different magnitudes. Maréchal has
shown that, for spherical aberration the best form of correction (with 0E/0W,,, =0)

5 1,

is determined by the condition Wy,/Wysp = -1. First, as a simple illustration,

the scaling factor f'is taken to be 1. Then we take a close look at the variation of the
maximal value of the on-axis intensity by varying the value of B,,. As shown in
Fig. 2.5, the maximum occurs when the value of B, is equal to -1.5, which

corresponds exactly to the statement of Maréchal.
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Spherical aberration ratio Byg

Fig. 2.5 Maximal on-axis intensity versus Bis

In quite a similar way shown in section 2.3.1, we derive the pupil phase function
for the case that B, is fixed to be -1.5. From Eq. (2.8), the relation between Wy
and @" can be derived as

w AT 2.14)

—6¢

After some manipulations [see Appendix-A:2];-the pupil phase function is expressed

as the following form:

0(p) = By (L) + B -In(2) (2.15)
Po Po Po

Now, we fix the value of B,, to be -1.5 and vary the value of the aberration
scaling factor f; so that f is from 1 to 6. With a suitable range of B,, values, the

variations of the Strehl ratios are observed.
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Fig. 2.6 Plot of the Strehl ratio versus Bagfor different aberration scaling factors

f, with B4g=-1.5. (a) Ideal lens and (b)'with the proposed phase filter.

The computed Strehl ratios / vs B,; curves are shown in Fig. 2.6. For an ideal
lens, the maximum value of the Strehl ratio, occurs around the value of B,,= 0.6 for
each curve. As the value of the aberration scaling factor increases, the maximum
value of the Strehl ratio drops rapidly. With the application of the phase filter, where
B = 5m; Bo,= 0.3*%B, the Strehl ratio of the optical system becomes much more
“condensed” at B,,= 0.6, although it causes a reduction in magnitude. Furthermore,
as shown in Fig. 2.7, with the use of the filter, even if the value of the scaling factor f°
becomes ten times larger, the normalized on-axis intensity still remains at 75% of the
maximum value, while it drops to only 20% of the maximum value in the case of an

ideal lens. Therefore, with the application of the phase filter, the optical system
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becomes less sensitive to the variation of the 5™ order SA.

function is shown in Fig. 2.8 for reference.

Fig. 2.7 The Strehl ratio as a function of aberration scaling factor £, with Bys =0.6 and

B4 = -1.5. The solid curve represents‘an-ideal lens, while the dashed one corresponds

with filter
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Fig. 2.8 The shape of the designed pupil phase function (see text).
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Let us now shift our focus to the issue of trade-off. The transverse intensity
distribution as a function of the aberration scaling factor fis shown in fig. 2.9. When
the designed phase filter is applied, the transverse intensity distribution becomes
insensitive to the variation of the scaling factor f. However, as a trade-off, the
magnitude of the on-axis intensity has dropped to about one-third of the original one

with a clear aperture.

Intensity

@)

Tranaverse
coordinate

abemation facto f

Il 1 8 L A

()

Intensity
038

.. Transverse
03| )
coordinate

025

02T abemation facto f

Fig. 2.9 The transverse intensity distribution as a function of the aberration scaling

factor f (the range explored here is 0 to 10) (a) with clear aperture (b) with the filter

25



Next, we look at the MTF performance for different values of the scaling factor,
namely /=0, 2, 4, 6, and 8, where B, = 0.6, B, =-1.5 are fixed correspondingly.
As shown in Fig. 2.10, the MTF of an ideal circular lens fluctuates greatly with the
variation of the scaling factor. When the phase filter is applied, the MTF becomes
much more insensitive to the variation of the scaling factor, although it causes a
reduction in the MTF, and the effective cut-off frequency now becomes 70% of the

ideal lens case.
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Fig. 2.10 Computed MTF with (a) the ideal lens and (b) the proposed phase filter.
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2.4 Conclusions

In conclusion, we derived a radially symmetric phase-only filter that enhances the
system tolerance to an SAS5 by using the method of stationary phase approximation
similar to the approach of Mezouari and Harvey. Two different implementations
have been provided. The proposed approaches of extension and its deduced phase
filters will be especially useful in the case when the imaging optical system has a
large size of aperture. Which one is better is, of course, dependent on the inherent
characteristics of optical systems over the leading and different orders of aberration.
Inclusion of Maréchal treatmentyin the approach of Mezouari and Harveis is an
efficient method to deduce a -phase filter with .superior tolerance in defocus and

spherical aberration as well as better system-performance of imaging quality.

The critical issue of trade-off is worthwhile to be readdressed; it has been
detailed that the use of the proposed phase filter causes a reduction in intensity and
the MTF. These reductions form the baselines in practical applications of the use of
phase filter. Optimization has to be reconsidered in developing the filters to meet the
performance requirements and/or system specifications. It is worth noting that the
pupil phase function in a logarithmic form is in fact a particular solution of the
developed differential equations. That is to say, this solution form has been obtained
by assigning the added constants to some particular values. This is the freedom and
the advantage of the approach of Mezouari and Harvey in deducing an optimized
solution of phase filter. In this section, in contrast, it is the capability of “superior

tolerance” to be addressed. In other words, one of main goals of this section is to
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investigate how “superior” can be established in tolerance based on the approach of
Mezouari and Harvey (an approach with solving the different equations of aberration
coefficients). Finally, as a comment, it is a simple and straightforward matter to
determine the extension to a higher order spherical aberration (say, the seventh order
spherical aberration, SA7), which could be more critical in the systems with larger

aperture.
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Chapter 3

Phase pupil filters employed in minimization of
variation of Strehl ratio with defocus and spherical

aberration for.dual wavelengths

3.1 Basic theory

For the collimated light passing through an objective lens and a phase-shifting
apodizer and then converging through onto an optical disk, the normalized amplitude

distribution in the image side can be defined as !'";

Glpua)= [ p(r)-J(pr)-expli’yr° - rdr (3.1)

p and u are the simplified radial and axial coordinates, respectively, on the image side:
p=277[(NA)-R u:%(NA)z-Z (3.2)

where R and Z are the radial and axial coordinates on the image side. NA is the
numerical aperture of the objective lens. Here, P(r) represents the generalized pupil

function, which for a radially symmetric pupil can be represented as
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(3.3)

0 r>r

max

expli2z6(r)] O0<r<r,.
p(r)=

Therefore, the on-axis amplitude distribution function in the focal region can be

expressed as:

r

G(p.u) = Txe)qp{z’-27”[n~e(r)—(zvf1)2 (2= )-r]}-rdr (3.4)

0

Now, if we mainly consider about the effect of defocus and third order spherical
aberration (SA3) to the on-axis performance of an optical system, the on-axis
intensity distribution is then given by:

Tmax

2
[(Wy,W,y) =47 | [ exp {if[n-e(r) = NA*Az 1 + W + Wy Trdr [ (3.5)
0
As the frequency of the incident collimated light varies, the resulting magnitude of
defocus (or SA3) will change. .Here comes-dn important issue that we have to find
out a relationship between those aberration terms and. the frequencies. If the amount
of variation of the frequency is small; it'is-reasonable to state that there still remains a

linear relation between the aberration terms and the frequency.

Note that the primary aberration terms, up to fourth order in pupil and object or

. . 4-
image coordinates, can be expressed as 1™

Wr,0;h"y=a,r* +a, h'r’ cos@+a, h’ r*cos’@+a,h’r* +a,h”rcos@® (3.6)

where those five terms refer to spherical aberration, coma, astigmatism, Petzval
curvature and distortion. To evaluate the on-axis performance of an optical system,
we mainly pay our attention to the first term, SA3. And for a thin lens system, the

coefficient ag, is given by:
1 n
ass - 3 [
2n(n-1)f" n-1

+@Bn+2)(n-1)p’ +%q2 +4(n+1)pq] 3.7

where p and q are called the position and shape factors, respectively.
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p=Qf/S-1=1=-2f/8" (3.8)
q=(R,+R)/(R,—R)) (3.9
S and S’ refer to the object distance and the image distance, and R; and R; are the

radii of curvature of the two surfaces of the lens.

If the position factor is given, the value of the shape factor which minimizes the

spherical aberration is given by the condition:

Oa,,

=0 (3.10)

Thus, we obtain

(3.11)

For the case that an object is at infinity and the image is at the focal plane of the lens,
the value of the position factor?p is set to'be 1. 'Substituting the above Eq. 3.11 into

Eq.3.7, hence the corresponding minimum spherical aberration is obtained:

1 n., n )
a. . = — 3.12
e = 1) ] (3.12)

Thus, the wave-front aberrations for two different incident light frequencies can be

expressed as:

W, =n0(r)+aWer® +a, (W +Woi)r' (3.13-1)
W, =nm,0(r)+bWer® +b, (Wi + Wy r' (3.13-2)
Where
Wi, = f%[(nln‘_ D nlni ] (3.14-1)
W e = fi;[(nz”z_ i (3.142)
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With a change of variable, &= 1*-1/2, we get:

W, =m®(S)+a,(Wy, + Wo/}tlomin )&+ (a Wy +a, Wiy + Woj,lomin NS (3.15-1)
W, =n,@(5)+b, (W, + Wiiomin )&+ (BiWogg + D, Wogo + Wiy NE - (3.15-2)

By employing the stationary phase approximation, the axial irradiation distribution is

given by:
LWy, W) =27 py | 20 1+c1>"(§s)‘ (3.16-1)
LWy, W) =27 pf | b iCD"(fs) | (3.16-2)
Notice that the stationary points for both frequencies are given by:
d%[n@(af) + AWy +(a W +aWyy)él.. =0 (3.17-1)
d%[nzqa(g) + b, W& (D Wb Wy))E],. =0 (3.17-2)

If the added phase filter is used to enhance-the,system tolerance to SA3 for both

wavelengths, the following equationsimust.be.satisfied simultaneously:

d
d_[”1q)(§) + azWo4o§2 +(a,W,, + aIVV20)§]§=§v =0

{f
d_ : =0

W,y 2a,W,, +®"(S,)

(3.18-1)
d
22 + b Wo 2+ (bW + bW )E]. . =0
o
dVV40 2b2VV40 +q) (5?) (3.18‘2)

Then the resulting pupil phase functions that control SA3 when the optical system is

at the best focal plane will be written as:

0, (ry=A,r* + Ar*log(r) (3.19-1)
P 2 1

0, (r)=B,r* + Br* log(r) (3.19-2)
2 2 1
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Similarly, the independence of the axial irradiation distribution on defocus aberration

leads to the following equations:

d
d_[n1q)(§) + azW040§2 +(a,W,, + aleo)§]§=§v =0

{é‘
4 : =0

aw,, 2a,W,, + @"(&,)

(3.20-1)
dif[nch(f) + bz%méz + (O, W + blwvzo)é]&fs =0

{ d_ 1 =0
dW,, 2b,W,, + ®" (&) (3.20-2)

Then the resulting phase functions that reduce the defocus error when SA3 is
negligible yield:

0,r) = e’ =112)° (3.21-1)

0, (1) 2Pt =112)’ (3.21-2)

3.2 Hlustration and Simulation Verification

A DVD/CD optical pick-up head system, containing 635 and 785 nm laser
diodes, is taken as an example here. Now, in order to lower down the sensitivity of
the on-axis intensity of this optics system to SA3, the circular symmetric logarithmic
phase filter, described in Eq.3.19, is employed. We first consider about the system
performance for the wavelength which is equal to the average value of the two
wavelengths. How the parameters of the pupil function are determined depends on

the system requirement of the magnitude of on-axis intensity and the range of
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tolerance. For instance, if we want to enhance the tolerance to SA3 for at least five
times and still keeps the magnitude of the on-axis intensity at least one- tenth of the
original value, we may find it a good option to set the parameters o= 5.6 and a,=
0.401*a;.  Then we pay attention to the variation of the intensity and the tolerance
to the deviation of the wavelength, as shown in Fig. 3.1. It can be seen that the
corresponding changes of those terms to the deviation of the wavelength are still

under control.

014 T T T T T T T T T

0.12

01F

Strehl ratio

008F

UUE 1 1 1 1 1 1 1 1 1
0% 8% 6% 4% 2% 0 2% 4% 6% 8% 10%
Deviation of wavelenath

D 1 1 1 1 1 1 1 1 1
A0% 8% 6% 4% 2% 0 2% 4% 6% 8% 10%
Deviation of wavelength

The enhanced factor of tolerance

Fig. 3.1 Relation among 1) the intensity and 2) the enhanced factor of tolerance to the

deviation of the wavelength with the use of the designed filter

By setting A; = a,;*(1+0.112) and A,=a,*(1+0.112), the system tolerance to SA3
for DVD is enhanced for about seven times, as shown in Fig.3.1 (a). Meanwhile, the
corresponding values of B, and B, are also determined, where B;=a,;*(1-0.112) and
B,=0,%(1-0.112), and the tolerance to SA3 for CD is improved by a factor of 6, as
shown in Fig.3.2 (b). However, it should be noticed that the application of the phase

filter will shift away the position of the central peak in both cases.
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Fig. 3.2 The Strehl ratio as a function of aberration coefficient Wy49, with zero
defocus (Wp20=0). The solid curve represents an ideal lens, while the dashed one
corresponds to the use of the phase filter (where o;= 5.6m and a,= 0.401*a;)

(a) for the case: A; =a,;*(1+0.112) and A,=0,,*(1+0.112)

(b) for the case: Bj=a,;*(1-0.112) and By=0,,*(1-0.112)

A comparison between the computed modulation transfer function (MTF) for
different values of SA3 for these two wavelengths is displayed in Fig. 3.3.
Originally, the MTF is sensitive to the variation of the amount of additional SA3.

When the designed logarithmic phase filter is used, the MTF becomes less sensitive to
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SA3 in both cases. However, there is a reduction of the effective

of about 45%, and a reduction in the signal-to-noise ratio.
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Fig. 3.3 Computed MTF with initial setting Wy=0 with the proposed phase filter

(where o= 5.6m and a,= 0.401*a;), in which the solid curve: Wy4=0, the dashed

curve: Wy40=0.5A, the dotted curve: Wys=A, and the dash-dot curve: Wys=2A.)

(a) for the case: A; =0, *(1+0.112) and Ay=0,*(1+0.112)

(b) for the case: Bj=a,;*(1-0.112) and Bo=0,*(1-0.112),
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3.3 Conclusions

In this chapter, we present a way to implement the minimization of variation of Strehl
ratio with defocus and spherical aberration for dual wavelengths. By using the
proposed phase pupil filters, we can see that the system tolerance to SA3 is, indeed,
enhanced. However, as a trade-off, the use of the phase filters will inevitably drop
down the central peak of the intensity and also the effective cut-off frequency, which
leads to worsen the image quality. It should be noticed that, we make some
simplification and put some constraints in the deduction of the pupil function, which

will also limit the use of the designed phase filters:
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Chapter 4

Pupil filters designed for simultaneously achieving

super-resolution for two different wavelengths

4.1 Brief History Review

Superresolution was first being discussed'by Toraldo di Francia in 1952 1. Being
able to overcome the limits of resolution imposed by diffraction in optical systems,

this idea has aroused considerable interest, especially in the fields of optical storage

[2.3]

and optical microscopy One can enhance the storage capability of a single

compact disk by reducing the size of the focusing laser spot. Thereby, lots of

methods have been proposed to designing superresolving pupil filters. At first, these

4-7]

filters were based on amplitude (variable-transmittance) pupils | Later on,

attention has been shifted to develop pure-phase filters in order to overcome some

[8-12]

drawbacks of amplitude filters: for instance, intensity loss issue Many phase

profiles that achieve transverse superresolution are based on annular designs, such as

(2]

the diffractive superresolution elements (DSEs) proposed by Sales and Morris *~, and
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the three-zone binary phase filters reported by Wang >4,

For the design of
continuous superresolving phase-only profiles, the global/local united search
algorithm (GLUSA) is generally used .  However, it requires extremely complex
phase masks to achieve the wanted performance. In order to conquer that difficulty,
superresolving continuous smoothly varying phase-only filters, obtained by using a
series of figures of merit which are properly defined to describe the effect of general

complex pupil functions, were proposed "%,

The advantages of these kinds of filters
are that they don’t produce energy absorption and they are easy to build with a

phase-controlling device such as a deformable mirror.

In this chapter, we present a way of how a rotationally symmetric four-zone pupil
filter is being designed, to both achieve superresolution property for two different
wavelengths. The problems that we face in the design will be carefully discussed in

the following pages.

4.2 Basic theory for super-resolution

4.2.1 The 2" order expansion of the intensity distribution for small

displacements of the focus position from geometrical focus

The diffracted intensity distribution near the geometrical focus, while applying the
rotationally symmetric amplitude pupil functions, can be analyzed as follows.!"”

The general complex pupil function can be written as:

P(p) =T(p)-exp[ip(p)] 4.1
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where T(p) is the transmittance function, and ¢(p) is the phase function. Then the

normalized complex field amplitude U in the focal region can be written as:
1 iu pz
U.u) = [ P(p)Jy (0p) exp(-——)pdp (42)
0

Here » and u are radial and axial optical coordinates, respectively
v=kr-sing;  u =4z sin’ (%); (4.3)

Where sin a is the numerical aperture of the system, and r and z denote the radial and

axial distances. In the focal plane, the diffracted field distribution will be:
1
U(.0) =2[ P(p)J,(vp) pdp (4.4)
0

Notice that the above equation is the Hankel transform of the pupil function. Along

the axis, we will get:
UO,u= | PCpYexpl=—") pdp (4.5)
0

Now we involve the variable t = pz, and'the pupil function P(p) can be written as Q(t).

Then the field distribution along the axis can be written as:

UO.u)=[0() exp(—i%t)dt (4.6)

Therefore, it’s clear to see that the above equation is the Fourier transform of the
equivalent pupil function Q(t). The pupil function is assumed as P(p) =1 for the case
of achieving the diffraction limit . Somehow, if we carefully modify the pupil

function P(p), super-resolution can be realized.
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According to the theories of Sheppard and Hegedus and De Juan et al. "), within
the 2nd order approximation, the transverse and axial intensity distributions can be

expressed as:

1(0,0) =1, —%Re(loll*)uz (4.7)
I10,u) =1, | =Tm(1," 1, )u— i [Re(1,"I,—| I, )]u 4.8)

where * denotes the complex conjugate and I, is the nth moment of the pupil function

given by:
1
1, =2[ P(p)p™"dp (4.9)
0

It can be seen that the transverse intensity is symmetrical with respect to the
geometrical focus (v =0, u =0) [see, AppendixB.1]. However, for the axial intensity
this is not true in general. Th¢ displacement of focus in the axial direction and the

Strehl ratio are given by:

4y = D) (4.10)
Re(1; 1))- |1, |

S=I,? —u,Im(, I,) (4.11)

The transverse and axial gains, which are defined as the ratio between the
squared width of the parabolic approximation of the intensity PSF without the filter

and with the filter, are given by:
Re([0]1*) —Up Im(lo*lz)
S
Re(lolz*)_ |1, i
S

G, =2

(4.12)

G,=12 (4.13)

Gt and Gy are greater than unity for transverse or axial superresolution, respectively.
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It should be noted that Eq. 4.10 is valid only for small displacements of the focus
position from the geometrical focus, where the second-order expansion of the
intensity distribution is a good approximation to describe the focal behavior. The
position of the maximum intensity is given by the coordinates (0, ur). Analogously
to the development by Sheppard and Hegedus, expressions for the transverse and
axial gains corresponding to complex pupil functions are obtained from the

second-order expansion of the intensity with respect to this point.

4.2.2 The 2™ order expansion of the intensity distribution to the case

in which the best image plane is not near the paraxial focus

J.Campos, J. C. Escalera, and M: J. Yzuel have extended the expressions for the axial
and the transverse gain to theicase in which the best image plane is not near the
paraxial focus [see Appendix B.2]: 1 They first search for the maximum of the on-axis
intensities, and then they develop up to the second order superresolution factors
around that point, say ums. The generalized expressions for those factors are

expressed as below:

Im(/," "
u, =2 0Uo” 1)) . (4.14)
Re([z' [0')_’11'|

. T (4.15)
0
vty 12
|10'|2 _5”0 Im(Z,"1,")
S =1, —u,Im(," 1,") (4.17)
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Note that ug is measured from the BIP centered at u,ax, S0 its values will be close

to zero for most functions of an optical system.

4.2.3 Fourier Optical Transformations

It is necessary for us to give a check to the transverse intensity distributions directly
from the basic diffraction theory. The transverse intensity distribution of the image
intensity can be obtained by directly convoluting the object intensity distribution
function with the point spread function of the optical system. However, it could be a
terrible job, implementing the convolution operation [19]. As an alternative choice,
we take the Fourier transform of.the object mtensity distribution function first, and
then multiply it with the optical transfer function of the optical system. Next, by
taking an inverse Fourier transform-of-it;-the transverse intensity distribution is
obtained. Avoiding taking the convelution eperation but alternatively implementing

the FFT (inverse FFT), it’ll help save lots of computing time.

4.3 Structure of Hybrid Dual Focus Lens

A dual focus objective lens of combining aspheric surfaces of DVD and CD for

DVD/CD pick-up head has been proposed in 1996 '*].
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Fig. 4.1 Schematics of (a) the single-ring and (b) the double-ring dual focus lens.

As shown in Fig. 4.1 (a), for a lens consisting of two zones, the CD aspheric surface is
located in the central region, while the DVD aspheric surface is located in the outward
region. In this way, the objective lens for both CD and DVD can be made into a
single lens. However, as a drawback, the lens'used in DVD will suffer an obvious
side-lobe of the focusing spot.= In.order to reduce the side-lobe effect of the DVD
spot, a four-zone scheme is used; which-is-shown in Fig. 4.1 (b). The CD aspheric
surface portion is composed of the central circle area and the middle zone, while the

inner and outward zones form an aspheric surface for DVD lens.

The quality of focus spot of the designed objective lens is a function of the width
and position of these zones, which can be numerically calculated based on the scalar
diffraction model. Theoretically, the focus spot of DVD and CD can be calculated
independently when the focus lengths of DVD and CD are different. Therefore, to
calculate the focus spot of DVD, the region of CD is viewed as a mask, and vice

versa.

In fig. 4.2, we show the resulting schematic of ray tracing, for which light

propagates through a singlet lens with hybrid structure designed for two wavelengths.
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The simulated result of the transverse intensity distribution at the focal plane is shown
in Fig. 4.3. It tells that the intensity near the optical axis is so strong so that that the
effect introduced by the defocusing light can entirely be neglected. This result

confirms the validity of making the previous assumptions in the last paragraph.

Fig. 4.2 Schematic of the ray trace of a hybrid lens system

Intersity (a.u.)

T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Radial coordinate (llll‘l)

Fig. 4.3 Raial intensity distribution of a hybrid lens system at the focal plane

4.4  Set-up of The Four-zone Pupil Filter

In order to both obtain the super-resolution property for the two DVD/CD
wavelengths, the objective lens system is modified by adding a complex pupil filters.

The structure of the complex pupil filter is shown in Fig. 4.4.
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Fig. 4.4 Structure of the four-zone pupil filter

For the portion of CD surface, as shown in Fig. 4.5, since the second zone
corresponds to the region of DVD surface, the transmittance of the second zone is

assumed to be zero. The transmittances of the first zone and the third zone are
. %] I gz i
assumed to be t; and t3; and the oorrespondmgphases of the first zone and the third

'H. l

zone are ¢y and ¢3. The radm al‘e a,

I— ~ ..'
il nf
¥

b ’allpgl 1 ",Ehe pupil function for CD can be

expressed as:

t,-exp(ig)) 0<p<a
P(p)=T(p)-exp[ip(p)] = 0 a<p<b (4.18)
t,-exp(ig,) 0<p<a

>

Fig. 4.5 Schematics of the portions of the filter for CD
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Then the following moments of the pupil function for CD are obtained:

I, =t -CXp(i¢1)'a2 +t,-exp(ig;)-(1 —bz) =a, +ib, (4.19)
I, = %[t1 -exp(i¢1)~a4 +1, -exp(i¢3)~(1—b4)] =a, +ib, (4.20)
I, = %[r1 ~exp(i¢1)~a6 +1 -exp(i¢3)~(1—b6)] =a, +ib, (4.21)

For the portion of DVD surface, as shown in Fig. 4.6, since the first and third zone
correspond to the region of CD surface, so the transmittance of these two zones are
assumed to be zero. The transmittances of the second zone and the fourth zone are

T, and T4; and the corresponding phases of the second zone and the fourth zone are

=ik 'I BEF =

¥, and W4. The radii are c- a, ¢+ b, c, and
. STV

i

.

'

-1 ]
=3

expressed as: o ke b

T o<psea
P(p)=T(p)-exp[ipp)] =y T,-exp(i¥,) c-a<p<c-b (4.22)

0 c-b<p<c

T, -exp(i¥Y,) c<p<l

€ 2

Fig. 4.6 Schematics of the portions of the filter for DVD
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Then the following moments of the pupil function for DVD are obtained:

I, =T, -exp(i¥,) - [(bc)* —(ac)’ 1+ T, -exp(i¥,) - (1-c*)=a, +ib, (4.23)
= (T exp.) [(be)' ~ (@) 1+ T, exp)- (=} =a ity (424)

I, = %{T2 -exp(i't,)- [(bc)6 - (ac)6 1+ T, -exp(i¥,)-(1- 06)} =a, +ib, (4.25)

Substituting those moments into Eqs. 4.11 and 4.12, the Strehl ratio, the transverse

and the axial gains will be expressed as:

2(a,by —ayh)

U, = 4.26
" (a,a,+b,by)— (a12 + b12) ( )
S=a,’ +b, —up(agbs=ab,) (4.27)
GT :2(a1a0 +blb0)_;F(a0b2 _azbo) (428)
2 2
G, =12 (a,a, +b2b0;— (a, +b;) (4.29)

On this condition, substituting Eqs. 4.14'and 4.18 into Eqgs. 4.4 and 4.5, the expression
of the transverse amplitudes for CD and DVD are obtained:

For CD:
u(v,0) = 2 {exp(i-0.47)-[J,(L)=b-J,(av)]+a-J,(av)} (4.30)
v
For DVD:

u(v,0) = E{exp(z’ -0357)-[J,(v)—c-J,(cv)]+[cb-J,(cb-v)—ca-J,(ca-v)]} (4.31)
v

According to
1(0,0) =U(,0)-U *(v,0) (4.32)

Thus, we can obtain the intensity distributions along the transverse direction.

48



4.5 llustration and Simulation Verification

4.5.1 Design procedure

The design procedure that we propose here has the following steps:

Step 1:

After carefully setting up all the parameters, like the radius and transmittance of
each zone, we use the second order approximation theory, mentioned in section 4.2.1,
to calculate the superresolution fagtors, like the transverse gain, the Strehl ratio, and
the displacement of axial focus...' Then we can narrow down the range of the

parameter in which the wanted supertesolution-property may be possibly achieved.

Step 2:

To check the accuracy of the computed result gotten in step 1, the transverse
intensity distributions are computed directly from the basic diffraction theory without
any approximation. We make radial intensity scans at various axial coordinates to
find out in where the best image plane (BIP) appears with the applicant the designed

filter.

Step 3:

Once the location of the BIP is found, we calculate the gain parameters for the
filter in the surrounding of the shifted focus, as what is mentioned in section 4.2.2.

Then we fine tune the parameters, like the transmittances of the zones, and observe
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the corresponding changes of the superresolution factors.

Step 4:

Similar to the action we list in step two, we give a further check to see if the
transverse intensity distributions really achieve transverse superresolution for both

wavelengths. If yes, the goal is accomplished.

4.5.2 Simulation Verification

Step 1:

With the condition a*+b’=1, we adjust the phase factors and the radii of these
four zones. For CD surface, t; and.t3’are still assigned both to be 1; and ¢, and ¢; are
assigned to be 0 and 0.4n. For:DVD surface, T, and T, are also assigned both to be
1; and ¥, and ¥, are assigned to be O-and 0.357w.0 The value of radius c is first
assumed to be 0.7, while the value of radius a varies from 0.4 to 0.6, and the value of

radius b is obtained from the relation b= (1-a*)""2.

With all the factors being settled down, we obtain the relation among the radius a
and the transverse gains and Strehl ratio of such a system for both CD and DVD cases,
as shown in Fig. 4.7(a) and 4.7(b), respectively. It can be observed that with
increase in radius a, the transverse gain decreases for CD, while one increases first
and then decreases for DVD. In the range that a€[0.4, 0.6], the gains are all greater
than 1, which means that superresolution property can be realized simultaneously for
both CD and DVD. It can also be seen that, for the case of CD, the Strehl ratio

increases with the increment of the radius a, but decreases for the case of DVD.
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Fig. 4.7: 1) Relation among the teansyverse'gain and the radius of the first zone.
2) Relation among the Strehl ratio and the radius of the first zone.

(a) for the case of CD “(b) for.the-case of DVD

Figures 4.8(a) and 4.8(b), respectively show the transverse intensity distributions
for three particular solutions for CD and DVD, corresponding to three different kinds
of set-up of the pupil filter, in comparison to the case of clear pupil. The intensity

has been normalized to the clear pupil size.

It should be carefully minded that the simulated results of the intensity
distribution, shown in Fig. 4.8, disagree with those derived from Egs. 4.11 and 4.12.
For instance, when assuming the value of radius a to be 0.6, the predicted value of the
Strehl ratio for CD derived from Eq. 4.11 is about 0.9, while that for DVD is

approximately equal to 0.5.
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Fig. 4.8(b)

(a) for the case of CD (b) for the case of DVD.
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Fig. 4.8: The transverse intensity distributions 1) with the clear pupil, 2) with the

designed filter, for a=0.5 (solid curve), a=0.57 (dashed curve), a=0.6 (dotted curve)

However, as shown in figure 4.8, the central peak value of the normalized

intensity distribution for CD is, in fact, less than 0.4, while that for DVD is less than



0.5. Besides, for CD, the set-up of the filter doesn’t achieve the goal of
superresolution, but even enlarges the spot size in the focal plane. For DVD, though
transverse superresolution is obtained, the transverse side-lobe is tremendously
worsened in the focal plane. It is noticed that, for both cases of CD and DVD, the
contrast is worsened, which makes it much more difficult in the practical application

of reading the data from the disk.
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(a) (b)
Fig. 4.9: Relation among the displacement of focus in the axial direction and

the radius of the first zone. (a) for the case of CD (b) for the case of DVD

It can be clearly be seen in Fig. 4.9 that the computed value of the axial
displacement, ug, is in fact quite apart from zero for both cases of CD and DVD.
The place where maxima intensity occurs has been shifted away from the geometric
focus, so that the derived forms of Strehl ratio and transverse gain, based on 2"-order
approximation, become incorrect in describing the focal behavior for the designed

cases here.

Step 2:
Now, the intensity distributions along the transverse direction for CD and DVD
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at the paraxial focus are obtained directly from the computation of the diffraction
theory, shown in Fig. 4.10(a) and (b), respectively. We can see that the results
correspond to what we have shown in Fig. 4.6. For CD, the goal of superresolution
isn’t achieved, but even enlarges the spot size; for DVD, though transverse

superresolution is obtained, the transverse side-lobe is worsened.
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Fig. 4.10 (a)
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Fig. 4.10: The transverse intensity distributions 1) with the clear pupil, 2) with

the designed filter, for a=0.6 (a) for the.case of CD (b) for the case of DVD.

We are now interested in where the best image plane (BIP) appears after we add
the designed filter into the system. Radial intensity scans at various axial
coordinates are shown in Fig. 4.11(a) and(b), for CD and DVD, respectively. The
range of axial coordinates, u, explored here is -5 to 5, which would certainly seem to
cover the transition region we are interested in. From the figure, it seems reasonable
to state that the BIP, where best image performance is gotten for both CD and DVD,

occurs around u= 3.

For CD, we can see that the peak value of the main lobe is 0.5 and the side-lobe
is extremely small when the radial distance, v, ranges between -10 to 10. The size of

blur circle remains the same as the one without adding the filter. For DVD,
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transverse superresolution is obtained, but the increased transverse side-lobe will still

be a big concern. The contrast of the system performance will be lowered down.

(a)

035

0.3~

025 -

=
b
I

Inteneity

trangvirse coordinale, v
axial cooadinate, u

(b)

0.4~

035

trangvirse coardinati, v
axial coordinate, u

Fig. 4.11: Radial intensity scans at various planes (the range of axial coordinates, u,

explored here is -6 to 6) (a) for the case of CD (b) for the case of DVD
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Step 3:

When dealing with the case in which the best image plane is not near the paraxial
focus, it’ll be more proper to use the modified 2" order approximation method. For
CD, we find that the BIP has been shifted to u=3.527, while that occurs at u=3.1 for
DVD. Once the location of the BIP is found, we then fine tune the transmittances of
the zones. Here, in this case, we set the transmittance of first zone for CD surface to

be 0.7. The computed results of the superresolution factors are shown in Fig. 4.12.
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a o
= 02 = 057 .
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[] 1 1 1 [] 1 1 1
04 0.45 05 0.55 06 04 0.45 05 0.55 0.6
radius a radius a
(a) (b)

Fig. 4.12: 1) Relation among the displacement and the radius of the first zone.
2) Relation among the transverse gain and the radius of the first zone.
3) Relation among the Strehl ratio and the radius of the first zone.

(a) for the case of CD (D) for the case of DVD
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It can be seen that the computed value of the axial displacement is very close to
zero when the radius of the first zone is set to be 0.6. The values of transverse gains
are all greater than 1 for CD and DVD, which means that superresolution property can
be achieved in this case. However, as a drawback, the Strehl ratios for both CD and

DVD have dropped greatly, lower than half value of that without a filter.

Step 4:

Similar to what we have done in step 2, now we try to verify the accuracy of the
computed results gotten in step 3. The intensity distributions along the transverse
direction for CD and DVD at the shifted focus are shown in Fig. 4.13(a) and (b),

respectively.
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Fig. 4.13 The transverse intensity distributions 1) with the clear pupil, 2) with the
designed filter, for radius a=0.5 ; transmittance t;= 0.7 (a) for the case of CD (b) for

the case of DVD.
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For CD, we find that the transverse gain, in fact, is equal to 1.038, being lower than
the expected value; while for DVD, that is equal to 1.259. Besides, the size of the
main-lobe of the diffracted pattern has been narrowed down, achieving

superresolution in both cases.

Within the range u'e[-10,10], we can see that, for CD, the transverse side-lobes
become relatively smaller than the central peak value (being approximately 1% of the
central peak value). But, for DVD, the transverse side-lobe isn’t alleviated but

enhanced, which leads to worsen the contrast of the final image.

4.6 Conclusions

In this section, we have shown that, with theuse of a rotationally symmetric four-zone
pupil filter, transverse superresolution' can' be both realized for two different
wavelengths. Notice that the expressions of the factors, like gains, Strehl ratio, and
axial displacement, have to be modified for the case in which the best image plane is
not near the paraxial focus. It should also be mentioned that, the transverse sidelobe
is somehow troublesome, especially for the case of DVD. In the future work, the
main aim in optical superresolution is to reduce the main-lobe size of the point-spread

function while increasing the central intensity and suppressing the sidelobes.
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Chapter 5

5.1 Conclusions

In the first part of this thesis, we have first presented a radially symmetric phase-only
filter to help alleviate the effects caused by the. fluctuation of third- and fifth-order
spherical aberrations simultaneously! It/can be cleatly seen that the system tolerance
to SAS5 is improved by several times:~ Meanwhile, the trade-off issue, i.c., a
reduction in intensity and the MTF, has also’been discussed in details. These

reductions form the baselines in practical applications of the use of phase filter.

Following the ideas mentioned above, we get interested in seeking a way to
enhance the tolerance of the system to defocus or SA3 for both wavelengths. Phase
pupil filters used to minimize the variation of Strehl ratio with defocus and third-order
spherical aberration (SA3) for dual wavelengths are being discussed. Notice that if
the amount of variation of the frequency is small, we may find a form of pupil phase

function to achieve that goal.

In the last part of this thesis, we have presented a four-zone filter to help achieve

transverse superresolution for two different wavelengths, simultaneously. There still
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remains some room for improvement. While reducing the main-lobe size of the
point-spread function, we need to search for a way to increase the central intensity

and suppress the sidelobes.

5.2 Future Work

For the work in Chapter 2:

It’s interesting that if we can derive the form of the pupil phase function that
extended to even higher order spherical aberration (say, the seventh order spherical
aberration, SA7) by using the method we mentioned here. Besides, an investigation
similar to that above may also be carried’out for. the .odd-aberration case, i.e., the focal

shift, primary and secondary circular coma.

For the work in Chapter 3:

It may be worthwhile of considering the use of hybrid surface lens, an objective
lens of combining aspheric surfaces of DVD and CD. In that way, for those two
different frequencies, the tolerance of the axial intensity to defocus or SA3 may be

simultaneously enhanced.

For the work in Chapter 4:
A global optimization process is needed in the design of the superresolving pupil
plate. Once we develop up a reliable optimization method, it’ll be much easier for

us to find out the best set-up configuration to meet the requirement.
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Appendix A: Derivation of The Pupil Phase Functions
A.1 Derivation of the phase filter that has been developed for Wo40=W20=0

By substituting of Eq.(2.9) into Eq.(2.6), it leads to the expression:
(& +%§2 +%§)CD”—(6§+3)CD+[05-(6§4 +128° +9£2 +%§)—C-(6§+3)] =0 (A1l.1)

Note that Eq. (A 1.1) is equivalent to the following equation:

dié[al (&)-0'(&) +a, (&) D(E) +a(&)] =0 (A12)
where
a(§)=E 42438 (A 1.3)
a(@) =3¢ ~36 -3 (A1.4)
a(é)= a-(gfs +3§4 +3§3 +§§2)+C-(—3§2 -35)+C,. (A1.5)

The solution of the above equation will be:

ay (&) a(s)
(&) a;(5)

By choosing a=-5, C = -3/8, and C;=0;a simple solution form will be obtained, which

D) = expl- [ “2 =" & {[C, + Oy

exp(| Z‘:Egds‘)df]} (A16)

is expressed as:
1, 1 1, 1
D) =[(¢+7) o1, +C - In[(§+2)" =} (A L7)
2 8 2 8
Note that Eq.(A 1.7) is a particular solution of Eq.(A 1.6), being one of the possible

pupil phase functions. With a change of variables, we have the phase pupil function

as:
0(p) = By( L + B(E)° - In( L) (A1.8)
Po Po Po
where f and S, provide two degrees of freedom and play the role of C, and C;

respectively in Eq.(B 1.7)
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A.2 Derivation of the phase filter with Maréchal treatment

By substituting Eq.(2.14) into Eq.(2.6) leads to the expression:
[£° +(Bas —%)5]@”—65@ +{a - [6&" +6(Bas —%)52] -C-6£1=0 (A2.1)

Note that Eq. (A 2.1) is equivalent to the following equation:

dié[bl(@@'(ﬁ)+bu<§)-<1>(é)+b(é)]=0 (A2.2)
Where
3,33
b(&)=¢ +2§ +4§ (A2.3)
by(&)=-3&° —35—% (A 2.4)
b(&) = a-[gfs + 2(326—%)53]—3(:52 +CE+C, (A 2.5)

The solution of the above equation will be:

(s
(&)

A ([ 2 Dasws . (a26)

(&)= exol-| b)) b (E)

For simplicity, let B,s=0.75 «a =5, C=€;=C,=0; we then get the similar form:
(&) =&’[C; +C, In(S)] (A2.7)
Notice that & =(p/p,)* —1/2. With a change of variables, the pupil phase function

is expressed as the following form:

0(p) = By () + B - In(L) (A2.8)
Po Po

Po
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Appendix B: More Information for 2" order Approximation Theory
B.1 Further Discussion to The 2"-order Approximation Theory
We now reexamine the derivation of Egs. 4.10 to 4.13. As a reminder, in the

focal plane, the field distribution can be expressed as [7]:
1
U(0,0)=2[ P(p)J,(vp) pdp (B 1.1)
0
with a change of variable: t = p*, we get:
1
U(v,0) = j O(0)J (L1 )dt (B 1.2)
0

Notice that the Bessel function of the first kind is expressed as:

J (X) z ( l)m (x)2m+n (B 13)

o il (meEn+1) 2

For small distances from the focus, we caniexpand the expressions for the focal-plane

and axial amplitudes as a power series:
1 1 1
U,0) = [O@ (1 ——ve+—v*t*..)dt B 1.4
()!Q(><416> (B 1.4)

Omitting the higher order terms, we get:
1, |-
U(U,O):IO—ZU ]1+EU ]2 (B 15)

where
1 1
1,= [ di=2[ P(p)p™"dp (B 1.6)
0 0

So the transverse (focal) plane intensity will be:
1(0,0) =1, —%Re(loll*)uz (B 1.7)
Similarly, the axial intensity will be:

. 1 .
1.0 =1, P =Im(l 1= [Re(L, T, 1, )’ (B 1.8)
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B.2 Modification to The Expressions of The Axial and The Transverse Gain
In the recent study, Silvia Ledesma and Juan Campos have extended the
expressions for the axial and the transverse gain to the case in which the best image

plane is not near the paraxial focus [20]. The content of the study is shown below.

For the case in which the best image plane is not near the paraxial focus, the
expressions for the axial gain, transverse gain, and the Strehl ratio need some

modifications. Recall that the field along the axis is:
1
U(0,u) = [ Q(t) exp(iut  2)dt (B2.1)
0

Where u is the axial coordinate centered at the focal plane without the filter. By
evaluating |U(0,u)’| numerically from Eq. B 2.1, ‘we find the position upm. where the
axial intensity is maximum. Then 'we calculate those factors of superresolution by
use of the expansions around this point:

The second-order expansion for the axial response around up,, will be:
1
UO,u) = _[Q(t) exp(iu,  t/2)1+ Gt/ 2)u—-u,, )— (" /8)u—-u_ ) ldt (B2.2)
0
The nth moments of the pupil around un.y is defined as:
1
1,'=2[ Q(O)¢" explitt,, t / 2)dt (B2.3)
0

Now the terms taken into account is just up to second order in u’= u- up,y, Then the

axial intensity is approximated as:
1
100,u") = 1,") —Im(]o'*ll')u'+z[| I,'* —Re(I,'I,"u'* ] (B 2.4)

For transverse response, we expand the field to second order corresponding to Upax:
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Uvsit,,) = [0 —%vzt] exp(iu,, t/2)dt (B 2.5)

Then the transverse intensity can be expressed as

Ivu,, )= 1,") —%Re([o'*ll')vz] (B 2.6)

max )

Note that uy corresponds to the center of the parabola defined in Eq. 4.41:

3 Im(/," 1,")
Re(lzv* [0')_|11'|2

(B 2.7)

Since ug is measured from the BIP centered at un.y, so its values will be close to zero
for most functions of an optical system. Thus, the superresulution factors around

Umax Tesult in:

G — 2 Re(IOII*)

B 2.8
o B B
5 S RN I 12
L Ll Im(7,"*1,")
S=1,"° —u, Im(I," 1,") (B 2.10)
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Appendix C: MTLAB Source Codes

C.1: The Strehl ratio as a function of aberration coefficient W

% =mmmmmmmmmn TOPIC: Strehl ratio, S(w20,w40,w60), v.s. W060 ~ -------—-—- %
% =mmmmmmmmmn Drafted by Chih-Yun Chan, 2" version, test Ok~ --mmmmmnmm- %
% =m-mmmmme- Used in Section2 ~ —memeeeeeee %

ul =zeros(81,1); % Field ul -- with ideal aperture

u2 =zeros(81,1); % Field u2 — with the designed filter
I1 = zeros(81,1); % Intensity I1 -- with ideal aperture
12 = zeros(81,1); % Intensity 12 -- with ideal aperture
B = 7*pi; % assign parameters

Bo = 0.3*7*pi;

% implementing the integral
fori=0:1:80
forx=0:0.001:1
y1 =x*exp(j*2*pi*(((i./10)-4)*(x46)));
y2 = x*exp(*2*pi*(((1./10)-4)*(26)))*[exp(*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-6)))];
ul(i+1)=ul(i+1)+ 0.001*y1;
u2(i+1)=u2(i+1)+ 0.001*y2;
end

end

I1 = ul.*conj(ul)*4*pi*pi/10;
I1 =11/max(I1); % Normalize the intensity
12 = u2.*conj(u2)*4*pi*pi/10;
12 =12/max(12); % Normalize the intensity

k=-4:0.1:4;
plot(k,I1,k,I12)

67



Appendix C: MATLAB Source Codes (CONTINUED)

C.2: Plot of the shape of the designed pupil phase function

% =m-mmmmmmm- TOPIC: The shape of the designed pupil phase function = --------—--- %
% =mmmmmmmmmn Drafted by Chih-Yun Chan, 1% version, test ok =~ ==----=mmn- %
% =m-mmmmme- Used in Section2 ~ —emeemeeeee %

Th = zeros(1001,1); %Thickness as a function of the radius
B = 5%pi;
Bo =0.3*B;
form=1:1:1001
Th(m,1)=(Bo*((((m-501)/500)"2)"3)+B*((((m-501)/500)"2)"3)*log(((m-501)/500) +1e-8));
end

k=-1:2/1000:1 % Normalized radial coordinate

plot(k,Th);
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Appendix C: MATLAB Source Codes (CONTINUED)

C.3: Computed MTF with initial setting Wo20=0 and Wo4,=0

% =mmmmmmmmmn TOPIC: Computed MTF with initial setting Wy,0=0 and Wy4=0  ----------- %
% =mmmmmmmmmn Drafted by Chih-Yun Chan, 2™ version, test ok = =mmmemmemem %
% =m-mmmmme- Used in Section2 ~ cmmemeeeee %

Q1= zeros(201,201); % Field Q1 -- with w060=0 lambda
Q2=zeros(201,201); % Field Q2 -- with w060=0.5 lambda
Q3= zeros(201,201); % Field Q3 -- with w060=1 lambda
Q4= zeros(201,201); % Field Q4 -- with w060=0 lambda
mtfl = zeros(80,1); % MTFI -- with w060=0 lambda
mtf2 = zeros(80,1); % MTF1 -- with w060=0 lambda
mtf3 = zeros(80,1); % MTFI -- with w060=0 lambda
mtf4 = zeros(80,1); % MTF1 -- with w060=0 lambda

B = 7*pi; % assign parameters

Bo =0.3*B;

for m = 0:1:200
forn=0:1:200
if(((m-100)*(m-100)+(n-100)*(0-100))<1600)

Q1 (m,n)=exp(*2*pi*(Bo*((((m-100)/40)2-+((n-100)/40)"2)*3)}+B*((((m-100)/40)"2...
+((n-100)/40)"2)"3)*log((((m-100)/40)"2-+((n-100)/40)*2)"0.5 +1e-8)));

Q2(m,n)=exp(j*2*pi*(Bo*((((m-100)/40)2-+((n-100)/40)"2)*3)}+B*((((m-100)/40)"2...
+((n-100)/40)"2)"3)*log((((m-100)/40)"2-+((n-100)/40)"2)"0.5 +1e-8)));

Q3(m,n)=exp(j*2*pi*(Bo*(((m-100)/40)2-+((n-100)/40)"2)*3)}+B*((((m-100)/40)"2...
+((n-100)/40)"2)"3)*log((((m-100)/40)"2-+((n-100)/40)"2)"0.5 +1e-8)));

Q4(m,n)=exp(j*2*pi*(Bo*((((m-100)/40)"2+((n-100)/40)"2)"3)+B*((((m-100)/40)"2...
+((n-100)/40)"2)"3)*log((((m-100)/40)"2+((n-100)/40)"2)"0.5 +1e-8)));
end
end

end
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for m = 0:1:200
for n=0:1:200
if(((m-100)*(m-100)+(n-100)*(n-100))<1600)
Q1(m,n)=Q1(m,n)*exp(*2*pi*((((m-100)/40)"2+((n-100)/40)"2)"3)*0);
Q2(m,n)=Q2(m,n)*exp(*2*pi*((((m-100)/40)"2+((n-100)/40)"2)"3)*0.5);
Q3(m,n)=Q3(m,n)*exp(*2*pi*((((m-100)/40)"2+((n-100)/40)"2)"3)*1);
Q4(m,n)=Q4(m,n)*exp(*2*pi*((((m-100)/40)"2+((n-100)/40)"2)"3)*2);
end
end

end

otfl=conv2(Q1,conj(Q1));
otf2=conv2(Q2,conj(Q2));
otf3=conv2(Q3,conj(Q3));
otfd=conv2(Q4,conj(Q4));

forn=1:80
mtf1(n)=abs(otf1((n+198),199));
mtf2(n)=abs(otf2((n+198),199));
mtf3(n)=abs(otf3((n+198),199));
mtf4(n)=abs(otf4((n+198),199));

end

% Normalization

mtf1= mtfl/max(mtfl);
mtf2= mtf2/max(mtf2);
mtf3= mtf3/max(mtf3);
mtf4= mtf4d/max(mtf4),

x1=0:(2/80):(2-2/80);
plot(x1,mtf1,x1,mtf2,x1,mtf3,x1,mtf4)
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Appendix C: MATLAB Source Codes (CONTINUED)

C.4: Maximal on-axis intensity versus By .

L/ — TOPIC: Maximal on-axis intensity versus Bsg = -------—--- %
% =mmmmmmmmmn Drafted by Chih-Yun Chan, 1% version, test ok =~ ==----mmmmx %
% -----mm-- Used in Section2 ~ —memmeeeeee %

ul =zeros(161,1); % Field
I1 = zeros(161,1); % Intensity

maxi = zeros(81,1); % Max. intensity v.s. B46

for B46=0:1: 80
forB26=0:1:160
forx=0:0.001:1
y1 =x*exp(j*2*pi*1*((B26./20 -4)*(x"2)+(B46./20-3.5)*(x"4)+(x"6)));
ul(B26+1)=ul(B26+1)+ 0,001%y1;
end

end

I1 =ul.*conj(ul)*4*pi*pi/10;
maxi(B46+1)=max(I1);

ul = zeros(161,1);
I1 = zeros(161,1);

end

k=-3.5:0.05:0.5;
plot(k,maxi)
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Appendix C: MATLAB Source Codes (CONTINUED)

C.5: Plot of the Strehl ratio versus By for different aberration scaling factors f,

with B4 =-1.5
%o =mmmmmmmmme TOPIC: Strehl ratio versus Byg for different £, with Byg=-1.5  ----------- %
% =mmmmmmmmmn Drafted by Chih-Yun Chan, 1% version, test ok =~ ==----mmmnx %
% -----mm-- Used in Section2 ~ —memmeeeeee %

u0 = zeros(101,1); ul = zeros(101,1); u2 = zeros(101,1); u3 = zeros(101,1);
u4 = zeros(101,1); u5 = zeros(101,1); ué6 = zeros(101,1); % field with ideal lens

u02 = zeros(101,1); ul2 = zeros(101,1); u22 = zeros(101,1); u32 = zeros(101,1);
u42 = zeros(101,1); uS2 = zeros(101,1); u62 = zeros(101,1); % field with the filter

10 = zeros(101,1); I1 = zeros(101,1); 12 = zeros(101,1); I3 = zeros(101,1);
14 = zeros(101,1); IS = zeros(101,1); 16'= zeros(1 01, L); % intensity with ideal lens

102 = zeros(101,1); 112 = zeros(101,1);.122 =Zeros(101;, 1 ); 132 = zeros(101,1);

142 = zeros(101,1); 152 = zeros(101,1);'162.= zeros(101;1); % intensity with the filter
B46=-1.5; % assign parameters
B =3.9%pi;
Bo=0.55*B;
forB26=0:1:100 % doing the integration

forx=0:0.001:1

y0 = x*exp(j*2*pi*0.5*((B26./100)* (x"2)+B46*(x"4)+(x"6)));

y02 = x*exp(j*2*pi*0.5*((B26./100)* (x"2)+B46*(x"4)...
+H(x76)))*[exp(j*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-0)))];

u0(B26+1)=u0(B26+1)+ 0.001*y0;

u02(B26+1)=u02(B26+1)+ 0.001*y02;

y1 = x*exp(j*2*pi* 1 *((B26./100)*(x2)+B46*(x 4)+(x6)));
y12 = x*exp(j*2*pi* 1 *((B26./100)*(x*2)+B46*(x4)...
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+(x"6)))*[exp(j*2*p1*(Bo*(x"6)+B*(x"6)*log(x+1e-6)))];
ul(B26+1)= ul(B26+1)+ 0.001*y1;
ul2(B26+1)= ul2(B26+1)+ 0.001*y12;

y2 = x*exp(j*2*pi*2*((B26./100)*(x"2)+B46*(x"4)+(x"6)));

y22 = x*exp(j*2*pi*2*((B26./100)*(x"2)+B46*(x"4)...
+H(x6)))*[exp(j*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-6)))];

u2(B26+1)=u2(B26+1)+ 0.001*y2;

u22(B26+1)=u22(B26+1)+ 0.001*y22;

y3 = x*exp(j*2*pi*3*((B26./100)*(x"2)+B46*(x"4)+(x"6)));
y32 = x*exp(j*2*pi*3*((B26./100)*(x"2)+B46*(x"4)...
+H(x76)))*[exp(j*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-6)))];
u3(B26+1)=u3(B26+1)+ 0.001*y3;
u32(B26+1)=u32(B26+1)+ 0.001*y32;

y4 = x*exp(j*2*pi*4*((B26./100)#(xA2)+£B46*(x"4)+(x"6)));

y42 = x*exp(*2*pi*4*((B267/100)*(x22)+B46¥(x"4)...
H(x"6)))*[exp(j*2*pi* (Bo*(x16)+B*(x 6)*log(x+1e-6)))];

u4(B26+1)=u4(B26+1)+0.001*y4;

u42(B26+1)= ud2(B26+1)+ 0.001*y42;

y5 = x*exp(j*2*pi*5*((B26./100)*(x"2)+B46*(x"4)+(x"6)));

y52 = x*exp(j*2*pi*5*((B26./100)*(x"2)+B46*(x"4)...
+H(x76)))*[exp(j*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-0)))];

u5(B26+1)=u5(B26+1)+ 0.001*yS5;

u52(B26+1)=u52(B26+1)+ 0.001*y52;

y6 = x*exp(j*2*pi*6*((B26./100)*(x"2)+B46*(x"4)+(x"6)));

y62 = x*exp(j*2*pi*6*((B26./100)*(x"2)+B46*(x"4)...
+H(x76)))*[exp(j*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-0)))];

u6(B26+1)=u6(B26+1)+ 0.001*y6;

u62(B26+1)=u62(B26+1)+ 0.001*y62;

end

end

10 = u0.*conj(u0)*4*pi*pi/10;
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I1 =ul.*conj(ul)*4*pi*pi/10;
12 = u2.*conj(u2)*4*pi*pi/10;
13 = u3.*conj(u3)*4*pi*pi/10;
14 = u4.*conj(ud)*4*pi*pi/10;
I5 = u5.*conj(us)*4*pi*pi/10;
16 = u6.*conj(u6)*4*pi*pi/10;

102 =u02.*conj(u02)*4*pi*pi/10;
112 =ul2.*conj(ul2)*4*pi*pi/10;
122 =u22.*conj(u22)*4*pi*pi/10;
132 =u32.*conj(u32)*4*pi*pi/10;
142 =42 .*conj(ud2)*4*pi*pi/10;
152 = u52.*conj(u52)*4*pi*pi/10;
162 =u62.*conj(u62)*4*pi*pi/10;

k=0:0.01:1.0;
plot(k,112,k,122,k,132 k,142 k152 k,162)
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Appendix C: MATLAB Source Codes (CONTINUED)

C.6: The Strehl ratio as a function of aberration scaling factor f, with

B,s =0.6 and B4 = -1.5.

%o ==mmmmmmmmm TOPIC: Strehl ratio as a function of f, with Bys =0.6 and By = -1.5.
% —=-=mmmmmm- Drafted by Chih-Yun Chan, 2™ version, test ok
% -----mm--- Used in Section 2

ul = zeros(101,1); % field with ideal lens

u2 = zeros(101,1); % field with the phase filter

I1 = zeros(101,1); % intensity with ideal lens

12 = zeros(101,1); % intensity with the phase filter

B46=-1.5; % assign parameters

B = 5%pi;

Bo =0.3*B;

forf=0:1:100 % doing the integration

forx=0:0.001:1

y1 = x*exp(j*2*pi*1/10*(0.6%(x2)+B46*(x 4)+(x"6))). ..
*exp(G*2*pi*(Bo*(x"6)+B*(x"6)*log(x+1e-6)))];

y2 = x*exp(j*2*pi*1/10*(0.6* (x"2)+B46*(x"4)+(x"6)));

ul(f+1)=ul(f+1)+ 0.001*y1;

u2(f+1)=u2(f+1)+ 0.001*y2;

end

end

I1 =ul.*conj(ul)*4*pi*pi/10;

[1=11/max(I1); % Normalization

12 = u2.*conj(u2)*4*pi*pi/10;

12=12/max(12); % Normalization

k=0:0.1:10;

plot(k,I1,k,12)

Appendix C: MATLAB Source Codes (CONTINUED)

75



C.7: 1) Relation among the transverse gain and the radius of the first zone.

2) Relation among the Strehl ratio and the radius of the first zone

--For CD
% —=mmmmme- TOPIC: SR v.s. radius a; GT v.s.radiusa (for CD) = ----------- %
% -----mm-m- Drafted by Chih-Yun Chan, 2™ version, test ok~ =-------—- %
Y% —-mmmmmmm- Used in Section4 ~ —mememeeeee %
double NUM; % number of points in the interval a: 0.4~0.6
double a(NUM+1); % radius of the 1* zone
double b(NUM+1); % radius of the 2" zone
double t1; % transmission of zone 1
double t2; % transmission of zone 3
double phi; % phase difference of the zones

double IO(NUM+1); double aO(NUM+1); double bONUM+1);
double [1(NUM+1); double al(NUM+1); double b1(NUM+1);
double [2(NUM+1); double a2(NUM+1);double b2(NUM+1);
double uF(NUM+1);

double SR(INUM+1);

double GT(NUM+1);

double GA(NUM+1);

tl=1; % assign the parameters
t2=1;

phi=0.4

NUM = 200;

fori=0:NUM
a(i+1) = 0.4 + (0.2/NUM).*i;
b(i+1) = sqrt(1-a(i+1).*a(i+1));
10(i+1) = exp(G*0*pi)*(t1.*(a(i+1).72)) + t2.*¥exp(j*phi*pi)*(1-(b(i+1)."2));
a0(i+1) = real(I0(i+1));
b0O(i+1) = imag(10(i+1));
I1(i+1) = 0.5*exp(*0*pi)*(t1.*(a(i+1).74)) + t2.*%0.5*exp(j*phi*pi)*(- (b(i+1)."4) +1);
al(i+1) = real(I1(i+1));
b1(i+1) = imag(11(i+1));
12(i+1) = (1/3)*exp(G*0*pi)*(t1.*(a(i+1).26))+ t2.*(1/3) *exp(j*phi*pi)* (- (b(i+1).76) +1);
a2(i+1) = real(12(i+1));
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b2(i+1) = imag(12(i+1));

% the displacement of the focus
uF(i+1) = 2*(al(i+1).*b0(i+1)-a0(i+1).¥b1(i+1))./( (a2(i+1).*a0@G+1)+b2(i+1).¥b0(i+1))...
- (al(i+1).*al(i+1)+b1(i+1).*b1(i+1)) );

% the Strehl ratio
SR(i+1) = a0(i+1).*¥a0(i+1) + bO(i+1).*b0(i+1)...
- uF(@i+1).*(a0(i+1).*b1(i+1)-al(i+1).*b0(i+1));

% the transverse gain
GT(@i+1) = 2*( (al(i+1).*a0(i+1)+b0(i+1).*b1(i+1))...
- uF(i+1).*(-a2(i+1).*b0(i+1)+a0(i+1).*b2(i+1)) )./SR(i+1);

% the axial gain
GA(i+1) = 12*( (a2(i+1).*a0(i+1)+b0(i+1).¥b2(i+1))...
- (al(i+1).*al(i+1)+bl(ikl)r¥bl@E+1)) )./SR(i+1);

end
m = 0.4: (0.2/NUM): 0.6;

subplot(2,1,1); plot(m,uF);
subplot(2,1,2); plot(m,SR);
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Appendix C: MATLAB Source Codes (CONTINUED)
C.8: 1) Relation among the transverse gain and the radius of the first zone.

2) Relation among the Strehl ratio and the radius of the first zone

-- For DVF
% --m--mm-m- TOPIC: SR v.s. radius a; GT v.s. radius a (for DVD) = ---------—- %
% =mmmmmmmmmn Drafted by Chih-Yun Chan, 2™ version, test ok =~ =-mmmmmeee %
% -----mm--- Used in Section4 ~ —memmeeeeee %
double NUM,; % number of points in the interval a: 0.4~0.6

double aNUM+1); % radius of the 1% zone
double b(NUM+1); % radius of the 2" zone

double t1; % transmission of zone 2
double t2; % transmission of zone 4
double phi; % phase difference of the zones

double IO(NUM+1); double aO(NUM+1); double! bONUM+1);
double I[1(NUM+1); double al(NUM+1); double b1(NUM:t1);
double [2(NUM+1); double a2(NUM+1); [double b2(NUM+1);
double uF(NUM+1);

double SR(INUM+1);

double GT(NUM+1);

double GA(NUM+1);

c=0.7; % assign parameters

phi=0.35;
NUM =200;

fori=0: NUM
a(i+1) = 0.4 + (0.2/NUM).*i;
b(i+1) = sqrt(1-a(i+1).*a(i+1));
10(i+1) = t1.*exp(G*0*pi)*((c.*b(i+1)).”2-(c.*a(i+1)).”2) + t2.*exp(j*phi*pi)*(1-(c)."2);
a0(i+1) =real(10(i+1));
b0(i+1) = imag(10(i+1));
[13G+1) = (172)*(t1.*exp(G*0*pi)*((c.*b(i+1))."4-(c. *a(i+1)).”4) + 12.*exp(j*phi*pi)*(1-(c)."4));
al(i+1) =real(I1(i+1));
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b1(i+1) = imag(I11(i+1));

12(i+1) = (1/3)*(t1.*exp(*0*pi)*((c.*b(i+1)).76-(c.*a(i+1)).76) + t2.*exp(j *phi*pi)*(1-(c)."6));
a2(i+1) =real(12(i+1));

b2(i+1) = imag(12(i+1));

% the displacement of the focus
uF(i+1) = 2*(al(i+1).*b0(i+1)-a0(i+1).*b1(i+1))...
J((a2(i+1).*a0(i+1)+b2(i+1).¥b0(i+1)) - (al(i+1).*al(i+1)+b1(i+1).*b1(i+1)) );

% the Strehl ratio
SR(i+1) = a0(i+1).*a0(@i+1) + b0(i+1).*b0(i+1) - uF(i+1).*(a0(i+1).*b1(i+1)-al(i+1).*b0(i+1));

% the transverse gain
GT(i+1) = 2*( (al(i+1).*a0(i+1)+b0(i+1).¥*b1(i+1))...
- uF(i+1).*(-a2(i+1).*b0(i+1)+a0(i+1).*b2(i+1)) )./SR(i+1);

% the axial gain
GA(1+1) = 12*( (a2(i+1).*a0(i+1)+b0(+1).%b2(i+ 1)) ..
-(al(i+1).*al (i+1)+bl(i+D*blG+1) ) )/SR(+1);

end

m = 0.4: (0.2/NUM): 0.6;
%subplot(2,1,1);

plot(m,uF);

%subplot(2,1,2); plot(m,SR);
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Appendix C: MATLAB Source Codes (CONTINUED)

C.9: The transverse intensity distributions --For CD

% —=mmmmmme- TOPIC: the transverse intensity distributions (for CD) =~ ----------- %
% -----mm-m- Drafted by Chih-Yun Chan, 2™ version, test ok =~ === %
Y% —-mmmmmmm- Used in Section4 ~ —ememeeeee %

v=(0:0.01:10); % radius distance

double a(3); % radius of the 1% zone

double b(3); % radius of the 2™ zone

double U(1001,3); % field with the clear aperture
double Ut(1001,3); % field with the designed filter
double I(1001,3); % intensity with the clear aperture
double It(1001,3); % intensity with the designed filter

a(1)=0.5; a(2)=0.57; a(3)=0.6;
b(1)=sqrt(1-a(1).*a(1)); b(2)=sqrt(1-a(2).*a(2)); b(3)=sqrt(L-a(3).*a(3));

warning off;

fork=1:3
fori=0:1000
U@i+L,k) = (2./v(i+1))*besselj(1,v(i+1));
Ut(i+1,k) = 2./v(i+1))*( a(k).*besselj(1,(a(k). *v(i+1)))...
+  exp(G*0.1*pi).*( besselj(1,v(i+1)) - b(k).*besselj(1,(b(k).*v(i+1))) ) );
end

end

fork=1:3
I(1:1001,k) = U(1:1001,k).*conj(U(1:1001,k));
It(1:1001,k) = Ut(1:1001,k).*conj(Ut(1:1001,k));

end

subplot(2,1,1); plot(v,I(:,1),v,I(:,2),v,I(:,3));
subplot(2,1,2); plot(v,It(:,1),v,It(:,2),v,It(:,3));

warning on;
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Appendix C: MATLAB Source Codes (CONTINUED)

C.10: The transverse intensity distributions -- For DVD

Y% ----m-m-m-- TOPIC: the transverse intensity distributions (for DVD)
% -----m---—- Drafted by Chih-Yun Chan, 2" version, test ok

Y% ------m-- Used in Section 4

v=(0:0.01:10); % radius distance

double a(3); % radius of the 1% zone

double b(3); % radius of the 2™ zone

double U(1001,3); % field with the clear aperture
double Ut(1001,3); % field with the designed filter
double I(1001,3); % intensity with the clear aperture
double It(1001,3); % intensity with the designed filter

a(1)=0.5; a(2)=0.57; a(3)=0.6;
b(1)=sqrt(1-a(1).*a(1)); b(2)=sqrt(1-a(2).*a(2)); b(3)=sqrt(L-a(3).*a(3));
c=0.7;

warning off;
fork=1:3

fori=0:1000
U@+1,k) = (@2./v(i+1))*besselj(1,v(i+1));

Ut(i+1,k) = 2.3+ 1))*( c.*b(k). *besselj(1,(c.*¥b(k). *v(i+1)))...

-c.*a(k).*besselj(1,(c.*a(k).*v(i+1)))...

+ exp(j*0.35*pi).*(besselj(1,v(i+1))-c.*besselj(1,(c.*v(i+1))) ) );

end

end

fork=1:3
I(1:1001,k) = U(1:1001,k).*conj(U(1:1001,k));
It(1:1001,k) = Ut(1:1001,k).*conj(Ut(1:1001,k));

end

subplot(2,1,1); plot(v,I(:,1),v,I(:,2),v,I(:,3));
subplot(2,1,2); plot(v,It(:,1),v,It(:,2),v,It(:,3));

warning on;
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Appendix C: MATLAB Source Codes (CONTINUED)

C.11: Radial intensity scans at various planes (FFT method)

% =m=mmmmmem- TOPIC: Radial intensity scans at various planes (FFT) = ----------- %
%0 =mmmmmmmmmn Drafted by Chih-Yun Chan, 2™ version, test ok = =mememmemmn %
% —mmmmmme- Used in Section4 ~ cmememeeee- %
sq=zeros(1000); % field with the clear aperture

sql=zeros(1000); % field with the designed fillter

double u;

u=23;

form=0:1:1000 % generate the pupil function

forn=0:1:1000
if((m-500)*(m-500)+(n-500)*(n-500))"0.5<10*0.6)
sq1((m+1),(n+1))=1*exp(-j*u*((m-500)*(m-500)+(n-500)*(n-500))/2/100) ;

end

if(((m-500)*(m-500)+(n-500)*%(0-500))20.5>10*(sqzt(1-0.6*0.6)))
if(((m-500)*(m-500)+(n=500)*(n=500))20.5<10)
sql((m+1),(n+1))=Exp(j*0.35*pi)*:..
exp(-j*u*((m-500)*(m-500)F({=500)*(n-500))/2/100) ;
end

end

if(((m-500)*(m-500)+(n-500)*(n-500))"0.5<10)
sq((mr+1),(n+1))=1 ;
end
end

end

sqft=fftshift(fft2(fftshift(sq)));
sqft1=fftshift(fft2(fftshift(sql)));
I=sqft.*conj(sqft);
[1=sqftl.*conj(sqftl);

k=-500%1.22%pi/61: 1.22*pi/61 : 1.22*pi/61*499;

subplot(2,1,1); plot(k,(I(:,501)./max(I(:,501))));
subplot(2,1,2); plot(k,(I1(:,501)./max(I(:,501))));
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