
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(2), 167–172 (FEBRUARY 1997)

Case Studies on Cache Performance and
Optimization of Programs with Unit Strides

pei-chi wu and kuo-chan huang
Department of Computer Science and Information Engineering, National Chiao Tung

University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, Republic of China
(email: {pcwu, kchuang}Kcsie.nctu.edu.tw)

SUMMARY

Cache performance in modern computers is important for program efficiency. A cache isthrashing
if a significant amount of time is spent moving data between the memory and the cache. This
paper presents two cache thrashing examples, one in scientific computing and one in image
processing, both of which involve several one-dimensional arrays that are accessed sequentially,
i.e., with unit strides. Accessing arrays in unit strides was considered very efficient on cache-
based computer systems. However, the existence of cache thrashing is demonstrated by significant
increases in computing speed in the equivalent programs tuned for cache locality. This shows
that accessing several arrays sequentially may cause cache thrashing. Thus, to improve cache
performance, it is important that the compiler or the programmer takes all arrays inside a loop
into consideration.  1997 by John Wiley & Sons, Ltd.

key words: computer architecture; cache performance; code optimization; cache thrashing

INTRODUCTION

Cache performance in modern computers is important for program efficiency. Many
research and development projects have been devoted to cache hardware design.1

There are many trade-offs (on cache design), e.g., capacity and efficiency. On the
other hand, program efficiency is also dependent on compiler and programming
techniques. An example is the development ofblock algorithms2 for Basic Linear
Algebra Subprograms (BLAS)3: a speedup of 4·3 has been reported4 by applying
block algorithms to matrix multiplication. This result indicates that most of the
computing time has been spent handling cache misses in the original matrix multipli-
cation algorithm.

A cache is described asthrashing if a significant percentage of the computing
time is spent moving data between the memory and the cache. In most current
computing environments, cache miss rates are not available in program profiling.
Thus, cache thrashing may occur very often, consume much computing time, and
yet remain undetected. Gannonet al.5 described a method to estimate cache perform-
ance in programs with nested loops of array accesses. This method assumed that
the cache is entirely under the control of the compiler. Because the assumption does
not stand in most computer systems, the method is not easy to apply. Breweret

CCC 0038–0644/97/020167–06 Received 6 March 1995
 1997 by John Wiley & Sons, Ltd. Revised 28 May 1996



168 p.-c. wu and k.-c. huang

Figure 1. Programsci-a

al.6 developed the MAPI tool for the analysis of memory access patterns, especially
for matrix algorithms. Callahanet al.7 developed the PFC-Sim tool for measuring
the cache performance of a set of computational-intensive Fortran programs, and
applied several loop transformation techniques to these programs. Lamet al.4

evaluated several optimizations to improve cache performance of blocked matrix
multiplication algorithms. Gannon and Jalby8 presented an analytical model of
hierarchical memory system and performance results of Fast Fourier Transform
algorithms. Bailey9 discussed unfavorable strides in Fortran programs that access
multi-dimensional arrays.

Most prior research work has focused on the cache performance of programs with
non-unit strides of multi-dimensional arrays. For example, the strides in matrix
multiplication are usually in the size of a row or a column, and the strides in Fast
Fourier Transform are usually in powers of two. This paper presents two cache
thrashing examples, one in scientific computing and one in image processing. Both
programs access several large one-dimensional arrays sequentially, i.e., with unit
strides. Accessing arrays in unit strides was considered very efficient on cache-based

Figure 2. Programsci-b



169case studies on cache performance

computer systems. However, the existence of cache thrashing is demonstrated by
significant increases (e.g., the speedup. 1) in computing speed in the equivalent
programs tuned for cache locality. This shows that accessing several arrays sequen-
tially may cause cache thrashing. Thus, to improve cache performance, it is important
that the compiler or programmer takes all arrays inside a loop into consideration
when analyzing memory access patterns in a program.

TWO EXAMPLE PROGRAMS

This section presents two example programs. The codes presented are the core parts
of real application programs from specific application domains, including particle
simulation and image processing. The cache performance of both kinds of program
has not been considered carefully before.

A particle simulation program usually simulates many particles, e.g., 105 particles.
Each particle contains several properties, such as its three-dimension velocity. Because
such a scientific simulation program is usually coded in Fortran, and Fortran 77
does not support data abstraction (e.g., the ‘structure’ data types in the C language),
the programmer can only use several large arrays, each of which represents one
property of these particles. The program then accesses these arrays to update each
particle during the simulation.Figure 1(programsci-a ) shows the core of a particle
simulation program. Instead of using Fortran, we use the C language here.

Because theARRAY SIZE in Figure 1 is set to be a power of 2 (217), these arrays
(a, b, c, . . . ) are likely have the same patterns in their low-order address bits.
Set-associative caches use middle-order address bits as a set index. These arrays
may then be mapped to the same set, and accessinga[i], b[i], c[i] , . . ., may
causeconflict misses. Because thesci-a program accesses 16 arrays, it may also
cause cache thrashing on the system with a set-associative degree less than 16. This
problem cannot be completely solved by setting the size to 105, for example, because
how these arrays are arranged in the memory is dependent on the linker or compiler.
Another example is that dynamic memory allocators (e.g., Haertel’s allocator, also

Table I. Performance results on four workstations. (s = standard deviation )

Program Sparc-2 HP IBM DEC
9K/720 RS6K/590 Alpha3K/500

sci-a (mean) 156.0s 107.6s 77.7s 17.7s
sci-a (s) 1.21 0.83 1.89 0.05

sci-b (mean) 69.2s 25.5s 2.8s 12.2s
sci-b (s) 0.69 0.13 0.05 0.02
Speedup 2.3 4.2 27.8 1.5

im-a (mean) 430.6s 310.6s 19.4s 50.2s
im-a (s) 3.35 0.25 0.25 0.20

im-b (mean) 91.8s 54.7s 19.3s 19.0s
im-b (s) 0.99 0.09 0.23 0.14
Speedup 4.7 5.7 1.0 2.6



170 p.-c. wu and k.-c. huang

Figure 3. Programim-a

called GNU Local and briefly described in Grunwaldet al.10) may arrange any
requested large chunks (e.g., chunk size. 4096 bytes) starting at addresses of powers
of two.

Figure 2 shows thesci-b program, an equivalent program ofsci-a . Program
sci-b uses a structure containing fieldsa, b, c, . . ., and an arrayA[ARRAY SIZE]
to store all the particles. Accesses toA[i].a,A[i].b,A[i].c , . . . are adjacent and
can be handled easily in the caches of most computer systems.

Figure 3 shows an image processing program (im-a ) where two images are
combined by the bitwise-or operation (operator ‘u’ in the C language). There is a
loop for writting the resulting image to one of the input images (IP = IP u A).
Because theIMAGE SIZE is 512*512, a power of 2, accesses toA[i] and IP[i]
may also cause cache misses.Figure 4 shows an equivalent program (im-b ) that
adjusts the size of arraysA and IP . This adjustment assumes that arraysA and IP
are placed adjacently. Note that this adjustment is not guaranteed to work well in
all computer systems. Many users of supercomputers have applied this (or a similar)
technique: the first dimension of multi-dimensional arrays is declared to be slightly
larger than a power of two9.

PERFORMANCE RESULTS

Table I shows the performance results on four workstations, including a Sun SPARC-
2 station, a HP 9000/720 workstation, an IBM RS6000/590 and a DEC
Alpha3000/500. The C compilers used are provided by the vendors, except that the
GNU C compiler is used on the HP 9K/720. Each floating-point number insci-a
and sci-b occupies four bytes on all four machines. All program codes and data
are loaded in memory, and there are few page faults. The computing time (shown
in seconds) is obtained by theclock() function and thetime shell command. All
the programs run on lightly loaded environments. The loops insci-a and sci-b
are iterated 100 times, and the loops inim-a and im-b are iterated 1000 times.
Each of the four programs is executed 30 times to calculate the average execution
time and the standard deviation. InTable I, seven of the eight ‘speedup’ entries are

Figure 4. Programim-b



171case studies on cache performance

Table II. Cache architectures of four workstations

Cache parameters Sparc-2 HP RS6K/590 DEC Aplpa
9K/720 3K/500

cache size (byte) 64 K 256 K 256 K 8 K
block size (byte) 16 32 256 32

cache direct direct 4-way set direct
organization mapping mapping associative mapping

Table III.. Estimated cache misses of the four programs on the four machines

Program Sparc-2 HP 9K/720 RS6K/590 DEC
Alpha3K/500

Read Write Read Write Read Write Read Write

sci-a 12× 217 4 × 217 12 × 217 4 × 217 12 × 217 4 × 217 12 × 217 4 × 217

sci-b 4× 217 0 2 × 217 0 215 0 2 × 217 0
sci-a/sci-b 4 8 64 8
im-a 2× 218 0 2 × 218 218 211 0 2 × 218 0
im-b 215 0 214 0 211 0 214 0
im-a/im-b 16 48 1 32

greater than 1, and the maximal speedup is 27·8. This result indicates that the
example programs have caused cache thrashing in many of the systems tested.

Table II shows the cache parameters of the four machines used in our experiment.
The cache size counts only the data cache for machines with separate data and
instruction caches. All machines except for RS6K/590 use direct mapping caches.
RS6K/590 uses a four-way associative cache. DEC Alpha 3K/500 has a two-level
cache. Here we list only its first level data cache.

Using Table II, we can estimate the number of cache misses that arose when the
four programs ran on the four machines. Since the penalities of read and write
misses may be different, we calculate the number of these two cache misses
separately. Any array access in thesci-a program causes one cache miss in the
four machines, so in total there are 12× 217 read misses and 4× 217 write misses,
respectively. Thesci-b program accesses arrayA sequentially, so larger cache
blocks result in fewer cache misses. The programim-a accesses two arrays (A and
IP ) of the same low-order address bits, so any machine with a direct mapping cache
may cause cache misses when accessing these arrays. The number of cache misses
depends on how compilers arrange the loading sequence ofIP [i] and A [i] . On
HP9K/720, the GNU C compiler generates code that first loadsIP [i] and then
A [i] to registers, and finally stores the result inIP [i] . There are two read misses
and one write miss in each iteration: 2× 218 read misses and 218 write miss in total.
On the other hand, the C compilers on Sparc-2 and DEC Alpha generate codes that
first load A [i] and then IP [i] so there are totally 2× 218 read misses and no
write misses. In programim-b , there are 3× 218 array accesses. Because accessing



172 p.-c. wu and k.-c. huang

IP [i] the second time is always a cache hit, the number of cache misses is:
2 × 218/block size. RS6K/590’s four-way associative cache makesim-a as fast as
im-b , since both programs access only two distinct arrays. However, when the
number of arrays grows beyond 4, as 16 insci-a , RS6K/590 generates the same
number of cache misses as other machines. The estimated numbers of cache misses
are summarized inTable III.

Table III also lists the ratios of total cache misses: rowssci-a /sci-b and im-
a/im-b . These ratios explain the speedups obtained inTable I. The largest cache
miss ratio results insci-a /sci-b with RS6K/590, which has the best speedup 28·2
from sci-a to sci-b . DEC Alpha3K/500 has the same cache ratios as HP 9K/720,
but its speedups inTable I are less than HP. This is because DEC Alpha3K/500 has
a two-level cache and its cache miss penalty, the first level, is less than that
of HP 9K/720.

CONCLUSION

In this paper, we have presented two case studies on cache performance of programs
with unit strides. The cache thrasing of example programs is detected when the
equivalent programs tuned for cache locality achieve a significant speedup. This
result shows that accessing several arrays sequentially may also cause cache thrashing.
Thus, to improve cache performance, it is important that the compiler or programmer
takes all arrays inside a loop into consideration.

REFERENCES

1. J. L. Hennessy and D. A. Patterson,Computer Architecture—A Quantitative Approach, Morgan Kauf-
mann, San Mateo, CA, 1990.

2. T. L. Freeman and C. Phillips,Parallel Numerical Algorithms, Prentice-Hall, Hemel Hempstead, 1992.
3. J. J. Dongarra, J. D. Croz, S. Hammarling and I. Duff, ‘A set of level 3 basic linear algebra

subprograms’,ACM Trans. Mathematical Software, 16(1) 1–17 (March 1990).
4. M. S. Lam, E. E. Rothberg and M. E. Wolf, ‘The cache performance and optimizations of blocked

algorithms’, Proc. 4th Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), 1991, pp. 63–74.

5. D. Gannon, W. Jalby and K. Gallivan, ‘Strategies for cache and local memory management by global
program transformation’,Journal of Parallel and Distributed Computing, 5 587–616 (1988).

6. O. Brewer, J Dongarra and D. Sorensen, ‘Tools to aid in the analysis of memory access patterns for
Fortran programs’,Parallel Computing, 9(1) 25–35 (December 1988).

7. D. Callahan, K. Kennedy and A. Porterfield, ‘Analyzing and visualizing performance of memory
hierarchies’, in M. Simmons and R. Koskela (eds),Performance Instrumentation and Visualization,
ACM Press, 1990.

8. D. Gannon and W. Jalby, ‘The influence of memory hierarchy on algorithm optimization: programming
FFTs on a vector multiprocessor’, inThe Characteristics of Parallel Algorithms, MIT Press, 1987.

9. D. H. Bailey, ‘Unfavorable strides in cache memory systems’,RNR Technical Report RNR-92-015,
Numerical Aerodynamic Simulation System Division, NASA Ames Research Center, USA, 1992.

10. D. Grunwald, B. Zorn and R. Handerson, ‘Improving the cache locality of memory allocation’,Proc.
ACM SIGPLAN’93 Programming Language Design and Implementation(also asACM SIGPLAN Notices,
28(6) 177–186 (June 1993)).


	SUMMARY
	INTRODUCTION
	TWO EXAMPLE PROGRAMS
	PERFORMANCE RESULTS
	CONCLUSION

