f* BRI R
2 %2 H Rapld AR 2 73

Investigations on:Subwavelength-scale Variation
by Far-field Characteristics:

Deconvolution and Detection Sensitivity Enhancement

GEERE VS

hERE  RIBRE

P EAR {47 E I



I BRI R
2 &2 H BRI ENOR 2 FH

Investigations on Subwavelength-scale Variation
by Far-field Characteristics:
Deconvolution and Detection Sensitivity Enhancement

Fyd iRkt Student : Shu-Chun Chu
hERE MR Advisor : Jyh-Long Chern

A Thesis
Submitted to Department of Photonies;-Institute of Electro-Optical Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in

Electro-Optical Engineering
2006

Hsinchu, Taiwan, Republic of China

(\.3

EAR 44T & T 0



B i X

# K &

HRELRXSXETHEFHEHT

(REBBARITNERRXELRAZRAA)

AEREABEZIEMNAX AAANBRILIBARAEIRLEZA
e 94 SEERE VPHRGFE LM -

WXAE A ABRSBROAREERREFCARARALENELRE

Z AR5
HEHKR RER

HEE

AABBAEN UEER - BEREEA L RBALE S BB X
LAGEEE: ANESREN  AREL ARAHE, 2EA
HE R REEARZEY AL AAERSBBOAL A%
B L ARSItk ~ BRIk 8 - LUK ~ L KA R £
EUAE - EHEAR  REAREOEEARE N o REREITE

EE KT - TRRFIEF -

AXEXEREB A Z8ERGFR

215-#3‘5&35’%‘%%%):33%%@&@ ri- FERH 9 £ 6 A 2 8
#,
B ps e W FERHA 96 £6 8 2 8L

]

B AXEFHLZATRER

¥ H A ERE

REEL %?xj%gfﬁi

verm 5% [ A

>




B X X @& K 2
WAL HAR X ZhHEHE

(RBBUAZITALEXETHBEHREZIRAA)

ABREEAMBREZIRMNE ARKANBIZBASLAEIRARN
o 94 BFEERE 2 LHERSFELEMZIHX -

WXAE A ABGHUDARERREGICARALEREHE
Z K3
HWEHELRER

HEE

FANGEAEE UL - BEBRHBAITARE AN KGHE
R TEREZ B 204, 2L AEBLRSKAT2ZE
&) 0 B RBAREE EMT UM - ERBAA 0 NEEHE
SEERKERN EREFETEBERTEP -

RWXBHAANBHEINRFEEHFPFEN(RPHHFRERFR T2
M — ) PEHEXIRAS 'V H AR SLAE
kS E A = N

R A RRE
RERL: ‘jL 7%\ /?;,

|
verm  )S& b 5 U a




_ AREEE
BHRELHXEFHEILARMAE
(REBBHAEITHERARIARBHEEZZS)
ID:GT009224805

ABREEMBEIAXABHEALRALRBALLELRAR 9
BEFE VRRREAHLIEMZHX -

WXAAE A ABRGEUEHARERRESILRARALENFHE
Z ¥F3
FEEHIRERE

LEEBRRHEABRE ZHFHZ LRI (4RE) LR -
ERBEEBARE E4 0 AR - FFRIERE > MG ABRE
& MBI FT XELFRHXER » BIFRBEAEZ EFRXRH
XEFHEAELRAB T X REFHFINBAESARE 24 ik
FBE -~ TRXAIE -

K ORAENFBFAMKZEERE ~ K - TREFIPLIRX - BREFEHE
iAW EME -

®EA: RBE
RERZL ?hﬂ% ﬂ,

RE % (A VA




B i X @ K £

WXOREEeELE

ARAT RS R AL R & R B b3

FrtimX_ AR RGHEEORREFREZICARA L SR FHA 2 F

AR HETEARE KB ALZAFTRERT -

PR % 1

TP E R FRE 2
b (2 1L oo 7
ks Hi MR Iz
28 % Vo & L
A<Bm Mt w3
N AN £ e




Institute of Electro-Optical Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

Date : May 30, 2006

We have carefully read the dissertation entitled__ Investigations on

Subwavelength-scale Variation by Far-field Characteristics: Deconvolution and

Detection Sensitivity Enhancement submitted by__Shu-Chun Chu in partial

fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY and

Jung Y. Hohn Huang KenY. Hsu
o&ﬁ/\/— C\/K":‘ X»’ Wﬂéﬂ‘ ‘
Der-Chin Su Yin-Chieh Lai
Y f
/Kr‘ﬂew L /}'UW "JW Qg’/vu
\ J o 7 J
Kwo-Ray Chu Jow-Tsong Shy

/
Thesis Advisor : .-)}1 A""' éﬂ)‘b? ML—VM)

Chairman of Depariment o1 rnoionics - ¥re g/

o Odm/’ /e
=



17 dopracr Al £ < R 5
! m%&& s

Blrgd  dk PERE RARER

d 33 ‘Hﬂﬁ CAFRRIE SR SR ’:'c;ﬂtfz CRERS GRALE
FENL O FIFIRBITADSFR AT OERERERBEF Nk g AR
HEPRITAERRDTMAAARTFRN 7 (7 0 A L_Se1c1 EmAgaive > FHREFIR
BB H 0 LR *Mﬁ NS AN SRR Lt S ores MR STR S S Sk
Tl e BHRELF LRI L F A NE PR S £ R R R RS o
BH R E R P NE G B ONEP AT 3 i@ TR IR FIM A E T I R
Frok B Hped won D Fpl ol £ R a2 Hpl R e

R S H Bk 8 B d wimHITERI e L R R IT T S He o #E
() R RS RAE DR, 2 viAHIT- Al R R AR HER o A
BRVI- B2 LhEs . (2) NS FHRPFER > VHERFRTETAR
xﬁﬂ HRFERINOERASTEE A VHFE- AT AL RSP EEC TPl E &7

o (Z) &OAIF R gLa et 2 o f1% FRPIER I S RER o 2
ﬁ“#&e JE IJ% BROTAECAPERLT BHFERFTI 1% (z) JI* TRRIGRAE
PHIE - BIRAECRPERC I E R - B RRIFRF G T EREL M
AT 30/‘-’1”\1./?'1 ’f?-

d R hfE T BHRF AL v ARSI E R AR AR R B
R ks j;&%%é#ﬁrﬁxi RIEF NFRIGHEE B2 P RIURY BAA K EEAR
FrtenE Bk -



Investigations on Subwavelength-scale Variation
by Far-field Characteristics:
Deconvolution and Detection Sensitivity Enhancement

Doctoral Student: Shu-Chun Chu Advisor: Dr. Jyh-Long Chern

Institute of Electro-Optical Engineering
National Chiao Tung University

Abstract

The advance of the nanotechnology and bio-measurement highlight the importance of the
measurement within the scale of subwavelength. Thus, several scanning probe microscope
methods or near-field measurements have been developed to achieve high spatial resolution. In
the past, the extraction of subwavelength information from far-field measurement was generally
believed to be very difficult or perhaps impossible.., However, the recently experimental result
of Selci and Righini demonstrated that to detectsubwavelength information in the far-field is
possible and fully consistent with the prediction of the standard scalar diffraction theory. The
result highlighted the possibility of-measurimg optical 'signals in the far field with sufficient
sensitivity to show variations of diffraction structure in'subwavelength scale. We believe that
the far-field optical measurement was provided as a potential approach to have high-precision
measure of subwavelength-scale dynamical variation of structure, accompanying the advantages
of less damage on sample and facility in realization. Thus in this thesis, we investigate the
possibility and approaches to retrieve subwavelength-scale dynamical variation from the

measurement of far-field optical characteristics.

The thesis provides some preliminary discussions on retrieving subwavelength-scale
variation by far-field characteristics. (1) An approach to retrieve 1-D subwavelength feature
variation from far-field irradiance measurement was proposed and was numerically verified
which could have precision better than 1 nm. (2) A tunable asymmetrical embedded-aperture
interferometer configuration was proposed, which could enhance detection sensitivity of 1-D
subwavelength variation measurement at arbitrary aperture width. (3) A multi-detector,
embedded-aperture interferometer configuration accompanies blind signal separation method

was proposed could recover coupled 2-D subwavelength variation information of a rectangular



aperture with far-field irradiance measurement with error ratio below 1%. (4) By using the
approach to retrieve 1-D subwavelength variation from far-field irradiance measurement, a
constructed-aperture measurement system behaving as an optical ruler was proposed, which

could measure the marginal roughness of the test sample with error ratio below 3%.

From the discussions in this thesis, we demonstrated that the far-field optical measurement
was provided as a potential approach to have high-precision measure of subwavelength-scale
dynamical variation of structure. To explore to test sample with realistic structures and to do

more engineering applications are important issues which should be investigated in the future.
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Chapter 1

Introduction

1.1 Background and motivation

The progress in scientific research and industry, such as nanotechnology ™,
nanobiology ®, material science ¥, semi-conductor manufacturing ', and several
others prompt the developments in measurement technology at subwavelength scale.
In the past, the extraction of subwaveléngth information from far-field optical
measurement was generally believed to bé very difficult or perhaps impossible. This
is according to the reason that the wave information containing structure finest details
is carried by evanescent wave, which decaying exponentially and was hard to be
detected in the far-field P71, Owing to that reason, several non-optical scanning
probe microscope (SPM) skills and applications have been developed to achieve high
spatial resolution, such as: Atomic Force Microscopy (AFM) B! Scanning Tunneling
Microscopy (STM) P9 or implementing the measure in the Near-field , such as

Near-Field Scanning Optical Microscopy (NSOM) 12231,

However, the recently experimental result of Selci and Righini highlighted that



to detect subwavelength information in the far-field is possible and fully consistent

with the prediction of the standard scalar diffraction theory ™.

Scalar theory is
accurate when the diffracting structures are much larger comparing with the
wavelength of light [**1 and could be used to predict the far-field optical
characteristics. In the research of Selci and Righini, they answered an interesting
question that “while the diffraction feature size fulfills with the assumption of the
scalar diffraction theory and was varying in subwavelength scale, does such smaller
variation can influence the corresponding far-field characteristics and could be
measured in a detectable way?” Fheir experimental result demonstrated that, when
the width of the diffraction;  feature “size’ exceeds several wavelengths,
subwavelength-scale size variations of an object even at nano-scale can affect the
corresponding far-field diffraction pattern in a measurable way; its far-field
characteristics of integrative intensity and derivative intensity are consistent with the
prediction of the scalar diffraction theory, even when the size variation is in the order
of 1/100 wavelength. This result highlighted the possibility of measuring optical

signals in the far field with sufficient sensitivity to show subwavelength-scale

variations of diffraction structure.

To detect the far-field characteristics that correspond to subwavelength-scale



variation has been proved to be possible; the retrieving of dynamic signature of
subwavelength variation yields some more interesting information than the static
features, particularly in determining physical origins and in identifying the generation
mechanism. The recently advance of bio-technology emphasized the requests and
needs of subwavelength-scale measurement 17281 Some bio-samples, such as
cells, are usually in the scale exceeding several wavelengths, and are varying in
wavelength or subwavelength scale dynamically. We believe that the far-field
optical measurement can be considered as a potential approach to have high-precision
dynamical measurement, and accompanying the advantages of less damage on sample
and facility in realization. <Thus, the investigation and development of new
approaches in retrieving the subwavelength variation signal by using optical method

in the far-field is important and deserved to explore.

1.2 Objective of this thesis

A prior research had demonstrated to detect subwavelength signal in the far-field
is possible while the diffraction structure size fulfills with the assumptions of scalar
diffraction theory. It highlighted the possibility of measuring optical signals in
far-field with sufficient sensitivity to show variations that are orders of magnitude

below the wavelength of light. A further question we want to know is that if it is



possible to retrieve subwavelength-scale variation only by measuring far-field
characteristics. Thus, in this thesis, we want to investigate the possibility and the
schemes to retrieve subwavelength dynamic signatures of diffraction structure with

the measurement of optical characteristics in the far-field.

1.3 Organization of this thesis

The thesis is organized as following: The possibility verification and an approach
to retrieve 1-D subwavelength feature variation from far-field optical measurement
will be shown in Chapter 2. In.Chapter 3, a tunable asymmetrically
embedded-aperture interferometer configuration was: proposed to enhance detection
sensitivity of 1-D subwavelength . variation * measurement. A three-detector,
embedded-aperture interferometer configuration accompany blind signal separation
method was proposed to recover 2-D subwavelength variation information of a
rectangular aperture with far-field irradiance measurement was shown in Chapter 4.
In Chapter 5, a constructed-aperture measurement system behaving as an optical
ruler to measure the marginal roughness of the test sample with error ratio below 3%
was proposed. Finally, a summary of this dissertation, and the future works are

presented in Chapter 6.



Chapter 2

Retrieving of 1-D subwavelength variation

information

2.1 Introduction

Recently, to detect subwavelength signal in the far-field is experimentally
demonstrated to be possible while the diffraction structure size are fulfill with the
assumptions of scalar diffraction theory =4t highlighted the possibility of measuring
optical signals in the far field ‘with sufficient sensitivity to show variations that are
orders of magnitude below the wavelength of light. Could we retrieve it only by
measuring far-field characteristics? With the academic aim of clarifying this point,
we investigated to retrieve subwavelength dynamic variations of the most simple
diffraction structures, slit and rectangular aperture. In this chapter, it will be shown
that the 1-D subwavelength variation information is retrievable from far-field

characteristics measurement.

2.2 Retrieving 1-D subwavelength signature from far-field irradiance

" A brief review of scalar diffraction theorem could be found in Appendix 1.

5



measurement

In section 2.2, a method was proposed to retrieve subwavelength variation of the
diffraction structure by measuring far-field irradiance variation. The 1-D dynamic
signature of the subwavelength variation of the simplest geometric structures, a slit
and rectangular aperture, will be shown to be determinable from far-field irradiance

with a precision of better than 1 nm %),

/

2Xb

4%

Varying in one dimension

Fig. 2-1. Schematic diagram of the variation diffraction structures

2.2.1 Basic assumptions

A physical quantity, derivative intensity, of these two simple diffraction
situations was deduced to retrieve the subwavelength variation of these two

diffraction structures. Considering the most simple situation that a monochromatic



plane wave of amplitude A and a wavelength A is assumed to orthogonally
illuminate on a rectangular aperture, with dimensions 2a and 2b . The
observation plane was positioned at a distance z away from the aperture. The
diffracted intensity was collected over a rectangular detector with dimensions 2X
and 2Y centered at the origin of the observation plane. The far-field intensity

distribution on the detector is given by the expression %!

I(x,y)=(4Aj sin®(kax/ Az) sin (kby//iz). (2-1)

az)  (kxiz) (ky/z)

The overall power P, , flowing through the collection region is given by

z

ab

P = H I(x,y)dxdy . And the-physical quantity.that derivative intensity was defined

z
—-a-b

as the derivative of P, with respect'to aperture-width a, ZPZ . The derivative
a

intensities of these two situations could be derived as:

dP, 8A’b _.[2kaX :
5 L = SH| T e slit
a T z
, 2-2
dP, 8A%*z1 kb\..( 2kaX (2-2)
=———F 1Y, — SI| —— | rectangular aperture
da Vs z z

where Si is the sine-integral function, and the function f  was defined and could

be evaluated by Leibniz Integral Rule *1as ¢ (x a) TSinzgaX)dX _ asi(2ax)- S @X).
X

0

The derivative intensities of the two diffraction structure are both proportional to

2kaX
Z

the function Si( j which was shown in the Fig. 2-2 (In this demonstrated



figure, X is 100 zm, z is 100 mm, and light source wavelength of 632.8nm was
used.). It could be found that the fluctuations of derivative intensities were vary
small while the width of the diffraction structure is varying in the subwavelength
scale. We make the assumption that while the width of the diffraction structure is
varying in subwavelength scale, the variation of derivative intensity is small enough

to be estimated as a constant value.

@ ' (b) .
sl (0 e

1.5

1.5

1.25
1.25

Si(2kaxlzg 751 60 um Si(2kax/z) 1
" s S0
0.25 0.25
200 400 600 800 1000 130 140 150 160 170 180
a (unit: zzm) a (unit: gm)

Fig. 2-2. (a) Schematic diagram. 'of* the variation of function Si(2kaX /z) (b)

enlargement of part of the Fig. 2-2 (a)

Thus, the equation will approximately hold
@& (%)
dt ), \dt ) \da

o . P . :
The derivative intensity (O(lj Zj can be evaluated analytically and is a constant,
a

(2-3)

=co[dpzj .
T

t

El)

on the detector can be measured.

whereas the temporal variation of power (ddl?j
t

Therefore, Eq. (2-3) could be used to deduce the rate of variation of the width of the

8



, SO does the aperture width variation: Aa ~ (z—?j

*At.

slit (d_aj
dt

t t

2.2.2 Simulation verification with subwavelength variation

Three different typical cases - periodic, quasi-periodic, and random variations -
were used to investigate the feasibility of the proposed retrieving method. In the
simulation, the amplitude of the vibration was taken to be 10nm at a frequency of
100Hz. The sampling rate of detector was 1.0 KHz, which is higher than the
frequency of the vibration of the slit:ys The half-width of the slit a was 50 um.
The half width of the detector, X and Y "were both 100 xm; the detector was
placed behind the lens with a focal lengthrafi30 mm.. A light source wavelength of

632.8nm was used.

The sine function was used to represent the periodic subwavelength variation:
the slit variation then would be, a(t)=a,+axsin(27ft), where « was the
amplitude of the vibration of the slit. The quasi-periodic subwavelength variation of
the slit is given by a(t)=a, +axsin(27zft)+axsin(27z\/§ft) . The random
fluctuation is specified by a(t+At)=a(t)+axn, where 7 is a randomly selected

value ranging from -1 to 1. Numerically, we know the exact width of the aperture



along the x direction from time to time, which is referred to as the simulation-setting
value of the width of the slit. Figure 2-3 shows the relation between the deduced
value and the simulation-setting value by the method we used. The curves on the
left plot the deduced variation of the width of the slit, a*, and the curves on the right
plot the difference between the deduced value and the simulation-setting value,
a*(t)—a(t). The difference between the deduced and the simulation-setting values
is about 10°nm . It means that the method of deduction is with very high precision,

and the inaccuracy is only about 10 of the vibration amplitude of 10nm .

0.3

50 o1 o4{(@) (b)
0.2
50.005 med
50.000 0.0
49.995] 011
0z
49.890
- 0.3
50 2 {{€) 2 J(d)
€
5001 - £ 1
- £
§ son0] o o
— -
. =)
% 49409 CRR
&
.
49 98 2]
s0.010{(¢] a.3{(f)
0.2
50.005
0.1
50.000 0]
49.995] 01
49990 24

goo o002 004 005 003 0410 000 0602 004 006 003 0410
Time (sec) Time (sec)

Fig. 2-3. Deduced subwavelength variation, a*, and the difference between the
deduced value and the simulation-setting value, a*-a, for aslit. (a), (b): periodic,

(c), (d): quasi-periodic, and (e), (f): random fluctuation.
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In the simulation of the rectangular diffraction aperture, all simulation settings
were same as that of slit case, except the aperture widths a and b were both set to
50 um. As shown in Fig. 2-4, the difference between the deduced value and the
simulation-setting value remained far below 1 nm (specifically, about 10°nm). In
other words, in the case of a general rectangular aperture, subwavelength variation
can be retrieved precisely from the far-field irradiance. Extensive simulations
revealed that in the general case of a light diffracting rectangular aperture, even when

the vibration amplitude is 1 zm, thesinaccuracy remains bellow 1 nm .

50.02{(@)

50.01 {

50.00

a* (um)

49.99

45,95 4

oo {0

-0.5 1

| (a*l-a)x’llﬂs (nm)

0.00 0.02 0.04 0.08 0.08 0.10
Time (sec)

Fig. 2-4. Subwavelength variation for a rectangular aperture. (a): deduced a*, (b):

the difference a*—a, where the dotted curve refers to the periodic case, the solid-line

curve refers to the quasi-periodic case and the bold solid-line curve refers to the

random case.
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2.3 Retrieving 1-D subwavelength signature from far-field diffraction

pattern measurement

In the section 2.2, the 1-D dynamic subwavelength variation signature is shown
to be determinable a precision of better than 1 nm from far-field irradiance
measurement by using the deduced quantity, derivative intensity. We may ask if
there is any other quantity that could be used to retrieve the subwavelength variation
of diffraction structure, besides the quantity of derivative intensity. Truly, derivative
intensity is not the only far-field optical quantity of characterization. In addition, we
have an alternative characterization with ™ far-field diffraction pattern.  The
subwavelength variation of diffractive structure causes the variation in the far-field
diffraction pattern. Hence, one can retrieve the information contained in the far-field
diffraction pattern and use it to trace the scale of subwavelength variation. In the
section 2.3, it will be shown that the associated shifting of the dark line of diffraction
pattern, caused by subwavelength variation, had good linear correlation to that and
will be magnified about hundred times. Hence, an alternative method of detecting
subwavelength variation from far-field measurement, based on pattern measurement

could be achieved.
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2.3.1 Basic formalism

The basic formalism of associated shifting of the dark line of diffraction pattern

to the corresponding 1-D subwavelength variation in two situations: (1) Direct

observing the diffraction pattern, and (2) Observing interference pattern with an

embedded aperture, will be addressed in this section.

(a) Directly observing the diffraction pattern

Consider the optical wave diffracted by .a single aperture with the dimensions

2a and 2b. The intensity distribution-on'the detector that positioned at a distance

z away from the aperture is

_(4AY sin*(kax/z) sin*(kby/ z) ]
|(X, )_[ﬂ,Zj (kX/Z)2 (ky/Z)Z : (2 4)

The analytical result of the dark line locations on the detector along the x direction

X, (a):fg_iz, (M=123..) (2-5)

, Where m is the order of dark line pattern. Expanding the width at a certain

specified aperture width , e.g., a=a,, we have

mAz
X (a) = TE

Kl_ﬂ(a_ao)+ﬂ(a_ao)uo(a_aofﬂ . (@29

8 a 0

where the symbol O denotes the truncated terms after the second order (a-—a,)>.
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Apparently, when the aperture has a subwavelength variation and the diffraction
aperture is much larger compared to the wavelength of light, then under the first order
approximation, the relation between the pattern shift on the screen, Ax,, and the
subwavelength variation Aa is

Mxy =——Aa. (2-7)

The inaccuracy ratio of the approximation is ~ |a—a,|/a, .

(b) Observing interference pattern with an embedded aperture

In this section, we consider .the. .diffraction pattern variation under
embedded-aperture interferometer configuration. '“As shown in Fig. 2-5, it is a
common Mach-Zehnder interferometer but with- an embedded aperture. To be
specific, a monochromatic plane wave of amplitude A and wavelength 4 was
assumed to be orthogonally illuminated on a beam splitter B;. The beam was split
into two after passing through the beam splitter. One beam was reflected by a mirror
M, and passed through a rectangular observation aperture S; with dimensions 2a
and 2b. Another beam was reflected by mirror M, and passed through another
rectangular embedded aperture S, whose dimensions were 2a' and 2b. (For
simplicity, we set the two apertures to be different in one direction only.) Then the

two beams were passed through another beam splitter B, and recombined into one
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beam. The diffracted intensity was collected over a rectangular detector. The
detector was with dimensions 2X and 2Y centered at the beam width, and was
positioned at a path distance z away from each aperture.

" N

I 3 |
S, detector

Fig. 2-5. Schematic diagram of embedded-aperture interferometer configuration

The interference intensity distribution of‘these two beams on the detector is

I(x,y):\UlJrUZ\2

_ (4Aj2 sinz(kby/z){sinz(kax/z) . sin’(ka'x/z) . sin(kax /z)sin(ka' x / z)} '
z)  (kylz) (kx/z) (kx/z) (kx/z)

(2-8)

Assuming that there is subwavelength variation along the x direction for the

observation aperture with dimensions 2a and 2b, where a=a,+Aa and the
symbol Aa denotes the subwavelength variation of the half aperture-width. The

other beam passes through another embedded rectangular aperture, with dimensions

2a' and 2b, where a'=a,. Explicitly, from Eq. (2-8), the interference intensity

distribution of these two beams on the detector can be rewritten as:
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_16A’sin’(kby/z) 1 . : )
1(x,y)= y (ky/zy)z I {sin(kayx/z)+sin[k(a, + Aa)x/z] | , (2-9)

=C{sin(ka,x/z)+sin[k(a, + Aa)x/z]

where the symbol C denotes the function which has no relationship to the widths
along x-direction of the two apertures. Therefore, one can use Eg. (2-9) to solve the
numerical result of the dark line locations of the interference pattern. The condition
follows that

%:o and Z—;>o. (2-10)
Assuming that the variation scale, compared to the aperture width for the observing
subwavelength variation was very small, we can deduce the linear relation between
the subwavelength variation of the half:aperture-width and the dark-line pattern shift
as  follow.  The  function , Isinfk(a,+Aa)x/z] was  expanded to
sin(ka,x/ z) cos(kAax/ z) + cos(ka, x/z)sin(kAax/z) . Considering the variation of
the half aperture in the subwavelength scale, with substitutions cos(kAax/z)~1 and
sin(kAax/z) ~kAax/z , the interference intensity can be rewritten as

1(x,y)=C{2sin(ka,x/z)+ (kAax/z)xcos(ka,x/z)* . The relations between the

dark-line position x, axis and the subwavelength variation Aa is

tan(ka,x, / z)=—kAax, / 2z . (2-11)
The pattern shift Ax, =%Aa, where o __d% 0% . Derived from
d da d(a,+Aa) d(aa)

Eg. (2-11) with Aa, we have
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dx,  dxy —kx, /22 X123, (2-12)

da  d(Aa) Ma+kaosecz(ka‘)xﬁ'J secz(ka"x"j
22 z z z

where the secz[%leﬂanz(%) From Eq. (2-11), we obtain the relation
z z

ka, x - ,
tanz(#j:(— kaax, /2z)°. Because the variation of the aperture was in the
z

subwavelength scale, tanz(kao—xdj <<land secz(%J can be approximated to 1.
z z

Considered with a~a’, the dark-line position x, is very close to the value that was
diffracted by the single aperture with half width a,, with a substitution x, from Eq.
(2-7). Overall we can estimate the relation between the subwavelength variation of

the half observation aperture-width and the dark-line pattern shift in linear form

mAz

- ke

Ad, (2-13)

2.3.2 Simulation verification with subwavelength variation

To verify the feasibility of the relationship in Eq. (2-7) and (2-13) in detail, we
carried out numerical evaluation for the variation of the first dark-line, while the
observation aperture varying in subwavelength scale. In the case where the
wavelength of the incident light was 632.8nm, the detector was at a distance of
100mm from the aperture, and the half aperture width along the x direction was

10 um; the results are shown in the lighter lines in Fig. 2-6. The analytical result is

depicted using a solid line, while the first-order approximation is shown with a dotted
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line. The shifting of the diffraction pattern, associated with subwavelength variation,
had good linear correlation and was magnified about 300 times. In this case, when
the aperture variation was under 0.5 gm , the inaccuracy of the first order
approximation was under 5%. Taking the second order approximation, the
inaccuracy would be less than 0.5%. Meanwhile, a direct numerical examination
based on the Fraunhofer approximation 2, i.e., using the Fraunhofer diffraction
integral, was used to evaluate the dark line position shift; this is shown with hollow
triangular symbols. The diffraction pattern shift, with the half observing aperture
with 100nm variation, is shownin Figs. 2-7(a) and (b). The half observation
aperture was 10 zm and the detector, with“dimensions 100 zm and 100 z#m, was
centered at the first order dark-line position-at a distance of 100mm from the aperture.
The pattern shift was 31.82 um, considering the subwavelength variation of the

aperture was magnified about 300 times.

Again, for a comparison of section 2.3.1, the numerical evaluation of observing
interference pattern with an embedded aperture are shown in Fig. 2-6 in the thicker
lines. The numerical result from Eq. (2-11) is shown with a solid line, and the linear
approximation result (Eq. (2-13)) is shown with a dotted line. The examination of

the Fraunhofer approximation for the dark line position shift is shown with solid
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triangular symbols. The diffraction pattern shift, caused by a 100nm variation of the

half observing aperture, is shown in Figs. 2-7(c) and (d). The parameters used in the

simulation were as follows: the half observation aperture was 10 #m; the detector

(size: 100 #m X100 um) was centered at the first order of the dark-line position on

the focal plane; and the focal plane was located at a distance of 100mm from the

observing aperture. From the figures, one can see that the pattern shift was

15.49 ym; comparing the subwavelength variation of the aperture, the scale was

magnified about 150 times.

200
150+
100+
50
0
504

-100

-150

Dark line position shift : Ax, { um )

=200 : . : T . : : : : : : \
600 -500 -400 300 -200 -100 O 100 200 300 400 500 600
Half-aperture variation : Az (hm)

Fig. 2-6. The dark-line position shift versus the half aperture variation. The thicker

line denotes the interferometer configuration, while the lighter line denotes the single

aperture.
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Fig. 2-7. The diffraction patterns before and after 100nm half aperture variation in

two different situations. Directly ‘detected method: (&) and (b); embedded-aperture

interferometer configuration: (c) and (d).

2.3.3 Discussion on contrast influence in pattern measurement

The shifting of the diffraction pattern associated with subwavelength variation

held a good linear correlation; however, under embedded-aperture interferometer
configuration, the scale was magnified about 150 times, which is only half of the

directly detected method. The shifting amount of the dark line, however, is not the

only factor in taking a good measurement. Contrast of the diffraction pattern is also
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crucial in detecting the signal. To demonstrate the influence of the contrast, we first
calculated the intensity difference between the maximum and the minimum
diffraction patterns within the area that was centered at the dark line position with a
finite width; this was 30 zm, for both cases. We then normalized the intensity
difference; the results are shown in Figs. 2-8 (a) and (b). The parameters used in the
simulation were as follows: the half observing aperture was 10 um; the detector was
30 #m X 100 zm and was centered at the first order dark-line position on the focal
plane; and the focal plane was located at a distance of 100mm from the observing
aperture. The cross-section along,the x axis of the first dark-line of the two cases is
shown in Fig. 2-8 (c). It is obvious'that 'the diffraction pattern of the
embedded-aperture interferometer configuration 1S sharper than that of directly
detected method, which implies that it is easier to confirm the detection of

subwavelength variation, using the embedded-aperture interferometer configuration.
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Fig. 2-8. The diffraction patterns centered at the first dark-line position: (a) directly
detected method and (b) embedded-aperture interferometer configuration. (c): the
cross sections along the X axis of (a) and (b), where the thicker line represents the
embedded-aperture interferometer configuration and the lighter line represents the

directly detected method.

2.4 Summary

In summary, it is shown that 1-D subwavelength signature of diffraction
structure can be retrieved from the far-field characterization, such as irradiance and
diffraction pattern. The 1-D dynamic subwavelength variation signature of a slit and a
rectangular aperture is shown to be determinable from its far-field irradiance with a
precision of better than 1nm. Another feasible method of detecting subwavelength
variation with diffraction pattern variation was also proposed. The variation of the

subwavelength scale was verified contained in dark-line pattern shift and was
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enlarged in an order about hundred times to be easily measured in the far-field.

Form the results of this chapter, it implies the possibility to extract much useful

information, such as an object’s thermal characteristic, vibration, deformation and

others in the precision of subwavelength scales, form only far-field optical

measurement.
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Chapter 3

Enhancement of detection sensitivity of 1-D

subwavelength variation measurement

3.1 Introduction

In the chapter 2, a scheme to retrieve the dynamic signature of the

subwavelength variation from far-field irradiance with an appreciable quantity-

derivative intensity with a precision of better.than 1 nm was proposed. However,

while measuring the structure variation in‘subwavelength scale, what we retrieved in

the far-field is usually a weak optical signal and hence, it is a critical issue to enhance

the detection sensitivity of the measurement. Therefore, effective measurement

methodologies must be developed to retrieve subwavelength variation from far-field

measurement, with a higher sensitivity. The enhancement of detection sensitivity is

certainly possible to simply increase the light power that is transmitted through the

test sample. However, in most situations, the test sample may suffer saturation

and/or damage; hence, incident power must be limited. This means that enhancing

detection sensitivity, via a direct increase of the incident power, simply may not work.
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In this chapter, two embedded-aperture interferometer configurations were proposed,
which could enhance the detection sensitivity of 1-D subwavelength variation

h 2324 In these

measurement of a rectangular aperture with arbitrary aperture widt
configurations, an aperture (named the reference aperture) was posited symmetrically
or asymmetrically relative to the aperture with the subwavelength variation was to be
identified (named the test aperture). In symmetrical configuration, to enhance the
detection sensitivity at any specific detection width, we have to modify the
configuration and width size of the reference aperture. In asymmetrical
configuration, the detection sensitivity could be.enhanced at any specific detection
width by only shifting the relative position of the reference aperture with fixed width
size.  On the other hand, with these two. embedded-aperture interferometer
configurations, the detection sensitivity is directly in proportion to the power of the
reference beam. By increasing the power of the light beam transmitting through the

reference aperture, detection sensitivity can be increased to a desired order without

damaging the test sample owing to increase the incident power on the test aperture.

3.2 Symmetrically-embedded-aperture interferometer

3.2.1 Basic formalism and general features

Although it is not necessary to be limited to one specific interferometer configuration,
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for simplicity, we have demonstrated a typical scheme. The proposed configuration,
which is similar to the Mach-Zehnder Interferometer structure, is shown in Fig. 3-1.
A common Mach-Zehnder interferometer was used, but with an embedded aperture,
for which the associated subwavelength variation can be detected. In addition,
another aperture was embedded for reference and optimization control.

M EN

S |
S, detector

B, M-

Fig. 3-1. Schematic diagram of interferometer configuration.

To be specific, a monochromatic plane wave of amplitude A and a wavelength
A was assumed to be orthogonally illuminated on a beam splitter B;. The beam
was split into two after passing through the beam splitter. One beam was reflected
by a mirror M; and passed through a rectangular observation aperture S; with
dimensions 2a and 2b. Another beam was reflected by mirror M, and passed
through another rectangular embedded aperture S,, whose dimensions were 2a' and

2b. (For simplicity, we set the two apertures to be different in one direction only.)
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Then the two beams were passed through another beam splitter B, and recombined
into one beam. The diffracted intensity was collected over a rectangular detector.
The detector was with dimensions 2X and 2Y centered at the beam width, and

was positioned at a path distance z away from each aperture.

In the far field region, the diffraction field is the Fourier transform of the
transmission function. The transmission functions of the two apertures are:
t, =rect| — |rect| - | and t,, =rect| - |rect| .| where rect is the rectangle

2a 2b 2a' 2b
function. The diffraction optical fields of the tworbeams are

- - 7[ 2 2
exp[sz+ Jﬂ—(x +y ))
U,=A _/12 4absin c(kax/ z)sin c(kby / z) (3-1)
Az

and

Aexp(jkz + j%(x2 + yz))

e 4a'bsinc(ka'x/ z)sin c(kby / z) (3-2)

U, =

, Where k is the wave number, j=+/-1, and sinc is used to denote the sinc

function. The interference intensity distribution of these two beams on the detector

1(x,y)=|u, +U,|’
16A? sin?(kby/z)| sin’(kax/z) sin?(ka'x/z) ,sin(kax/z)sin(ka'x/z)
= 2 2 7+ 7 T 2
(2 (ky/z) (kx/z) (kx/z) (kx/z)

(3-3)

The overall power P,, flowing through the detector is
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I x y dxdy

]

_‘<'_,—<

_16A? sin® kby/z sin’ kax/z) tsinf(ka'x/z) . - (3-4)
Sin {Rkax7z) i \KaXxriz)y

(azy [,J. ][j kx/z) J (kx/z) X

2J- sin(kax/ z)sin( ka x/z)

dx
k/z ]

Unlike the previous case of the non-interferometer approach mentioned in the chapter
2, an additional term are associated with the half observation aperture width a. In
other words, with appropriate arrangement, it is possible to increase the sensitivity of

the overall power variation with the observation aperture width.

To quantify the sensitivity, we first followed Ref. ™ and used derivative

intensity f, = c:jPZ . The derivative intensity can be-deduced by using Leibniz’s rule,
a

resulting in

16A? 2zb .(Zka] sin®(kbY /z)
a = 7 x——|SI - 2
(12} Kk z (kbY /z2)

o220t

where Si denotes the sine-integral function.

, (3-5)

To determine the maximum derivative intensity, the optimized enhancement of

the sensitivity of the observed subwavelength variation was specified at half aperture

width a. With two times the partial derivative with respect to half detector width

X', the optimized condition was determinable.  Within the proposed interferometer
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configuration, the optimization condition required the half embedded aperture width

a' of the reference beam and half detector width X to satisfy:

a'>a
k(a+a)X/z=(2m +1)z - (3-6)
k(@a-a)X/z=(2m, +1)z

where m, and m, are positive integer numbers. The result of kaX/z=r and

ka'X /z =27z, by which Eq. (3-6) is fulfilled, is shown in Fig. 3-2.

3.2.2 Simulation verification and discussion

As a numerical demonstration, a half aperture width, 50 zm, was considered.
Meanwhile, a common light-source, the He-Ne laser, in which the wavelength is
632.8 nm, was used. The detector was-at a distance of 100mm from the aperture,
the half detector width was 632.8 sm and-the optimized reference beam half width
was 100 zm. We first considered the condition with the same size of detector. As
shown in Fig. 3-2(a), with the interferometer configuration (thick solid line), the
overall power variation on the detector was enhanced to 3.5 times that of the directly
detected method (dotted line). Even when the detector for the directly detected
method was optimized (thin solid line) by modifying the detector width ™! the
sensitivity with the embedded-aperture interferometer configuration was still
substantially (about 2.7 times) more than that of the directly detected method with

optimized detector, as shown in Fig. 2(a).
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A different observation aperture size did not affect the conclusion, as shown below.

In figures 3-2(b) and (c), the maximum sensitivity observation half aperture widths

were optimized at 100 #m and 150 zm, respectively. When the sensitivity of

observation needs to be maximized, the embedded-aperture width can make twice as

the observation aperture, and the detector size can be different for optimization.

Re-setting for different wavelengths is straightforward, and sensitivity enhancement is

always available. If the incident wavelength was changed, such as to 532nm, the

half detector width varied to 532 pm, i.€., Eq.(3-6) was satisfied; we obtained the

same result as shown in the Fig: 3=2(a). ThiS meant that it is possible to retrieve the

subwavelength variation of an aperture, with sensitivity enlarged nearly three times,

by adding an arm with an additional appropriate aperture and observing the

interference pattern in the far field. A different observation aperture size, or using a

different wavelength, did not affect the conclusion; optimization could be performed.
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Fig. 3-2. Derivative intensity versus the half aperture width. The maximum sensitive observation half

aperture was optimized at (a) 50 #m, (b) 100 ¢m, and (c) 150 xm.

It should be noted that the to enhance the detection sensitivity at a specified

width of the observation aperture S; , a, the half detector width X and position of

the detector, z, should be modified to satisfied the Eq. (3-6). Moreover, the width
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of the reference aperture S, , a', should also be modified with the width of the
observation aperture S; , a. E.g., in the demonstration simulation kaX/z=z and
ka'X /z=2r, i.e., the width of observation aperture S, , a' should be twice the the
width of observation aperture S; , a . Though the proposed
symmetrically-embedded-aperture interferometer can indeed to enhance the detection
sensitivity of 1-D subwavelength variation measurement, it seems that it is not easy to
implement in the realistic situation. In the next section, an tunable
asymmetrically-embedded-aperture interferometer was proposed to the detection

sensitivity of 1-D subwavelength variation more conveniently.

3.3 Tunable asymmetrically-embedded-aperture interferometer

3.3.1 Basic formalism and general features

The proposed configuration, which is similar to the Mach-Zehnder
Interferometer structure, is shown in Fig. 3-3 (a). The test aperture, D; was
associated with subwavelength variation to be identified. In addition, another
embedded aperture, D,, which could be shifted, was embedded. The test-aperture,
D; and the reference-aperture, D, were situated asymmetrically to the observing plane,
as shown in Figs. 3-3 (b) and (c). Note that, if the detector position was not in the

far-field region, then by introducing the focal lens against the apertures, as shown in
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the dotted-circle in Figs. 3-3 (b) and (c), we could still observe the far-field diffraction

pattern at the back focal plane, behind the lens.

(a)
I\I]_ I Dl B: l
9
__| D2 Detector
—
Bl 1\[:
(b) test aperture (c) reference aperture
7 n
2N
o ."'-“
T A 1‘_'I_I T bl
A 7

Fig. 3-3. (a) Schematic diagram of interferometer configuration. (b) The relative position of the

detected-aperture.  (c) The relative position of the embedded-aperture.

A monochromatic plane wave of amplitude A, and a wavelength 1, was

assumed to be orthogonally illuminated on a beam splitter, B;. The beam was split

into two beams, after passing through Bj, each beam having a different amplitude,

denoted by C; and C, (C,+C, =A). One beam was reflected by a mirror M;, and

passed through the test-aperture D; with dimensions a and b. The other beam,

reflected by mirror M, passed through the reference-aperture D, whose dimensions
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were a' and b, situated relative to the test-aperture with « along the & direction
(see Figs. 3-3 (b) and (c)). After passing through another beam splitter B,, the two
beams were recombined into one beam. The diffracted intensity was collected over
a rectangular detector, with dimensions 2X and 2Y, which were positioned at a
path distance z away from each aperture. Considering the detector being situated

at the Fraunhofer diffraction region, the diffraction optical field distribution is (%

Uiny)=S [ fulemen - iy asin, @

—00—00

where Kk is the wave number and j=\/—_1. The diffraction aperture is assumed to
lie in the (5,77) plane and illuminate in. the positive z direction. The symbol
U (§, 77) represents the optical field behind the diffraction aperture. The optical field
calculated was across the (x,y) plane;-which is parallel to the (£,7) plane at a

normal distance z. The diffraction optical fields of the two beams on the detector are

K (2,2
e“‘zejz(x ?) xa \sin(zxa/ Az) sin(zyb/ Az)

U s :—C —1 —_— 3'8
(x.y) jAz 1exp( Jﬂ/lzj 71 Az w1z (3-8)
and
e"kze%(xzwz) x(p —a)\sin[ax(B - a)l Az]sin(zyb/ 1z)
Uz(X,y):.—CzeXp(_j” p aj pa LA . (39)
jAz Az x| Az nyl Az

The interference intensity distribution of the two beams on the detector is

I(x,y)=|u, +U,|*. Because the intensity distributions of the two beams, in terms of y

were the same, we defined the intensity function as f,(x), which only included the
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influence of the x parameter of the interference intensity distribution, as follows:

fl(x):

. . 2
Clexp(_jﬂm]3|n(m<a//lz)+czexp(_jﬂx(ﬁ—a))sm[m((ﬂ—a)//lz] . (3-10)
Az Xl Az Az Xl Az \

Assume that the amplitude of the reference beam is , times the beams transmitted

through the test-aperture, i.e.,, c,=yC, (y is named as the amplitude ratio).

The intensity function can then be rewritten as

2 sin*(mxal Az) sin(zxa/ Az) sin[2x(8 - )//12]

)= 1‘[ (w1 2z) voy axl Az axl Az os(l @-a- ﬂ)j
2 Sin?[ax(8 - a)l Az]

7 (nx1 22 ]

(3-11)

The irradiance collected by the detector was denoted by symbol p,, which can be

XY
evaluated by P, = J. _[I(x,y)dxdy. The_detection sensitivity is proportional to the

-X =Y
far-field irradiance variation, with the change of observation aperture width, i.e., the

X

quantity dP,/da. The derivative intensity function is defined as f, :% J' f, (x)dx
X

which is proportional to the detection sensitivity. The detailed calculation gives us

f,(a |c | {23 (kix j {s{@} - s.(MH} (3-12)

Note that the first term in the derivative intensity function was same as that of the
directly detected case (i.e., without the embedded-aperture configuration), caused by
the variation of the test aperture without the reference aperture, as follows

fala |c ’si ("";‘Xj (3-13)

The second term in the derivative intensity function was raised from the adding the
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asymmetric reference aperture, which introduces the reference beam to interfere with

the detection beam:; it follows that

f.,(a)= %}/ |Cl|2[8i(k(a_a))(}— Si(k(a_ﬂ)xﬂ , (3-14)

Z

named as the interference function.

The influence of detection sensitivity caused by embedded-aperture was

discussed as follow. Assuming the amplitudes of the two beams are equal, i.e.,

y =1, the derivative intensities while embedded with different situations were shown

in Fig. 3-4. In Figs. 3-4(a), (b) and (c) the widths of the reference apertures were

fixed at 150 #m, and the relative position «of the teference apertures were located

at the right side, relative to the test aperture.at 50 #m, 150 gzm, and 250 gm,

respectively. In Figs. 3-4(d), (e), and (f), the relative positions of the reference

apertures were fixed at 250 m, and the widths of the reference apertures were 50 zm,

150 gm, and 250 um, respectively. For every simulation in the paper, a rectangular

detector, with dimensions 200 #m by 200 #m, was positioned at a distance of 25mm

from each aperture. In addition, the widths of the two apertures lying lies along

n-direction were both set to be 300 m.  The analytical result of the derivative

intensity of the proposed interferometer configuration is shown as a thick solid line,

while the directly detected method (without interferometer mechanism) is shown as a
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dotted line, for comparison. A direct numerical examination, based on the

Fraunhofer diffraction integral, is shown with triangle symbols.
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Fig. 3-4. Normalized derivative intensity versusithe test aperture width. The reference aperture width:

150 pm, relative position: (a) 50 xmy,. (b) 150:/m, and (c) 250 #m. The relative position of the

reference aperture: 250 zm, with width: (d)50zMs«(e) 150 1M, and (f) 250 M.

Three unique features can be identified from Fig. 3-4: (1) the form of the

derivative intensity function is related to the reference aperture width, a'; (2) the

peak position of the derivative intensity function is relative to the position of the

reference aperture, « ; and (3) we can see that by using a reference aperture, situated

asymmetrically to the test aperture, as the reference beam for interference with the

optical field of the test aperture, an additional peak in the derivative intensity function

can be identified, i.e., the detection sensitivity of measuring 1-D subwavelength
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variation of test-aperture was enhanced at the additional peak position of the
derivative intensity function. In other words, shifting the reference aperture could
enhance the detection sensitivity of any specific test aperture. To optimize the
detection sensitivity at the specific test aperture width, we had to discuss the
relationship between the reference aperture width a', and the form of the derivative
intensity function, as well as the relationship between the relative position of the

reference aperture « and the peak of the derivative intensity function.

3.3.2 Detection sensitivity optimization

The detection sensitivityis directly: proportional to the value of derivative

intensity function, f, (a). Hence, we want to find the condition of the reference
aperture that could optimize the detection sensitivity to have a maximum peak value
at any specific test aperture width, a,. While both the detector width and the
detector position were fixed, the first term of the derivative intensity function, f_(a),
was a function with stationary form with respect to the test aperture width a. The
second term of the derivative intensity function, f_,(a), was linear independent with
the function f,(a), which was introduced by adding the reference aperture.
Actually, the peak of the derivative intensity function was introduced by f_,(a).

The interference function was made up of two sine-integral functions. Sine-integral
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functions have such property that Si(—x)=—Si(x); the maximum of the sine-integral
function occurred at x=7z, i.e. Si(r)=1. The interference function can be

rewritten as:

f(a)= %}/ |cl|2[3i(mj + Si(Mﬂ . (3-9)

z yA

To maximize the interference function at the specific detected-aperture width a,, the

following relations must be satisfied:
z . (3-15)

Solving Eqg. (3-15), the optimized.condition, maximizing the detection sensitivity at
the specified detected-aperture width a, was derived, i.e., the relative position of the
reference aperture « , and the reference aperture width a', which must satisfy:

{a=a0—/12/2x (3.16)

a=f-a=1lX

The analytical and numerical demonstrations are shown in Fig. 3-5. The detection

sensitivities were separately optimized, at three different test aperture widths a,, i.e.,
100 gm, 300 gm, and 500 zm. In these cases, the widths of the reference apertures
a were fixed at 158.2 um, and the relative positions of the reference apertures «
were 20.9 gm, 220.9 um, and 420.9 um, respectively. In other words, in the
measurement of the subwavelength variation of the aperture width, with the

measurement of far-field irradiance variation, by simply shifting the reference
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aperture, we could optimize the detection sensitivity at any test aperture width. It

should be noted that by using optimized width of the reference aperture could let the

derivative intensity having a maximum peak value; using different reference aperture

widths may change the width of the derivative intensity and cause the peak value of

derivative intensity function to decrease.

S 6 -(a) a,=100pm 6 4(b) a,=300pm 6 - () a,=500pm

5 54 54

E | |

@ 4+ 4

£ ] ]

-

E 34 3

£ |

@

= re e

= . 1IN N

(5

= 14 14

g ] p 4

= 0 ———7 71— 0 ———7——71—— 0 —T T T 1
z 0 200 400 600 800 0 200 400 600 800 O 200 400 600 800

test aperture width: a (um)

Fig. 3-5. Normalized derivative intensity versus-the test aperture width. The maximum sensitive

detected-aperture width was optimized at (a) 100 ¢m, (b) 300 zm, and (c) 500 M.

3.3.3 Discussion

Some properties of the proposed embedded-apreture interferometer will be

disscussed in this seciton. First, it is worthwhile to note that, in our proposed

configuration, the detection sensitivity can be tuned to a desired order by only

increasing the reference beam power. For example, the detection sensitivities were
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optimized at the test aperture width a, = 300xm, with the amplitude ratios =1 and

7 =5; the results are shown in Figs. 3-6(a), and (b), respectively.
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Fig. 3-6. Normalized derivative intensity versus the test aperture width with an amplitude ratio:

(@y=1,and (b)y =5.

Besides, in the proposed tunable embedded-aperture-interferometer configuration, by

simply shifting the relative position ‘of thereference aperture, we could enhance the

detection sensitivity of test aperture with arbitrary aperture width. Why does the

derivative intensity could be enhanced by shifting the reference aperture, so do the

detection sensitivity? The reason is that the action of interference of two beams

rearranged the diffraction intensity distribution on the detector. The optimized

condition of the reference aperture allowed the trend of the additional irradiance

variation, introduced by the reference aperture on the whole detector, to be the same

and the maximum. To illustrate the action of optimization by shifting the reference

aperture, three different situations were analyzed. First, a reference aperture was
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situated so that it satisfied the optimization condition Eq. (3-16), i.e., the relative

position of the reference aperture was 70.9 um and the width of the reference

aperture was 158.2 um . Second, the reference aperture was shifted to a

non-optimized relative position of 150 zm. Finally, the reference aperture was

shifted to a non-optimized relative position of 250 zm. The difference in intensity,

dl /da, with the detector at the width of the test aperture being 150 zm for the three

situations, are shown in Figs. 3-7(a), (b) and (c), respectively. The additional

irradiance variations introduced by interference that compared to the directly detected

case of the three situations are separately shown. in Figs. 3-7(d), (e) and (f). Note

that in the optimization condition, the detected difference in intensity was maximized

and the additional irradiance ‘variation "had the’ same positive trend. In the

non-optimized condition, the additional irradiance variation was did not have a

positive trend, so the difference in intensity was less than the optimized intensities.
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Fig. 3-7. The differences in intensity, dl/da, on the detector at the test-aperture width of 150 £zm
are shown in Figs.3-7(a), (b) and (c). The additional irradiance variations, introduced by interference,
compared to the directly detected cases of the three situations are shown in Figs. 3-7(d), (e) and (f).

Optimized conditions: (a)(d), and non-optimized conditions : (b)(e) and (c)(f).

It is worthwhile to note that the optimization was processed by controlling the
peak position of the interference term in the derivative intensity function, mainly by

shifting the relative position of the reference aperture. In the region that
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a, > Az/2X , the fluctuation of the first term in the derivative intensity function, i.e.,
f,,, was not significant. Hence, the change in the additional peak position of the
derivative position by the fluctuation of f,, was small enough to be ignored.
However, in the region of a, < Az/2X, the function f,, was in the form of a linear
increase and this change in the optimized peak position may be significant.
Therefore, optimizing the peak position of the detection sensitivity, at a specific
aperture width within a, < Az/2X, by shifting the relative position of the reference
aperture will fail. In other words, the tunable asymmetrically-embedded-aperture
interferometer configuration is applicable within

a,>Az/2X , (3-17)
i.e., there is a limit on the optimized test aperture width a,. For instance,
considering that X =100um, A =0.6328um, and z=25mm, the limit on the
optimized test aperture width is that it must be greater than 79.1 zm. Nevertheless,
with the enlargement of detector width and a shorter detector distance behind the
apertures, the confinement of the optimized detected-aperture width a, can be
decreased to the order of several times the wavelength, which is close to the limitation
of the scalar diffraction theory. In other words, with a suitable arrangement of the

configuration of the interferometer, the width limit of test sample can be ignored.
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On the other hand, referring to Eqg. (3-2) and (3-3), the effect of the relative
position of the aperture to the system axis introduces the phase terms exp(— jﬂ%j
and exp(— jﬂ@j. Shifting both the reference aperture and the test aperture
to the left of a/2does not change the result, i.e., the absolute positions of the two
apertures are not important; however, the relative position of the reference aperture

compared to the test aperture, controlled the optimization performance.

3.4 Summary

Considering in the situation that while the aperturesare varying in subwavelength scale,
the correspondence far-field optical signal might' be weak to be detected in the
far-field; and thus to develop the‘scheme to increase detection sensitivity is needed.
In this chapter, two embedded-aperture interferometer configurations were proposed
to enhance the detection sensitivity of 1-D subwavelength variation measurement.
The tunable asymmetrically embedded-aperture interferometer configuration is more
easily to be implemented in the real situation. In this configuration, a reference
aperture was posited asymmetrically, relative to the test aperture, which exhibiting
subwavelength variation. By only shifting the relative position of the reference
aperture, the detection sensitivity of measuring the subwavelength variation in the far

field can be enhanced to a desired value at any specific detection width.
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Chapter 4

Deconvolution of 2-D subwavelength variation

information

4.1 Introduction

The strategies of determination of 1-D dynamic signature of the subwavelength
variation of the width of a rectangular aperture has been shown to be determinable
from far-field irradiance measurement with.a-precision better than 1 nm or from the
far-field pattern measurement are discussed In the chapter 2. The enhancement of
the detection sensitivity of 1-D‘ subwavelength signatures by using a tunable
asymmetrically embedded-aperture interferometer configuration was discussed in the
chapter 3. As shown in these results, these measurement schemes that retrieving of
subwavelength dynamics variation are essentially one-dimensional. However, in
more realistic situations, the structure may vary in two or three dimensions, and the
characteristics of subwavelength variations contained in the far-field are coupled and
thus will be difficult to separate. In this chapter, a multiple-detector measurement
strategy, with a blind source separation method ®!, was proposed to decompose and
characterize the two-dimensional dynamical signatures of subwavelength variations
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from far-field optical measurements 2’

4.2 Retrieving 2-D subwavelength variation characteristics with

two-detector strategy

4.2.1 Basic formalism and general features

Two-detector system was proposed and was estimated to contain enough
information to retrieve 2-D subwavelength variation information. To illustrate the
basic idea of using multi-detector configuration to retrieve multi-dimension
dynamical subwavelength variations, a<two-detector measurement system was
proposed to show how the characteristics of the two-dimensional signatures of

subwavelength variation of a rectangular aperture could be retrieved.

(a) (b)

Fig. 4-1. Schematic diagrams of (a) a two-detector configuration, while (b) shows the relative positions

of two detectors.
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As shown in Fig. 4-1, a monochromatic plane wave of amplitude 1 and
wavelength A, is assumed to be orthogonally illuminated on the observing
rectangular aperture A , with dimension 2aX 2b. The dimensions of the two half
widths of the rectangular aperture, a and b, are larger than several wavelengths,
and each of them varied in time in subwavelength scale. Two detectors, D, and
D,, with the same size W XW are positioned at different positions relative to the
observing aperture A , and are in the far-field region behind the observing
rectangular aperture at a distancesZ. The overall power collected by the two
detectors are denoted as P, and P,. The relationship between the overall power
variations: AP,, AP,, and the aperttire width variations: Aa, Ab, can be written in

the following matrix form:

{AH} ={apl/aa 8F’1/8b}{Aa] 1)
AP, | |oP,/ca oP,/db | Ab

where OP,/oa, oP,/ob,0P,/0a and OP,/cb are named as partial derivative
intensity of the overall power of the two detectors, and the definition of overall power
variations and aperture width variations are: AP(t)= P(t + At)- P(t), Aa(t) = a(t + At)—a(t),
Ab(t)=b(t + At)-b(t) (At is the time interval between every two measuring time point

of detector). While the aperture varies in subwavelength scale, the variation of the

quantity, partial derivative intensity, is small enough and thus can be assumed to be
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time-independent as derivative intensity that illustrated in the chapter 2. As the
relations shown in the Eq. (4-1), the overall power variations can be treated as linear
mixtures of the aperture width variation, and thus the issue that retrieving the coupled
signatures of the two-dimensional subwavelength variation can be treated as a

classical blind source separation problem [#228:2930]

4.2.2 Time-delayed correlation methods

The classical blind signal separation problem could be illustrated in the Fig. 4-2.

The blind signal separation methods could.recover the mixing independent source

signals by the detected signal.

C11
a4(t) ; > 1,(t)
o — )
Apply Blind
c21 Signal a.(t
a,(t) , L(t) Separation 2()
2 2
c22 methods
Source Mixing Detected Source
Signals Coefficients Signals Signals
Unknown Info Known Info

Fig. 4-2. Schematic diagrams of the blind signal separation problems

A less calculation complexity method of solving the blind signal separation
problems, time-delayed correlation method 2 was applied to demonstrate the

feasibility to separate the coupled multi-dimension far-field optical signal. This
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method is summarized as follows: N statistically independent source signals,
a (i=12,..,N), satisfying the condition, <ai(t)aj(t')>:K(t'—t)5ij, were mixed

linearly in N detected signals, I, :Z?Cija (i=12,..,N), which were recorded

i
by N detectors, where C; are the mixing coefficients. The key is to solve the

N(N +1) unknown variables, i.e., the mixing coefficients C; and the source signal

strength 4 = K,(0), by the measurements 1,. This method introduces the

additional assumption that the mean value of the source signal is zero, (a, (t)) =0,
and constructs two matrices, the symmetrical correlation matrix M, =<Ii(t)lj(t)>

and the time delayed correlation matrix M = <l (D1 (E+ r)> , whose clear forms are

M, =>"C,C,4 and M;=»"C,C;4 .  The mixing matrix C can
diagonalize M and M in such form that C *M(C")" =A and C*M(CT)" =4,
where A, =405, and A, =45,. Multiplying the matrix A by A, the blind
signal  separation  problem becomes a eigenvalue problem  where

(M M_l}: :C(AK_l). While we solving the mixing coefficients C., it could be

ij

easily adopted to solve the source signal. More detail could be founded in Appendix

4.2.3 Retrieving results and scaling issues

The feasibility of the proposed two-detector measurement could retrieve 2-D
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subwavelength variation characteristics from measuring the coupled far-field optical
information was demonstrated as follows. In our situation, we want to use the
measurements that overall power variation of two detectors: AP,, AP,, to retrieve
the aperture width subwavelength variations: Aa, Ab. Without loss of generality,
the variation types of the observing aperture widths were set as: one dimension as
random fluctuation, and the other dimension as quasi-periodic variations.  The
aperture width that varying in random fluctuation is specified by a(t)=a, +ax#(t),
where n(t) is a random fluctuation with a value ranging from -1 to 1. The other
aperture width that varying in quasi-periodic subwavelength variation is given by
b(t)=h, +« xcos(2x/§7rft)+ a XSin(Z\/gﬂft). Here all amplitudes of variation o are
set to 10 nm for simplicity, and the frequency of wvibration f , is taken to be 100 Hz .
The sampling rate of detection is 10 KHz, which is higher than the frequency of the
vibration of the aperture widths. The half-width of the aperture a,, b, are both
50 um. The widths of the detector W are all 100 #m; and the detector is placed
behind the aperture at a distance of 30mm. A light source wavelength of 632.8 nm
was used. The overall power variation of the two detectors: AP, and AP,, were
evaluated numerically by scalar diffraction theory, and used to retrieve the

subwavelength-scale width variation: Aaand Ab.
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Fig. 4-3. The results of two-detector configuration. (a) the setting and retrieving aperture width
variations: Aa and Aa', and (b) the setting and retrieving aperture width variations: Ab and

Ab'.

The retrieving results of the proposed two-detector measurement are shown in
Fig. 4-3. The retrieving aperture width-variations: *Aa' and Ab' behave the same
way as the simulation setting aperture-width* variations: Aa and Ab, but in a
different scale, i.e., the characteristics of the subwavelength signatures of the aperture
that the variation forms can indeed be retrieved by the proposed strategy, but variation
strength can’t.  This is because that the eigenvectors are usually normalized to unity
in the deconvolution method. But, in reality the mixed coefficients C; will not
have to be that. As an example, for N =2, the scaling effect can be shown in the

matrix form as:

oR GH,
APl | za * " % Al
“|lop,, P ’ (4-2)
APZ _2/a1 —Z/Otz azAb
oa ob
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where ¢; (i=1,2) correspond to the scaling factors. What we retrieved is the
scaled width variation: o,Aa, «,Ab, i.e., we can indeed retrieve the subwavelength
variation type with the two-detector configuration, but with a wrong strength. One

solution to determine the scaling exactly will be proposed in the next section.

4.3 Three-detector embedded-aperture interferometer configuration

A three-detector measurement configuration is proposed to retrieve the correct

magnitude of 2-D subwavelength variations in this section.

4.3.1 Basic formalism and general features

(a) detector
_Mfl : detector
ya w0
- T;c
M,
B,
(b) » ¥3 (c) m 7

. L ]_,
=5 — Dy — x, — A £ Ay £y

= i

Fig. 4-4. Schematic diagrams of (a) an embedded-aperture three-detector interferometer while (b)

shows the relative positions of the detectors. (c) Schematic diagram of the sizes of the two apertures.
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Referring to Fig. 4-4, the proposed configuration of solution is an
embedded-aperture interferometer configuration similar to the Mach-Zehnder
Interferometer, but with one embedded aperture and three detectors. A
monochromatic plane wave of a wavelength A4 is assumed to be orthogonally
illuminated on a beam splitter B;. The beam is split into two after passing through
the beam splitter. One beam is reflected by a mirror M; and passed through a
rectangular observation aperture A, with dimensions 2aX2b. Another beam is
reflected by a mirror My, and passed through the introduced embedded aperture A,,
which has a choosing fixed aperture width e that is to be extremely equal to the
width of the observing aperture, b, and has the other aperture width d with an
embedded varying form. Then.the two beams are passed through another beam
splitter B, to be recombined and further separated into two beams. The diffracted
intensity is collected over three rectangular detectors with the same dimensions
W XW , which are positioned at a distance Z away from each aperture. It should

be noted that the third detector D, is chosen to be positioned at a different location

from the other two detectors to record additional information.

The relations of overall power variations: APR,, AP,, APR,, and the aperture

width variations: Aa, Ab, Ad are as follows
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P, P, oR

—la, —la, —loa;|
v P
AP, |=| Z2lay, SEla, “tlay | ahb). (4-3)
AP, | | P, oP, oP, , |LasAd

—/0(1 —/(12 —/0(3

| oa ob od

By using the time delayed correlation method, the scaled mixing coefficients and
three scaled aperture width variations, o,Aa, a,Ab, and «,Ad can be deduced
from the overall power variations AP, AP,, and AP, as collected by the three
detectors. Following the approaches similar to that in chapter 2 and 3, the partial

derivative intensity of D, that position at a symmetric position could be derived as

follows:
P _ 18 b (a,dwr2)sifkoW/2)
ob Akz . (40
5623 - %Pb(b,w 1 2)(Si(kaWi/ Z )4 Silk@rd W/ 22 ] - Sifk(a—d W /22 ]}

where k is the wave number, Si is the sine integral function, and the two

12sin?(kby / Z )
(mylAZ)

functions p (, g W,z):JW’Z[Sin(k<’31></2)+Sin(kdxlz)]2 o and R ow/2)=["

e 0 (m122) 0
can be evaluated numerically. By comparing the partial derivative intensity of Dj:
OP,/0a and OPR,/0b, to the retrieving elements of mixing matrix in Eq.(4-3), the

scaling factor, «; and «,, can be easily solved and thus we can retrieve the aperture

width subwavelength variations: Aa, Ab ina correct magnitude.

On the other hand, there is another advantage of introducing the embedded
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aperture width variation Ad . In the time-delay correlation method, the retrieving
signal error of is related to the choice of the parameter of time delay, . Taking the
error between retrieving embedded-variation Ad'(t) and embedded-variation Ad(t)
as a reference could help us to decide a proper time delay, .  The inverse mean
error of the retrieving embedded-variation Ad(t) was defined as

Inverse mean error = 1/(|Ad"(t)— Ad(t)). (4-5)
It could be verified that with the use of higher inverse mean error can have a better

retrieving result.

4.3.2 Simulation verification and;Discussions

In this section, we provide the support evidence of our approach. The
simulation setting of the observation aperture A was the same as that in section
4.2.3. Without loss of generality, the width variation form of the embedded-aperture
A, is chosen as a sine form, i.e., d(t)=d,+asin(24ft). The half width of the
embedded aperture is chosen as 70 zm, and the amplitude of variation « is set to be
10 nm and the frequency of vibration is taken to be 100 Hz .

The retrieving results of the proposed three-detector configuration are shown in
Fig. 4-5.  The relation between the time delay, 7, to the inverse mean error of the

retrieving embedded-signal variation Ad (t) is shown in Fig. 4(a) and hence, the time
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delay is chosen as 0.0294 sec, so as to have a higher performance.  The errors,
Aa'(t)-Aa(t) and Ab'(t)-Ab(t) are shown in Figs. 4(b) and (c) in thick lines, while the
setting aperture width variations Aa(t) and Ab(t) are plotted in gray thin lines as a
reference, and the error percentage, the ratio that the difference between exact setting
and numerically retrieving value to the amplitude of the setting aperture width
variations value, are plotted in the base portion. Referring to Fig. 4-5, one can see
that with the three-detector embedded-aperture configuration, the subwavelength
signatures can be retrieved in a good precision and the retrieving aperture width

variations, Aa' and Ab' are with.an'error ratiorbelow 1%.
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Fig. 4-5. (a): The inverse mean error of the retrieving embedded-aperture variation versus the time
delay, 7. (b)the error and error percentage between setting and retrieving aperture width variations:
Aa and Aa', (c) the error and error percentage between setting and retrieving aperture width

variations: Ab and Ab'.

There are two points that should be noted. First, the embedded variation of the
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reference aperture, Ad (t) is unnecessary to be in the subwavelength scale, but could
be in a larger scale to be more easily to carry out. A larger half aperture width of
d, =0.5mm, that varies with a larger amplitude of o =1xm can still be used to
retrieve the two-dimension subwavelength with an acceptable error ratio below 3%
signal. Secondly, a better result could be obtained with more recorded data. For
example, in our simulation, 2000 recording data was used to achieve the maximum
error ratio bellow 1%. But with 600 recording data can only have a best maximum

error ratio of 1.94%.

4.4 Summary

While retrieving 1-D subwavelength-scale variation from far-field measurement
has been demonstrated to be possible, we want to find approaches to retrieve
subwavelength-scale variation toward more realistic situation. Thus, in this chapter,
a rectangular aperture varying in 2-D with in subwavelength-scale has been discussed.
A scheme to retrieve the coupled two-dimension subwavelength signatures by a
three-detector embedded-aperture  configuration accompanying time-delayed
correlation method from far-field irradiance measurement was proposed. The
precision of the proposed measurement was numerically verified could successfully

characterize the two-dimensional dynamical signatures of subwavelength variations
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information with error ratio below 1%.
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Chapter 5

1-D Marginal Roughness Measurement

5.1 Introduction

In the chapter 2 and chapter 4, it has been shown that the subwavelength
temporal variation of a simple case, i.e., a 1-D and 2-D subwavelength-scale temporal
variation can be retrieved from a far-field irradiance measurement. It is of interests
to express the possible implementation of subwavelength spatial variation in terms of
far-field characteristics, and thus to retrieve the subwavelength-scale spatial variation
from far-field measurement. In<this chapter, @ conceptual construction will be
proposed as an optical ruler, which could be used to identify the spatial
subwavelength scale marginal-roughness variation from only far-field irradiance

measurement.

5.2 Constructed-aperture roughness measurement system

Referring to Fig. 5-1, a constructed-aperture measurement system behaving as an
optical ruler was proposed to retrieve the marginal roughness of the test sample. The

diffraction aperture X was constructed by a slit-like aperture and the margin of the
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test sample, where the width of the slit-like aperture along the 7 direction was

denoted as b. A monochromatic plane wave of amplitude 1 and wavelength A

was assumed to be orthogonally illuminated onto the constructed aperture X. The

margin of the test sample was situated relative to the straight margin of the slit-like

aperture in a base width a,. The dimensions of a, and b were both above

several wavelengths for satisfying the assumptions of the scalar diffraction theorem.

The front view of the constructed aperture was shown in Fig. 5-1 (b). A detector

with the size W XW was positioned behind the aperture X ata distance Z, in the

far-field region, or by introducing afocal lens just.behind the aperture X, situated the

detector at the focal plane of the lens. Thus the diffraction pattern on the detector

plane could be evaluated by ‘the. Fraunhofer .diffraction. The overall power

collected by the detector was denoted as P,.
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(a)

Fig. 5-1. Schematic diagrams of (a) constructed=apertuire'marginal roughness measurement system, (b)
= HSEE s

iz —_ =1

a front view of the constructed aperture oftheri,s)'?sférh. '
- NSEerm b

R
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To illustrate the main idea of the proposed scheme, we recalled that in chapter 2,
1-D subwavelength temporal variation can be retrieved from a far-field irradiance
measurement in a precision better than 1nm by the following approximation, i.e.,

Aa = AP, /(&
da

j (5-1)
In the proposed constructed-aperture measurement system, while the width deviation

from the base width a,, Aa, of a rectangular aperture in a dimension a, Xb, was

in a scale of subwavelength, the aperture width deviation Aa could be retrieved
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i . AT . P
from a physical parameter, i.e., the derivative intensity %
a

aza, - AP, is the

deviation of the overall power comparing to that of the base width a,, P,(a,), i.e.
AP, =P,(a)-P,(a,). The key idea of the proposed measurement is that, while the
width of the optical ruler b is small enough as compared to the spatial-variation
scale of the marginal roughness T,, the margin of the test sample could be estimated
as a straight surface. The width of the constructed aperture (or say the averaging

width) was denoted as a, which could be retrieved by far-field irradiance

measurement. The procedures are stated as below.

First, we need to derive-the derivative intensity of an aperture varying in
one-dimension with only one. side; in a correspondence to the constructed
measurement system here. It is for the reason that while measuring the marginal
roughness, the test sample will be moved in the 7 direction. Because the marginal
roughness is varied spatially from point to point, the width of the constructed aperture
¥, a, will be changed as the sample is moved. The constructed aperture will vary
only on one side and the derivative intensity of measured power, dP,/da, could be

deduced following the same approaches as in chapter 2.

The exact form of the diffraction pattern on the detector U can be derived from
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Fraunhofer diffraction, and the intensity is |U|2. The overall power collected by the
detector is the integration of the intensity over all the complete detector area, which is

also the function of the varying aperture width a,

Pz(a):4(/lzoj £ (W/2,a)f,(Wr2.b), 5-2)

T

X ain 2
where the function fp(x,a)zjs'” [ka>2</220]dX=2kZa Si[kaXJ_smz(l;aZXj/x
X 0 0 0

0

k=2x/A isthe wave number,and Si is the sine-integral function. The derivative

intensity is the derivation of overall power P, over the varying aperture width a,

which can be derived as

97, _g%ols iz bjsil KAV | (5-3)
da k 27,

can be evaluated from Eq.

a=a,

The numerical value of the derivative intensity %
a
(5-3), and can be substituted into Eq. (5-1) to retrieve the margin position of the test

sampleas a=a,+Aa.

5.3 Thickness effect of test sample

In section 5.2, the constructed aperture is estimated as an ideal planar aperture.
However, in a real situation, the test sample will have a thin thickness d inevitably.
As shown in the Fig. 5-2, the actual constructed aperture X' will have an inclination

angle, ¢=tan"(d/a,), to the incident plane wave.
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Incident
wave

Fig. 5-2. Schematic diagram of a side view of the constructed-aperture marginal roughness

measurement system.

The introducing power deviation from the thickness of the test sample cannot be
neglected as comparing to the .,power-deviation caused by the constructed-aperture
width variation in the subwavelength scale.”In other words, a solution to recover the
influence caused by the sample thicknessshas to be considered. Referring to Fig. 5-2,
considering that a plane wave passes through a ideal plane rectangular aperture X,
the diffraction optical field on the detector D behind the aperture in the far-field

distance Z, can be evaluated by Fraunhofer diffraction, i.e.,

Up(x,y)= Cg i Uo(f,n)exp{— o (xé + yn)}dédn R

where for an aperture, U,(&,7)=1 and C,(x,y) is the phase term. What we
want to do is to find a suitable orientation of the detector, which could have an

analytic solution of derivation intensity. Hence, the width variation of the
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constructed-aperture could be retrieved by correlating with far-field irradiance
variation from the value, derivation intensity.

Referring to Fig. 5-2, considering the situation that the constructed aperture X'
has an inclination angle ¢ to the incident plane wave, the diffraction optical field

on the plane orthogonally behind the aperture X' in the far-field distance Z, can

be evaluated as an oblique plane wave incident on a plane aperture X', i.e.,

U, (xy)= S U'(é',n)exp{— = (X'§'+yn)}dé'dn . (59

where U'(&',7)=U, (&', n)exp|jk&'sing] , for an aperture, U,(£',7)=1, and
exp[jkf‘sin ¢] is the relative phase of the optical field at the constructed aperture X'.

Substituting U'(&',7) into Eq.«(5-5), we have

UT(x',y)=C°(X"y)ﬂuo(é',n)exp{—jzr{( X —S‘““’]& y”}}ds'dn- (5-6)

2z, iz, A iz,

If we replace x' with X"+AXx', AX'=Z,sing, we have

0.0 y)= S e e - 1 2 (o cymfogran. 6D
Referring to Fig. 5-2 and comparing Egs. (5-4) and (5-7), this means that if we
position the detector at a new position, the only difference in these two equation is the
diffraction aperture width of constructed aperture X' that effective aperture width is

a/¥, and the tilt factor W =cos¢. The analytic derivative intensity of the detector

at a new position could be solved as

67



P 2o ¢ wrab)si| <aW | (5-8)
da k¥ 27,

and thus can be substituted into Eq. (5-1) to retrieve the margin position of the test
sampleas a= a,+Aa. This means that if we position the detector at a new position,
which is:

(i) Rotating the original detector D relative to the aperture in an angle ¢

to be parallel to the constructed aperture X', and

(i) Shifting it in a distance Ax'=Z,sing along the direction of + x'-axis,
the corresponding derivative intensity of the detector at a new position could be
deduced, and to substituted into.Eq. (5-1) to retrieve the margin roughness of the test
sample. While the thickness of the'test sample is small compare to the aperture
width, tilt factor W =1; the influence-of ¥ is small and thus can be further

neglected.

5.4 Simulation verifications and discussions

The feasibility of the proposed marginal roughness measurement will be
numerically demonstrated as below. We first set the marginal roughness of test
sample, and use a base width a,=50um to evaluate the base overall power P,(a,).
While moving the test sample, the corresponding overall power variation AP, will

be substituted into Eq. (5-1) to retrieve Aa, the deviation from marginal position to
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the base width, and the exact marginal position of the test sample is simply the sum of
the base width a, and the deviation Aa. The width of the optical ruler, b, was
chosen as 6 zm, which is about 10 times the size of the light source wavelength,
632.8nm that considered here. The base-width of the aperture a, was 50 zm.
The width of the detector W was also 50 z#m, and the detector was placed behind the

aperture at a distance of 30cm .

Without loss of generality, two marginal roughness profiles, i.e., sine variation
a(n)=a, +axsin(2zn/T,) and quasi-periodic variation
a(n)=a, +%><sin(27z77/ToI )+%xsin(2«/§m]/Td) were used to simulate the marginal
roughness, and the thickness of the test sample was taken as one wavelength. The

amplitude of the marginal roughness fluctuations, «, was set to 10 nm, and T,

was the spatial variation scale of the surface roughness.

The simulation processes are that: the marginal form of constructed-aperture is
varying as the pre-setting function, a(n). The corresponding collected power on the

detector D' is evaluated numerically, and then substitute the overall power variation

AP, into Eq. (5-1) to get the width deviation Aa from bath width a,, then we get

the estimated marginal roughness form: 5:a0+Aa and compare it with the
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pre-setting center roughness value of the constructed aperture. The retrieving results
of the proposed marginal roughness measurement of different spatial scale T, were
shown in Fig. 5-3. Three different spatial variation scales, T,= 2b, 5b and 10b,
were used to explore the feasibility and the precision limitation of the proposed
measurement. The deduced results of two marginal roughness forms are shown
separately in Figs. 5-3 (a) and (b) by comparing the width deviation Aa to that of
the pre-setting value, and the maximum error percentage of the retrieving results were
shown in the figures.  The pre-setting marginal roughness was plotted in thin lines
as reference, spatial variation scale- T, = 2bwas plotted in gray thin lines, T, =

5b was plotted in thick lines, and Ty = 10b was plotted in dot lines.

1.65 %
6.46 %

Marginal Roughness Marginal Roughness

Normmalized Position (unit: T )

Fig. 5-3. The retrieving results of two different marginal roughness profiles: (a) sine variation. (b)

quasi-periodic variation.
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It can be seen that the proposed method of roughness measurement is workable.

The relation between optical ruler width b and the spatial variation scale T,

determines the measurement precision of the proposed scheme. If the width of the

optical ruler is 1/5 of the spatial variation scale T,, the precision of the proposed

marginal roughness measurement will exhibit a maximum error percentage below

10%. If the width of the optical ruler is 1/10 of the spatial variation scale T,, the

maximum error percentage will be further reduced to below 3%. From our

simulation results, while the width of optical ruler.is smaller than 1/5 of the roughness

spatial variation scale T,, the measuring precision of roughness varying in an

amplitude 10nm is better than I'nm,

Besides, we should note that while using a shorter wavelength, the width of
optical ruler could be reduced. It means that by using an optical ruler with a shorter
wavelength: (1) a higher precision can always be achieved for measuring the same
sample, and (2) the restriction of the spatial variation scale T, of the test sample will
be released. Furthermore, it should be noted that the proposed measurement is still
workable even when the fluctuation amplitude of the marginal roughness, «, is

increased to the value of one wavelength. And, the tunable embedded-aperture
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interferometer configuration illustrated in the chapter 3 could be further implemented

to increase the detection sensitivity.

5.5 Summary

In summary, a constructed-aperture measurement system behaving as an optical
ruler was proposed to measure the marginal roughness of the test sample. The
precision of the proposed method of roughness measurement is only depending on the
relation between optical ruler width b and the roughness spatial variation scale T, .
It has been numerically demonstrated that, with the. proposed method while the width
of the optical ruler is 1/10 of the spatial variation; scale T,, the maximum error
percentage or the retrieving subwavelength-scale marginal roughness could be below
3%. Better retrieving results can be further obtained by choosing an optical ruler

with a shorter width.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

Retrieving subwavelength information is an extensive and important topic and

thus has been widely investigated. Several measurements have been proposed to

retrieve the subwavelength feature detail of specimen while specimen size was in

mesoscopic or nanoscopic region. - Whilesthe “retrieving of dynamic signature of

subwavelength variation yields some maore interesting information than the static

features, particularly in determining physical origins and in identifying the generation

mechanism, e.g., thermal characteristic, vibration, deformation. Thus, to retrieve

subwavelength-scale dynamically variation is another important issue should be

further investigated.

Owing to the experimental result that subwavelength feature variations of an

object can affect the corresponding far-field diffraction pattern in a measurable way.

The far-field optical measurement was provided as a potential approach to have

real-time high-precision measure of subwavelength-scale dynamical variation of
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structure. Thus, in this thesis, we have investigated the approaches to retrieving

dynamic signature of 1-D subwavelength-scale variation, to enhance detection

sensitivity while measuring 1-D subwavelength variation, and to decouple 2-D

subwavelength variation with measuring far-field optical characteristics. Besides, an

extension application to identify the subwavelength-scale marginal roughness from

only far-field irradiance measurement has also been proposed.

6.1.1 Retrieving of 1-D subwavelength variation information

We investigated approaches.to retrieve 1-D subwavelength dynamic signatures

of two simple diffraction structures, “slit and: rectangular aperture.  Two

correspondence far-field characteristics variation; irradiance and diffraction pattern

was proposed as good feature quantities to retrieve 1-D subwavelength dynamic

signatures.

First, with the method that retrieving subwavelength variation of the diffraction

structure by measuring far-field irradiance variation. A physical quantity, derivative

intensity, of these two simple diffraction situations was deduced to retrieve the 1-D

dynamical subwavelength variation of these two diffraction structures. The dynamic

subwavelength variation signature of both two diffraction structures are shown to be
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determinable from its far-field irradiance with a precision of better than 1nm.

Secondly, with the method that retrieving subwavelength variation of the diffraction

structure by measuring far-field diffraction pattern variation. The analytical

approximation relation between the dark line locations of the diffraction pattern and

1-D dynamical subwavelength variation was derived. The shifting of the diffraction

pattern associated with subwavelength variation was verified holding a good linear

correlation and was in an order about hundred times to the subwavelength-scale

feature size variation, thus behaving as a good feature quantity to retrieve 1-D

subwavelength feature variation.

6.1.2 Enhancement of detection.sensitivity of 1-D-subwavelength variation

measurement

While measuring the structure that varying in subwavelength scale, a weak signal

is usually retrieved and hence, it is a critical issue to enhance the detection sensitivity

of the measurement. Therefore, effective measurement methodologies must be

developed to retrieve subwavelength variation from far-field measurement with

higher detection sensitivity. For avoiding damage the sample, an approach to

enhance detection sensitivity without increasing the light power transmitting through

the test sample was investigated.
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A tunable asymmetrically-embedded-aperture interferometer configuration was

proposed could efficiently enhance detection sensitivity of 1-D subwavelength

variation measurement.  The interferometer configuration is similar to the

Mach-Zehnder interferometer structure but with an embedded aperture posited

asymmetrically relative to the observing aperture with the subwavelength variation to

be identified. With this configuration, the detection sensitivity of 1-D

subwavelength variation measurement could be successfully increased to a desired

order by increasing the light power,passing through the embedded aperture. Besides,

by simply shifting the relative position ofthe embedded aperture, the detection

sensitivity could be enhanced at any specific detection width.

6.1.3 Deconvolution of 2-D subwavelength variation information

The investigation on far-field measurement schemes and detection sensitivity

enhancement scheme of retrieving subwavelength dynamics signatures was started

from that the diffraction feature was only varying only in 1-D. However, in more

realistic situations, the structure may vary in two or three dimensions, and the

characteristics of subwavelength variations contained in the far-field are coupled and

thus will be difficult to separate. To retrieve multi-dimension subwavelength
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dynamics signatures of diffraction structure, the approach to separate the coupled
far-field characteristics containing multi-dimension subwavelength variation

information was explored.

A three-detector, embedded-aperture interferometer configuration was proposed
to record the far-field irradiance information that containing coupled 2-D
subwavelength variation information of a rectangular aperture. The coupled far-field
irradiance information was then separated by a blind source separation method,
time-delayed correlation method. .sThe precision. of the proposed measurement was
numerically demonstrated could; successfully ‘characterize the two-dimensional
dynamical signatures of subwavelength variations information with error ratio below

1%.

6.1.4 One-dimension Marginal Roughness Measurement

A constructed-aperture measurement system behaving as an optical ruler was
proposed to measure the marginal roughness of the test sample. The precision of the
proposed method of roughness measurement is only depending on the relation

between optical ruler width b and the roughness spatial variation scale T,. It has

been numerically demonstrated that with the proposed method while the width of the
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optical ruler is 1/10 of the spatial variation scale T,, the maximum error percentage

of the retrieving subwavelength-scale marginal roughness could be below 3%. From

this discussion, it emphasizes that not only subwavelength-scale temporal variation

but also subwavelength-scale spatial variation could be retrieved from far-field

characteristics measurement.

6.2 Future works

In this thesis, we have demonstrated the feasibility of retrieving dynamic

signature of 1-D subwavelength-scale.variation, enhancing 1-D subwavelength

variation measurement intensity, and decoupling: 2-D subwavelength dynamic

variation with far-field optical measurement. .-Besides, an extension application to

identify the 1-D spatial subwavelength-scale marginal roughness from only far-field

irradiance measurement has also been demonstrated to be possible.

Owing to the preliminary results we obtained as described in this thesis, we

believed that the far-field measurement scheme have great potential to measure the

object variation in subwavelength scale. The exploration of the development of the

implementation will be one of my future works. In the following, four main

directions are listed as the follow-up of my previous preliminary study. Namely,
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they are:

(1). toward a more realistic diffraction structure

In the preliminary study, only simple diffraction structures, slit and rectangular

aperture have been discussed. While exploring to realistic situations, diffraction

structure might not be aperture, might be arbitrary shape, and might varying in

more complex form. The approaches to recover the dynamical properties of such

diffraction structure should be further discussed in the future.

(2). toward a more realistic, general light source properties

The far-field optical characteristics”that contain subwavelength variation

information might be totally different with™different kinds of light source, such as

coherent, incoherent, monochromatic, polychromatic light, and even white light.

In the preliminary study, only monochromatic coherent light source has been

discussed, to explore the influence of light source properties on measurement will

be investigated in the future.

(3). toward the achievement of higher detection sensitivity

The far-field characteristics variation caused by diffraction feature variation in

subwavelength scale might be weak signal to be detected. By this concern, the

approach to enhance the detection sensitivity while measuring
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subwavelength-scale at every different situation will be one issue to be
investigated in the future.
(4). toward the limit of common diffraction theory approach
To retrieve the subwavelength-scale variation of diffraction structure that
exceeds several light wavelengths, i.e., in macroscopic region, based on scalar
diffraction theory has been investigated. It is of interest to investigate the
possibility to retrieve the subwavelength-scale variation while the diffraction
structure is scale sown, e.g., mesoscopic region.  In the future, the study of the
retrieval of the subwavelength variation signatures will be investigated even when
the object feature size was down in wavelength or-subwavelength scale.
—
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Fig. 6-1. The flow chart of my future works
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Appendix |

Review of scalar diffraction theorem

Owing to the basic formalism of this thesis is based on the scalar diffraction
theorem. A short review of the most important part of the scalar diffraction theorem
will be shown in this chapter.

1.1 Brief history

The evolution history of the sealar diffraction theory could be summarized in the

table 1.

Table I.1 the evolution history of the scalar diffraction theory

Years Figure Important Event

1665 Grimaldi | Making the first accurate report to describe the

phenomenon of the diffraction effect.

1678 Huygens | Proposing the hypothesis that the envelope of

the wavefront is the superposing of the

secondary wavelet of the old wavefront.

1804 Thomas Proposing the concept of light interference

Young
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1818

Fresnel

Combining two concepts that ‘“secondary

wavelet” and “interference” to give the

mathematical description of some diffraction

patterns.

1860

Maxwell

Confirming light is an electromagnetic wave

1882

Kirchhoff

Solving the problem that light diffraction by

an aperture by wusing two inconsistent

assumptions, but giving the mathematical

foundation of scalar diffraction

1894

Sommerfield

Successfully © ‘avoiding two  inconsistent

assumptions in Kirchhoff’s derivations by

choosing alternative Green’s functions.

1.2 Conception review the formulation of scalar diffraction theorem
In this section, the main flow of the formulation of scalar diffraction theorem

will be reviewed, the detailed derivation could be found in the Ref. (.21

that light propagate in a dielectric medium that is linear, isotropic, homogeneous, and

non-dispersive, all component of the electric and magnetic field will behave

identically and could be described by a single scalar wave function.
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=0, (I-1)

Where u is scalar field and n is refractive index of the medium. For a

monochromatic wave, the scalar field could be written as u(P,t) = Re{U (P)e *™},
and U(P) is phasor of the wave will satisfied the Helmholtz equation
(V?+k*U =0 (I-2)
, where k =27/ is wave number.
(1)Kirchhoff and Sommerfeld theories
With the help of mathematic relation that Green’s second identity ©*
j”(uvze GV U)dV = ”(U——szds (1-3)

, Kirchhoff solved the problem that light diffraction by an aperture by choosing the

Green function G as an unit-amplitude spherical wave expending about the

e ik

observing point P, , G, (P) = . Substituting Helmholtz equation into Eq. (I-3)

01

and using two inconsistent assumptions, i.e., Kirchhoff boundary conditions, field
) . .. o . . ) .
U and its derivative o vanish except in the opening X and across the opening
n
field and its derivative are equal to the value as the incident field. The field at
observing point P, could be expressed in terms as of the disturbance U and its

. .. ouU .
normal derivative n over the opining aperture .
n

U(P)——IJ( i é;jds (1-4)
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From general potential theorem, the two Kirchhoff boundary conditions yield
field is zero everywhere behind the aperture. The inconsistence of the Kirchhoff
theory was removed by Sommerfeld, who choose of alternative Green’s function to

- : : . o oU
eliminate the necessary of imposing on both U and its derivative n
n

simultaneously. The Green function G he chose was two point sources that one is

at observing point P, and the other is situated at the mirror image of P, on the

L . : . . ghktn gl
opposite side of diffraction screen. =~ While choosing G_(P) = -—, G
r
01 01

vanishes on the aperture. Thus, the Kirchhoff boundary conditions may be applied

U alone, yielding first Rayleigh-Sommerfeld solution

U,(P,)= —ijzj(u %jds 2 _iU(U

By
- de . (I-5)

Fig. I-1. Formulation of diffraction by a screen
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ejkr(n eijm
While choosing G, (P)= +—, .

vanishes on the aperture.
ro Mo on

Thus, the
Kirchhoff boundary conditions may be applied

—— alone, yielding second
on

Rayleigh-Sommerfeld solution

u,,(P)——“(G —de_ ”(G —de (1-6)

From Eq. (I-3) to (I-5), it is obviously that the Kirchhoff solution is the average of the

two Rayleigh Sommerfeld solutions

o

i
I’ ' I -9

e "u i 01—

p ——_ °h =—p
2 i“‘_—w—‘l‘—"" 0

- '

n B

Fig. I-2. Point source illumination of a plane screen

Consider that the aperture is illuminated by a single spherical wave expending about

jkryy
point P,, thus by substituting U = Ae into Eq. (I-3) to (I-5), all cases could be
r21

rewrite in the form that

Ky +hop)
uP)=2 [1° wds (1-7)
/1 > r-21r01
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e jKrg,

1
=J_—/1UU(P1) - ¥ ds .

Kirchhoff and Sommerfeld’s solutions are only different in obliquity factor ¥,

where

%[cos(ﬁ, ) —cos(fi, )], Kirchhoff theory

¥ = cos(f,Ty,), First Rayleigh - Sommerfeld solution , (I-8)
—cos(f, ) Second Rayleigh - Sommerfeld solution
where cos(d,b)=cos(d)and 6 is the angle between vector d and b. Eq. (I-7)

express the observed field U(PO) is the weighted superposition of diverging

ki,

spherical waves originating ffom secondary sources located at each and every

r‘01

points P, within the aperture Z,ias the stated of Huygens-Fresnel Principle.

Several authors have compared the two formulations of the diffraction problem.
In particular, Wolf, and Marchand verified that if with the linear dimensions of the
aperture are larger comparing with the wavelength, the two theories predict essentially
the same behavior for the diffraction field in the far field, at moderate angles of

diffraction 1.

1.3 Paraxial approximation: Fresnel and Fraunhofer diffraction

In the proceeding section, the results of Kirchhoff and Sommerfeld theories are
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in more general form, in most of diffraction problem, light waves propagates along a

direction which is close to the axis of optical components such as lenses or apertures.

In this case, the paraxial approximation can be used.

According to the first Rayleigh-Fresnel Sommerfeld solution, the

Huygens-Fresnel principle could be stated as

e ikt

1
U(P0)=j7jsz(H) cos &S . (1-9)

r-01

As shown in Fig. I-3, the diffraction aperture ¥ is assumed to lie in (&,77) plane
and is illuminated in the positive direction. While calculating different wavefield
across the (X,Y)plane at different normal distance from diffraction aperture, Fresnel
and Fraunhofer approximation -allow diffraction pattern calculation to be reduced to
comparatively simple mathematical manipulations, i.e., Fresnel and Fraunhofer

diffraction formula.

1 y
§ X
EJ / rm PO ] /
» Z
HL—"-T
Py

Fig. I-3. Diffraction Geometry
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(1) Fresnel diffraction formula
For the situation that the observing point is not far away from the optical axis, i.e.,
satisfying the Fresnel approximation, z°>> %[(x & 4 (y- n)zﬁm , by using the
binomial approximation in exponent, the resulting expression for the field at

(X,y) plane could be calculated by Fresnel diffraction formula:

e jkz

jAz

J%[<X—§)2+(y—'7)2]

U,(X,y)=

[Jume dédn (1-9)

e iZocey 2@y | i xgrym)
TN 7 ”{U(f,n)e 7 }e 7 dan .
(2) Fraunhofer diffraction formula
If in addition to Fresnel approximation the stronger Fraunhofer approximation
T . T, : . &)
z>> 2(5 1) e = B D “is satisfied, the quadratic phase factor e * in

Eq. (I-9) is approximated unity over the entire aperture. Thus the expression

for the field at (x,y) plane could be calculated by Fraunhofer diffraction

formula:

e jkz

jAz

Py

U,(X,y)=

PR [[uEme dedn . (1-10)

It should be further noted that for the Fresnel approximation to yield accurate result, it
is not necessary that the higher-order terms of the expansion be small, only that they

not change the value of Fresnel diffraction integral significantly. The discussion on
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the validity of Fresnel diffraction integral could be founded in Ref. ).

1.4 Angular spectrum method

Another useful approach to calculate the scalar diffraction is angular spectrum
approach ', which has been widely applied to electrodynamics, optics, and acoustics.
We give a brief review of its theory. Consider the complex-amplitude distribution
U(X, ¥, Z=0) in the XY-plane at Z=0, by simply applying the Fourier transform on U(X,
y, z=0), it could be treated as the superposition of several plane wave each containing

different spatial frequency (f,, f,).+"The weighting of the superposition is named as

angular spectrum
A(f,, f,;Z =0)= j IU(X, y,Z =0yexp[—i27(xf, + yf,)]dxdy,

(I-11)
where a(X, y, z=0) is the inverse Fourier transform of it’s angular spectrum
U(x,y,Z =0) = j jA( f,. f,3Z = 0)exp[i2z(xf, + yf,)]dfxdfy (1-12)
Consider the complex-amplitude distribution a(X, Y, Z=z) in the XY-plane at z=Z, the
angular spectrum of field a(X, y, Z=z) will be

A(f,, f,:Z2=2)= j ja(x, y,Z = z)exp[-i2z(xf, + yf,)]dxdy . (1-13)

Again, field a(x, y, Z=z) is the inverse Fourier transform of it’s angular spectrum
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Ux,y,Z=2)= J. ]SA( f., f,5Z = z)exp[i2z(xf, + yf )]dfxdfy . (I-14)

At source free points and consider that light propagate in a dielectric medium that is
linear, isotropic, homogeneous, and non-dispersive, a(X, y, Z=z) satisfied Helmholtz
eq, (V>+k*U =0, thus we have
d—ZA(f iZ=2)+@r)expll- 17— 7 )AE.f,:2=0). (115
dz ) g g
The propagation of the angular spectrum could be derived as an elementary solution
of this equation and was written as
AT f:Z=2)= AT, f,:Z = O)exp(jzz,/l— f2_ fyzz) (1-16)
The physical interpretation of the angular spectrum. method is that the every simple
plane-wave component contaming, different- spatial frequency are solutions of
Maxwell’s equations in a homogeneous environment can be expressed as
a(x,y,z2) = Ajexpli(2z / A)(xo, + yo, +20,)]. (I1-17)
Where A is the wavelength of the light and
o= (O‘X =M,o,=M,,0,= 1-0,° —ayzj is a unit vector specifying the
direction of propagation and, Ag is a complex vector representing the magnitude and
one state of polarization of the E-filed at the origin of the coordinate system. On the
one hand, . will be real-valued if .+ &, <1, in which case the plane wave is

said to be homogeneous or propagating wave. Ifg .+ o,>1, theno. becomes

imaginary and the plane wave is called inhomogeneous or evanescent wave.
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Because the evanescent waves carry no energy from the diffraction aperture, so we
can rewrite the disturbance observed at (X, Yy, z) in terms of the initial angular

spectrum as
2 .27 2 2
M&yl=&)=ILNCWGwZ=0km{yznh—ax—Gy)
] 5 2\ 27 o, O
><C|rc(,/aX +0, )[IT(XUX +yo,)ld = d —iy

It should be noted that the angular spectrum approach and the first

(I-18)

Rayleigh-Sommerfeld solution yield identical prediction of diffraction field "),

' M. Gu, Advanced Optical Imaging Theory; Ed. (Springer, Berlin, 1999).

2 J. W. Goodman, Introduction to Fourier Optics, 2"-Ed. (McGraw-Hill, New York,
1996).

3 See http://mathworld.wolfram.com/GreensIdentities.html

* E. Wolf and E. W. Marchand, “Comparison of the Kirchhoff and
Rayleigh-Sommerfeld theories of diffraction at an aperture,” JOSA., 54:587, (1964)

> W. H. Southwell, “Validity of the Fresnel approximation in the near field,” JOSA.,
71:7, (1981)

% J. W. Goodman, Introduction to Fourier Optics, 2™ Ed. (McGraw-Hill, New York,
pp. 55-61, (1996).

7 G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral

formulas,” JOSA., 57:546, (1967)
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Appendix 11

Blind source separation problem

In the chapter titled as “Deconvolution of 2-D subwavelength variation
information,” we adopted “Time-delayed correlation method” to solve the “Blind
signal separation problem.” In this section, we give the definition of “Blind signal
separation problem” and literature review the some approaches to solve the “Blind
signal separation problem” and detailed the approach of “Time-delayed correlation

method.”

11.1 Introduction to blind source separation problem

“The blind source separation problem could be defined as the problem of separating
and estimating of multiple independent source signals from an array of sensors
without knowing the characteristic of the transmission channels” ™. Blind source
separation has been an intriguing issue for a long time, partially due to its similarity to
the human experience, e.g., the cocktail party effect 2. The problem of source
separation appears in many contexts. The simplest situation occurs for two speakers.

If the mixture of their voices reaches two microphones, one wants to separate both
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sources such that each detector registers only one voice ™). Further examples,
involving many sources and receivers, are the separation of odors in a mixture by an
array of sensors and the parsing of the environment into different objects by our visual
system ™. Because of the complexity inherent in these problems, blind source
separation has stood as an unsolved problem in history.

The classical blind signal separation problem could be illustrated in the Fig. 11-1.
The blind signal separation methods could recover the mixing independent source

signals by the detected signal.

C'l'l

a,(t) l,(®) a,(t)
a,(t) C (1) a,(t)
_
BSS methods
a (t) o (D) a(t)
Source Mixing Detected
signal coefficients signal

Fig. II-1. Schematic diagrams of the blind source separation problems

Let us assume that we have n detectors each of which is sensitive to a set of unknown
statistically independent signals a,(t),(i =12,......,n), i.e., <ai (t)aj(t')> = Ki(]t'—t|)§ij
Suppose the output signal Ii(t) , (1=12,...,n) of the detectors are linear

combinations of the input signals a,(t), i.e., the system is described by the set of
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equations
Ii(t):zn:Cijai(t);(i =12,......,n) (11-1)
j=1
, Where C;; are the mixing coefficients. It could be written in compact matrix form
| =CA. The term “Blind Signal” refers to the mixing signal without knowing its
mixing model. The blind source separation problem is to discriminate the input
signals under the assumption that the input signals are mutually statistically

independent. On the other hand, there are only n detected signals available. The
classical problem is how one determines the coefficients C; and the source strengths
K,(0) from a measurement of ls(f).  Because the matrix C is generally not
symmetric and the source strengths are not-available, the total unknown number of
variables is n(n+1). Such a problem was first addressed and solved by J. Herault and
C. Jutten. They proposed an adaptive neural network to perform this task . It
decorrelates the incoming signals via an inhibitory interaction between the output

neurons which has been further developed by many researchers [©7891011,

11.2 Time-delayed correlation method
Unlike most methods using neural network approach to solve the blind source
separation problem, Molgedey and Schuster (MS) proposed using time-delayed

correlation and eigenvalue problem approach to separate a mixture of independent
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[12]

signals The method was abbreviated as M-S method, which will be detailed as

followed.

The correlations of two signals a(t) and a,(t) could be represented as
<ai (t)aj(t)>. The time-delayed correlation is the correlation of one signals a;(t) and
time-delay signal a;(t+7), ie., <ai(t)aj(t+r)>. The concept of time-delayed
correlation is coming form the concept of “independent source signals.” For n
statistically independent signals a(t), (i=12,.....,n), two different signals are
independent, thus will satisfy the condition

(a (ayt)y =0 orall i=j) (11-2)
The time-delayed correlation oftwo independent signals will satisfy the condition
(a(Day(t+r)y=0-(forall i=j) (11-3)
For single source signal ai(t) will satisfy the condition
<ai(t)2>>0.(forall i). (11-4)
The self time-delayed correlation satisfy the condition
(a;(t)a(t+7))>0. (forall i). (11-5)
The above four relations are the basic concept of time-delayed correlation method.
M-S method introduces the additional assumption that the mean value of the source

signal is zero, i.e.,

(a,(t))=0. (forall i). (11-6)
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From equation (11-3) and (11-5), the time-delayed correlation of the source signals
could be represented as

(a(t)a;(t+7)) = K()s;. (11-7)
Constructing two matrices, the symmetrical correlation matrix M, = <Ii(t)lj(t)> and

the time delayed correlation matrix My = (1,(t)I(t+ r)> The matrix form could be

represented as
(11-8)

For source signals satisfying the above the five assumptions, (I1-2) to (11-6), the blind

source separation problem becomes a'eigenvalue ‘problem where (M V_lﬁ =AC.

While we solving the mixing coefficients-C.. ,.it could be easily adopted to solve the

if 1

source signal a,(t). The detail derivation-will be addressed bellow.

The matrix representation of relations of source signals and detected signals is
I(t)=CA(t), thus 1(t)" =(CA(t))' = At)'C". Substituting it into Eq. (11-8), we

have

M = (CA(AR)'CT) = C(AAG) )CT =CACT
_ L (-9)
M = (CA(t+7)A(t+7) CT) = C(A(t+r)At+7) )CT = CACT

Where
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K= (At o)A o)) (119
Theelementofthe A, A are A, =K;(0)5;,, A; =K(r)s;. Dividing the
symmetrical correlation matrix by time delayed correlation matrix, we have
MM  =CAC'(CACT)"
=CACT(CT)"A'Cc . (11-12)

=CAA'C™

By multiplying mixing coefficient matrix C, we have (M M_lﬁ = C(AA_l). From

—_ 1
Eq (11-10), we know that (A l) =| ——= 0., thus
q ( ) j ( Ki (T)j 1j

AN = [ Ki(O)J@jD =D, (11-12)

Ki(T)
where D is identity matrix. =By substituting Eq.(11-12) into Eq. (I1-11), we have

(Mﬁ_lk:ﬂc, which is an eigenvalue, problem. By solving the eigenvalue
problem, we can have the mixing coefficients matrix C and so do source signal

_1|

matrix A=C In a word, by using M-S method, we can simply solve the blind

source separation problem by solving eigenvalue problem.
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