The Journal of Systems and Software 83 (2010) 1538-1552

Contents lists available at ScienceDirect

The Journal of Systems and Software

iy

journal homepage: www.elsevier.com/locate/jss

A distributed server architecture supporting dynamic resource provisioning
for BPM-oriented workflow management systems

Ching-Hong Tsai ?, Kuo-Chan Huang®*, Feng-Jian Wang?, Chun-Hao Chen?

2 Department of Computer Science, National Chiao-Tung University, No. 1001, Ta-Hsueh Road, Hsinchu, Taiwan
b Department of Computer and Information Science, National Taichung University, No. 140, Min-Shen Road, Taichung, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 6 March 2008

Received in revised form 15 April 2009
Accepted 3 April 2010

Available online 13 April 2010

Workflow management systems have been widely used in many business process management (BPM)
applications. There are also a lot of companies offering commercial software solutions for BPM. However,
most of them adopt a simple client/server architecture with one single centralized workflow-manage-
ment server only. As the number of incoming workflow requests increases, the single workflow-manage-
ment server might become the performance bottleneck, leading to unacceptable response time.
Development of parallel servers might be a possible solution. However, a parallel server architecture with
a fixed-number of servers cannot efficiently utilize computing resources under time-varying system
workloads. This paper presents a distributed workflow-management server architecture which adopts
dynamic resource provisioning mechanisms to deal with the probable performance bottleneck. We
implemented a prototype system of the proposed architecture based on a commercial workflow manage-
ment system, Agentflow. A series of experiments were conducted on the prototype system for perfor-
mance evaluation. The experimental results indicate that the proposed architecture can deliver
scalable performance and effectively maintain stable request response time under a wide range of

Keywords:

Workflow management system
Business process management
Dynamic resource provisioning

incoming workflow request workloads.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Workflow behavior appears in many different application do-
mains. Various aspects of workflow computing research have re-
ceived much attention in recent years. The work in (Yoo, 2009)
deals with scheduling workflows in real-time applications. Duan
et al. (2009) investigate the behavior and logical structure between
tasks in a workflow, from running logs, to develop a better sche-
dule for future running. Some researches developed methods for
analyzing resource conflicts and correctness of workflow specifica-
tions (Hsu and Wang, 2008; Zeng et al., 2008).

To fulfill the ever growing needs of business process manage-
ment (BPM) and automation, workflow management systems
(WfMS) have been broadly adopted by many enterprises and orga-
nizations to (1) assign the required human resources and artifacts
for executing each task, (2) control the business flows of tasks, and
(3) monitor the executions of tasks, effectively. Standards, such as
the Workflow Reference Model (Hollingsworth, 1995), WS-BPEL
(2007), XPDL (2008), BPAF (2009), and BPMN (2009), have been de-
fined by international organizations, e.g., WfMC (2009), OMG

* Corresponding author. Tel.: +886 4 22183282; fax: +886 4 22183270.
E-mail addresses: chtsai@cs.nctu.edu.tw (C.-H. Tsai), kchuang@mail.ntcu.edu.tw
(K.-C. Huang), fjwang@cs.nctu.edu.tw (F.-]. Wang).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.04.001

(2009), OASIS (2009), to facilitate the development of workflow
and BPM applications.

Workflow management systems targeted at business process
management (BPM) exhibit different features from those in the
workflow management systems for scientific and engineering
applications. Scientific workflow management systems, such as
in (Deelman et al., 2005; Hoffa et al., 2008; Prodan, 2007; Prodan
and Fahringer, 2008), usually deal with scheduling a set of inter-re-
lated tasks onto parallel or distributed computing resources, e.g.,
clusters (Buyya, 1999) or grids (Foster et al., 2003), where the rela-
tionships among the tasks can be represented as directed acyclic
graphs (DAG) (Gerasoulis and Yang, 1993). Recently, many systems
have been developed to support scientific workflows on grid plat-
forms, including GridAnt (Laszewski et al., 2004), Triana (Shields
and Taylor, 2004), XCAT (Krishnan et al., 2001), GridFlow (Cao
et al., 2003), Kepler (Altintas et al., 2004), Pegasus (Deelman
et al., 2005), ASKALON (Prodan, 2007), etc.

The tasks in scientific workflows usually require batch process-
ing and take long times. On the other hand, BPM-oriented work-
flows usually consist of interactive tasks requiring less CPU-
processing time, compared to those in scientific workflows,
although they can also be represented by the DAG model. The
interactive tasks in BPM-oriented workflows are involved with hu-
man interaction. Therefore, unlike tasks in scientific workflows, in

http://dx.doi.org/10.1016/j.jss.2010.04.001
mailto:chtsai@cs.nctu.edu.tw
mailto:kchuang@mail.ntcu.edu.tw
mailto:fjwang@cs.nctu.edu.tw
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552 1539

addition to server-side processing time the total processing time of
each task in BPM-oriented workflows also include thinking time or
computer-manipulation time taken at the client side. The client-
side thinking and computer-manipulation time is usually longer
than the required processing time at the server side. In this way,
the computational behavior in BPM-oriented workflows is more
similar to the behaviors in many web-based applications than in
scientific workflows.

Many researches tried to develop architectures or mechanisms
for building high-performance web servers and web application
servers (Wei and Xu, 2006; Chiang et al., 2008; Mendonga et al.,
2008; Ranjan and Knightly, 2008; Urgaonkar et al., 2008; Wang
et al., 2008; Mathur and Apte, 2009). Some of them specifically deal
with multi-tier web application servers (Urgaonkar et al., 2008;
Wang et al., 2008) or focus on QoS issues in web servers (Wei
and Xu, 2006). However, most web-based applications, e.g., web
servers providing static contents, can view different incoming re-
quests as independent ones. Even for the requests coming from
the same user, there are usually no prescribed relationships among
them. Therefore, the server has no prior knowledge regarding the
amount or arrival times of future incoming requests. The situation
is different in BPM-oriented workflow management systems. Once
a workflow is started, the server can expect how many task-execu-
tion requests will finally be generated in the future, although it has
no idea about the exact arrival time of each future request.

This paper presents a distributed server architecture for BPM-
oriented workflow management systems. Most existing BPM-ori-
ented workflow management systems work based on simple cli-
ent-server architecture with one single globally shared workflow
engine and other tools such as database system to support the
development and running of workflow applications. For example,
Agentflow, a well-known JAVA-based WfMS developed by our lab-
oratory and then Flowring Co. (Agentflow, 2008) in Taiwan, works
with this structure. Obviously, the response time under such archi-
tecture is greatly affected by the computing power of the single
centralized server. The increment of response time might not be
tolerable when there are too many requests sent to the server
within a short time period, i.e., the single centralized server be-
comes the performance bottleneck. Parallel server architecture
can be used to alleviate the performance bottleneck. However, a
static parallel architecture with a fixed-number of servers might
not be efficient in resource utilization because the number of users
and the requests generated by the users change from time to time
in a in a real world WfMS. To deal with the issue, the distributed
server architecture proposed in this paper provides scalable pro-
cessing power with dynamic resource provisioning mechanisms,
where the number of servers used is dynamically adapted to the
time-varying incoming request workload.

This paper focuses on the aspect of dynamic resource provi-
sioning in the proposed server architecture. A prototype system
was implemented on a set of desktop PC’s in our laboratory
for performance evaluation. However, the proposed server archi-
tecture can be implemented in other distributed computing plat-
forms, such as Clusters (Buyya, 1999) and Grids (Baru et al,,
1998; Foster et al., 2003; Foster, 2002; Roure et al., 2003; Glo-
bus, 2008). In addition to the dynamic resource provisioning
mechanisms discussed in this paper, implementations on differ-
ent kinds of platforms may have to deal with other platform-
dependent issues, such as communication costs, heterogeneity,
reliability, etc.

The remainder of this paper is organized as follows. Section 2
introduces the system architecture of Agentflow. Section 3 pre-
sents the scalable workflow computing platform and describes
several algorithms supporting the goal of dynamic resource provi-
sioning collaboratively. A series of experiments for evaluating the
performance of the proposed server architecture are presented in

Section 4. Section 5 makes concluding remarks and points out
some potential research works in the future.

2. A BPM-oriented workflow management system

This section introduces Agentflow (2008), a typical BPM-ori-
ented WfMS. The Agentflow system (Agentflow, 2008) is a JAVA-
based WfMS with centralized client-server architecture. There
are three main components in Agentflow:

e Process definition environment (PDE). This is a graphical editor
for modeling various views of a business, including process
view, artifact view and organization view. Different views are
modeled by separate tools in PDE, e.g., an organization designer
for constructing the organization view, an e-form designer for
designing the artifact view, and a process designer for modeling
process view.

Flow engine (also called PASE server). This is a workflow enact-

ment environment, which drives the flow of works and is also

responsible for process enacting, control, management, and
monitoring. The name ‘PASE’ stands for Process Aided Software

Engineering Environment, which comes from an earlier version

of workflow management system developed in our laboratory,

targeted at software process management applications.

e Agenda. This is a client-side tool. Users can use it to browse
their own task lists, do the tasks assigned to them, initiate pro-
cesses, and monitor the states of the flow.

e An overview of the structure and relationships among these
main components is shown in Fig. 1.

The database system inside Agentflow contains two reposito-
ries, process definition repository (PDR) and runtime repository. The
process definition repository stores process definitions and the
runtime repository keeps all instance data during workflow execu-
tion. Agentflow provides a JAVA-based application programming
interface, Workflow Common Interface (WFCI), which allows direct
interactions with the PASE server. For example, WebAgenda is a
web-based agenda which communicates with the PASE server
through the WFCIL.

3. Scalable workflow management system with dynamic
resource provisioning

This section extends Agentflow to a scalable workflow manage-
ment system with dynamic resource provisioning. The scalable

Process definition
repository and

runtime repository

| Object Broker |
/ T \

1

PDE 1 Flow
1 Engine
1

plugin Fzrm ' T
Somponents Designer I Agenda '_w
' users
1
Design phase 1 Runtime phase

.

Fig. 1. Agentflow system overview.

1540 C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

system produces an acceptable and stable response time for re-
quests under a wide range of request workloads. Here, we first
present the system architecture and then the strategies for achiev-
ing on-demand resource provisioning.

3.1. Distributed server architecture

This section presents the distributed server architecture which
equips Agentflow with dynamic resource provisioning capability.
The distributed server architecture consists of one front-end ser-
ver, called PASE broker, and several back-end servers running
Agentflow, which are called PASE resources. Clients interact with
the distributed workflow management system through the PASE
broker, which provides a JAVA-based interface, PASE broker com-
mon interface (PBCI). Clients need not know the underlying server
configurations such as the amount of PASE resources available and
the computing speed of constituent machines. Therefore, the entire
distributed workflow management system looks like a powerful
and scalable super-Agentflow system. The distributed server archi-
tecture is shown in Fig. 2 and its constituent components will be
elaborated in the following.

3.1.1. PASE resource

A PASE resource contains both hardware and software re-
sources. The hardware resources are typically computers like PCs,
notebooks, or workstations on which the software resources can
run. The software resources include PASE servers and databases
used to store runtime data and replicas of process definitions.
The PASE server and database of a PASE resource can run on the
same computer or on different machines. Each PASE resource is
managed by one PASE information server (PIS), and it can be used
by only one PASE broker at any instant.

3.1.2. Process definition repository and global runtime repository
Process definition repository (PDR) contains the business pro-
cess definitions designed in process definition editor (PDE). When
a PASE broker wants to add a new PASE resource, the PIS will rep-
licate the corresponding content of PDR into the database of the
PASE resource according to the incoming request. In each domain,
there might be more than one PDR, and each PDR can be accessed

by more than one PASE resource. Therefore, our approach allows
the administrator to be in charge of the registration of PDR’s into
PIS’s in addition. Each PDR itself can be a parallel or clustered data-
base system which allows it to be fault-tolerant and consistent.
Many modern database systems supporting the clustering feature
can be used to implement PDR. For example, MySQL uses the MyS-
QL Replication and MySQL cluster mechanisms to solve the issues
of availability and scalability (MySQL, 2009).

Global runtime repository (GRTR) contains the workflow in-
stances which are completely executed for future references. When
a PASE broker wants to remove a PASE resource, it will first move
the PASE resource’s runtime data into GRTR. There is only one
GRTR in the distributed server architecture, managed by the PASE
broker. Although there is only one GRTR, GRTR itself can be a par-
allel or clustered database system to avoid the possible bottleneck
issue in large systems. Like PDR, GRTR can be implemented by
many modern database systems supporting the clustering feature,
e.g., MySQL (2009). Such kind of database systems can be deployed
to build the GRTR for large-scale workflow management systems.

3.1.3. PASE information server

PASE information server (PIS) plays a role similar to the MCAT
in storage resource broker (Baru et al., 1998) or grid information
service (GIS) in globus tookit (Czajkowski et al., 2001), maintaining
necessary information about a domain, e.g., the information for all
the PASE resources belong to the domain. Furthermore, it is
responsible for replicating data from PDR into new PASE resources
and clearing the database of removed PASE resources. The follow-
ing tables describe the information maintained by PIS. The infor-
mation is required for a PASE broker to discover, access, monitor,
and manage PASE resources.

Table 1 illustrates the general information of a PASE resource.
The unique id is formed by concatenating the host ID and port
number (host:port). The state of a PASE resource can be ready, re-
served, running, or blocking. A PASE resource is ready when the
database is already created and the PASE server is initiated. The re-
served state indicates that the PASE resource is reserved by some
PASE broker, but not utilized by the PASE broker yet. The running
state indicates that the PASE broker is using the PASE resource to

PBCI

PASE Broker "\

PASE Information Server

(Domain A) ‘\

PASE Information Server
(Domain B)

Fig. 2. The distributed server architecture.

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

Table 1
PASE general information.

Schedule Description

PASE_ID The unique id of a PASE resource
PASE_Host The host of a PASE resource
PASE_Port The port of a PASE resource

The database name of a PASE Resource

The host running the database of a PASE resource
The port of the database of a PASE resource
The user’s name for database access

The user’s password for database access

The id of the PDR to which a PASE resource has
access

The state of a PASE resource

The upper limit on the load measured by the
number of instances

The lower limit on the load measured by the
number of instances

The upper limit on the arrival rate

The lower limit on the arrival rate

Database_Name
Database_Host
Database_Port
Database_User
Database_Password
PDR_Id

State
Load_Max_Limit

Load_Min_Limit

ArrivalRate_Max_Limi
ArrivalRate_Min_Limit

Table 2
Process definition repository general information.

Schedule Description

PDR_ID The unique id of a PDR
PDR_Name The database name of a PDR
PDR_Host The host of a PDR

PDR_Port The port of a PDR

PDR_User The user’s name for PDR access

PDR_Password The user’s password for PDR access

serve incoming requests. The blocking state indicates the failure of
a PASE resource.

Table 2 describes the general information and identification of a
PDR. Each PDR has a distinct id which starts with “PDR”. When an
administrator registers a new PDR into the system, the PIS will
generate this information according to the properties of the PDR.

3.1.4. PASE broker

A PASE broker coordinates PIS’s, PASE resources, PDR’s, and
GRTR. The architecture of a PASE broker is illustrated in Fig. 3.

PIS Manager connects to and manages all PIS’s. A PISC in Fig. 3 is
a connection from the PASE broker to a PIS. PIS Manager periodi-
cally retrieves and caches the information maintained in PIS’s. Ini-
tially, the administrator can select the PASE resources and the
PDR’s he/she wants to use, then PIS Manager sends replication re-
quest to all PIS’s for replicating process definitions into their PASE
resources. PDR Manager connects to and manages all PDR’s. A PDRC

PBCI
PASEDispatcher PerformanceMonitor
PIS PDR
WFCIPoolManager Manag | Manag GRTR
er er Manag
er

Fig. 3. The architecture of PASE broker.

1541

in Fig. 3 is a connection from the PASE broker to a PDR. All the cli-
ents’ requests of getting the process definition related data are
handled by PDR Manager. GRTR Manager backups the completed
workflow instances inside the PASE resource which is to be re-
moved by the PASE broker.

WEFCIPool Manager creates AbstractWFCI's (AW’s) and connects
them to the corresponding PASE resources with the JAVA RMI
mechanism. Each AW wraps a WFCI connection and records some
metadata about the connection, such as a list of processes and a list
of member records. In addition, AW is defined with three metrics
below to measure the workload for the reference of job dispatching.

WEFCIPool Manager manages three pools: running pool, suspend-
ing pool, and blocking pool, corresponding to AW’s of different
states. The running pool contains the AW’s providing services cur-
rently. The suspending pool contains the AW’s which would not
take any new process enactment requests but are still handling
some unfinished workflow instances already running on them.
The blocking pool contains the AW’s which are at some failure
states founded by the PASE broker.

Performance Monitor (PM) monitors the performance of the
overall system based on the one or more load metrics specified
by the administrator. These metrics include the number of in-
stances, the average request arrival rate, and the average request
response time. When the system is overloaded, Performance Mon-
itor will inform WFCIPool Manager to find out more usable PASE
resources from the PIS’s in use under the order defined in PIS Man-
ager, and create the connections to them. If there are no new PASE
resources found, WFCIPool Manager replies an alert to the admin-
istrator and a new PASE resource is added manually. Moreover,
when the system has been under-utilized in a (pre-)fixed time per-
iod, it also informs WFCIPoolManager to remove some AW's.

When a client sends a process enactment request (PER) to PASE-
Dispatcher, it will select an appropriate PASE resource to instanti-
ate the corresponding workflow definition according to a dynamic
request dispatching algorithm which will be described in detail la-
ter. For efficiency of data sharing, all the tasks in a workflow will be
allocated to the same PASE resource where the workflow is instan-
tiated. Therefore, clients can send their requests except PER’s di-
rectly to the specific PASE resources according to the global ID’s
of the tasks they want to manipulate. This arrangement can greatly
reduce the burden of PASEDispatcher.

The following describes how clients can determine the destina-
tion PASE resources of their task manipulation requests. When a
process is instantiated or a task is created on a PASE resource,
the PASE resource generates a local ID for the process instance or
the task. The local ID is unique within the PASE resource. However,
the tasks and process instances on different PASE resources might
have the same value for their local ID’s. Therefore, a global ID is re-
quired to provide the uniqueness within the entire system. The
global ID is also used for revealing the information of the PASE re-
source address. The global ID is formed by appending the corre-
sponding PASE resource address to the local ID. An example of
the mapping of local ID’s to global ID’s is shown in Table 3.

Each PASE resource performs necessary conversions between
local and global ID’s when it sends or receives process or task re-
lated information. Therefore, based on the global ID of the task to
be manipulated, a client can find and send out its request to the
PASE resource.

Table 3

Mapping between local and global ID’s.
Global ID PASE resource address Local ID
Tsk(140.113.210.11:20000)000000000001 140:113.210.11:20000 Tsk000000000001
Proc(140.113.210.21:20000)000012345678 140.113.210.21:20000 Proc000012345678

1542 C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

3.2. On-demand resource provisioning strategies

This section discusses the resource provisioning strategies used
in the distributed server architecture. There are two kinds of de-
mands, where each has its own corresponding strategies.

3.2.1. User request processing

The distributed server architecture alleviates the performance
bottleneck of the centralized server with its scalable computing
capabilities, and thus produces shorter response time for user re-
quests. Among various kinds of requests, task manipulation re-
quests (TMRs) and process enactment requests (PERs) can benefit
from this distributed server architecture. On the other hand, the
data collection requests (DCRs) would need a little bit longer time
than those in the original centralized architecture. How each kind
of requests is processed is illustrated in the following:

e PER is used to create a workflow instance according to a prede-
fined process definition. When a PER occurs, PASEDispatcher
selects a PASE resource for processing the request according
to the following dynamic request dispatching algorithm. For
each PASE resource in the running pool, PASEDispatcher com-
putes the additional workload that it can still accommodate
by subtracting its current workload from its most sustainable
workload specified by the administrator. The workload can be
measured by three different modes: the number of instances,
the average request arrival rate, and the average request
response time, as described in the previous section. The maxi-
mum workload that a PASE resource can sustain is also repre-
sented in all the three modes. The PASE resource which can
sustain the largest additional workload is chosen to handle
the incoming PER. For example, assume there are five PASE
resources in the system and at a moment the workloads on
them are 15, 18, 9, 12, and 16, respectively, measured by the
number of running workflow instances. If the maximum work-
load allowed on each PASE resource is set to 20 by the admin-
istrator, the additional workloads that the five PASE resources
can accept are then 5, 2, 11, 8, and 4, respectively. Therefore,
a new PER at that moment will be dispatched to the third PASE
resource whose workload is 9. The detailed algorithm works as
follows:

Algorithm: Dynamic request dispatching for PER
Input:
The user id U
The process id P
The load metric used M
Output:
A candidate PASE resource R
PER_RP (U,P,M):
01 Begin
02 /| Get the list of AbstractWFCI's which are running
03 List wfciList=wfciPoolManager.getRunnings();
04 AbstractWFCI t = new AbstractWFCI();
05 set t = the first element in wfciList;
06 For each AbstractWFCI a € wfciList do

07 /| Compare current workload of each PASE resource
08 If (a.getMaxLoadByMode(M)-a.getLoadByMode(M))>
09 (t.getMaxLoadByMode(M)-t.getLoadByMode(M))
10 t=a;

11 EndIf

12 EndFor

13 R = t.getID();

14 End

e DCR is used to retrieve the instance related data or process-def-
inition related data. A DCR may require more than one PASE
resource to collaboratively accomplish its request and these
PASE resources are determined by the data to be retrieved.
TMR is used to manipulate a task or a group of tasks. It is sent
to the PASE resource where the corresponding process instance
it belongs to is created.

3.2.2. User request processing

Performance Monitor monitors the performance of each PASE
resource in the system. It sends an event to WFCIPool Manager
for adding new PASE resources or withdrawing some existing PASE
resources when the entire system is overloaded or under-utilized.
Performance Monitor checks each PASE resource in the running
pool periodically to see if its current workload is larger than the
maximum or lower than the minimum workload threshold, where
both maximum and minimum are specified by the administrator,
shown in Fig. 4. If the workloads of all PASE resources in the run-
ning pool exceed the maximum threshold, the system is over-
loaded. On the other hand, if the workloads of all PASE resources
in the running pool are lower than the minimum workload thresh-
old for a pre-defined time period, the system is deemed as under-
utilized.

For example, assume the maximum workload threshold and
minimum workload threshold are set to 100 and 10, respectively
in a system with five running PASE resources. Performance Moni-
tor keeps monitoring the status of each PASE resource periodically
at a fixed time period specified by the administrator, e.g., one sec-
ond. If at some time instance t1 the workloads of the five PASE re-
sources are 101, 110, 106, 108, and 115, respectively, all larger than
the maximum workload threshold, 100, Performance Monitor will
signal that the system is overloaded and try to add one new PASE
resource into the running pool to share the incoming workload. On
the other hand, if at some time instance t2 Performance Monitor
finds that the workloads of the five PASE resources are 6, 8, 7, 3,
and 4, respectively, all less than the minimum workload threshold,
10, it will set the system state to be under-utilized. From then on,
each time Performance Monitor checks the status of PASE re-
sources, if at least one of the under-utilized PASE resource has its
workload raised over the minimum workload threshold, Perfor-
mance Monitor sets the system state from under-utilized back to
normal. Otherwise Performance Monitor calculates the duration
that the system has been under-utilized. Once the under-utilized
duration exceeds the predefined threshold, e.g., 10 s, Performance
Monitor will notify the system to remove one PASE resource from
the running pool for increasing the utilization of remaining PASE
resources. In summary, to maintain an acceptable level of request

[General | pis | pm |
Select Monitox Mode
Metric Lower Bound Upper Bound
) Instance 1000.0 2000.0
3 Arrival Rate 0.00002 0.002
@ Response time (ms) [0.0 | [s000.0
o Mix 1.3]
(expression)
Monitorx Intexvel [z000.0 |
Axxivel Rete Buifex Size ‘1 Qo0o0.0 |
Response Time Buffex Size [zooo]
| Sawve | [Quit |

Fig. 4. Performance Monitor Configurations.

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552 1543

response time the system will immediately add one new PASE re-
source into the running pool once overloaded. On the other hand,
the system will remove a PASE resource only after having re-
mained under-utilized for a specific time duration, in case that
the system returns to the normal state or even the overloaded state
very soon after a very short time period of under-utilization. The
detailed performance monitoring algorithm is described in the
following:

Algorithm: Performance monitoring

Input:
The monitoring interval I
The list of running AWs L
The load metric used M

A time period C

|/ When the under-utilized time period exceeds this
predeﬁned*threshold, the system will remove some PASE
resources. [

PM (LM,CL):

01 Begin

02 long u_Time = 0;

03 List pdrList;

04 boolean isUnderUtilized = false;

05 While(true) do

06 sleep(l);

07 int o_count = 0;

08 int u_count=0;

09 For each AbstractWFCI a € L do

10 If a.getLoadByMode(M)>a.getMaxLoadByMode(M)
11 o_count++;

12 Insert a.getPDRID() to pdrList;

13 EndIf

14 If a.getLoadByMode(M)< a.getMinLoadByMode(M)
15 u_count++;

16 EndIf

17 EndFor

18 If o_count==L.size()

19 RA(pdrList,M); /| Add new PASE resources

/| will be described in the
/| next section

20 EndIf

21 If u_count==L.size()

22 If lisUnderUtilized

23 u_Time=CurrentTime;

24 isUnderUtilized=true;

25 Else

26 If CurrentTime-u_Time>C
27 RW(LM); // Add new resource
//(See the Algorithm in Table 6)

28 EndIf

29 EndIf

30 Else

31 isUnderUtilized=false;

32 EndIf

33 EndWhile

34 End

Once all running PASE resources are overloaded, WFCIPool Manager
might apply the following resource-addition algorithm to discover
computing resources outside and set them as available PASE re-
sources for use. Our resource addition is done gradually in order
to reduce variation. In the algorithm, WFCIPool Manager firstly
finds a set of PASE resources from the suspending pool whose cor-
responding PDR’s are running and then moves the PASE resource

with the largest workload among them to the running pool. For
each run of PASE resource addition, WFCIPool Manager is designed
to choose the PASE resource which increments the least computing
power among the resources discovered, and puts it into the pool.
The selection method tries to avoid the time overhead required
for setting up a new PDR by choosing the candidate PASE resource
from the suspending pool first.

For example, at the time the system is overloaded, assume there
are five PASE resources in the suspending pool with the workloads,
9, 12, 18, 4, and 6, respectively. The system will pick up the third
PASE resource with the workload value 18 to add it into the run-
ning pool for gradual computing power increase, since the PASE re-
source has the highest workload and thus can provide the least
additional computing power to the system. On the other hand, if
the suspending pool is empty when the system is overloaded, the
system will try to find a new PASE resource with the least comput-
ing power to achieve the goal of gradual performance enhance-
ment. The algorithm details are below:

Algorithm: Resource adding

Input:
The list of PDR’s L
The load metric used M

RA(LM):

01 Begin

02 // Get the list of AW’s whose states are suspending.
/| Search for available resources from the suspending
/| PASE resources first.

03 List sList=wfciPoolManager.getSuspendingPool();

04 If sList.size()>0

05 String pID = getMaxLoadByMode(sList,M);

06 wfciPoolManager.moveSuspendingToRunning(pID);

07 return;

08 EndIf

09 // If no suspending PASE resources, search from PASE
/| resources in the reserved state.

10 // Get the least loaded PDR.

11 String pdriD=leastLoaded(L);

12 List aList=pisManager.getReserving();

13 PASEProperty t= the first element in aList;

14 For each PASEProperty pe aList do

15 If p.maxLoad < t.maxLoad

16 t=p;
17 EndIf
18 EndFor

19 Remove t from aList;

20 pisManager.updatePASEState(t, “Ready”);
21 pisManager.replicatePDR(t.id,pdrID);

22 wfciPoolManager.connectToServer(t.id);
23 End

On the other hand, when the incoming requests decrease and the
overall system has been under-utilized, the system will release a
portion of the resources for use by other demanding applications.
WEFCIPool Manager uses a resource withdrawing algorithm to select
a running PASE resource and move it to the suspending pool. Corre-
sponding to the above addition algorithm, WFCIPool Manager fol-
lows a gradual-shrink policy, i.e., it withdraws the PASE resource
with the least processing power in the running pool. In the system
PASE resources with higher processing power will be configured
with higher maximum workload threshold values. Therefore, in
the algorithm, the system finds the PASE resource with the least
processing power by selecting the PASE resource with the smallest
maximum workload threshold. For example, if the running pool
contains five PASE resources with the maximum workload thresh-
old values, 100, 90, 85, 60, and 120, respectively. The fourth PASE

1544 C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

resource will be selected for removing since it has the least value of
the maximum workload threshold. The detailed resource with-
drawing algorithm works as follows:

Algorithm: Resource withdrawing
Input:
The list of running AW’s L
The load metric used M
RW(L,M):
/| remove the PASE resource with the least computing
/| capability first
01 Begin
02 AbstractWFCI t= the first element in L;
03 For each AbstractWFCI ae L do;
04 If
a.getMaxLoadByMode(M)<t.getMaxLoadByMode(M)
05 t=a;
06 EndIf
07 EndFor
08 wfciPoolManager.moveToSuspending(t.getID());
09 End

WECIPool Manager periodically checks all the AW’s in the suspend-
ing pool. For those AW’s having finished all workflow instances on
them, it first informs the GRTR Manager to backup instance data
and then asks PIS Manager to clear up the instance data as well as
the process definition data in the PASE resources’ databases. Finally,
WEFCIPool Manager disconnects these PASE resources from the PASE
broker. The following algorithm describes the procedure in detail.

Algorithm: Suspending pool monitoring algorithm
Input:
The pool of suspending AWs S
The checking interval I
SC(S,I):
01 Begin
02 List rList;
03 While(true)
04 Sleep();

05 For each AbstractWFCI ae S do

06 If a.getInstance()==

07 Insert a into rList;

08 EndlIf

09 EndFor

10 For each AbstractWFCI awe rList do
11 grtrManager.backup(aw.getID());
12 pisManager.clearDB(aw.getID());
13 wfciPoolManager.disconnectServer(aw.getID());
14 EndFor

15 EndWhile

16 End

4. Performance evaluation

Based on the distributed server architecture described in Sec-
tion 3, we have implemented a prototype system and conducted
a series of experiments for performance evaluation.

4.1. Experimental setting
In the following experiments, we set up a distributed server sys-

tem consisting of four PASE resources. The information about the
software and hardware configurations of each PASE resource is

Table 4
Configurations of PASE resources.
Resource Host ~ CPU Memory Database Agentflow
140.113.210.11 AMD Athlon64 DDRII 1GB MySQL v. 2232
1.81GHz 4.1
140.113.210.18 AMD AthlonXP DDRII512 MySQL v.2.23.2
1.83GHz MB 4.1
140.113.210.21 AMD Athlon64 DDRII 1GB MySQL v. 2232
1.81GHz 4.1
140.113.210.23 AMD Athlon64 DDRII 1GB MySQL v. 2232
1.81GHz 4.1
Table 5

Load limit values of three different metrics.

Resource Host ~ Workflow Request arrival Average response
instance number rate (per ms) time (ms)
140.113.210.11 300 0.0005 2000
140.113.210.18 250 0.00025 2000
140.113.210.21 300 0.0005 2000
140.113.210.23 300 0.0005 2000

shown in Table 4. All PASE resources will use the same process def-
inition repository in the experiments.

In the experiments, we explore three different load metrics for
defining the load limit on each PASE resource, including workflow
instance number, request arrival rate, and average response time.
The first two metrics are workload directed, and the third is perfor-
mance directed. Since the load limit should be directly related to
user’s awareness of system performance, the load limit values for
the first two metrics are dependent on the computing capabilities
of the underlying machines, and the load limit values for the third
metric are consistent on all machines. The limit values used in the
experiments are shown in Table 5. Since the memory space and
CPU power on 140.113.210.18 are smaller than on other machines,
the limit values for the first two metrics on it are set to be lower
than on others.

The process definitions adopted in the experiments are real
cases obtained from (Chou and Wang, 2001), which are used to
construct a department management system in universities. The
department management system includes five subsystems: (1)
the working system for M.S. students, (2) the working system for
Ph.D. students, (3) Bulletin system, (4) Department Computer
and Network Center, and (5) Laboratories. The services provided
by these subsystems are defined and run on Agentflow. In the
following experiments, we created 1500 members representing
faculties, assistants and students, who manipulate department
management system to accomplish various sorts of tasks
commonly seen in daily operations of a department.

Through the interface shown in Fig. 4, we can select a load met-
ric for performance monitoring and set the lower bound as well as
the upper bound. The upper bound values in the performance
monitor configurations are the default values if the administrator
does not set those values in PIS. The arrival rate buffer size is the
time interval for the PASE broker to measure the request arrival
rate. The response time buffer size is the amount of requests col-
lected to measure the average response time.

After finishing the above setting, we can then start the PASE
broker and it will find some ready PASE resources from the PIS.
In this experiment, at first we add only one PASE resource and
configure its corresponding PDR. Later on, if the incoming requests
increase and the system is overloaded, the PASE broker will
automatically add a new PASE resource to the system and config-
ure its corresponding PDR. A snapshot of this procedure is show
in Fig. 5.

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

Fig. 6 is a snapshot of the runtime status of PASE resources in
the system. The information shown includes the load values in
three different metrics. For each PASE resource, when the load va-
lue exceeds its upper bound set in PIS, the progress bar will change
its color from blue to red. When the overall system has been

1545

overloaded and there are no more available PASE resources, it will
show the message ‘No available resource’ on the status bar of the
PASE broker to inform the administrator. Figs. 7-10

A program for driving the experiments is implemented as
follows. The main functions of the program are: (1) generate requests

PASE Chooser [

iIChoose PASE Resources

Host Port FPDR LoadLimit ArrivalRateLimit FPIS
1 14011321018 20000 250 0.0002%5 140.113.210.11:20499
] 14011321021 20000 300 0.0005 140.113.210.11:2099
] 140.113.210.23 20000 200 0.0005 140.113.210.11:2099
A 140.113.210.11 20000 |PDRO0ODODOOOOD2 [+]300 0.0005 140.113.210.11:2099
PDRO0O0DD0O00OD0O2

Lo |

Fig. 5. Configure the initial PASE resource.

£ PASE Broker

galo e

PASE Resources Status

PASE ID Load \ ArrivalRate Awvg. Response Time
140.113.210.11:20000 34.0 g FERIER 3 /093103448
140.113.210.18:20000 1.0 0.007361268403171008 K1t 1.1363636363636
140.113.210.21:20000 5.0 0.007223942208462332
140.1132.210.23:20000 34.0 0.00654911838790932

lNu available Resource
Fig. 6. System status.
—*— Single PASE
—®— PASE Broker(ins)
Create Process PASE Broker(ar)
| =< PASE Broker(tt) |
250000
200000 //‘/‘
m
£
£ 150000 S
=
2
f=
o
@ 100000
Q
4
50000
0 - 5 —=
50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instances

Fig. 7. Performance results for create Process().

1546

to the PASE broker and PASE resources, or to the single PASE server
in the original Agentflow architecture and (2) record the response
time of each request and calculate the average response time. This
program generates two kinds of random numbers for the experi-
ments as follows:

e Arrival rate of requests
The arrival rate of requests is assumed to conform to the Pois-
son distribution. In the experiments, the test program generates
four types of tasks, including create Process(), start Task(), com-

plete Task() and get TaskOfCompany().

e Task service time

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

The task service time is assumed to conform to the exponential
distribution just as in most queuing studies. Since in real workflow
cases, most tasks usually involve human manipulation, such as fill-
ing out a form, the task service time here is used to simulate the
time a user takes to finish a task. The task service time is equivalent
to the time period between the startTask() and complete Task()
requests of a specific task.

In the following experiments, the amounts of workflow in-
stances range from 50 to 2500, the request arrival rate is 0.002 re-
quests/ms, and the average task service time is 1000 ms. The
requests considered in the experiments are createProcess(), start
Task(), complete Task(), and get TaskOfCompany(). Four different
experiments are conducted to evaluate the performances of four
different scenarios, including a single PASE server in the original

—*— Single PASE
= PASE Broker(ins)
PASE Broker(ar)

Start Task —>— PASE Broker(rt)
250000
200000 »
m
£
.g 150000
=
3
=
o
2 100000
Q
o /\/
h ///
- . ——
0 L === 5
50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instances
Fig. 8. Performance results of start Task().
—— Single PASE(ins)
—8— PASE Broker(ins)
PASE Broker(ar)
Complete Task —X— PASE Broker(rt)
160000
140000 ///
120000 /
£ 100000
@
£
£ ,/0//
2 80000 /\/
c
o
Q
]
Q
X 60000 //
40000 /
20000
= n e ————
O i R va = 3 1 1
50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instances

Fig. 9. Performance results of complete Task().

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

Agentflow architecture and the distributed server architecture
with three different load metrics, respectively. The following fig-
ures illustrate the average response time of the four kinds of re-
quests under different workloads for the four different scenarios,
respectively.

Obviously, the distributed server architecture improves the run-
time performance greatly compared to the original single-server
Agentflow architecture within three of the four kinds of requests.
Moreover, under different workloads, ranging from 50 to 2500
instances, the distributed server architecture can deliver a nearly
constant response time, benefiting from its scalable architecture.
This is a desirable feature for modern service-oriented systems
which confront the incoming requests with the unpredictable and
dynamical amounts of change, while being expected to maintain

1547

acceptable and stable response time. The get TaskOfCompany()
request is a special case, which must get the task instances from
all running PASE resources. Therefore, in some situations, it may
take much longer time to finish than that in the original Agentflow
architecture which involves only one centralized PASE resource.

Fig. 11 shows that the maximum average request response time
of the single PASE server architecture is longer than 100,000 ms,
while the maximum average request response time of the distrib-
uted server architecture is shorter than 4500 ms. This result indi-
cates that the distributed server architecture proposed in this
paper can effectively maintain an acceptable request response time
under request loads of large variation.

The following presents the comparisons of the three different
load metrics. As seen in Figs. 12-16, the arrival-rate mode and

—*— Single PASE
—®— PASE Broker(ins)
PASE Broker(ar)

Collect Data >~ PASE Broker(rt)
900
800
700
£ 600 A /
TOE)/ \
= 500 2
Q
(2}
c
2 400
200 // — =
100 i/ o
0
50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instances
Fig. 10. Performance results of get TaskOfCompany().
—#— Single PASE
—®— PASE Broker(ins)
Pase Broker(ar)
Al —<— PASE Broker(rt)
140000
120000
100000 /
m
£ /
2 80000
: /
[
172}
s —~
% 60000 —
r /
40000 //
20000 /
- n » s n—8—0
0 i

50 100 200 300 400 500

600 700
Instance

800 900 1000 1500 2000 2500

Fig. 11. Average response time of all requests.

1548

the response time mode in general outperform the instance mode.
The PASE broker with the arrival-rate mode performs best and
delivers a shorter and more stable average response time than with
the other two modes. However, the performance based on the ar-
rival-rate mode or the response time mode could be influenced
by the corresponding buffer sizes set in the performance monitor.
Therefore, the performance based on these two modes need be
studied further. For example, it might be useful for the comparison
by investigating the effects of different buffer sizes. Another impor-
tant issue, how to determine an appropriate buffer size, might be
useful in delivering good and stable performance with the dynamic
request dispatching algorithm.

The following presents the results of another experiment of lar-
ger scale. Under the highest workload, totally 10 PASE resources

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

were included in the running pool to serve the incoming requests.
Fig. 17 shows that the number of PASE resources included in the
running pool changed with time to adapt to different workload lev-
els. With the dynamic resource provisioning capability, Fig. 18
shows that the request response times under different workload
conditions were kept as constant as possible. Fig. 19 illustrates
the benefits of stable request response time brought by dynamic
resource provisioning. The red line represents the request response
time of the distributed server architecture and the blue curve is the
request response time of the original Agentflow architecture. The
request response time of the original Agentflow architecture in-
creased very quickly as the workload grew and varied greatly un-
der different workload conditions. Compared to that, the request
response time of the distributed server architecture is nearly

—#— PASE Broker(ins)
PASE Broker(ar)

Create Process —»— PASE Broker(rt)

6000

N

5000

4000

/\\/
N/
/\

3000

Response Time(ms)

/

2000

_—~4

NV

1000

e

0 50 100 200 300 400 500

600 700 900 1000 1500 2000 2500

Instances

800

Fig. 12. Performance results of create Process().

8000

—®— PASE Broker(ins)
PASE Broker(ar)
—>*— PASE Broker(rt)

Start Task

7000

.

6000

5000

/

/N

4000

/
[/

VAN

Response Time(ms)

3000

2000

— N N_ S
Vi

1000

0 L L L L L L

A //A\\/i‘\\
—

50 100 200 300 400 500

600 700 800 900 1000 1500 2000 2500
Instances

Fig. 13. Performance results of start Task().

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

1549

—#— PASE Broker(ins)
PASE Broker(ar)
—»— PASE Broker(rt)

Complete Task

7000
6000
/\ /\ -
5000
@
s / \
(3]
£ 4000
[/ \/-\\ /
(]
(2]
5
2 3000 —x
0
& \/ /
- / /// x\\,/)(/\)\/
1000 /
50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instances
Fig. 14. Performance results of complete Task().
—®— PASE Broker(ins)
PASE Broker(ar)
Collect Data —>— PASE Broker(rt)
900
800
700
. /
& 600
g s
[)
£
= 500
3
=
- / \ / \. /'/
Q
4
A
200 4// AN
100 [
0 50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instances

Fig. 15. Performance results of get TaskOfCompany().

constant throughout the whole experiment duration. In Fig. 19 we
can also see that the red line ended much earlier than the blue
curve. This means that the distributed server architecture finished
processing all the requests earlier than the original Agentflow archi-
tecture. The above results demonstrate the potential benefits of the
proposed distributed server architecture and dynamic resource
provisioning mechanisms.

5. Conclusions and future work
This paper presents a distributed server architecture with dy-

namic resource provisioning mechanisms for building scalable
BPM-oriented workflow management systems. We implemented

a prototype system and made a series of experiments to evaluate
the performance of the proposed architecture and mechanisms.
The experimental results indicate that the proposed architecture
is effective in handling the time-varying workloads in real world
workflow management systems. The scalable architecture with
the capability of dynamic resource provisioning can provide
acceptable and stable request response time under a wide range
of dynamic request workloads. This is a desirable feature for
modern service-oriented systems which confront the incoming
requests whose amounts are unpredictable and change dynamically,
while being expected to maintain acceptable and stable response
time.

Besides, some works might be worthwhile for improving the
system performance further. For example, determining an appropriate

1550 C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

—®— PASE Broker(ins)
Pase Broker(ar)
All —>*— PASE Broker(rt)

4500

4000 —

3500

3000

s
S NS ST
/ -
A
ol

Response Time(ms)

0 50 . 100 . 200 . 300 . 400 . 500 . 600 . 700 . 800 . 900 . 1000. 1500. 2000. 2500
Instance
Fig. 16. Average response time of all requests.
16
14
12

PASE servers

Time (m)

Fig. 17. Number of PASE resources used during experiment.

1000

©
]

-~ ®
g =

=3
]

2

W
28
L~

Response Time (ins)

———

2

2

1 3 5 7 9 11 13 15 17 19 21
Time {m)

23 2T 29 M 3 3B

o

Fig. 18. Response time delivered by the distributed server architecture during experiment.

buffer size for measuring average response time and request load. Further investigations are required on this issue in order to
arrival rate is crucial for accurately representing the system work- ensure that the dispatcher can effectively assign the income

C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552 1551

210000

180000

150000

120000

Ll
AT J\/\/ v/

Vi

90000

Response Time (ms)

60000

30000 /

D A 1 L L
1 6 " 16 2

26 3 36 41 46 N

Time (m)

Fig. 19. Response times of the original Agentflow and the distributed server architecture.

requests to appropriate PASE resources for delivering good and stable
runtime performance. Using history records to help predict future
incoming requests are another promising approach to enabling the
dispatcher for making more appropriate allocation decisions.

Acknowledgement

The authors would like to thank Hui Zhen Zhou for his support
on conducting the experiments in this paper.

References

Agentflow system, 2008. Flowring Technology Corp., <http://www.flowring.com>.

Altintas, 1., Berkley, C., Jaeger, E., Jones, M., Ludaescher, B., Mock, S., 2004. Kepler:
Towards a Grid-enabled system for scientific workflows. In: Proceedings of
Workflow in Grid systems Workshop in GGF10.

Baru, C., Moore, R., Rajasekar, A., Wan, M., 1998. The SDSC storage resource broker.
In: Proceedings of the 1998 Conference of the Centre for Advanced Studies on
Collaborative Research.

BPAF (Business Process Analytics Format), 2009. Workflow Management Coalition,
<http://www.wfmc.org/bpaf.html>.

BPMN (Business Process Modeling Notation), 2009. Object Management Group,
<http://www.omg.org/spec/BPMN/1.2/>.

Buyya, R., 1999. High Performance Cluster Computing: Architectures and Systems.
Prentice Hall PTR. vol. 1.

Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R., 2003. GridFlow: Workflow management for
grid computing. In: Proceedings of Third International Symposium on Cluster
Computing and the Grid.

Chiang, M.L,, Lin, Y.C., Guo, L.F., 2008. Design and implementation of an efficient
web cluster with content-based request distribution and file caching. Journal of
Systems and Software 81 (11), 2044-2058.

Chou, SJ., Feng-Jian Wang, F.J., 2001. Constructing a Management System for a
University Department, Master Thesis, National Chiao-Tung University.

Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C., 2001. Grid Information
Services for Distributed Resource Sharing. In: Proceedings of 10th IEEE
International Symposium on High Performance Distributed Computing.

Deelman, E., Singh, G., Su, M.H., Blythe,], Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good,]., Laity, A., Jacob,].C., Katz, D.S., 2005. Pegasus: a
framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal 13 (3), 219-237.

Duan, H., Zeng, O., Wang, H., Sun, S.X., Xu, D., 2009. Classification and evaluation of
timed running schemas for workflow based on process mining. Journal of
Systems and Software 82 (3), 400-410.

Foster, 1., 2002. The grid: a new infrastructure for 21st century science. Physics
Today 55 (2), 42-47.

Foster, 1., Kesselman, C., Tuerke, S., 2003. The Grid: Blueprint for a New computing
Infrastructure, Morgan Kaufmann.

Gerasoulis, A., Yang, T., 1993. On the granularity and clustering of directed acyclic
task graphs. IEEE Transactions on Parallel and Distributed Systems 4 (6), 686-
701.

Globus Toolkit, 2008. The Globus Alliance, <http://www.globus.org>.

Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J., 2008.
On the use of cloud computing for scientific workflows. In: Proceedings of Third
International Workshop on Scientific Workflows and Business Workflow
Standards in e-Science (SWBES) in conjunction with Fourth IEEE International
Conference on e-Science (e-Science 2008).

Hollingsworth, D., 1995. The workflow reference model, TC00-1003, The Workflow
Management Coalition Specification.

Hsu, H., Wang, F., 2008. An incremental analysis for resource conflicts to workflow
specifications. Journal of Systems and Software 81 (10), 1770-1783.

Krishnan, S., Bramley, R., Gannon, D., Govindaraju, M., Alameda, J., Alkire, R., Drews,
T., Webb, E., 2001. The XCAT science portal. In: Proceedings of Supercomputing.

Laszewski, G.V., Amin, K., Hategan, M., Zaluzec, N.J., Hampton, S., Rossi, A., 2004.
GridAnt: A client-controllable grid workflow system. In: Proceedings of 37th
Hawaii International Conference on System Science.

Mathur, V., Apte, V., 2009. An overhead and resource contention aware analytical
model for overloaded web servers. Journal of Systems and Software 82 (1), 39—
55.

Mendonga, N.C,, Silva, J.AF., Anido, R.O., 2008. Client-side selection of replicated
web services: an empirical assessment. Journal of Systems and Software 81 (8),
1346-1363.

MySQL HA/Scalability Guide, 2009. MySQL, <http://www.dev.mysql.com/doc/
mysql-ha-scalability/en/ha-overview.html>.

OASIS (Organization for the Advancement of Structured Information Standards),
2009. <http://www.oasis-open.org/home/index.php>.

OMG (Object Management Group), 2009. <http://www.omg.org/>.

Prodan, R., 2007. Specification and runtime workflow support in the ASKALON grid
environment. Scientific Programming 15 (4), 193-211.

Prodan, R., Fahringer, T., 2008. Overhead analysis of scientific workflows in grid
environments. IEEE Transactions on Parallel and Distributed Systems 19 (3),
378-393.

Ranjan, S., Knightly, E., 2008. High-performance resource allocation and request
redirection algorithms for web clusters. IEEE Transactions on Parallel and
Distributed Systems 19 (9), 1186-1200.

Roure, D.D., Baker, M.A., Jennings, N.R., Shadbolt, N.R., 2003. The evolution of the
grid. In: Grid Computing: Making the Global Infrastructure a Reality. John Wiley
and Sons, pp. 65-100.

Shields, M., Taylor, L., 2004. Programming scientific and distributed workflow with
Triana services. In: Proceedings of Workflow in Grid Systems Workshop in GGF
10.

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T., 2008. Agile dynamic
provisioning of multi-tier internet applications. ACM Transactions on
Autonomous and Adaptive Systems 3 (1), 1-39.

Wang, X,, Du, Z, Chen, Y., Li, S., 2008. Virtualization-based autonomic resource
management for multi-tier web applications in shared data center. Journal of
Systems and Software 81 (9), 1591-1608.

Wei, J., Xu, C.Z.,, 2006. eQoS: provisioning of client-perceived end-to-end QoS
guarantees in web servers. IEEE Transactions on Computers 55 (12), 1543-
1556.

WIfMC (Workflow Management Coalition), 2009. <http://www.wfmc.org/>.

WS-BPEL (Web Services Business Process Execution Language), 2007. OASIS,
<http://www.docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html>.

XPDL (XML Process Definition Language), 2008. Workflow Management Coalition,
<http://www.wfmc.org/xpdl.html>.

http://www.flowring.com
http://www.wfmc.org/bpaf.html
http://www.omg.org/spec/BPMN/1.2/
http://www.globus.org
http://www.dev.mysql.com/doc/mysql-ha-scalability/en/ha-overview.html
http://www.dev.mysql.com/doc/mysql-ha-scalability/en/ha-overview.html
http://www.oasis-open.org/home/index.php
http://www.omg.org/
http://www.wfmc.org/
http://www.docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.wfmc.org/xpdl.html

1552 C.-H. Tsai et al./ The Journal of Systems and Software 83 (2010) 1538-1552

Yoo, M., 2009. Real-time task scheduling by multiobjective genetic algorithm.
Journal of Systems and Software 82 (4), 619-628.

Zeng, Q., Wang, H., Xu, D., Duan, H., Han, Y., 2008. Conflict detection and resolution
for workflows constrained by resources and non-determined durations. Journal
of Systems and Software 81 (9), 1491-1504.

Ching-Hong Tsai received B.S. and M.S. degrees in Computer Science and Infor-
mation Engineering from National Chiao-Tung University, Taiwan, ROC, in 1996 and
1998. His main research interests include software engineering process, software
requirement analysis, distributed computing, and workflow technology. He is cur-
rently working on the Ph.D. degree in Computer Science at National Chiao-Tung
University.

Kuo-Chan Huang received his B.S. and Ph.D. degrees in Computer Science and
Information Engineering from National Chiao-Tung University, Taiwan, in 1993 and

1998, respectively. He is currently an Assistant Professor in Computer and Infor-
mation Science Department at National Taichung University, Taiwan. He is a
member of ACM and IEEE Computer Society. His research areas include parallel
processing, cluster and grid computing, workflow computing.

Feng-Jian Wang graduated with M.S. and Ph.D. degrees from North-western Uni-
versity. Currently, he is a Professor in Computer Science Department, National
Chiao-Tung University, HsinChu, Taiwan. He is an IEEE member. He has published
more than 70 technical papers in international journals and conference proceed-
ings. He is the founder of the Flowring Technology Corp. in Taiwan. His research
areas include software engineering, network engineering, and programming
language.

Chun-Hao Chen is currently a graduate student in pursuit of a M.S. degree in
Computer Science at National Chiao-Tung University in Taiwan.

	A distributed server architecture supporting dynamic resource provisioning for BPM-oriented workflow management systems
	Introduction
	A BPM-oriented workflow management system
	Scalable workflow management system with dynamic resource provisioning
	Distributed server architecture
	PASE resource
	Process definition repository and global runtime repository
	PASE information server
	PASE broker

	On-demand resource provisioning strategies
	User request processing
	User request processing

	Performance evaluation
	Experimental setting

	Conclusions and future work
	Acknowledgement
	References

