國 立 交 通 大 學 光電工程研究所

博士論文

先進光調變與多工技術在直接偵測光傳 輸系統上的性能評估與分析

Advanced Modulation and Multiplexing Techniques for Direct Detection Optical Transmission Systems

> 研究生: 彭煒仁 指導教授: 祁 甡 教授

中華民國九十七年六月

先進光調變與多工技術在直接偵測光傳 輸系統上的性能評估與分析

Advanced Modulation and Multiplexing Techniques for Direct Detection Optical Transmission Systems

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in The Institute of Electro-Optical Engineering College of Electrical and Computer Engineering National Chiao Tung University Hsin-Chu, Taiwan, R.O.C.

中華民國九十七年六月

先進光調變與多工技術在直接偵測光傳輸

系統上的性能評估與分析

研究生:彭煒仁 指導教授:祁 甡

國立交通大學 電機學院

光電工程研究所

摘要

在本論文中我們將簡介數種已提之先進光調變格式以及光多工技術,其工作原理以 及目前所遇到的議題將一併於論文中予以討論以及部分解決。其中光多工技術包含光正 交頻分多工 (OFDM) 以及光碼分多工 (OCDMA) 兩種技術,而光調變格式主要是高頻 譜效能(>1 bit/symbol) 之格式包含多階相位或多階振幅調變格式 。

針對直接偵測 OFDM 下我們提出射頻輔助正交分頻多工(RF-tone assisted OFDM)以 及廣義虛擬單邊帶正交頻分多工(Generalized Virtual SSB-OFDM)等兩種技術。此技術置 放一射頻次載波於信號頻帶邊緣作為遠端直接偵測參考信號之用。使用我們的技術後, 和同性質的直接升頻(direct up-conversion) 調變器相比,可節省一半數位轉類比器 (DAC) 的取樣速度,而其 DAC 有限的取樣速度在高容量 (≥10 Gbps) 的光通訊傳輸下 目前乃是主要瓶頸。此外,我們成功地傳輸 10 Gbps OFDM 訊號經過 1600 km 的標準單 模光纖後僅 3 dB 的損傷,驗證此技術在未來光通訊的應用潛力。

於光調變格式中,我們實驗以及理論驗證其使用簡易、低廉的單顆光調變器產生數 種複雜傳輸訊號的可能性。這在未來講求低價格,高效能的光通訊網路上是一大躍進。 除此之外我們更進而分析數種不同調變格式的性能理論上限:量子限制 (quantum limit)。 此一限制給出最佳性能指標以簡化工程應用上所能達成的最佳性能。

最後我們研究光碼分多工技術在局部網路(LAN)上的應用。我們使用費比布洛自注 入雷射以及光纖光柵串列提出廉價光碼分多工光源。藉著針對每一個光柵施以溫度或應 力的控制我們可以改變所要傳送地點的用戶碼。接著提出交叉頻率分組方式以降低在多 用戶光碼分多工系統下所遭遇到的多重存取干擾。最後,我們首次實驗驗證多載波碼分 多工系統於光接取網路上的應用可能。

Advanced Modulation and Multiplexing Techniques for

Direct Detection Optical Transmission Systems

Student: Wei-Ren Peng

Advisor: Sien Chi

Institute of Electro-Optical Engineering College of Electrical and Computer Engineering National Chiao Tung University

ABSTRACT

In this dissertation, we review and propose several new approaches for orthogonal frequency division multiplexing (OFDM), advanced modulation formats, and code division multiplexing (OCDM) techniques in optical transmission systems.

For OFDM, we propose an RF-tone assisted OFDM and virtual single-sideband OFDM (VSSB-OFDM) systems for direct detected optical transmission. With an RF tone inserted at the edge of the signal band, the sensitivity and CD tolerance are both improved compared to the previous power modulated SSB-OFDM. Besides, our approach also relaxes the bandwidth requirement for digital to analog converter (DAC) which would be very critical in a high speed transmission with a data rate of \geq 10 Gbps. In addition, we firstly propose a 2x2 matrix equalization technique to jointly compensate the distortions resulted from both the transmission and the imbalances of the optical modulator. Moreover, we successfully transmit a 4-QAM, 10-Gbps signal through 1600 km uncompensated standard single mode fiber (SSMF) with only ~ 3 dB penalty, which is smaller than any other proposed direct-detected transmission systems.

For advanced modulation formats, we numerically evaluate and experimentally demonstrate the generation of complex modulation formats by using one dual-drive Mach-Zehnder modulator (DD-MZM). We also analyze the performance bound, i.e. quantum limit, of 4ASK format. We further propose a phase modulated 4ASK (PM4ASK) format which shows a better CD, PMD and filtering tolerances compared to conventional 4ASK format.

For CDMA, we propose a simple and cost-effective fast frequency hopping CDMA (FFH-CDMA) light source which uses a self-injected Fabry Perot laser and one string of fiber Bragg grating array (FBGA). By tuning the stress of each individual grating, we can encode the transmitted data by the destination codeword. Aimed to eliminate the inherent multiple access interference (MAI) in optical FFH-CDMA, we propose a frequency-interleaved multi-group approach which fully uses the frequency gap between the gratings to reduce the spectrum overlapping among different users, and design the new codeword searched by computers which is suitable for this proposed technique. Finally we versify this technique by

some simulation results.

誌 謝

(Acknowledgements)

感謝祁甡 (Dr. Sien Chi) 老師這段期間在學業上細心地指導與教誨,也讓我學習到許多做人處事之道。同時也感謝南加州大學電機系教授 Dr. Alan E. Willner 耐心地教導, 使得在研究上所遇到的瓶頸,總是能迎刃而解。

此外,也感謝實驗室合作教授交大光電所陳智弘 (Dr. Jyehong Chen)以及清大電通 所馮開明 (Dr. Kai-Ming Feng) 的長期幫忙和指點。特別感謝台灣交通大學:彭朋群 (Peng-Chun Peng),錢鴻章(Hung-Chang Chien),林俊廷(Chun-Ting Lin)以及黃明芳 (Ming-Fang Huang)博士;以及南加州大學:章波(Bo Zhang),張林(Lin Zhang),武曉霞 (Xiaoxia Wu)以及台灣同胞楊振源(Jeng-Yuan Yang)同學等同儕的相互勉勵及協助,使研 究之路得以順利且充滿樂趣。

最後感謝我最挚爱的父母、家人,謝謝你們的關懷與一路扶持。

Contents

Chinese Abstract	I
English Abstract	III
Acknowledgement	V
Contents	VI
List of Figures	XII
List of Table	XIX
List of Acronyms	XX

Chapter 1

Introduction

troc	uction	
1.1	Background	l
1.2	Motivation	1
1.2	Organization of the Directory 1895	-
1.3	Organization of the Dissertation	,
	References	7

Chapter 2

Overviews of Optical Modulation and Multiplexing Techniques

2.1	Introduction	8
2.2	Optical Orthogonal Frequency Division Multiplexing (OFDM)	
	2.2.1 Coherent Detection	9
	2.2.2 Direct Detection	.11
2.3	Advanced Modulation Formats	
	2.3.1 Differential Phase Shift Keying (DPSK)	.13
	2.3.2 Differential Quadrature Phase Shift Keying (DQPSK)	.13

	2.3.3 Other Four-Level Modulation Formats	14
	2.3.4 Analysis Tools for Modulation Formats	15
2.4	Optical Code division Multiplexing (OCDM)	
	2.4.1 Direct-Sequence CDMA (DS-CDMA)	16
	2.4.2 Fast Frequency Hopping CDMA (FFH-CDMA)	17
	2.4.3 Spectra-Encoded CDMA (SE-CDMA)	17
	References	18

Optical Orthogonal Frequency Division Multiplexing

3.1	Introduction		
3.2	RF tone Assist	ed Optical OFDM Systems	
	3.2.1 Experime	ental Demonstration of a Coherently Modulated and Directly Detected	
	Optical (OFDM System Using an RF-Tone Insertion	
	3.2.1.1	Introduction	
	3.2.1.2	Concept	
	3.2.1.3	Equalization	
	3.2.1.4	Experimental Setup and Results	
	3.2.1.5	Summary	
	3.2.2 Experimental Demonstration of Compensating the I/Q Imbalance and Bias		
	Deviation	n of the Mach-Zehnder Modulator for an RF Tone Assisted Optical	
	OFDM System		
	3.2.2.1	Introduction	
	3.2.2.2	Effects of I/Q Imbalance and Bias Deviation	
	3.2.2.3	Compensation for I/Q Imbalance and Bias Deviation	
	3.2.2.4	Experimental Setup and Results	

		3.2.2.5	Summary	37
	3.2.3	Tunable	Optical Wavelength Conversion of a 10 Gb/s OFDM Data Sigr	ıal
		Using a	Periodically-Poled Lithium Niobate Waveguide	
		3.2.3.1	Introduction	38
		3.2.3.2	Concept	39
		3.2.3.3	Experimental Results	39
		3.2.3.4	Summary	41
	3.2.4	Theoret	ical Investigations	
		3.2.4.1	The Optimum Carrier to Signal Power Ratio (CSPR)	41
		3.2.4.2	Bit Error Rate Calculation for a Single Sideband OFDM Signal with	ith
			Direct Detection optically Pre-amplified Receivers	42
3.3	Virtu	al Single	Sideband OFDM (VSSB-OFDM)	
	3.3.1	Experim	ental Demonstration of 340 km SSMF Transmission Using a Virtu	ıal
		Single S	ideband OFDM Signal that Employs Carrier Suppressed and Iterati	ve
		Detection	n Techniques	
		3.3.1.1	Introduction	46
		3.3.1.2	Concept	47
		3.3.1.3	Equalization	49
		3.3.1.4	Experimental Results	50
		3.3.1.5	Summary	52
	3.3.2	Experime	ental Demonstration of 1600 km SSMF Transmission of a Generaliz	ed
		Direct D	etection Optical Virtual SSB-OFDM System	
		3.3.2.1	Introduction	52
		3.3.2.2	Concept	53
		3.3.2.3	Experimental Results	54

3.3.2.4	Summary	
References		56

Advanced Modulation Formats

4.1	Introduction				
4.2	DQPS	K Generation by Using One Dual-Drive Mach-Zehnder	Modulator		
	(DD-MZM)				
	4.2.1	Introduction	79		
	4.2.2	Concept	80		
	4.2.3	Experimental Setup and Results	82		
	4.2.4	Summary	83		
4.3	Theor	retical Investigations for DQPSK signal generated by one DD-MZM			
	4.3.1	Introduction	84		
	4.3.2	Optical Spectra and Bit Error Rate Analysis			
	4.3.3	Numerical Results	86		
	4.3.4	Summary			
4.4	Gener	ration of ASK/RZ-DPSK signal by using one DD-MZM			
	4.4.1	Introduction	88		
	4.4.2	Concept	90		
	4.4.3	Numerical Results	91		
	4.4.4	Summary	93		
4.5	Quant	tum Limit of 4-level ASK System			
	4.5.1	Introduction	93		
	4.5.2	The Optimum Level and Quantum Limit for 4ASK	95		
	4.5.3	Numerical Results	98		

	4.5.4	Summary
4.6	Improv	rement of Dispersion and Optical Filtering Tolerances for Quaternary Intensity
Detection Using Phase Modulation and Balanced Detection Technique		
	4.6.1	Introduction101
	4.6.2	Generation of 4ASK and PM4ASK
	4.6.3	Performance Bound, Dispersion and Optical Filtering Tolerances103
	4.6.4	Summary
	Refere	nces

Optical Code Division Multiplexing

5.1	Introd	uction	
5.2	Light	Source of OCDMA	
	5.2.1	Introduction	
	5.2.2	Concept	
	5.2.3	Experimental Setup and Results	
	5.2.4	Summary134	
5.3	Reduc	ing Multiple Access Interference in an Optical Fast Frequency Hopping	
	CDMA (OFFH-CDMA) System		
	5.3.1	Introduction135	
	5.3.2	Concept	
	5.3.3	Code Design and Performance Analysis	
	5.3.4	Numerical Results	
	5.3.5	Summary	
5.4	Multi-	Carrier CDMA	
	5.4.1	Introduction149	

5.4.2	Concept	.150
5.4.3	Experimental Setup and Results	.151
5.4.4	Summary	.152
Refere	ences	.153

Conclusions and Future Work

6.1	Conclusions	169
6.2	Future Work	
	References	173

List of Figures

Chapter 2	
Fig. 2.1	OFDM fundamentals: transmitter and receiver
Fig. 2.2	(a) The transmitter and (b) receiver in a Coherent Optical OFDM (CO-OFDM)
	system
Fig. 2.3	Coherent transmitter and receiver for polarization division multiplexing
	(PDM)
Fig. 2.4	Various proposed direct detection OFDM: (a) using Hermitian symmetry and an
	optical filter; (b) using up-conversion and an optical filter, (c) using a frequency
	domain Hilbert transform. For all the three types of OFDM formats, only one
	photodiode is needed at the receiver
Fig. 2.5	Optical DPSK: (a) transmitter and (b) receiver
Fig. 2.6	Optical DQPSK: (a) transmitter and (b) receiver. The purpose of the two sets of
	optical delay interferometers is to feed the data into a simple binary decision
	circuit
Fig. 2.7	Optical ASK/DPSK: (a) transmitter and (b) receiver
Fig. 2.8	Optical four level ASK (4ASK): transmitter and receiver
Fig. 2.9	Optical CDMA: (a) direct sequence (DS-CDMA) and (b) fast frequency hopping
	(FFH-CDMA), (c) spectra encoding CDMA (SE-CDMA)27

Fig. 3.1	Operation principles for (a) the conventional power-modulated SSB-OFDM, and
	(b) the proposed RF-tone assisted OFDM-A (gapped) and OFDM-B
	(interleaved)
Fig. 3.2	Experimental setup of the RF-tone assisted OFDM

Fig. 3.3	Experimental results of error vector magnitude versus the carrier to signal power
	ratio60
Fig. 3.4	Experimental results of error vector magnitude versus the input power per
	span60
Fig. 3.5	Experimental results of BER versus OSNR. The OSA resolution is 0.2
	nm61
Fig. 3.6	Simulation of the error vector magnitude as a function of the chromatic
	dispersion61
Fig. 3.7	(a) The MZM imbalance and bias deviation, and the corresponding output spectrum
	of the RF-tone assisted OFDM and (b) the interfered signals after photodiode and
	the proposed 2x2 equalization matrix compensating the imbalance
	effects
Fig. 3.8	Experimental setup of the joint equalization technique for MZM imbalances and
	fiber CD
Fig. 3.9	Measured RF spectra after PD, (a) ideal operation, (b) with a amplitude imbalance
	of α = 1.38, (c) with a phase deviation of 0.1 π , (d) with a bias deviation of ΔV /
	Vrms, where Vrms is the root-mean square of the input signal, (e) with a time
	misalignment of $Td = 10$ ps
Fig. 3.10	EVM versus amplitude imbalance, (b) EVM versus phase deviation, (c) EVM
	versus bias deviation, where Vrms is the root-mean square of the input signal, (d)
	EVM versus the time misalignment65
Fig. 3.11	Bit error rate (BER) versus the optical signal to noise ratio (OSNR) for without
	and without I/Q compensation scheme, before and after 800 km uncompensated
	transmission. Note that there is no I/Q imbalance for this plot65
Fig. 3.12	Required OSNR (0.1 nm) for BER = 10^{-3} versus the fiber distance with MZM
	imbalance

Fig. 3.13	Concept of wavelength conversion using SFG/DFG in a PPLN
	waveguide
Fig. 3.14	Experimental setup of OFDM wavelength conversion. The constellation and RF
	spectra of 8 & 16-QAM are inserted
Fig. 3.15	Optical spectra after wavelength conversion. QPM: quasi-phase matching
	wavelength
Fig. 3.16	BER performance of the 10 Gb/s RF-tone assisted OFDM signal for both back to
	back and after conversion
Fig. 3.17	BER performance of 8-QAM and 16-QAM for both back to back (bb) and after
	wavelength conversion
Fig. 3.18	BER with different subcarrier numbers
Fig. 3.19	The progress of the power spectra of the SSB-OFDM signal and the ASE noise
	before and after the photodiode
Fig. 3.20	Simulated electrical power spectra of the OFDM signal
Fig. 3.21	BER versus OSNR with different optical filter bandwidth (OBW). The data rate is
	10 Gbps with 4-QAM. The OFDM bandwidth is ~11.8 GHz. The Q-factor is
	extracted from all the received constellation point70
Fig. 3.22	BER versus OSNR with different OFDM QAM formats. The optimum optical
	bandwidths for 4-, 16- and 64-QAM 10-Gbps SSB-OFDM signals are 13, 6.7 and
	4.6 GHz
Fig. 3.23	Transmitter architectures for the (a) conventional SSB-OFDM and (b) the
	proposed virtual SSB-OFDM. (H. T.: Hilbert Transform)72
Fig. 3.24	Iterative detection for the virtual SSB-OFDM72
Fig. 3.25	Experimental setup of the virtual SSB-OFDM73
Fig. 3.26	Measured error vector magnitude (EVM) versus the receiver iteration
	numbers73

Fig. 3.27	Measured EVM	versus the	carrier to s	signal power	ratio ((CSPR)	74
					,		

Fig. 3.28 Measured bit error rate versus the optical signal to noise ratio for the conventional and the virtual SSB-OFDM. The OSA resolution is 0.274

Fig. 4.1	(a) Principle of the generation of an optical DQPSK signal with a single MZM. (b		
	Symbol positions and the constellation diagram113		
Fig. 4.2	Experimental setup		
Fig. 4.3	Optical spectra of the generated NRZ, and RZ signals with different duty		
	cycle		
Fig. 4.4	Back to Back eye diagrams of the NRZ and RZ signals with different duty cycles		
	before and after detection. The horizontal scales are all with 20 ps/div114		
Fig. 4.5	Bit error ratio of the DQPSK signals before and after 60 km fiber		
	transmission115		

Fig. 4.6	(a) DQPSK transmitter with one DD-MZM and one pulse carver, (b) DQPSK
	transmitter with two parallel MZMs and one pulse carver, and (c) Receiver
	numerical model

Fig. 4.7	(a) The optical spectra of the DQPSK signal generated by conventional	two
	parallel MZMs. (b) The optical spectra of DQPSK signal generated by	one
	DD-MZM	.116

- **Fig. 4.8** (a) BER versus OSNR for one-MZM scheme with Td = 20 ps time mismatch between the data and the pulse modulators. (b) The power penalty of the RZ formats versus the relative delay between the data and the pulse
- Fig. 4.9 (a) BER of the two-MZMs schemes. (b) BER of the one-MZM scheme......118

Fig. 4.10

- **Fig. 4.11** System test link for the proposed ASK/RX-DPSK modulation scheme......119
- **Fig. 4.12** Back to back receiver sensitivities of label and payload versus label extinction
- Eye patterns of the payload before and after the low pass electrical filter, with and **Fig. 4.13**
- **Fig. 4.14** BER performances of the label in back to back and 120 km SSMF transmission......121
- Fig. 4.15 BER performances of the payload in back to back and 120 km SSMF
- **Fig. 4.16** The bit error rate for 4-ASK as a function of photons/bit with various
- **Fig. 4.17** The optimum normalized multilevel spacing and thresholds as a function of photons/ bit with (a) M = 1, (b) M=10, (c) M=30, (d) M=50. (e) The optimum normalized multilevel spacing and thresholds at a bit error rate of 10⁻⁹ as a

function of M......123

- Fig. 4.24Required SNR at $BER = 10^{-9}$ versus the optical bandwidth for the conventionalRZ4ASK and proposed RZ-PM4ASK formats.128

Fig. 5.1	Experimental setup of the proposed OFFH-CDMA light source
	module157
Fig. 5.2	Time domain waveforms at positions of A, B, and C, respectively157
Fig. 5.3	(a) Optical spectrum of the FP-LD output. The inset shows the detail near the
	center wavelength, and (b) the time domain single pulse with a pulse-width of \sim
	56.4 ps158

- **Fig. 5.11** (a) One-bit of all the 24 users are synchronously sent to the decoder of the first user to evaluate the interference, (b) to (e) correspond to group number of 1, 2, 6,

- Fig. 5.13 (a) BER versus simultaneous users with different group numbers. The number of frequency slots q and the code weight N are equal to 25 and 12, respectively, and (b) The number of frequency slots q and the code weight N are equal to 17 and 12, respectively.
- Fig. 5.14 BER of systems with parameters (q, N) = (17, 12) and (q, N) = (25, 12).
 Fig. 5.15 Block diagram of MC-CDMA, upper part is the transmitter and lower part is the receiver.
 Fig. 5.16 Experimental setup of MC-CDMA.
 Fig. 5.17 BER curves of different number of active users and corresponding equalized constellations.
 Fig. 5.18 BER curves and equalized constellations for different QAM

List of Tables

 Table 4.1 The Optimum optical and electrical filters and the 3-dB tolerances to CD and PMD effects.

 129

List of Acronyms

<u>Acronyms</u>	Descriptions
AABN	ASE-ASE Beat Noise
ADC	Analog to Digital Converter
ASE	Accumulated Spontaneous Emission
ASK	Amplitude Shift Keying
AWG	Array Waveguide Grating
BER	Bit Error Rate
BERT	Bit-Error-Ratio Tester
BPF	Band-Pass Filter
CD	Semiconductor Optical Amplifier
CDMA	Code Division Multiple Access
CDR	Clock and Data Recovery
CO-OFDM	Coherent Optical OFDM
CSPR	Carrier to Signal Power Ratio
CW	Continuous Wave
DAC	Digital to Analog Converter
DCF	Dispersion Compensating Fiber
DCM	Dispersion Compensating Module
DD-MZM	Dual Drive MZM
DFB-LD	Distributed Feedback Laser Diode
DFG	Difference Frequency Generation
DPSK	Differential Phase Shift Keying
DQPSK	Differential Quadrature Phase Shift Keying
DSC	Digital Self-Coherent

DS-CDMA	Direct Sequence CDMA
DSP	Digital Signal Processing
EDFA	Erbium-Doped Fiber Amplifier
EOM	Electric Optical Modulator
ER	Extinction Ratio
EVM	Error Vector Magnitude
FBG	Fiber Bragg Grating
FBGA	Fiber Bragg Grating Array
FDL	Fiber Delay Line
FEC	Forward Error Correction
FFH-CDMA	Fast Frequency Hopping CDMA
FFT	Fast Fourier Transform
FP-LD	Fabry-Pérot Laser Diode
FWM	Four Wave Mixing
GVSSB-OFDM	Generalized Virtual Single Sideband OFDM
IFFT	Inverse FFT
KLSE	Karhunen-Loeve Series Expansion
LAN	Local Access Network
LO	Local Oscillator
MAI	Multiple Access Interference
MAN	Metropolitan Area Network
MC-CDMA	Multi-Carrier CDMA
MGF	Moment Generating Function
MLSE	Maximum Likelihood Sequence Estimation
MZM	Mach-Zehnder Modulator
NRZ	Non-Return to Zero

OBW	Optical Filter Bandwidth
OC	Optical Circulator
OCDMA	Optical CDMA
ODI	Optical Delay Interferometer
OFDM	Orthogonal Frequency Division Multiplexing
OMI	Optical Modulation Index
ONU	Optical Network Unit
OOK	On Off Keying
OSA	Optical Spectrum Analyzer
OSNR	Optical Signal to Noise Ratio
PBS	Polarization Beam Splitter
PC	Polarization Controller
PDM	Polarization Division Multiplexing
PMD	Electro-Absorber Modulator
PON	Passive Optical Network
PPLN	Periodically Poled Lithium Niobate
PRBS	Pseudo Random Binary Sequence
PSD	Power Spectra Density
QAM	Quadrature Amplitude Modulation
QPM	Quasi-Phase Matching
ROF	Radio over Fiber
RZ	Return to Zero
SABN	Signal-ASE Beat Noise
SC	Super Continuum
SCM	Subcarrier Multiplexing
SE-CDMA	Spectra Encoding CDMA

SFG	Sum Frequency Generation
SMSR	Side Mode Suppression Ratio
SPM	Self-Phase Modulation
SSBI	Signal-Signal Beat Interference
SSFBG	Super-Structured Fiber Bragg Grating
SSMF	Standard Single Mode Fiber
TDM	Time Division Multiplexing
VOA	Variable Optical Attenuator
VSSB-OFDM	Virtual Single Sideband OFDM
WDM	Wavelength Division Multiplexing
WH	Walsh-Hadamard
ХРМ	Cross Phase Modulation