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Abstract

In a modern communication receiver, the received continuous-time analog signal is

quantized into a discrete-time digital sequence by an analog-to-digital converter (ADC)

so that the complex signal processing can be performed in the digital domain. The ADC

requires a periodic clock as a timing reference for input sampling. If the sampling clock

exhibits jitter, the ADC suffers from sampling errors and its signal-to-noise ratio (SNR)

performance is degraded. For a low-speed low-resolution ADC, the sampling error due to

clock jitter is not crucial. As the progress of advanced communication system, the opera-

tion speed and the resolution of the ADC are also increased. An accurate sampling clock

is essential for a high-speed high-resolution ADC.

Clock jitter can be measured and digitized by a time-to-digital converter (TDC). With

appropriate calibration technique, the output code of the TDC can be translated in to the

corresponding jitter information. This jitter information is then used to compensate the

iii



ADC D s sampling error in the digital domain, improving the ADC D s SNR perfor-

mance. This thesis presents a clock jitter measurement and compensation scheme for

analog-to-digital converters.

A 7-bit 80-MS/s TDC was fabricated using a 65 nm CMOS technology. The clock

jitter of an ADC is measured by the TDC. We also demonstrate a new digital calibration

technique for the TDC. The calibration can be performed in the background without in-

terrupting the normal ADC and TDC operation. The proposed technique is immune to

device and interconnection mismatches, and is not sensitive to the waveforms of the input

clocks either. The resolution of the 7-bit TDC is 0.27 ps. The TDC occupies a die area of

0.1mm2 while consuming 20 mW from a 1.2 V supply.

The TDC is applied to a 16-bit ADC for the clock jitter measurement and compen-

sation. Two different system scenarios are covered: 1) an ADC with a clean external

clock and 2) an ADC with an external clock as the main jitter source. For the first sce-

nario, the SNR of the 16-bit ADC is improved from 71.2 dB to 77.3 dB for an optimized

delay-locked loop (DLL) and 60.8 dB to 74.4 dB for an ill-conditioned DLL by the jitter

correction at a sine wave input frequency of 29 MHz. For the second scenario, the pro-

posed jitter correction technique achieves an equivalent sampling jitter root-mean-squared

value (rms) of 4 ps when the jitter rms of the original sampling clock is 8.2 ps.

iv
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Chapter 1

Introduction

1.1 Motivation

In a modern communication receiver, an analog-to-digital converter (ADC) first samples

the received continuous-time analog signal and then quantizes the sampled data into a

discrete-time digital sequence, so that the complex signal processing can be performed

in the digital domain. As shown in Figure 1.1, an input signal first passes through an

analog signal processing block, the block is usually a low-pass filter or a band-pass filter

to limit the bandwidth of the input signal. Then a programmable-gain amplifier (PGA) is

placed in front of the ADC, adapting the loss of transmission to relax the dynamic range

requirement of the ADC. The gain of the PGA is digitally controlled by an automatic

gain control (AGC) loop. The ADC quantizes the amplified analog signal into a digital

sequence. Finally, the required signal processing can be performed by the digital signal

Analog
Signal Processing

PGA

AGC

V i ADC DSP Do

Figure 1.1: Block diagram of an analog front-end.
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t∆
∆v
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Figure 1.2: Sampling-time uncertainty (aperture jitter).

processing (DSP) block to generate the output signal.

There are many ways to qualify an ADC’s performance such as spurious-free dy-

namic range (SFDR) and signal-to-noise ratio (SNR). The SFDR is usually dominated

by the non-linearity of the input to output transfer curve and is solved by many cali-

bration techniques. These techniques include linearizing the transfer curve of the mul-

tiplying digital-to-analog converter (MDAC) in pipelined ADCs [1, 2, 3, 4, 5, 6, 7, 8],

trimming the input-referred offsets of the comparators in flash ADCs or two-step ADCs

[9, 10, 11, 12, 13]. To further improve the conversion linearity, there are schemes which

also calibrate the non-linearity of the amplifier [2, 5, 6, 8].

The contributions to SNR of these techniques are restricted since the SNR is usually

dominated by the environment noise and the quality of the sampling clock. The former

is usually solved by enlarge the signal swing to increase the signal power, or use larger

sampling capacitors to decrease the thermal noise. The latter problem is usually ignored

with the assumption that a pure sinusoid signal source is available and the noise introduced

by the clock buffers is neglectable. The most commonly used method for a clock reference

is a crystal oscillator followed by a narrow-band high order band-pass filter. However,

as the conversion rate of the ADC is increased, a phase-locked-loop (PLL) based clock

generator is inevitable which results in a noisier clock source.

A periodic clock is required to provide a reference for the sampling time. If the sam-

pling clock jitters, sampling error occurs during the sampling process [14, 15]. Excess

clock jitter can degrade the SNR performance of an ADC. Figure 1.2 shows the effect of
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clock jitter. The Vi(t) signal is sampled by the ADC every Ts, where Ts = 1/fs and fs is

the sampling rate of the ADC system. Therefore, the k-th sampling time is kTs ideally.

If the sampling clock jitters, the signal is sampled at t = kTs + ∆t instead of t = kTs.

Thus the sampled data is ∆V deviated from an ideal sample, which degrades the SNR

performance.

If the clock jitter dominates the SNR of an ADC, the SNR can be approximated as

[14]

SNR =
1

ω2
i × (∆trms)2

(1.1)

where ∆trms is the rms of ∆t. If the quantization error dominates the SNR of an B-bit

ADC, the SNR can be approximated as [16]

SNR =
1

(2/3)2−2B
(1.2)

Figure 1.3 shows the SNR for an ADC limited by aperture jitter for various jitter values

(the sloped solid lines) and the quantization noise limited performance at various reso-

lutions (the horizontal dashed lines). For an ADC with 120 MS/s sampling rate, if the

analog input is a 60 MHz sine wave and the clock jitter is random, the root-mean-squared

value (rms) of the clock jitter must be less than 0.5 ps to ensure a 12-bit resolution. If the

rms value of the clock jitter deteriorates to 2 ps, the resolution of the ADC degrades to

10-bit. As the conversion rate or the resolution of the ADC increase, the jitter requirement

also increased.

Clocks generated from PLL can hardly achieve this stringent jitter requirement [17].

Low-jitter clocks, mostly based on crystal oscillators, are inflexible and expensive. There

are many researches of low noise PLL design. Such as optimizes the loop bandwidth

of a PLL to compromise the noise of different frequency response [18], or lower the

sensitivity to supply noise for a PLL [19] or for a voltage-controlled oscillator (VCO)

[20, 21, 22, 23]. There are also investigations strive to overcome the difficulties of low

noise VCOs designs since the VCO usually dominates the jitter performance of a PLL

[24, 25, 26]. Although these methods reduce the jitter of a PLL dramatically, it is still

hard to meet the specification for a high speed high resolution ADC.
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Figure 1.3: Signal-to-noise ratio due to aperture jitter.

The importance of having a low jitter clock source for an ADC is well-known. While

most of the researches try to generate a low jitter clock source, it is possible to compensate

the sampling error of an ADC thus relax the clock jitter requirement. To the best of

the author’s knowledge, there is only one other published work that tries to compensate

the sampling error caused by clock jitter [27]. As shown in Figure 1.4, the scheme of

Tourabaly and Osseiran modulates the analog input before the sampler so that the correct

input signal is sampled at incorrect sampling time.

Although the simulation result in [27] shows that a first order approximation of jitter

correction is sufficient in respect to produce an SNR improvement of about 15dB, this

scheme is hard to implement for several reasons.

1. This scheme requires high-precision analog circuits which are difficult to imple-

ment. These circuits include analog multiplier, analog adder, and differentiator.

2. The use of differentiators makes it sensitive to high-frequency noises.

3. Analog calibrations are required for phase mismatches and gain error.
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Figure 1.4: Jitter compensation scheme proposed by Tourabaly and Osseiran.

(a) Phase mismatch: There are mismatches of the phase delay between the phase

demodulator, the jitter compensation circuit and the sampler. Any difference

of the phase delay between them degrades the performance dramatically.

(b) Gain error: The gain of the phase demodulator and the gain of the mixer in the

jitter compensation must equal to one to extract the jitter correctly.

For these reasons, only simulation results are given in [27], no experimental result

is provided. Moreover, the simulation results show that the improvement on SNR is only

0.0015 dB if the phase delay and the attenuation caused by the differentiator and the mixer

are not calibrated.

In this thesis, we propose a technique that employs digital signal processing to relax
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the clock jitter requirement. Clock jitter is measured and digitized by a stochastic time-

to-digital converter (TDC) [28]. This jitter information is then used to compensate the

ADC’s sampling error in the digital domain, improving the ADC’s SNR performance.

We also propose techniques for TDC calibration. The calibration can be performed in the

background without interrupting the normal ADC operation. Theoretical analyses, system

simulations and silicon proved measurement results are provided to verify the proposed

jitter compensation and TDC calibration techniques. A 16-bit 80 MS/s ADC system is

discussed as a design example.

1.2 Organization

The organization of the thesis is described as follows:

Chapter 2 discusses the effect of sampling jitter on a signal. The sampling uncertainty

caused by clock jitter makes the sampled signals deviate from their nominal values and

the SNR performance is degraded. To improve the SNR when the clock is noisy, a novel

jitter compensation technique is proposed. Theoretical analyses and system simulations

are provided to verify the technique.

In order to measure the clock jitter, a TDC is required to digitize the timing difference

between two clocks of identical frequency. Various TDCs are introduced in Chapter 3,

such as the counter-based TDC, the time-to-amplitude TDC, the tapped delay line TDC

and the stochastic TDC. The advantages of each kind of TDC and their limitations are

also discussed.

Chapter 4 describes a jitter compensation scenario in which the external clock is clean.

To estimate the clock jitter accurately, a background calibration technique for TDC is

proposed to against the process, supply voltage, and temperature (PVT) variations. The

proposed TDC background calibration is based on signal reconstruction. Theoretical anal-

yses and simulation results are also provided. A 7-bit 80 MS/s TDC is fabricated in 65-nm

CMOS technology to verify the jitter compensation and TDC background calibration con-

figuration.

Chapter 5 describes an alternative ADC system in which the external clock is the main

jitter source. This scheme can achieve high SNR performance even when a clean clock



1.2. ORGANIZATION 7

source is not available, thus mitigates the jitter requirement for the input clock. The jitter

compensation can break the SNR limitation predicted by Equation (1.1).

Finally, conclusions and recommendations for future works will be given in Chapter 6.
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Chapter 2

Jitter Compensation

2.1 Introduction

A Nyquist-rate analog-to-digital converter (ADC) periodically samples its continuous-

time analog input, and converts it into a discrete-time digital data stream. The ADC

requires a periodic clock as a timing reference for input sampling. If the sampling clock

exhibits jitter, the ADC suffers from sampling errors, and its signal-to-noise ratio (SNR)

performance is degraded [14, 15].

It is possible to relax the clock jitter requirement by introducing jitter compensation in

the analog-to-digital signal path. The scheme of Tourabaly and Osseiran [27] modulates

the analog input before the sampler so that the correct input signal is sampled. As men-

tioned in Chapter 1 this scheme requires high-precision analog circuits, which are difficult

to implement. The use of differentiators also makes it sensitive to high-frequency noises.

In this chapter, we introduced a digital signal processing technique to relax the clock

jitter requirement. Both intuitive interpretations and theoretical analyses will be given.

2.2 SNR of an ADC

As described in Chapter 1, the SNR performance of an ADC is usually dominated by the

environment noise and the quality of the sampling clock. The SNR of an ADC can be

measured by applying the following sine wave input:

9
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iV (t)

iV [k]

f s

ADC D [k]i

Figure 2.1: Continuous-to-Discrete Conversion of an ADC.

Vi(t) = Ai × sin(ωit + φi) (2.1)

where Ai is the amplitude of the input sine wave signal, ωi is the input frequency, and φi
is the phase. The Vi(t) signal is sampled at a sampling rate of fs as shown in Figure 2.1,

i.e., Ts is the sampling interval and Ts = 1/fs. Thus, the k-th nominal sampled voltage is

Vi[k] = Vi(kTs) = Ai × sin(kωiTs + φi) (2.2)

However, if the sampling clock jitters, the ADC suffers from sampling errors and Equa-

tion (2.2) becomes

Vi[k] = Vi(kTs + ∆t[k]) = Ai × sin(Ωi(k + ε[k]) + φi) (2.3)

where Ωi = ωiTs is the normalized input frequency, ∆t[k] is k-th jitter of the sampling

clock and ε[k] = ∆t[k]/Ts is the normalized clock jitter. The corresponding output from

the ADC at the k-th sampling can be expressed as

Di[k] = Vi(kTs) + q[k] + Ve[k] (2.4)

The Di[k] signal consists of the following: 1) the desired input Vi(kTs); 2) the quantiza-

tion noise q[k]; and 3) the sampling error Ve[k] caused by the clock jitter. The SNR of

the Di[k] signal is defined as
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SNR ≡
Ps

Pq + Pe
(2.5)

where Ps = (1/2)A2
i is the power of the Vi(t) input signal, Pq is the signal power of the

q[k] sequence, and Pe is the signal power of the Ve[k] sequence. Here we have ignored

the thermal noise power and other environment noise for simplicity. The effect of these

noises can be included in Equation (2.5) easily as

SNR ≡
Ps

Pq + Pe + Pt
(2.6)

where Pt is the summation of thermal noise power and other environment noise.

Considering an ideal B-bit ADC with an input range of ±1, it has a uniform quantiza-

tion step size of sq = 2/2B. The quantization noise power of an ideal quantization process

can be approximated by [16]

Pq ≡ (q[k])2 =
1

12
× s2

q =
1

12
×
(

2
2B

)2

(2.7)

The quantization noise q[k] is assumed to be random and uniformly spreads between

±1/2B.

If the clock jitter is small enough compared to Ts, the k-th sampling error Ve[k] can

be approximated by [14]

Ve[k] ≈
dVi(t)
dt

∣

∣

∣

∣

t=kTs

× ∆t[k] = Aiωi cos(Ωik + φi) × ∆t[k] (2.8)

where ∆t[k] = ε[k]Ts is the clock jitter. Therefore, the sampling error power can be

expressed as

Pe ≡ (Ve[k])2 =
1
2
A2
iω

2
i × (∆trms)2 =

1
2
A2
iΩ

2
i × ε

2
rms (2.9)

where ∆trms is the root-mean-squared value (rms) of ∆t[k], and εrms is the rms of ε[k].

The clock jitter is assumed to be random and has a mean of zero. Assume that the input

is a full-range sine wave expressed as Equation (2.1) with Ai = 1. From Equation (2.5),

Equation (2.7), and Equation (2.9), the SNR becomes
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Converter
Jitter−to−Digital
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ADC JCF
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k ε( [k] )
Clock ε [k]
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Figure 2.2: Jitter compensation block diagram.

SNRi =
1

(2/3)2−2B + ω2
i (∆trms)2

=
1

(2/3)2−2B +Ω2
i ε

2
rms

(2.10)

Equation (2.10) is the maximum SNR performance of an ideal ADC without jitter

compensation, which is also the SNR limitation of an ADC theoretically. In this thesis,

we introduce a novel jitter compensation technique. The proposed jitter compensation

scheme can improve the ADC SNR and break the performance limitation predicted by

Equation (2.10).

2.3 Proposed Jitter Compensation Configuration

The basic principle of the proposed jitter compensation is illustrated in Figure 2.2. An

ADC samples and quantizes the analog signal Vi(t) and generates the corresponding dig-

ital sequence Di[k]. A clock dictates the instants at which Vi(t) is sampled. The k-th

sampling time is (k + ε[k])Ts where Ts is the nominal sampling interval, and ε[k] is the

clock jitter normalized to Ts. The clock jitter at the k-th sample is ∆t[k] = ε[k]Ts. A

jitter-to-digital converter (JDC) measures the ε[k] jitter and produces a jitter estimation

ε̂[k] in digital form. The relationship between ε[k] and ε̂[k] is defined as

ε̂[k] = ε[k] + εe[k] (2.11)
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where εe[k] is the JDC measurement error. A jitter compensation filter (JCF) uses the ε̂[k]

data to correct the sampling error in Di[k]. The corrected output from the JCF is Dc[k].

The jitter error is compensated in the digital domain, thus no high-precision analog circuit

is required and all the problems in [27] can be eliminated.

The theory of jitter compensation is discussed as follows. A band-limited signal Vi(t)

can be expressed in inverse Fourier transform as

Vi(t) =
1

2π

∫+ωB

−ωB
V (jω)ejωtdω (2.12)

where V (jω) is the Fourier transform of Vi(t), and ωB is its bandwidth. Neglecting the

quantization noise, the Di[k] signal in Figure 2.2 is simply the Vi(t) input sampled at

t = (k + ε[k])Ts. It can be expressed as

Di[k] =
1

2π

∫+ωB

−ωB
V (jω)ejω(kTs+ε[k]Ts)dω (2.13)

Assume that only the k-th sampleDi[k] contains a sampling error. Then, the sampling

error is caused by a jitter ε[k] at the k-th sampling. To correct this sampling error, the

required JCF is a filter with a frequency-domain transfer function of e−jωε[k]Ts . Therefore,

the corrected output from JCF is

Dc[k] =
1

2π

∫+ωB

−ωB

[

V (jω) × e−jωε[k]Ts
]

ejω(kTs+ε[k]Ts)dω

=
1

2π

∫+ωB

−ωB
V (jω)ejωkTsdω

= Vi(kTs)

(2.14)

which is a correct sample at t = kTs.

Figure 2.3 gives an intuitive interpretation of this jitter compensation scheme. Assume

that a sampling error occurs at the k-th sampling instant. The Vi(t) is sampled at t =

(k + ε[k])Ts instead of t = kTs. The magnitude at point A’ is quantized as Di[k]. Thus,

the ADC perceives a different V̂i(t) input instead of Vi(t). The signal V̂i(t) has a value of

Di[k] at t = kTs, denoted as point B. The filter of Equation (2.15) interpolates the value

of V̂i(t) at t = (k − ε[k])Ts, denoted as point B’, which is a correct estimation of Vi(t) at

t = kTs, denoted as point A.
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TskTs Ts
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Ts Tsk −( ) ( k + )ε[k]ε[k]
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A
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B’
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(k+1)(k−1)

(t)

(t)

t

Figure 2.3: A graphic illustration of jitter compensation principle.

2.4 Jitter Compensation Filter

Since the JCF is a filter with a frequency-domain transfer function of e−jωε[k]Ts , the discrete-

time impulse response of the linear-phase filter can be obtained by using inverse Fourier

transform, i.e.,

hc [n, ε[k]] =
1

2π

∫+π

−π
e−jΩε[k]ejΩndΩ

=
sin (π(n − ε[k]))
π(n − ε[k])

= sinc(n − ε[k])
(2.15)

where Ω = ωTs is the normalized frequency.

Figure 2.4 shows a finite-impulse-response (FIR) filter with 2M + 1 taps that approx-

imates the JCF of Equation (2.15). Applying the measured ε̂[k] data from the JDC and

assuming ε̂[k]� 1, the filter’s output can be expressed as

Dc[k] =
k+M
∑

n=k−M

Di[n] × hc [k − n, ε̂[k]]

≈ Di[k] +
M
∑

n=1

[

1
2π

∫+ωB

−ωB
V (jω)ejωkTs

2j sin(nωTs)
(−1)n × n

ε̂[k]dω
]

(2.16)
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Exchanging the order of integration and summation, Equation (2.16) becomes

Dc[k] ≈ Di[k] +
jε̂[k]
π

∫+ωB

−ωB
V (jω)ejωkTsFc(M,ωTs)dω (2.17)

where

Fc(M,ωTs) =
M
∑

n=1

sin(nωTs)
(−1)n × n

(2.18)

Let Ω = ωTs, if M approaches infinity, Equation (2.18) becomes (Appendix A details

the derivation)

lim
M→∞

Fc(M,Ω) = −
Ω

2
(2.19)

Furthermore, if there is no JDC measurement error so that ε̂[k] = ε[k], Equation (2.17)

becomes Dc[k] = Vi(kTs). This proves that the JCF can compensate the sampling errors

and recover the original Vi(kTs).

As an example, consider a sine wave input Vi(t) expressed as

Vi(t) = Ai × sin(ωit + φi) (2.20)

where Ai is the amplitude, ωi is the input frequency, and φi is the phase. The correspond-

ing output from the ADC is

Di[k] = Ai sin(Ωi(k + ε[k]) + φi) = Vi(kTs) + q[k] + Ve[k] (2.21)

From Equation (2.16), the resulting Dc[k] from the JCF can be expressed as

Dc[k] ≈ Di[k] + ε̂[k]Fc(M,Ωi) × 2Ai cos(kΩi + φi) (2.22)

The residual sampling error after the jitter compensation, defined as Ve[k] ≡ Dc[k] −

Vi(kTs), can be approximated by

Ve[k] ≈ [Ωi + 2Fc(M,Ωi)] ε[k] × Ai cos(kΩi + φi)

+ 2Fc(M,Ωi)εe[k] × Ai cos(kΩi + φi)
(2.23)
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The averaged power of Ve[k] is

Pe =
A2
i

2
[Ωi + 2Fc(M,Ωi)]2 ε2

rms + 2A2
i [Fc(M,Ωi)]2 ε2

e,rms (2.24)

where εrms is the rms of the clock jitter, ε[k], and εe,rms is the rms of the JDC measurement

error, εe[k]. If Ai = 1 and the quantization noises are included, the SNR of the signal

Dc[k] can be calculated using Equation (2.5), Equation (2.7), and Equation (2.24). From

Equation (2.19), if M is so large that Fc(M,Ωi) ≈ −Ωi/2, the SNR becomes

SNRc,∞ =
1

(2/3)2−2B +Ω2
i ε

2
e,rms

(2.25)

Comparing Equation (2.25) with Equation (2.10), clock jitter rms εrms in Equation (2.10)

is replaced by the jitter measurement error rms εe,rms in Equation (2.25). Thus, the jitter

compensation can break the SNR limitation caused by clock jitter if the measured jitter

error is smaller than the clock jitter.

2.5 Non-Ideal Effects in Jitter Compensation

The SNR after jitter compensation can be predicted using Equation (2.5), Equation (2.7),

and Equation (2.24). There are several assumptions when deriving Equation (2.24). These

assumptions include:

1. The quantization errors are ignored when sampling Di[k −M] to Di[k − 1] and

Di[k + 1] to Di[k +M]. However, as the number of the filter taps increases, the

quantization noise power also increases.

2. When calculating Dc[k], the sampling errors caused by clock jitter when sampling

the neighboring samples are also assumed ignorable.

3. The filter coefficients of Equation (2.15) are irrational numbers. The effect of the

finite precision is inevitable when implementing the jitter compensation technique

in a system-on-chip (SOC).

The effects of these assumptions are discussed in the following subsections.
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2.5.1 Quantization Error and Sampling Error

The quantization errors and the sampling errors of Di[k −M] to Di[k − 1] samples and

Di[k+1] toDi[k+M] samples are ignored when Equation (2.16) is used to calculate the

compensated ADC output Dc[k]. If these errors are taking into consideration, the result

of the jitter compensation can be expressed as

Dc[k] =
k+M
∑

n=k−M

Di[n] × hc [k − n, ε̂[k]]

=
k+M
∑

n=k−M

{

Vi(nTs) + q[n] + Ve[n]
}

× hc [k − n, ε̂[k]]

(2.26)

where q[n] is the quantization error of Di[n] and Ve[n] is the sampling error of Di[n]

caused by the clock jitter.

As discussed in Section 2.4,Dc[k] is a correct sample of Vi(t) at kTs if there is no JDC

measurement error and M is large enough. However, the summation in Equation (2.26)

not only compensates the sampling error Ve[k] but also accumulates the quantization er-

rors and the sampling errors of Di[k −M] to Di[k − 1] and Di[k + 1] to Di[k +M]. The

accumulation of these errors may degrade the performance of the jitter compensation.

The error in Dc[k] contributed by sampling Di[k −M] to Di[k − 1] and Di[k + 1] to

Di[k +M] is defined as

Vn[k] =
k−1
∑

n=k−M

(q[n] + Ve[n]) × hc [k − n, ε̂[k]]

+
k+M
∑

n=k+1

(q[n] + Ve[n]) × hc [k − n, ε̂[k]]

≈
k−1
∑

n=k−M

(q[n] + Ve[n]) ×
(−1)n+1ε̂[k]

n

+
k+M
∑

n=k+1

(q[n] + Ve[n]) ×
(−1)n+1ε̂[k]

n

(2.27)

The worst case of the signal power of the Vn[k] sequence occurs when M → ∞. Thus,
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Pn ≡ (Vn[k])2 ≈ 2ζ(2) × ε̂2
rms × (Pq + Pe) (2.28)

where Pq and Pe is defined as Equation (2.7) and Equation (2.9) respectively, and

ζ(2) =
∞
∑

n=1

1
n2

=
π2

6
(2.29)

is a well-known Riemann zeta function [29]. Therefore, Equation (2.28) becomes

Pn =
1
3
π2 × ε̂2

rms × (Pq + Pe) (2.30)

Comparing Equation (2.30) with Equation (2.7), Pn is usually much smaller than Pq
or Pe in practical because that the error power is multiplied by ε̂2

rms. Thus, the effect of the

quantization errors and the sampling errors of Di[k −M] to Di[k − 1] and Di[k + 1] to

Di[k +M] are indeed negligible even when the number of filter taps approach to infinity

when calculating Dc[k].

2.5.2 Finite Precision of the Filter Coefficients hc

In order to represent the irrational coefficients into digital form, quantization processes

are required to convert irrational numbers into digital codes. Similar to an ADC, the con-

version also introduces quantization error. Take this effect into account when evaluating

Dc[k], the result of JCF can be expressed as

Dc[k] =
k+M
∑

n=k−M

Di[n] ×
{

hc [k − n, ε[k]] + qh[n, ε[k]]
}

(2.31)

where qh[n, ε[k]] is the error induced by quantizing the filter coefficients hc [k − n, ε[k]].

The error of Dc[k] induced by the finite precision of the filter coefficients is defined as

Vh,q and

Vh,q[k] =
k+M
∑

n=k−M

Di[n] × qh[n, ε[k]] (2.32)

As long as the Di[n] sequence are independent of ε[k] sequence, the power of the Vh,q[k]

sequence can be expressed as
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Figure 2.5: hc[n, ε̂[k]] and qh[n, ε̂] plots example when ε̂=0.001 and the filter coefficients
are represented by binary fraction of 18-bit wide.

Ph,q = (Di[n])2 ×
k+M
∑

n=k−M

q2
h[n, ε[k]] (2.33)

Similar to the quantization error power of an ADC expressed as Equation (2.7), the binary

fraction expression for hc[k − n, ε[k]] of Bh-bit wide results in a quantization error which

can be expressed as

k+M
∑

n=k−M

q2
h[n, ε[k]] ≈ 2M ×

1
12

2−2Bh (2.34)

Figure 2.5 shows an example of hc[n, ε[k]] and qh[n, ε[k]] plots withBh=18 and ε̂[k]=0.001.

For an ideal B-bit ADC with full-swing sine wave input, Ph,q must smaller than Pq to

preserve the resolution, i.e.,
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Figure 2.6: SNR results of jitter compensation of different Bh. Circles are simulations
with irrational hc[n, ε̂[k]] = sinc(n − ε̂[k]) .

A2

2
× 2M ×

1
12

2−2Bh ≤
1

12

(

2A
2B

)2

(2.35)

Thus,

Bh ≥ B − 1 +
1
2

log2(M) (2.36)

For example, ifB=16 andM=16, Bh=17 can be chosen according to Equation (2.36).

Figure 2.6 shows the simulated SNR performance of a 16-bit ADC when using Bh = 15,

Bh = 16 and Bh = 17 to approximate the irrational tap coefficients hc [n, ε[k]]. Assume

that εrms = 0.0003 and the resolution of the JDC is 0.0001. The circles are simulations

without quantizing the tap coefficients, i.e., the irrational hc[n, ε̂[k]] = sinc(n − ε̂[k])

are used in the simulations. As predicts by Equation (2.36), the SNR performance after

jitter compensation when Bh = 17 are nearly the same with the SNR performance when
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Figure 2.7: A graphic illustration of simplified jitter compensation principle.

Bh > 17.

Note that Equation (2.36) is overestimated for largeM . AsM increases, hc[M, ε[k]] =

sinc(M − ε[k]) will convergence to zero eventually, so does qh[M, ε[k]].

2.6 Simplified Jitter Compensation Filter

In Figure 2.4, the tap coefficients, hc [n, ε[k]], are recalculated every clock cycle due to

the different ε̂[k] at different k. The hardware cost of this time-variant JCF is very high. It

is also difficult for this JCF to achieve high-speed operation. A simplified JCF is proposed

to reduce the difficulty when implementing the JCF.

As shown in Figure 2.7, if a sampling error occurs at the k-th sampling instant, the

Vi(t) is sampled at t = (k+ ε[k])Ts instead of t = kTs. The magnitude at point A’ is quan-

tized asDi[k]. Thus, the ADC perceives a different V̂i(t) input instead of Vi(t). The signal

V̂i(t) has a value of Di[k] at t = kTs, denoted as point B. The filter of Equation (2.15)

interpolates the value of V̂i(t) at t = (k − ε[k])Ts, denoted as point B’, which is a correct

estimation of Vi(t) at t = kTs. If ε[k]� 1, the curve between point B to point B’ is nearly

a straight line. Thus, if the clock jitter is εu and using Equation (2.16) to compensate the

sampling error, the magnitude required to be compensated is defined as Du[k] and
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Du[k] = Dc[k] −Di[k]

=
k−1
∑

n=k−M

Di[n] × hc [k − n, ε̂[k]] +
k+M
∑

n=k+1

Di[n] × hc [k − n, ε̂[k]]
(2.37)

and the slope of the straight line between point B to point B’ is

Ds[k] =
Du[k]
εu

(2.38)

Therefore, the magnitude required to be compensated is simply this slope at the k-th

sample, multiplied by the k-th sampling jitter, ε̂[k]. As a consequence, Equation (2.16)

can be approximated by

Dc[k] ≈ Di[k] + ε̂[k] ×
Du[k]
εu

= Di[k] +
ε̂[k]
εu
×

{

k−1
∑

n=k−M

{

Di[n] × hc[k − n, εu]
}

+
k+M
∑

n=k+1

{

Di[n] × hc[k − n, εu]
}

}

(2.39)

We can define a simplified JCF with the filter coefficients as

hs[n] = hc[n, εu] = sinc(n − εu) (2.40)

Thus, Du[k] becomes

Du[k] =
k−1
∑

n=k−M

{

Di[n] × hs[k − n]
}

+
k+M
∑

n=k+1

{

Di[n] × hs[k − n]
}

(2.41)

and the output of the simplified JCF is

Dc[k] ≈ Di[k] +
ε̂[k]
εu
×Du[k] (2.42)

In the above equations, εu is a predefined jitter constant. The value of εu is not crucial. It

can be chosen so that εu approximates to the standard deviation of ε[k].
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Figure 2.8 shows the resulting JCF. In this implementation, once a specific εu is cho-

sen, the hs[n] tap coefficients are fixed. The Du[k] signal of Equation (2.41) is calculated

using a time-invariant FIR filter with the fixed hs[n] tap coefficients. The sampling error

is estimated by multiplying Du[k] with the ε̂[k]/εu ratio. In Figure 2.8, ε̂[k] is only used

at one place. Note that the division is not needed here because the results of the TDC

calibration are in the form of divided by εu already. The TDC background calibration will

be introduced in Chapter 4 and Chapter 5.

As derived in Section 2.4, for an ideal JCF without JDC measurement error, the output

of the JCF becomes Dc[k] = Vi(kTs) which is a correct sample without sampling error.

Therefore, the sampling error can be derived from Equation (2.16)

Ve[k] = Dc[k] −Di[k] =
k−1
∑

n=k−M

Di[n] × hc [k − n, ε[k]]

+
k+M
∑

n=k+1

Di[n] × hc [k − n, ε[k]]

(2.43)

From Equation (2.41) and Equation (2.42), the sampling error calculated by the sim-

plified JCF can be expressed as

Ve,s[k] =
k−1
∑

n=k−M

Di[n] × hs[k − n] ×
ε[k]
εu[k]

+
k+M
∑

n=k+1

Di[n] × hs[k − n] ×
ε[k]
εu[k]

(2.44)

In order to decide the value of εu, we defined Es which is the difference between hs[n]

and hc[n],

Eh[n, ε[k]] ≡ hc[k − n, ε[k]] − hs[k − n] ×
ε[k]
εu[k]

(2.45)

The residual sampling error caused by the simplified JCF, defined as Ve,r[k] ≡ Ve[k] −

Ve,s[k], can be derived from Equation (2.43) and Equation (2.44),

Ve,r[k] =
k−1
∑

n=k−M

Di[n] × Eh[n, ε[k]] +
k+M
∑

n=k+1

Di[n] × Eh[n, ε[k]] (2.46)
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(a)

(b)

Figure 2.9: Pe,r normalized to the quantization noise Pq Plots. (a) εrms = 3× 10−4 and (b)
εrms = 15 × 10−4.
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As an example, consider a sine wave input Vi(t) expressed as

Vi(t) = Ai × sin(ωit + φi) (2.47)

Using Equation (2.46) and Eh[n, ε[k]] ≈ Eh[−n, ε[k]], we have

Ve,r[k] = Ai sin(ωikTs + φi) ×

{

M
∑

n=1

2 cos(nωiTs) × Eh[n, ε[k]]

}

(2.48)

Thus, the error power of the Ve,r[k] sequence is

Pe,r ≡ (Ve,r[k])2 = 2A2
i ×

{

M
∑

n=1

cos(nωiTs) × Eh[n, ε[k]]

}2

(2.49)

In order to calculate the power of the Ve,r[k] sequence, the distribution of the clock

jitter ε[k] must be considered. Assume that the clock jitter ε[k] is normal-distributed with

zero mean and the standard deviation is εrms. Figure 2.9 shows the Pe,r normalized to the

quantization noise Pq of a 16-bit ADC. The value ofEu is not crucial. ForEu < 32×10−14,

the Pe,r is smaller than the quantization noise even when the clock jitter εrms = 15× 10−4.

εrms = 15 × 10−4 is equivalent to ∆tms = 18.75 ps at 80 MHz sampling rate, which is an

extremely large value of jitter.

The simplified JCF can be interpreted in a more intuitively way. The Taylor series of

the input signal expanded at t = x can be expressed as

Vin(t) = V (x) +
V ′(x)

1!
(t − x) +

V ′′(x)
2!

(t − x)2 +
V ′′′(x)

3!
(t − x)3 + . . . (2.50)

At the k-th sample, the nominal smaling time is t = kTs. The jitter at the k-th sample

is ∆t[k] = ε[k] × Ts. Therefore, the Taylor series expansion of the input signal at t =

kTs+ ε[k]×Ts can be obtained by substituting x = (kTs+∆t[k]) in Equation (2.50), i.e.,
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Vin(t) = V (kTs + ∆t[k])

+
V ′(kTs + ∆t[k])

1!
{

t −
[

kTs + ∆t[k]
]}

+
V ′′(kTs + ∆t[k])

2!
{

t −
[

kTs + ∆t[k]
]}2

+
V ′′′(kTs + ∆t[k])

3!
{

t −
[

kTs + ∆t[k]
]}3

+ . . .

(2.51)

The correct sample ,Vin(kTs), can be obtained by substituting t = kTs into Equation (2.51),

Vin(kTs) = V (kTs + ∆t[k])

+
V ′(kTs + ∆t[k])

1!
[

− ∆t[k]
]

+
V ′′(kTs + ∆t[k])

2!
[

− ∆t[k]
]2

+
V ′′′(kTs + ∆t[k])

3!
[

− ∆t[k]
]3

+ . . .

= Vc[k]

(2.52)

With the information of clock jitter∆t[k], the input signal Vin(t) and its n-th derivative

at t = kTs + ∆t[k], the correct sample can be obtained at incorrect sampling time by

Equation (2.51). Comparing Equation (2.42) with Equation (2.52), the simplified JCF is

the first order Taylor series approximation of jitter correction. and −Du[k]/εu is the first

order derivative of Vin(t) at t = kTs + ∆t[k].

As derived from Section 2.5.2, a 17-bit wide binary fraction expression for hc[k −

n, ε[k]] is required for a 16-bit ADC system. Therefore, 2M multipliers with 17-bit ×

16-bit is required in a JCF, which results in an area-hunger digital circuit. However, the

multipliers can be replaced with a few adders for the simplified JCF since the coefficients

are time-invariant. Table 2.1 shows the binary sign-magnitude expression of the filter

coefficients, hs[n], for a JCF with 15 filter taps. εu = 0.0002 is chosen and 20 bit is used

to approximate the irrational number. The number of the adders is proportional to the

number of bits with a digital output 1 in the binary expression of the filter coefficients.

For example, hs[1] = 0.00000000000011010001, only 4 adders are required to calculate

Di[k − 1] × hs[1]. Thus, The area of the simplified JCF is decreased dramatically.
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Table 2.1: Sign-magnitude expression of hs[n]

hs[n]
Decimal Fraction Binary Fraction

n Sign Magnitude
-7 -0.000028570610 1 0.00000000000000011101
-6 0.000033332220 0 0.00000000000000100010
-5 -0.000039998397 1 0.00000000000000101001
-4 0.000049997497 0 0.00000000000000110100
-3 -0.000066662218 1 0.00000000000001000101
-2 0.000099989994 0 0.00000000000001101000
-1 -0.000199959995 1 0.00000000000011010001
1 0.000200039995 0 0.00000000000011010001
2 -0.000100009994 1 0.00000000000001101000
3 0.0000666711073 0 0.00000000000001000101
4 -0.000050002497 1 0.00000000000000110100
5 0.000040001597 0 0.00000000000000101001
6 -0.000033334442 1 0.00000000000000100010
7 0.000028572243 0 0.00000000000000011101

2.7 A 16-bit 80 MS/s ADC Design Example

A 16-bit ADC system operating at a sampling rate of 80 MS/s was simulated by using a

C program to verify the proposed jitter compensation techniques. Its sampling period is

Ts = 12.5 ns. Assume that the rms of the clock jitter is ∆trms = εrmsTs = 3.75 ps, i.e.,

εrms = 3 × 10−4. From Equation (2.5), Equation (2.7), and Equation (2.24), to ensure

better than 80 dB SNR for an input frequency up to 32 MHz, i.e., Ωi < (4/5)π, one can

choose εe,rmsTs < 1.25/
√

12 ps and M = 7. The εe,rms indicates the required resolution

and accuracy for the JDC. To simplify the simulations, the JDC is an ideal one with a

uniform quantization step size of 1.25 ps, so that εe,rmsTs = 1.25/
√

12 ps. The number of

taps for the JCF is 2M + 1 = 15. The bandwidth limitation is due to the proposed JDC

calibration, which will be discussed in Chapter 4 and Chapter 5.

Figure 2.10 shows the simulated ADC output spectrum before and after the jitter com-

pensation for the system in Figure 2.2 and M = 7 is chosen. The JCF is the one shown in

Figure 2.8, i.e., a simplified JCF is adopted in simulations. The input is a sine wave signal

with frequency of 26 MHz. As the figure reveals, the noise floor is decreased by about
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20 dB after the jitter compensation. In other words, the jitter compensation can improve

the SNR by 20 dB.

Figure 2.11 shows the simulated ADC output spectrum before and after the jitter com-

pensation when the input is a wide-band signal. In this simulation, the input is composed

of four sine wave signals with different frequencies and phases. The jitter compensation

for this multi-tone test can improve the ADC SNR from 65.46 dB to 83.55 dB.

Figure 2.12 shows the SNR performance from simulations of the system in Figure 2.2

for different input frequencies. The circle symbols in Figure 2.12 are simulation results.

Also shown as the solid line in the figure are the calculated SNR of a JCF with M = 7

using Equation (2.5), Equation (2.7), and Equation (2.24). Perfect match between the

simulated results and the calculated results can be observed in the figure. The dashed

line shown in Figure 2.12 is the SNR of an ideal JCF calculated using Equation (2.25).

This dashed line is the limitation of the jitter compensation for a given JDC’s resolution,

which is assumed to be 1.25 ps in simulation. At fi/fs = 0.4, i.e., Ωi = (4/5)π, the

JCF can improve the SNR by 20 dB at input frequency close to 0.4fs. As a reference, the

uncompensated SNR in Figure 2.12 is calculated using Equation (2.10).

As the number of taps of the JCF increased, the SNR after jitter compensation will

approach to the ideal performance gradually as predict by Equation (2.25). Figure 2.13

shows the SNR performance when M = 31 is chosen. The circle symbols in Figure 2.13

are simulation results. The solid line is the calculated SNR of a JCF with M = 31 using

Equation (2.5), Equation (2.7), and Equation (2.24). Perfect match between the simulated

results and the calculated results still can be observed in the figure. The compensated SNR

for a JCF withM = 31 is almost the same with the SNR calculated using Equation (2.25).

2.8 Summary

A digital jitter compensation for ADCs is presented in this chapter. If the jitter of the

sampling clock is measured, the jitter compensation technique can correct the sampling

error caused by the clock jitter, thus allowing the use of a cheaper clock source. Most

of the compensation overhead is the digital circuitry; therefore both the circuit area and

the power consumption are scaled along with the technology scaling. Since the jitter
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compensation is performed in the digital domain and no feedback signal is required for

the ADC, the jitter compensation circuit and the ADC can be connected in parallel. No

modification is required for the ADC.

The SNR improvement of the proposed jitter compensation technique is determined by

the resolution of the JDC, the number of taps for the JCF and the rms of input clock jitter.

Theoretical analyses and System simulations are both provided to verify the proposed

jitter compensation technique in this chapter.
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Figure 2.10: The ADC output power spectrum before and after the jitter compensation for
M = 7.
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Figure 2.11: The ADC output power spectrum before and after the jitter compensation for
M = 7.
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Figure 2.12: SNR results of jitter compensation for M = 7. Circles are from simulations.
Lines are from calculations. fi = ωi/(2π) is the input frequency, and fs = 1/Ts is the
sampling rate.
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Figure 2.13: SNR results of jitter compensation forM = 31. Circles are from simulations.
Lines are from calculations
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Chapter 3

Time-to-Digital Converter

3.1 Introduction

The proposed jitter compensation scheme requires a timing measurement circuit to per-

form the jitter-to-digital conversion so that the sampling error introduced by the clock

jitter can be compensated in the digital domain. The JDC in Figure 2.2 contains a time-to-

digital converter (TDC) that digitizes the timing (or phase) difference between two clocks

of identical frequency. As shown in Figure 3.1, a TDC is used to compare the rising edges

of two clocks V1 and V2. For a 16-bit 80 MS/s ADC system, the TDC must perform the

conversion every clock cycle and have a resolution better than 1 ps.

In order to quantized the timing information into the digital code, several time-to-

digital conversion circuits had been demonstrated previously in literature. An up-to-date

survey can be found in [30]. Most of them require certain types of precision circuits, such

as delay elements with precise delay [31, 32], oscillators with precise frequency [33], or

time-to-voltage converters with precise conversion function [34, 35]. In this chapter, we

will discuss various types of TDC and their limitations.

3.2 Counter-Based TDC

The most direct method for measuring a time interval is to use a counter. As shown in

Figure 3.2, the counter is triggered at the raising edge of V1 signal and stopped at the

37
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td

1V

V 2

Figure 3.1: Timing difference measured by a TDC.

raising edge of V2 signal. Therefore, the timing interval to be measured is proportional to

the resulting count,

td ≈ N × Tc (3.1)

where Tc is the clock period of the counter and N is the resulting count which is 6 in

Figure 3.2.

The resolution of such TDC is limited by the period of the counter clock. Like the

quantization noise in an ADC, the root-mean-squared value (rms) of the quantization step

for the counter based TDC can be derived as [36]

∆tq,rms =
πTc
8

(3.2)

The accuracy of counter based measurements can be improved by taking a series of

measurements of the same interval td, and averaging the results [37]. Therefore, this

technique is often used for frequency measurement since several periods can be measured

and a better resolution can be obtained by average. For example, if M successive periods

are measured for a periodic signal with frequency of fs, i.e. td = M × (1/fs) ≈ N × Tc.

Thus, the frequency under measured is

fs =
M

N × Tc
(3.3)
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V 2
td

Tc

1V

Trigger Stop

Figure 3.2: A counter-based TDC timing diagram of conversion.

This technique is unsuitable for measuring aperiodic signals with short time intervals

in the order of picoseconds, such as the clock jitter.

3.3 Time-to-Amplitude Method

Another commonly used method is based on time-to-amplitude conversion [38, 39, 40].

As shown in Figure 3.3, a capacitor is first charged or discharged by a fixed current for the

time interval to be measured, then an ADC is used to digitize the voltage on the capacitor.

The capacitor voltage is reset to zero between measurements. The voltage on the capacitor

after it stops charging is

Vc =
Ic
C
× td (3.4)

For a short td, a high resolution ADC is required to digitize the voltage on the capacitor

and is difficult to implement. To simplify the design, a dual-slope ADC is often used

together with the time-to-amplitude method. The dual-slope technique first charged a

capacitor with fixed current, Ic, for the time interval to be measured then a smaller current,
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td
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A/D Conversion Time
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VDD

Figure 3.3: A time-to-amplitude TDC timing diagram of conversion.

Id, is used to discharge the capacitor to zero. As shown in Figure 3.4, the relation between

the time interval to be measured, td, and the time interval for discharging the capacitor to

zero, tm, is

td =
Id
Ic
× tm (3.5)

If Ic = 100Id, tm is equal to 100 × td. Thus, we can measure tm instead of td to obtain

a better resolution. However, if td is small, the switching noise such as clock feed through

and charge injection will dominant the resolution.

3.4 Tapped Delay Line TDC

In a tapped delay line TDC as shown in Figure 3.5a, V1 signal is passing through a delay

line and each delay buffer produces a delay equal to τ1. The output of each delay buffer

is connected to the data input of a flip-flop. All the flip-flops are triggered at the raising

edge of V2 signal and the TDC’s output m is generated by summing the digital outputs

from all flip-flops. Like a flash ADC, the adder can be replaced by an edge detector to

perform the thermometer code to binary code conversion. As shown in Figure 3.5b, the

timing interval to be measures is

td ≈ m × τ1 (3.6)
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td

cV

t

tm
Figure 3.4: A dual-slope TDC timing diagram of conversion.

andm is equal to 4 in Figure 3.5b. To ensure that τ1 is known accurately, the delay chain is

often controlled by a delay-locked loop (DLL) [31, 41, 42] or a phase-locked loop (PLL)

[33, 43].

The resolution of the tapped delay line TDC is determined by the delay of the delay

element τ1, which is limited to a gate delay. To provide a finer resolution, a vernier tapped

delay line technique is used [31, 43, 44]. In the vernier tapped delay line technique, one

tapped delay line drives the flip-flop clock inputs, while the other tapped delay line drives

the flip-flop data inputs as shown in Figure 3.6a. The clock tap delay is slightly longer (or

shorter) than the data tap delay. The vernier-based TDC is equivalent to a delay line TDC

shown in Figure 3.6b, the effective tap delay is then the difference between the clock and

data tap delays, i.e.

td ≈ m × (τ1 − τ2) (3.7)

Therefore, resolutions better than a gate delay can be achieved.

The resolution is sensitive to the gate delays, thus timing calibration of the delay chain

is necessary [44, 45, 46, 47]. Even with appropriate calibration, this method still suffered

from the noise induced by the delay line itself, and the error is accumulated along the

delay line.
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Figure 3.5: (a) TDC utilizing a tapped delay-line. (b) Timing diagram of a tapped delay-
line TDC.
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Figure 3.6: (a) A vernier delay-line TDC. (b) An equivalent circuit model of a vernier
delay-line TDC containing a single delay line, and ∆τ = τ1 − τ2.
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3.5 Stochastic TDC

The TDC used in our design is based on the stochastic TDC architecture [28, 48]. It

does not use any precision circuit, and can be easily realized in a standard CMOS VLSI

technology.

To understand the stochastic TDC in an easy way, Figure 3.7 shows the relationship

between a stochastic TDC and a delay-line TDC. Each delay cell in the delay-line is

replaced by a timing offset tosn. The timing offset originates from the mismatch of the flip-

flop itself. Thus, a stochastic TDC conducts the time-to-digital conversion by exploring

the statistics of a group of flip-flops or timing comparators (TCMPs). Like a flash ADC,

it can easily complete the conversion in one clock cycle. It can provide the conversion

for every clock cycle continuously. Furthermore, it can improve the conversion resolution

simply by adding more TCMPs. Figure 3.8 shows a TCMP example [28]. It compares

the rising edges of two clocks, V1 and V2. Ideally, its output is a digital 1 if the timing

difference td > 0. If td < 0, the output is a digital 0. However, a practical TCMP

exhibits an offset, tos. The offset is mainly caused by devices mismatches and interconnect

mismatches. The TCMP now yields an output of digital 1 only if td > tos; otherwise, the

output is a digital 0.

Figure 3.9 shows the architecture of a stochastic TDC. It contains L TCMPs. Each

TCMP detects the polarity of (td − tos) and has its own tos offset. For every clock cycle,

the TDC’s output, m, is generated by summing the digital outputs from all TCMPs. Thus,

m is the number of TCMPs with a digital 1 output. Figure 3.10 illustrates the probability

density function (pdf) of tos of a TCMP and the TDC transfer function. From the central

limit theorem, the pdf of tos is approximately a normal distribution, G(tos), which is

G(tos) =
1

σ
√

2π
e−t

2
os/(2σ2) (3.8)

where σ is the standard deviation of tos. The averaged td-to-m TDC transfer function can

be obtained by integrating over this pdf, i.e.,

m = L ×
∫ td

−∞
G(tos)dtos (3.9)
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Figure 3.7: Relationship between a delay line TDC and a stochastic TDC. (a) Alternative
representation of delay line TDC. (b) A stochastic TDC by utilizing the offset.
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Figure 3.8: Timing comparator (TCMP).

In practice, m can only be an integer between 0 and L. This TDC has its input range

proportional to σ. Its resolution is a function of L.

A TDC converts an input td into a digital code m. The input range of a TDC is divided

into different segments. Each segment is mapped to a different m code. Figure 3.11 shows

an example of time-to-digital conversion for L = 6. The tos1 to tos6 are the timing offset

of the six TCMPs respectively. Note that tosn is not necessary the timing offset of the n-th

TCMP in Figure 3.9. If m = 2 at the k-th sampling, i.e., Dt[k] = 2, there are two TCMPs

with a digital 1 output. The clock jitter at the k-th sample is ∆t[k] and tos2 < ∆t[k] < tos3.

Thus, as long as the timing offset of all the TCMPs are known, the TDC can be used to

measure the timing difference between two signals. However, similar to an ADC, a TDC

also introduces quantization noise, ∆tq[k] as shown in Figure 3.12. For example, as long

as tos2 < td < tos3, the output of the TDC is always m = 2. The power of the quantization

error when m = 2 is

∆t2q,2 =
∆t2s,2
12

(3.10)

and ∆ts,2 is the step size for m = 2. Thus, the quantization error for a giving TDC can be

derived as



3.5. STOCHASTIC TDC 47

V1

V2

1
TCMP TCMP TCMP

2 L

m

Figure 3.9: Stochastic time-to-digital converter (TDC).
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Figure 3.10: TDC Transfer function and tos probability density function (pdf).
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Figure 3.11: An example of time-to-digital conversion for L = 6.
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Figure 3.12: Quantization error of a TDC.

∆tq,rms =

√

√

√

√

L−1
∑

m=1

∆t2s,m
12
× P (m) (3.11)

where P (m) is the probability for the TDC’s output is a digital code of m.

The quantization step size, ∆ts,m, is the range of the td segment mapped to the digital

codem. A larger∆ts,m results in a larger∆tq,m. The quantization error limits the resolution

of the TDC.

A Monte Carlo simulation with a timing offset searching loops similar to [49] is ap-

plied to estimate the standard deviation of tos. The search loop for timing offset is com-

posed of the TCMP netlist and a binary search block written by Verilog-A behavioral

circuit element. The algorithm of the binary search is illustrated in Figure 3.13. The

TCMP is the one shown in Figure 3.8. Initially, td is set to 0, which means V1 is phase

aligned with V2. For a giving searching range ±Tr, if Vo is a digital 1 after the transient

analysis, td is set to td = td − Tr/2, and repeat the same transient analysis. Otherwise, if

Vo is a digital 0 after the transient analysis, td is set to td = td + Tr/2.

Figure 3.14 shows the tos statistics of a TCMP realized in a 90 nm CMOS technology

by using the binary search methodology. The data were collected from 1000 Monte Carlo

circuit simulations. The standard deviation of tos is σ = 6.36 ps.

Assume an ideal TDC which has identical ∆ts,m for all m. Similar to Equation (2.7),

an ideal TDC that has a uniform quantization step size of ∆ts = 1 ps gives ∆tq,rms =
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Figure 3.13: Binary search process for timing offset extraction.
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Figure 3.14: Histogram of timing comparator offset, tos, from 1000 Monte Carlo simula-
tions.

1/
√

12 ps. For a stochastic TDC, the ∆ts,m may vary for different m and ∆tq,rms can be

derived using Equation (3.11). However, an explicit expression for its∆tq,rms is difficult to

obtain. Brute-force simulations were used instead. Figure 3.15 shows the ∆tq,rms achieved

by 99% of the stochastic TDCs with a given L. The tos of each TCMP in the TDC is

randomly chosen. The statistics of tos is the normal distribution of Equation (3.8). The

data are obtained from simulations of 100,000 different TDC cases for each L. The input

td is assumed to have a normal distribution with a mean of zero and a rms of ∆trms. Note

that, depending on applications, the input td may have different statistical distributions.

Consider a stochastic TDC whose internal TCMPs exhibit a tos with standard deviation

σ = 6.36 ps. In order to achieve the same ∆tq,rms = 1/
√

12 ps, i.e. ∆tq,rms/σ = 0.045, this

TDC needs the number of TCMPs L > 70 if the RMS of the input td is ∆trms = (1/3)σ.

The TDC needs L > 94 if ∆trms = (2/3)σ.
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Figure 3.15: ∆tq,rms performance for TDC with different L at various ∆trms input level.
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The tos of a TCMP is very sensitive to process, supply voltage, and temperature (PVT)

variations. It is also sensitive to the waveforms of the two input clocks, V1 and V2. There-

fore, it is necessary to calibrate a stochastic TDC so that an accurate estimation of td can

be extracted from its digital output. Techniques to calibrate the stochastic TDC in the

background are proposed in the following two chapters.

In the following discussion, the rms of the clock jitter, the TDC quantization noise and

its rms are normalized as

εrms =
∆trms
Ts

εq[k] =
∆tq[k]
Ts

εq,rms =
∆tq,rms

Ts
(3.12)

where Ts is the nominal clock period. If ∆tq,rms = 1.25/
√

12 ps and Ts = 12.5 ns,

εq,rms = (1/
√

12) × 10−4.

3.6 Summary

The proposed jitter compensation scheme requires a TDC to quantize the clock jitter so

that the sampling error can be compensated in the digital domain. Various types of TDC

are described in this chapter. To measure the clock jitter accurate at every clock cycle,

a stochastic TDC is adopted. The stochastic TDC performs the time-to-digital conver-

sion by exploring the statistics of a group of TCMPs. The conversion resolution can be

improved simply by adding more TCMPs.

Although a resolution better than 1 ps can be achieved easily by a stochastic TDC, the

TDC is sensitive to the PVT variations. It requires calibration for accurate jitter measure-

ment. A novel TDC background calibration will be introduced in the following chapters.



54 CHAPTER 3. TIME-TO-DIGITAL CONVERTER



Chapter 4

Jitter Compensation with Clean

External Clock

4.1 Introduction

A Nyquist-rate ADC first samples a continuous-time analog signal, and then quantizes the

sampled data into a discrete-time digital sequence. A periodic clock is required to provide

a reference for the sampling time. If the sampling clock exhibits jitter, sampling error

occurs during the sampling process [14, 15]. Excess clock jitter can degrade the SNR

performance of an ADC. A perfect ADC will yield poor SNR performance just because

the clock edges are moving around.

To relax the clock jitter requirement, a jitter compensation scheme had been proposed

in Chapter 2. The clock jitter is measured and digitized by a jitter-to-digital converter

(JDC). The JDC is composed of a stochastic TDC and a calibration circuit. The measured

jitter information is used to compensate the sampling error of an ADC by a jitter com-

pensation filter (JCF). Two different system scenarios will be covered in this thesis: 1)

an ADC with a clean external clock and 2) an ADC with an external clock as the main

jitter source. The first scenario will be investigated in this chapter and the second scenario

will be discussed in Chapter 5. The TDC background calibration techniques for both jitter

compensation scenarios are also proposed.

55
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Figure 4.1: A jitter compensation scheme with clean external clock.

4.2 Jitter Compensation with Clean External Clock

Figure 4.1 shows an ADC system with jitter compensation when a ideal clock source is

available. In this scenario, the external clock, CLKe, is assumed to be clean and without

jitter. It defines the sampling instants, denoted as kTs. A variable delay buffer (VDB)

receives the CLKe clock and generates the internal CLKi clock that drives the ADC. The

delay of the VDB is controlled by a delay-control (DCTL) signal such that CLKi is phase-

aligned with CLKe. The DCTL signal can be generated from a delay-locked loop (DLL)

[31, 41, 42] or a phase-locked loop (PLL) [33, 43]. It is assumed that the VDB adds

jitter to the CLKi clock, changing the sampling instants to (k + ε[k])Ts. The normalized

absolute clock jitter ε[k] is measured and digitized by a JDC. The JDC is composed of a

stochastic TDC and a jitter calibration processor (JCP1). A JCF as shown in Figure 4.2

uses the measured jitter data ε̂[k] to convert the Di[k] signal from the ADC into the

corrected signal Dc[k]. The detail of the jitter compensation had been demonstrated in

Chapter 2. The JCF eliminates the sampling error in Di[k] caused by the clock jitter ε[k].

The output of the TDC, Dt[k], is an integer between 0 and L where L is the number

of TCMPs in the TDC as shown in Figure 3.9. Although the output of the TDC, Dt[k],

represents the CLKi absolute jitter at the k-th clock cycle, the exact value of the jitter it

represents cannot be determined by the TDC alone. Therefore, calibrations are required

to ensure an accurate measurement result. The most commonly used method to calibrate
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Figure 4.3: Code-density test.
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the TDC is the foreground code-density test [28, 44, 50, 51, 52]. It is well-known that the

probability distribution of the timing difference, td, of two periodic signals with uncorre-

lated frequencies is a uniform distribution. As shown in Figure 4.3, the probability that td
falls in the interval ∆tj is proportional to the width of ∆tj itself. Therefore, to calibrate

the TDC, two periodic signals with uncorrelated frequencies are input to the TDC. For

a stochastic TDC whose transfer curve is the one shown in Figure 3.11, the probability

that the TDC’s output code, Dt[k] = m, is proportional to the its quantization step. For

example Dt[k] = 5 will occur with a frequency of (tos5 − tos4) × f1f2 where f1 and f2

are the frequency of the calibration signal V1 and V2 respectively. Thus, the TDC can be

calibrated by monitoring the hit rate of each code.

However, the transfer function of a stochastic TDC is sensitive to the waveforms of

both V1 and V2. The calibration results will be incorrect if the waveforms of V1 and V2 is

different from CLKe and CLKi. The TDC transfer function is also sensitive to process,

voltage, and temperature (PVT) variations. Background calibration is required to convert

the digital code Dt[k] into the corresponding jitter information accurately. We propose

using the ADC to calibrate the TDC in the background. The jitter calibration processor

performs self-calibration which will be discussed in the next section.

4.3 TDC Background Calibration Principle

The principle of the TDC background calibration is described as follows. As shown in

Figure 4.4, assuming that a sampling error occurs at the k-th sampling instant and the

TDC output code isDt[k] = m. We define that ε(m) is the jitter represented byDt[k] = m.

Therefore, the Vi(t) is sampled at t = (k + ε(m))Ts instead of t = kTs. The magnitude

at point A’ is quantized as Di[k]. Thus, the ADC perceives a different V̂i(t) input instead

of Vi(t). The signal V̂i(t) has a value of Di[k] at t = kTs, denoted as point B. If the

clock jitter ε[k] is known, where ε[k] = ε(m) when Dt[k] = m, the correct sample can be

obtained by interpolating the V̂i(t) signal at t = (k − ε(m))Ts. As derived from Chapter 2,

the corrected ADC output is

Dc[k] = Di[k] + ε(m) ×
Du[k]
εu

(4.1)
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where

Du[k] =
k−1
∑

n=k−M

{

Di[n] × hs[k − n]
}

+
k+M
∑

n=k+1

{

Di[n] × hs[k − n]
}

(4.2)

with

hs[n] = sinc(n − εu) (4.3)

and εu is a predefined jitter constant. Since Du[k]/εu represents the Vi(t) signal slope at

the k-th sampling instant, the value of εu is not crucial. The magnitude at point B’, which

is equal to Dc[k], is a correct estimation of Vi(t) at t = kTs, denoted as point A.

However, the only jitter information we have at the k-th sampling so far is the output

of the TDC, Dt[k]. If Dt[k] = m and the value of the jitter it represents is known, the

correct sample can be calculated using Equation (4.1).

Equation (4.1) can be interpreted as the correct sampleDc[k] is a function of the clock

jitter,

Dc[k] = f (ε[k]) (4.4)

If it exists an inverse function of f , defined as f−1, Equation (4.4) can be rewritten as

ε(m) = f−1(Dc[k]) (4.5)

If the jitter represents by Dt[k] = m is not known but the magnitude at point A, i.e.

Vi(kTs), is known instead, we can use Equation (4.5) to calibrate the TDC. The calibrated

result, εc[k], which is the jitter corresponded to Dt[k], can be obtained as

εc[k] = f−1(Vi(kTs)) (4.6)

In other words, εc[k] is the jitter used in the JCF of Equation (4.1) to make the interpo-

lated magnitude of V̂i(t) at t = (k − εc[k])Ts, denoted as point B’, equal to the magnitude

at point A. Therefore, if the magnitude of the ideal sample is available, the TDC can

be calibrated as illustrated in Figure 4.5. The ideal sample can be obtained by a signal

reconstruction filter (SRF) described in Section 4.4.
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Figure 4.6: Signal reconstruction.

4.4 Signal Reconstruction Filter

Consider a band-limited analog input Vi(t) and the corresponding digital ADC output

Di[k]. As shown in Figure 4.6, we want to reconstruct the k-th sample, Di[k], from its

neighboring samples, which can be expressed asDi[k−n] andDi[k+n] for integer n ≥ 1.

The output of the reconstruction filter can be expressed as

Dr[k] =
−1
∑

n=−N

hr[n] ×Di[k − n] +
N
∑

n=1

hr[n] ×Di[k − n] (4.7)

Since the number of theDi[k−n] samples is equal to the number of theDi[k+n] samples,

from signal symmetric property, the hr[−n] filter coefficient must equal to the hr[n] filter

coefficient. Thus, Equation (4.7) can be rearranged as

Dr[k] =
N
∑

n=1

{

hr[n] ×
(

Di[k − n] +Di[k + n]
)

}

(4.8)

Figure 4.7 shows the block diagram of the resulting SRF with 2N + 1 taps.

Neglecting the clock jitter ε[k], the output of the ADC can be expressed as

Di[k] =
1

2π

∫+ωB

−ωB
V (jω)ejω(kTs)dω (4.9)

where ωB is the bandwidth of the input signal Vi(t) and V (jω) is the Fourier transform of

Vi(t). Combining Equation (4.8) and Equation (4.9) yields
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Figure 4.8: An ideal low-pass filter.

Dr[k] =
N
∑

n=1

{

1
2π

∫+ωB

−ωB
V (jω)ejωkTs [2hr[n] cos(nωTs)] dω

}

=
1

2π

∫+ωB

−ωB
V (jω)ejωkTs

N
∑

n=1

[2hr[n] cos(nωTs)] dω

(4.10)

For a valid reconstruction filter, the Dr[k] of Equation (4.10) must be equal to the

Di[k] of Equation (4.9). Thus, within the frequency band of interest, the hr[n] coefficients

must satisfy

N
∑

n=1

[hr[n] cos(nΩ)] =
1
2

(4.11)

where Ω = ωTs.

To find a solution for the hr[n] coefficients, consider an ideal low-pass filter X(Ω) as

shown in Figure 4.8. For |Ω| ≤ ΩB, X(Ω) = K; otherwise, X(Ω) = 0. The Fourier

series representation of this filter is

X(Ω) =
K ×ΩB

π
+

∞
∑

n=1

[

2K × sin(nΩB)
nπ

cos(nΩ)
]

(4.12)

Thus, for |Ω| ≤ ΩB,

∞
∑

n=1

[

2K × sin(nΩB)
nπ

cos(nΩ)
]

= K −
K ×ΩB

π
=
K(π −ΩB)

π
(4.13)
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Comparing Equation (4.11) with Equation (4.13) for N approaching infinity, K and

hr[n]can be found to be

K =
π

2(π −ΩB)
(4.14)

hr[n] =
2K × sin(nΩB)

nπ
(4.15)

Substitute Equation (4.14) into Equation (4.15) yields

hr[n] =
sin(nΩB)
n(π −ΩB)

(4.16)

For example, if the bandwidth of Vi(t) is ωB, and ΩB = ωBTs = (4/5)π, we can

choose

hr[n] =
5 sin 4nπ

5

nπ
(4.17)

As an example, consider a sine wave input

Vi(t) = Ai × sin(ωit + φi) (4.18)

and the corresponding digital output

Di[k] = Ai sin[Ωi(k + ε[k]) + φi] (4.19)

where Ωi = ωiTs and ε[k] is the k-th sampling jitter normalized to Ts. For the reconstruc-

tion filter of Equation (4.8) with a finite value ofN and the coefficients of Equation (4.17),

the output of the SRF is

Dr[k] ≈

[

N
∑

n=1

10
π

cos(nΩi) sin 4nπ
5

n

]

× Ai sin(kΩi + φi)

+
5AiΩi

π

{

N
∑

n=1

cos[Ωi(k + n) + φi] sin 4nπ
5

n
ε[k + n]

}

+
5AiΩi

π

{

N
∑

n=1

cos[Ωi(k − n) + φi] sin 4nπ
5

n
ε[k − n]

}

(4.20)
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Figure 4.9: Block diagram of jitter calibration processor, JCP1.

AsN increases, it can be shown that the first term on the right-hand side approximates

Ai sin(kΩi + φi), which is the exact value of Vi(t) sampled at t = kTs. The last two terms

in Equation (4.20) are errors caused by the clock jitters when sampling Di[k − n] and

Di[k+n]. Note thatDr[k] is independent to ε[k] and will be used in the TDC background

calibrations described in Section 4.5 and in Chapter 5.

The quantization error and the thermal noise when samplingDi[k−n] andDi[k+n] are

not considered in Equation (4.20). These errors can be added to the equation easily with

tedious calculation. These errors affect the accuracy of the reconstructed result Dr[k].

However, as will be discussed in Section 4.5, these errors have no effect on the accuracy

of the TDC calibration.

4.5 Jitter Calibration Processor

The JDC in Figure 4.1 consists of a stochastic TDC and a jitter calibration processor JCP1.

The TDC measures the timing difference between CLKe and CLKi, and outputs a digital

code that corresponds to this timing difference. The TDC can also be used as the phase

detector of a digital delay-locked loop that generates the DCTL signal [48]. The JCP1

translates the output of the TDC, Dt[k], into the corresponding jitter estimation, ε̂[k].

The JCP1 also performs self-calibration to ensure an accurate ε̂[k].

Figure 4.9 shows the JCP1 block diagram. It contains a jitter mapping table (JMT).

The JMT receivesDt[k] = m as an address, and outputs the content stored in that address.
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The content T (m) is the corresponding jitter estimation, ε̂[k]. Every address m has its

own content T (m). Note that 0 ≤ m ≤ L, where L is the number of TCMPs in the

TDC. The content T (m) is acquired from a jitter estimator (JE). The JE extracts the jitter

information ε[k] from Di[k] and its neighboring samples, which are digital outputs from

the ADC. The JE includes a JCF employing the structure of Figure 4.2.

This JCF generates the Du[k] signal as defined in Equation (4.23). Also included in

the JE is a signal reconstruction filter (SRF) that takes 2N samples,Di[k−n] andDi[k+n]

where 1 ≤ n ≤ N , and applies Equation (4.8) to reconstruct the Vi(kTs) sample, denoted

as Dr[k]. The JE makes a new estimation of the jitter ε[k] based on the outputs from both

JCF and SRF. Its output, εc[k], updates the T (m) by

T ′(m) = (1 − a) × T (m) + a × εc[k] (4.21)

where a < 1 is a constant. The above equation is a low-pass filter with a single pole at

zp = 1− a. Its function is to remove the high-frequency components in εc[k] so that T (m)

can approximate the dc value of εc[k].

The JE calculates its output εc[k] based on the criterion described as follows. If a

JCF employs this εc[k] for jitter compensation, its output Dc[k] should be equal to Dr[k]

which is the output of the SRF. Recall that the output of the JCF can be expressed as

Dc[k] ≈ Di[k] + ε̂[k] ×
Du[k]
εu

(4.22)

where

Du[k] =
k−1
∑

n=k−M

{

Di[n] × hs[k − n]
}

+
k+M
∑

n=k+1

{

Di[n] × hs[k − n]
}

(4.23)

with

hs[n] = sinc(n − εu) (4.24)

Since εc[k] is the jitter used in the JCF to make the interpolated signal of V̂i(t) at

t = (k − εc[k])Ts equal to the reconstructed signal Dr[k], from Equation (4.22) and

letting Dc[k] = Dr[k], εc[k] is calculated as
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εc[k] =
Dr[k] −Di[k]

Du[k]
× εu (4.25)

or

εc[k]
εu

=
Dr[k] −Di[k]

Du[k]
(4.26)

As mentioned in Chapter 2.4, if the JMT collects the result of Equation (4.26) rather than

Equation (4.25), the results of calibration can be stored in the form of divided by εu so

that the division in Figure 4.2 is not needed.

Consider a sine wave input where Vi(t) and Di[k] are expressed as Equation (4.18)

and Equation (4.19) respectively. The filter coefficients for the SRF are the hr[n] of Equa-

tion (4.17). By equating Equation (2.22) and Equation (4.20), and letting ε̂[k] = εc[k],

we have

εc[k] ≈ −
Ωi

2Fc(M,Ωi)
× ε[k]

+

[

N
∑

n=1

(

10
π

cos(nΩi) sin 4nπ
5

n

)

− 1

]

×
tan(kΩi + φ0)

2Fc(M,Ωi)

(4.27)

Contributions by the last two terms in Equation (4.20) are not shown in the above equa-

tion. They are removed by the low-pass filter of Equation (4.21). If he quantization error

and the thermal noise when sampling Di[k − n] and Di[k + n] are also considered in the

SRF, these error can also be filtered out by the low-pass filter.

For each m, the T (m) is updated only when the TDC has its output Dt[k] = m. Every

time when Dt[k] = m, the TDC detects a similar ε[k] jitter, denoted as ε(m). From

Equation (4.27), we have

T (m) ≈ −
Ωi

2Fc(M,Ωi)
× ε(m) (4.28)

The second term on the right-hand side of Equation (4.27) does not appear in Equa-

tion (4.28), since it is removed by the low-pass filter of Equation (4.21).

Figure 4.10 shows the ratio of T (m)/ε(m) calculated from Equation (4.28). Note that

Ωi = ωiTs = 2πfi/fs. The ratio represents the JDC conversion gain. Different M yields
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Figure 4.11: Conversion gain of the JDC using JCP1 for M=7, M=8 and M=31.

different conversion gain characteristic, where 2M + 1 is the number of taps for the JCF

shown in Figure 4.9. Figure 4.11 shows the ratio of T (m)/ε(m) for M=7, M = 8 and

M = 31. If M → ∞, the conversion gain approaches 1 for all input frequencies up to

fi = 0.4fs, which is determined by the hr[n] coefficients of the SRF. The conversion gain

is less accurate at low fi frequencies. An odd M is preferred if Vi(t) is a narrow-band

low-fi signal. If an even M value is selected, the resulting |T (m)| can be excessively

large under the same input condition.

Although a largerM for the JCF results in a better JDC conversion gain characteristic,

a large M is not necessary if the JCF in Figure 4.9 is identical to the JCF in Figure 4.1.

If Vi(t) is wide-band and has many different frequency components, the averaged JDC

conversion gain approximates 1 even for small M . To illustrate a narrow-band input

condition, let Vi(t) = Ai sin(ωit + φi) as in Equation (4.18). For jitter compensation, the

Dc[k] signal is calculated as Equation (2.22) and is rewritten here
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Figure 4.12: Cyclic multiply-and-accumulate architecture to realize the SRF.

Dc[k] ≈ Di[k] + ε̂[k] × Fc(M,Ωi) × 2Ai cos(kΩi + φi) (4.29)

and

Di[k] = Vi
((

k + ε[k]
)

× Ts
)

≈ Vi(kTs) + ε[k] ×Ωi × Ai cos(kΩi + φi) (4.30)

where ε[k] is the k-th jitter normalized to clock period Ts and ε̂[k] is the jitter measured

by the JDC. Substitute Equation (4.30) into Equation (4.29) yields

Dc[k] ≈ Vi(kTs) +
{

ε[k] ×Ωi + ε̂[k] × 2Fc(M,Ωi)
}

× Ai cos(kΩi + φi) (4.31)

From Equation (4.28), if an ideal low-pass filter is used to filter out the noise in Equa-

tion (4.27), the measured jitter ε̂[k] after the TDC background calibration is

ε̂[k] = −
Ωi

2Fc(M,Ωi)
× ε[k] (4.32)

Substitute Equation (4.32) into Equation (4.31) yields Dc[k] ≈ Vi(kTs). Thus, the

JDC conversion gain error is automatically compensated. It has little effect on the SNR

of the Dc[k] signal.

For an accurate signal reconstruction, the SRF requires a very large N . It is not prac-

tical to implement the SRF hardware with 2N multipliers. We propose using the cyclic

multiply-and-accumulate (MAC) architecture to realize the SRF as shown in Figure 4.12.
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Figure 4.13: Calibration for different TDC output codes, Dt[k].

The MAC architecture requires only one multiplier and one accumulator. As a result,

the SRF can generate only one Dr[k] signal every 2N + 1 clock cycles. Therefore, the

proposed jitter estimator generates one valid εc[k] output every 2N + 1 clock cycles as

shown in Figure 4.13. Note that for each m, the T (m) is updated only when the TDC has

its output Dt[k] = m.

For the jitter compensation configuration of Figure 4.1, the jitter measurement error of

the JDC, defined as εe[k] in Equation (2.11), is mainly caused by the quantization noise

εq[k] of its TDC. We can assume εe[k] = εq[k] and εe,rms = εq,rms. The JDC’s εe,rms
requirement can be estimated by using Equation (2.5) and Equation (2.24). If M is large,

it can be found by using Equation (2.25). Since εe,rms = εq,rms, we also obtain the εq,rms
requirement for the TDC, which dictates the TDC’s resolution.

4.6 A 16-bit 80MS/s ADC Design Example

The ADC system of Figure 4.1 is simulated using a C program. As in Section 2.7, the

ADC has 16-bit resolution and operates at 80 MS/s sampling rate. The rms of the clock
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Figure 4.14: SNR of the ADC system of Figure 4.1 at various input frequencies.

jitter ε[k] is εrms = 3 × 10−4, i.e., ∆trms = εrmTs = 3.75 ps. To make simulation results

agree with the theoretical analyses more closely, the TCMPs in the TDC are assumed

to contain uniformly-distributed tos so that the TDC has a uniform quantization step of

size ∆ts = 1.25 ps. Similar to a ideal ADC, the resulting rms of quantization noise is

εq,rms = (1/
√

12) × 10−4. In practice, 72 TCMPs are required in the TDC to achieve the

same εq,rms if the TCMP’s tos has the normal distribution G(tos) of Equation (3.8) with

a standard deviation σ = 6.36 ps. For the JCF, M = 7. For the SRF, N = 210 and

ΩB = (4/5)π. For the low-pass filter of Equation (4.21), a = 2−13. In Figure 4.14, the

circles are the simulation results. They are the SNRs of the Dc[k] signal under various fi
frequencies. From Equation (2.25) with εe,rms replaced by εq,rms, the theoretical SNR with

ideal JCF compensation is shown as the dash line. From Equation (2.10), the theoretical

SNR for the ADC without jitter compensation is shown as the solid line. The calibration

scheme of Figure 4.1 improves the SNR by about 20 dB.
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Figure 4.15: Jitter compensation experiment setup.

4.7 Circuit Implementations

Figure 4.15 shows the setup for the jitter compensation experiment. Assume that the

external clock CLKe is clean. Its rising edges are at kTs, where k is an integer and Ts is

the period of CLKe. A variable-delay line (VDL) receives the clock CLKe and delivers

the internal clock CLKi to an ADC. The VDL introduces jitter to the clock CLKi. Thus,

the rising edges of the CLKi are at (k + ε[k])Ts, where ε[k] is a real-valued random

variable, representing the jitter in CLKi. Employing the clock CLKi as a sampling time

reference, the ADC samples and digitizes the analog input Vi(t) and generates the digital

stream Di[k]. The ADC output Di[k] contains a sampling error due to the jitter ε[k]. We

use a TDC and a jitter calibration processor to generate a jitter estimate ε̂[k] for every

k. A jitter compensation filter then employs ε̂[k] to correct the sampling error in Di[k].

The resulting Dc[k] is a corrected ADC digital output with improved SNR. The TDC also

functions as the phase detector of a DLL. The DLL adjusts the VDL delay to align the

CLKi phase with the CLKe phase. The DLL is used to reduce the required input range for

the TDC. We will detail the circuit architectures in this section.
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Figure 4.16: Stochastic TDC block diagram.

4.7.1 Stochastic Time-to-Digital Converter

Figure 4.16 shows the stochastic TDC block diagram [28, 48]. The TDC is a collection of

127 timing comparators (TCMP). Figure 4.17 shows the TCMP schematic. The TCMP

is essentially an asynchronous latch. The fully differential configuration makes the circuit

less sensitive to common-mode noise. When both CLKe and CLKi are low, the TCMP is

reset, and both of its outputs, Vo,p and Vo,n, are charged to VDD. If the rising edge of the

CLKe arrives before the rising edge of the CLKi, the TCMP output, Vo,p −Vo,n, is a digital

1. If the rising edge of the CLKe arrives after the rising edge of the CLKi, the TCMP

output is a digital 0. Thus, the TCMP compares the timing difference between the input

clocks CLKe and CLKi.

The TCMP exhibits an input offset tos due to device mismatches, i.e., its output be-

comes 1 only if CLKe leads CLKi by an amount greater than tos. The offset tos is a

random variable with zero mean and standard deviation of σ. The TDC output m = Dt[k]

is a summation of all TCMP outputs. Thus, the TDC transfer function is an integration of

the probability density function (pdf) of the random variable tos.

As shown in Figure 3.15, in order to achieve a given resolution with minimum TCMPs

in a TDC, σ = 3 × ∆trms can be chosen. Thus, if the rms jitter of the clock is 3.75 ps,

the optimal σ of the TCMP is 11.25 ps. From Monte Carlo simulations, the tos standard

deviation is 11 ps for the TCMP realized in 65 nm CMOS technology.
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Figure 4.17: Timing comparator (TCMP) schematic.

In our design, the TCMPs are divided into 3 groups. Each group has a different tos
mean so that the overall TDC input range is increased to reserve additional margin. There

are 63 normal TCMPs in group 1 with a tos mean of 0 ps. Both group 2 and group 3

have 32 TCMPs, their tos mean are +14.5 ps and −14.5 ps respectively. The tos mean is

introduced by changing the W/L ratios of M2 and M3. From Monte Carlo simulations,

the tos standard deviation for each group is 11 ps. Figure 4.18 shows the pdf of tos for each

group. The overall tos pdf is shown as the solid line. The dots are the tos data collected

from Monte Carlo circuit simulations.

4.7.2 Variable Delay Line

The VDL is a cascade of 9 differential delay cells. There are 8 identical delay cells

with coarse control and one delay cell with fine control. Figure 4.19 shows the delay

cell schematic. The shunt-capacitor scheme is used to digitally control the delay [53].

The shunt capacitors are MOS transistors with binary-weighted area. The capacitors are
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Figure 4.18: The probability density function (pdf) of TCMP tos.

connected to the 8-bit digital control signal (DCTL). The coarse and fine delay cells are

identical except the capacitors in the coarse delay cell are 4 times larger than the capacitors

in the fine delay cell. From simulations, the delay resolution for the coarse control is

34 ps, and the delay resolution for the fine control is 1 ps. The maximum delay of the

fine-controlled delay cell is 256 ps, which is large enough to cover the PVT variations.

The DLL control first adjusts the VDL coarse control, freezes its value, then constantly

adjusts the VDL fine control to minimize the timing difference between the clocks CLKe

and CLKi. Thus, the DLL can achieve wide locking range and low jitter performance at

the same time.

4.7.3 Delay-Locked Loop

In Figure 2.2, the TDC, VDL, and the DLL control form a DLL. The block diagram of the

DLL is shown in Figure 4.20. The DLL control is a simple digital integrator. Figure 4.21
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Figure 4.19: An 8-bit digitally-controlled delay cell.

shows the discrete-time jitter transfer model of this digital DLL [54], where KTDC is the

transfer gain of the TDC, KVDL is the transfer gain of the VDL, and KINT is the gain of

the digital integrator. The jitter of the CLKe clock is εi[k] and the jitter introduced by the

VDL is εd[k]. Then the jitter of the CLKi clock can be expressed as

ε(z) =
1 − z−1 +KDLLz

−2

1 − z−1 +KDLLz−3
εi(z) +

1 − z−1

1 − z−1 +KDLLz−3
εd(z) (4.33)

where KDLL = KTDCKINTKVDL is the DLL loop gain. The DLL loop is stable if KDLL ≤

0.618. The loop gain KDLL can be adjusted by changing KINT. In our experimental setup,

ε(z) is dominated by the VDL jitter εd(z).

For nonzero KDLL, the jitter amplification can never be eliminated [54]. The jitter rms

of the CLKi clock can be expressed as

σclki = Aclk × σclk + Adl × σdl (4.34)

where σclk and σdl are the jitter rms of the clock CLKe and the delay line respectively. The

Acke and Adl can be derived from the impulse response of (4.33). The Acke and Adl for

different Kt are plot in Figure 4.22. In this design we chose Kt = 0.14, the resulting Acke

and Adl are 1.01 and 1.05.
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Figure 4.21: Discrete-time model of the digital delay-locked loop.
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Figure 4.22: Jitter amplification of the DLL.

4.8 Experimental Results

Figure 4.23 shows the chip micrograph, which contains a TDC, a VDL, and a DLL con-

trol. The chip was fabricated using a 65 nm CMOS technology. The circuits occupied an

area smaller than 480 × 100 µm2. The chip area including pads is 1500 × 1000 µm2.

Supply voltage is 1.2 V. Operating at 80 MHz, each TCMP consumes 86 µW of power.

Total power consumption is 20 mW for the TDC and the VDL, and 60 mW for the output

drivers.

Figure 4.24 shows the measurement environment. The 80 MHz clock signal is gener-

ated by Agilent ESG-D3000A vector signal generator. The analog input signal is gener-

ated by Agilent E4438C ESG vector signal generator. The clock and the input signal are

both passing through a band-pass filter to ensure the clock and the input signal are both

clean. The clock signal is then delivered to the DLL. The output of the DLL is used as the
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Figure 4.24: Photo of the jitter correction setup with the ADC evaluation board.
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Figure 4.25: Measured TDC transfer function and INL.

sampling clock of the ADC. The TDC measures the timing difference between the input

clock and the output of the DLL. A logic analyser is used to collect the output of the TDC

and the output of the ADC. By using these data, the JCP and the JCF can be realized in

digital post processing.

Figure 4.25 shows the contents of the JMT after calibration. It also represents the

measured TDC transfer function. The data does not extend to the full range of Dt, i.e.,

from 0 to 127. During actual measurement, the jitter input to the TDC did not cover the

entire TDC input range. Thus, thoseDt codes outside the active range never appeared and

did not have the chance to get calibrated. Also shown in the figure is the TDC integral

nonlinearity (INL) plot. It displays the difference between the measured transfer function

against a best-fitted linear function. The LSB step size is 0.27 ps, which also represents

the TDC resolution. The INL of the TDC is +1.7/−1.6 LSB.

Figure 4.26 shows the measured ADC output power spectrum before and after the
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Figure 4.26: Measured ADC output power spectrum before and after the jitter correction.

jitter correction for a sine wave input of 20 MHz. The noise floor is decreased after jitter

correction. The skirt around the fundamental signal is contributed by the signal source.

Figure 4.27 shows the measured SNR performance of the ADC before and after jit-

ter correction. Two different cases are illustrated. In case 1, the power lines are well-

conditioned by adding bypass capacitors and KDLL = 0.14 is chosen for the DLL. The jit-

ter rms of the CLKi clock is σ = 1.2 ps as measured by the TDC. The jitter correction can

improve the ADC SNR from 71.2 dB to 77.3 dB for a 29 MHz sine wave input. In case 2,

the power lines are ill-conditioned by removing some bypass capacitors and KDLL = 0.56

is chosen for the DLL. The resulting jitter rms of the CLKi clock is σ = 4.5 ps as measured

by the TDC. The jitter correction can improve the ADC SNR from 60.8 dB to 74.4 dB for

a 29 MHz sine wave input.

Figure 4.28 shows the measured jitter of the CLKi clock when the VDD supply of the

VDL is modulated by a 1 MHz 20 mVpp sine wave. During this measurement, the DLL

control is disabled. The delay of the VDL is manually adjusted to align the CLKe and
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Figure 4.27: Measured ADC SNR versus input frequency.
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Figure 4.28: Measured sine wave jitter of the CLKi clock.

Figure 4.29: Measured ADC output power spectrum before and after the jitter correction
when the CLKi jitter is a sine wave.
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CLKi clocks. Figure 4.29 shows the resulting output power spectrum before and after the

jitter correction. The spurious tones caused by the sine wave jitter are 66.7 dBc. After

jitter correction, the spurious tones are suppressed below 101.6 dBc.

4.9 Summary

We have demonstrated that clock jitter can be accurately measured and the measured data

can be used to correct the ADC sampling errors in the digital domain. The accurate jitter

measurement is enabled by using a stochastic TDC. Realized in a 65 nm CMOS tech-

nology, the TDC achieves a resolution of 0.27 ps. For a stochastic TDC, its resolution

can be improved by adding more timing comparators. We have also demonstrated a dig-

ital background calibration technique that can calibrate the TDC without interrupting the

operations of both the TDC and the ADC.

The jitter measurement and correction system described in the thesis require a clean

external clock CLKe. However, it is possible to improve the ADC SNR even when a

clean external clock is not available. By adding a delay line of Ts delay, the cycle-to-

cycle jitter can be measured by the TDC [35]. The absolute jitter can be obtained by

integrating the cycle-to-cycle jitter. The TDC can also be calibrated in the cycle-to-cycle

jitter measurement setup. We will discuss the jitter compensation and TDC calibration

techniques when the external clock is the main jitter source in Chapter 5.



Chapter 5

Jitter Compensation with Jittering

External Clock

5.1 Introduction

A Nyquist-rate analog-to-digital converter (ADC) requires a clock to sample its continuous-

time analog input periodically. If the sampling clock exhibits jitter, sampling uncertainty

occurred and the ADC suffers from sampling error. The sampling error degrades the

signal-to-noise ratio (SNR) performance of the ADC. Low-jitter clocks, which are mostly

based on crystal oscillators, are inflexible and expensive.

Chapter 4 describes a jitter compensation configuration where the main source of the

jitter is the VCDL in the DLL. The application of this configuration is restricted since

we can simply use the clean external clock as the sampling clock. In this chapter, we

introduce another jitter compensation scheme in which the external clock is the main

jitter source. The system can correct the sampling errors caused by the external clock

jitter, thus allowing the use of cheaper clock source. In other words, the proposed jitter

compensation technique mitigates the input clock requirement.

87



88CHAPTER 5. JITTER COMPENSATION WITH JITTERING EXTERNAL CLOCK

Vi (t)

(k+  [k])T s

JCF

Dt
Ts

CLKd

iD
ADC

s(k+  [k−1])T

TDC JCP2

Dc

ε [k]

[k]

ε

CLK
Jitter−to−Digital Converter (JDC)

ε[k]

[k]

Delay

Figure 5.1: A jitter compensation scheme with jittering external clock.

5.2 Jitter Compensation with Jittering External Clock

The ADC system of Figure 4.1 assumes a clean external clock, which is used as a ref-

erence to measure the jitter caused by the internal clock buffer. Figure 5.1 shows an

alternative ADC system with the external clock exhibiting ε[k] jitter. The system can cor-

rect the sampling errors caused by the clock jitter ε[k], thus allowing the use of cheaper

clock source. However, jitter compensation for this scenario is more complex. Unlike

the system of Figure 4.1, there is no clean clock that the TDC can refer to for measuring

the absolute jitter. What can be measured is the relative jitter between two consecutive

sampling instants [35]. In Figure 5.1, the CLK clock dictates the time of k-th sampling

at (k + ε[k])Ts, where Ts is the nominal sampling interval and ε[k] is the absolute jitter

normalized to Ts. The CLKd clock is the CLK delayed by one Ts. The sampling time

provided by CLKd is denoted as (k + ε[k − 1])Ts. Figure 5.2 shows the relationship be-

tween the two clocks. Sampling instants are at the rising edges of the clocks. The TDC in

Figure 5.1 measures the time difference between the k-th edge of the CLK clock and the

(k − 1)-th edge of the CLKd clock. The measurement result is the cycle jitter defined as

τ[k] = ε[k] − ε[k − 1] (5.1)

The delay between the clock CLK and the clock CLKd should not introduce additional

jitter. It can be realized using a passive delay line. For the calibration scheme described

below, the accuracy of the realized delay is not crucial as long as it is a constant. If the
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Figure 5.2: Relations between the CLK and CLKd clocks.

realized delay is different from Ts, the difference becomes a constant timing shift between

the two input clocks of the TDC. This effect can be treated as a dc offset of the TDC. In

the proposed scheme, the realized delay is only required to be close to Ts so that the offset

is small enough to avoid overloading the TDC.

In Figure 5.1, a TDC converts the cycle jitter τ[k] into a Dt[k] sequence. An ADC

digitizes the analog input Vi(t) and generates the corresponding digital output Di[k]. A

jitter calibration processor, JCP2, generates the absolute jitter estimation ε̂[k]. A JCF then

uses this ε̂[k] to correct Di[k]. The corrected output is Dc[k]. Figure 5.3 shows the block

diagram of the proposed JCP2. A JMT receives Dt[k] = m from the TDC as an address,

and outputs the content stored in that address. The content T (m) is an estimation of the

cycle jitter defined in Equation (5.1), denoted as τ̂[k]. The absolute jitter, ε̂[k], is obtained

by lossy accumulation of the τ̂[k] sequence. The operation is expressed as

ε̂[k] = τ̂[k] + b × ε̂[k − 1] (5.2)

where b < 1 is a constant. The reason to use a lossy accumulator is that a dc component

may appear in the quantization noise of the TDC, which can overflow a lossless accumu-
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Figure 5.3: Block diagram of jitter calibration processor, JCP2.

lator.

To calibrate the content T (m) when Dt[k] = m, JCP2 includes two jitter estimators,

JE1 and JE2. Both are identical to the one shown in Figure 4.9. JE1 collects Di[k]

and its neighboring 2N samples to extract εc[k], which is an estimation of the absolute

jitter ε[k]. In addition, JE2 collects Di[k − 1] and its neighboring 2N samples to extract

εc[k − 1]. Two jitter estimators are required, since neither estimator can calculate both

εc[k] and εc[k − 1] consecutively. Each estimator can generate only one valid output for

every 2N + 1 samples. Similar to Equation (5.1), we define τc[k] as

τc[k] = εc[k] − εc[k − 1] (5.3)

In Figure 5.3, the content T (m) is updated by applying the low-pass-filter function of

Equation (4.21) on τc[k] so that T (m) can approximate the mean value of τc[k]. Note that

T (m) only records the estimation of the cycle jitter τ[k] whenDt[k] = m. This cycle jitter

is denoted as τ(m). The TDC’s dc offset may affect the value of m, but has no effect on

the accuracy of T (m).

Combining Equation (5.3) and Equation (4.27), neglecting the high-frequency com-

ponents that can be removed by the low-pass filter of Equation (4.21), τc[k] can be ap-
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Figure 5.4: Signal reconstruction in JE1 and JE2.

proximated by

τc[k] ≈ −
Ωi

2Fc(M,Ωi)
× τ[k]

−
5Ωi cosΩi

2πFc(M,Ωi)
sin
(

4π
5

)

× τ[k]

+

{[

N
∑

n=1

10
π

cos(nΩi) × sin 4nπ
5

n

]

− 1

}

×
tan(kΩi + φi) − tan [(k − 1)Ωi + φi]

2Fc(M,Ωi)

(5.4)

The first term on the right-hand side of Equation (5.4) is the desired jitter estimation,

which approaches τ[k] for large M . The third term on the right-hand side has a non-zero

mean. However, it is significant only when Ωi is close to ΩB = (4/5)π or ΩB = 0.

The second term on the right-hand side of Equation (5.4) demands special attention.

It originates from the fact that, for any specific m, the sampling interval between the
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Figure 5.5: Conversion gain of the JDC using JCP2.
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reconstructed Dr[k] in JE1 and the reconstructed Dr[k − 1] in JE2 is always Ts + τ(m),

as illustrated in Figure 5.4. To solve this constant τ(m) issue, the Di[k] sample used in

the SRF of JE2 is replaced by an interpolated D′i[k], which has its sampling time moved

backward by τ(m). The D′i[k] can be calculated by using

D′i[k] = Di[k] +
T (m)
εu
×Du[k] (5.5)

whereDu[k] and εu come from the JCF shown in Figure 5.1. When the calibration process

converges, the resulting T (m) can be expressed as

T (m) =
−πΩi − 5Ωi cosΩi × sin( 4π

5 )

2πFc(M,Ωi) − 5Ωi cosΩi × sin( 4π
5 )
× τ(m) (5.6)

Figure 5.5 shows the ratio of T (m)/τ(m) of Equation (5.6). For M → ∞, the conversion

gain approaches 1 for all input frequencies up to fi = 0.4fs.

In Figure 5.3, the final absolute jitter estimate, ε̂[k], is obtained by the lossy accu-

mulation of τ̂[k], as expressed in Equation (5.2). Assuming T (m) = τ(m), from (2.11),

(5.1), and (5.2), the RMS of the jitter estimation error can be found as

ε2
e,rms =

1 − b
1 + b

× ε2
rms +

1
1 − b2

× ε2
q,rms (5.7)

For an accurate estimation of the jitter ε[k], it is necessary to choose the b coefficient close

to 1. However, as b approaching 1, the accumulation of the low-frequency components in

εq can become the major source of εe[k]. For a given εrms and εq,rms, the optimal value of

b for a minimum εe,rms is

b =
2ε2

rms + ε
2
q,rms −

√

ε4
q,rms + 4ε2

rmsε
2
q,rms

2ε2
rms

(5.8)

Figure 5.6 shows the simulated ADC output spectrum with jitter compensation for

different value of b. The frequency of the input signal is fi/fs = 0.249. The nor-

malized input jitter rms is εe,rms = 3 × 10−4. The quantization error of the JDC is

εq,rms = (0.1/
√

12) × 10−4. Before the jitter compensation, the SNR of the ADC is

66.86 dB. For an optimized design of jitter compensation, b = 0.99 can be chosen ac-

cording to Equation (5.8), and the SNR improves to 83.62 dB after jitter compensation.
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As described above, the lossy accumulator is adopted to prevent the low-frequency

components in εq overflowing the accumulator. However, the lossy accumulator also fil-

tered out the low-frequency components in the clock jitter dt[k], which results in the skirt

around the signal. For b < 0.99, the lossy accumulator ignored more low-frequency com-

ponents in εq when calculating the absolute jitter from cycle-to-cycle jitter using Equa-

tion (5.2). This phenomenon leads to a flatter but wider skirt around the signal on the

ADC output power spectrum. As shown in Figure 5.6, the SNR becomes 81.38 dB for

b = 0.95.

For b > 0.99, there are more low-frequency components in εq been integrated in the

accumulator. Thus, for b = 0.9999, the skirt around the signal is appeared above the

original noise floor, which degrades the SNR to 71.23 dB. Note that although different

value of b results in different SNR improvement, the noise floor far from the signal is the

same for each case as shown in Figure 5.6. It is results form that the lossy accumulator

acts like a low-pass filter, thus it has little effect on the high-frequency components in εq.

5.3 A 16-bit 80MS/s ADC Design Example

The ADC system of Figure 5.1 is simulated using a C program. System and design pa-

rameters are identical to the ADC described in Section 4.6. Since the RMS of jitter ε[k] is

εrms = 3 × 10−4, and the RMS of the TDC quantization noise is εq,rms = (1/
√

12) × 10−4,

an optimal b = 0.9 is chosen for the lossy accumulation of τ̂[k]. The circle symbols in

Figure 5.7 are the simulation results. They are the SNRs of theDc[k] signal under various

fi frequencies. The proposed jitter compensation can improve the SNR by about 10 dB.

The theoretical SNR by assuming an ideal JCF for jitter compensation is shown as the

dash line. It is calculated by Equation (2.25) with εe,rms of Equation (5.7).

The SNR can be improved by increasing the resolution of the TDC. Consider a TDC

with a uniform quantization step of size reduced to∆ts = 0.25 ps. Its RMS of quantization

noise then becomes εq,rms = (0.25/
√

12) × 10−4. The corresponding optimal value for b

is 0.97. The simulation results are shown as the cross symbols in Figure 5.7. The jitter

compensation can improve the SNR by about 16 dB. However, to achieve an equivalent

RMS of quantization noise εq,rms = (0.25/
√

12) × 10−4, the TDC must contain L = 236
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Figure 5.7: Simulated SNRs of the ADC system of Figure 5.1.

TCMPs, if the TCMPs have a tos with standard deviation σ = 6.36 ps.

5.4 Circuit Implementations

Figure 5.8 shows the experimental setup for the jitter compensation. The rising edges of

the sampling clock CLK are at (k + ε[k])Ts, where k is the sampling index, Ts is the

period of CLK and ε[k] is the k-th sampling jitter normalized to Ts. A variable-delay line

(VDL) in a delay-locked loop (DLL) provides a delay equal to Ts. The rising edges of

the CLKd signal are at (k + ε[k − 1] + εd[k])Ts, where εd[k] is the k-th jitter induced by

the VDL. The TDC measures the relative jitter τ[k] between CLK and CLKd signal, and

τ[k] = ε[k]−ε[k−1]−εd[k]. Assume that εd[k] is small enough, the cycle-to-cycle jitter

is measured [35]. The absolute jitter can be obtained by integrating the cycle-to-cycle

jitter. Note that εd[k] can be considered as part of the JDC measurement error.
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Figure 5.8: Jitter compensation experiment setup.

Using the clock CLK as a sampling time reference, the ADC samples and digitizes the

analog input Vi(t) and generates the digital data Di[k]. The ADC output Di[k] contains

a sampling error due to the jitter ε[k]. We use a TDC and a jitter calibration processor

(JCP) to generate a jitter estimate ε̂[k] for every k. A jitter compensation filter (JCF) then

employs ε̂[k] to correct the sampling error in Di[k]. The resulting Dc[k] is a corrected

ADC digital output with improved SNR. The TDC also functions as the phase detector of

a DLL. The DLL adjusts the VDL delay so that the total delay is equal to Ts.

5.5 Experiment Results

Figure 5.9 shows the chip testing circuit board together with the ADC evaluation board

[55]. To decrease the jitter induced by the DLL, a passive cable is used to provide a 6.8 ns

delay. Figure 5.10 shows the contents of the JMT after calibration. It also represents the

measured TDC transfer function. Figure 5.11 shows the measured ADC output power

spectrum before and after the jitter correction for a sine wave input of 25 MHz. The

80 MHz clock signal is generated by Agilent 33250A arbitrary waveform generator. The
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Figure 5.9: Photo of the jitter correction setup with the ADC evaluation board.
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Figure 5.10: Measured TDC transfer function.

jitter rms of the clock is 8.2 ps. The noise floor is decreased after jitter correction. The skirt

around the fundamental signal stems from the lossy accumulation when calculating the

absolute jitter from cycle-to-cycle jitter. Low frequency components of the jitter will be

filtered out by the lossy accumulation, which degrades the jitter correction performance.

Figure 5.12 shows the SNR performance of the ADC before and after jitter correction.

The circular symbols are measurement results. The jitter correction improves the ADC

SNR from 56.45 dB to 62.55 dB for a 31 MHz sine wave input. After the jitter correction,

the equivalent sampling jitter rms decreased to about 4 ps. The VDL introduces additional

σd = εd × Ts=1.2 ps rms jitter.

The theoretical ADC SNR after jitter compensation can be expressed as

SNR =
1

PT/2 + ω2
i × (σ2

q + σ2
d)

(5.9)

where ωi is the ADC input frequency, σq is the quantization noise power of the TDC, and

PT is the total noise power in the ADC except the sampling error power. PT = 5 × 10−9

is chosen so that the ideal SNR is equal to 80 dB, The results of the calculation are the

solid lines shown in Figure 5.12. In this experiment, the VDL jitter σd is much larger than

the TDC quantization errors. If σd is reduced to a smaller value of 0.3 ps, it is possible

to achieve 12 dB SNR improvement. If σd = 0, it is possible to achieve 17 dB SNR

improvement.
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Figure 5.11: Measured ADC output power spectrum before and after the jitter correction.
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Figure 5.12: Measured ADC SNR versus input frequency.
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5.6 Implementation Issues

Consider a 16-bit 80 MS/s ADC. To relax the clock jitter requirement, it employs the jitter

compensation system shown in Figure 5.1. For this system, a passive delay line can be

used to provide the Ts = 12.5 ns delay to generate the CLKd clock. Functional blocks,

such as TDC, JCP2, and JCF, can be realized in a standard CMOS technology. They can

also be integrated with the ADC on the same chip.

In order to estimate the overhead of the jitter compensation circuits, assume that the

jitter compensation system is realized in a 90 nm CMOS technology. The TDC consists

of L = 127 TCMPs. The TCMP shown in Figure 3.8 consumes 26.7 µW of power

at 80 MHz clock rate. Thus, the TDC consumes a total power of about 3.39 mW. Its

chip area is estimated to be 1, 000 µm2. Note that the resolution and input range of the

TDC depend on the PVT variation of the TCMPs. Comprehensive characterization of the

fabrication technology is required for optimized design of the TDC.

The JCF is a digital FIR filter, as shown in Figure 2.8. If M=7, it includes 200 flip-

flops, 15 multipliers, and 14 adders. Although the Di[k] signal is 16-bit wide, 8-bit width

is sufficient when calculating the Du[k] signal. The hs[n] coefficients are 6-bit wide.

Synthesized by computer-aided-design (CAD) software, this JCF consumes 2.35 mW of

power and occupies an area of 17, 000 µm2.

The JCP2 is also a digital functional block. It contains a JMT with 128 entries. Each

entry is 23-bit wide. The JCP2 shown in Figure 5.3 includes two jitter estimators, JE1

and JE2, for generating εc[k] and εc[k − 1]. The two JCFs in JE1 and JE2 and the JCF in

Figure 5.1 can share the same hardware. Each jitter estimator contains a SRF. Although

the SRF is a FIR filter, to save power and area, it is realized using the MAC architecture.

Each SRF consists of a multiplier and an accumulator. The two SRFs share a ROM that

stores the filter coefficients hr[n]. The ROM has N = 210 entries, and each entry is 18-bit

wide. Due to the MAC operation, each SRF produces only one valid output every 2N + 1

clock cycles. Synthesized by CAD software, this JCP2 consumes 4.42 mW of power and

occupies an area of 185, 000 µm2. Note that the JMT occupies about 58% of the JCP2’s

total area. The area and power can be reduced by customized design of the JMT.

Realized in a 90 nm CMOS technology, this jitter compensation system consumes a
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total power of about 10 mW.

5.7 Summary

A 7-bit stochastic TDC is realized in a 65 nm CMOS technology. The cycle-to-cycle clock

jitter is measured by the TDC and the absolute jitter is obtained by integrating the cycle-

to-cycle jitter. The measured absolute jitter can be used to correct the ADC sampling

errors in the digital domain, thus mitigates the clock jitter requirement.

The proposed jitter compensation achieves an effective sampling jitter rms of 4 ps

when the rms jitter of the original input clock is 8.2 ps. The performance of the jitter

correction is limited by the jitter of the delay line. It can achieve an effective sampling

jitter rms smaller than 1 ps if no additional jitter is induced by the delay line.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

High-performance Nyquist-rate ADCs require low-jitter clocks for input sampling. In this

thesis, we have proposed digital signal processing techniques to relax the clock jitter re-

quirement. Enabling techniques are the stochastic TDC and the JCF. The TDC comprises

a large group of TCMPs and relies on the statistic variation of the TCMPs for time-to-

digital conversion. The TDC is sensitive to the PVT variations. It requires calibration

for accurate measurement. Our proposed calibration schemes are based on signal recon-

struction. They can be performed in the background without interrupting the normal ADC

operation.

All the signal processing described in this paper can be realized using digital circuitry.

The timing comparators in the TDC are simple latches and can be realized in any standard

CMOS technology. Thus, both the chip area and power consumption of the proposed

techniques are expected to be reduced as CMOS technologies advance.

Finally, a 7-bit 80-MS/s TDC is fabricated to demonstrate the feasibility of the pro-

posed technique. A 16-bit 80-MS/s ADC adopts the proposed jitter compensation tech-

nique can achieve 14 dB SNR improvement when a clean reference clock is available, or

7 dB SNR improvement with a jittering reference clock.

105
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6.2 Recommendations for Future Investigation

This section presents several suggestions for future investigations in jitter compensation

for an ADC.

• The background TDC calibration techniques proposed in this thesis need long cali-

bration time to converge. TDC calibration with fewer samples is necessary to make

this technique more feasible in industry application.

• The measured SNR performance of the implemented jitter compensation technique

in Chapter 4 is better than the performance of the jitter compensation technique in

Chapter 5. It stems from the jitter accumulation when calculating the absolute jitter

from cycle-to-cycle jitter, thus the jitter induced by the delay line is also accumu-

lated. Minimize the delay provided by the internal delay line can mitigate this jitter

accumulation effect, thus further improving the SNR performance.

• As mention above that the jitter compensation scheme with clean external clock can

achieve better SNR performance since there is no jitter accumulation phenomenon.

Therefore, this technique is especially suitable for time-interleaved ADCs with mul-

tiphase clock generator for several reasons.

– Time-interleaved ADC is used to multiply the sampling rate, increasing the

analog input bandwidth. As the input bandwidth increased, the jitter require-

ment is also increased.

– The multiphase clocks are usually generated by a PLL or a DLL. The use

of PLL or DLL will induce additional clock jitter inevitable even when the

reference clock is clean.

– If the reference clock is clean, the absolute jitter can be measured directly.

Jitter compensation technique in Chapter 4 can be used to obtain a better SNR

improvement. There is no jitter accumulation effect mentioned in Chapter 5 if

absolute jitter is measured.



Appendix A

In this appendix, we derive the equation

lim
M→∞

Fc(M,Ω) = −
Ω

2
(A.1)

where

Fc(M,Ω) =
M
∑

n=1

sin(nΩ)
(−1)n × n

(A.2)

Considering the Maclaurin Series expansion for − ln(l + x)

− ln(1 + x) = −x +
x2

2
−
x3

3
+
x4

4
+ . . .

= lim
M→∞

M
∑

n=1

xn

(−1)n × n

(A.3)

Comparing (A.2) and (A.3), we can find

lim
M→∞

M
∑

n=1

Fc(M,Ω) = =

{

M
∑

n=1

ejΩ

(−1)n × n
)

}

= −=
{

ln(1 + ejΩ)
}

(A.4)

Since

ln(1 + ejΩ) = ln(rejφ) = ln(r) + jφ (A.5)

with
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r = 2 + 2 cos(Ω)

φ = tan−1 sinΩ
1 + cosΩ

=
Ω

2

(A.6)

Therefore, (A.4) can be rewriten as

lim
M→∞

M
∑

n=1

Fc(M,Ω) = −φ = −
Ω

2
(A.7)
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