國立交通大學應用化學所

Self-Assembly of Calixarene, Thiophene and

Bithiophene on Au(111)

研究生:林昌諺

指導教授:楊耀文 博士

中華民國九十四年八月

芳杯、賽吩與二賽吩於金(111)上的自組裝研究

學生:林昌諺

指導教授:楊耀文 博士

國立交通大學應用化學所

中文摘要

and the second

芳杯、賽吩與二賽吩在應用上都具有極大的潛力。芳杯在超分子 化學的主客化學範疇中被廣泛的應用作為主體,並且可應用於分子辨 識或是感測器,而賽吩與二賽吩因為在電子結構上具有去區域性的共 軛π電子雲,有助於電荷的傳導,所以其高分子在光電材料的應用上 相當的普遍,例如發光二極體、場效應電晶體與光伏特電池等。

本實驗利用真空吸附與溶液浸泡來製備芳杯、賽吩與二賽吩於金 (111)上的自組裝薄膜,並且利用 STM、EC-STM、TPD、XPS 與 NEXAFS 等表面分析技術來進行樣品的研究,希望能夠對於吸附分子 的電子結構、鍵結強度及分子排列結構有更深入的了解。

從芳杯的 STM 與 EC-STM 影像中並未能觀察到吸附分子的規則 排列結構,而 NEXAFS 光譜結果中,吸收譜線並不會隨 X 光入射角 的改變而有變化,表示芳杯分子並非以一特定傾角吸附於表面上。透 過 XPS 的量測,推測芳杯吸附於金(111)表面上時,分子中的兩個硫 醇基並非會同時與金進行強化學鍵結,因此導致吸附分子無法以一特 定傾角存在於表面上。

從真空吸附與溶液浸泡所得到的二賽吩自組裝分子在 XPS 與 TPD 實驗結果中有相當大的差異。利用真空吸附所得到的二賽吩分子 是以弱鍵結與金表面作用,而溶液浸泡所得到的二賽吩與表面間則是 以強化學鍵來進行吸附。STM 影像中並未能看到二賽吩吸附分子的 規則排列結構。雖然於 NEXAFS 光譜結果中譜線會隨著 X 光入射角 的改變而有變化,但是由於數據不足,所以無法準確的判斷二賽吩吸 附於表面上的傾角。於 STM 影像中並未能觀察到二賽吩分子的規則 排列結構。賽吩分子於各實驗中所得到的結果與二賽吩的結果相類 似。

兩年的光陰, 說短不短, 說長也不長。現在回頭看來, 兩年似乎 轉眼間就過去了, 但是其中各種喜怒哀樂、令人難以忘懷的回憶, 又 讓人覺得兩年的歲月格外漫長。要畢業了, 馬上就要離開這個待了兩 年的地方, 說完全不會懷念、不會感傷, 我想都是騙人的吧。對我來 說, 在研究所期間所獲得的, 絕不只是一張薄薄的畢業證書與碩士學 位而已, 從各種實驗器材的準備、儀器的組裝與操作, 到數據的處理 與分析, 都讓我學習到了許多寶貴的知識與經驗。雖然只是短短兩 年, 但是其中所得到的卻遠比大學四年多出許多。

在這裡首先要感謝我的指導教授楊耀文博士,感謝老師在這兩年 期間不論是研究或是生活上對我的指教與照顧。在楊老師的帶領之 下,我才有機會能夠在同步輻射研究中心內,利用各種高級的儀器來 進行表面科學的研究。在這裡的一切所見所聞,都大大開拓了我的視 野。再來感謝范良任學長在實驗方面所給予的所有教導與協助,在范 學長耐心的教導與幫助下,我的各項實驗才得以順利的進行下去。我 還要感謝實驗室裡的好夥伴楹璋與搞笑學弟文彦,因為有他們兩人的 陪伴,使我單調的研究生生活增色許多。新進學弟震東與仲翔的加 入,也替實驗室裡帶來不少的歡樂。感謝我最親愛的家人,你們永遠 的支持與無限的關愛,讓我知道我並不是孤獨的面對所有的困難,並 且能夠提起勇氣度過各種情緒上的低潮。最後要感謝各位關心我的朋 友們,在你們的鼓勵與幫助下,我才能順利完成學業,謝謝你們。

昌諺

2005年8月

iv

目錄

頁碼

中文摘要	ii
致謝	iv
目錄	V
圖目錄	viii
附圖目錄	xiv
第一章 緒論 1.1 前言	1
1.2 自組裝單層膜	1
1.2.1 發展起源	1
1.2.2 原理	2
1.2.3 應用	4
1.3 芳杯化合物的介紹與應用	6
1.3.1 起源及命名	6
1.3.2 應用	10
1.4 賽吩及其衍生物的介紹與應用	12
1.5 研究動機與目的	14
第二章 實驗技術與數據分析處理	15
2.1 掃描穿隧顯微鏡(STM)	15
2.2 電化學掃描穿隧顯微鏡(EC-STM)	16

2.3 程温脫附法(TPD)......17

2.4 X 光光電子發射能譜(XPS)	17
2.5 XPS 能譜分析處理	20
2.6 近緣 X 光吸收細微結構光譜(NEXAFS)	22
2.7 NEXAFS 光譜分析處理	26
2.8 同步輻射光	29

第三章 實驗藥品、儀器設備清單與實驗步驟
3.1 藥品與儀器設備
3.2 超高真空系統
3.3 STM 實驗方法與步驟
3.4 EC-STM 實驗方法與步驟45
3.5 超高真空的準備
3.6 TPD 實驗方法
3.7 XPS 實驗方法
3.8 NEXAFS 實驗方法

第四章	實驗結果與討論	.58
4.1	芳杯分子自組裝薄膜實驗結果	.58
	4.1.1 STM 影像結果	.58
	4.1.2 EC-STM 影像結果	.62
	4.1.3 XPS 能譜結果	.67
	4.1.4 NEXAFS 光譜結果	.72
	4.1.5 結論	.74
4.2	二賽吩自組裝分子實驗結果	.76
	4.2.1 真空吸附製備的二賽吩 TPD 圖譜結果	.76
	4.2.2 真空吸附製備的二賽吩 XPS 能譜結果	.79

4.2.3 真空吸附製備的二賽吩 NEXAFS 光譜結果81
4.2.4 溶液浸泡製備的二賽吩 STM 影像結果
4.2.5 溶液浸泡製備的二賽吩 TPD 圖譜結果
4.2.6 溶液浸泡製備的二賽吩 XPS 能譜結果
4.2.7 溶液浸泡製備的二賽吩 NEXAFS 光譜結果96
4.2.8 結論
4.3 賽吩自組裝分子實驗結果102
4.3.1 真空吸附的賽吩 TPD 圖譜結果102
4.3.2 真空吸附的賽吩 XPS 能譜結果105
4.3.3 真空吸附的賽吩 NEXAFS 光譜結果109
4.3.4 溶液浸泡製備的賽吩分子 TPD 圖譜結果109
4.3.5 溶液浸泡製備的賽吩分子 XPS 能譜結果109
4.3.6 溶液浸泡製備的賽吩分子 NEXAFS 光譜結果113
4.3.7 結論
The second second
參考文獻119
附圖

簡歷......133

圖目錄

圖 1-1	自組裝分子的結構與作用力示意圖。	3
圖 1-2	不同對位取代基之 calix[4]arene。	7
圖 1-3	4-三級丁酚與甲醛在鹼的催化條件下的產物。	8
圖 1-4(a)	芳杯結構示意圖。	9
圖 1-4(b)	芳杯化合物 calix[4]arene。	9
圖 1-5	芳杯化合物8以及與碳六十結合之示意圖。	11
圖 1-6	芳杯化合物 9、10。	13
圖 1-7	不同官能基的芳杯化合物 11a 與 11b。	13
圖 2-1	測得的電子動能與電子動能分析儀功函數的關係圖。.	18
圖 2-2	實際偵測縱深與電子起飛角的關係圖。	21
圖 2-3	原子與雙原子分子的電子能階圖及其相應的	
	NEXAFS 光譜。	23
圖 2-4	入射X光與分子未填滿軌域角度關係圖。	25
圖 2-5	X 光入射角與不同分子傾角下的 X 光吸收譜線強度	
	關係圖。	27
圖 2-6	部分電子產率光譜的處理步驟說明圖。	30
圖 3-1	超高真空腔體配置俯視圖。	36
圖 3-2	可進行樣品交換的樣品平台。	37
圖 3-3	可進行樣品交換的樣品操作平台。	37
圖 3-4(a)	中空不銹鋼管的樣品平台。	38
圖 3-4(b)	樣品平台近照。	38
圖 3-5(a)	利用電化學蝕刻法製作探針時所使用的裝置。	40
圖 3-5(b)	探針製作裝置的近照。	40

圖 3-6(a)	未進行回火步驟,直接進行 STM 掃描所得的影像。43
圖 3-6(b)	為經過回火步驟後再進行 STM 量測所得的影像。43
圖 3-7	裝置於 STM 樣品平台上的金(111)晶面。44
圖 3-8	裝載於 STM 中的樣品。44
圖 3-9	EC-STM 專用金單晶電極。46
圖 3-10	電化學樣品試槽。48
圖 3-11	裝置完成後的 EC-STM。48
圖 3-12	電子產率偵測器構造示意圖與實物。53
圖 3-13	歐傑電子產生示意圖。55
圖 4-1(a)	乾淨金(111)晶面的 STM 大範圍掃描影像。59
圖 4-1(b)	圖 4-1(a)的 STM 小範圍掃描影像。59
圖 4-2(a)	金(111)表面浸泡 25 µM 芳杯溶液 1 分鐘後得到的
	STM 大範圍掃描影像。60
圖 4-2(b)	圖 4-2(a)的 STM 小範圍掃描影像。60
圖 4-3(a)	金(111)表面浸泡 25 µM 芳杯溶液 5 分鐘後得到的
	STM 大範圍掃描影像。61
圖 4-3(b)	圖 4-3(a)的 STM 小範圍掃描影像。61
圖 4-4(a)	金(111)表面浸泡 25 µM 芳杯溶液 15 分鐘後得到的
	STM 大範圍掃描影像。63
圖 4-4(b)	圖 4-4(a)的 STM 小範圍掃描影像。63
圖 4-5(a)	金(111)表面浸泡 25 µM 芳杯溶液 30 分鐘後得到的
	STM 大範圍掃描影像。64
圖 4-5(b)	圖 4-5(a)的 STM 小範圍掃描影像。64
圖 4-6(a)	乾淨金(111)晶面的EC-STM大範圍掃描影像。65
圖 4-6(b)	圖 4-6(a)的 EC-STM 小範圍掃描影像。65

圖 4-7(a)	滴入1mM 芳杯溶液後進行掃描所得到的 EC-STM
	影像。66
圖 4-7(b)	圖 4-7(a)的 EC-STM 小範圍掃描影像。66
圖 4-8(a)	滴入1mM 芳杯溶液後進行掃描所得到的 EC-STM
	影像。68
圖 4-8(b)	圖 4-8(a)的 EC-STM 小範圍掃描影像。68
圖 4-9(a)	以電子起飛角 30°進行量測所得的芳杯 S 2p XPS
	能譜。69
圖 4-9(b)	以電子起飛角70°進行量測所得的芳杯S2pXPS
	能譜。69
圖 4-10	以靜置一段時間的芳杯溶液進行實驗所量測得到的
	芳杯 S 2p XPS 能譜。71
圖 4-11	芳杯 C 1s XPS 能譜。ES
圖 4-12	各加熱溫度下所得到的芳杯 S 2p XPS 能譜變化。73
圖 4-13	不同溫度下芳杯 S 2p XPS 能譜的分析。73
圖 4-14	以 X 光入射角 20°、55° 與 90° 進行 NEXAFS 實驗所
	得到的 TEY 訊號。75
圖 4-15	真空吸附二賽吩 2.5 L 的 TPD 圖譜。77
圖 4-16	減少物理吸附產生後的二賽吩 TPD 圖譜。77
圖 4-17	各低吸附量下質荷比 166 amu 的二賽吩 TPD 圖譜
	變化。
圖 4-18	80 K下真空吸附二賽吩 1.3 L 的 S 2p XPS 能譜分析。80
圖 4-19	80 K下真空吸附二賽吩7.3 L的S 2p XPS 能譜分析。80
圖 4-20	各加熱溫度下所得到的真空吸附二賽吩 S 2p XPS 能
	譜變化。

圖4-21	210 K下吸附二賽吩4.3 L後進行NEXAFS實驗所得到的
	PEY訊號。83

- 圖 4-27(a) 金(111)表面浸泡 1 mM 二賽吩溶液 30 分鐘後得到的 STM 大範圍掃描影像。......90
- 圖 4-28 樣品交換系統下乾淨的金(111)晶面 TPD 圖譜。.......92

- 圖 4-31 各溫度下所得到的二賽吩 S 2p XPS 能譜變化。...........97

圖 4-33	將浸泡1mM 二賽吩溶液9.5 小時後進行 NEXAFS	
	實驗得到的 PEY 訊號。	99

- 圖 4-34 溶液浸泡法製備二賽吩 NEXAFS 光譜結果的分子吸 附傾角分析。......100
- 真空吸附賽吩 1.7 L 的 TPD 圖譜。......103 圖 4-35
- 圖 4-36 真空吸附賽吩 3.7 L 的 TPD 圖譜。......103
- 各低吸附量下質荷比 84 amu 的賽吩 TPD 圖譜變化。..104

圖 4-37

圖 4-38

80 K 下真空吸附賽吩 1 L 的 S 2p XPS 能譜分析。.....106

- 圖 4-39 80 K 下真空吸附賽吩 1.6 L 的 S 2p XPS 能譜分析。.....106
- 圖 4-40 受X光照射約1.5小時後的真空吸附賽吩S2pXPS 能譜。......108
- 不同溫度下所得到的真空吸附賽吩 S 2p XPS 能譜 圖 4-41
- 180 K下吸附賽吩1 L後進行NEXAFS實驗所得到的PEY 圖4-42 訊號。......110
- 真空吸附法製備賽吩 NEXAFS 光譜結果的分子吸附 圖 4-43 傾角分析。......111
- 圖 4-44 浸泡1mM 賽吩溶液 4.5 小時的 TPD 圖譜。.....112
- 以電子起飛角 30°進行量測所得的賽吩 S 2p XPS 圖 4-25(a)
 - 能譜。......114
- 以電子起飛角 70°進行量測所得的賽吩 S 2p XPS 圖 4-25(b) 能:繕。......114
- 圖 4-46 將浸泡1mM 賽吩溶液 32 小時後進行 NEXAFS 實驗 得到的 PEY 訊號。.....115
- 溶液浸泡法製備賽吩 NEXAFS 光譜結果的分子吸附 圖 4-47

傾角分析。	 117

附圖目錄

頁碼

附圖 1	金(111)浸泡	.1 mM 芳杯溶液中 5 小時後所量測到的	
	大範圍 XPS	能譜。1	23
附圖 2	各加熱溫度	下所得到的芳杯 Au 4f XPS 能譜變化。1	23
附圖 3	各加熱溫度	下所得到的芳杯 C 1s XPS 能譜變化。1	24
附圖4	80 K 下吸附	+1.3L 二賽吩分子所得到的大範圍 XPS	
	能譜。		24
附圖 5	80 K 下真空	E吸附二賽吩 C 1s XPS 能譜。1	25
附圖 6	80 K 下吸附	+7.3L二賽吩分子所得到的大範圍 XPS	
	能譜。		25
附圖 7	80 K 下真空	E吸附二賽吩C1s XPS 能譜。1	26
附圖 8	各加熱溫度	下所得到的真空吸附二賽吩 Au 4f XPS	
	能譜變化。.		26
附圖 9	各加熱溫度	下所得到的真空吸附二賽吩 C 1s XPS 能譜	
	變化。	1	27
附圖 10) 金(111)浸泡	.1 mM 二賽吩溶液中 15 小時後所量測到	
	的大範圍 X	PS 能譜。1	27
附圖 11	二賽吩C1s	5 XPS 能譜。1	28
附圖 12	各加熱溫度	下所得到的二賽吩 Au 4f XPS 能譜變化。1	28
附圖 13	各加熱溫度	下所得到的二賽吩Cls XPS 能譜變化。1	29
附圖 14	80 K 下吸附	1L賽吩分子所得到的大範圍 XPS 能譜。1	29
附圖 15	5 80 K 下吸附	1.6 L 賽吩分子所得到的大範圍 XPS 能	
	鐠。	1	30

附圖 16	80 K 下	真空吸附赛吩	C1sXPS能譜	
-------	--------	--------	----------	--

附圖 17	各加熱溫度下所得到的真空吸附賽吩 Au 4f XPS 能譜	
	變化。1	131

附圖 18	各加熱溫度下所得到的真空吸附賽吩Cls XPS 能譜		
	變化。	131	
附圖 19	金(111)浸泡 1 mM 賽吩溶液中 32 小時後所量測到的		
	大範圍 XPS 能譜。	132	

附圖 20 賽吩 C 1s XPS 能譜。......132

第一章 緒論

1.1 前言

由於科技的進步,各類電子產品的開發均以輕、薄、短、小為目標,而如何將元件微小化成為了最重要的研究課題,自此開啟了對於 奈米領域的廣泛研究。其中,自組裝技術的突破,使科學家們得以開 始設計超分子(supramolecule)與其他各種奈米結構與材料。利用新的 製程技術所製造出的奈米電子元件,在元件密度、速度以及成本的效 益上,將遠遠超過現有的半導體產品,因此分子的自組裝技術對於奈 米材料的製造與控制,具有極大的發展潛力。

1.2 自組裝單層膜 (self-assembled monolayer)

一般常見的有機單層薄膜依照形成方式的不同,可以區分為兩大 系統;一為LB薄膜(Langmuir-Blodgett film),另一為自組裝單層膜 (self-assembled monolayer)。自組裝單層膜研究的起步時間比LB薄膜 晚,但是因為其極大的發展潛力而至今仍被廣泛的研究與探討。

1.2.1 發展起源

1946 年 Zisman 將介面活性劑吸附於金屬表面上,製備出單層分子薄膜¹,但是當時並沒有發現分子自組裝的特性。之後 Kuhn 利用 三氯矽烷的衍生物吸附於親水性的玻璃上,亦形成單層的薄膜。1983 年,Nuzzo和Allara²將二硫化物(dialkyldisulfide)吸附於金表面上,結 果發現分子於表面上形成規則有序的單層膜結構,自此分子自組裝單 層膜開始被廣泛的研究。

1.2.2 原理

自組裝單層膜是分子藉由特定官能基以物理作用力或化學鍵結 吸附在固體表面上所形成的薄膜,製備方法通常是將特定基材表面浸 入一對該表面具有吸附性的化合物溶液中,或是將基材暴露於該化合 物蒸氣下,利用其自發性的化學吸附,加上吸附分子間非共價鍵作用 力的影響,分子會趨向熱力學最穩定的狀態,自然發生組裝排列,而 形成具有整齊排列的薄膜。

這種自組裝技術的特色,在於分子排列緊密、有秩序,並且製備 上又極為簡便,不需要外加太多的能量,所以在材料奈米製造及控制 技術上,極具發展潛力,常被用來取代LB薄膜。

以能量的觀點來看,自組裝分子的結構通常可分為三個部份,以 烷基硫醇為例,如圖 1-1 所示³:

第一部份為頭基(head group),其與特定基材表面具有化學吸附作 用,並且於鍵結時產生放熱的過程,其能量為一百多個千焦耳/莫耳 (kJ/mol)。第二部份為長烷鏈的部份,利用鏈與鏈間的凡得瓦力(van der Waals force)形成有秩序性且緊密的組裝結構。此外,具有芳香環 結構的分子,除了分子間凡得瓦力的作用外,也要考慮π-π堆疊的 作用力。接下來的第三部份,則是具功能化的末端官能基部份(end group),此末端官能基將取代原本的基材表面,直接影響表面的能量 與性質,例如飽和的烷基末端,會形成疏水性的表面,而末端具磷酸

圖 1-1: 自組裝分子的結構與作用力示意圖。3

根的分子,則造成親水性的表面。由於末端官能基部份的多樣性,使得有機自組裝分子薄膜在應用上具有很大的潛力。

目前已發現多種以分子自組裝方式形成的單層有機薄膜,包括了 有機矽烷吸附於水合的表面(矽表面的氧化矽、鋁表面的氧化鋁、玻 璃等);烷基硫醇吸附於金、銀、銅表面;雙烷基硫化物吸附於金表 面;以及醇類及胺類吸附於鉑表面等。表 1-1 列出數種已知的分子自 組裝薄膜系統³。

1.2.3 應用

自組裝薄膜的主要應用在於載體表面的改質,例如利用特定末端 官能基來增進表面潤滑、韌度、親水性、防腐蝕性等。除此之外,還 可應用於生化感應器、電路和半導體保護膜、人造生化薄膜、接著促 進劑、觸媒等,也可利用其特殊的光學現象,應用於非線性光學薄膜。

1.3 芳杯化合物的介紹與應用

主客化學(host-guest chemistry)是近年來相當熱門的研究主題。主體與 客體之間可藉由非共價鍵的靜電作用力而形成特殊的結構。芳杯為主 客化學中常見的主體之一,可與之作用的客體有各種陰、陽離子與分 子。藉由此特殊的主客化學特性,芳杯在辨識與感測應用上具有極大 的潛力。

基材	前驅物	鍵結
Au	RSH, ArSH (thiol)	RS-Au
Au	RSSR (disulfide)	RS-Au
Au	RSR (sulfide)	RS-Au
Au	RSO ₂ H	RSO ₂ -Au
Au	R ₃ P	R ₃ P-Au
Ag	RSH, ArSH	RS-Ag
Cu	RSH, ArSH	RS-Cu
Pd	RSH, ArSH	RS-Pd
Pt	RNC	RNC-Pt
GaAs	RSH 1896	RS-GaAs
InP	RSH	RS-InP
SiO ₂ , glass	RSiCl ₃ , RSi (OR) ₃	Siloxane
Si/Si-H	(RCOO) ₂	R-Si
Si/Si-H	RCH=CH ₂	RCH ₂ CH ₂ Si
Si/Si-Cl	RLi, RMgX	R-Si
Metal oxides	RCOOH	$RCOO^{-}\cdots MO_{n}$
Metal oxides	RCONHOH	RCONHOH…MO _n
ZrO ₂	RPO_3H_2	$RPO_{3}^{2} \cdots Zr^{4+}$
InO ₃ /SnO ₂ (ITO)	RPO ₃ H ₂	$\text{RPO}_3^{2-}\cdots \text{M}^{n+}$

表 1-1 各種形成分子自我組裝薄膜的系統 3

1.3.1 起源及命名

在 1940 到 1950 年間, Zinke⁴ 等人將對位上含不同取代基的酚和 37% 甲醛水溶液, 在氫氧化鈉催化下進行反應, 處理後得到一系列由 亞甲基連結苯環的環狀四合物, 如圖 1-2 所示。

1955年,Cornforth⁵利用與Zinke相同的方法,卻分離出不同熔點的兩種化合物,經過Kammerer⁶與Munch⁷對環狀四合物¹H-NMR的動力學研究後,發現此組異構物在室溫下能迅速翻轉,所以為構形異構物,而非Cornforth所認為的一組環狀四合物的結構異構物。1978年,Gutche⁸發現4-三級丁酚和甲醛在鹼的催化下,可生成數種不同大小的環狀聚合物,包括環狀四合物1、環狀六合物2、少量的環狀 五合物3、環狀七合物4、環狀八合物5與*p-tert*-butyldihomooxa 環氧化物6,如圖1-3所示。

此類的化合物外形似杯狀,可分成上緣、杯身及下緣部分,如圖 1-4(a)所示,故Gutche 將酚和甲醛的環狀聚合物命名為 calixarene (在 希臘文中, calix 為酒杯之意,而 arene 則表示含芳香環排列成的巨環 結構),並且在 calix 和 arene 之間插入數字以表苯環的數目,用此簡 化這類化合物的命名方式。以圖 1-4(b)中化合物 7 為例,在 IUPAC 系統中正式命名為

pentacyclo[19.3.1.1^{3,7}1^{9,13}1^{15,19}]octacosa-1(25),3,5,7(28),

9,11,13(27),15,17,19(26),21,23-dodecaene-25,26,27,28-tetraol,利用此命 名規則,可稱之為 25,26,27,28-tetrahydroxycalix[4]arene,或更簡單稱 之 calix[4]arene,以下以芳杯稱呼之。

圖 1-3:4-三級丁酚與甲醛在鹼的催化條件下的產物。8

圖 1-4(a):芳杯結構示意圖。

圖 1-4(b): 芳杯化合物 calix[4]arene。

1.3.2 應用

於辨識功能上的應用

芳杯具有能與分子或離子形成可逆錯合型態的特性,而且將芳杯 做不同的修飾,對分子或離子的選擇性也會有所不同。

可與芳杯進行錯合的金屬離子包括有鹼金族⁹、鹼土族¹⁰、過渡 金屬離子¹¹,甚至連鑭系¹²、錒系¹³金屬離子都曾被報導過。

文獻中,可與陰離子進行錯合作用的芳杯衍生物大多含有醯胺基團(amide)¹⁴,醯胺基團與陰離子之間可形成氫鍵,而使陰離子與芳杯錯合。其他例如含有尿素或硫脲(thiourea)的芳杯也可與陰離子作用¹⁵。

芳杯除了能與離子形成錯合外,也能與中性分子作用。於 2000年,Kutateladze 利用光不穩定的 spiro-bis-dithiane 基團連接兩個芳杯 而得到化合物 8,而化合物 8 可以容納碳六十 ([60]fullerene)¹⁶,如圖 1-5。

於感測器上的應用

在芳杯的上緣或下緣接上發色團或螢光基團,則當芳杯與離子或 分子形成錯合時,可由顏色、紫外-可見光吸收光譜或螢光放射光譜 來觀察其變化。於應用上,可發展為鈣¹⁷、鋰¹⁸、鈉¹⁹等離子的感測 器。

圖 1-5:芳杯化合物 8 以及與碳六十結合之示意圖。16

利用芳杯來辨識或分離鏡像異構物(enantiomers),是近年來廣受 注意的研究方向。一般此類的芳杯可分為兩大類型:一為本身構形 具有掌性(chiral)²⁰ (如圖 1-6 中化合物 9), 二為在其上緣或下緣接上 掌性基團 ²¹ (如圖 1-6 中化合物 10)。

除此之外,1996年 Kubo 合成出含發色團之芳杯 (如圖 1-7 中 11a、11b),藉由錯合前後顏色變化來辨識鏡像分子²²,例如化合物 12、13、14。

1.4 賽吩及其衍生物的介紹與應用

賽吩為一雜環有機化合物,存在於原油中,並且具有毒化催化表面的特性。除了早期關於賽吩在石化工業應用方面的研究之外,由於 分子電子學的崛起,使得賽吩至今仍不斷的被研究與討論。

分子電子學(molecular electronics)於近十餘年蓬勃的發展,其主 要觀念為,電子電路的個別元件可以利用物質的分子來構成。這將大 大增加晶片上的電路密度並使它們得以更快的速度來運作。目前該領 域最重要的課題之一為,利用有機分子來取代傳統的半導體材料,特 別是在平面顯示器方面。其優點在於低生產成本、發光材料的多變性 以及環境上的考量。雖然於應用上的研究已經快速的發展,但是對於 很多基本物理機制上的了解卻很缺乏,需要更多對於理論系統的詳細 研究。

目前π-共軛高分子在半導體工業上正被廣泛採用,因為這些有機 高分子在電子結構上具有去區域性(delocalization)的共軛π電子雲,有

 $\mathbf{R} = (\mathbf{CH}_3)_2 \mathbf{CH}, \, \mathbf{R}_1 = \mathbf{CH}_3$

9

10

圖 1-7: 不同官能基的芳杯化合物 11a 與 11b, 可用來辨識化合物 12、 13、14。 助於電荷的傳導。而聚賽吩(polythiophene)與寡聚賽吩(oligothiophene) 為被廣泛研究的有機高分子之一。例如發光二極體(light-emitting diode)²³,場效應電晶體(field-effect transistor)²⁴,光伏特電池 (photovoltaic cell)²⁵等,均為寡聚賽吩在光電材料的應用。由於這些分 子具有良好的化學穩定度,並且可以透過取代基的改變來進行光電性 質方面的改良與控制,而極具應用價值。

為了開發有機高分子在光電性質方面的應用潛力,所以必須要加 強對於有機薄膜的電子與幾何結構的控制。除此之外,有機分子材料 與金屬接觸界面的熱力學與機械性的穩定,對於電子元件的表現十分 重要,所以對於有機材料與金屬之間的作用需要更深入的了解與探 討。2,2'-bithiophene (以下簡稱為 bithiophene)為最短的α-寡聚賽吩, 由於長鏈分子的低溶解度,以及短鏈自由基離子所具有的良好聚合反 應性,所以常被拿來進行研究。

1.5 研究動機與目的

利用各種表面分析技術來進行芳杯、賽吩與二賽吩於金(111)表面 上吸附行為的研究,希望能夠藉此對於吸附分子的電子結構、鍵結強 度及分子排列結構有綜合的了解,並且對於其介面表面性質能有更佳 的掌握,而有助於以上化合物在應用方面的發展。

第二章、實驗技術與數據分析處理

2.1 掃描穿隧顯微鏡 (scanning tunneling microscope, STM)

在介紹 STM 的操作原理之前,必須先介紹何為「穿隧效應」 (tunneling effect)。所謂的「穿隧效應」就是指粒子可穿過比本身總能 高的能量障礙,在古典力學中,這是不可能發生的,不過以量子物理 的觀點來看,卻有此可能性。穿隧的機率與距離有關;距離愈近,穿 隧的機率愈大。在金屬探針與導體樣品表面間加一偏壓,並使之相隔 距離為數個原子大小範圍時,即可造成穿隧電流的產生,而電子穿隧 的機率是和發生穿隧效應兩端的間距成指數反比的關係,如以下公式 所示:

 $I_t = V \cdot e^{-Cd}$

其中 I_t為穿隧電流強度,V為加於探針與表面之間的偏壓,C為一常 數,而d為探針上最尖端處的原子與樣品表面原子間的距離。由上式 可知,探針與表面之間距離的些微改變,即可造成穿隧電流顯著的變 化,所以於量測上具有相當高的解析度。

在掃描穿隧顯微鏡中,樣品被安置在一壓電材料的平台上,透過 電壓對壓電材料的控制,可使樣品在三度空間中作小範圍的移動。量 測時,先將探針慢慢接近樣品表面,隨著探針與表面之間距離的縮 小,所產生的穿隧電流呈指數增加。當穿隧電流達預定值大小時,壓 電平台則開始 XY 水平方向的移動,使探針進行影像掃描。在影像的 取得有兩種方法,分別為等電流取像(constant current imaging)與等高

度取像(constant height imaging)。本實驗中是使用等電流取像法,即 以設定的穿隧電流作為回饋訊號。由於探針與樣品表面的間距和穿隧 電流有十分靈敏的關係,所以設定穿隧電流值即鎖定探針和樣品表面 之間距。當探針在樣品表面掃描時,探針必須隨表面之起伏調整其高 度,以保持探針與表面的距離,此時可由回饋電路控制壓電平台於 Z 方向的移動,使兩者間的距離為一恆定值。因此,以平台的高度變化 來呈像,就反映出樣品表面的形貌。等電流取像法的優點在於可容忍 較大的表面高低變化,但是由於必須以回饋信號來調制,掃描速度較 慢,容易受低頻雜訊的干擾。由於 STM 量測的是樣品表面與探針之 間的穿隧電流,所以樣品必須為導體或半導體,對於不導電的材料, STM 無法進行量測,此為 STM 較美中不足之處。

2.2 電化學掃描穿隧顯微鏡 (electrochemical scanning tunneling microscope, EC-STM)

EC-STM 可視為是電化學與 STM 的結合,於本實驗中將工作電 極控制於特定電位下,再以 STM 掃描樣品表面,觀測樣品於基材上 的吸附狀況。EC-STM 的電化學系統是由四個電極所組成,分別為工 作電極(working electrode)、參考電極(reference electrode)與相對電極 (counter electrode),以及在電位控制下進行掃描的探針。傳統之電化 學方法,在量測上為了避免電流直接流經參考電極,產生 IR 電位降 之不良影響,而多採用三電極組態方式,利用相對電極來提供電流的 流通。

除了電化學控制之外,EC-STM 的工作原理與 STM 相同。比較 特別的是,EC-STM 所使用的探針上需要塗附一層絕緣層,而 STM 則否,塗附上絕緣層的目的是為了降低法拉第電流的產生,關於絕緣 層的塗附方法,請參見 3.4 小節中 EC-STM 探針前處理的部分。由於 EC-STM 探針在實驗進行時必須浸泡於溶液中,除了來自於探針尖端 與樣品表面之間的穿隧電流外,透過溶液的傳導,整個金屬探針表面 與樣品表面之間也會產生電流,而此電流可能會影響穿隧電流的監 測,所以才利用絕緣層的塗附來避免穿隧電流以外的電流產生。

2.3 程溫脫附法 (Temperature-Programmed Desorption, TPD)

當一試片被加熱達到特定溫度時,吸附物與表面之間的鍵結會被 熱能所破壞,造成吸附物的脫附,而從表面上脫附的物質則可由四極 質譜儀所偵測,並且得到脫附物質譜訊號與試片溫度的關係曲線。 TPD 所偵測的是從表面上脫離的物質,與「XPS 能譜所偵測的是表 面上物質的化學態」是恰好相反的;因此,這兩種技術常同時被運用 來研究物質在表面上的性質。

2.4 X 光光電子發射能譜 (X-ray Photoemission Spectroscopy, XPS)

當 X 光光束照射樣品表面時,可使內核層(core level)電子被激發 並且脫離材料表面,最後被電子動能分析儀所偵測。經由電子動能分 析儀測得之電子動能,推算出電子之束縛能(binding energy)。

圖 2-1 中樣品與電子動能分析儀經由接地,將兩者的費米能階(E_F) 拉齊至同一能量高度。在量測脫離樣品表面的電子動能時,量測到的 電子動能是來自於入射光能量克服電子束縛能(E_b)與樣品表面的功函 數(e Ø)之後,基於能量守恆定律,所遺留的能量以電子動能方式展現 的結果;但在進入電子動能分析儀之後,因為還需要克服電子動能分 析儀內偵測器(detector)的功函數(e Ø_{sp}),因此測得的電子動能實際上

圖 2-1: 測得的電子動能與電子動能分析儀功函數的關係圖。26

應描述為下式:

 $E_{kin}(sp) = hv - E_b - e\phi_{sp}$

而我們在光譜所能獲得的資訊中,一般都將脫離樣品表面具有最小動 能的電子當作基準,其電子動能經由電子動能分析儀所測得的結果 為:

 $E_{kin}(sp)_{min} = e\phi - e\phi_{sp}$

而測得的電子動能與基準點的差值(ΔE),便是上二式相減:

$$\Delta E = E_{kin}(sp) - E_{kin}(sp)_{min} = hv - E_b - e\phi$$

藉由基準點,儀器本身的功函數便可以被忽略,簡化了我們用來計算 束縛能的算式。

目前已經了解 XPS 束縛能的偏移源自於(1)分子中各元素之間的 電負度差異(2)分子與金屬表面的作用力差異,所造成的不同電荷轉 移在化合物形成過程中,原子間藉由價電子形成鍵結,產生電子轉移 的現象,使電負度(electronegativity)較大的元素帶有負電荷,而電負 度較小的原子則帶有正電荷。因為價電子轉移的緣故,使內層電子能 階因靜電位差(electrostatic potential)而產生變化。若元素具有正電 荷,則光電子束縛能會較原子態的電子束縛能高;反之,具有負電荷 的元素所量測到的光電子束縛能會往低束縛能偏移。化合物之間的作 用也會造成相同的結果。利用推算出的束縛能可得知元素種類以及其 電子組態,而由束縛能的偏移量則可推測出元素周圍的化學環境,例 如其鍵結與化學態等。

此外,利用改變電子動能分析儀與表面的相對角度來進行角解析 (angular resolved)量測。首先定義電子出射方向(電子動能分析儀電子 透鏡中心軸)與表面的夾角稱為電子起飛角(take-off angle)。實際偵測 縱深與電子起飛角之間的關係如圖 2-2 所示。圖中 d 為光電子於樣品 中運動的距離,D 為偵測縱深,θ為電子起飛角。而從圖 2-2 中可得 到下列關係式:

 $D = d \sin \theta$

當起飛角0變小時,來自固定深度 D 的光電子在試片中運動的距離 d 變長,因而導致電子產生非彈性散射的機率增加,於是來自深層 的光電子會因為更多能量的減損,而最後轉變成微弱的背景訊號。因 此當起飛角小時,來自於表層原子的訊號相較於深層原子訊號會變 大;反之,起飛角變大時,表層原子的訊號相較於深層原子訊號會變 小。

2.5 XPS 能譜分析處理

由於儲存環的電子束強度會隨時間而減弱,同步輻射光強度也會因此而遞減,所以 XPS 光譜資料必須經過歸一化(normalization)處理,去除時間對光強度的影響。可由實驗時 X 光穿透過置於樣品前的金薄網所產生的光電流變化,得到 X 光強度相對於時間的改變量。 關於 XPS 譜圖能量的校正,所有的光電子能譜圖皆以基材 Au 4f₇₂ = 84.0 eV 作為 X 光能量校正的基準。之後再經過歸一化處理,最後利

用 Unifit2002 進行能譜波峰的配湊(fitting)分析。其中參數的設定,S 2p_{1/2}與S2p_{3/2}譜線強度比為1:2,所以設定兩波峰強度比例參數時 則定為1:2。根據資料所提供的 spin-orbit splitting 數據,S2p_{1/2}與S 2p_{3/2}譜線束縛能能量差值定為1.18 eV,XPS 能譜中自旋分裂值 (spin-orbit splitting)通常與化合物之鍵結狀態無關。經過程式運算之 後,再根據運算出的配湊波形結果來改變參數。其中高斯分布考慮的 是來自於光源及儀器解析度誤差所造成的波形特性的變化,而勞倫茲 分布考慮的是光電子本身生命期(life time)所造成的自然線寬。

2.6 近緣 X 光吸收細微結構光譜 (Near Edge X-ray Absorption Fine Structure, NEXAFS)

由吸收截面與光子能量的關係圖中,可看出來在 X 光能量區內 出現了數個不連續處,在此數個光子能量的範圍之內即為吸收邊緣 (absorption edge),在這些範圍內 X 光吸收係數有劇烈的變化。X 光 吸收光譜(X-ray Absorption Spectroscopy, XAS)可進一步以 X 光能量 與吸收邊緣的能量差值來區分成近緣(Near-Edge)X 光吸收光譜區和 延伸(Extended-Edge)X 光吸收光譜區兩部份,此兩部份的物理現象來 源不一致,所得到的資訊也不相同,在我們的實驗中,只討論 NEXAFS 的部分。

當以X光來照射物質,其中內核層(core level)電子可被X光激 發到一系列的未填滿軌域,以圖 2-3(A)的氣體原子為例,這些未填滿 軌域,包含電子尚未游離前之一系列雷德堡能態(Rydberg states),以 及電子游離後之連續能態(continuum states)。這些能態的存在使得

圖 2-3:(A)原子與(B)雙原子分子的電子能階圖及其相應的 NEXAFS 光譜。²⁷

跨過 K-edge(即 1s 電子被游離)的 X 光吸收係數對 X 光能量的關係, 不再是一平滑的函數,而相應具有許多吸收峰(peak)以及階梯(step)。 習稱的近緣 X 光吸收細微結構光譜區,即指從 X 光吸收邊緣 (absorption edge),如 K-edge,往高能量方向約 50 eV 區域內的光譜。 再以圖 2-3(B) X 光激發氣態雙原子分子所得到的 K-edge NEXAFS 光 譜為例。除了前述的雷德堡能態所造成的 X 光吸收峰之外,分子還 存在有具 π 或 σ 特性的價電子軌域以及未填滿的 π^* 和 σ *軌域。內核層 1s 電子躍遷到 π^* 和 σ *空軌域所造成的 X 光吸收峰有著截然不同的形 狀。1s $\rightarrow \pi^*$ 吸收峰非常窄,且因為電子緩解(electronic relaxation)效 應,導致此吸收峰的能量甚至可低於電子的游離位能(ionization potential),相形之下 1s $\rightarrow \sigma$ *的躍遷能量較高,而且吸收峰非常寬, 且其形狀非常不對稱,較不適合做進一步分析。

光譜的成因主要是因為光子激發原子內層電子,使其躍遷至能量較高的空軌域而產生。若以1s電子受X光激發為例,X光吸收係數 與躍遷機率的矩陣乘積的平方值成正比,如下列所示:

 $I_{i,f} \propto \left| \hat{e} \cdot \left\langle f \left| \vec{r} \right| i
ight
angle
ight|^2 \propto \cos^2 \chi$

其中|i)為具球對稱之起始 1s 電子狀態, ê為入射 X 光電場的單位向 量,而向量形式的矩陣元素(vector matrix element) 〈f |r|i〉的方向,與被 激發原子的末電子狀態的 p 分量一致。因此當 X 光的電場方向指向 末電子狀態最大電子密度的方向時,吸收係數值最大;而偏離此方向 時,X 光吸收係數則依 cos²χ的形式遞減,其中χ為兩向量的夾角。

圖 2-4 中 X 光入射角為θ,因此與入射光方向垂直的入射電場方

圖 2-4:入射 X 光與分子未填滿軌域角度關係圖。

向(E^{II}),與樣品表面法向量(n)的夾角同樣也是θ;分子排列向量(O)與 樣品表面法向量夾角為α。基材的方位角(azimuthal)角度為φ,在本實 驗中由於基材具有三重對稱(threefold)以上的對稱性, cos²¢被平均至 1/2,使得樣品分子軌域與X光電場的共振強度關係式簡化成:

$$I_v^{\prime\prime} = \cos^2\theta \cos^2\alpha + 1/2 (\sin^2\theta \sin^2\alpha)$$

= 1/3[1 + 1/2 (3\cos^2\theta-1) (3\cos^2\alpha-1)]

當 $\alpha = 54.7$ (magic angle)時 $3\cos^2\alpha - 1 = 0$,此時不論如何改變 θ 角, 皆不對會軌域與電場的共振強度造成變化。而實驗所使用的 24A 寬 頻光束線的 X 光極化率為 86%(入射光電場有 86%為 E^{\parallel} ,14%為 E^{\perp}), 如果以 85%對上式作圖可得圖 2-5,下文中將採用來對照各吸收峰強 度,用來算出分子傾角 α 。

本研究主要是利用上述原理來分析吸附分子於表面上的吸附結構。由於同步輻射光源所產生的 X 光主要為線偏振(linearly polarized),而且偏振向量平行於水平面,因此只需要沿水平面方向轉動樣品,即可變化 X 光電場向量(*E*^{||})與分子軌域向量(*Ō*)的夾角(δ,上述原理為將其拆解為θ和α來分別分析)。最後利用樣品轉動的角度 與光譜上吸收峰的強弱變化關係,則判斷出吸附分子與表面之夾角角 度。

2.7 NEXAFS 光譜分析處理

由於儲存環電子束位置會有些微的變動,造成分光後的入射光能 量有所變化,因此必須要先校正光譜結果的能量,才能繼續之後的能

譜分析。能量位置的校正是先以 HOPG 為樣品來進行掃描,之後再 將光譜中 285 eV 附近 1s→π^{*}的特徵譜線確實對準在文獻中所報導的 285.38 eV 位置之後,各樣品的光譜結果再以校正後的 HOPG 光譜結 果作為依據,進行能量位置的校正。完成能量的校正後,即可開始總 電子產率(total electron yield, TEY)與部分電子產率(partial electron yield, PEY)的數據處理。總電子產率與部分電子產率的數據處理公式 如下:

$$TEY = \frac{I_{TEY}^{sam}}{I_{TEY}^{subs}} = \frac{I_s^{sam} / I_{0_Au}^{sam}}{I_s^{subs} / I_{0_Au}^{subs}}$$
$$PEY = \frac{S_{PEY}^{sam}}{S_{PEY}^{subs}} = \frac{S_{MCP}^{sam} / I_{0_Au}^{sam}}{S_{MCP}^{subs} / I_{0_Au}^{subs}}$$

其中上標 sam 代表是來自於樣品(sample)的訊號,上標 subs 則代表來 自於乾淨基材(substrate)的訊號。利用樣品訊號除以乾淨基材的訊 號,來進行背景訊號的扣除。

一般總電子產率與部分電子產率訊號均有除以金網電流(I_{0_Au}), 以除去時間對於同步輻射光強度的影響。但是由於本實驗中金網電流 會在能量 260 至 270 eV 之間的位置引進氧的訊號,所以於本實驗數 據處理中不除以金網電流,而改以下列公式處理:

$$TEY = \frac{I_{TEY}^{sam}}{I_{TEY}^{subs}} = \frac{I_s^{sam} / I_{0_Au}^{sam}}{I_s^{subs} / I_{0_Au}^{subs}} \approx \frac{I_s^{sam}}{I_s^{subs}}$$
$$PEY = \frac{S_{PEY}^{sam}}{S_{PEY}^{subs}} = \frac{S_{MCP}^{sam} / I_{0_Au}^{sam}}{S_{MCP}^{subs} / I_{0_Au}^{subs}} \approx \frac{S_{MCP}^{sam}}{S_{MCP}^{subs}}$$

關於時間對於光源強度的影響,則盡量在相同的儲存環電流下進 行樣品與乾淨基材訊號的量測,藉此降低光源強度變化所造成的影 響。

以部分電子產率光譜的處理步驟為例(圖 2-6),比較樣品 MCP 訊號 S^{sam} 以及除以乾淨基材 MCP 訊號 S^{subs} 後所得到的訊號,可以發現 原本出現於 pre-edge 處(265 至 270 eV)的特徵吸收峰,在處理過後的 光譜中並沒有出現,表示雜質訊號的干擾已經除去。

除此之外,於不同測量角度下樣品受到 X 光照射的面積不一樣, 因此碳訊號對光譜的貢獻量也不同,所以當進行掠角光譜的掃描時, 樣品的暴露面積最大,其光譜會有最大的edge jump。理論上edge jump 強度不會因為吸附分子排列位向的變化而改變,而與所監測的元素數 量成正比。為了觀察各譜峰強度隨 X 光入射角的變化,則必須將各 量測角度的光譜對 edge jump 進行歸一化(normalized)處理之後,才能 比較各光譜中譜峰的相對變化。

2.8 同步輻射光

本研究利用國家同步輻射研究中心的同步輻射光做為 XPS 以及 NEXAFS 實驗的光源。同步輻射光為一連續波段的電磁波,涵蓋紅外 線、可見光、紫外線及 X 光等,1947 年首次在美國通用電器公司同 步加速器上意外地被發現,因此命名為「同步輻射」或「同步加速器 光源」。根據電磁學理論,當帶電粒子運動速度或方向改變時,會放 射出電磁波。因此,當電子以接近光速飛行時,受到磁場作用而發生 偏轉,會沿著切線方向放射出電磁波,此電磁波即為同步輻射。同步 輻射光具有以下特性:強度極強、波長連續、準直性佳、光束截面積

圖 2-6:部分電子產率光譜的處理步驟說明圖。其中圖(a)為樣品的 MCP 訊號 S^{sam},圖(b)為基材的 MCP 訊號 S^{subs},而圖(c)代表以樣品 的 MCP 訊號 S^{sam}_{MCP} 除以基材的 MCP 訊號 S^{subs} 後所得到的訊號。

小、具有時間脈波性與偏振性。若以 X 光為例,同步輻射光在這個 波段的亮度比傳統 X 光管燈源所產生的光還要強百萬倍以上,所以 可以把原本需要幾個月的實驗時間縮短至幾分鐘。以往因實驗光源亮 度不夠而無法探測的結構,藉由同步輻射光也都可分析得一清二楚。

由於同步輻射光具有高強度與連續可調的特性,所以使用同步輻 射光源可以克服傳統 XPS 的兩大限制:(1)表面靈敏度及(2)能量解析 度不佳的限制。表面靈敏度與電子非彈性碰撞平均自由徑(Inelastic Mean Free Path, IMFP)有很大的關係。IMFP 定義為電子於固態物質 間移動時,發生能量減損的兩連續碰撞間所行的距離。在相同的材料 中,IMFP 會隨著電子動能的變化而改變。若能把激發出的光電子能 量調整於某一範圍之內,使其 IMFP 為最小,則電子動能分析儀所偵 測到的訊號就幾乎全部來自於表面數層的原子,表面靈敏度也隨之提 高。傳統 XPS 所用的光源其能量均偏高(Mg Kg: 1253.6eV, Al Kg: 1486.6 eV), 而且無法自由調整。這種強度的 X 光會激發出動能約 200 至 1400 eV 的光電子,相對應的 IMFP 為 10 至 20 Å 左右,相當於近 十餘層原子;若使用同步輻射光源則可在一定的範圍之內自由調整光 子能量,使激發出的光電子動能於50至100eV之內,其IMFP很小 (約5Å)。同時,我們亦可以調整激發能量使欲偵測原子的光游離截 面(photo ionization cross section) 達到最大, 讓光譜訊號(counts) 值達到 最高且訊雜比(S/N)值最好。

現今國家同步輻射研究中心的同步輻射光屬於第三代同步加速 器光源,其最大的特色在於儲存環中裝入特別的插件磁鐵,例如增頻 磁鐵或聚頻磁鐵,藉此使電子由偏轉一次變成多次偏轉,同步輻射光 的亮度則可以提高一千倍以上。實驗所使用的光源是由儲存環引出同

步輻射光,經由光束線上多種精密光學元件聚焦、選取波長後,再引 進實驗站進行各項實驗。此研究之實驗是在 24A 寬頻(Wide Range)光 束線進行,這條光束線的特點為可調變能量範圍廣,經由六種不同的 球形光柵可使光能量在低能量(15 至 150 eV) 與高能量(130 至 1500 eV) 兩部分做調變。

3.1 藥品與儀器設備

藥品

芳杯(5,17-dipropylthiolcalix[4]arene): 鍾文聖教授實驗室何怡婷製備

賽吩(Thiophene): C4H4S, Fluka, 純度 99.5%

二賽吩(2,2'-Bithiophene): C₈H₆S₂, Fluka, 純度 97%

四氫呋喃(Tetrahydrofuran): C₄H₄O, TEDIA, 純度 99.9%

乙醇(Ethanol): C₂H₅OH, Fluka, 純度 99.8%

過氯酸(Perchloric acid): HClO₄, Fluka, 純度 70%

硝酸(Nitric acid): HNO3, Fluka, 純度 65%

超純水(ultrapure water): H_2O , Millipore, 電阻值達 18.2 M Ω ・cm

氣體

氦氣(nitrogen gas): N2, 健仁氣體, 純度 99.999%

金屬

金線(gold wire): Au, 純度 99.99%

儀器設備

機械幫浦(mechanical pump): Alcatel

離子幫浦(ion pump)與鈦昇華幫浦(titanium sublimation pump): Perkin Elmer

各式渦輪分子幫浦(turbo-molecular pumps):Seiko Seiki、Balzer 與 Varian

掃描穿隧顯微鏡(scanning tunneling microscope)與電化學掃描穿隧顯 微鏡(electrochemical scanning tunneling microscope): Digital Instruments, Nanoscope E

差比抽壓離子槍(differentially pumped sputtering ion gun): Vacuum Generator, EX05

差比抽壓四極質譜儀(differentially quadrupole mass spectrometer): UTI, 100C

電子動能分析儀(Triple-channeltron electron energy analyzer,

CLAM2) : Vacuum Generator

電子產率偵測器(electron yield detector): 自行組裝

同步輻射光源(synchrotron radiation source):同步輻射研究中心

3.2 超高真空系統

XPS、NEXAFS與TPD實驗均在可以遮蔽地磁的µ-metal 超高真空(ultra-high vacuum, UHV)球型腔體內進行,而超高真空腔體中各儀器的配置如圖 3-1 所示。於腔體上方開口接有一樣品操作平台(manipulator)作為移動樣品位置與角度之用,下方接上T型通管,T 型通管兩開口端分別接離子幫浦及分子渦輪幫浦。腔體其餘開口端分別接上電子動能分析儀、差比抽壓離子鎗、樣品交換系統(load-locksystem)、四極質譜儀、樣品給料裝置(doser)等裝置。腔體前方開口則與光束線相連接,引進同步輻射光源來進行實驗。

隨著實驗中樣品製備方式的不同,樣品平台(sample holder)的設 計也必須隨之變更。當進行溶液浸泡製備所得的樣品量測時,樣品是 裝載於一可加熱的樣品平台(圖 3-2)上,可利用樣品交換手臂(sample transporter)將樣品平台由一小真空腔傳送至超高真空腔,並與樣品操 作平台上的套件(圖 3-3)組合,使樣品平台能固定於樣品操作平台上。 當樣品是利用真空吸附製備時,樣品平台則選用一前端焊有兩根銅棒 的中空不銹鋼管(圖 3-4(a)、(b)),樣品可以兩橫跨於銅棒之間的鎬線 固定,而此鎬線亦可作為加熱樣品的電熱線,除此之外,中空不銹鋼 管中可加入並儲存液態氮,以冷卻樣品。利用以上方法對樣品進行加 熱與冷卻,可使樣品溫度被控制於 100 至 1100 K 之間。

圖 3-1: 超高真空腔體配置俯視圖。

圖 3-2:可進行樣品交換的樣品平台。

圖 3-3:可進行樣品交換的樣品操作平台。

圖 3-4(a):中空不銹鋼管的樣品平台。

圖 3-4(b): 樣品平台近照。橫跨兩銅棒間的鎢線可用來固定樣品,通 電後亦可進行樣品的加熱。

3.3 STM 實驗方法與步驟

在開始 STM 的量測前,必須要先準備一金(111)晶面來作為基 材,而本實驗室則是自行製備金(111)晶面以供實驗所需。除此之外, 實驗中所使用的 STM 探針也都是由實驗室自行製作。完成製備的單 晶面還需要經過清理步驟,除去表面上的有機物等不純物之後,才能 浸泡於樣品溶液中開始進行自我組裝薄膜的製備。

STM 探針的製作

常見的 STM 探針材料為鎬與鉑銥合金,而常見的製備方法則有機 椷處理與電化學蝕刻法兩種。鉑銥合金探針的機械處理法是取一段適 當長度且乾淨的鉑銥合金金屬線,用斜口鉗剪出尖銳的斷面,之後再 用去離子水與丙酮沖洗,最後用氦氣吹乾。此製造方式相當簡便,但 缺點是無法有效的控制探針的形狀與尖銳度。理想的探針應為圓錐 狀,尖銳度不夠或是形狀不好的探針會造成多重影像(multiple imaging)的產生。鉑銥合金探針的電化學蝕刻法所使用的電解液毒性 高,所以本實驗室沒有採用。由於鎬的硬度大,所以利用機械處理法 並不易得到理想的探針。本實驗室是利用電化學蝕刻法來製造鎬探 針,所使用的器具如圖 3-5(a)、(b)所示。製作探針時,先滴數滴 2 M 的氫氧化鈉電解質於鑽有孔洞的不銹鋼薄板上,並在板上抹開,使洞 上有一液膜形成。以適當長度且清理過的鎬絲穿過洞中的液膜,分別 以鎬絲為陽極,金屬板為陰極,施加5至10 V 的直流電壓來進行反 應。

圖 3-5(a):利用電化學蝕刻法製作探針時所使用的裝置。

圖 3-5(b):探針製作裝置的近照。圖中所使用的孔洞直徑為 5 mm。

下列為鎢絲的電化學蝕刻法反應式:

陰極 $6H_2O + 6e^- \rightarrow 3H_2 + 6OH^-$

陽極 $W + 8OH^- \rightarrow WO_4^{2-} + 4H_2O + 6e^-$

總反應 W + 2OH⁻ + 2H₂O \rightarrow WO₄²⁻ + 3H₂

於蝕刻過程中,液膜會因為劇烈反應而不斷產生氣泡,隨著反應 時間的增加,氣泡的產生會漸漸減少,表示液膜中的電解質濃度因為 反應而降低,此時應該暫停電壓的提供,補充數滴電解質之後,再開 始進行反應,以維持其反應速率,並避免液膜的破裂。隨著蝕刻反應 的進行,浸泡於液膜中的鎢絲會因為反應而漸漸向內凹陷變細,最後 因為無法承受液膜下方鎢絲的重量而斷裂,而鎢絲上下尖銳的斷裂處 均可作為探針使用。由於剛製作完成的探針上可能會有氫氧化鈉等化 合物的殘餘,所以需要以去離子水與丙酮沖洗,之後再用氮氣吹乾, 才能拿來使用。

金(111)晶面的製備

用丁烷焰小心的將金線末端熔融,熔融的金線會聚合成一小球, 若熔融的量夠多,則小球會呈水滴狀,直徑大小為2至3mm左右。 經過反覆的熔融與凝結過程,在金球表面上可以清楚觀察到金(111) 與金(100)小晶面的形成,其中金(111)晶面直徑約0.6mm左右,可直 接作為STM 實驗的基材來使用。

金(111)晶面的清理

清理晶面所用的酸液是硝酸與過氯酸以體積比1:1的比例所配 置而成的。將單晶面置於酸液中數小時,以除去吸附於單金面上的有 機雜質。單晶面從酸槽中拿出之後,以去離子水充分的沖洗,接著以 丁烷焰進行回火(annealing)步驟,加熱單晶至紅熱狀態,並維持 10 到 30 分鐘,使晶面更為平整。結束回火步驟後,立刻以去離子水冷 卻。由圖 3-6(a)、(b)的 STM 掃描影像中可以觀察到進行回火步驟前 後表面狀況的顯著差異。從圖中可以發現,經過回火步驟後的表面平 台較寬廣,而且沒有島嶼(island)的出現。

STM 自我組裝薄膜樣品的製備

完成單金的清理後,將單晶面浸泡於樣品溶液中。當達預定的浸 泡時間後,將單金從溶液中拿出,以溶劑充分的沖洗,最後再用氮氣 吹乾。

ATTILLES.

STM 實驗步驟

盡速將完成自我組裝薄膜製備的單晶面安置於自行設計製作的 樣品平台(sample holder)上後,如圖 3-7 所示,再將樣品平台裝置於 STM 中,如圖 3-8 所示。把製作好的探針置於探針挿管(tip holder)中, 並使之垂直貼近單晶面。為了避免空氣中的水氣吸附於樣品表面上形 成水膜所造成的干擾,而把 STM 封於透明壓克力箱中,並且通以氮 氣,使箱內溼度降至 15%以下,再把壓克力箱置於彈簧懸吊平台上, 以去除環境震動以及噪音的影響。完成上述步驟後,即可開始 STM 的影像掃描。

圖 3-6(b):為經過回火步驟後再進行 STM 量測所得的影像。圖中縱向的細小規則條紋為雜訊,並非表面上的規則結構。

圖 3-7:裝置於 STM 樣品平台上的金(111)晶面。

圖 3-8:裝載於 STM 中的樣品。

3.4 EC-STM 實驗方法與步驟

EC-STM 除了所使用的單晶面的製備與 STM 有些微的不同之 外,在單晶面的清理與探針的製作上均使用相同的方法。

EC-STM 專用金(111)晶面的製備

利用 STM 單晶的製作方法製作出一具有金(111)晶面的水滴狀金球,再調整金球的方向,使實驗時所用的金(111)晶面水平朝上,最後再以點焊機固定於小金薄片上,依此方式製備好的 EC-STM 專用單晶如圖 3-9 所示。

EC-STM 探針的前處理

目前已知有多種的材料可使用作為探針上的絕緣層,而本實驗室 選擇以一主要成份為硝化纖維(nitrocellulose)的透明指甲油作為絕緣 材料。將適當量的透明指甲油塗附於製作完成的鎢探針上(實驗中所 使用的 EC-STM 探針均為電化學蝕刻法所製造出的鎢探針),並以針 尖朝上的方式放置一段時間,則於針尖端的指甲油會因為重力而向下 流動,最後在針尖裸露出一小區金屬表面,以供穿隧電流的產生。等 到指甲油完全凝固之後,即完成探針絕緣層的塗附步驟。

EC-STM 實驗步驟

盡速將清理過後的金(111)晶面裝置於自行製作的電化學樣品試

圖 3-9: EC-STM 專用金單晶電極, 左邊的單晶為金(111)晶面, 而右邊的單晶為經過研磨處理過後的金(100)晶面。

槽中,再將樣品試槽安置於 EC-STM 中,放入氫參考電極與白金相 對電極,如圖 3-10 所示,之後調整探針使其垂直貼近晶面,並且在 試槽中加入電解液(於本實驗中是使用 0.1 M 過氯酸作為電解液),如 圖 3-11 所示,最後將 EC-STM 放置於彈簧懸吊平台上,待平台穩定 之後,即可開始影像的掃描。此時掃描所得到的是加入樣品之前乾淨 基材的表面影像。當要加入樣品溶液於試槽中時,首先要降低探針的 掃描速度,之後再滴入數滴適當濃度的樣品溶液於電解液中,然後恢 復原本的探針掃描速度,繼續影像的掃描。

3.5 超高真空的準備

XPS、NEXAFS 與 TPD 實驗均在超高真空系統中進行,所以在 實驗之前,需要先將真空腔中的壓力抽低至 10⁻¹⁰ Torr 左右,將金(111) 晶面於真空腔中清理乾淨後,再把單晶面拿出真空腔並浸泡於樣品溶

液中,來進行自我組裝薄膜的製備,或是於真空腔中進行樣品的吸 附。完成薄膜的製備後,再於真空腔中進行 XPS、NEXAFS 與 TPD 實驗的量測。

確定腔體上的各項儀器裝置均銜接無誤之後,開始使用機械幫浦 作初抽的工作,直到腔體壓力從一大氣壓抽至10⁻³ Torr 左右,再改以 渦輪分子幫浦輔助抽氣,壓力可迅速抽至10⁻⁶ Torr 左右。為了避免裝 置銜接失誤而造成氣體滲漏,導致無法達到超高真空,因此使用氦氣 來進行測漏。氦氣由於分子量小,擴散速率大,易通過細小孔洞,所 以是極好的測漏工具。使用氦氣進行檢查並且確定腔體無滲漏之後, 則可利用加熱帶對腔體進行加熱烘烤(bake out)。腔體暴露在大氣壓下 時,腔壁表面會吸附水氣及其他氣體分子,而這些分子會在低壓下緩

圖 3-10:電化學樣品試槽,其中包括有金工作電極、氫參考電極與白 金相對電極。

圖 3-11: 裝置完成後的 EC-STM。

慢釋氣(outgassing),使真空腔內壓力無法達到超高真空,因此需要藉 由加熱腔體來提高吸附氣體的熱脫附速率。經過24小時約110°C的 烘烤後,真空腔內壓力可降至10⁻⁸ Torr 左右,此時停止烘烤,並進行 各儀器燈絲的除氣(degassing)動作。等腔體降至室溫,再以離子幫浦 進行抽氣,並使用鈦昇華幫浦為輔助,最後壓力則可降至10⁻¹⁰ Torr 左右。

超高真空系統中金(111)單晶的清潔處理

在超高真空系統下所使用的金(111)晶面是一直徑 10 mm 的圓盤 狀單晶,與 STM 中所使用的單晶不同,所以在單晶的清理程序上也 不同。首先把真空腔體中的金(111)晶面加熱至 600°C 左右,使表面 上大部分的吸附物開始脫附,腔體中壓力會急速上升,直到壓力開始 下降時,才停止加熱。此時表面上仍然有部分雜質殘留,所以需要再 利用差比抽壓離子槍以氫氣離子進行表面的濺射(sputtering),利用氫 氯離子對表面的撞擊來敲撞出殘留於表面上的物質。完成濺射步驟 後,還需要再經過高溫退火(annealing)處理,將晶面加熱至高溫,利 用高溫時表面原子擴散速率的增加,以增加晶面的平整度。最後利用 XPS 來確認晶面的潔淨,若仍有雜質殘留於表面上,則反覆進行濺射 與退火步驟,直到沒有雜質存在為止。

真空系統的樣品傳送

利用樣品交換系統來進行樣品於真空腔內外的傳送,優點是可以 在不破壞系統的超高真空下,反覆交換樣品來進行實驗。當要把金單 晶傳送出真空系統時,先利用樣品交換手臂將樣品平台從樣品操作平 台上傳送至小真空腔體中,之後再從小腔體中取出樣品平台。相較起 來,傳送樣品平台進入真空系統中的步驟比較繁複,首先將裝有樣品 基材的樣品平台裝置於小真空腔體中的樣品交換手臂上,並且灌入液 態氮於小真空腔中的冷卻管中,使小真空腔內的壓力從 10⁻⁶ Torr 降至 10⁻⁸ Torr 左右,再開閥將樣品平台傳送至超高真空腔體中的樣品操作 平台上,完成傳送後,等超高真空系統的壓力恢復原本的背景值後, 即可開始樣品的量測。

吸附樣品的純化

要進行超高真空系統的樣品吸附之前必須先進行樣品的純化,因 為未純化前的樣品試管中除了樣品之外,還含有水氣與其他氣體,這 些不純物可能會對於樣品的吸附造成影響。將裝有樣品的樣品試管接 上真空系統後,先用液態氮凍住樣品,以降低樣品的揮發,避免抽氣 過程中樣品的大量損失,之後再開氣閥抽掉樣品試管內的雜質氣體, 接著關閥並讓樣品恢復至室溫。重複上述的步驟數次,直到樣品於回 溫時不再有氣泡產生為止。

超高真空自我組裝薄膜樣品的製備

本實驗中超高真空自我組裝薄膜的製備方法有兩種,一是利用浸 泡樣品溶液來製備,另一則是利用真空吸附法。

溶液浸泡法

使用溶液浸泡法時,所使用的系統是具有樣品交換功能的樣品平 台,而樣品的製備方式與量測 STM 樣品的製備相同。把乾淨的金(111) 單晶從超高真空系統中傳送出來後,迅速進行樣品的製備,完成製備 後,再利用樣品交換手臂手臂把單晶送回超高真空系統中進行實驗。

真空吸附法

使用真空吸附法時,所使用的系統則是選用中空不銹鋼管的樣品 平台。完成單晶的清理之後,把液態氮倒入不銹鋼管中,以降低單晶 的溫度。當溫度穩定後,把金(111)晶面盡可能接近並正對樣品給料裝 置,然後開始進行樣品吸附。樣品的吸附量可藉由超高真空腔中的壓 力對時間的積分推算,以Langmuir (L)為單位,定義為假設於碰撞係 數(sticking coefficient)為1的狀況下,基材表面於10⁻⁶ Torr 的氣體壓 力下暴露1秒鐘,則表面上吸附的氣體分子量為1L。當吸附量達到 預定值後,則關閥停止樣品的吸附,等待壓力下降至背景值後,開始 進行實驗的量測。

3.6 TPD 實驗方法

為了降低超高真空腔中的其他物質所提供的背景訊號,則將四極 質譜儀裝置於一不鏽鋼圓筒內,並且在不銹鋼圓筒前端挖了一直徑為 5 mm 的圓孔,以便脫附的分子進入至筒內。於圓筒下端銜接一分子 渦輪幫浦,並且在不鏽鋼圓筒前端銀焊一銅質空筒,可在筒中灌入液 態氮來降低背景訊號。

利用溶液浸泡法與真空吸附法完成超高真空樣品薄膜製備後,先 在銅質空筒中灌入液態氮以降低背景訊號,之後開始質譜的掃描,並 且將樣品正對質譜儀外不銹鋼圓筒上的圓孔,然後開始樣品的加熱, 利用質譜儀偵測從表面上脫附的分子。

3.7 XPS 實驗方法

樣品除了於樣品初始溫度下進行角解析量測外,還經由加熱來進 行各溫度下樣品的測量,觀察樣品表面相對於溫度的變化。由於本實 驗室真空腔中電子動能分析器所架設的位置垂直於入射光,因此無法 取得電子起飛角90°的正向能譜,所以進行角解析中高電子起飛角度 的量測時,改以70°能譜代替。

3.8 NEXAFS 實驗方法

於碳 K-edge 的 NEXAFS 實驗中,每個樣品分別以 X 光入射角 20°、40°與 90°來進行入射光能量 270 至 340 eV 的光譜掃描,除此 之外,還需要進行乾淨的金(111)晶面於相同角度下的測量,以便於之 後進行樣品光譜結果中背景訊號的扣除處理。實驗中分別量取 X 光 穿過銅、金網(mesh 或 grid)後所產生的光電流(I₀_Cu、I₀_Au)、光照射於 樣品表面上所產生的光電流(Is),以及電子產率偵測器接收到的電子 訊號。以上四種資訊皆將轉換成 TTL 訊號,再傳輸到計數器(counter) 由電腦讀取,因此光譜中 Y 軸的單位皆為 counts。這些資訊再經過處 理之後,才可獲得總電子產率(total electron yield, TEY)以及部份電子 產率(partial electron yield, PEY)的光譜圖。其中電子產率偵測器的構 造如圖 3-12 所示:

A 部分為接地金屬罩與金屬網,用來避免內部高電壓形成電場外漏的 干擾,影響真空腔內樣品周圍的電場分佈。

圖 3-12:電子產率偵測器構造示意圖與實物。

B部分為第一片金屬網,加上正偏壓,用來阻絕低於偏壓電位能的正離子進入 MCP。

C部分為第二片金網,加上負偏壓,用來阻絕低於偏壓電位能的電子進入 MCP。

D 部分為兩片微通道面板相疊而成,其中每片 MCP 有效區域的直徑 為 25 mm,厚度為 0.6 mm,每平方公分約有 2 × 10⁵ 個微通道,而每 個微通道的直徑為 10 µm,並且以一 12°的斜角排列。利用一台高壓 電源供應器以分壓的方式於 MCP 的前端與後端之間提供一電壓差, 使電子能夠加速通過 MCP 並放大電子訊號。MCP 中微通道的作用相 當於電子倍增管(electron multiplier),當一電子進入微通道中並且撞擊 塗附有特殊材質的管壁時,則會造成數個電子的逸出,因此當一電子 通過兩片 MCP 後,會產生大量的電子。

E部分為收集器,為一金屬板,加上比MCP後端更高的正偏壓,使 離開MCP後端的電子繼續往收集器移動。電子碰撞到收集器會形成 電流脈衝,將訊號從高電壓的偏壓中濾出,再經過前置放大器 (pre-amplifier)放大後,最後轉成TTL方式的電壓脈衝將訊號傳輸至 計數器(counter)。計數器經由訊號的累計即可得知單位X光能量下所 獲得的訊號強度,訊號累計時間(dwell time)越長,訊號越穩定,訊噪 比(S/N ratio)可以獲得提升,然而,掃描時間也會隨之增長,儲存環 電流隨著時間的衰減也會對光譜造成影響;另外,如果樣品長時間暴 露在高強度的同步輻射光下,也有可能會對樣品造成輻射傷害 (radiation damage),因此必須要視情況決定光譜掃描時訊號累計時間 的長短。

電子產率偵測器所接收到的電子,除了受X光激發而脫離表面的 光電子外,還有各不同來源的歐傑電子,如圖 3-13 所示。圖中左邊

圖 3-13 歐傑電子產生示意圖。

兩種歐傑電子的產生,是內核層電子受到光激發而留下內核層的電 洞,再由價帶(valence band)或其他較高能帶的電子經由電子緩解效應 來填補電洞,而緩解過程所釋放出來的能量可能會被另一電子所吸 收,造成該電子的激發而脫離表面,除此之外,此能量也有可能會以 螢光的形式被釋放出來。這兩種電子緩解效應的形式是互相競爭的, 而隨著原子序的增加,螢光的量子產率會增加,而歐傑電子的量子產 率則會減少。圖中最右邊的歐傑電子產生是由於價帶上的電子吸收了 被激發電子自行緩解所放出的能量,而造成激發且脫離表面。

由於 X 光照射樣品表面所產生的樣品電流與 X 光吸收係數成正 比,所以可藉由樣品電流的大小得知樣品對於不同 X 光能量的吸收 關係,即為總電子產率。由於同步輻射光的強度會隨著儲存環電流的 大小改變,所以需要以金網電流作校正。可由下列公式計算得到總電 子產率:

 $I_{TEY} = I_S / I_{0_Au}$

總電子產率所得到的是大範圍的 X 光能量吸收圖譜,此時所得到 的訊號不只是來自於樣品中特定元素,還包括基材或是不純物等其他 元素的貢獻,因此樣品訊號會由於大量的背景訊號而變的不顯著,很 難觀測出圖譜間的變化。為了解決此問題,可以改用部份電子產率來 進行圖譜的量測。部份電子產率的量測是利用電子產率偵測器接收來 自樣品表面的電子,由於電子產率偵測器內有提供正、負偏壓的金屬 薄網,可以阻擋正離子以及低動能的電子進入 MCP 中,所以只要把 偏壓控制於適當的範圍,即可避免多餘的背景訊號(低動能電子)的引 進。由電子產率偵測器所獲得的資料仍然需要經過金網電流的校正, 以除去時間對同步輻射光強度的影響。由下列公式計算可得到部份電 子產率:

 $S_{PEY} = S_{MCP} / I_{0_Au}$

第四章、實驗結果與討論

本實驗結果共分為下列三大部分:芳杯分子的自組裝薄膜、二賽 吩自組裝分子與賽吩自組裝分子。

4.1 芳杯分子自組裝薄膜實驗結果

4.1.1 芳杯 STM 影像結果

如同先前所提到,本實驗所使用的芳杯化合物(如 3.1 小節中藥品 部分所示)為一具有雙硫醇基的環狀四合物,依據此芳杯化合物的結 構來推測,芳杯可利用硫醇基與金(111)表面進行鍵結。

首先利用 STM 來觀測芳杯分子在金(111)晶面上的吸附狀況。為 了與有吸附物的表面作比較,所以掃描一乾淨的金(111)晶面作為對照 組,掃描結果如圖 4-1(a)所示。圖中除了廣大的平台(terrace)與一台階 (step)外,並沒有發現其他顆粒或明顯的吸附結構存在,表示此為一 乾淨的表面。此外,有時在乾淨的金(111)晶面上可以觀察到特有的 23 × √3 人字形的重排結構(reconstruction),如圖 4-1(b)所示,此重排 結構的出現可作為一判斷晶面乾淨程度的依據。

完成乾淨基材的掃描後,接下來進行芳杯分子自組裝薄膜樣品的 測量。把處理乾淨的金(111)晶面浸泡於以四氫呋喃(THF)為溶劑的25 μM 芳杯溶液中1分鐘,掃描後得到圖4-2(a)、(b)。從圖中可以發現, 原本平整的表面上出現了分布稀疏的侵蝕坑洞(etching pit),而此現象 表示表面上已經有芳杯分子的吸附。於小範圍的掃描影像中,除了孔 洞之外並沒有發現任何的規則排列出現。接著把浸泡單晶的時間增加 至5分鐘,掃描後所得到圖4-3(a)、(b)。從圖中可以發現表面上孔洞

圖 4-1(b): 圖 4-1(a)的 STM 小範圍掃描影像, $I_t = 2.0 \text{ nA}$, $V_{tip} = 200 \text{ mV}$ 。

60.0

40.0

20.0

C

0

nm

80.0

圖 4-2(a): 金(111)表面浸泡 25 μM 芳杯溶液 1 分鐘後得到的 STM 大 範圍掃描影像, I_t = 2.0 nA, V_{tip} = 250 mV。

圖 4-2(b): 圖 4-2(a)的 STM 小範圍掃描影像, $I_t = 2.0 \text{ nA}$, $V_{tip} = 250 \text{ mV}$ 。

圖 4-3(a): 金(111)表面浸泡 25 μM 芳杯溶液 5 分鐘後得到的 STM 大 範圍掃描影像, I_t = 2.0 nA, V_{tip} = 200 mV。

圖 4-3(b): 圖 4-3(a)的 STM 小範圍掃描影像, $I_t = 2.0 \text{ nA}$, $V_{tip} = 200 \text{ mV}$ 。

的數目增加,但是於小範圍的掃描影像中,依舊沒有發現規則性的排 列。

把單晶的浸泡時間增加至 15 分鐘,掃描後得到圖 4-4(a)、(b)。 由圖 4-4(a)可以明顯此時表面上已經遍佈著孔洞,不再只是區域性的 分佈而已。再觀察小範圍的掃描影像,仍然沒有發現吸附分子規則性 的排列。

最後將浸泡時間增加至 30 分鐘。掃描後得到圖 4-5(a)、(b)。此時所觀測到的影像結果與 15 分鐘的相同,表面上仍然佈滿孔洞,而 小範圍的掃描影像中,還是沒有發現吸附分子規則性的排列。

4.1.2 芳杯 EC-STM 影像結果

在滴入芳杯溶液之前,先進行乾淨的金(111)表面掃描,以確認基 材的表面形貌與乾淨程度。在良好的儀器狀況之下,可以在金(111) 表面上清楚的看到 23 × √3 的重構排列,如圖 4-6(a)、(b)所示。比較 於 STM 與 EC-STM 中所得到的重構排列影像,可以發現 EC-STM 的 影像清楚許多,即使在 200 nm × 200 nm 的範圍掃描下,一樣也能清 楚的看到重構排列的結構。可能是由於 EC-STM 的影像掃描是在溶 液中進行,與 STM 在大氣環境下進行掃描不同,避免了大氣中雜質 的干擾,所以表面上的細微結構能夠清楚的被呈現出來。

確定表面的乾淨程度後,接著將芳杯溶液滴入樣品試槽中,然後開始觀測芳杯分子於電位控制下在金(111)表面上的吸附狀況。圖 4-7(a)、(b)為滴入1 mM 芳杯溶液後掃描所得到的影像。影像結果與 STM 所量測所得到的結果相類似,只有發現分佈稀疏的孔洞,而於 小範圍掃描影像中,並沒有發現規則排列的結構。比較特別的是,在

圖 4-4(a): 金(111)表面浸泡 25 μM 芳杯溶液 15 分鐘後得到的 STM 大範圍掃描影像, I_t=2.0 nA, V_{tip}=200 mV。

圖 4-4(b): 圖 4-4(a)的 STM 小範圍掃描影像, $I_t = 2.0 \text{ nA}$, $V_{tip} = 200 \text{ mV}$ 。

圖 4-5(a): 金(111)表面浸泡 25 μM 芳杯溶液 30 分鐘後得到的 STM 大範圍掃描影像, I_t = 2.0 nA, V_{tip} = 250 mV。

圖 4-5(b): 圖 4-5(a)的 STM 小範圍掃描影像, $I_t = 2.0 \text{ nA}$, $V_{tip} = 250 \text{ mV}$ 。

圖 4-6(a): 乾淨金(111)晶面的 EC-STM 大範圍掃描影像, I_t = 10.0 nA, E = 100 mV, E_{bias} = 100 mV, 以 0.1 M 過氯酸作為電解液。

圖 4-6(b): 圖 4-6(a)的 EC-STM 小範圍掃描影像, $I_t = 10.0 \text{ nA}$, E = 100 mV, $E_{\text{bias}} = 100 \text{ mV}$ 。

圖 4-7(a): 滴入以 THF 作為溶劑的 1 mM 芳杯溶液後進行掃描所得到 的 EC-STM 影像, $I_t = 4.1$ nA, E = 500 mV, $E_{bias} = -100$ mV, 以 0.1 M 過氯酸作為電解液。

圖 4-7(b): 圖 4-7(a)的 EC-STM 小範圍掃描影像, $I_t = 4.1 \text{ nA}$, E = 500 mV, $E_{\text{bias}} = -100 \text{ mV}$ 。

一次相同條件的實驗中,得到了不同的結果,如圖 4-8(a)、(b)所示。 圖 4-8(a)的影像結果與先前得到的影像相當不同,沒有孔洞的出現, 但是表面形貌雜亂,的確有吸附物的存在。在小範圍的掃描影像中, 可以看到小區域的長條狀規則排列。由於此結果只出現過一次,而且 表面上的吸附狀況相當雜亂,所以懷疑有可能是雜質所造成的吸附排 列。雖然如此,但還是在這裡報告此一特別的實驗結果,以待後續進 一步的研究來澄清。

4.1.3 芳杯 XPS 能譜結果

將金(111)浸泡於以四氫呋喃為溶劑的1mM 芳杯溶液中5小時後,再將樣品送入真空系統中進行 XPS 的量測。附圖1為樣品大範 圍電子動能掃描後得到的能譜。能譜中除了金的訊號外,也發現了碳 與硫的訊號,表示於金(111)晶面上的確有芳杯分子的吸附。

進行 S 2p 的譜線進一步的掃描,並且進行角解析的量測,得到 圖 4-9(a)、(b)的能譜結果。圖 4-9(a)、(b)分別為以電子起飛角 30°與 70°進行量測所得的樣品 S 2p 光電子能譜。如同先前所提到過,由於 起飛角的定義為電子出射方向與表面的夾角,因此近表層的原子在 30°收集角下的訊號會較 70°的強。此外,S 2p 能譜是由 2p₃₂與 2p₁₂ 兩譜線以 2:1 的比例組成,所以 S 2p 能譜常是以多組一低一高的譜 線所組成。圖中四組 S 2p₃₂ 譜線的束縛能位置由低到高分別為 161.2、162.0、162.9 和 163.5 eV。實驗中發現,若將剛配製好的芳杯 溶液靜置一段時間後再用來進行實驗,則於束縛能 168 eV 的位置會

圖 4-8(a): 滴入以 THF 作為溶劑的 1 mM 芳杯溶液後進行掃描所得到的 EC-STM 影像, $I_t = 1.0 \text{ nA}$, E = 100 mV, $E_{\text{bias}} = 100 \text{ mV}$ 。

圖 4-8(b): 圖 4-8(a)的 EC-STM 小範圍掃描影像(40 nm × 40 nm), I_t = 1.0 nA , E = 100 mV , E_{bias} = 100 mV 。

圖 4-9(b):以電子起飛角 70°進行量測所得的芳杯 S 2p XPS 能譜分析, hv = 255 eV。

有新的譜線出現,如圖 4-10 所示,而且其強度會隨放置時間的延長 而增加。根據文獻的報導^{28,29},此譜線是來自於芳杯分子中被氧化的 硫元素,因此實驗所使用的芳杯溶液應盡量於使用前再進行配製,以 維持樣品溶液的品質。除此之外,根據文獻的報導,束縛能 162.0 eV 的譜線來自於與金表面鍵結的硫醇基^{30,31}, 束縛能 163.5 eV 的譜線則 來自於未與金表面鍵結的硫醇基³⁰。束縛能 161.2 eV 的譜線可能來自 於原子硫³¹。根據 Castner³⁰的研究指出, 束縛能 162.9 eV 的譜線也 可以由分子中未與金鍵結的硫元素所造成。比較兩不同電子起飛角下 所得到的 XPS 圖,發現 162.0 eV 的譜線強度隨著起飛角度的增加而 有顯著的增加,表示 162.0 eV 譜線是來自於薄膜中深層的訊號,這 也同時驗證了162.0 eV的譜線是來自於與金表面鍵結的硫醇基的論 點。接著再比較束縛能 162.9 與 163.5 eV 的譜線變化,發現與 163.5 eV 譜線相比,162.9 eV的譜線強度會隨著起飛角度的增加而減小,表示 與 163.5 eV 譜線相比, 162.9 eV 譜線是來自於較淺層的訊號。由芳杯 分子的構形來看,兩個具有硫醇基的長鏈有可能不會同時與金表面鍵 結,而造成「一隻腳懸空」的狀態。目前已知束縛能 162.9 與 163.5 eV 的譜線可能為未與金鍵結的硫醇基所形成的,但是於此無法由 XPS 結果切確判斷出譜線的來源是否為物理吸附的芳杯分子,或是與一硫 醇基鍵結於金表面而另一硫醇基無的芳杯分子。

接著進行 C 1s 譜線的掃描,結果如圖 4-11 所示。能譜中 C 1s 譜線位於束縛能 284.3 eV。由於芳杯分子中含有大量的碳元素,而各碳元素的化學位向不同,所以化學態皆有些微的差異,因此實驗所得的譜線實為許多不同束縛能的譜線所組成,分析過於複雜,所以在此不再進行更進一步的分析。

圖 4-11: 芳杯 C 1s XPS 能譜, hv = 320 eV。

除了在常溫下的量測外,還加熱芳杯樣品並且於各溫度下進行表面 XPS 的量測。從附圖 2 中可以發現,Au 4f 譜線的強度會隨著溫度的增加而增加,表示表面上的吸附物因為溫度的上升而脫離表面,金表面裸露的面積也隨之增加,因此金的訊號也明顯增強。

而附圖 3 中, C 1s 譜線的強度於加熱過程中並沒有明顯的變化, 推測可能是加熱斷鍵後的芳杯分子碎片仍然殘留於表面上的關係。

從 S 2p 能譜結果(圖 4-12 與 4-13)中可以發現,當溫度加至 500 K 時,原本在室溫下相當顯著的束縛能 161.2 eV 的 S 2p 譜線已經大幅 度減少,當溫度加至 530 K 時,則從能譜中已經看不到束縛能 162.0 eV 譜線的存在,表示吸附於金(111)表面上的芳杯分子已經進行斷鍵脫附 反應。除此之外,束縛能 161.2 eV 的譜線也已經消失,表示以原子 型態吸附於金(111)晶面上的硫元素也脫離表面。但是此時高束縛能譜 線依舊存在,即使加熱至 790 K,已經超過芳杯分子的化學吸附溫度, 但是仍然可以發現束縛能 163.6 與 164.1 eV 譜線的蹤跡,推測束縛能 163.6 與 164.1 eV 的譜線可能是由芳杯分子熱裂解後所產生的含硫的 碳氫化合物碎片殘留於金表面所產生的。

4.1.4 芳杯 NEXAFS 光譜結果

由於芳杯化合物中含有各種的碳鍵,所以在 NEXAFS 碳 K-edge 實驗結果分析上顯得格外複雜困難。本實驗所使用的芳杯具有四個苯 環結構,而苯環上 1s 電子被激發至π^{*}的反鍵結軌域所造成的 X 光吸 收訊號相當強,所以可藉由觀察芳杯中苯環的排列位向,進而推測出 芳杯化合物吸附於表面上時的分子傾角。以 X 光入射角 20°、55°與

圖 4-13:不同溫度下芳杯 S 2p XPS 能譜的分析。

90°來進行 NEXAFS 的量測,得到圖 4-14 結果。圖中可觀察到兩個 顯著的特徵譜線,分別位於能量 285.5 與 287.3 eV,根據文獻的報導 ³²,285.5 eV 的特徵峰為 1s 電子被激發至 π^* 的反鍵結軌域所造成的, 可以簡化以 1s $\rightarrow \pi^*$ 來表示,而 287.3 eV 的特徵峰則是來自於 1s $\rightarrow \pi^* + \sigma^*_{CH}$ 。於能量 295 至 310 eV 之間的寬大吸收峰,則是來自於許多 1s $\rightarrow \sigma^*_{C-C}$ 的貢獻。於不同 X 光入射角度下進行光譜的量測,所得到 的各特徵峰強度並沒有改變,這代表芳杯分子的苯環面對於金表面並 不存在一特定的傾角,因此改變入射光角度θ時,特徵峰強度不會隨 之變化。

4.1.5 結論

由 XPS 的能譜結果可知,芳杯溶液在長時間的放置下,分子中 的硫元素會漸漸被氧化。S 2p 能譜中束縛能 162.0 eV 譜線的出現, 表示芳杯分子是以硫-金強鍵結來進行吸附,而束縛能 162.9 與 163.5 eV 譜線則代表仍有未與金鍵結的硫醇基存在,可能是分子的物理吸 附或是芳杯分子只有一個硫醇基進行表面鍵結所造成的。從各加熱溫 度下所得到的 S 2p XPS 能譜變化,可知於 530 K 時,以強鍵結進行 表面吸附的芳杯分子已脫附,當溫度加熱至 790 K 時, 表面上仍可以 偵測到硫的訊號,但是其 2p₃₂ 束縛能位置已經改變。由 STM 與 EC-STM 影像結果中,芳杯分子於金(111)晶面上的吸附似乎沒有規則 性排列的結構出現,而 NEXAFS 的光譜結果也指出,芳杯分子在表 面上並未形成苯環面與金表面法線成一特定夾角的吸附。XPS 能譜結 果顯示雖然芳杯分子中有兩個硫醇基可與金表面進行強化學吸附,但

實際上分子吸附於表面時可能只以一個硫醇基來進行鍵結,因此導致 芳杯分子會以各種不同的傾角吸附於表面上。

4.2 二賽吩自組裝分子實驗結果

4.2.1 真空吸附製備的二賽吩 TPD 圖譜結果

於實驗中四極質譜儀所監測的質荷比為 34、39、41、51、84 與 166 amu,分別代表硫化氫(H₂S)、1,3-丁二烯(1,3-butadiene)、1-丁烯 (butene)、文獻中提到的表面脫附賽吩碎片 ³³、賽吩(thiophene)與二賽 吩(bithiophene)。真空吸附二賽吩 2.5 L 後進行 TPD 所得到的結果如 圖 4-15 所示。於 230 K 各質荷比皆有一脫附峰出現,其中又以質荷 比 39、51 與 84 amu 最為明顯,此為二賽吩物理吸附的脫附峰,由於 物理吸附的脫附峰太大,所以化學吸附的脫附峰在這裡無法被觀察 到。為了觀察化學吸附的脫附峰,重新調整了質譜儀於高質荷比的靈 敏度,並且於 210 K 下進行二賽吩的吸附量,盡量減少樣品物理吸附 的產生,得到圖 4-16 結果。圖中除了於 230 K 處有一小脫附峰外, 質荷比 39、51、84 與 166 amu 在 350 K 時皆可看到二賽吩化學吸附 的脫附峰出現。

圖 4-17 為各低吸附量下質譜儀監測質荷比 166 amu 時所得到的 TPD 圖譜變化。可以看到隨著二賽吩吸附量的增加,除了於 350 K 處 的化學吸附的脫附峰強度漸增外,於 230 K 處的物理吸附的脫附峰也 會出現,並且強度漸漸增強。

圖 4-16:減少物理吸附產生後的二賽吩 TPD 圖譜。

TDS Signal of m/z=166 (counts/s)

圖 4-17:各低吸附量下質荷比 166 amu 的二賽吩 TPD 圖譜變化。

4.2.2 真空吸附製備的二賽吩 XPS 能譜結果

附圖 4 為於 80 K 下真空吸附二賽吩 1.3 L 後掃描所得到的大範圍 光電子能譜結果。圖中可發現樣品 S 2p 譜線的訊號很小,而 C 1s 譜 線的訊號則幾乎被埋沒在低能的二次電子背景中,相當不明顯。由以 上結果可知,表面上所吸附上的樣品量很少。

觀察真空吸附二賽吩的 S 2p 光電子能譜(圖 4-18),首先由譜線中 凹陷的程度就可大略知道樣品的吸附量相當少。經過分析後發現此譜 線為單一組成,而且該譜線位置在束縛能 163.6 eV 處,推測是利用π 電子雲與表面進行弱吸附作用的二賽吩分子所產生的。由於每一二賽 吩有兩個硫元素於分子中,在氣相中應該具有相同的化學環境,但是 在進行表面吸附後,不一樣的化學環境可以造成不同的化學位移。此 時由真空吸附二賽吩的 S 2p 光電子能譜中只觀察到一種硫元素的化 學位移,暗示分子中兩硫元素的鍵結情形很接近。

附圖 5 為真空吸附二賽吩 C 1s 的光電子能譜,譜線位置在束縛 能 284.1 eV,在此不進行更進一步的分析。

若把分子吸附量提高至 7.3 L,則結果如附圖 6 所示。此時能譜 的結果與之前吸附 1.3 L 時的能譜結果相差很多,圖中原本很強的 Au 4f 譜線變得很弱,甚至連金的歐傑電子所產生的譜線也從能譜中消 失,之前能譜中看不到的 C 1s 與很微弱的 S 2p 訊號,變成圖中最顯 著的兩譜線,甚至連 S 2s 譜線都可以觀察到。

觀察此時二賽吩的 S 2p 光電子能譜(圖 4-19), 可發現 S 2p 譜線 不再是單一組成。圖中三組 2p_{3/2} 譜線的束縛能由低到高分別為 162.0、163.1 和 163.8 eV, 束縛能 162.0 eV 譜線可能為裂解的含硫元

圖 4-19:於 80 K 下掃描真空吸附二賽吩 7.3 L 的 S 2p XPS 能譜分析, hv = 255 eV。

素的塞吩分子碎片以強化學鍵結吸附於金表面上,163.1 與163.8 eV 譜線可能來自於物理吸附於表面或是以π電子雲與表面進行弱吸附作 用的二賽吩分子所產生的。

附圖 7 為真空吸附二賽吩 C 1s 的光電子能譜,譜線的位置於束 縛能 284.1 eV,在此不進行更進一步的分析。

接著加熱樣品並且量測各溫度下的二賽吩光電子能譜,各加熱後 得到的二賽哈 Au 4f 光電子能譜變化如附圖 8 所示,從圖中可以看到 譜線強度隨著溫度的增加而增加。

觀察二賽吩 S 2p 光電子能譜的變化(圖 4-20),發現譜線強度隨著 溫度的上升而漸漸降低,當溫度達到 525 K 時, S 2p 訊號雖然已經減 少許多,但仍然可以被偵測到。

附圖 9 為各加熱溫度下所得到的二賽吩 C 1s 光電子能譜,譜線 強度隨著溫度的上升而漸漸降低,當溫度加至 525 K 時,能譜中已經 看不到 C 1s 的訊號。

4.2.3 真空吸附製備的二賽吩 NEXAFS 光譜結果

於 210 K 下吸附賽吩 4.3L 並以 X 光入射角 20°、40°與 90°來進 行 NEXAFS 的量測,得到圖 4-21。圖中可觀察到兩個明顯特徵峰, 分別位於能量 285.8 與 287.9 eV,根據文獻的報導³³,兩特徵峰來自 於 $1s \rightarrow \pi^*$ 與 $1s \rightarrow \pi^* + \sigma^*_{C-S}$ 。隨著角度的變化,所量測到的光譜曲線 有明顯的差異。以 285.9 eV 特徵峰的相對強度來對照不同傾角向量對 X 光入射角的強度關係圖後(圖 4-22),則推測二賽吩分子的 π^* 軌域與 金表面法線向量的夾角約有 50°,即同平面的兩個五環面以與表面夾 角約 50°吸附於表面上。

圖 4-20:各加熱溫度下真空吸附二賽吩 S 2p XPS 能譜變化, hv = 255 eV。

把樣品加熱至 280 K 以移除物理吸附的二賽吩,此時存在於表面 上的二賽吩則全為來自於化學吸附的分子,進行 NEXAFS 的量測後 得到圖 4-23。圖中光譜曲線隨角度的變化有相當明顯的改變。以 285.9eV 特徵峰的相對強度來對照不同傾角向量對 X 光入射角的強度 關係圖後(圖 4-24),推測二賽吩分子以與表面夾角約 25°的角度吸附 於表面上。

4.2.4 溶液浸泡製備的二賽吩 STM 影像結果

把處理乾淨的金(111)晶面浸泡於以無水酒精為溶劑的 25 μM 二 賽吩溶液中 3 秒後,進行 STM 的掃描,得到圖 4-25(a)、(b)。圖中表 面上佈滿了許多微小顆粒。接著再進行小範圍區域掃描,發現微小顆 粒的平均直徑為 3 nm 左右。

把樣品溶液浸泡的時間增加至5分鐘後,掃描所得到的影像如圖 4-26(a)、(b)所示。先前表面上的微小顆粒已不存在,取代的是分佈稀 疏的孔洞。此時的影像與芳杯分子吸附於金(111)表面上時的影像類 似,因此推測表面上已經有二賽吩分子的吸附。於小範圍區域掃描所 得到的影像中沒有看到分子整齊排列的結構,只有少數的孔洞散佈於 表面上。

接著改以浸泡1mM 二賽吩 30 分鐘的條件進行樣品的製備,掃 描後得到圖 4-27(a)、(b)。表面上依舊散佈著許多孔洞,於小範圍區 域掃描所得到的影像中依然沒有看到分子整齊排列結構。

圖 4-25(a): 金(111)表面浸泡 25 μ M 二賽吩溶液 3 秒鐘後得到的 STM 大範圍掃描影像, I_t = 5.0 nA, V_{tip} = 200 mV。

圖 4-25(b):圖 4-23(a)的 STM 小範圍掃描影像, I_t = 5.0 nA, V_{tip} = 200 mV。

圖 4-26(a): 金(111)表面浸泡 25 μM 二賽吩溶液 5 分鐘後得到的 STM 大範圍掃描影像,I_t=0.5 nA,V_{tip}=540 mV。

圖 4-26(b):圖 4-24(a)的 STM 小範圍掃描影像, I_t = 0.5 nA, V_{tip} = 540 mV。

圖 4-27(a):金(111)表面浸泡 1 mM 二賽吩溶液 30 分鐘後得到的 STM 大範圍掃描影像,I_t=1.0 nA,V_{tip}=200 mV。圖中縱向的細小條紋為 雜訊所造成的,並非表面上的結構。

圖 4-27(b): 圖 4-25(a)的 STM 小範圍掃描影像, $I_t = 1.0 \text{ nA}$, $V_{tip} = 200 \text{ mV}$ 。

4.2.5 溶液浸泡製備的二賽吩 TPD 圖譜結果

由於實驗所用的系統為具有樣品交換功能的樣品平台,進行程溫 脫附實驗時,樣品與質譜儀之間的距離約有5cm,不夠接近,因此 樣品加熱時質譜儀所量測到的訊號可能不只是來自於樣品表面,也有 可能來自於樣品平台或是其他樣品交換系統的元件,多次實驗後殘留 於儀器上的各種化合物會因為樣品的加熱而隨著脫附,因此造成實驗 觀測上的干擾,所以預先作一空白實驗,以作為對照之用。

在開始樣品的量測之前,必須先進行背景訊號的測量。將清理乾 淨後的金(111)晶面傳送出真空系統,在大氣環境下靜置10分鐘後, 再送回真空系統中進行TPD實驗,得到結果圖4-28。於實驗中四極 質譜儀所監測的質荷比為34、39、41、51、84 與166 amu,分別代 表硫化氫(H₂S)、1,3-丁二烯(1,3-butadiene)、1-丁烯(butene)、文獻中提 到的表面脫附賽吩碎片³³、賽吩(thiophene)與二賽吩(bithiophene)。除 了質荷比34 與166 amu 之外,其他質荷比均有寬大的脫附峰產生。

將浸泡1mM 二賽吩溶液8小時的金(111)晶面送入超高真空系統 中進行TPD 實驗,得到結果圖4-29。圖中可觀察到質荷比34 amu 於 420 至 600 K 時出現一寬大的脫附峰,且主要的脫附峰位於500 K。 當溫度至 640 K 時,質荷比39、41、51、84 amu 出現脫附峰,而溫 度至 750 K 時,質荷比51 amu 的第二脫附峰出現。質荷比166 amu 的譜線中並沒有觀察到明顯脫附峰的出現。

Multimass TDS signal (counts/s)

圖 4-28: 樣品交換系統下乾淨的金(111)晶面 TPD 圖譜。

圖 4-29:浸泡 1 mM 二賽吩溶液 8 小時的 TPD 圖譜。
4.2.6 溶液浸泡製備的二賽吩 XPS 能譜結果

將浸泡1mM 二賽吩溶液15小時的金(111)晶面送入超高真空系統中進行XPS的測量,得到附圖10。依照文獻的報導³⁵,在1mM10小時的浸泡條件下,賽吩分子於表面上的吸附會達到一飽和狀態,而該文獻中也有提到,在1mM15小時的浸泡條件下,三賽吩分子則 會達到飽和吸附。根據以上結論推測,於15小時的浸泡時間下,應該會達到二賽吩分子的飽和吸附狀態。從XPS能譜中碳與硫訊號的 出現及兩者面積比例可以得知此時表面上已有二賽吩分子的存在。

首先掃描樣品 S 2p 的光電子能譜,並且以電子起飛角 40°與 70° 進行角解析測量,得到結果圖 4-30(a)、(b)。從圖中可以看到三組 S 2p32 譜線的束縛能由低到高分別為161.3、162.2和163.3 eV。束縛能161.3 eV 的譜線可能來自於原子硫,其來源可能是由於賽吩分子在金表面 原子缺陷處(如階梯)完成解離,產生硫原子吸附所造成的。關於確實 的原因仍有待進一步的探討。162.2 eV 的譜線來自於與表面進行化學 吸附的二審吩分子,而163.3 eV的譜線則可能來自於以弱硫-金鍵結 吸附於表面或是物理吸附的二賽吩分子所形成的。除此之外,觀察 XPS 的角解析後可以發現起飛角 40°與 70°時的譜線改變並不大,比 較兩不同起飛角時的束縛能 161.2 與 162.0 eV 譜線強度,當起飛角大 時,161.2 與162.0 eV 的譜線強度有略為增加,表示兩低束縛能譜線 訊號來自於較深層處。於 Ito33 的研究中,二賽吩的 S 2p XPS 圖譜是 以束縛能 163.4 eV 的弱吸附譜線為主要譜線,而且 160 至 162 eV 之 間的譜線強度很小,這與本實驗的結果不同。依照各文獻所得到的結 論,若芳香環中的硫元素以強化學鍵結與金作用的話,於 XPS 圖中 必定會出現 162.2 eV 左右的主要譜線。由此可知本實驗中的二賽吩

圖 4-30(a):以電子起飛角 40°進行量測所得的二賽吩 S 2p XPS 能譜, hv = 255 eV。

圖 4-30(b): 以電子起飛角 70°進行量測所得的二賽吩 S 2p XPS 能譜, hv = 255 eV。

是以強吸附與金表面作用,與 Ito 所得的弱吸附二賽吩不同。

樣品 C 1s 的光電子能譜結果如附圖 11 所示,其譜線位置於束縛 能 284.5 eV,於此沒有進行更進一步的分析。

除了常溫下的量測外,還加熱二賽吩樣品並且於各溫度下進行樣 品表面 XPS 的量測。附圖 12 為各加熱溫度下所得到的 Au 4f 光電子 能譜變化,從能譜中可以發現, Au 4f 譜線強度的隨著溫度的增加而 有些微的增加,表示隨著吸附物熱脫附的發生,金表面裸露的面積也 漸漸增加。

各加熱溫度下所得到的二賽吩 C 1s 光電子能譜變化結果如附圖 13 所示。從能譜中可以發現碳的訊號並沒有隨著樣品的加熱而有顯 著的改變。於高溫下仍然有碳訊號存在的原因,可能是因為二賽吩熱 裂解後的碎片仍然有相當高的比例殘留於表面上的緣故。

觀察各加熱溫度下所得到的二賽 S 2p 光電子能譜變化(圖 4-31 與 4-32)。當溫度加熱至 410 K 時,譜線已經有產生明顯的改變,高 束縛能的 162.2 與 163.6 eV 譜線強度有顯著的減少,表示物理與化學 吸附於表面上的二賽 S 分子開始進行斷鍵脫附。加熱至 560 K 時,從 XPS 圖譜中已幾乎看不到 161.3 與 162.2 eV 兩組譜線的存在,而高束 縛能的譜線移轉至 163.8 eV。最後加熱到高溫 900 K 時,束縛能 163.8 eV 譜線仍然存在,推測其來源可能是二賽 S 分子加熱裂解後產生含 硫的碳氫化合物的碎片堆積於金表面,或是因為長時間照射 X 光所 生成的高分子聚合物造成的 ³⁶。

4.2.7 溶液浸泡製備的二賽吩 NEXAFS 光譜結果

將浸泡1mM 二賽吩溶液9.5 小時後的樣品以X 光入射角20°、

圖 4-32:於特定溫度下的二賽吩 S 2p XPS 能譜分析, hv = 255 eV。

40°與 90°來進行 NEXAFS 的量測,得到圖 4-33。圖中可觀察到三個 特徵譜線,分別位於能量 285.9、289.2 與 293.3 eV,285.9 eV 特徵峰 的來源為 $1s \rightarrow \pi^*$,289.2 eV 的特徵峰的來源為 $1s \rightarrow \pi^* + \sigma^*_{CH}$,293.3 eV 的特徵峰則是來自於 $1s \rightarrow \sigma^*_{CH}$ 。隨著角度的變化,所量測到的光 譜曲線有明顯的差異。以 285.9 eV 特徵峰的相對強度來對照不同傾角 向量對 X 光入射角的強度關係圖後(圖 4-34),則推測二賽吩分子的 π^* 軌域與金表面法線向量的夾角約有 57°,即同平面的兩個五環面以與 表面夾角約 57°吸附於表面上。

4.2.8 結論

and the second

由真空吸附製備的二賽吩 TPD 實驗結果可知,當樣品加熱至 230 與 350 K 時,分別出現了分子物理吸附與化學吸附的脫附峰。而 XPS 實驗結果中,當溫度到達 525 K 時,表面上硫的訊號強度減小許多, 代表吸附於表面上的二賽吩分子已進行脫附,這與 TPD 實驗中所得 到的結果相符合。而以溶液浸泡製備的二賽吩自組裝分子 TPD 實驗 結果顯示,除了質荷比 34 amu 硫化氫寬大的脫附峰出現在 420 至 600 K 之間外,當溫度達 600 K 以上時,各質荷比皆出現顯著的脫附峰。 此結果與真空吸附的二賽吩結果相比,兩者之間有很大的差異。從兩 者的 TPD 實驗結果可知道,溶液浸泡的二賽吩分子與表面的作用力 較強,所以脫附峰會出現在較高溫處。溶液浸泡製備的二賽吩 XPS 結果中的譜線也與真空吸附的二賽吩不同,束縛能 161.2 與 162.0 eV 的譜線強度變大許多,可知分子與金表面之間有硫-金強化學鍵結出 現,此結論也與 TPD 實驗結果一致。當加熱溫度達 560 K 時,能譜 中 161.2 與 162.0 eV 的譜線消失,再配合 TPD 實驗的結果後推測,

edge normalized PEY signal (a.u.)

造成束縛能 161 eV 訊號的硫原子可能藉由 H₂S 的生成而從表面上脫 離。以強化學鍵結吸附於表面上,而形成束縛能 162.0 eV 譜線的二 賽吩分子,可能會加快 H₂S 生成的反應,因此以溶液浸泡所製備的二 賽吩才會在質荷比 34、39、41 與 51 amu 中出現明顯的脫附峰,而此 情況在真空吸附的二賽吩中則沒有發生。根據 NEXAFS 光譜實驗結 果推測,真空吸附的二賽吩分子在 210 K,也就是於分子物理吸附的 脫附峰發生前,分子是以與表面夾角約 50°吸附於表面上,當溫度超 過分子物理吸附的脫附溫度,而達到 280 K 時,分子是以與表面夾角 約 25°吸附於表面上,而溶液浸泡所得的二賽吩分子則是以與表面夾 角約 57°的角度吸附於表面上。但是由於 NEXAFS 實驗數據不足,無 法正確精準的判斷出吸附分子的傾角,因此所得到的結果仍需要將來 更多的數據來佐證。透過 STM 的觀察,在溶液浸泡製備的二賽吩中 並沒有發現規則的分子排列結構。

4.3 賽吩自組裝分子實驗結果

4.3.1 真空吸附的賽吩 TPD 結果

進行賽吩的 TPD 實驗時, 質譜儀所偵測的質荷比為 34、39、41、 51 與 84 amu,如同先前所介紹的,分別代表硫化氫(H₂S)、1,3-丙二 烯(1,3-butadiene)、1-丙烯(butene)、文獻中提到的賽吩碎片 33 與賽吩 (thiophene)。 圖 4-35 為真空吸附 1.7 L 的賽吩後所得到的 TPD 圖譜。 當溫度上升至130K時,各質荷比皆有一明顯脫附峰產生,其中又以 質荷比 39 與 84 amu 的脫附峰最為顯著, 推論此脫附峰為物理吸附的 審 财分子 脫 附 所 產 生 的。 而 在 150 K 時, 各 質 荷 比 也 均 出 現 一 小 脫 附 峰,推論此小脫附峰為化學吸附於金(111)表面上的賽吩分子脫附所產 生的,因為樣品吸附量大,所以導致物理吸附的脫附峰遠大於化學吸 附的脫附峰。而圖 4-36 為真空吸附 3.7 L 的賽吩後所得到的 TPD 圖 譜。除了原先於130K發現的賽吩物理吸附的脫附峰外,150K處的 化學吸附的脫附峰已經變的不明顯,由於物理吸附的分子遠多過於化 學吸附的分子,使得化學吸附的脫附峰被物理吸附的脫附峰所吞沒。 於130 K 出現的脫附峰中,又以質荷比51 amu 的脫附峰最為顯著, 此結果與吸附量為 1.7 L 時的結果不同。當溫度升至 200 K 時,質荷 比 39、41、51 與 84 amu 出現一脫附峰。除此之外,質荷比 39、51 與84 amu 在 500 K 處出現一寬大且不顯著的脫附峰。這些於200 與 500 K 時出現的脫附峰在較低的樣品吸附量時並沒有發現,表示這些 脫附峰來自於大量賽吩的吸附。

圖 4-37 為各低吸附量下質譜儀監測質荷比 84 amu 時所得到的 TPD 圖譜變化。圖中可以看到吸附量在 0.25 L 以下時,只有

圖 4-36: 真空吸附賽吩 3.7 L 的 TPD 圖譜。

圖 4-37:各低吸附量下質荷比 84 amu 的賽吩 TPD 圖譜變化。

150 K 處化學吸附的脫附峰出現,於 200 與 270 K 處也發現有寬大的 脫附峰。當吸附量 0.4 L 時,於 130 K 處已經可以看到物理吸附的脫 附峰的出現,繼續增加吸附量,則可以看到 130 K 處明顯的脫附峰, 且強度隨著吸附量的增加而增加。

4.3.2 真空吸附的賽吩 XPS 能譜結果

附圖 14 為 80 K 下吸附 1 L 賽吩分子於金(111)晶面上所得到的大範圍光電子能譜掃描結果,可由圖中硫與碳訊號的出現得知於表面上 賽吩分子的吸附。

於80K下掃描賽吩S2p能譜的分析結果如圖4-38所示,圖中三 組S2p_{3/2}譜線的束縛能由低到高分別為162.0、163.3和163.7 eV。於 Nambu³⁷的研究中指出,以X光照射賽吩自組裝膜一段時間後,會出 現束縛能163.5與161.9 eV的譜線,分別為寡聯賽吩(oligothiophene) 以及經過X光照射後反應所生出的硫醇基(thiolate)與金表面鍵結所造 成的。於本實驗中也發現,束縛能162.0 eV的譜線強度會隨著X光 照射時間的增長而增加,此與Nambu的研究結果相符合。經過與文 獻的比較之後,推論束縛能162.0 eV 譜線可能是裂解的含硫塞吩分 子碎片以強化學鍵結吸附於金表面上³⁷,163.3與163.7 eV 的譜線可 能來自於物理吸附於表面的賽吩或是賽吩聚合物^{37,38}。

若將賽吩吸附量提高至 1.6 L,則於 80 K 下所得到的大範圍光電 子能譜結果如附圖 15 所示。從圖中可以發現,於高吸附量下碳與硫 的訊號強度有極大的增加,甚至連 S 2s 的譜線也在能譜中清楚出現。 接著觀察高吸附量下的 S 2p 能譜譜線的變化(圖 4-39)。譜線於束縛能

圖 4-38:80 K 下真空吸附賽吩 1 L 的 S 2p XPS 能譜分析, hv = 255 eV。

圖 4-39:80 K 下真空吸附賽吩 1.6 L 的 S 2p XPS 能譜分析, hv = 255 eV。

164.5 eV 附近的凹陷在高賽吩吸附量下會變的不顯著,此特徵可以作 為吸附量初步的判斷依據。由實驗中發現,若吸附大量賽吩分子吸附 於金表面,形成厚層的自組裝薄膜,則經過長時間的 X 光照射後, 當加熱樣品至 390 K 時,受 X 光照射約 1.5 小時的樣品區域的賽吩分 子訊號仍然可被量測到,如圖 4-40 所示,但是此時其他區域則幾乎 沒有硫的訊號。關於此特殊現象的發生,可能是因為自組裝分子厚膜 受 X 光照射後,所激發游離出的電子於厚膜中發生連鎖反應,造成 賽吩分子的聚合化,最後形成高分子聚合物,此高分子聚合物較賽吩 分子穩定,需要較高的溫度才能使之從表面脫附,所以實驗中才會發 生上述的現象。

於80 K 下掃描賽吩 C 1s 能譜的結果如附圖 16 所示,譜線位於 束縛能 284.1 eV,在此不進行更進一步的分析。

接著加熱1L賽吩樣品並進行光電子能譜的量測。附圖17為各加熱溫度下所得到的賽吩Au4f光電子能譜變化,圖中譜線的強度隨 著溫度的增加而增加,表示表面上的吸附物因為溫度的上升而脫離表面,金表面裸露的面積也隨之增加。

圖 4-41 為各加熱溫度下所得到的賽吩 S 2p 光電子能譜變化。從 能譜中可以觀察到硫的訊號強度隨著溫度的上升而漸漸降低,溫度升 至 190 K 時,束縛能 162.0 eV 的譜線已經變的不明顯,溫度升至 450 K 時,表面上已經觀察不到硫的訊號,表示吸附於表面上的賽吩分子 已完全脫附。

附圖 18 為各加熱溫度下所得到的賽吩 C 1s 光電子能譜。從能譜 中可以發現加熱之後碳的訊號有明顯的減少,當溫度加至 450 K 以上 時,從能譜上就看不見碳的訊號,表示吸附於表面上的賽吩分子已

圖 4-41:不同溫度下所得到的真空吸附賽吩 S 2p XPS 能譜變化, hv = 255 eV。

經進行脫附,此與從樣品 S 2p 光電子能譜結果中獲得的結論一致。

4.3.3 真空吸附的賽吩 NEXAFS 光譜結果

於 180 K 下吸附賽吩 1 L 並以 X 光入射角 20°、40° 與 90° 來進行 NEXAFS 的量測,得到圖 4-42。圖中可觀察到兩個明顯特徵峰,分 別位於能量 285.9 與 287.7 eV,根據文獻的報導³⁴,兩特徵峰來自於 $1s \rightarrow \pi^*$ 與 $1s \rightarrow \pi^* + \sigma^*_{c-s}$ 。隨著角度的變化,所量測到的光譜曲線有 明顯的差異,但是三個角度的趨勢不太一致。以 285.9eV 特徵峰的相 對強度來對照不同傾角向量對 X 光入射角的強度關係圖後(圖 4-43), 則推測賽吩分子是以與表面夾角約 30°的角度吸附於表面上。

4.3.4 溶液浸泡製備的賽吩分子 TPD 結果

背景訊號的量測於賽吩 TPD 實驗中已經完成,所以直接進行樣 品的測量。將浸泡 1 mM 賽吩溶液 4.5 小時的金(111)晶面送入超高真 空系統中進行程溫脫附,得到結果圖 4-44。圖中可觀察到質荷比 34 amu 於 450 至 700 K 之間出現一寬大的脫附峰,質荷比 39、41 與 84 amu 主要脫附峰則出現在 640 K,質荷比 51 amu 的主脫附峰出現在 750 K。

1896

4.3.5 溶液浸泡製備的賽吩分子 XPS 能譜結果

將浸泡 1 mM 賽吩溶液 32 小時的金(111)晶面送入超高真空系統 中進行 XPS 的測量,得到結果附圖 19。依照文獻報導³⁵,於此條

圖4-42:180 K下吸附賽吩1 L後樣品進行NEXAFS實驗所得到的PEY訊號,阻擋電壓為-150 V。

圖4-43:真空吸附法製備賽吩樣品NEXAFS光譜結果的分子吸附傾角分析。圖中的三個黑點代表

Multimass TDS Signal (counts/s)

圖 4-44:浸泡 1 mM 賽吩溶液 4.5 小時的 TPD 圖譜。

件下浸泡單晶達10小時,則賽吩分子於表面的吸附量應該已達到飽 和狀態。從能譜上硫與碳的訊號出現,可以知道表面上已經有賽吩分 子吸附。

掃描賽吩 S 2p 的光電子能譜,並且以電子起飛角 30°與 70°進行 角解析測量,得到結果圖 4-45(a)、(b)。圖中三組 S 2p₃₂ 譜線的束縛 能由低到高分別為 161.2、162.0 和 163.3 eV。束縛能 161.2 eV 的譜線 可能來自於原子硫。162.0 eV 的譜線來自於芳香環中與金表面鍵結的 硫元素,這表示此訊號源自於與表面進行化學吸附的賽吩。163.3 eV 的譜線則來自於芳香環中未與金表面直接形成鍵結的硫化物。從 XPS 的角解析可以發現,於起飛角 30°時束縛能 162.0 eV 的譜線訊號較 163.3 eV 的弱,而起飛角 70°時 162.0 eV 的譜線訊號則比 163.3 eV 的 訊號來的強,表示 162.0 eV 的訊號是來自於相對較深層處,163.3 eV 的訊號來自於較淺層處,此結論也與 162.0 eV 譜線來自於有直接的 金-硫鍵結的賽吩分子,和 163.3 eV 譜線來自於另一類未能有直接金-硫鍵形成的賽吩分子的結論相符合。

附圖 20 為賽吩 C 1s 的光電子能譜,其譜線位置在束縛能 284.0 eV,在此沒有進行更進一步的分析。

4.3.6 溶液浸泡製備的賽吩分子 NEXAFS 光譜結果

將浸泡 1 mM 賽吩溶液 32 小時後得到的樣品以 X 光入射角 20°、 40°與 90°來進行 NEXAFS 的量測,得到圖 4-46。圖中可觀察到三個 特徵譜線,分別位於能量 285.9、289.3 與 293.3 eV。285.9 eV 特徵峰 的來源為 1s → π^* , 289.3 eV 的特徵峰的來源為 1s → $\pi^*+\sigma^*_{C-H}$, 293.3 eV 的特徵峰則是來自於 1s → σ^*_{C-H} 。隨著角度的變化,所量測

圖 4-25(a):以電子起飛角 30°進行量測所得的賽吩 S 2p XPS 能譜, $hv = 255 eV \circ$ in the 70° 4000 3500 Intensity (a.u.) 3000 2500 2000 167 . 164 163 162 . 161 166 165 160 159

圖 4-25(b):以電子起飛角 70°進行量測所得的賽吩 S 2p XPS 能譜, hv = 255 eV。

Binding Energy (eV)

到的光譜曲線有些微的差異。以 285.9eV 特徵峰的相對強度來對照不 同傾角向量對 X 光入射角的強度關係圖後(圖 4-47),可以得知賽吩分 子π^{*}軌域與表面法線向量的夾角約 57°,即賽吩分子以苯環面與表面 夾角約 57°的角度吸附於表面上。但必須強調的是分子的吸附型態有 兩種,此種平均出來的夾角未必有意義,再且嚴格來說,實驗數據只 有兩組獨立的值,因此需要有更多的數據,才能更嚴謹的得知分子在 空間中的排列位向。

4.3.7 結論

首先從真空吸附的賽吩 TPD 實驗結果可知,當樣品加熱至 130 與 150 K,分別出現了賽吩物理吸附與化學吸附的脫附峰,其中化學 吸附的脫附峰發生的溫度低,可見賽吩分子與表面間的鍵結並不強。 於真空吸附的賽吩 XPS 實驗結果中,主要以 S 2p₃₂ 束縛能 163.3 與 163.7 eV 為主,可能是利用芳香環中的π電子雲與表面電子進行作 用,或是以物理吸附的型態存在於表面上,而並非以金-硫鍵結來進 行表面吸附,此與 TPD 實驗的結果相符合。而當溫度加熱至 450 K 時,XPS 能譜中已經看不到 S 2p₃₂ 的訊號,表示此溫度下真空吸附的 賽吩分子已經經由熱脫附而離開金表面。而溶液浸泡的賽吩 TPD 與 XPS 實驗結果均與溶液浸泡的二賽吩相類似,除了質荷比 34 amu 硫 化氫寬大的脫附峰出現在 450 至 750 K 之間外,其他脫附峰均發生在 550 K 以上。而 XPS 能譜結果中,束縛能 161.2 與 162.0 eV 的譜線相 當的顯著。以上結果均顯示溶液浸泡的賽吩分子與金表面之間是以強 化學鍵結進行吸附。真空吸附與溶液浸泡的賽吩於 NEXAFS

的量測下,得知賽吩分子與表面分別以約30°與57°的角度吸附於表面上。

參考文獻

- Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. J. Colloid Interface Sci. 1946, 1, 513.
- 2. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
- 李冠儀,"官能基自組裝分子的薄膜結構研究",國立清華大學,碩 士論文,2002.
- Zinke, A.; Kretz, R.; Leggewie, E.; Hossinger, K., *Monatsh. Chem.* 1952, 83, 1213.
- Cornforth, J. W.; Hart, P. D.; Nicholls, G. A.; Ress, R. J. W.; Stock, J. A. Brit. J. Pharmacol. 1955, 10, 73.
- Kammerer, H.; Happel, G.; Caesar, F. Makromol. Chem. 1972, 162, 179.
- 7. Munch, J. H. Makromol. Chem. 1977, 178, 69.
- 8. Gutsche, C. D.; Muthukrishnan, R. J. Org. Chem. 1978, 43, 4905.
- (a) McCarrick, M.; Wu, B.; Harris, S. J.; Diamond, D.; Barrett. G.; Mckervey, M. A. J. Chem. Soc., Chem. Commun. 1992, 1278. (b) Mckervey, M. A. J. Chem. Soc., Perkin Trans. 2. 1993, 1963. (c) Kubo, Y.; Hamaguchi, S.; Yoshida, K. Tetrahedron Lett. 1991, 32, 7419.
- (a) Kubo, Y.; Hamaguchi, S.; Niimi, A.; Yoshida, K.; Tokita, S. J. Chem. Soc., Chem. Commun. 1993, 28, 305. (b) Yamamoto, H.; Shinkai, S. Chem. Lett. 1994, 23, 1115.
- (a) Arnaud-Neu, F.; Caccamese, S.; Fuangswasdi, S.; Pappalardo, S.; Parisi, M. F.; Petringa, A.; Principato, G. J. Org. Chem. 1997, 62, 8041. (b) Pinkhassik, E.; Stibor, I.; Casnati, A.; Ungaro, R. J. Org. Chem. 1997, 62, 8654. (c) Molenveld, P.; Kapsabelis, S.; Engberson, J. F. J.; Reinhoudt, D. N. J. Am. Chem. Soc. 1997, 119, 2948. (d) Iki,

N.; Morohashi, N.; Narumi, F.; Miyano, S. *Bull. Chem. Soc. Jpn.* **1998**, 71, 1597.

- 12. (a) Harrowfield, J. M.; Ogden, M. I.; White, A. H. Aust. J. Chem.
 1991, 44, 1237.; ibid. 1991, 44, 1249. (b) Asfari, Z.; Harrowfield, J. M.; Ogden, M. I.; Vicens, J.; White, A. H. Angew. Chem. 1991, 103, 887.; Angew. Chem. Int. Ed. Engl., 1991, 30, 854.
- Harrowfield, J. M.; Ogden, M. I.; White, A. H. J. Chem. Soc., Dalton Trans. 1991, 30, 979.; ibid. 1991, 30, 2625.
- 14. (a) Beer, P. D.; Drew, M. G. B.; Hesek, D.; Nam, K. C. *Chem. Commun.* 1997, *32*, 107. (b) Beer, P. D.; Drew, M. G. B.; Hesek, D.; Shade, M.; Szemes, F. J. *Chem. Commun.* 1996, *31*, 2161. (c) Beer, P. D. *Chem. Commun.* 1996, *31*, 689. (d) Cameron, B. R.; Loeb, S. J. *Chem. Commun.* 1997, *32*, 573.
- 15. (a) Scheerder, J.; Fochi, M.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1994, 59, 7815. (b) Scheerder, J.; Engbersen, J. F. J.; Casnati, A.; Ungaro, R.; Reinhoudt, D. N. J. Org. Chem. 1995, 60, 6448. (c) Pelizzi, N.; Casnati, A.; Friggeri, A.; Ungaro, R. Chem. Commun. 1998, 1307. (d) Nam, K. Ch.; Kang, S. O.; Jeong, H. S.; Jeon, S. Tetrahedron Lett. 1999, 40, 7343.
- Kutateladze, A.; Kurchan, A.; Barnhurst, L.; Mitkin, O.; Wan, Y. Org. Lett. 2000, 2, 3817.
- Kim, J. Y.; Kim, G.; Kim, C. R.; Lee, S. H.; Lee, J. H.; Kim, J. S. J. Org. Chem. 2003, 68, 1933.
- Iwamoto, K.; Araki, K.; Fujimoto, H.; Shinkai, S. J. Chem. Soc. Perkin Trans. 1. 1992, 31, 1885.
- Shinkai, S.; Deng, G.; Sakai, T.; Kawahara, Y. Chem. Lett. 1992, 21, 2163.
- Hesek, D.; Inoue, Y.; Drew, M. G. B.; Beer, P. D.; Hembury, G. A.; Ishida, H.; Aoki, F. Org. Lett. 2000, 2, 2237.

- 21. Wu, C. T.; He, Y.; Xiao, Y.; Meng, L.; Zeng, Z.; Wu, X. *Tetrahedron Lett.* **2002**, *43*, 6249.
- 22. Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Nature 1996, 382, 522.
- 23. Geiger, F.; Stokdt, M.; Schweizer, H.; Bäuerlu, P.; Umbach, E. *Adv. Mater.* **1993**, *5*, 922.
- 24. Ostoja, P.; Guerri, S.; Rossini, S.; Servidori, M.; Taliani, C.; Zamboni,
 R. *Synth. Met.* **1993**, *54*, 447.
- 25. Noma, N.; Tsuzuki, T.; Shirota, Y. Adv. Mater. 1995, 7, 647.
- Vickerman, J. C. "Surface Analysis-The Principal Techniques", John Wiley, New York, 1997.
- 27. Stohr, J. "NEXAFS spestroscopy", Springer-Verlag, Berlin, 1992.
- Mekhalif, Z.; Riga, J.; Pireaux, J. J.; Delhalle, J. *Langmuir* 1997, *13*, 2285.
- 29. Rieley, H.; Kendall, G. K.; Zemicael, F. W.; Smith, T. L.; Yang, S. H. *Langmuir* **1998**, *14*, 5147.
- 30. Castner, D. G.; Hinds, K.; Grainger, D. W. Langmuir 1996, 12, 5083.
- 31. Ishida, T.; Choi, N.; Mizutani, W.; Tokumoto, H.; Kojima, I.; Azehara, H.; Hokari, H.; Akiba, U.; Fujihira, M. *Langmuir* 1999, *15*, 6799.
- Jucci, G.; Carravetta, V.; Altamura, P.; Russo, M. V.; Paolucci, G.;
 Goldoni, A.; Polzonetti, G. *Chem. Phys.* 2004, *302*, 43.
- 33. Ito, E.; Noh, J.; Hara, M. Jpn. J. Appl. Phys. 2003, 42, L852.
- Väterlein, P.; Schmelzer, M.; Taborski, J.; Krause, T.; Viczian, F.;
 Bäßler, M.; Fink, R.; Umbach, E.; Wurth, W. *Surface Science* 2000, 452, 20.
- 35. Matsuura, T.; Shimoyama, Y. Eur. Phys. J. E 2002, 7, 233.
- Elfeninat, F.; Fredriksson, C.; Sacher, E.; Selmani, A. J. Chem. Phys. 1995, 102, 6153.
- Nambu, A.; Kondoh, H.; Nakai, I.; Amemiya, K.; Ohta, T. Surface Science 2003, 503, 101.

 Liu, G.; Rodriguez, J. A.; Dvorak, J.; Hrbek, J.; Jirsak, T. Surface Science 2002, 505, 295.

附圖 2:各加熱溫度下所得到的芳杯 Au 4f XPS 能譜變化, hv = 320 eV。

附圖 3:各加熱溫度下所得到的芳杯 C 1s XPS 能譜變化, hv = 320 eV。

附圖 4:80 K 下吸附 1.3 L 二賽吩分子所得到的大範圍 XPS 能譜,hv = 325 eV。

附圖 6:80 K 下吸附 7.3 L 二賽吩分子所得到的大範圍 XPS 能譜, hv = 255 eV。

附圖 8:各加熱溫度下所得到的真空吸附二賽吩 Au 4f XPS 能譜變 化, hv = 325 eV。

附圖 9: 各加熱溫度下所得到的真空吸附二賽吩 C 1s XPS 能譜變化, hv = 325eV。

附圖 10: 金(111)浸泡 1 mM 二賽吩溶液中 15 小時後所量測到的大範 圍 XPS 能譜, hv = 325 eV。

附圖 12:各加熱溫度下所得到的二賽吩 Au 4f XPS 能譜變化, hv = 325 eV。

附圖 13:各加熱溫度下所得到的二賽吩 C 1s XPS 能譜變化, hv = 325 eV。

附圖 14:80 K 下吸附 1 L 賽吩分子所得到的大範圍 XPS 能譜, hv = 325 eV。

附圖 16:80 K 下真空吸附賽吩 C 1s XPS 能譜, hv = 325 eV。

附圖 18:各加熱溫度下所得到的真空吸附賽吩 C 1s XPS 能譜變化, hv = 325 eV。

附圖 20: 賽吩 C 1s XPS 能譜, hv = 325 eV。

簡歷

- 出生: 民國 69 年 3 月 13 日
- 籍貫: 台灣省台北市
- 學歷: 台北市立忠孝國民小學

台北市立懷生國民中學

台北市立建國高級中學

國立交通大學應用化學系

