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利用遠場特徵回溯次波長尺度變化及 

提升其量測靈敏度之探討 
 

 

博士研究生：朱淑君       指導教授：陳志隆教授 

                                        

國立交通大學       光電工程研究所 

摘   要 
 

 
由於奈米科技、生醫檢測諸多領域的蓬勃發展，次波長尺度的量測也愈見其重要性。

有鑑於此，許多高空間解析度的探針掃描或近場的量測方法陸續被開發出來。以往，在遠

場量測次波長尺度的資訊被視作困難或不可行。然而在 Selci 等前人的工作中，實驗發現

在遠場仍可觀測到物體在次波長尺度變化下相應的光學特徵變化，並滿足純量光學理論的

預測。其結果隱含著在遠場利用光學方式去量測物體的次波長尺度動態變化的潛力。基於

遠場的光學量測方式具有易於觀測，且不易傷害待測物的優點，因此本論文探討了利用遠

場的光學特徵去回溯出待測物的次波長尺度動態變化的可行性及其測量方式。 

 

本論文對利用遠場的光學特徵去回溯出待測物的次波長尺度變化作了下列的初步探

討：（一）提出利用遠場輻照度的變化，去回推物體作一維次波長尺度變化的算則，其精

準度可到一個奈米的等級。（二）提出一外加孔徑干涉儀的架構，可對任意待測孔徑寬度

優化其遠場量測到的輻照度變化量值，而可提高其一維次波長尺度動態變化的測量靈敏

度。（三）提出利用未知訊號分離的手法，利用多光偵測器及外加孔徑干涉儀的架構，去

回推孔徑兩個維度的次波長尺度動態變化，其精準度可到 1%。（四）利用量測遠場輻照度

回推孔徑一維次波長尺度動態變化的手法，提出了一個可量測待測物的邊緣平整度誤差低

於 3%的量測架構。 

 

由本論文的探討，展現了利用遠場光學特徵去回溯物體次波長尺度動態變化的應用潛

力。對於利用遠場光學特徵去量測真實的待測結構及其工程上的量測應用將是未來值得被

探討的重點課題。 
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Investigations on Subwavelength-scale Variation  
by Far-field Characteristics:  

Deconvolution and Detection Sensitivity Enhancement 
 

Doctoral Student: Shu-Chun Chu    Advisor: Dr. Jyh-Long Chern 
 

Institute of Electro-Optical Engineering 
National Chiao Tung University 

Abstract 
 

The advance of the nanotechnology and bio-measurement highlight the importance of the 

measurement within the scale of subwavelength. Thus, several scanning probe microscope 

methods or near-field measurements have been developed to achieve high spatial resolution.  In 

the past, the extraction of subwavelength information from far-field measurement was generally 

believed to be very difficult or perhaps impossible.  However, the recently experimental result 

of Selci and Righini demonstrated that to detect subwavelength information in the far-field is 

possible and fully consistent with the prediction of the standard scalar diffraction theory.  The 

result highlighted the possibility of measuring optical signals in the far field with sufficient 

sensitivity to show variations of diffraction structure in subwavelength scale.  We believe that 

the far-field optical measurement was provided as a potential approach to have high-precision 

measure of subwavelength-scale dynamical variation of structure, accompanying the advantages 

of less damage on sample and facility in realization.  Thus in this thesis, we investigate the 

possibility and approaches to retrieve subwavelength-scale dynamical variation from the 

measurement of far-field optical characteristics.  

 

The thesis provides some preliminary discussions on retrieving subwavelength-scale 

variation by far-field characteristics.   (1) An approach to retrieve 1-D subwavelength feature 

variation from far-field irradiance measurement was proposed and was numerically verified 

which could have precision better than 1 nm.  (2) A tunable asymmetrical embedded-aperture 

interferometer configuration was proposed, which could enhance detection sensitivity of 1-D 

subwavelength variation measurement at arbitrary aperture width.  (3) A multi-detector, 

embedded-aperture interferometer configuration accompanies blind signal separation method 

was proposed could recover coupled 2-D subwavelength variation information of a rectangular 
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aperture with far-field irradiance measurement with error ratio below 1%. (4) By using the 

approach to retrieve 1-D subwavelength variation from far-field irradiance measurement, a 

constructed-aperture measurement system behaving as an optical ruler was proposed, which 

could measure the marginal roughness of the test sample with error ratio below 3%.   

 

From the discussions in this thesis, we demonstrated that the far-field optical measurement 

was provided as a potential approach to have high-precision measure of subwavelength-scale 

dynamical variation of structure.  To explore to test sample with realistic structures and to do 

more engineering applications are important issues which should be investigated in the future.
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Chapter 1  
 
Introduction 
 

1.1 Background and motivation 

The progress in scientific research and industry, such as nanotechnology [1], 

nanobiology [2], material science [3], semi-conductor manufacturing [4], and several 

others prompt the developments in measurement technology at subwavelength scale.  

In the past, the extraction of subwavelength information from far-field optical 

measurement was generally believed to be very difficult or perhaps impossible.  This 

is according to the reason that the wave information containing structure finest details 

is carried by evanescent wave, which decaying exponentially and was hard to be 

detected in the far-field [5,6,7].  Owing to that reason, several non-optical scanning 

probe microscope (SPM) skills and applications have been developed to achieve high 

spatial resolution, such as: Atomic Force Microscopy (AFM) [8,9], Scanning Tunneling 

Microscopy (STM) [10,11], or implementing the measure in the Near-field , such as 

Near-Field Scanning Optical Microscopy (NSOM) [12,13].   

 

However, the recently experimental result of Selci and Righini highlighted that 
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to detect subwavelength information in the far-field is possible and fully consistent 

with the prediction of the standard scalar diffraction theory [14].  Scalar theory is 

accurate when the diffracting structures are much larger comparing with the 

wavelength of light [ 15 ], and could be used to predict the far-field optical 

characteristics.  In the research of Selci and Righini, they answered an interesting 

question that “while the diffraction feature size fulfills with the assumption of the 

scalar diffraction theory and was varying in subwavelength scale, does such smaller 

variation can influence the corresponding far-field characteristics and could be 

measured in a detectable way?”  Their experimental result demonstrated that, when 

the width of the diffraction feature size exceeds several wavelengths, 

subwavelength-scale size variations of an object even at nano-scale can affect the 

corresponding far-field diffraction pattern in a measurable way; its far-field 

characteristics of integrative intensity and derivative intensity are consistent with the 

prediction of the scalar diffraction theory, even when the size variation is in the order 

of 1/100 wavelength.  This result highlighted the possibility of measuring optical 

signals in the far field with sufficient sensitivity to show subwavelength-scale 

variations of diffraction structure.   

 

To detect the far-field characteristics that correspond to subwavelength-scale 
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variation has been proved to be possible;  the retrieving of dynamic signature of 

subwavelength variation yields some more interesting information than the static 

features, particularly in determining physical origins and in identifying the generation 

mechanism.  The recently advance of bio-technology emphasized the requests and 

needs of subwavelength-scale measurement [16,17,18].  Some bio-samples, such as 

cells, are usually in the scale exceeding several wavelengths, and are varying in 

wavelength or subwavelength scale dynamically.  We believe that the far-field 

optical measurement can be considered as a potential approach to have high-precision 

dynamical measurement, and accompanying the advantages of less damage on sample 

and facility in realization.  Thus, the investigation and development of new 

approaches in retrieving the subwavelength variation signal by using optical method 

in the far-field is important and deserved to explore.   

 

1.2 Objective of this thesis 

A prior research had demonstrated to detect subwavelength signal in the far-field 

is possible while the diffraction structure size fulfills with the assumptions of scalar 

diffraction theory.  It highlighted the possibility of measuring optical signals in 

far-field with sufficient sensitivity to show variations that are orders of magnitude 

below the wavelength of light.  A further question we want to know is that if it is 
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possible to retrieve subwavelength-scale variation only by measuring far-field 

characteristics.  Thus, in this thesis, we want to investigate the possibility and the 

schemes to retrieve subwavelength dynamic signatures of diffraction structure with 

the measurement of optical characteristics in the far-field.    

  

1.3 Organization of this thesis 

The thesis is organized as following: The possibility verification and an approach 

to retrieve 1-D subwavelength feature variation from far-field optical measurement 

will be shown in Chapter 2.  In Chapter 3, a tunable asymmetrically 

embedded-aperture interferometer configuration was proposed to enhance detection 

sensitivity of 1-D subwavelength variation measurement. A three-detector, 

embedded-aperture interferometer configuration accompany blind signal separation 

method was proposed to recover 2-D subwavelength variation information of a 

rectangular aperture with far-field irradiance measurement was shown in Chapter 4.  

In Chapter 5, a constructed-aperture measurement system behaving as an optical 

ruler to measure the marginal roughness of the test sample with error ratio below 3% 

was proposed.  Finally, a summary of this dissertation, and the future works are 

presented in Chapter 6.
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Chapter 2  
 
Retrieving of 1-D subwavelength variation 

information 

 

2.1 Introduction 

Recently, to detect subwavelength signal in the far-field is experimentally 

demonstrated to be possible while the diffraction structure size are fulfill with the 

assumptions of scalar diffraction theory∗.  It highlighted the possibility of measuring 

optical signals in the far field with sufficient sensitivity to show variations that are 

orders of magnitude below the wavelength of light.  Could we retrieve it only by 

measuring far-field characteristics?  With the academic aim of clarifying this point, 

we investigated to retrieve subwavelength dynamic variations of the most simple 

diffraction structures, slit and rectangular aperture.  In this chapter, it will be shown 

that the 1-D subwavelength variation information is retrievable from far-field 

characteristics measurement. 

 

2.2 Retrieving 1-D subwavelength signature from far-field irradiance 

                                                 
∗ A brief review of scalar diffraction theorem could be found in Appendix II. 



 6

measurement 

In section 2.2, a method was proposed to retrieve subwavelength variation of the 

diffraction structure by measuring far-field irradiance variation.  The 1-D dynamic 

signature of the subwavelength variation of the simplest geometric structures, a slit 

and rectangular aperture, will be shown to be determinable from far-field irradiance 

with a precision of better than 1 nm [19].  

 

Fig. 2-1. Schematic diagram of the variation diffraction structures 

 

2.2.1 Basic assumptions 

 A physical quantity, derivative intensity, of these two simple diffraction 

situations was deduced to retrieve the subwavelength variation of these two 

diffraction structures.  Considering the most simple situation that a monochromatic 
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plane wave of amplitude A  and a wavelength λ  is assumed to orthogonally 

illuminate on a rectangular aperture, with dimensions a2  and b2 .  The 

observation plane was positioned at a distance z  away from the aperture.  The 

diffracted intensity was collected over a rectangular detector with dimensions X2  

and Y2  centered at the origin of the observation plane.  The far-field intensity 

distribution on the detector is given by the expression [20]  

( ) ( )
( )

( )
( )2
2

2

22

/
/sin

/
/sin4,

zky
zkby

zkx
zkax

z
AyxI λλ
λ
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⎠
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⎛= .              (2-1) 
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( )∫ ∫
− −

=
a

a

b

b
z dxdyyxIP , .  And the physical quantity that derivative intensity was defined 

as the derivative of zP  with respect to aperture width a , 
da
dPz .  The derivative 

intensities of these two situations could be derived as: 

⎪
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where Si  is the sine-integral function, and the function pf  was defined and could 

be evaluated by Leibniz Integral Rule [21] as ( ) ( ) ( ) ( )
X

aXaXaSidx
x

axaXf
X

p

2

0
2

2 sin2sin, −== ∫ .    

 

The derivative intensities of the two diffraction structure are both proportional to 

the function ⎟
⎠
⎞

⎜
⎝
⎛

z
kaXSi 2 , which was shown in the Fig. 2-2  (In this demonstrated 
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figure, X  is 100 mμ , z is 100 mm , and light source wavelength of 632.8 nm  was 

used.).  It could be found that the fluctuations of derivative intensities were vary 

small while the width of the diffraction structure is varying in the subwavelength 

scale.  We make the assumption that while the width of the diffraction structure is 

varying in subwavelength scale, the variation of derivative intensity is small enough 

to be estimated as a constant value.  

 

Fig. 2-2. (a) Schematic diagram of the variation of function ( )zkaXSi /2  (b) 

enlargement of part of the Fig. 2-2 (a) 

 

Thus, the equation will approximately hold 

t

z

a

z

t

z

t dt
dPC

da
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dt
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dt
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⎞
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The derivative intensity 
0a

z

da
dP

⎟
⎠
⎞

⎜
⎝
⎛ can be evaluated analytically and is a constant, 

whereas the temporal variation of power 
t

z

dt
dP

⎟
⎠
⎞

⎜
⎝
⎛ on the detector can be measured.  

Therefore, Eq. (2-3) could be used to deduce the rate of variation of the width of the 
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slit 
tdt

da
⎟
⎠
⎞

⎜
⎝
⎛ , so does the aperture width variation: t

dt
daa

t

Δ⎟
⎠
⎞

⎜
⎝
⎛≈Δ * . 

 

2.2.2 Simulation verification with subwavelength variation 

Three different typical cases - periodic, quasi-periodic, and random variations - 

were used to investigate the feasibility of the proposed retrieving method.  In the 

simulation, the amplitude of the vibration was taken to be 10 nm  at a frequency of 

100 Hz .  The sampling rate of detector was 1.0 KHz , which is higher than the 

frequency of the vibration of the slit.  The half-width of the slit a  was 50 mμ .  

The half width of the detector, X  and Y  were both 100 mμ ; the detector was 

placed behind the lens with a focal length of 30 mm .  A light source wavelength of 

632.8 nm  was used. 

 

The sine function was used to represent the periodic subwavelength variation: 

the slit variation then would be, ( ) ( )ftata πα 2sin0 ×+= , where α  was the 

amplitude of the vibration of the slit.  The quasi-periodic subwavelength variation of 

the slit is given by ( ) ( ) ( )ftftata 22sin2sin0 παπα ×+×+= .  The random 

fluctuation is specified by ( ) ( ) ηα ×+=Δ+ tatta , where η  is a randomly selected 

value ranging from -1 to 1.  Numerically, we know the exact width of the aperture 
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along the x direction from time to time, which is referred to as the simulation-setting 

value of the width of the slit.  Figure 2-3 shows the relation between the deduced 

value and the simulation-setting value by the method we used.  The curves on the 

left plot the deduced variation of the width of the slit, *a , and the curves on the right 

plot the difference between the deduced value and the simulation-setting value, 

)()(* tata − .  The difference between the deduced and the simulation-setting values 

is about 10-6 nm .  It means that the method of deduction is with very high precision, 

and the inaccuracy is only about 10-7 of the vibration amplitude of 10 nm . 

 

Fig. 2-3. Deduced subwavelength variation, *a , and the difference between the 

deduced value and the simulation-setting value, aa −* , for a slit.  (a), (b): periodic, 

(c), (d): quasi-periodic, and (e), (f): random fluctuation. 
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In the simulation of the rectangular diffraction aperture, all simulation settings 

were same as that of slit case, except the aperture widths a  and b  were both set to 

50 mμ .  As shown in Fig. 2-4, the difference between the deduced value and the 

simulation-setting value remained far below 1 nm (specifically, about 10-5 nm ).  In 

other words, in the case of a general rectangular aperture, subwavelength variation 

can be retrieved precisely from the far-field irradiance.  Extensive simulations 

revealed that in the general case of a light diffracting rectangular aperture, even when 

the vibration amplitude is 1 mμ , the inaccuracy remains bellow 1 nm . 

 

Fig. 2-4. Subwavelength variation for a rectangular aperture. (a): deduced *a , (b): 

the difference aa −* , where the dotted curve refers to the periodic case, the solid-line 

curve refers to the quasi-periodic case and the bold solid-line curve refers to the 

random case. 



 12

 

2.3 Retrieving 1-D subwavelength signature from far-field diffraction 

pattern measurement 

 

In the section 2.2, the 1-D dynamic subwavelength variation signature is shown 

to be determinable a precision of better than 1 nm  from far-field irradiance 

measurement by using the deduced quantity, derivative intensity.  We may ask if 

there is any other quantity that could be used to retrieve the subwavelength variation 

of diffraction structure, besides the quantity of derivative intensity.  Truly, derivative 

intensity is not the only far-field optical quantity of characterization.  In addition, we 

have an alternative characterization with far-field diffraction pattern.  The 

subwavelength variation of diffractive structure causes the variation in the far-field 

diffraction pattern.  Hence, one can retrieve the information contained in the far-field 

diffraction pattern and use it to trace the scale of subwavelength variation.  In the 

section 2.3, it will be shown that the associated shifting of the dark line of diffraction 

pattern, caused by subwavelength variation, had good linear correlation to that and 

will be magnified about hundred times.  Hence, an alternative method of detecting 

subwavelength variation from far-field measurement, based on pattern measurement 

could be achieved.  
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2.3.1 Basic formalism  

The basic formalism of associated shifting of the dark line of diffraction pattern 

to the corresponding 1-D subwavelength variation in two situations: (1) Direct 

observing the diffraction pattern, and (2) Observing interference pattern with an 

embedded aperture, will be addressed in this section. 

(a) Directly observing the diffraction pattern 

Consider the optical wave diffracted by a single aperture with the dimensions 

a2  and b2 .  The intensity distribution on the detector that positioned at a distance 

z  away from the aperture is 

( ) ( )
( )

( )
( )2

2

2

22

/
/sin

/
/sin4,

zky
zkby

zkx
zkax

z
AyxI ⎟
⎠
⎞

⎜
⎝
⎛=
λ

.                (2-4) 

The analytical result of the dark line locations on the detector along the x  direction 

is  

( ) ( )...3,2,1,
2

== m
a
zmaxd

λ                     (2-5) 

, where m is the order of dark line pattern.  Expanding the width at a certain 

specified aperture width , e.g., 0aa = , we have 

( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛
−+−+−−= 3

0
2

03
0

02
00

111
2

aaOaa
a

aa
aa

zmaxd
λ  ,       (2-6) 

where the symbol O  denotes the truncated terms after the second order 2
0 )( aa − .  
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Apparently, when the aperture has a subwavelength variation and the diffraction 

aperture is much larger compared to the wavelength of light, then under the first order 

approximation, the relation between the pattern shift on the screen, dxΔ , and the 

subwavelength variation aΔ  is 

a
a

zmxd Δ−≅Δ 2
02
λ .                       (2-7) 

The inaccuracy ratio of the approximation is ~ 00 / aaa − . 

 

(b) Observing interference pattern with an embedded aperture 

In this section, we consider the diffraction pattern variation under 

embedded-aperture interferometer configuration.   As shown in Fig. 2-5, it is a 

common Mach-Zehnder interferometer but with an embedded aperture.  To be 

specific, a monochromatic plane wave of amplitude A  and wavelength λ  was 

assumed to be orthogonally illuminated on a beam splitter B1.  The beam was split 

into two after passing through the beam splitter.  One beam was reflected by a mirror 

M1, and passed through a rectangular observation aperture S1, with dimensions a2  

and b2 .  Another beam was reflected by mirror M2, and passed through another 

rectangular embedded aperture S2, whose dimensions were '2a  and b2 .  (For 

simplicity, we set the two apertures to be different in one direction only.)  Then the 

two beams were passed through another beam splitter B2 and recombined into one 
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beam.  The diffracted intensity was collected over a rectangular detector. The 

detector was with dimensions X2  and Y2  centered at the beam width, and was 

positioned at a path distance z  away from each aperture.   

 

Fig. 2-5. Schematic diagram of embedded-aperture interferometer configuration 

 

The interference intensity distribution of these two beams on the detector is 

( )
( )

( )
( )
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,
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zkx
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zkx
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zky
zkby

z
A

UUyxI

λ

.   (2-8) 

Assuming that there is subwavelength variation along the x direction for the 

observation aperture with dimensions a2  and b2 , where aaa Δ+= 0  and the 

symbol aΔ  denotes the subwavelength variation of the half aperture-width.  The 

other beam passes through another embedded rectangular aperture, with dimensions 

'2a  and b2 , where 0' aa = .  Explicitly, from Eq. (2-8), the interference intensity 

distribution of these two beams on the detector can be rewritten as: 
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( )
( )

( )
( ) ( )

( ) ( )[ ]{ }

( ) ( )[ ]{ }2
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2
0022

2

2

2

 /sin/sin 

 /sin/sin 
/
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/
/sin16,

zxaakzxkaC
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zkxzky

zkby
z
AyxI

Δ++=

Δ++=
λ ,     (2-9) 

where the symbol C  denotes the function which has no relationship to the widths 

along x-direction of the two apertures.  Therefore, one can use Eq. (2-9) to solve the 

numerical result of the dark line locations of the interference pattern.  The condition 

follows that  

0=
∂
∂
x
I  and 02

2

>
∂
∂
x
I .                     (2-10) 

Assuming that the variation scale, compared to the aperture width for the observing 

subwavelength variation was very small, we can deduce the linear relation between 

the subwavelength variation of the half aperture-width and the dark-line pattern shift 

as follow. The function ( )[ ]zxaak /sin 0 Δ+ was expanded to 

)/sin()/cos()/cos()/sin( 00 zaxkzxkazaxkzxka Δ+Δ .  Considering the variation of 

the half aperture in the subwavelength scale, with substitutions 1)/cos( ≈Δ zaxk  and 

zaxkzaxk /)/sin( Δ≈Δ , the interference intensity can be rewritten as 

( ) ( ) ( ) ( ){ }2
00 /cos//sin2, zxkazaxkzxkaCyxI ×Δ+= .  The relations between the 

dark-line position dx  axis and the subwavelength variation aΔ  is  

( ) zaxkzxka dd 2//tan 0 Δ−= .                      (2-11) 

The pattern shift a
da
dxx d

d Δ=Δ , where ( ) ( )ad
dx

aad
dx

da
dx ddd

Δ
=

Δ+
=

0

.  Derived from 

Eq. (2-11) with aΔ , we have  
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where the ⎟
⎠
⎞

⎜
⎝
⎛+=⎟

⎠
⎞

⎜
⎝
⎛

z
xka

z
xka dd 0202 tan1sec .  From Eq. (2-11), we obtain the relation 

( )202 2/tan zaxk
z
xka

d
d Δ−=⎟
⎠
⎞

⎜
⎝
⎛ .  Because the variation of the aperture was in the 

subwavelength scale, 1tan 02 <<⎟
⎠
⎞

⎜
⎝
⎛

z
xka d and ⎟

⎠
⎞

⎜
⎝
⎛

z
xka d02sec  can be approximated to 1.  

Considered with 'aa ≈ , the dark-line position dx  is very close to the value that was 

diffracted by the single aperture with half width 0a , with a substitution dx  from Eq. 

(2-7).  Overall we can estimate the relation between the subwavelength variation of 

the half observation aperture-width and the dark-line pattern shift in linear form 

a
a

zmxd Δ−≅Δ 2
04
λ .                       (2-13) 

 

2.3.2 Simulation verification with subwavelength variation  

To verify the feasibility of the relationship in Eq. (2-7) and (2-13) in detail, we 

carried out numerical evaluation for the variation of the first dark-line, while the 

observation aperture varying in subwavelength scale.  In the case where the 

wavelength of the incident light was 632.8 nm , the detector was at a distance of 

100 mm  from the aperture, and the half aperture width along the x  direction was 

10 mμ ; the results are shown in the lighter lines in Fig. 2-6. The analytical result is 

depicted using a solid line, while the first-order approximation is shown with a dotted 
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line.  The shifting of the diffraction pattern, associated with subwavelength variation, 

had good linear correlation and was magnified about 300 times.  In this case, when 

the aperture variation was under 0.5 mμ , the inaccuracy of the first order 

approximation was under 5%.  Taking the second order approximation, the 

inaccuracy would be less than 0.5%.  Meanwhile, a direct numerical examination 

based on the Fraunhofer approximation [22], i.e., using the Fraunhofer diffraction 

integral, was used to evaluate the dark line position shift; this is shown with hollow 

triangular symbols.  The diffraction pattern shift, with the half observing aperture 

with 100nm variation, is shown in Figs. 2-7(a) and (b).  The half observation 

aperture was 10 mμ  and the detector, with dimensions 100 mμ  and 100 mμ , was 

centered at the first order dark-line position at a distance of 100 mm  from the aperture.  

The pattern shift was 31.82 mμ , considering the subwavelength variation of the 

aperture was magnified about 300 times. 

 

Again, for a comparison of section 2.3.1, the numerical evaluation of observing 

interference pattern with an embedded aperture are shown in Fig. 2-6 in the thicker 

lines.  The numerical result from Eq. (2-11) is shown with a solid line, and the linear 

approximation result (Eq. (2-13)) is shown with a dotted line.  The examination of 

the Fraunhofer approximation for the dark line position shift is shown with solid 
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triangular symbols.  The diffraction pattern shift, caused by a 100nm variation of the 

half observing aperture, is shown in Figs. 2-7(c) and (d).  The parameters used in the 

simulation were as follows: the half observation aperture was 10 mμ ; the detector 

(size: 100 mμ  X100 mμ ) was centered at the first order of the dark-line position on 

the focal plane; and the focal plane was located at a distance of 100 mm  from the 

observing aperture.  From the figures, one can see that the pattern shift was 

15.49 mμ ; comparing the subwavelength variation of the aperture, the scale was 

magnified about 150 times. 

 

Fig. 2-6. The dark-line position shift versus the half aperture variation. The thicker 

line denotes the interferometer configuration, while the lighter line denotes the single 

aperture. 
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Fig. 2-7. The diffraction patterns before and after 100nm half aperture variation in 

two different situations. Directly detected method: (a) and (b); embedded-aperture 

interferometer configuration: (c) and (d). 

 

2.3.3 Discussion on contrast influence in pattern measurement 

The shifting of the diffraction pattern associated with subwavelength variation 

held a good linear correlation; however, under embedded-aperture interferometer 

configuration, the scale was magnified about 150 times, which is only half of the 

directly detected method.  The shifting amount of the dark line, however, is not the 

only factor in taking a good measurement.  Contrast of the diffraction pattern is also 
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crucial in detecting the signal.  To demonstrate the influence of the contrast, we first 

calculated the intensity difference between the maximum and the minimum 

diffraction patterns within the area that was centered at the dark line position with a 

finite width; this was 30 mμ , for both cases.  We then normalized the intensity 

difference; the results are shown in Figs. 2-8 (a) and (b).  The parameters used in the 

simulation were as follows: the half observing aperture was 10 mμ ; the detector was 

30 mμ X 100 mμ  and was centered at the first order dark-line position on the focal 

plane; and the focal plane was located at a distance of 100 mm  from the observing 

aperture.  The cross-section along the x axis of the first dark-line of the two cases is 

shown in Fig. 2-8 (c).  It is obvious that the diffraction pattern of the 

embedded-aperture interferometer configuration is sharper than that of directly 

detected method, which implies that it is easier to confirm the detection of 

subwavelength variation, using the embedded-aperture interferometer configuration. 
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Fig. 2-8. The diffraction patterns centered at the first dark-line position: (a) directly 

detected method and (b) embedded-aperture interferometer configuration.  (c): the 

cross sections along the X axis of (a) and (b), where the thicker line represents the 

embedded-aperture interferometer configuration and the lighter line represents the 

directly detected method. 

 

2.4 Summary 

In summary, it is shown that 1-D subwavelength signature of diffraction 

structure can be retrieved from the far-field characterization, such as irradiance and 

diffraction pattern. The 1-D dynamic subwavelength variation signature of a slit and a 

rectangular aperture is shown to be determinable from its far-field irradiance with a 

precision of better than 1 nm .  Another feasible method of detecting subwavelength 

variation with diffraction pattern variation was also proposed.  The variation of the 

subwavelength scale was verified contained in dark-line pattern shift and was 
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enlarged in an order about hundred times to be easily measured in the far-field.   

 

Form the results of this chapter, it implies the possibility to extract much useful 

information, such as an object’s thermal characteristic, vibration, deformation and 

others in the precision of subwavelength scales, form only far-field optical 

measurement.  

 



 24

Chapter 3  
 
Enhancement of detection sensitivity of 1-D 

subwavelength variation measurement 

 

3.1 Introduction 

In the chapter 2, a scheme to retrieve the dynamic signature of the 

subwavelength variation from far-field irradiance with an appreciable quantity- 

derivative intensity with a precision of better than 1 nm was proposed.  However, 

while measuring the structure variation in subwavelength scale, what we retrieved in 

the far-field is usually a weak optical signal and hence, it is a critical issue to enhance 

the detection sensitivity of the measurement.  Therefore, effective measurement 

methodologies must be developed to retrieve subwavelength variation from far-field 

measurement, with a higher sensitivity.  The enhancement of detection sensitivity is 

certainly possible to simply increase the light power that is transmitted through the 

test sample.  However, in most situations, the test sample may suffer saturation 

and/or damage; hence, incident power must be limited.  This means that enhancing 

detection sensitivity, via a direct increase of the incident power, simply may not work. 
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In this chapter, two embedded-aperture interferometer configurations were proposed, 

which could enhance the detection sensitivity of 1-D subwavelength variation 

measurement of a rectangular aperture with arbitrary aperture width [23,24].  In these 

configurations, an aperture (named the reference aperture) was posited symmetrically 

or asymmetrically relative to the aperture with the subwavelength variation was to be 

identified (named the test aperture).  In symmetrical configuration, to enhance the 

detection sensitivity at any specific detection width, we have to modify the 

configuration and width size of the reference aperture.  In asymmetrical 

configuration, the detection sensitivity could be enhanced at any specific detection 

width by only shifting the relative position of the reference aperture with fixed width 

size.  On the other hand, with these two embedded-aperture interferometer 

configurations, the detection sensitivity is directly in proportion to the power of the 

reference beam.  By increasing the power of the light beam transmitting through the 

reference aperture, detection sensitivity can be increased to a desired order without 

damaging the test sample owing to increase the incident power on the test aperture. 

 

3.2 Symmetrically-embedded-aperture interferometer 

3.2.1 Basic formalism and general features 

Although it is not necessary to be limited to one specific interferometer configuration, 
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for simplicity, we have demonstrated a typical scheme.  The proposed configuration, 

which is similar to the Mach-Zehnder Interferometer structure, is shown in Fig. 3-1.  

A common Mach-Zehnder interferometer was used, but with an embedded aperture, 

for which the associated subwavelength variation can be detected.  In addition, 

another aperture was embedded for reference and optimization control.   

 

Fig. 3-1. Schematic diagram of interferometer configuration. 

 

To be specific, a monochromatic plane wave of amplitude A  and a wavelength 

λ  was assumed to be orthogonally illuminated on a beam splitter B1.  The beam 

was split into two after passing through the beam splitter.  One beam was reflected 

by a mirror M1, and passed through a rectangular observation aperture S1, with 

dimensions a2  and b2 .  Another beam was reflected by mirror M2, and passed 

through another rectangular embedded aperture S2, whose dimensions were '2a  and 

b2 .  (For simplicity, we set the two apertures to be different in one direction only.)  
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Then the two beams were passed through another beam splitter B2 and recombined 

into one beam.  The diffracted intensity was collected over a rectangular detector. 

The detector was with dimensions X2  and Y2  centered at the beam width, and 

was positioned at a path distance z  away from each aperture.   

 

In the far field region, the diffraction field is the Fourier transform of the 

transmission function.  The transmission functions of the two apertures are: 
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, where k is the wave number, 1−=j , and csin  is used to denote the sinc 

function.  The interference intensity distribution of these two beams on the detector 

is 
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The overall power zP , flowing through the detector is  
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Unlike the previous case of the non-interferometer approach mentioned in the chapter 

2, an additional term are associated with the half observation aperture width a .  In 

other words, with appropriate arrangement, it is possible to increase the sensitivity of 

the overall power variation with the observation aperture width. 

 

To quantify the sensitivity, we first followed Ref. [19] and used derivative 

intensity 
da
dPf z

a = .  The derivative intensity can be deduced by using Leibniz’s rule, 

resulting in 
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where Si  denotes the sine-integral function. 

 

To determine the maximum derivative intensity, the optimized enhancement of 

the sensitivity of the observed subwavelength variation was specified at half aperture 

width a .  With two times the partial derivative with respect to half detector width 

X , the optimized condition was determinable.   Within the proposed interferometer 
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configuration, the optimization condition required the half embedded aperture width 

'a  of the reference beam and half detector width X  to satisfy: 
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where 1m  and 2m  are positive integer numbers. The result of π=zkaX /  and 

π2/' =zXka , by which Eq. (3-6) is fulfilled, is shown in Fig. 3-2.    

 

3.2.2 Simulation verification and discussion   

As a numerical demonstration, a half aperture width, 50 mμ , was considered.  

Meanwhile, a common light-source, the He-Ne laser, in which the wavelength is 

632.8 nm, was used.  The detector was at a distance of 100 mm  from the aperture, 

the half detector width was 632.8 mμ  and the optimized reference beam half width 

was 100 mμ .  We first considered the condition with the same size of detector.  As 

shown in Fig. 3-2(a), with the interferometer configuration (thick solid line), the 

overall power variation on the detector was enhanced to 3.5 times that of the directly 

detected method (dotted line).  Even when the detector for the directly detected 

method was optimized (thin solid line) by modifying the detector width [19], the 

sensitivity with the embedded-aperture interferometer configuration was still 

substantially (about 2.7 times) more than that of the directly detected method with 

optimized detector, as shown in Fig. 2(a).   
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A different observation aperture size did not affect the conclusion, as shown below.  

In figures 3-2(b) and (c), the maximum sensitivity observation half aperture widths 

were optimized at 100 mμ  and 150 mμ , respectively.  When the sensitivity of 

observation needs to be maximized, the embedded-aperture width can make twice as 

the observation aperture, and the detector size can be different for optimization.  

Re-setting for different wavelengths is straightforward, and sensitivity enhancement is 

always available.  If the incident wavelength was changed, such as to 532nm, the 

half detector width varied to 532 mμ , i.e., Eq. (3-6) was satisfied; we obtained the 

same result as shown in the Fig. 3-2(a).  This meant that it is possible to retrieve the 

subwavelength variation of an aperture, with sensitivity enlarged nearly three times, 

by adding an arm with an additional appropriate aperture and observing the 

interference pattern in the far field.  A different observation aperture size, or using a 

different wavelength, did not affect the conclusion; optimization could be performed. 
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Fig. 3-2. Derivative intensity versus the half aperture width.  The maximum sensitive observation half 

aperture was optimized at (a) 50 mμ , (b) 100 mμ , and (c) 150 mμ . 

It should be noted that the to enhance the detection sensitivity at a specified 

width of the observation aperture S1 , a , the half detector width X  and position of 

the detector, z , should be modified to satisfied the Eq. (3-6).  Moreover, the width 
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of the reference aperture S2 , 'a , should also be modified with the width of the 

observation aperture S1 , a .  E.g., in the demonstration simulation π=zkaX /  and 

π2/' =zXka , i.e., the width of observation aperture S2 , 'a  should be twice the the 

width of observation aperture S1 , a .  Though the proposed 

symmetrically-embedded-aperture interferometer can indeed to enhance the detection 

sensitivity of 1-D subwavelength variation measurement, it seems that it is not easy to 

implement in the realistic situation.  In the next section, an tunable 

asymmetrically-embedded-aperture interferometer was proposed to the detection 

sensitivity of 1-D subwavelength variation more conveniently.  

 

3.3 Tunable asymmetrically-embedded-aperture interferometer 

3.3.1 Basic formalism and general features 

The proposed configuration, which is similar to the Mach-Zehnder 

Interferometer structure, is shown in Fig. 3-3 (a).  The test aperture, D1 was 

associated with subwavelength variation to be identified.  In addition, another 

embedded aperture, D2, which could be shifted, was embedded.  The test-aperture, 

D1 and the reference-aperture, D2 were situated asymmetrically to the observing plane, 

as shown in Figs. 3-3 (b) and (c).  Note that, if the detector position was not in the 

far-field region, then by introducing the focal lens against the apertures, as shown in 



 33

the dotted-circle in Figs. 3-3 (b) and (c), we could still observe the far-field diffraction 

pattern at the back focal plane, behind the lens.  

 

 

Fig. 3-3. (a) Schematic diagram of interferometer configuration.  (b) The relative position of the 

detected-aperture.  (c) The relative position of the embedded-aperture. 

 

A monochromatic plane wave of amplitude A , and a wavelength λ , was 

assumed to be orthogonally illuminated on a beam splitter, B1.  The beam was split 

into two beams, after passing through B1, each beam having a different amplitude, 

denoted by C1 and C2  ( ACC =+ 21 ).  One beam was reflected by a mirror M1, and 

passed through the test-aperture D1, with dimensions a  and b .  The other beam, 

reflected by mirror M2, passed through the reference-aperture D2, whose dimensions 
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were 'a  and b , situated relative to the test-aperture with α  along the ξ  direction 

(see Figs. 3-3 (b) and (c)).  After passing through another beam splitter B2, the two 

beams were recombined into one beam.  The diffracted intensity was collected over 

a rectangular detector, with dimensions X2  and Y2 , which were positioned at a 

path distance z  away from each aperture.  Considering the detector being situated 

at the Fraunhofer diffraction region, the diffraction optical field distribution is [25] 
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where k is the wave number and 1−=j .  The diffraction aperture is assumed to 

lie in the ( )ηξ ,  plane and illuminate in the positive z direction.  The symbol 

( )ηξ ,U  represents the optical field behind the diffraction aperture.  The optical field 

calculated was across the ( )yx,  plane, which is parallel to the ( )ηξ ,  plane at a 

normal distance z.  The diffraction optical fields of the two beams on the detector are 
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The interference intensity distribution of the two beams on the detector is 

( ) 2
21, UUyxI += .  Because the intensity distributions of the two beams, in terms of y 

were the same, we defined the intensity function as ( )xf I , which only included the 
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influence of the x parameter of the interference intensity distribution, as follows: 
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Assume that the amplitude of the reference beam is γ  times the beams transmitted 

through the test-aperture, i.e., 12 CC γ=   ( γ  is named as the amplitude ratio).   

The intensity function can then be rewritten as 
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The irradiance collected by the detector was denoted by symbol zP , which can be 

evaluated by ( )∫ ∫
− −

=
X

X

Y

Y
z dxdyyxIP , .  The detection sensitivity is proportional to the 

far-field irradiance variation, with the change of observation aperture width, i.e., the 

quantity dadPz / .  The derivative intensity function is defined as ( )∫
−∂

∂
=

X

X
Ia dxxf

a
f , 

which is proportional to the detection sensitivity.  The detailed calculation gives us 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛=

z
XakSi

z
XakSi

z
kaXSiC

k
zafa

βαγ22 2
1 .     (3-12) 

Note that the first term in the derivative intensity function was same as that of the 

directly detected case (i.e., without the embedded-aperture configuration), caused by 

the variation of the test aperture without the reference aperture, as follows 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

z
kaxSiC

k
zafa

2
11

4 .                      (3-13) 

The second term in the derivative intensity function was raised from the adding the 
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asymmetric reference aperture, which introduces the reference beam to interfere with 

the detection beam; it follows that 
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named as the interference function. 

 

The influence of detection sensitivity caused by embedded-aperture was 

discussed as follow.  Assuming the amplitudes of the two beams are equal, i.e., 

1=γ , the derivative intensities while embedded with different situations were shown 

in Fig. 3-4.  In Figs. 3-4(a), (b) and (c) the widths of the reference apertures were 

fixed at 150 mμ , and the relative position α  of the reference apertures were located 

at the right side, relative to the test aperture at 50 mμ , 150 mμ , and 250 mμ , 

respectively.  In Figs. 3-4(d), (e), and (f), the relative positions of the reference 

apertures were fixed at 250 mμ , and the widths of the reference apertures were 50 mμ , 

150 mμ , and 250 mμ , respectively.  For every simulation in the paper, a rectangular 

detector, with dimensions 200 mμ  by 200 mμ , was positioned at a distance of 25 mm  

from each aperture.  In addition, the widths of the two apertures lying lies along 

η -direction were both set to be 300 mμ .   The analytical result of the derivative 

intensity of the proposed interferometer configuration is shown as a thick solid line, 

while the directly detected method (without interferometer mechanism) is shown as a 
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dotted line, for comparison.  A direct numerical examination, based on the 

Fraunhofer diffraction integral, is shown with triangle symbols.  

 

Fig. 3-4. Normalized derivative intensity versus the test aperture width.  The reference aperture width: 

150 mμ , relative position: (a) 50 mμ , (b) 150 mμ , and (c) 250 mμ .  The relative position of the 

reference aperture: 250 mμ , with width: (d) 50 mμ , (e) 150 mμ , and (f) 250 mμ . 

 

Three unique features can be identified from Fig. 3-4:  (1) the form of the 

derivative intensity function is related to the reference aperture width, 'a ;  (2) the 

peak position of the derivative intensity function is relative to the position of the 

reference aperture, α ; and (3) we can see that by using a reference aperture, situated 

asymmetrically to the test aperture, as the reference beam for interference with the 

optical field of the test aperture, an additional peak in the derivative intensity function 

can be identified, i.e., the detection sensitivity of measuring 1-D subwavelength 



 38

variation of test-aperture was enhanced at the additional peak position of the 

derivative intensity function.  In other words, shifting the reference aperture could 

enhance the detection sensitivity of any specific test aperture.  To optimize the 

detection sensitivity at the specific test aperture width, we had to discuss the 

relationship between the reference aperture width 'a , and the form of the derivative 

intensity function, as well as the relationship between the relative position of the 

reference aperture α  and the peak of the derivative intensity function. 

 

3.3.2 Detection sensitivity optimization 

The detection sensitivity is directly proportional to the value of derivative 

intensity function, ( )afa .  Hence, we want to find the condition of the reference 

aperture that could optimize the detection sensitivity to have a maximum peak value 

at any specific test aperture width, 0a .  While both the detector width and the 

detector position were fixed, the first term of the derivative intensity function, ( )afa1 , 

was a function with stationary form with respect to the test aperture width a .  The 

second term of the derivative intensity function, ( )afa2 , was linear independent with 

the function ( )afa1 , which was introduced by adding the reference aperture.  

Actually, the peak of the derivative intensity function was introduced by ( )afa2 .  

The interference function was made up of two sine-integral functions.  Sine-integral 
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functions have such property that ( ) ( )xSixSi −=− ; the maximum of the sine-integral 

function occurred at π=x , i.e. ( ) 1=πSi .  The interference function can be 

rewritten as:  
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To maximize the interference function at the specific detected-aperture width 0a , the 

following relations must be satisfied: 
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Solving Eq. (3-15), the optimized condition, maximizing the detection sensitivity at 

the specified detected-aperture width 0a  was derived, i.e., the relative position of the 

reference aperture α , and the reference aperture width 'a , which must satisfy: 
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The analytical and numerical demonstrations are shown in Fig. 3-5.  The detection 

sensitivities were separately optimized, at three different test aperture widths 0a , i.e., 

100 mμ , 300 mμ , and 500 mμ .  In these cases, the widths of the reference apertures 

a  were fixed at 158.2 mμ , and the relative positions of the reference apertures α  

were 20.9 mμ , 220.9 mμ , and 420.9 mμ , respectively.  In other words, in the 

measurement of the subwavelength variation of the aperture width, with the 

measurement of far-field irradiance variation, by simply shifting the reference 
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aperture, we could optimize the detection sensitivity at any test aperture width.  It 

should be noted that by using optimized width of the reference aperture could let the 

derivative intensity having a maximum peak value; using different reference aperture 

widths may change the width of the derivative intensity and cause the peak value of 

derivative intensity function to decrease.   

 

 

Fig. 3-5. Normalized derivative intensity versus the test aperture width.  The maximum sensitive 

detected-aperture width was optimized at (a) 100 mμ , (b) 300 mμ , and (c) 500 mμ . 

 

3.3.3 Discussion  

Some properties of the proposed embedded-apreture interferometer will be 

disscussed in this seciton.  First, it is worthwhile to note that, in our proposed 

configuration, the detection sensitivity can be tuned to a desired order by only 

increasing the reference beam power.  For example, the detection sensitivities were 



 41

optimized at the test aperture width ma μ3000 = , with the amplitude ratios 1=γ  and 

5=γ ; the results are shown in Figs. 3-6(a), and (b), respectively. 

 

Fig. 3-6. Normalized derivative intensity versus the test aperture width with an amplitude ratio: 

(a) 1=γ , and (b) 5=γ . 

 

Besides, in the proposed tunable embedded-aperture interferometer configuration, by 

simply shifting the relative position of the reference aperture, we could enhance the 

detection sensitivity of test aperture with arbitrary aperture width.  Why does the 

derivative intensity could be enhanced by shifting the reference aperture, so do the 

detection sensitivity?  The reason is that the action of interference of two beams 

rearranged the diffraction intensity distribution on the detector.  The optimized 

condition of the reference aperture allowed the trend of the additional irradiance 

variation, introduced by the reference aperture on the whole detector, to be the same 

and the maximum.  To illustrate the action of optimization by shifting the reference 

aperture, three different situations were analyzed.  First, a reference aperture was 
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situated so that it satisfied the optimization condition Eq. (3-16), i.e., the relative 

position of the reference aperture was 70.9 mμ  and the width of the reference 

aperture was 158.2 mμ .  Second, the reference aperture was shifted to a 

non-optimized relative position of 150 mμ .  Finally, the reference aperture was 

shifted to a non-optimized relative position of 250 mμ .  The difference in intensity, 

dadI / , with the detector at the width of the test aperture being 150 mμ  for the three 

situations, are shown in Figs. 3-7(a), (b) and (c), respectively.  The additional 

irradiance variations introduced by interference that compared to the directly detected 

case of the three situations are separately shown in Figs. 3-7(d), (e) and (f).  Note 

that in the optimization condition, the detected difference in intensity was maximized 

and the additional irradiance variation had the same positive trend.  In the 

non-optimized condition, the additional irradiance variation was did not have a 

positive trend, so the difference in intensity was less than the optimized intensities. 
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Fig. 3-7. The differences in intensity, dadI / , on the detector at the test-aperture width of 150 mμ  

are shown in Figs.3-7(a), (b) and (c).  The additional irradiance variations, introduced by interference, 

compared to the directly detected cases of the three situations are shown in Figs. 3-7(d), (e) and (f).  

Optimized conditions: (a)(d), and non-optimized conditions : (b)(e) and (c)(f). 

 

It is worthwhile to note that the optimization was processed by controlling the 

peak position of the interference term in the derivative intensity function, mainly by 

shifting the relative position of the reference aperture.  In the region that 
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Xza 2/0 λ> , the fluctuation of the first term in the derivative intensity function, i.e., 

1af , was not significant.  Hence, the change in the additional peak position of the 

derivative position by the fluctuation of 1af  was small enough to be ignored.  

However, in the region of Xza 2/0 λ< , the function 1af  was in the form of a linear 

increase and this change in the optimized peak position may be significant.  

Therefore, optimizing the peak position of the detection sensitivity, at a specific 

aperture width within Xza 2/0 λ< , by shifting the relative position of the reference 

aperture will fail.  In other words, the tunable asymmetrically-embedded-aperture 

interferometer configuration is applicable within 

Xza 2/0 λ> ,                         (3-17) 

i.e., there is a limit on the optimized test aperture width 0a .  For instance, 

considering that mX μ100= , mμλ 6328.0= , and mmz 25= , the limit on the 

optimized test aperture width is that it must be greater than 79.1 mμ .  Nevertheless, 

with the enlargement of detector width and a shorter detector distance behind the 

apertures, the confinement of the optimized detected-aperture width 0a  can be 

decreased to the order of several times the wavelength, which is close to the limitation 

of the scalar diffraction theory.  In other words, with a suitable arrangement of the 

configuration of the interferometer, the width limit of test sample can be ignored. 
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On the other hand, referring to Eq. (3-2) and (3-3), the effect of the relative 

position of the aperture to the system axis introduces the phase terms ⎟
⎠
⎞

⎜
⎝
⎛−

z
xaj
λ

πexp  

and ( )
⎟
⎠
⎞

⎜
⎝
⎛ −
−

z
xj

λ
αβπexp .   Shifting both the reference aperture and the test aperture 

to the left of 2/a does not change the result, i.e., the absolute positions of the two 

apertures are not important; however, the relative position of the reference aperture 

compared to the test aperture, controlled the optimization performance. 

 

3.4 Summary 

Considering in the situation that while the aperture are varying in subwavelength scale, 

the correspondence far-field optical signal might be weak to be detected in the 

far-field; and thus to develop the scheme to increase detection sensitivity is needed.  

In this chapter, two embedded-aperture interferometer configurations were proposed 

to enhance the detection sensitivity of 1-D subwavelength variation measurement.  

The tunable asymmetrically embedded-aperture interferometer configuration is more 

easily to be implemented in the real situation.  In this configuration, a reference 

aperture was posited asymmetrically, relative to the test aperture, which exhibiting 

subwavelength variation.  By only shifting the relative position of the reference 

aperture, the detection sensitivity of measuring the subwavelength variation in the far 

field can be enhanced to a desired value at any specific detection width. 
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Chapter 4  
 
Deconvolution of 2-D subwavelength variation 

information 

 

4.1 Introduction 

The strategies of determination of 1-D dynamic signature of the subwavelength 

variation of the width of a rectangular aperture has been shown to be determinable 

from far-field irradiance measurement with a precision better than 1 nm or from the 

far-field pattern measurement are discussed in the chapter 2.  The enhancement of 

the detection sensitivity of 1-D subwavelength signatures by using a tunable 

asymmetrically embedded-aperture interferometer configuration was discussed in the 

chapter 3.  As shown in these results, these measurement schemes that retrieving of 

subwavelength dynamics variation are essentially one-dimensional.  However, in 

more realistic situations, the structure may vary in two or three dimensions, and the 

characteristics of subwavelength variations contained in the far-field are coupled and 

thus will be difficult to separate.  In this chapter, a multiple-detector measurement 

strategy, with a blind source separation method [26], was proposed to decompose and 

characterize the two-dimensional dynamical signatures of subwavelength variations 
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from far-field optical measurements 27. 

 

4.2 Retrieving 2-D subwavelength variation characteristics with 

two-detector strategy 

 

4.2.1 Basic formalism and general features 

Two-detector system was proposed and was estimated to contain enough 

information to retrieve 2-D subwavelength variation information.  To illustrate the 

basic idea of using multi-detector configuration to retrieve multi-dimension 

dynamical subwavelength variations, a two-detector measurement system was 

proposed to show how the characteristics of the two-dimensional signatures of 

subwavelength variation of a rectangular aperture could be retrieved. 

 

Fig. 4-1. Schematic diagrams of (a) a two-detector configuration, while (b) shows the relative positions 

of two detectors. 
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  As shown in Fig. 4-1, a monochromatic plane wave of amplitude 1 and 

wavelength λ , is assumed to be orthogonally illuminated on the observing 

rectangular aperture 1A , with dimension a2 X b2 .  The dimensions of the two half 

widths of the rectangular aperture, a  and b , are larger than several wavelengths, 

and each of them varied in time in subwavelength scale.  Two detectors, 1D  and 

2D , with the same size W XW  are positioned at different positions relative to the 

observing aperture 1A , and are in the far-field region behind the observing 

rectangular aperture at a distance Z .  The overall power collected by the two 

detectors are denoted as 1P  and 2P .  The relationship between the overall power 

variations: 1PΔ , 2PΔ , and the aperture width variations: aΔ , bΔ , can be written in 

the following matrix form: 
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where aP ∂∂ /1 , bP ∂∂ /1 , aP ∂∂ /2  and bP ∂∂ /2  are named as partial derivative 

intensity of the overall power of the two detectors, and the definition of overall power 

variations and aperture width variations are: ( ) ( ) ( )tPttPtP −Δ+=Δ , ( ) ( ) ( )tattata −Δ+=Δ , 

( ) ( ) ( )tbttbtb −Δ+=Δ  ( tΔ  is the time interval between every two measuring time point 

of detector).  While the aperture varies in subwavelength scale, the variation of the 

quantity, partial derivative intensity, is small enough and thus can be assumed to be 
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time-independent as derivative intensity that illustrated in the chapter 2.  As the 

relations shown in the Eq. (4-1), the overall power variations can be treated as linear 

mixtures of the aperture width variation, and thus the issue that retrieving the coupled 

signatures of the two-dimensional subwavelength variation can be treated as a 

classical blind source separation problem [22,28,29,30].   

 

4.2.2 Time-delayed correlation methods 

The classical blind signal separation problem could be illustrated in the Fig. 4-2. 

The blind signal separation methods could recover the mixing independent source 

signals by the detected signal.   

 

Fig. 4-2. Schematic diagrams of the blind signal separation problems 

 

A less calculation complexity method of solving the blind signal separation 

problems, time-delayed correlation method [22]  was applied to demonstrate the 

feasibility to separate the coupled multi-dimension far-field optical signal.  This 
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method is summarized as follows: N  statistically independent source signals, 

ia ( )Ni ,...,2,1= , satisfying the condition, ( ) ( ) ( ) ijji ttKtata δ−= '' , were mixed 

linearly in N  detected signals, ∑= N

j jiji aCI ( )Ni ,...,2,1= , which were recorded 

by N  detectors, where ijC  are the mixing coefficients.  The key is to solve the 

( )1+NN  unknown variables, i.e., the mixing coefficients ijC  and the source signal 

strength ( )0ii K=λ , by the measurements iI .  This method introduces the 

additional assumption that the mean value of the source signal is zero, ( ) 0=tai , 

and constructs two matrices, the symmetrical correlation matrix ( ) ( )tItIM jiij =  

and the time delayed correlation matrix ( ) ( )τ+= tItIM jiij , whose clear forms are 

∑= N

l ljlilij CCM λ  and ∑= N

l ljlilij CCM λ .  The mixing matrix C  can 

diagonalize M  and M  in such form that ( ) Λ=
−− 11 TCMC  and ( ) Λ=

−− 11 TCMC , 

where ijiij δλ=Λ  and ijiij δλ=Λ .  Multiplying the matrix Λ  by 
1−

Λ , the blind 

signal separation problem becomes a eigenvalue problem where 

( ) ( )11 −−
= ΛΛCCMM .  While we solving the mixing coefficients ijC , it could be 

easily adopted to solve the source signal.  More detail could be founded in Appendix 

II.  

 

4.2.3 Retrieving results and scaling issues 

The feasibility of the proposed two-detector measurement could retrieve 2-D 
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subwavelength variation characteristics from measuring the coupled far-field optical 

information was demonstrated as follows.  In our situation, we want to use the 

measurements that overall power variation of two detectors: 1PΔ , 2PΔ , to retrieve 

the aperture width subwavelength variations: aΔ , bΔ .  Without loss of generality, 

the variation types of the observing aperture widths were set as: one dimension as 

random fluctuation, and the other dimension as quasi-periodic variations.   The 

aperture width that varying in random fluctuation is specified by ( ) ( )tata ηα ×+= 0 , 

where ( )tη  is a random fluctuation with a value ranging from -1 to 1.  The other 

aperture width that varying in quasi-periodic subwavelength variation is given by 

( ) ( ) ( )ftftbtb παπα 52sin22cos0 ×+×+= .  Here all amplitudes of variation α  are 

set to 10 nm for simplicity, and the frequency of vibration f , is taken to be 100 Hz .  

The sampling rate of detection is 10 KHz , which is higher than the frequency of the 

vibration of the aperture widths.  The half-width of the aperture 0a , 0b  are both 

50 mμ .  The widths of the detector W  are all 100 mμ ; and the detector is placed 

behind the aperture at a distance of 30 mm .  A light source wavelength of 632.8 nm  

was used.  The overall power variation of the two detectors: 1PΔ  and 2PΔ , were 

evaluated numerically by scalar diffraction theory, and used to retrieve the 

subwavelength-scale width variation: aΔ and bΔ .  
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Fig. 4-3. The results of two-detector configuration.  (a) the setting and retrieving aperture width 

variations: aΔ  and 'aΔ , and (b) the setting and retrieving aperture width variations: bΔ  and 

'bΔ . 

 

The retrieving results of the proposed two-detector measurement are shown in 

Fig. 4-3.  The retrieving aperture width variations: 'aΔ  and 'bΔ  behave the same 

way as the simulation setting aperture width variations: aΔ  and bΔ , but in a 

different scale, i.e., the characteristics of the subwavelength signatures of the aperture 

that the variation forms can indeed be retrieved by the proposed strategy, but variation 

strength can’t.  This is because that the eigenvectors are usually normalized to unity 

in the deconvolution method.  But, in reality the mixed coefficients ijC  will not 

have to be that.  As an example, for 2=N , the scaling effect can be shown in the 

matrix form as:  
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where iα )2,1( =i  correspond to the scaling factors.  What we retrieved is the 

scaled width variation: aΔ1α , bΔ2α , i.e., we can indeed retrieve the subwavelength 

variation type with the two-detector configuration, but with a wrong strength.  One 

solution to determine the scaling exactly will be proposed in the next section.   

 

4.3 Three-detector embedded-aperture interferometer configuration 

A three-detector measurement configuration is proposed to retrieve the correct 

magnitude of 2-D subwavelength variations in this section. 

4.3.1 Basic formalism and general features 

 

Fig. 4-4. Schematic diagrams of (a) an embedded-aperture three-detector interferometer while (b) 

shows the relative positions of the detectors.  (c) Schematic diagram of the sizes of the two apertures. 
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Referring to Fig. 4-4, the proposed configuration of solution is an 

embedded-aperture interferometer configuration similar to the Mach-Zehnder 

Interferometer, but with one embedded aperture and three detectors.  A 

monochromatic plane wave of a wavelength λ  is assumed to be orthogonally 

illuminated on a beam splitter B1.  The beam is split into two after passing through 

the beam splitter.  One beam is reflected by a mirror M1, and passed through a 

rectangular observation aperture 1A , with dimensions a2 X b2 .  Another beam is 

reflected by a mirror M2, and passed through the introduced embedded aperture 2A , 

which has a choosing fixed aperture width e  that is to be extremely equal to the 

width of the observing aperture, b , and has the other aperture width d  with an 

embedded varying form.  Then the two beams are passed through another beam 

splitter B2 to be recombined and further separated into two beams.  The diffracted 

intensity is collected over three rectangular detectors with the same dimensions 

W XW , which are positioned at a distance Z  away from each aperture.  It should 

be noted that the third detector 3D  is chosen to be positioned at a different location 

from the other two detectors to record additional information.    

 

The relations of overall power variations: 1PΔ , 2PΔ , 3PΔ , and the aperture 

width variations: aΔ , bΔ , dΔ  are as follows 
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By using the time delayed correlation method, the scaled mixing coefficients and 

three scaled aperture width variations, aΔ1α , bΔ2α , and dΔ3α  can be deduced 

from the overall power variations 1PΔ , 2PΔ , and 3PΔ  as collected by the three 

detectors.  Following the approaches similar to that in chapter 2 and 3, the partial 

derivative intensity of 3D  that position at a symmetric position could be derived as 

follows: 

( ) ( )
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kZa
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where k  is the wave number, Si  is the sine integral function, and the two 

functions ( ) ( ) ( )[ ]
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+
=
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0 2
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a dx
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can be evaluated numerically.  By comparing the partial derivative intensity of 3D : 

aP ∂∂ /3  and bP ∂∂ /3 , to the retrieving elements of mixing matrix in Eq.(4-3), the       

scaling factor, 1α  and 2α , can be easily solved and thus we can retrieve the aperture 

width subwavelength variations: aΔ , bΔ  in a correct magnitude.   

 

On the other hand, there is another advantage of introducing the embedded 
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aperture width variation dΔ .  In the time-delay correlation method, the retrieving 

signal error of is related to the choice of the parameter of time delay, τ .  Taking the 

error between retrieving embedded-variation ( )td 'Δ  and embedded-variation ( )tdΔ  

as a reference could help us to decide a proper time delay, τ .   The inverse mean 

error of the retrieving embedded-variation ( )tdΔ  was defined as  

Inverse mean error = ( ) ( )tdtd Δ−Δ '/1 .            (4-5) 

It could be verified that with the use of higher inverse mean error can have a better 

retrieving result. 

 

4.3.2 Simulation verification and Discussions 

In this section, we provide the support evidence of our approach.  The 

simulation setting of the observation aperture 1A  was the same as that in section 

4.2.3.  Without loss of generality, the width variation form of the embedded-aperture 

2A  is chosen as a sine form, i.e., ( ) ( )ftdtd πα 2sin0 += .   The half width of the 

embedded aperture is chosen as 70 mμ , and the amplitude of variation α  is set to be 

10 nm and the frequency of vibration is taken to be 100 Hz . 

The retrieving results of the proposed three-detector configuration are shown in 

Fig. 4-5.   The relation between the time delay, τ , to the inverse mean error of the 

retrieving embedded-signal variation ( )tdΔ  is shown in Fig. 4(a) and hence, the time 
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delay is chosen as 0.0294 sec, so as to have a higher performance.   The errors, 

( ) ( )tata ΔΔ −'  and ( ) ( )tbtb ΔΔ −'  are shown in Figs. 4(b) and (c) in thick lines, while the 

setting aperture width variations ( )taΔ  and ( )tbΔ  are plotted in gray thin lines as a 

reference, and the error percentage, the ratio that the difference between exact setting 

and numerically retrieving value to the amplitude of the setting aperture width 

variations value, are plotted in the base portion.  Referring to Fig. 4-5, one can see 

that with the three-detector embedded-aperture configuration, the subwavelength 

signatures can be retrieved in a good precision and the retrieving aperture width 

variations, 'aΔ  and 'bΔ  are with an error ratio below 1%.   
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Fig. 4-5. (a): The inverse mean error of the retrieving embedded-aperture variation versus the time 

delay, τ .  (b) the error and error percentage between setting and retrieving aperture width variations: 

aΔ  and 'aΔ , (c) the error and error percentage between setting and retrieving aperture width 

variations: bΔ  and 'bΔ . 

 

There are two points that should be noted.  First, the embedded variation of the 
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reference aperture, ( )tdΔ , is unnecessary to be in the subwavelength scale, but could 

be in a larger scale to be more easily to carry out.  A larger half aperture width of 

mmd 5.00 = , that varies with a larger amplitude of mμα 1=  can still be used to 

retrieve the two-dimension subwavelength with an acceptable error ratio below 3% 

signal.  Secondly, a better result could be obtained with more recorded data.  For 

example, in our simulation, 2000 recording data was used to achieve the maximum 

error ratio bellow 1%. But with 600 recording data can only have a best maximum 

error ratio of 1.94%.  

 

4.4 Summary 

While retrieving 1-D subwavelength-scale variation from far-field measurement 

has been demonstrated to be possible, we want to find approaches to retrieve 

subwavelength-scale variation toward more realistic situation.  Thus, in this chapter, 

a rectangular aperture varying in 2-D with in subwavelength-scale has been discussed.  

A scheme to retrieve the coupled two-dimension subwavelength signatures by a 

three-detector embedded-aperture configuration accompanying time-delayed 

correlation method from far-field irradiance measurement was proposed.  The 

precision of the proposed measurement was numerically verified could successfully 

characterize the two-dimensional dynamical signatures of subwavelength variations 
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information with error ratio below 1%.  
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Chapter 5  
 
1-D Marginal Roughness Measurement 

 

5.1 Introduction 

In the chapter 2 and chapter 4, it has been shown that the subwavelength 

temporal variation of a simple case, i.e., a 1-D and 2-D subwavelength-scale temporal 

variation can be retrieved from a far-field irradiance measurement.   It is of interests 

to express the possible implementation of subwavelength spatial variation in terms of 

far-field characteristics, and thus to retrieve the subwavelength-scale spatial variation 

from far-field measurement.  In this chapter, a conceptual construction will be 

proposed as an optical ruler, which could be used to identify the spatial 

subwavelength scale marginal-roughness variation from only far-field irradiance 

measurement. 

  

5.2 Constructed-aperture roughness measurement system 

Referring to Fig. 5-1, a constructed-aperture measurement system behaving as an 

optical ruler was proposed to retrieve the marginal roughness of the test sample.  The 

diffraction aperture Σ  was constructed by a slit-like aperture and the margin of the 
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test sample, where the width of the slit-like aperture along the η  direction was 

denoted as b .  A monochromatic plane wave of amplitude 1 and wavelength λ  

was assumed to be orthogonally illuminated onto the constructed aperture Σ .  The 

margin of the test sample was situated relative to the straight margin of the slit-like 

aperture in a base width 0a .  The dimensions of 0a  and b  were both above 

several wavelengths for satisfying the assumptions of the scalar diffraction theorem.  

The front view of the constructed aperture was shown in Fig. 5-1 (b).  A detector 

with the size W XW  was positioned behind the aperture Σ  at a distance 0Z  in the 

far-field region, or by introducing a focal lens just behind the aperture Σ , situated the 

detector at the focal plane of the lens.  Thus the diffraction pattern on the detector 

plane could be evaluated by the Fraunhofer diffraction.   The overall power 

collected by the detector was denoted as zP .   
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Fig. 5-1. Schematic diagrams of (a) constructed-aperture marginal roughness measurement system, (b) 

a front view of the constructed aperture of the system. 

 

To illustrate the main idea of the proposed scheme, we recalled that in chapter 2, 

1-D subwavelength temporal variation can be retrieved from a far-field irradiance 

measurement in a precision better than 1 nm   by the following approximation, i.e.,  

⎟
⎠
⎞

⎜
⎝
⎛≅ = 0

/ aaz da
dPzPa ΔΔ .                       (5-1) 

In the proposed constructed-aperture measurement system, while the width deviation 

from the base width 0a , aΔ , of a rectangular aperture in a dimension 0a Xb , was 

in a scale of subwavelength, the aperture width deviation aΔ  could be retrieved 
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from a physical parameter, i.e., the derivative intensity 
0aada

dPz
= .  zPΔ  is the 

deviation of the overall power comparing to that of the base width 0a , ( )0aPz , i.e. 

( ) ( )0aPaPP zzz −=Δ .  The key idea of the proposed measurement is that, while the 

width of the optical ruler b  is small enough as compared to the spatial-variation 

scale of the marginal roughness dT , the margin of the test sample could be estimated 

as a straight surface.  The width of the constructed aperture (or say the averaging 

width) was denoted as a , which could be retrieved by far-field irradiance 

measurement.  The procedures are stated as below.   

 

First, we need to derive the derivative intensity of an aperture varying in 

one-dimension with only one side, in a correspondence to the constructed 

measurement system here.  It is for the reason that while measuring the marginal 

roughness, the test sample will be moved in the η  direction.  Because the marginal 

roughness is varied spatially from point to point, the width of the constructed aperture 

Σ , a , will be changed as the sample is moved.  The constructed aperture will vary 

only on one side and the derivative intensity of measured power, dadPz / , could be 

deduced following the same approaches as in chapter 2.   

 

The exact form of the diffraction pattern on the detector U can be derived from 
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Fraunhofer diffraction, and the intensity is 2U .  The overall power collected by the 

detector is the integration of the intensity over all the complete detector area, which is 

also the function of the varying aperture width a , 

( ) ( ) ( )bWfaWf
Z

aP ppz ,2/,2/4
2

0 ⎟
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λπ /2=k  is the wave number, and Si  is the sine-integral function.  The derivative 

intensity is the derivation of overall power zP  over the varying aperture width a , 

which can be derived as  
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The numerical value of the derivative intensity 
0aada

dPz
=  can be evaluated from Eq. 

(5-3), and can be substituted into Eq. (5-1) to retrieve the margin position of the test 

sample as aaa Δ+= 0 . 

 

5.3 Thickness effect of test sample 

In section 5.2, the constructed aperture is estimated as an ideal planar aperture.  

However, in a real situation, the test sample will have a thin thickness d  inevitably.  

As shown in the Fig. 5-2, the actual constructed aperture 'Σ  will have an inclination 

angle, ( )0
1 /tan ad−=φ , to the incident plane wave.   
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Fig. 5-2. Schematic diagram of a side view of the constructed-aperture marginal roughness 

measurement system. 

 

The introducing power deviation from the thickness of the test sample cannot be 

neglected as comparing to the power deviation caused by the constructed-aperture 

width variation in the subwavelength scale.  In other words, a solution to recover the 

influence caused by the sample thickness has to be considered.  Referring to Fig. 5-2, 

considering that a plane wave passes through a ideal plane rectangular aperture Σ , 

the diffraction optical field on the detector D  behind the aperture in the far-field 

distance 0Z  can be evaluated by Fraunhofer diffraction, i.e., 

     ( ) ( ) ( ) ( ) ηξηξ
λ
πηξ

λ
ddyx

Z
jU

Z
yxCyxUP ⎥

⎦

⎤
⎢
⎣
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Σ 0
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0 2exp,,, ,      (5-4) 

where for an aperture, ( ) 1,0 =ηξU  and ( )yxC ,0  is the phase term.  What we 

want to do is to find a suitable orientation of the detector, which could have an 

analytic solution of derivation intensity.  Hence, the width variation of the 
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constructed-aperture could be retrieved by correlating with far-field irradiance 

variation from the value, derivation intensity.   

Referring to Fig. 5-2, considering the situation that the constructed aperture 'Σ  

has an inclination angle φ  to the incident plane wave, the diffraction optical field 

on the plane orthogonally behind the aperture 'Σ  in the far-field distance 0Z  can 

be evaluated as an oblique plane wave incident on a plane aperture 'Σ , i.e., 
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where ( ) ( ) [ ]φξηξηξ sin'exp,','' 0 jkUU = , for an aperture, ( ) 1,'0 =ηξU , and 

[ ]φξ sin'exp jk  is the relative phase of the optical field at the constructed aperture 'Σ .  

Substituting ( )ηξ ,''U  into Eq. (5-5), we have  
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If we replace 'x  with ''' xx Δ+ , φsin' 0Zx =Δ , we have   
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Referring to Fig. 5-2 and comparing Eqs. (5-4) and (5-7), this means that if we 

position the detector at a new position, the only difference in these two equation is the 

diffraction aperture width of constructed aperture 'Σ  that effective aperture width is 

Ψ/a , and the tilt factor φcos=Ψ .  The analytic derivative intensity of the detector 

at a new position could be solved as 
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and thus can be substituted into Eq. (5-1) to retrieve the margin position of the test 

sample as aaa Δ+= 0 .  This means that if we position the detector at a new position, 

which is: 

(i) Rotating the original detector D  relative to the aperture in an angle φ  

to be parallel to the constructed aperture 'Σ , and   

(ii) Shifting it in a distance φsin' 0Zx =Δ  along the direction of + 'x -axis,  

the corresponding derivative intensity of the detector at a new position could be 

deduced, and to substituted into Eq. (5-1) to retrieve the margin roughness of the test 

sample.  While the thickness of the test sample is small compare to the aperture 

width, tilt factor 1≅Ψ ; the influence of Ψ  is small and thus can be further 

neglected. 

 

5.4 Simulation verifications and discussions 

The feasibility of the proposed marginal roughness measurement will be 

numerically demonstrated as below.  We first set the marginal roughness of test 

sample, and use a base width 0a = 50um  to evaluate the base overall power ( )0aPz .  

While moving the test sample, the corresponding overall power variation zPΔ  will 

be substituted into Eq. (5-1) to retrieve aΔ , the deviation from marginal position to 
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the base width, and the exact marginal position of the test sample is simply the sum of 

the base width 0a  and the deviation aΔ .  The width of the optical ruler, b , was 

chosen as 6 mμ , which is about 10 times the size of the light source wavelength, 

632.8 nm  that considered here.  The base-width of the aperture 0a  was 50 mμ .  

The width of the detector W  was also 50 mμ , and the detector was placed behind the 

aperture at a distance of 30 cm .   

 

Without loss of generality, two marginal roughness profiles, i.e., sine variation 

( ) ( )dTaa /2sin0 πηαη ×+= and quasi-periodic variation 

( ) ( ) ( )dd TTaa /22sin
2

/2sin
20 πηαπηαη ×+×+=  were used to simulate the marginal 

roughness, and the thickness of the test sample was taken as one wavelength.  The 

amplitude of the marginal roughness fluctuations, α , was set to 10 nm , and dT  

was the spatial variation scale of the surface roughness.   

 

The simulation processes are that: the marginal form of constructed-aperture is 

varying as the pre-setting function, ( )ηa .  The corresponding collected power on the 

detector 'D  is evaluated numerically, and then substitute the overall power variation 

zPΔ  into Eq. (5-1) to get the width deviation aΔ  from bath width 0a , then we get 

the estimated marginal roughness form: aaa Δ+= 0  and compare it with the 
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pre-setting center roughness value of the constructed aperture.  The retrieving results 

of the proposed marginal roughness measurement of different spatial scale dT  were 

shown in Fig. 5-3.  Three different spatial variation scales, dT = 2b , 5b  and 10b , 

were used to explore the feasibility and the precision limitation of the proposed 

measurement.  The deduced results of two marginal roughness forms are shown 

separately in Figs. 5-3 (a) and (b) by comparing the width deviation aΔ  to that of 

the pre-setting value, and the maximum error percentage of the retrieving results were 

shown in the figures.   The pre-setting marginal roughness was plotted in thin lines 

as reference, spatial variation scale dT = 2 b was plotted in gray thin lines, dT = 

5b was plotted in thick lines, and dT = 10b was plotted in dot lines.   

 

Fig. 5-3. The retrieving results of two different marginal roughness profiles: (a) sine variation.  (b) 

quasi-periodic variation. 
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It can be seen that the proposed method of roughness measurement is workable. 

The relation between optical ruler width b  and the spatial variation scale dT  

determines the measurement precision of the proposed scheme.  If the width of the 

optical ruler is 1/5 of the spatial variation scale dT , the precision of the proposed 

marginal roughness measurement will exhibit a maximum error percentage below 

10%.  If the width of the optical ruler is 1/10 of the spatial variation scale dT , the 

maximum error percentage will be further reduced to below 3%.  From our 

simulation results, while the width of optical ruler is smaller than 1/5 of the roughness 

spatial variation scale dT , the measuring precision of roughness varying in an 

amplitude 10 nm  is better than 1 nm ,  

 

Besides, we should note that while using a shorter wavelength, the width of 

optical ruler could be reduced.  It means that by using an optical ruler with a shorter 

wavelength: (1) a higher precision can always be achieved for measuring the same 

sample, and (2) the restriction of the spatial variation scale dT  of the test sample will 

be released.  Furthermore, it should be noted that the proposed measurement is still 

workable even when the fluctuation amplitude of the marginal roughness, α , is 

increased to the value of one wavelength.  And, the tunable embedded-aperture 
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interferometer configuration illustrated in the chapter 3 could be further implemented 

to increase the detection sensitivity. 

 

5.5 Summary  

In summary, a constructed-aperture measurement system behaving as an optical 

ruler was proposed to measure the marginal roughness of the test sample.  The 

precision of the proposed method of roughness measurement is only depending on the 

relation between optical ruler width b  and the roughness spatial variation scale dT .  

It has been numerically demonstrated that with the proposed method while the width 

of the optical ruler is 1/10 of the spatial variation scale dT , the maximum error 

percentage or the retrieving subwavelength-scale marginal roughness could be below 

3%.  Better retrieving results can be further obtained by choosing an optical ruler 

with a shorter width.  

 



 73

Chapter 6  
 
Conclusions and Future Works 

 

6.1 Conclusions 

Retrieving subwavelength information is an extensive and important topic and 

thus has been widely investigated.  Several measurements have been proposed to 

retrieve the subwavelength feature detail of specimen while specimen size was in 

mesoscopic or nanoscopic region.  While the retrieving of dynamic signature of 

subwavelength variation yields some more interesting information than the static 

features, particularly in determining physical origins and in identifying the generation 

mechanism, e.g., thermal characteristic, vibration, deformation. Thus, to retrieve 

subwavelength-scale dynamically variation is another important issue should be 

further investigated.  

 

Owing to the experimental result that subwavelength feature variations of an 

object can affect the corresponding far-field diffraction pattern in a measurable way.  

The far-field optical measurement was provided as a potential approach to have 

real-time high-precision measure of subwavelength-scale dynamical variation of 
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structure.  Thus, in this thesis, we have investigated the approaches to retrieving 

dynamic signature of 1-D subwavelength-scale variation, to enhance detection 

sensitivity while measuring 1-D subwavelength variation, and to decouple 2-D 

subwavelength variation with measuring far-field optical characteristics.  Besides, an 

extension application to identify the subwavelength-scale marginal roughness from 

only far-field irradiance measurement has also been proposed.   

 

6.1.1 Retrieving of 1-D subwavelength variation information 

We investigated approaches to retrieve 1-D subwavelength dynamic signatures 

of two simple diffraction structures, slit and rectangular aperture.  Two 

correspondence far-field characteristics variation, irradiance and diffraction pattern 

was proposed as good feature quantities to retrieve 1-D subwavelength dynamic 

signatures.  

 

First, with the method that retrieving subwavelength variation of the diffraction 

structure by measuring far-field irradiance variation.  A physical quantity, derivative 

intensity, of these two simple diffraction situations was deduced to retrieve the 1-D 

dynamical subwavelength variation of these two diffraction structures.  The dynamic 

subwavelength variation signature of both two diffraction structures are shown to be 
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determinable from its far-field irradiance with a precision of better than 1 nm .  

Secondly, with the method that retrieving subwavelength variation of the diffraction 

structure by measuring far-field diffraction pattern variation.  The analytical 

approximation relation between the dark line locations of the diffraction pattern and 

1-D dynamical subwavelength variation was derived.  The shifting of the diffraction 

pattern associated with subwavelength variation was verified holding a good linear 

correlation and was in an order about hundred times to the subwavelength-scale 

feature size variation, thus behaving as a good feature quantity to retrieve 1-D 

subwavelength feature variation.    

    

6.1.2 Enhancement of detection sensitivity of 1-D subwavelength variation 

measurement 

 While measuring the structure that varying in subwavelength scale, a weak signal 

is usually retrieved and hence, it is a critical issue to enhance the detection sensitivity 

of the measurement.  Therefore, effective measurement methodologies must be 

developed to retrieve subwavelength variation from far-field measurement with 

higher detection sensitivity.  For avoiding damage the sample, an approach to 

enhance detection sensitivity without increasing the light power transmitting through 

the test sample was investigated.  
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A tunable asymmetrically-embedded-aperture interferometer configuration was 

proposed could efficiently enhance detection sensitivity of 1-D subwavelength 

variation measurement.  The interferometer configuration is similar to the 

Mach-Zehnder interferometer structure but with an embedded aperture posited 

asymmetrically relative to the observing aperture with the subwavelength variation to 

be identified.  With this configuration, the detection sensitivity of 1-D 

subwavelength variation measurement could be successfully increased to a desired 

order by increasing the light power passing through the embedded aperture.  Besides, 

by simply shifting the relative position of the embedded aperture, the detection 

sensitivity could be enhanced at any specific detection width.  

  

6.1.3 Deconvolution of 2-D subwavelength variation information 

The investigation on far-field measurement schemes and detection sensitivity 

enhancement scheme of retrieving subwavelength dynamics signatures was started 

from that the diffraction feature was only varying only in 1-D.  However, in more 

realistic situations, the structure may vary in two or three dimensions, and the 

characteristics of subwavelength variations contained in the far-field are coupled and 

thus will be difficult to separate.  To retrieve multi-dimension subwavelength 
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dynamics signatures of diffraction structure, the approach to separate the coupled 

far-field characteristics containing multi-dimension subwavelength variation 

information was explored.   

 

A three-detector, embedded-aperture interferometer configuration was proposed 

to record the far-field irradiance information that containing coupled 2-D 

subwavelength variation information of a rectangular aperture.  The coupled far-field 

irradiance information was then separated by a blind source separation method, 

time-delayed correlation method.  The precision of the proposed measurement was 

numerically demonstrated could successfully characterize the two-dimensional 

dynamical signatures of subwavelength variations information with error ratio below 

1%. 

 

6.1.4 One-dimension Marginal Roughness Measurement 

A constructed-aperture measurement system behaving as an optical ruler was 

proposed to measure the marginal roughness of the test sample.  The precision of the 

proposed method of roughness measurement is only depending on the relation 

between optical ruler width b  and the roughness spatial variation scale dT .  It has 

been numerically demonstrated that with the proposed method while the width of the 
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optical ruler is 1/10 of the spatial variation scale dT , the maximum error percentage 

of the retrieving subwavelength-scale marginal roughness could be below 3%.  From 

this discussion, it emphasizes that not only subwavelength-scale temporal variation 

but also subwavelength-scale spatial variation could be retrieved from far-field 

characteristics measurement.   

 

6.2 Future works 

In this thesis, we have demonstrated the feasibility of retrieving dynamic 

signature of 1-D subwavelength-scale variation, enhancing 1-D subwavelength 

variation measurement intensity, and decoupling 2-D subwavelength dynamic 

variation with far-field optical measurement.  Besides, an extension application to 

identify the 1-D spatial subwavelength-scale marginal roughness from only far-field 

irradiance measurement has also been demonstrated to be possible.   

  

Owing to the preliminary results we obtained as described in this thesis, we 

believed that the far-field measurement scheme have great potential to measure the 

object variation in subwavelength scale.  The exploration of the development of the 

implementation will be one of my future works.  In the following, four main 

directions are listed as the follow-up of my previous preliminary study.  Namely, 
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they are:  

 

(1). toward a more realistic diffraction structure 

In the preliminary study, only simple diffraction structures, slit and rectangular 

aperture have been discussed.  While exploring to realistic situations, diffraction 

structure might not be aperture, might be arbitrary shape, and might varying in 

more complex form.  The approaches to recover the dynamical properties of such 

diffraction structure should be further discussed in the future.    

(2). toward a more realistic, general light source properties 

The far-field optical characteristics that contain subwavelength variation 

information might be totally different with different kinds of light source, such as 

coherent, incoherent, monochromatic, polychromatic light, and even white light.  

In the preliminary study, only monochromatic coherent light source has been 

discussed, to explore the influence of light source properties on measurement will 

be investigated in the future. 

(3). toward the achievement of higher detection sensitivity   

The far-field characteristics variation caused by diffraction feature variation in 

subwavelength scale might be weak signal to be detected.  By this concern, the 

approach to enhance the detection sensitivity while measuring 
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subwavelength-scale at every different situation will be one issue to be 

investigated in the future. 

(4). toward the limit of common diffraction theory approach 

To retrieve the subwavelength-scale variation of diffraction structure that 

exceeds several light wavelengths, i.e., in macroscopic region, based on scalar 

diffraction theory has been investigated.  It is of interest to investigate the 

possibility to retrieve the subwavelength-scale variation while the diffraction 

structure is scale sown, e.g., mesoscopic region.   In the future, the study of the 

retrieval of the subwavelength variation signatures will be investigated even when 

the object feature size was down in wavelength or subwavelength scale. 

 

Fig. 6-1. The flow chart of my future works 
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Appendix I  
 
Review of scalar diffraction theorem   

 

 Owing to the basic formalism of this thesis is based on the scalar diffraction 

theorem.  A short review of the most important part of the scalar diffraction theorem 

will be shown in this chapter. 

I.1 Brief history 

The evolution history of the scalar diffraction theory could be summarized in the 

table 1.  

Table I.1 the evolution history of the scalar diffraction theory 

Years Figure Important Event 

1665 Grimaldi Making the first accurate report to describe the 

phenomenon of the diffraction effect.  

1678 Huygens Proposing the hypothesis that the envelope of 

the wavefront is the superposing of the 

secondary wavelet of the old wavefront. 

1804 Thomas 

Young 

Proposing the concept of light interference  
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1818 Fresnel Combining two concepts that “secondary 

wavelet” and “interference” to give the 

mathematical description of some diffraction 

patterns.  

1860 Maxwell Confirming light is an electromagnetic wave  

1882 Kirchhoff Solving the problem that light diffraction  by 

an aperture by using two inconsistent 

assumptions, but giving the mathematical 

foundation of scalar diffraction 

1894 Sommerfield Successfully avoiding two inconsistent 

assumptions in Kirchhoff’s derivations by 

choosing alternative Green’s functions.    

 

I.2 Conception review the formulation of scalar diffraction theorem   

In this section, the main flow of the formulation of scalar diffraction theorem 

will be reviewed, the detailed derivation could be found in the Ref. [1,2].  Consider 

that light propagate in a dielectric medium that is linear, isotropic, homogeneous, and 

non-dispersive, all component of the electric and magnetic field will behave 

identically and could be described by a single scalar wave function. 
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Where u  is scalar field and n  is refractive index of the medium.  For a 

monochromatic wave, the scalar field could be written as })(Re{),( 2 vtjePUtPu π−= , 

and )(PU  is phasor of the wave will satisfied the Helmholtz equation     
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, where λπ /2=k  is wave number.   

 

(1)Kirchhoff and Sommerfeld theories 

With the help of mathematic relation that Green’s second identity [3], 
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, Kirchhoff solved the problem that light diffraction by an aperture by choosing the 

Green function G  as an unit-amplitude spherical wave expending about the 

observing point oP  , 
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From general potential theorem, the two Kirchhoff boundary conditions yield 

field is zero everywhere behind the aperture.  The inconsistence of the Kirchhoff 

theory was removed by Sommerfeld, who choose of alternative Green’s function to 

eliminate the necessary of imposing on both U and its derivative 
n
U
∂
∂  

simultaneously.  The Green function G  he chose was two point sources that one is 

at observing point oP  and the other is situated at the mirror image of 
~

oP  on the 

opposite side of diffraction screen.   While choosing 
01

~

01
1 ~)(

0101

r
e

r
ePG

rjkjkr

−=− , −G  

vanishes on the aperture. Thus, the Kirchhoff boundary conditions may be applied 

U alone, yielding first Rayleigh-Sommerfeld solution      
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Fig. I-1. Formulation of diffraction by a screen 
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From Eq. (I-3) to (I-5), it is obviously that the Kirchhoff solution is the average of the 

two Rayleigh Sommerfeld solutions.    

 

Fig. I-2. Point source illumination of a plane screen 

 

Consider that the aperture is illuminated by a single spherical wave expending about 

point 2P , thus by substituting 
21
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r
eAU
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=  into Eq. (I-3) to (I-5), all cases could be 

rewrite in the form that  
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where )cos(),cos( θ=ba
rr and θ  is the angle between vector ar  and b

r
.  Eq. (I-7) 

express the observed field ( )0PU  is the weighted superposition of diverging 

spherical waves 
01

01

r
e jkr

 originating from secondary sources located at each and every 

points 1P  within the aperture Σ , as the stated of Huygens-Fresnel Principle.   

 

Several authors have compared the two formulations of the diffraction problem. 

In particular, Wolf, and Marchand verified that if with the linear dimensions of the 

aperture are larger comparing with the wavelength, the two theories predict essentially 

the same behavior for the diffraction field in the far field, at moderate angles of 

diffraction [4].  

 

I.3 Paraxial approximation: Fresnel and Fraunhofer diffraction  

In the proceeding section, the results of Kirchhoff and Sommerfeld theories are 
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in more general form, in most of diffraction problem, light waves propagates along a 

direction which is close to the axis of optical components such as lenses or apertures. 

In this case, the paraxial approximation can be used.   

 According to the first Rayleigh-Fresnel Sommerfeld solution, the 

Huygens-Fresnel principle could be stated as  
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As shown in Fig. I-3, the diffraction aperture Σ  is assumed to lie in ( , )ξ η  plane 

and is illuminated in the positive direction.  While calculating different wavefield 

across the ( , )x y plane at different normal distance from diffraction aperture, Fresnel 

and Fraunhofer approximation allow diffraction pattern calculation to be reduced to 

comparatively simple mathematical manipulations, i.e., Fresnel and Fraunhofer 

diffraction formula.     

 

Fig. I-3. Diffraction Geometry 
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(1) Fresnel diffraction formula 

For the situation that the observing point is not far away from the optical axis, i.e., 

satisfying the Fresnel approximation, [ ]2max
223 )()(

4
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−+−>> yxz , by using the 

binomial approximation in exponent, the resulting expression for the field at 

( , )x y  plane could be calculated by Fresnel diffraction formula: 
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(2) Fraunhofer diffraction formula 

If in addition to Fresnel approximation the stronger Fraunhofer approximation 

z D>> + =
π
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Eq. (I-9) is approximated unity over the entire aperture.  Thus the expression 

for the field at ( , )x y  plane could be calculated by Fraunhofer diffraction 

formula:  
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It should be further noted that for the Fresnel approximation to yield accurate result, it 

is not necessary that the higher-order terms of the expansion be small, only that they 

not change the value of Fresnel diffraction integral significantly.  The discussion on 
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the validity of Fresnel diffraction integral could be founded in Ref. [5]. 

 

I.4 Angular spectrum method  

Another useful approach to calculate the scalar diffraction is angular spectrum 

approach [6], which has been widely applied to electrodynamics, optics, and acoustics.  

We give a brief review of its theory.  Consider the complex-amplitude distribution 

U(x, y, Z=0) in the XY-plane at Z=0, by simply applying the Fourier transform on U(x, 

y, z=0), it could be treated as the superposition of several plane wave each containing 

different spatial frequency ),( yx ff .  The weighting of the superposition is named as 

angular spectrum 
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where a(x, y, z=0) is the inverse Fourier transform of it’s angular spectrum 

∫ ∫
∞

∞−

+=== dfxdfyyfxfiZffAZyxU yxyx )](2exp[)0;,()0,,( π         (I-12) 

Consider the complex-amplitude distribution a(x, y, Z=z) in the XY-plane at z=Z, the 

angular spectrum of field a(x, y, Z=z) will be   

 ∫ ∫
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Again, field a(x, y, Z=z) is the inverse Fourier transform of it’s angular spectrum 
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At source free points and consider that light propagate in a dielectric medium that is 

linear, isotropic, homogeneous, and non-dispersive, a(x, y, Z=z) satisfied Helmholtz 

eq, 0)( 22 =+∇ Uk , thus we have   

( ) ( ) )0;,(1exp2);,( 222
2

2

=−−+= ZffAffzZffA
dz
d

yxyxyx π .     (I-15) 

The propagation of the angular spectrum could be derived as an elementary solution 

of this equation and was written as 

⎟
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The physical interpretation of the angular spectrum method is that the every simple 

plane-wave component containing different spatial frequency are solutions of 

Maxwell’s equations in a homogeneous environment can be expressed as 

 )])(/2(exp[),,( 0 zyx zyxiAzyxa σσσλπ ++= .           (I-17) 

Where λ is the wavelength of the light and 

⎟
⎠
⎞⎜

⎝
⎛ −−==== 221,, yxzyyxx ff σσσλσλσσ  is a unit vector specifying the 

direction of propagation and, A0 is a complex vector representing the magnitude and 

one state of polarization of the E-filed at the origin of the coordinate system.  On the 

one hand, σz will be real-valued if σx
2+σy

2≦1, in which case the plane wave is 

said to be homogeneous or propagating wave.  Ifσx
2+σy

2＞1, thenσz  becomes 

imaginary and the plane wave is called inhomogeneous or evanescent wave.  
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Because the evanescent waves carry no energy from the diffraction aperture, so we 

can rewrite the disturbance observed at (x, y, z) in terms of the initial angular 

spectrum as  
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It should be noted that the angular spectrum approach and the first 

Rayleigh-Sommerfeld solution yield identical prediction of diffraction field [7]. 
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Appendix II  
 
Blind source separation problem   

 

 In the chapter titled as “Deconvolution of 2-D subwavelength variation 

information,” we adopted “Time-delayed correlation method” to solve the “Blind 

signal separation problem.”  In this section, we give the definition of “Blind signal 

separation problem” and literature review the some approaches to solve the “Blind 

signal separation problem” and detailed the approach of “Time-delayed correlation 

method.”  

 

II.1 Introduction to blind source separation problem 

“The blind source separation problem could be defined as the problem of separating 

and estimating of multiple independent source signals from an array of sensors 

without knowing the characteristic of the transmission channels” [1].  Blind source 

separation has been an intriguing issue for a long time, partially due to its similarity to 

the human experience, e.g., the cocktail party effect [2].  The problem of source 

separation appears in many contexts.  The simplest situation occurs for two speakers. 

If the mixture of their voices reaches two microphones, one wants to separate both 
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sources such that each detector registers only one voice [3].  Further examples, 

involving many sources and receivers, are the separation of odors in a mixture by an 

array of sensors and the parsing of the environment into different objects by our visual 

system [4].  Because of the complexity inherent in these problems, blind source 

separation has stood as an unsolved problem in history. 

The classical blind signal separation problem could be illustrated in the Fig. II-1. 

The blind signal separation methods could recover the mixing independent source 

signals by the detected signal.   

 

Fig. II-1.  Schematic diagrams of the blind source separation problems 

Let us assume that we have n detectors each of which is sensitive to a set of unknown 

statistically independent signals ( )tai , ),......,2,1( ni = , i.e.,  ( ) ( ) ( ) ijiji ttKtata δ−= ''   

Suppose the output signal ( )tIi , ),......,2,1( ni =  of the detectors are linear 

combinations of the input signals ( )tai , i.e., the system is described by the set of 
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equations  

( ) ( )taCtI i

n

j
iji ∑

=

=
1

; ),......,2,1( ni =                 (II-1) 

, where ijC  are the mixing coefficients.  It could be written in compact matrix form 

CAI = .  The term “Blind Signal” refers to the mixing signal without knowing its 

mixing model.  The blind source separation problem is to discriminate the input 

signals under the assumption that the input signals are mutually statistically 

independent.  On the other hand, there are only n detected signals available.  The 

classical problem is how one determines the coefficients ijC  and the source strengths 

( )0iK  from a measurement of ( )tI i .  Because the matrix C  is generally not 

symmetric and the source strengths are not available, the total unknown number of 

variables is n(n+1).  Such a problem was first addressed and solved by J. Herault and 

C. Jutten.  They proposed an adaptive neural network to perform this task [5]. It 

decorrelates the incoming signals via an inhibitory interaction between the output 

neurons which has been further developed by many researchers [6,7,8,9,10,11].   

  

II.2 Time-delayed correlation method 

Unlike most methods using neural network approach to solve the blind source 

separation problem, Molgedey and Schuster (MS) proposed using time-delayed 

correlation and eigenvalue problem approach to separate a mixture of independent 
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signals [12].  The method was abbreviated as M-S method, which will be detailed as 

followed. 

 The correlations of two signals ( )tai  and ( )ta j  could be represented as 

( ) ( )tata ji .  The time-delayed correlation is the correlation of one signals ( )tai  and 

time-delay signal ( )τ+ta j , i.e., ( ) ( )τ+tata ji .  The concept of time-delayed 

correlation is coming form the concept of “independent source signals.” For n 

statistically independent signals ( )tai , ),......,2,1( ni = , two different signals are 

independent, thus will satisfy the condition  

 ( ) ( ) 0=tata ji . (for all ji ≠ )   (II-2) 

The time-delayed correlation of two independent signals will satisfy the condition   

 ( ) ( ) 0=+τtata ji . (for all ji ≠ )   (II-3) 

For single source signal ( )tai  will satisfy the condition 

 ( ) 02 >tai . (for all i ).  (II-4) 

The self time-delayed correlation satisfy the condition  

 ( ) ( ) 0>+τtata ii . (for all i ).  (II-5) 

The above four relations are the basic concept of time-delayed correlation method.   

M-S method introduces the additional assumption that the mean value of the source 

signal is zero, i.e.,  

 ( ) 0=tai . (for all i ).  (II-6) 
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From equation (II-3) and (II-5), the time-delayed correlation of the source signals 

could be represented as  

 ( ) ( ) ( ) ijji Ktata δττ =+ .   (II-7) 

Constructing two matrices, the symmetrical correlation matrix ( ) ( )tItIM jiij =  and 

the time delayed correlation matrix ( ) ( )τ+= tItIM jiij .  The matrix form could be 

represented as  

 
( ) ( )
( ) ( )τ+=

=

tItIM

tItIM
T

T

 .  (II-8) 

For source signals satisfying the above the five assumptions, (II-2) to (II-6), the blind 

source separation problem becomes a eigenvalue problem where ( ) CCMM λ=
−1

.  

While we solving the mixing coefficients ijC , it could be easily adopted to solve the 

source signal ( )tai .  The detail derivation will be addressed bellow.   

 

 The matrix representation of relations of source signals and detected signals is 

( ) ( )tCAtI = , thus ( ) ( )( ) ( ) TTTT CtAtCAtI == .  Substituting it into Eq. (II-8), we 

have 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) TTTTT

TTTTT

CCCtAtACCtAtCAM

CCCtAtACCtAtCAM

Λ=++=++=

Λ===

ττττ
 .  (II-9) 

Where  
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( ) ( )

( ) ( )T

T

tAtA

tAtA

ττ ++=Λ

=Λ
 .  (II-10) 

The element of the Λ , Λ  are  ( ) ijiij K δ0=Λ , ( ) ijiij K δτ=Λ .  Dividing the 

symmetrical correlation matrix by time delayed correlation matrix, we have  

 

( )
( )

11

111

11

−−

−−−

−−

ΛΛ=

ΛΛ=

ΛΛ=

CC
CCCC

CCCCMM
TT

TT

 .  (II-11) 

By multiplying mixing coefficient matrix C , we have ( ) ( )11 −−
ΛΛ= CCMM .  From 

Eq (II-10), we know that ( ) ( ) ij
i

ij K
δ

τ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Λ

− 11
, thus   

 ( )
( ) DD

K
K

ij
i

i λδ
τ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ΛΛ

− 01
,  (II-12) 

 where D  is identity matrix.  By substituting Eq. (II-12) into Eq. (II-11), we have 

( ) CCMM λ=
−1

, which is an eigenvalue problem.  By solving the eigenvalue 

problem, we can have the mixing coefficients matrix C  and so do source signal 

matrix ICA 1−= .  In a word, by using M-S method, we can simply solve the blind 

source separation problem by solving eigenvalue problem.   
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