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Abstract 

Motion estimation is one of key part in modern video standards like MPEG-4 and 

H.264 to remove the temporal redundancy between video frames. However, it is also 

computational intensive and memory intensive. Thus, in this dissertation, we propose 

two designs, binary motion estimation and variable block size motion estimation, to 

reduce the computational load, and one vertical data reuse scheme to minimize the 

memory access.  

  The first work supports the binary motion estimation for shape coding adopted by 

MPEG-4. In binary motion estimation, its processing is at the bit level and thus is not 

suitable for general purpose processors due to their word-level processing capability. 

Thus, we propose a fast algorithm and its architecture that takes advantages of this bit 

level (binary level). With the count of bits in a block, the proposed algorithm classifies 

and tests every candidate search position and then skips those unlikely to be a match. 

The proposed algorithm can adaptively overlap matching between different classes to 

get more accurate motion vector or more skipping ratio. The proposed algorithm 

achieves a saving in computational complexity ranging from 96.69% to 99.71% comes 

with the expense of increasing the shape encoded bits by 0.7% to 12.8%. Due to the 

simplicity and the regularity of the algorithm, the proposed hardware is also regular and 

needs only 11582 gate count. 

  The second work supports the variable block size motion estimation. Variable block 

size limits the efficiency of early termination, but the algorithm shows good 

performance in this field. This design uses the early termination that adaptively changes 

its threshold to fit the variable block size and achieve early skipping. Different variables 

can be tuned by the algorithm to compromise between the high skipping ratio and the 

accurate motion vector. The proposed algorithm outperforms other similar algorithms 

with a complexity reduction of 78% and 51% for MPEG-4 and H.264 respectively. The 

hardware implementation of the algorithm can process one MB in 16 clock cycles, and 

completes a 16x16 search window in 4096 clock cycle without any termination process 

and an average 1032 clock cycles with termination process. The hardware uses only 16 

registers and 31 adders and gate count of 16k. 



  Finally, the third work reduces the huge memory access by vertical processing 

adjacent current macroblocks. Vertical processing can achieve the same speed up of the 

horizontal processing but lower memory access especially for large search window. A  

design is introduced to demonstrate the efficiency of the vertical processing compared 

to horizontal processing using the same number of processing elements. This simple and 

regular design can be easily extended to any number of PE without extra cost to the 

control circuit or any change in the data flow.  The required data bandwidth is reduced 

by 60.9% with four processing elements and 61k gate count when compared to the 

previous designs.  
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 Introduction 

 
 

1.1 Overview of Video Coding 

 
The rapid development of digital technology has brought the video to a new era. In 

the past, people used tapes and televisions, but today the digital video can be found 

everywhere in our daily life. The VCD and DVD have replaced traditional tapes owing 

the ease of preservation. As the computer networks become more and more popular, the 

video over network tends to be more and more important. The handheld devices 

probably will be one of the terminals for video broadcast in the near future. 

 

The increasing demand to incorporate video data into telecommunications services, 

the corporate environment, the entertainment industry, and even at home has made 

digital video technology a necessity. A problem, however, is that still image and digital 

video data rates are very large, typically in the range of 150Mbits/sec. Data rates of this 

magnitude would consume a lot of the bandwidth, storage and computing resources in 

the typical personal computer. Therefore, Video Compression standards have been 

developed to eliminate picture redundancy, allowing video information to be 

transmitted and stored in a compact and efficient manner. Although the applications on 

video changes so rapidly, the bases of the video technology are still the same: 

 

1.  Insensitivity to high frequency of human eye.  

The human eye is lazy to the high frequency part of the signal. Thus, both 

compression of still images and video improves its compression ratio by largely 

discarding the high-frequency components. 

 

2.  Spatial redundancy.  
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In a small area of the current coded frame, the pattern is usually lack of large 

variation. That is the pattern of the neighbors can be good prediction of currently coded 

area. 

 

3.  Temporal redundancy.  

The characteristics of video include the temporal similarity, which means almost 

no great changes exist between two close frames. By eliminating the temporal 

redundancy from the current coded frame, the data rate can be largely lowered. In fact, 

the applying of video coding tools to exploits the temporal redundancy is the major 

improvement in compression ratio. 

 

Thus, most of the video coding standards, including IYU H.261, H.263, H.264, MPEG, 

MPEG-2, and MPEG-4, are established on similar fundamentals, such as block-based 

coding, DCT transform, motion estimation/compensation, and prediction of data and so 

on. 

 

1.2 Cores of Digital Video Technology 

Compression is the most important core technique of video applications at present. 

Video standards evolution starts from H.261, MPEG-1, MPEG-2/H.262, H.263, 

H.263+, H.263++, MPEG-4, H.26L, to the latest H.264/AVC. H.264/AVC outperforms 

its previous standards in compression performance due to many new prediction and 

entropy coding tools, such as, multiple reference frames, variable block sizes, intra 

prediction, context-based adaptive variable length coding, context-based adaptive 

binary arithmetic coding, deblocking and rate distortion optimized mode decision. This 

high performance comes with the expense of high computational complexity by one 

order.  

 

The toughest challenge of video compression is real-time processing. For HDTV 

applications, several tera-operations/instructions per second (TOPS) of computing 

power and several tera-bytes per seconds (TB/s) of memory access are demanded. The 

required resources of real-time coding are far beyond the capabilities of today's general 

purpose processors. For mobile applications with much smaller image sizes, power 
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consumption is the most critical issue. If a processor-based software implementation is 

adopted, the operating frequency of the processor should be as high as hundreds of 

MHz, which will violate the strict power constraints. Although the complexity of 

mobile applications is much lower than that of HDTV applications, real-time 

compression is still too heavy burden for processors. Hence, application specific 

integrated circuits (ASICs) play the key role of video applications. Hardware-oriented 

algorithms and efficient VLSI architectures are urgently needed. Among all the video 

coding standards, block matching estimation is always the processing bottleneck. More 

than half, sometimes even up to 90% of computing power and memory access are 

dominated by motion estimation. Therefore we should pay attention to the motion 

estimation when developing a video coding system. 

  

In the following two subsections, a brief introduction of two compression 

standards, MPEG-4 and H.264, showing their main features, basic functional blocks and 

the distinguished tools implemented in each of them.  

 

1.2.1 MPEG-4 Overview 
 

MPEG-4 is an ISO standard (ISO/IEC international standard 14496) developed by 

the Moving Picture Experts Group (MPEG). It defines the deployment of non-

proprietary multimedia content independently of platform or transmission medium. It 

has relied on and taken from a number of existing technologies while at the same time 

adding a number of innovative tools and concepts. 

The MPEG-4 visual standard consists of a set of tools (as shown in Fig. 1.1) that 

enable applications by supporting several classes of functionalities. The most important 

features covered by MPEG-4 standard can be clustered in three categories and 

summarized as follows: 

 

1. Compression efficiency: Compression efficiency has been the leading principle for 

MPEG-1 and MPEG-2 and in itself has enabled applications such as Digital TV and 

DVD. Improved coding efficiency and coding of multiple concurrent data streams will 

increase acceptance of applications based on the MPEG-4 standard.  
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2. Content-based interactivity: Coding and representing video objects rather than video 

frames enables content-based applications. It is one of the most important novelties 

offered by MPEG-4. Based on efficient representation of objects, object manipulation, 

bit stream editing, and object-based scalability allow new levels of content interactivity. 

 

3. Universal access: Robustness in error-prone environments allows MPEG-4 

encoded content to be accessible over a wide range of media, such as mobile networks 

as well as wired connections. In addition, object-based temporal and spatial scalability 

allow the user to decide where to use sparse resources, which can be the available 

bandwidth, but also the computing capacity or power consumption.  

To support some of these functionalities, MPEG-4 should provide the capability to 

represent arbitrarily shaped video objects. Each object can be encoded with deferent 

parameters, and at deferent qualities.  The shape of a video object can be represented in 

MPEG-4 by a binary or a gray level (alpha) plane.  The texture is coded separately from 

its shape. In the following, two main parts of MPEG-4 will be discussed which are 

related to the work presented later in the thesis: shape coding and texture motion 

estimation. 

 

 
Fig. 1.1 General structure of MPEG-4 VOP encoder 
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1.2.1.1 Shape coding  

 The shape coding scheme also relies on motion estimation to compress the shape 

information even further. In MPEG-4 visual standard, two kinds of shape information 

are considered as inherent characteristics of a video object. These are referred to as 

binary and gray scale shape information. By binary shape information, one means label 

information that defines which portions (pixels) of the support of the object belong to 

the video object at a given time. The binary shape information is most commonly 

represented as a matrix with the same size as that of the bounding box of a Video Object 

Plan (VOP). Every element of the matrix can take one of the two possible values 

depending on whether the pixel is inside or outside the video object. Gray scale shape is 

a generalization of the concept of binary shape providing a possibility to represent 

transparent objects, and reduce aliasing effects. In gray scale, the shape information is 

represented by 8 bits, instead of a binary value.  

In the past, the problem of shape representation and coding has been thoroughly 

investigated in the fields of computer vision, image understanding, image compression 

and computer graphics. However, this is the first time that a video standardization effort 

has adopted a shape representation and coding technique within its scope. In its 

canonical form, a binary shape is represented as a matrix of binary values called a 

bitmap. Since its beginning, MPEG adopted a bitmap based compression technique for 

the shape information. This is mainly due to the relative simplicity and higher maturity 

of such techniques. Experiments have shown that bitmap-based techniques offer good 

compression efficiency with relatively low computational complexity.  

 

Binary shape information is encoded by a motion compensated block based 

technique allowing both lossless and lossy coding of such data. In MPEG-4 video 

compression algorithm, the shape of every VOP is coded along with its other properties 

(texture and motion). The next chapter will discuss the process of shape coding in more 

detail.  

 
1.2.1.2 Texture Motion estimation and compensation  

Motion estimation and compensation are commonly used to compress video 

sequences by exploiting temporal redundancies between frames. The approaches for 

motion compensation in the MPEG-4 standard are similar to those used in other video 
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coding standards. The main difference is that the block-based techniques used in the 

other standards have been adapted to the VOP structure used in MPEG-4. MPEG-4 

provides three modes for encoding an input VOP namely: 

 

1. A VOP may be encoded independently of any other VOP. In this case the encoded 

VOP is called an Intra VOP (I-VOP). 

 

2. A VOP may be predicted (using motion compensation) based on another previously 

decoded VOP. Such VOPs are called Predicted VOPs (P-VOP). 

 

3. A VOP may be predicted based on past as well as future VOPs. Such VOPs are called 

Bidirectional Interpolated VOPs (B-VOP). B-VOPs may only be interpolated based on 

I-VOPs or P-VOPs.  

 

Obviously, motion estimation is necessary only for coding P-VOPs and B-VOPs. 

Motion estimation (ME) is performed only for macroblocks in the bounding box of the 

VOP in question. If a macroblock lies entirely within a VOP, motion estimation is 

performed in the usual way, based on block matching of 16x16 macroblocks as well as 

8x8 blocks (in advanced prediction mode).  

 
 

1.2.2 H.264 Overview 
H.264 video coding standard has the same basic functional elements as previous 

standards (MPEG-1, MPEG-2, MPEG-4 part 2, H.261, and H.263), i.e., transform for 

reduction of spatial correlation, quantization for bitrate control, motion compensated 

prediction for reduction of temporal correlation, and entropy encoding for reduction of 

statistical correlation. Moreover, to fulfill better coding performance, the important 

changes in H.264 occur in the details of each functional element by including intra-

picture prediction, a new 4x4 integer transform, multiple reference pictures, variable 

block sizes and a quarter pel precision for motion compensation, a deblocking filter, and 

improved entropy coding. Improved coding efficiency comes at the expense of added 

complexity to the coder/ decoder. H.264 utilizes some methods to reduce the 

implementation complexity. Multiplier-free integer transform is introduced. 
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Multiplication operation for the exact transform is combined with the multiplication of 

quantization. 

 

The block diagram for H.264 coding is shown in Fig. 1.2. Encoder may select 

between intra- and inter-coding for block-shaped regions of each picture. Intra-coding 

uses various spatial prediction modes to reduce spatial redundancy in the source signal 

for a single picture. Inter-coding (predictive or bi-predictive) is more efficient using 

inter-prediction of each block of sample values from some previously decoded pictures. 

Inter-coding uses motion vectors for block-based inter-prediction to reduce temporal 

redundancy among different pictures.  

Inter-prediction is to reduce the temporal correlation with help of motion estimation and 

compensation. In H.264, the current picture can be partitioned into the macroblocks or 

the smaller blocks. A macroblock of 16x16 luma samples can be partitioned into 

smaller block sizes up to 4 x 4. For 16x16 macroblock mode, there are 4 cases: 16x16, 

16x8, 8x16 or 8x8, also four cases: 8x8, 8x4, 4x8 or 4x4 for 8x8 mode.  

 
Fig.1.2 The block diagram of H.264 algorithm. 
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The smaller block size requires larger number of bits to signal the motion vectors 

and extra data of the type of partition, however the motion compensated residual data 

can be reduced. Therefore, the choice of partition size depends on the input video 

characteristics. In general, a large partition size is appropriate for homogeneous areas of 

the frame and a small partition size may be beneficial for detailed areas. The inter-

prediction process can form segmentations for motion representation as small as 4x4 

luma samples in size, using motion vector accuracy of one-quarter of the luma sample. 

Sub-pel motion compensation can provide significantly better compression performance 

than integer-pel compensation, at the expense of increased complexity. Quarter-pel 

accuracy outperforms half-pel accuracy. Especially, sub-pel accuracy would increase 

the coding efficiency at high bitrates and high video resolutions. 

 

1.3 Motivation and Contributions 

From the above brief introduction, one major block is common with MPEG-4 and 

H.263, the inter-prediction part. The core of that part is the motion estimation. Motion 

estimation consumes 50% to 90% from the system computing power and memory 

access. Bear in mind that, the shape coding adopted in MPEG-4 is a bit-level processing 

algorithm, and thus it deals with bits not with words. The last issue will add more 

burden to the general purpose processors. Moreover, special data scheduling and 

placement should be taken into considerations. Motion estimation using variable block 

size that is adopted in H.264 is another burden we need to take into consideration.  

 

Real time processing and the restricted power consumption in handheld devices, created 

a big challenge for designers to implement those coders to meet such requirements. This 

leads to adopt fast algorithms to meet the real time restriction, with the expense of  

quality degradation and increased encoded bitstream size. Thus, a dedicated hardware is 

suitable to implement the motion estimation part, especially when implementing the 

shape coding.  

 

We proposed a fast Binary Motion Estimation (BME) algorithm and architecture to 

serve the shape coding part of MPEG-4. The dedicated hardware implemented will 

solve the burden of bit-level processing of the bit mask generated for the VOP. Also the 
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fast algorithm speeds up the matching process to save the time and enhance the system 

performance to meet the real time requirements.  

 

Integer motion estimation is the kernel of the motion estimation process. It is the first 

and basic stage and after it, comes the fractional motion estimation, and then the mode 

decision adopted in H.264. We propose a fast integer motion estimation algorithm and 

architecture to serve this part of the motion estimation process. The hardware 

implementation should take into consideration the variable block size adopted in H.264. 

The fast algorithm by early termination scheme, based on testing the macroblock line by 

line and comparing the generated sum of the absolute difference (SAD) to an adaptive 

threshold value. 

Finally, to reduce the memory traffic from the system main memory to the dedicated 

hardware, a data reuse strategy used to serve this issue. Vertical processing of 

macroblocks will reduce significantly the memory bandwidth needed. This approach 

could be combined with the former mentioned algorithms to serve fast motion 

estimation algorithms and reduce the system memory bandwidth. This contribution will 

reduce the over all system power by minimizing the main system memory access; also 

minimum the gap to real time processing for high quality video formats. 

Fig 1.3 shows the relation between the works presented in this thesis. Binary motion 

estimation for shape coding is part of the Motion Estimation kernel. BME serves 

MPEG-4 only. The work extended to serve the motion estimation which is adopted by 

both MPEG-4 and H.264. The motion estimation part of this work applies an early 

termination scheme to reduce the complexity of the motion estimation. To reduce the 

burden of huge memory access, a new approach proposed to reduce the main memory 

access. Vertical processing for motion estimation of adjacent macro blocks reduced 

significantly the main memory access. Fig. 1.4 shows the problems of the motion 

estimation process and the contributions made to solve these problems.   
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Fig. 1.3 The relations between the works presented in this thesis 

 
Fig. 1.4 Contributions of the works presented in this thesis. 

1.4 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 will present the Binary Motion 

Estimation for shape coding adopted in MPEG-4. The proposed algorithm and hardware 

will be presented in detail. Integer motion estimation with early termination will be 

presented in chapter 3. Detailed description of the algorithm, and the hardware 

implemented will be given. Data reuse and the reduction in the main system memory 

access will be presented in chapter 4. Finally, the conclusion and future work will be 

presented in chapter 5. 
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Chapter 2 A Fast Binary Motion 

Estimation Algorithm and its 

Architecture Design 
 

In this chapter, we first present an introduction to MPEG-4 system with the focus 

on the shape encoding. Details will be presented to explain the function of binary 

motion estimation to show its role in MPEG-4 coding system and the computational 

burden it introduces to the system. Then, we will show the previous work on MPEG-4 

shape coding and its contribution. Finally, we present our algorithm for binary motion 

estimation and the associated hardware implementation.  

2.1 Overview of the MPEG-4 Video System 

MPEG-4 standard is one of the popular international standards for video coding. 

MPEG-4 includes the following tools for natural video coding: I-VOP coding, P/B-

VOP prediction coding, temporal scalability for rectangular or arbitrary-shaped objects, 

rectangular spatial scalability, error resilience for rectangular or arbitrary-shaped 

objects, binary/grayscale shape coding, and rectangular or object-based texture coding. 

One of the MPEG-4's special features is the object-based scene description. It 

allows the transmission of arbitrarily shaped video objects. The purpose of using shape 

coding is to promote better subjective picture quality, higher coding efficiency as well 

as more user interactions. For more detailed information please refer to [76]. 

2.1.1 Video Object and Video Object Plane 
MPEG-4 international standard treats moving pictures as an organized collection 

of visual objects and provides several advanced techniques to access and represent the 

moving arbitrarily shaped natural and synthetic objects in video scenes. The MPEG-4 

visual specifications support several types of visual objects, among which is the video 

object. The video object may be thought of as a sequence of two-dimensional images. 

Each image can be associated with shape information to define its shape. As shown in 
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Fig. 2.1, a video object plane (VOP), which is the instance of a video object at a given 

time, is composed of a bitmapped alpha component to define the object's shape as in 

Fig. 2.1(a) and three color components (YCbCr) to render the object's texture as in Fig. 

2.1(b). Basically, the VOP is defined as a minimum rectangle that encloses the whole 

object. In binary shape coding, bi-level alpha components can be either opaque or 

transparent. An opaque alpha component means the corresponding pixel resides in the 

video object and the texture information should be displayed. A transparent alpha 

component means the corresponding pixel is not part of the video object, where 

background should be displayed. Blocks that are completely outside the shape are 

transparent blocks since it consists of all transparent pixels. Blocks that are inside the 

shape are opaque blocks, because it consists of all opaque pixels. The block residing on 

the border of shape is the boundary block. In Fig. 2.1(c), transparent block are labeled 

"T", opaque block are labeled "O" and boundary block are labeled "B". A gray-scaled 

shape coding is similar to binary shape coding except that 256-level alpha components 

is used to identify the shape of video object. Gray-scaled shape coding will not be 

discussed. 

It is noteworthy that the size of a VOP at a given time depends on the shape of the 

video object at that time. That is, the size of the VOP for a video object is time-variant. 

MPEG-4 video encoding is based on the VOP encoder shown in Fig. 2.2. The alpha 

component of a VOP is encoded using a binary shape encoder while the color 

components are encoded using motion estimation and compensation followed by DCT-

based texture coding. The input data of a VOP undergoes shape coding, texture coding 

and motion coding. A multiplexer interleaves the bit-stream from the three coding units 

and output encoded bit-stream. 

2.1.2 MPEG-4 Binary Shape Coding 
Coding the binary shape information of a VOP takes a few major steps. First, a 

bounding rectangle is created and extended to multiples of 16x16 pixels with extended 

alpha samples set to transparency. Next, binary alpha data are grouped with what are 

called binary alpha blocks (BABs) to have the same dimensions as a macroblock. 

Finally, shape coding is initiated on a BAB-by-BAB basis.  
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Fig.2.1 Video object plane (VOP) 

 
 

Fig.2.2 General structure of MPEG-4 VOP encoder 

 

The encoding of a BAB can be further divided into the following scenarios. First of 

all, if all the pixels in a BAB are either opaque or transparent, this BAB is a non-
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boundary BAB and only the coding mode is encoded by means of a variable-length 

coder (VLC). Second, in inter-frame, a boundary BAB can be coded with reference to a 

suitable prediction BAB from the previous coded frame to remove temporal 

redundancy. This procedure is called binary motion estimation (BME). Based on the 

assumption that the movement of an object is homogeneous, motion vector of 

neighboring BAB or texture block is used as the motion vector predictor for shape 

(MVPs). If the motion compensation (MC) error between the block indicated by the 

MVPs and current BAB is less than or equal to a predefined threshold, the MVPs is 

directly employed as motion vector of shape (MVs), and the procedure of BME 

terminates. Otherwise, full-search block matching is performed around the MVPs 

within a predefined search range. Each candidate block residing in the search range 

indicated by a motion vector is compared to the current BAB by computing 16x16 sum 

of absolute differences (SADs). The motion vector that minimizes the SADs is taken as 

MVs. The MVs is further interpreted as motion vector difference for shape (MVDs), 

i.e., MVDs MVs MVPs= −
uuuuuuuur uuuuur uuuuuuur

 as shown in Fig. 2.3. In this case, coding mode and MVDs 

are encoded by shape encoder using VLC.  

At last, apart from those cases mentioned above, it is generally necessary to 

employ context-based arithmetic encoding (CAE) to the pixels within a BAB. There are 

two CAE operation modes, one is intra-mode and the other is inter-mode. Intra-mode 

CAE exploits the spatial redundancy by estimating the probability of the current pixel 

from its neighboring pixels. As for inter-mode, temporal redundancy is exploited by 

estimating the probability of the current pixel from its neighboring pixels and motion 

compensated neighboring pixels of the previous coded frame.  

 
Fig. 2.3 Block matching of motion estimation for shape 
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In intra-frame coding, only intra-mode CAE is performed. In inter-frame coding, 

both intra- and inter-mode CAE are performed. In both modes, CAE operation is 

performed pixel by pixel in both horizontal and vertical raster scan order. Therefore, 

there are total four different coding processes: CAE(intra_h), CAE(intra_v), CAE(inter_h), and 

CAE(inter_v). At each pixel, a template is formed to extract a context number used to 

access a probability table. The accessed probability and the pixel value are then used to 

drive an arithmetic encoder. In intra-frame coding, the encoded bitstream with 

minimum size between CAE(intra_h) and CAE(intra_v) is chosen as the final output. 

Similarly, the encoded bitstream with minimum size among CAE(intra_h), CAE(intra_v), 

CAE(inter_h), and CAE(inter_v) is chosen in inter-frame coding. In addition, the shape 

encoder may decide to encode sub-sampled versions (i.e., lossy coding) of BABs to 

save encoded bits. If this is the case, the sub-sampling factor, also known as conversion 

ratio (CR), is also encoded into the bitstream. The BAB (sub-sampled or not) then 

undergoes CAE. Note that CAE itself introduces no additional loss. 

In summary, there are seven coding modes for MPEG-4 shape coding in total, as listed 

in Table 2.1. The syntax of the coding mode is represented by bab_type field in the 

bitstream. 

Fig. 2.4 illustrates the block diagram of MPEG-4 binary shape coding system. To 

improve the performance of the shape encoder, parallel processing of partial or all 

operations in each step can be implemented. The general coding procedure can be as 

follows [76]: 

Step 1. Perform mode decision to determine if the current BAB is a boundary or 

nonboundary BAB. For a non-boundary BAB, go to Step 5 with bab_type = 

2 or 3. For a boundary BAB, go to Step 2 or 3 for inter-frame or intra-frame 

coding respectively. 

Step 2. Perform BME. If a qualified motion vector is found, go to step 5 with 

bab_type= 0 or 1. Otherwise go to Step 3. 

Step 3. Perform size conversion to obtain a sub-sampled version of current BAB. 

The quality of the sub-sampled BAB must satisfy the predefined threshold. 

Go to Step 4. 

Step 4. Perform intra-mode CAE for intra-frame coding. Perform intra- and inter-

mode CAE for inter-frame coding. Go to Step 5 with bab_type = 4, 5, or 6. 

Step 5. Perform VLC for BAB coding mode and other related information. 
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Fig.2.4 Block diagram of MPEG-4 Binary shape encoding system 

 

Table 2.1  BAB coding modes [76] 

Coding mode 
(bab_type) 

Semantic Used in 
VOP 

0 no update && MVDs=0 P,B 
1 no update && MVDs≠0 P,B 
2 transparent I,P,B 
3 opaque I,P,B 
4 Intra CAE I,P,B 
5 Inter CAE && MVDs=0 P,B 
6 Inter CAE && MVDs≠0 P,B 

 

2.2 Motion Estimation for MPEG-4 Video 

Motion estimation is an effective algorithm to exploit the temporal redundancy of 

video sequences. The macro-block in the current VOP can be represented by a block in 

the reference VOP and a motion vector indicating the displacement of the blocks. Thus, 

the generated encoded bits when encoding the motion vector is much smaller than that 

for encoding the macro-block contents. So using the encoded motion vector bits to 

replace the macro-block contents in encoded bit-stream will achieve high compression 

ratio. In video decoding phase, the macro-block is restored by copying the block 

contents in reference VOP back to the current VOP. 
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Table 2.2  Computational complexity for MPEG-4 video encoding [76] 

 MIPS Percentage 
Motion Estimation 1002 66%
CAE-Shape coding 201 13%
MB-padding 57 4%
Motion compensation 15 1%
IDCT 14 0.9%
H.263 quantization 10 0.7%
DCT 9 0.6%
Others 188 12%

 

The motion estimation has attracted much research interests for the following 

reasons. First, the workload of motion estimation is most demanding in the video 

encoding process. In Table 2.2, profiling results showed that motion estimation takes 

about 66% of total computation time. It is the bottleneck to the performance of an 

encoder. Second, the encoded video quality is highly impacted by motion estimation at 

a given bitrate. Finally, the MPEG-4 video coding standard does not specify a 

standardized way to find the motion vector. Hence, the estimation procedure is open for 

competition and many algorithms for motion estimation have been proposed. The 

block-matching algorithm is most popular in hardware implementations of motion 

estimation. The block-based nature leads to regularity and parallelism which are 

suitable for hardware-based design. 

2.2.1 Block-matching Algorithm 
The block-matching algorithm is one of the most popular techniques for motion 

estimation. The block matching algorithm applies almost equally to both binary shape 

coding and texture coding of MPEG-4. The only difference is that binary shape coding 

deals with bi-level alpha plane data, whereas the texture coding deals with multi-level 

luminance components of the texture. The basic concept of block matching is to 

represent the block in current VOP using a block in the reference VOP and a motion 

vector indicating their displacements. The block in reference VOP that is a best match is 

the one that minimize the matching cost. A search range is set to confine the search 

procedure within an area that is more probably to have a good match. Various search 

strategies are proposed to further lower the searching time or searching cost. 

The motion vector is the displacement vector of the current macro-block and the block 

that minimize the matching cost. Various matching cost has been proposed. These cost 

function vary in terms of implementation complexity and efficiency. The most popular 



 18

cost function is the Sum of Absolute Difference (SAD) which is more suitable for 

hardware implementation and its computation burden is the lowest among the others.  

2.2.2 Search Range and Search Points 
The search range is a region in the reference VOP that are likely to contain a 

similar block to the current block. This region is probably around the corresponding 

location of the current block, or around a predicted location relative to the current block. 

Instead of using all possible blocks within the reference VOP, only the blocks within the 

search range is inspected to save matching effort. 

The search point is the location of a block in the search range that the matching cost of 

the block is to be calculated for block-matching. The search point is located on every 

integer-pel within the search range. In full-search block matching, the current block is 

shifted to each search point and the matching cost is computed. The number of search 

points on integer-pel is (M-m+1) × (N-n+1), where (M×N) is the dimension of search 

range while (m × n) is the size of current block. If the size of search range is 47x47 

pixels, and the size of current block is set to 16x16 pixels. Then, there are totally 32x32 

= 1024 search points to be explored by full-search block matching algorithm. For fast 

motion estimation techniques, matching cost are inspected on only some of the search 

points. 

The fractional-pel motion estimation extends the search points from integer-pel to half-

pel or even quarter-pel, which could generates better matching results. As shown in Fig. 

2.5, the pixel values of the fractional pixels are interpolated, the matching cost 

calculated on the fractional search points using these interpolated pixels. Since the 

computation is too expensive to explore all fractional search points, the fractional-pel 

search is done hierarchically. The fractional-pel motion estimation usually carried out 

after the motion vector is found by integer-pel motion estimation. Then, the fractional-

pel motion estimation is performed on the fractional search points around the integer 

search point just found. 
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Fig. 2.5 Fractional-pel search points 

 

2.3 Analysis of Binary Motion Estimation 

The computational complexity and memory bandwidth requirements of binary 

motion estimation are analyzed based on the pseudo code of full-search BMA 

algorithm. Fig. 2.6 shows the kernel of full-search BMA algorithm for shape coding. 

The search range is from -VSR to VSR in vertical direction, and from -HSR to HSR in 

horizontal direction. The current BAB size is 16×16. Ic(m, n) denotes the pixel value of 

current BAB, and Ir(i, j, m, n) denotes the pixel value of reference block at search point 

(i, j). 

To calculate a SAD value, first, the pixels in the current BAB and the reference 

block are compared, as shown in line 9. This requires two memory access and one 

bitwise XOR operation. Next, the difference is accumulated in SAD, as shown in line 

10. The above two operations are repeated for 256 times to get a SAD value of a search 

point. Then, one compare operation is required to update the minimum SAD. Finally, a 

total number of 2VSR×2HSR search points need to be processed to find a motion vector 

of the current block. By using this method, the complexity of the BME kernel is 

analyzed. Let V denotes the total number of search points, i.e., V ≡2VSR×2HSR, then 

the analysis results are listed in Table 2.3. For a core profile level 2 application1 with 

VSR = 16; HSR = 16, the complexity of each operation in terms of mega-operation-per-

second (MOPS) is listed in the last column of Table 2.3. 



 20

 
Fig. 2.6 Pseudo code for full-search BMA kernel for shape motion estimation [76] 

 
 

Table 2.3 Complexity analysis of binary motion estimation [76] 

 Operation Complexity MPOS (CP Lv2) 
Data Processing    
Pixel Compare XOR V×16×16 3114.4 
SAD accumulation ADD V×16×16 3114.4 
Update min SAD COMP V 12.1 
Memory bandwidth  
Load current pixel LOAD V×16×16 3113.4 
Load reference pixel LOAD V×16×16 3114.4 

 
The static analysis of full-search BMA showed that MPEG-4 binary motion 

estimation needs giga-operations per second, and hundred-mega byte scale memory 

access per second. To meet the stringent requirements on low cost and low power in 

VLSI design, an optimized algorithm is essential. 

2.4 Previous Work on Binary Motion 

Estimation 

Shape coding is the basic block of coding an arbitrarily shaped objects newly 

adopted by MPEG-4. This approach gives the ability of controlling one object or 

even implementing clickable multimedia objects, which is in the near future will 

make the user interact with the multimedia more actively.  Many researchers 

worked to enhance the implementation of the shape coding part in both software 

and hardware implementation. Following a brief survey of previous work on 
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binary motion estimation, which is the core for the shape encoding. 

Many fast algorithms concerned about the software implementation of binary 

motion estimation process. The fast algorithm approaches use various skipping 

techniques to speed up the BME. In  [11] and  [12], they skipped those search 

positions which are depart from the contour line of the object. They first define and 

locate the boundary pixels (search positions), then perform Boundary Search (BS) 

to locate the target MVs location. Weighted SAD and diamond search pattern for 

furthermost improvement. In  [13] it skips computations of Boundary Alpha Blocks 

(BAB) by testing if the motion compensation error for that BAB is less than a 

predefined threshold value. Also it explores the coloration between the neighboring 

BAB's and the current BAB. In  [14] it generated a mask for the points close 

enough to the object boundary, and limited the search process only to those points. 

However, software implementation of BME on processors is not efficient since 

processors are more efficient at the word level instead of the bit-level operation as 

in BME. 

Considering hardware implementation, the data in BME is just a one-bit 

binary value (0/1), which easily can be represented by hardware and achieve 

computation speedup by bit parallelism. The hardware design in  [11] implements 

the algorithm presented earlier in the same paper. The hardware consists mainly 

from two parts, the first part (Fig. 2.7 (a)) searches for the boundary pixels, when it 

finds them it precedes to the second part. The second part (Fig. 2.7 (b)) is the 

processing elements array which process and computes the SADs for that position. 

Each processing element calculates the weighted SAD of a search position in a 

sub-search-range. The weighted data is calculated by subtracting sum of MVDs 

from 7'b1100000. The hardware design in  [10] presented BME architecture by 

employing bit parallelism technique using 1-D systolic array to perform a full 

search BME (Fig. 2.8). It deploys the data dispatch technique to reduce the bit 

addressing operation. 
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Fig. 2.7 Architecture design presented in  [11]. 

 
Fig. 2.8 Architecture design presented in  [10]. 

 
 

2.5 Motivation for Fast Binary Motion 

Estimation 

From the above discussion, shape coding plays an important role in MPEG-4 

coding system, which is one of the novelty techniques adopted by MPEG-4 to enhance 

the coding efficiency and introduce more interactivity between the user and the 

multimedia. Shape coding makes it easy to deal with single or multiple objects at the 

same time, adding some control and interactivity with the user such as, creating a 

clickable multimedia objects. Binary motion estimation is the bulk of shape encoding. 

Its binary nature is a burden to general purpose processors; since, these processors are 

designed to work efficiently with word-level operations, not with bit-level operations. 
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Optimized software solutions may reduce this burden when running on general purpose 

processors. Optimization needs careful data scheduling, extra operations, such as, shift 

and pack and it takes extra memory access to access individual bits. 

The computational complexity of the MPEG-4 shape encoder is shown in Fig. 2.9 

[12]. It can be seen that BME takes nearly 90% of total computational complexity of the 

MPEG-4 shape encoder [12]. Therefore, optimization on BME is essential to remove 

the bottleneck in achieving real time shape coding. 

Moreover, the binary nature of every BAB, it contains certain number of "1". 

Exploring this feature, we can propose a fast algorithm, simply, by testing those search 

points containing almost same number of "1" as the current BAB and skip the other.  

The algorithm can be applied as software optimized solution, or easily mapped to a 

hardware implementation. No extra hardware circuits needed to test the number of "1" 

in every BAB.  

The motivation of our approach is that, BME only deals with binary values (1 or 0) 

instead of the 8-bit pixel values in the texture ME. Hence, the block matching of BME 

can be regarded as a comparison of number of “1” contained in each candidate block 

with that of the current block. Thus, the proposed algorithm classifies each candidate 

block according to the number of “1” it contains, and only performs the block matching 

between those blocks belonging to the same class. Furthermore, we also present a 

hardware design for the proposed algorithm. Hardware design can make the binary bit-

level processing much easier and faster than the software approach since traditional 

processor only deals with word-level processing. The simplicity and regularity of the 

proposed algorithm leads to a simple and regular hardware design. 

 
Fig. 2.9 Computational complexity of MPEG-4 shape encoder [12]. 
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2.6 The Proposed Algorithm 

Fig. 2.10 shows the proposed algorithm flowchart. The algorithm starts by classifying 

the current BAB according to the number of “1” it contains. Then, for each search 

position in the search window, we also classify the candidate BAB using the same 

method (counting “1” contained in the BAB).  If both the current BAB and the 

candidate BAB are in the same class (called a match later on), we start computing SAD 

for that position. Otherwise, we skip that position and start testing the next search 

position. The main concept behind this algorithm is that, BME only deals with binary 

values. Thus, we can use the number of “1” contained by the BAB to approximate the 

BAB’s data and classify it into different classes. Hence, we can quickly skip SAD 

computation between different classes and only compute the SAD for the same class. 

  Table 2.4 represents an example for classifying each BAB according to the number 

of “1” it contains, i.e. if a BAB contains 20 pixels marked as “1”, it will be classified as 

class 2. Fig. 2.11(a) shows a BAB, the shadowed pixels represent “1” in the BAB. This 

BAB is classified as class 3 according to the classification in Table 2.4 (contains 34 

pixels representing “1”). Fig. 2.11(b) represents the search window that shows two 

BABs: one with almost the same number of “1”, classified as class 3 (contains 35 pixels 

representing “1”), while the other classified as class 12 (contains 189 pixels 

representing “1”). It is clear that the BAB with almost the same number of “1” is more 

likely to be a match to the current BAB rather than the other one with larger number of 

“1”.  

Classification and matching rule will severely affect the quality of searching results. 

The matching rule can be generalized from the same-class matching to the adjacent-

classes matching. Thus, a matching could be hold for those belonging to the same class 

or adjacent classes. This feature (overlapping between one or more adjacent classes) 

gives us the ability to refine the MVS to be more accurate, which will be presented 

later.  

 

2.6.1 Software simulation results and analysis  
In the following two subsections, we will show the efficiency of the proposed 

algorithm by integrating it into the MPEG-4 verification model V18.0  [6]. All the 
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following test sequences are in CIF format with 300 VOP and one Video Object (VO). 

Then we will show how to explore the flexibility of our algorithm (the classification and 

the matching rule) to control both the search positions and the bit rate to get more 

refined MVs. 

2.6.2 Block-matching Algorithm 
  Table 2.5 and Table 2.6 summarize the results compared with the full search 

algorithm, where CHG_BIT denotes the change of bits in percentage, and CHG_SP 

denotes the change of search position. Table 2.5 assumes ±16 search window with non-

overlapping 255 classes (every two adjacent classes differ only by one pixel value). Due 

to the strict non-overlapping class partitioning, the search positions saving (CHG_SP) is 

-99.58% (the negative sign indicates saving, in other words the percentage of search 

positions to that of the full search is 0.42%) of that in the full search algorithm. Such 

reduction comes with the cost of average 8.52% increase in the encoded shape bit rate 

(bits/shape).  

Table 2.6 shows the effect of overlapping classes with the same ±16 search window. 

With class overlapping, the increase in the bits/shape is significantly reduced to 0.65%, 

but it also reduces the CHG_SP to -95.68% compared with the non-overlapping case. 

This is because class overlapping will enable more class matching for BABs with slight 

difference in number of “1”. Thus, the increase in the encoded bit stream will be smaller 

than the non-overlapping case at the cost of more search positions. Without class 

overlapping, we may skip possible search positions due to small difference. Fig. 2.12 

shows the effect of overlapping on bit rate and search positions, it shows that, the extra 

bit rate increase reduced significantly with just two or three pixel overlapping. On the 

other hand, the required search positions are linearly increased as the number of classes 

overlapped is increased. Table 2.7 shows the effect of class partitioning. As the number 

of classes decreases (that is, count number of “1” in each class increases), the increase 

in encoded bit stream will be lower with the cost of increased search positions. This is 

because more BABs in the search window will be classified to be a match. This 

increases the required search positions but also reduces the bit rate due to more accurate 

motion matching as shown in Fig. 2.12.  
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Table 2.4. 16-classes classification, showing the number of “1” in each class, 

and the range of “1” in every BAB that matches with each class. 

classes 
number 

# of “1” included in 
each class 

# of “1” included in the 
matched BAB 

class 1 16 1~16 

class 2 32 17~32 

… … … 

class 15 240 225~240 

class 16 256 241~255 

 

 
Fig. 2.10 Flowchart for the proposed algorithm. 
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Fig. 1.11 (a) Current BAB contains certain number of “1” bits and belongs to class 

3. (b) Search window showing two BABs, each one from different classes.  

 
 

 
Table 2.5 Performance of the proposed algorithm and the full search method when 

search window is ±16 and 255 classes without overlapping.  

 

 
Bits/shape  # of MB processed ( search 

positions) 
Test Sequences FS Proposed CHG_BIT FS Proposed Saving 

Foreman 311720 328329 5.33% 7810280 25918 99.67%
Stefan 236964 248268 4.77% 6141676 21812 99.64%

singer-247 239246 275191 15.02% 6125008 20941 99.66%
News 298696 336933 12.80% 5863564 16956 99.71%

dancer-247 440828 481913 9.32% 9623385 36769 99.62%
coastguard 176666 188283 6.58% 2062352 11885 99.42%

coastguard_obj_0 401875 433491 7.87% 6066320 41951 99.31%
coastguard_obj_1 256330 283021 10.41% 4134816 19069 99.54%
coastguard_obj_2 119925 122755 2.36% 2036772 11714 99.42%
coastguard_obj_3 171030 181109 5.89% 1949582 11382 99.42%

Total 2653280 2879293 8.52% 51813755 218397 99.58%
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Table 2.6 Performance of the proposed algorithm and the full search method when 

search window IS ±16 and 255 classes with 6 classes overlapping. 

 

 
Bits/shape  # of MB processed ( search 

positions) 
Test Sequences FS Proposed CHG_BIT FS Proposed Saving 

Foreman 311720 314979 1.05% 7810280 272905 96.51%
Stefan 236964 238255 0.54% 6141676 259932 95.77%

singer-247 239246 239865 0.26% 6125008 250416 95.91%
News 298696 298912 0.07% 5863564 185674 96.83%

dancer-247 440828 444623 0.86% 9623385 431812 95.51%
coastguard 176666 177752 0.61% 2062352 94341 95.43%

coastguard_obj_0 401875 405486 0.90% 6066320 364255 94.00%
coastguard_obj_1 256330 258102 0.69% 4134816 207529 94.98%
coastguard_obj_2 119925 120353 0.36% 2036772 80475 96.05%
coastguard_obj_3 171030 172147 0.65% 1949582 92980 95.23%

Total 2653280 2670474 0.65% 51813755 2240319 95.68%
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Fig. 2.13 The impact of classes overlapping on bits/shape, total encoded bit-stream 

and the number of search positions. 

Table 2.7. Comparison between different classes. 

Class type 
Bits in 

each class 
CHG_BIT 
for shape 

CHG_BIT for 
total bits 

Saving in 
Search positions 

16 class 16 1.17 0.24 93.18 
32 class 8 2.52 0.53 96.25 
64 class 4 4.57 0.99 98.04 
256 class 1 9.03 1.96 99.38 
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2.6.3 Consideration for the Classification and Matching 

Methods 
The optimum classification of classes and class-overlapping are highly content 

dependent. For some test sequences, the probability of classes are not uniformly 

distributed (BABs belonging to a certain class are more probable than others).  Fig. 2.13 

shows the probability distribution for the 255-classes of the test sequence 

“container_2_obj”.  It is clear that, BABs in which the number of “1” in the range 1-83 

are more probable, among which the range 57-81 has higher occurrence. Thus, we can 

divide the intervals for each class according to the probability density such that, 1-56 to 

8-classes (each class differs by 7 bits of “1” from the neighbor classes), 57-81 to 25-

classes (each class differs by one bit “1” from the neighbor classes), and the remaining 

into 4-classes. We ran three tests for the same test sequence, as shown in Table 2.8. For 

the case-1 without overlapping between classes, we got a smaller number of search 

positions but larger bits/shape. In the case-2, we ran the same test with uniform 

overlapping between classes, and as expected this resulted in a higher number of search 

positions with fewer bits/shape. The case-3 compromises between reduction in search 

positions and bits/shape by overlapping only in the range of high probability, in the 

range of 57-81. We got lower search positions than the case-2, and lower bits/shape 

compared to case-1. By applying overlapping to those classes with more probable ones 

will refine the MVs with a little increase in search positions.  

 
Table 2.8 Results for dividing classes according to the probability of container_2 

test sequence. 

Test CHG_BIT for shape Saving in SP 

Case-1 16.45% 95.40% 

Case-2 1.80% 81.70% 

Case-3 3.14% 90.30% 
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Fig.2.13 The probability distribution for the 256 classes in the container_2_obj. 

 
Statistics in Fig. 2.13 can be calculated at the run time, by accumulating the 

occurrence of every class, overlapping those of high probability, and joining more than 

one class for those with less probability. The statistics can be made according to a 

“frame window,” such that, for a predefined number of frames (e.g., 10 frames window) 

we count the statistics and consider the results for the coming frames. This will be 

explored in a future work by dynamic class assignment and overlapping. 

2.7 The Architecture Design. 

2.7.1 Architecture Design 
 Fig. 2.14 shows the block diagram of BME architecture. Due to the simplicity and 

regularity of the proposed fast algorithm, the whole architecture is similar to the full 

search architecture presented in  [14]. However, instead of full search, we adopt the fast 

algorithm but maintain the regularity of full search. The extra hardware needed is the 

modification to the accumulator to support addition and subtraction, and also extra 

registers to save the accumulated count for “1” in every BAB. The addressing and 

control unit is simple due to regular data flow. In Fig. 2.14 the search window buffer 

(SR buffer) stores partial search window data that can be reused by PE array to reduce 

data transfer from off-chip frame memory. The PE array contains 16 processing 

elements, and each can compute the SAD of one candidate BAB. Another function of 

the PE is to count the “1” within every candidate BAB.  
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Fig. 2.14 Architecture block diagram of the proposed algorithm 

Thus, a MUX (Multiplexer) will be used to select the operation for the PE between 

counting “1” and computing the SAD. Compare and select (CAS) module compares 

results of PE and selects the motion vector of minimal SAD. Control/Address 

generation (AG) module generates address for accessing SR buffer and control signals 

to other modules. Registers are used to store the count of “1” for each BAB in the SR, 

in which each register is 8-bit (enough to count up to 255).  

 

2.7.2 PE Design 
Fig. 2.15 shows the architecture of a single PE, it consists of an XOR circuit followed 

by an adder tree, and ended with an accumulator. The accumulator supports both 

addition and subtraction. For SAD computation, one row of current BAB and one row 

of candidate BAB are compared by bit-wise XOR. The resulted row of binary data 

represents the difference values between pixels of these two rows. The adder tree will 

sum up those binary data as partial SAD. The accumulator sums up 16 rows of partial 

SAD to obtain the SAD of one candidate position in SR (the SAD of one candidate 

BAB is produced every 16 cycles). In each PE there are two registers, one to save the 

partial SAD for later use as final SAD for that search position (sad_reg). The other 

register will hold the count of “1” pixels of candidate BAB (count_reg).  



 32

 

 
(b)       (a) 

 
Fig. 2.15 (a) The SAD architecture, and (b) the tree adder. 

2.7.3 Data reuse and data flow 
Data reuse concept should be explored while reading from the search window buffer. 

Data redundancy exists in both directions, horizontally and vertically. The horizontal 

data redundancy is due to computing SAD for more than one adjacent candidate BABs 

in the search window buffer. The vertical data redundancy is due to counting “1” of 

adjacent candidate BABs. Since PE's in the PE array take responsibility for adjacent 

candidate BABs, the input data from search window for every PE have large 

redundancy. With data dispatching, we can achieve better maximal data reuse 

utilization. As shown in Fig. 2.14 data dispatch is implemented by hardwiring the 

desired reference data into each PE. Data [31:16] are dispatched to PE1, and data 

[30:15] are dispatched to PE2 and so on. The search window width is 48 pixels (for 

search range (-16, +15)), while the data fed into 16 PE are 31bits, which leaves 17 bits 

to be scanned. Thus, only two passes will be needed to cover the entire search window, 

as shown in Fig. 2.16. Each pass will cover part of the search window, supplying the 16 

PE with proper data to do the match.  To facilitate the counting of “1” and SAD 

computation, the proposed design adopts the sliding window approach to read the pixel 

from the search window by sliding vertically as shown in Fig. 2.17. 

Sliding down in the search window will keep tracking of the “1” counting for every 

adjacent candidate BAB by adding a new row, and subtracting the top expired row. As 

we slide down by one row, we still make use of the remaining 15 rows (the area marked 

by crossed bars). 
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Fig. 2.16 Two passes needed to cover the search window 

 
Fig. 2.17 Sliding window approach: counting the “1” in BABs. 

 
This will just add an overhead of 2-clock cycles to keep tracking of the “1” count 

for every BAB (2-clock cycles rather than 16-clock cycles to perform full SAD 

computation). We can summarize the procedure of the architecture operation as follows: 

Step 1. Current BAB classification: count the number of “1” in the current BAB, 

and store the result into “CurrMB” register (this step needs16-clock cycles).  

Step 2. Candidate BAB classification: start counting the number of “1” for 16 

adjacent BABs within the search window, and store the results into each 

specified register (Reg1~Reg16). Each register located inside the PE as 

shown in Fig. 2.15(a) (this step needs16 clock cycles). 

Step 3. Class match and SAD computation: The comparison circuit will classify the 

results stored in the registers and determine which one matches the current 

BAB class. If a match occurs, start calculating the SAD for that position only 

(16-clock cycles when a match occurs to compute the SAD). 
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Step 4. Proceeding to new data: If there is no match, we proceed to the next row by 

the sliding window approach   (2- clock cycles overhead to count the number 

of “1” in this way). 

Step 5. Repeat steps (4) and (3) to the end of the search window. 

2.7.4 Experiments results 
Since the architecture consists of 16-PEs working simultaneously, it is highly 

probable that more than one match could occur (two or more adjacent BAB belong to 

the same class), and hence performs the SAD computation for more than one match at 

the same time, as shown in Fig. 2.18. This will save the processing time since more than 

one match to be processed in one time slot needed to do one match. The whole design 

has been implemented in Verilog code and synthesized by Synopysis Design Compiler. 

The synthesized gate count for the architecture is 11582 for the total design, using 0.18 

um cell library.  

The required cycle count is quite low due to our simple scheme to skip unlikely 

search positions. The cycle count to perform one full search can be calculated as 

follows; as an initial step we need to count “1” for the current BAB (16 clock cycles) 

and for the first 16 rows in the search window buffer (16 clock cycles). Then 

proceeding by adding new row and subtracting the top expired row (Fig. 2.17), this will 

consume 2 clock cycles. Since we can scan the search window in two passes, so: 

 

(2 clocks)× (2 passes) × (32 rows for each pass) = 128 clock cycles  

 

So, 128 clock cycles are needed to scan the search window. When a match occurs, 16 

clock cycles are needed to compute SAD for that match (i.e. we express the number of 

matches or search positions by #SP). The total clock cycles will be (16+16+128+ (# SP) 

×16) cycles. These cycles are needed to find one BAB MV.  
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Fig. 2.18 Adjacent BABs belong to the same class, and match the same class of 

CurrMB. SAD calculation will be held at the same time in hardware 

implementation. 

 

Table 2.9 gives the average clock cycles consumed to scan one search window for 

different classes overlapping. From Table 2.9, the average clock cycles to complete one 

frame in case of 32 classes overlapping (worst case) is 563. From which we can 

calculate the total clock cycles to complete one frame. Assuming the percentage of 

Boundary Alpha Blocks be 50% of the total alpha blocks (e.g., for CIF 352×288, the 

boundary alpha blocks will be 198), we need 563×198=111,474 clock cycle to complete 

one frame.  From the above calculations, the overhead of our algorithm will be as 

follows, 16 clock cycles to count the “1” of the current BAB, another 16 clock cycles to 

count “1” for the first search position in the search window, the later will be repeated 

twice, since we scan the search window twice. 2 clock cycles for every search position 

to add and subtract one row of pixels. Theoretically, the clock cycles needed to perform 

one full search window using one PE would be (31×31×16=15376), and for 16-PE 

would be (2×31×16=992) clock cycles, while the worst case in our design is 563 clock 

cycles. 
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Table 2.9 Hardware simulation results for different classes overlapping. 

 

 
32 classes 
overlapping 

16 classes 
overlapping 

no 
overlapping 

test sequences AVE clk * AVE clk * AVE clk * 
foreman 506 443 276 
Stefan 635 536 302 
singer-247 626 497 258 
news 543 474 269 
dancer-247 595 506 276 
coastguard_obj_0 410 354 250 
coastguard_obj_1 555 483 289 
container_obj_0 540 452 284 
container_obj_1 553 503 331 
container_obj_2 662 578 302 
container_obj_4 570 475 245 
Average 563 482 282 

 

2.7.5 Comparisons 
Table 2.10 and Table 2.11 show the comparison results between our proposed 

algorithm, and other fast algorithms. The proposed algorithm can achieve lower search 

positions and still has lower bit rate increase. Moreover, the flexibility of our proposed 

algorithm which lies in the classification of classes, and overlapping between classes, 

according to run time statistics, will benefit in tradeoff between reduction in search 

points and bits/shape.  The comparisons are based on bits/shape and reduction in search 

positions. Bits/shape presented by  [12] is based on WSAD (weighted SAD) which gives 

lower bit rate and different values than normal SAD implemented by MPEG-4 VM, 

even for full search algorithm. Besides, they employed the diamond search algorithm to 

minimize the number of search positions that is not regular and is not suitable for 

hardware design.  The average reduction in search positions achieved by our proposed 

algorithm is larger compared to others. The average search position reduction in  [13] is 

-90.95%, and that for  [12] is -96.78%, while it varies from -96.59% to -99.69% for our 

proposed algorithm. The minor increase in bits/shape produced by the proposed 

algorithm is not much deviating apart from other fast algorithms. The software 

implementation of the proposed algorithm is compete bale to the algorithm presented in 

 [13] which is a software approach, so our proposed algorithm is suitable for software 

and hardware implementation.  



 37

Table 2.10. CHG_SP for various search algorithms relative to the full search 

algorithm. 

Proposed 
Sequence Chen  [14] Yu  [13] Tsai  [12] with 6 classes 

overlapping 
without 
overlapping 

news 46.04% 99.12% 96.74% 96.69% 99.71%
foreman 43.94% 82.78% 96.85% 96.49% 99.67%
 
Table 2.11. Average bit-rate for various search algorithms. All are relative to the 

full search algorithm. 

 
Proposed 

Sequence Chen  [14] Yu  [13] Tsai  [12]* with  6 classes 
overlapping 

without 
overlapping 

news 0.00% -0.74% 0.19% 0.07% 12.80%
foreman 0.00% 0.47% -0.35% 1.05% 5.33%

* Weighted SAD 
For hardware design comparison, the proposed algorithm is simple to be implemented 

in hardware and similar to the full search scheme. No special computation circuitry 

needed, which can make it switched to a full search without disabling any extra 

hardware. Control circuit and address generator is simple. BME architecture presented 

in  [10] employs a full search algorithm, and needs a gate count of 9666 while operated 

at 7.29 MHz for core profile at level two. In comparison, our implementation needs 

slightly larger gate count of 11582 but needs fewer cycle count and lower frequency, 

only 3.34 MHz.  

 
 

2.8 Summary 

Shape coding introduced by MPEG-4 gives the ability to deal with arbitrary shape 

objects and adds more interactivity with the user. In which, binary motion estimation is 

the heart of the shape coding. The binary nature of the shape coding represents a burden 

on general purpose processors. These processors were designed to work efficiently with 

word level processing but not with bit level processing. Thus, we propose a fast 

algorithm to speed up the binary motion estimation process and its architecture.  

The proposed algorithm eliminates unlikely candidate positions by counting the 

number of "1" contained in the BAB boundary. If the number of "1" counted doesn't 
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belong to the same class of the current BAB, it will be rejected; otherwise, it will be 

processed and matched. The saving in complexity ranges from 96.69% to 99.71% 

comes with the expense of increasing the shape encoded bits by 0.70 %to 12.80%. 

Due to the binary nature of the binary motion estimation, a dedicated hardware is 

proposed to serve this part of the shape coding module. With the simple and regularity 

of the algorithm, the proposed hardware is also regular and needs only 11582 gate 

count.   
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Chapter 3 Texture Motion Estimation for 

MPEG-4 and H.264. 

The previous chapter explored the binary motion estimation, which is adopted by 

MPEG-4 as a novel approach to process individual objects. Texture motion estimation 

still the heart of video coding systems. During the last two decades, hundreds of fast 

algorithms and VLSI architectures have been proposed. As for hardware 

implementations, many architectures were derived to support either full search, fast 

search or both. In this chapter, a brief survey for the fast algorithms and architectures 

will be introduced. Then, the proposed algorithm and architecture will be introduced 

accordingly to show its performance compared to candidates in the same category. 

 

3.1 Introduction to Block Matching 

Motion estimation (ME) removes temporal redundancy within frames and thus 

provides coding systems with high compression ratio. Since ME module is usually the 

most computationally intensive part (50%-90% of the entire system) in a video encoder, 

efficient implementation of ME is a must. Block matching approach is mostly selected 

as the ME module in video codecs and is also adopted in all existing video coding 

standards because of its simplicity and good performance. The block matching 

algorithm (BMA) is shown in Fig. 3.1 and described as follows. Each luma frame is 

divided into blocks of size N×N, and each block in the current frame is matched with 

candidate blocks of size N×N within the search area in the reference frame. The best 

matched block has the lowest distortion among all of the candidate blocks (the 

distortion is mostly evaluated by the sum of absolute differences (SAD)). The 

displacement of the best matched block, or namely the motion vector (MV) of the 

current block, will be transmitted with prediction residues to the decoder.  
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Fig. 3.1 Block Matching Algorithm. 

Among all the BMA's, full search block matching algorithm (FSBMA) is the most 

popular. FSBMA can be described as: 
1 1

0 0

( , ) ( , ) ( , _ )
N N

i j

SAD m n c i j s i m j n
− −

= =

= − +∑∑ (3.1)

where SAD(m,n) represents the distortion of the candidate block at search position 

(m,n), c(x,y) is the current block pixels, s(x,y) stands for search area pixels, the search 

range is [-p, p-1], the block size is N×N, and MV expresses the motion vector of current 

block with minimum SAD among (2p)2 search positions. 

 

 FSBMA demands a lot of computation. For example, real-time ME for CIF 

(352x288) 30 frames per second (fps) videos with search range as [-16, + 15] requires 

9.3 giga-operations per second (GOPS). Clearly, such huge computational complexity is 

far beyond the processing capabilities of today's general purpose processors. Therefore, 

many fast algorithms and hardware architectures had been proposed. 

This Chapter organized into two main parts; the first part explores the motion 

estimation algorithms, presenting the previous work and introducing the proposed 

algorithm, showing its performance compared to other related works. The other part 
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explores the architecture design for the motion estimation. Surveying previous works in 

this field, and proposing architecture to serve the proposed algorithm in the first part. 

The reasons for choosing this architecture, the implementation and performance will be 

shown accordingly. Finally, a summary will be made at the end of the chapter. 

3.2 Exploration of Algorithms 

As shown earlier, full search algorithm represents a heavy burden on the system. 

The need for reducing the computation time and complexity leads to many fast 

algorithms. Those fast algorithms adopted techniques to reduce the number of search 

points, or to reduce the computation complexity. This will come with the expense of 

reduction in picture quality, and lower coding efficiency. Many researches contributed 

to reduce the computational burden caused by the full search algorithm. Following are a 

brief survey for the previous works. For more information of the algorithms, please 

refer to  [15]. 

 

Many algorithms explore the reduction in search positions, for example, two 

dimensional logarithmic search  [16], three step search  [17], conjugate direction search 

 [18], modified logarithmic search  [19], cross search  [20], parallel hierarchical one 

dimensional search  [21], one dimensional full search  [22], new three step search  [23], 

four step search  [24], block-based gradient descent search  [25], center-biased diamond 

search  [26]  [27], advanced diamond zonal search  [28]  [29], minimum bounded area 

search  [30], one-dimensional gradient descent search  [31], cross diamond search  [32], 

predictive line search  [33], kite cross diamond search  [34], and many others, have been 

proposed.  

 

To simplify the matching process many algorithms proposed different ways and 

techniques. For example, sub-sampling  [35], pixel difference classification (PDC)  [36] 

and integral projection was introduced in  [37] and  [38]. On the other hand, some 

algorithms reduced the matching process complexity by reducing the number of bits 

needed to represent single pixel. In  [39] and  [40], their algorithms involve transforming 

each pixel to one-bit representation and then applying conventional ME search 

strategies. In  [41], they directly truncate the bit-width of pixels.  
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Apart from reducing the number of search positions or simplifying the complexity, 

an early-termination techniques applied to do full search, but skipping those unlikely 

matched candidate position early and save the computations. Successive elimination 

algorithm (SEA)  [42], partial distortion elimination (PDE)  [43] is simple and effective. 

In  [44], an adaptive scanning order of pixels in a candidate block was proposed for 

distortion calculation to further speed up the PDE.  

 

In fact, the results of fast full search are not exactly the same as FSBMA. 

Sometimes, minor differences occur. For example, when two or more search positions 

have the same minimum SAD, the result will be dependent on scan order. However, 

these minor differences do not cause noticeable effect on quality. Recently, in the new 

video coding standard, H.264/AVC, multiple reference frames and variable block sizes 

make the BMA much more complex, which becomes the hottest new topic of fast ME 

 [75]. 

The proposed algorithm is a modification for the PDS, by applying an adaptive 

threshold rather than fixed one. The quality almost the same, but the computational 

burden greatly reduced with a little increase in encoded bit stream. Also, due to the 

regularity of data flow and simplicity of estimating the threshold value, make it easy to 

implement the algorithm into hardware without extra cost compared to full search 

architectures.  

 

 

3.2.1 Proposed Algorithm-Software Approach 

3.2.1.1 Introduction and Motivation 

Early termination scheme is one way to reduce the complexity of the block distortion 

measure, which is our concern here. Partial distortion search algorithm (PDS) is 

recommended to be used in MPEG-4 and H.264 reference software to reduce the 

computational complexity of the SAD without introducing any loss in PSNR quality. In 

the PDS, the accumulated partial SAD (PSAD) is used to eliminate the impossible 

candidates of motion vector (MV) before the completion of calculating the SAD in a 

matching block. Thus, if the PSAD is greater than the current minimum SAD at 

anytime, this candidate is rejected and the remaining SAD computation is skipped. The 

PSAD is computed and accumulated by calculating the SAD for one line of the block at 
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a time. Though this scheme can skip some unnecessary SAD computations, there is still 

room to be improved. For example, this scheme cannot efficiently skip the SAD 

computations when the candidate SAD is similar to the current minimum SAD. This 

situation will happen especially at the search points near to the predicted or the final 

MV location.  

Adjustable partial distortion search (APDS)  [48] is a normalized partial distortion 

comparison method capable of adjusting the prediction accuracy against searching 

speed by a quality factor. It uses the halfway-stop technique with progressive partial 

distortions (PPD) to increase early rejection rate of impossible candidate MVs at very 

early stages. APDS divides each matching block into 16 equal sized groups, each group 

is sub-sampled in difference patterns, and each pattern has its own impact on the speed 

and the quality. Matching process starts by accumulating the distortion measure for one 

group after another. So by comparisons of the normalized partial distortion against 

normalized minimum block distortion, it can save more computational complexity. 

 Hilbert-grouped partial distortion search (HGPDS)  [47] first employs the Hilbert 

scan to extract the representative pixels according to the edge information in the 1-D 

Hilbert sequence, groups them into 16 16-pixel groups, sorts these groups in descending 

order, and finally computes the partial distortion according to the order of the groups. It 

uses a new search strategy by scanning the search window twice. In the first scan phase 

it computes the distortion for the first group of the 16-groups established above. Then h-

search points with the lowest PSAD are located and tested later to choose the best 

search center among them for the spiral scan which is the second scan phase. The 

overhead of the HGPDS is the grouping of pixels according to their activities in the 

Hilbert scan which consists of extra calculations and sorting also two scan phases for 

the new search strategy.  So by doing the comparisons using the representative pixels 

first, this algorithm can save more computational complexity. 

Both APDS and HGPDS exhibits irregular data flow due to extracting pixels in 

irregular pattern, which hinders their use in the hardware design. The PDS still 

consumes extra SAD computations especially for search points which are closer to the 

final MV location. H.264 introduces a variable block size ME, which reduces the 

efficiency of the early termination algorithms mentioned above. Small size blocks (i.e. 

4x4) contain small number of pixels, in which the coherency between those pixels are 

high. So when employing the early termination algorithm, each block will consume 

more SAD computations till the termination happens. Repeating this process for all 
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small size blocks mean more SAD computations when compared with normal 16x16 

MB.  

To solve above problems, we propose an early termination algorithm by adaptive 

threshold instead of using nearly constant minimum SAD value during the SAD 

accumulation. The results show that it can reduce the SAD computation significantly 

with negligible quality degradation. The proposed algorithm shows good efficiency with 

variable block size. Also it exhibits regular data flow, since it tests the macroblock line 

by line.  

 
3.2.1.2 Early Termination Algorithm 

Fig. 3.2 (a) shows the flowchart of computing the PDS. It assumes a minimum SAD 

(SADmin), by computing the SADpred at the predicted location in the search window, and 

sets that value to be SADmin for later comparison. Then it starts the SAD computation 

for each search point. During the SAD computation, if the partial SAD is equal to or 

greater than SADmin, it terminates the remaining partial SAD computation and jumps to 

the next search position. For such early termination purpose, the partial SAD is 

computed one line at a time and accumulated to the total SAD for that MB. This method 

can quickly skip the unnecessary SAD computation and preserve the search quality. 

However, if the SAD of the candidate MB is similar to the current minimum SAD, there 

is little room to save more computations.  

Fig. 3.2 (b) shows the flow of the proposed algorithm. Our proposed algorithm adopts 

the similar approach as the PDS. We still compute the partial SAD one line at a time 

and add it to the total SAD. However, during the accumulation of SAD, we use a 

threshold value SADTH instead of the minimum SAD (SADmin) as an early termination 

condition. If the accumulated SAD value is larger than the threshold, we skip the 

remaining SAD computation and proceed to the next search point. Otherwise, we 

continue the SAD computation/accumulation, and update the SADTH accordingly. When 

a match occurs, which means lower SAD value than the current minimum SAD, SADTH 

is modified according to the new value of minimum SAD. 
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Fig. 3.2 (a) algorithm flow for the PDS, and (b) our proposed algorithm. 

 

To help adaptively changing the threshold value, three parameters are introduced in 

the flow diagram, “SADTH”, “error”, and “dec”. The values for SADTH, “error” and 

“dec” for H.264 and MPEG-4 are depicted in Fig.3.3 (b). These parameters have 

considered the effect of variable block size and thus have different values according to 

their block size. The parameter “SADTH” represents the base threshold value used in 

early termination process, which is a summation of current minimum SAD and extra 

error margin (error). The reason to introduce the “error” parameter is explained as 

follows. Since we process every candidate MB line by line; each line consists of 16 

pixels in the case of 16x16 block size. Some lines may generate large PSAD, and others 

may generate low PSAD. The accumulated PSAD for the 16-lines will represent the 

SAD value for that candidate position. While comparing the PSAD for every line with 

the normalized SADTH, it could be the case of PSAD > SADTH for these lines and 

terminates the SAD process.  
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Fig. 3.3 (a) Seven macroblock modes in H.264/AVC, (b) values for SADTH, error, 

and dec for different block sizes in H.264 and that for MPEG-4 

Meanwhile, if we proceeded to compute the PSAD for the remaining lines (those 

lines may generate low PSAD), the total SAD for that candidate position is lower than 

the global min_SAD. To give the chance for those candidate positions with 

inhomogeneous PSAD distribution among the MB lines, we introduce an error margin. 

If the generated PSAD for those lines are less than “error” we give them more chance to 

proceed in the SAD process. Otherwise terminate the process if the generated PSAD is 

larger than “error”.  

The “error” parameter represents a margin of allowance for the candidate macroblock 

to pass the test in case that macroblock is similar or near to the target macroblock. The 

“error” parameter gives it the chance to continue the SAD test unless it really generates 

PSAD much greater than SADTH. This “error” parameter should be decreased line by 

line by using “dec” parameter (decrement), every time we process a new line by 
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subtracting “dec” from SADTH. Thus, when processing the last line in the candidate MB, 

we will compare the true min_cost with the accumulated SAD for that position.  

The value for “error” is set to the difference of 8-pixels, if this value increases, more 

accurate MV will be generated on the expense of increasing the SAD computations. On 

the other hand, lower “error” value will generate more error in the generated MV, but 

less SAD computations. Fig 3.4 shows the effect of changing the “error” parameter on 

the generated bit rate, the PSNR, and the reduction in complexity, applied on three test 

sequences Stefan, Coastguard, and Mobile, which exhibit high and low motion. In Fig 

3.4 (a), it is clear that as the “error” value increases, the change in bit rate will decrease, 

which means more accurate generated MV. In Fig 3.4 (b), when the “error” parameter 

increases the quality will be better and closer to that of the full search without 

termination.  

Finally the complexity reduction variation due to the “error” parameter is shown in 

Fig 3.4 (c), in which more computations could be saved when the “error” parameter is 

smaller. The “dec” parameter is simply the result of dividing the “error” by the number 

of lines in each sub-macroblock according to each mode we are working on. 

In summary, the advantage of our algorithm is that with the adaptive threshold value 

instead of the constant one allows us to skip more unnecessary SAD computation, as 

shown later in the simulation results.  

 
3.2.1.3 Simulation Results 

In the following, we will show the simulation results of the proposed algorithm by 

integrating it into the MPEG-4 verification model V18.0, and H.264 JM 9.0. All the 

following test sequences are in CIF format with 300 frames and ±32 search range, 

unless otherwise specified.  

Like other early termination algorithms, the efficiency of the proposed algorithm 

depends on the scan pattern in the search window, and the initial SADTH value that 

affects how fast we can reach the minimum SAD point and save more computations. In 

the following test, we test two scan patterns as depicted in Fig. 3.5, the spiral scan 

adopted by MPEG-4 VM18.0 and the normal raster scan used for most of the hardware 

implementations. The complexity saving is due to the adaptive threshold mechanism 

during the SAD accumulation.  SADTH should be set to a value that ensures fast early 

termination and gives accurate results as well.  
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Fig. 3.4 The effect of “error” parameter variation on (a) generated bit rate 

(b)PSNR, and (c) complexity reduction. 
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When SADTH adapted to a lower value, more line skipping will occur. Only those 

MBs near to the lowest SAD point will consume more SAD computations because the 

error between those MBs and the current MB will be smaller, and thus many lines will 

pass the threshold detection. Setting SADTH to large value will slow down the 

termination process, especially for the raster scan method. In the following testing 

results, the first SADTH is set to be SADpred, which is the SAD calculated at the 

predicated MV position. 

Table 3.1 shows the results for both scanning methods, relative to the search 

algorithm implemented in VM18.0 without any early termination. The comparison 

results are produced and tabulated according to the parameters as below: 

CHG_BIT Change of bits used for the whole sequence. 

CHG_PSNR Change of PSNR. 

CHG_COMPLEXITY Change of SAD computations for the whole sequence. 

 

It is clear that the spiral search pattern achieves better results in terms of total bits and 

PSNR, and also saves more SAD computations than the raster scan method. This is due 

to the raster scan pattern will pass by many local minimum, changing SADTH 

accordingly and may skip the targeted MB. This effect is shown clearly in the low and 

moderate motion test sequences, such as M&D and Mobile, where the MV is more 

likely to be near to the predicated position. 

The proposed early termination method is also applied to the 8x8 sub-block motion 

estimation. Table 3.2 shows the performance results of the proposed algorithm 

compared with MPEG-4 VM 18.0 enabling the 4MV option. Our method can save 

77.91% of complexity with negligible quality loss. The last column shows the time 

consumed by the ME subroutine to find the MV. This is computed with the time 

function implemented by Visual C++ 6.0, on a P4 2GHz, 768 MB memory and 

windows XP system. 

The same tests are applied to H.264. Table 3.3 shows the results for the proposed 

method compared to the early termination method employed in JM 9.0. The proposed 

method can save 50.6% of complexity with similar quality. The difference in percentage 

between the time saving and the complexity saving is due to the accuracy of the time 

function, since many search positions will be skipped after few lines tests, and the time 

function will not capture this time difference. The difference appears more in H.264 

since it works with small block sizes, and more error in capturing the time. 
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The result for H.264 shows less complexity reduction and more PSNR degradation 

but less bit rate increase compared to MPEG-4. This is due the variable block size ME 

of H.264. The small block size tends to consume more SAD computations compared to 

that of large block size. For example when testing 4x4 block, at least we need to go 

through one line test, which in total equivalent to 4 lines test in a 16x16 block. 

Meanwhile, if the tests only applied on 16x16 block, we can stop SAD computations 

after the first line test. The PSNR degradation is due to reducing the chances to select 

modes with smaller size blocks, which gives better quality when selected. When dealing 

with small size blocks, the “error” parameter also will be small, hence early termination 

will occur frequently, and will result in ignoring more small size blocks from the mode 

selection later by H.264. 

 

 

 
Fig. 3.5 Scan patterns in the search window, (a) raster scan , and (b) spiral scan. 

 

Table 3.1   Experimental results for the proposed method with Qp = 16. 

 
CHG_BIT 
(%) 

CHG_PSNR CHG_COMPLEXITY 
(%) 

Test sequence 
raster 
scan 

spiral 
scan 

raster 
scan 

spiral 
scan 

raster 
scan 

spiral 
scan 

Foreman 1.77 1.04 -0.01 -0.01 -75.30 -86.10 
Stefan 2.53 2.35 0.00 0.00 -76.20 -87.40 
News 1.30 1.02 0.00 0.02 -74.90 -91.90 
Coastguard 0.96 0.51 -0.01 -0.01 -78.40 -91.10 
M&D 1.28 0.07 -0.04 0.01 -70.80 -86.60 
Mobile 2.21 0.90 -0.01 -0.01 -81.80 -91.80 
Total/Average 1.68 0.98 -0.01 0.00 -76.23 -89.15 
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3.2.1.4 Performance comparisons 

The comparison hereafter is based on the SAD computational complexity and the 

PSNR value. When compared with other early termination algorithms such as  [47] and 

 [48]. The algorithm presented in  [47] is considered as lossless due to no degradation in 

PSNR with complexity reduction of 16.6% compared to PDS. However, when it 

employs the early jump out technique it will result in -0.033dB PSNR reduction in 

average and 64.5% complexity reduction. While the algorithm presented in  [48] can 

achieve a speedup of 18.7 times compared to PDS by testing one pixel at a time, which 

result in a high PSNR degradation of -0.885dB.  The presented algorithm is superior to 

the above two algorithms in terms of negligible PSNR loss (in average -0.0018dB), and 

also in higher complexity reduction (77.914% compared to PDS). Comparing to  [48], 

our algorithm can achieve a theoretical speedup of 64 times by testing 4-pixels at a time 

rather than 16-pixels (skipping the SAD computations after testing 4-pixel only).  

For other non-early termination algorithms, Table 3.4 presents a comparison between 

our proposed algorithm with recently proposed GEA and QME. It is clear that the 

proposed method can save more computations with negligible quality loss.  

The simplicity and regularity of the proposed algorithms makes it suitable for 

hardware implementation, with low control circuitry, regular data flow, and no special 

circuitry to read pixels in certain form (as Hilbert Scan or different block patterns 

employed in [48]). Also it can be integrated with other fast algorithms such as QME to 

achieve more computation reduction since its PSNR degradation is very low. 
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Table 3.2   Experimental results for MPEG-4 with Spiral scan pattern, Qp = 16, 

and 4mv enabled. 

 Bit rate PSNR 
Test sequence VM 18.0 Proposed CHG_BIT (%) VM 

18.0 
Proposed CHG_PSNR

Foreman 1806074 1818842 0.71 31.8644 31.8641 -0.0003
Stefan 8023412 8157877 1.68 28.4128 28.4085 -0.0043
News 1109574 1113001 0.31 31.9215 31.9281 0.0066
Coastguard 3522424 3534403 0.34 29.1339 29.1293 -0.0046
M&D 668805 669789 0.15 34.0386 34.0355 -0.0031
Mobile 7941210 7970559 0.37 26.3518 26.3463 -0.0055
Total/Average 27349747 27521063 0.63  -0.0018
 Complexity Timing (ME time) 
 VM 18.0 Proposed CHG_COMPL-

EXITY (%) 
VM 
18.0 

Proposed CHG_Time 
(%) 

Foreman 7.19E+08 2.02E+08 -71.919 114 58 -49.1
Stefan 8.02E+08 2.66E+08 -66.853 173 74 -57.2
News 1.48E+09 1.65E+08 -88.882 156 49 -68.6
Coastguard 8.37E+08 2.12E+08 -74.716 116 36 -69.0
M&D 1.38E+09 2.75E+08 -80.062 192 94 -51.0
Mobile 6.06E+08 1.39E+08 -77.081 117 32 -72.6
Total/Average 6.43E+09 1.42E+09 -77.914 868 343 -60.5

 
Table 3.3 Experimental results for H.264 with spiral scan pattern, Qp = 28, 

±32 SR, and RDO disabled. 

 Bit rate PSNR 

Test sequence JM Proposed CHG_BIT (%) JM Proposed 
CHG_PSN
R 

Foreman 3223016 3240832 0.55 37.01 36.97 -0.04
Stefan 13694704 13710984 0.12 35.4 35.37 -0.03
News 2228896 2244720 0.71 38.09 38.07 -0.02
Coastguard 11279688 11231760 -0.42 34.52 34.51 -0.01
M&D 1382624 1382808 0.01 38.93 38.92 -0.01
Mobile 17495736 17458936 -0.21 33.76 33.74 -0.02
Total/Average 49304664 49270040 -0.07  -0.02
 Complexity Timing (ME time) 

 JM Proposed 
CHG_COMPL
EXITY (%) JM Proposed 

CHG_Time 
(%) 

Foreman 3.07E+10 1.66E+10 -45.89 1841 1111 -39.7
Stefan 5.43E+10 2.74E+10 -49.47 3686 1986 -46.1
News 2.83E+10 1.52E+10 -46.35 1694 1118 -34.0
Coastguard 6.78E+10 3.08E+10 -54.49 4165 1981 -52.4
M&D 2.86E+10 1.40E+10 -50.92 1697 1099 -35.3
Mobile 5.37E+10 2.60E+10 -51.59 3835 2044 -46.7
Total/Average 2.63E+11 1.30E+11 -50.60 16918 9339 -44.8
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Table 3.4  Comparison for different algorithms 

 
Test sequence CHG_BIT 

Foreman 
GEA 

(Δ % )  [45] 
QME 

(Δ %)  [46] 
Proposed 

(%) 
Stefan 0.77 0.41 1.20 
News 0.85 0.15 1.87 

Coastguard 0.45 0.34 0.67 
M&D 0.95 0.09 0.31 
Mobile 0.67 0.48 0.61 

 0.29 0.12 0.48 
 CHG_PSNR 
 GEA 

(ΔdB )  [45] 
QME 

(ΔdB)  [46] 
Proposed 

(Δ dB) 
Foreman -0.0222 -0.0059 -0.0046 
Stefan -0.0317 -0.0123 -0.0077 
News -0.0384 -0.0176 -0.0062 

Coastguard -0.0018 -0.0003 -0.0058 
M&D -0.0665 -0.0234 0.0112 
Mobile -0.0027 0 -0.0078 

 CHG_COMPLEXITY 
 GEA 

(Δ % )  [45] 
QME 

(Δ %)  [46] 
Proposed 

(Δ %) 
Foreman -66.41 -60.49 -83.88 
Stefan -69.40 -67.41 -85.37 
News -39.09 -66.86 -91.31 

Coastguard -72.92 -65.21 -87.92 
M&D -58.99 -39.86 -85.56 
Mobile -73.24 -59.36 -90.17 

 

3.3 Exploration of Architectures 

The motion estimation process represents a heavy burden on any general purpose 

processor. One feasible solution to reduce this burden is to map the motion estimation 

algorithm to a dedicate hardware, which works in parallel with the general purpose 

processor.  This dedicate hardware may support one or more algorithms. Many 

researchers worked on this issue, and many hardware implementations for different 

algorithms were presented to support full search and fast search algorithms. In this 

subsection, a brief survey of different architectures will be presented followed by the 

architecture implementation for the proposed algorithm mentioned above. 

Comprehensive survey for the architectures can be found in  [15] and  [75].   
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3.3.1 ME Architectures – an overview 
Many FSBMA architectures were developed due to the regularity of data flow. 

Most of them belong to systolic arrays  [49] composed of locally connected processing 

elements (PEs). In  [50], Komarek and Pirsch contributed a detailed systolic mapping 

procedure to derive FSBMA architectures. In  [51], Vos and Stegherr proposed a 2-D 

semi-systolic array with an adder tree. In [52], Yang, Sun, and Wu implemented the 

first VLSI motion estimator in the world. In  [53], a powerful FSBMA chip with 1024 

PEs to provide computational capability of 165GOPS was designed.  

 

Fast ME algorithms can reduce the heavy computation burden of FSBMA with 

acceptable video quality loss. The challenges of architecture design for fast ME 

algorithms include unpredictable data flow, irregular memory access, difficult mapping 

to systolic arrays, low hardware utilization, and sequential procedures with data 

dependence that cannot be parallelized. 

In  [54], Jong, Chen, and Chiueh developed a fully pipelined parallel architecture 

for the three step search BMA. In  [55], Dutta and Wolf modified the data flow of the 1-

D linear array in [52] to support FSBMA, three step search, and conjugate direction 

search on the same architecture. In  [56], Lin, Anesko, and Petryna proposed a joint 

algorithm-architecture design of a programmable motion estimator chip. Various 

algorithms are implemented through a search strategy with macro-commands that can 

be executed efficiently on the chip. Many designed can be found in  [57],  [58],  [59], 

 [60].  

3.3.2 Proposed Architecture 

3.3.2.1 Hardware oriented modification 

The hardware design should consider three issues: supporting MPEG-4 and H.264 

simultaneously, supporting variable block size ME simultaneously, and motion vector 

predictor. The first issue is easily to be solved by supporting all modes of H.264 since 

block size of MPEG-4 is only a subset of H.264. The second issue can be solved by 

accumulating the SAD of the smaller block size to generate the SAD of larger block 

size, as adopted in many designs  [61]  [62]. By adopting this approach, the motion 

vector predictor within the macro block will depend on each other since predicted MV 
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is the medium value of the MVs of the top left, top, and top right, as addressed in  [61] 

 [62]. Thus, in our architecture the exact MV predictor for all kind of sub-blocks modes 

is replaced by that of mode 1 (16x16). This constraint will result in a slightly degrade in 

PSNR and increase in encoded bit stream. Table 3.5 shows the results when emulating 

the hardware by setting the MV predictor to mode 1(16x16), also accumulating the 

SAD of the smaller block size to generate the SAD of larger block size.  

The early termination will be held whenever the partial SAD for mode 1 is equal to 

or greater than SADTH. The termination will also hold for other modes, which will result 

in error in determining the correct MV for each mode. This can be compensated by 

disabling the termination process if the tested lines of the MB are more than predefined 

count. Table 3.6 shows the effect of disabling the termination at different number of 

lines. The results are compared to the hardware results for PSNR, and encoded bit 

stream, not to the original JM9.0. Our proposed hardware implementation will terminate 

whenever the PSAD is greater than their accumulated threshold SADTH and will start at 

the next search point. 

Table3.5   The results of applying the hardware (H/W) conditions to JM9.0, Qp = 

28, ±32 SR, and RDO disabled 

 PSNR Bit Rate 
Test 
sequence JM9.0

H/W 
emulation CHG_PSNR JM9.0 

H/W 
emulation 

CHG_BIT 
(%) 

foreman 36.24 36.21 -0.03 4996192 5043360 0.9 
Stefan 35.39 35.38 -0.01 13831760 14094144 1.9 
news 38.1 38.09 -0.01 2244480 2302520 2.6 
coastguard 34.53 34.5 -0.03 11297480 11178392 -1.1 
M&D 38.95 38.95 0 1384408 1389800 0.4 
mobile 33.76 33.72 -0.04 17524048 17659752 0.8 
Total  -0.02 51278368 51667968 0.8 

 
Table 3.6  The effect of disabling termination after certain number of lines 

compared to the hardware simulation results. 

# of lines, after 
which no 
termination CHG_PSNR

CHG_BIT 
(%) 

CHG_COMPL-
EXITY (%) 

10 lines 0.01 -1.17 -61.14 
11 lines 0.00 -0.94 -62.45 
12 lines 0.01 -0.98 -63.41 
13 lines 0.01 -0.75 -64.03 
14 lines 0.01 -0.60 -64.44 
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Fig. 3.6 Block diagram of the proposed architecture. 

3.3.2.2 Architecture design  

The simplicity of the algorithm leads to a simple and an efficient hardware 

implementation which employ the full search scan. Since the early termination scheme 

relies on testing one line of the MB at a time, the proposed architecture adopts the 1-D 

array architecture for SAD computation.  The block diagram of the proposed 

architecture is shown in Fig. 3.6. The current MB buffer and search range buffer store 

the data to reduce external memory communication. The ME unit will do the SAD 

computation for all sub-blocks at the same time, and sends the results to the compare 

and select unit (CS). When a termination occurs, a ‘SKIP’ signal will be generated and 

sent back to the control unit, which will send a signal to ME unit to flush all registers, 

and for the search range buffer to advance by one MB.  

Fig. 3.7 shows the circuit diagram of the ME unit, it consists of 16-absolute difference 

(AD), an optimized shared adder tree, accumulators to accumulate the SAD for each 

sub-micro block (AC0 to AC8), a total of 16 SAD registers to save the accumulated 

SAD for each mode as will be shown later. As shown in Fig. 3.8, one line of SAD is 

part of 4-sub block of mode 7 (4x4), 4-sub blocks of mode 6 (4x8), 2-sub blocks of 

mode 5 (8x4), 2-sub blocks of mode 4 (8x8), 2 sub blocks of mode 3 (8x16), 1-sub 
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block of mode 2 (16x8) and finally one block of mode 1 (16x16). So the architecture 

serves the number of registers accordingly. The registers R70 ~ R73 will accumulate the 

SAD for mode 7 (sub blocks 00 ~ 15 as shown in Fig. 3.3 (a)), while the registers R60 ~ 

R63 will accumulate the SAD for mode 6, registers R50 and R51 will accumulate the 

SAD for mode 5, and so on for the other registers. The size of every register depends on 

the sub-block it serves by taking into account the maximum SAD could be resulted. 

Registers R70 ~ R73 are 12-bits, R60 ~ R63, R50 and R51 are 13-bits, R40 and R41 are 

14-bits, while R30, R31, and R20 are 15-bits, and finally R10 is 16-bits register. 

As shown in Fig. 3.7, the current and reference data are 16-pixeles inputted in parallel at 

a time to the AD unit. The resulted partial SAD from each AD will be added by the 

optimized shared tree adder and end up with SAD of one line. Accumulators AC0 to 

AC3 will accumulate the SAD for mode 7 and mode 6, while AC4 and AC5 will 

accumulate the SAD for mode 5. AC6 and AC7 will accumulate the SAD for modes 4 

and 3, while AC8 accumulates for modes 2 and 1. 

The resulted SAD for every sub-block of every mode will be submitted to the compare 

and select (CS) circuit to generate the final motion vector for each sub-block of every 

mode. The sub-blocks of mode 7 and mode 5 will be generated every 4 clock cycles, 

while that of mode 6, 4 and 2 will be generated every 8 clock cycles, and finally mode 3 

and 1 will be generated every 16 clock cycles.  Accordingly the data stored in registers 

R70~R73, R50 and R51 should be submitted to CS unit and reset the registers to zero in 

order to start accumulate SAD for the new sub-blocks every 4 clock cycles. Registers 

R60~R63, R40, R41 and R20 should be submitted to CS unit, and reset the registers to 

zero every 8 clock cycles. Registers R30, R31 and R10 will submit the SAD 

accumulated to CS unit and reset to zero every 16 clock cycles. Table 3.7 shows the 

modes generated every 4 clock cycles. 
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Fig. 3.7 ME unit internal design. 

 

 

Fig. 3.8 Spatial overlapping between different modes. 
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Table 3.7  Modes generated every 4 clock cycles* 

Clock cycle 
number 

Modes generated and submitted to CS unit. 

4 Mode7(00,01,02,03), Mode5(b0, b1 ) 
8 Mode7(04,05,06,07), Mode6(a1,a2,a3,a4), 

Mode5(b2,b3), Mode4(c0,c1) and Mode2(e0). 
12 Mode7(08,09,10,11), Mode5(b4,b5) 
16 Mode7(12,13,14,15), Mode6(a6,a7,a8,a9), 

Mode5(b6,b7), Mode4(c2,c3), Mode2(e1), 
Mode3(d0,d1) and Mode1 

* The labels are as indicated in Fig. 3.3 (a) 
 

Table 3.8  Clock cycles consumed to finish 16x16 search window for 50 frames. 

Test 
sequence 

No 
termination Proposed CHG_ClockCycle (%) 

Average 
clock 
cycles/SR 

foreman 14586922 4083958 -72.00% 1147 
stefan 14586922 3929368 -73.06% 1103 
news 14586922 3188245 -78.14% 895 
caostguard 14586922 4845678 -66.78% 1360 
M&D 14586922 2766542 -81.03% 777 
mobile 14586922 3244230 -77.76% 911 
Average  -74.78% 1032 

 

Compare and select (CS) unit will compare the SAD of every sub-block, and 

generate 41 motion vector in case of H.264 or one motion vector in case of MPEG-4. 

Also the CS unit will monitor R10 every clock cycle and test it with the threshold value 

derived from the minimum SAD for mode 1. If the partial SAD stored in R10 is equal to 

or larger than the threshold value, a ‘SKIP’ signal will be generated to the control unit, 

which in turn will reset all registers and advance to the next MB in search window and 

start doing the SAD computation for the new searching point. 

3.3.2.3 Architecture Implementation  

The architecture described has been designed by using VERILOG and synthesized by 

SYNOPSYS design Compiler with UMC 0.18um CMOS standard cell library.  The 

gate count is 16 K and the operated frequency is 86.8 MHz. this architecture can 

process 720×480 @15 fps video size without applying any termination process. If we 

assume the termination process will save only 50% of complexity as a worst case, 

then we can process the same video size @ 30fps. The design can be pipelined by one 
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stage to raise the operating frequency if needed to process large video sizes. Table 3.8 

shows the clock cycles needed to finish one search range. 

3.3.2.4 Performance Comparisons 

An exact comparison is complicated by the fact that these have been implemented with 

different technologies and exhibits variations in their specifications and capabilities.  

The architecture in  [61] using 1-D array with 16-PE, each PE can process one MB 

candidate in 261 clock cycle. The 16-PE will process the 16x16 search window in 

approximately 4176 clock cycle with the cost of 208 register and 32 adders. While the 

architecture in  [62] is a 2-D array, to process one MB in one clock cycle, followed by 

adder tree to generate other mode’s SAD. The proposed architecture process one MB in 

16 clock cycle, and scan 16x16 search window in 4096 clock cycle (without any 

termination process and an average 1032 clock cycles with termination process) using 

only 16 registers and 31 adders. Table 3.9 shows the comparison between the proposed 

architecture and other works. 

 
Table 3.9  Comparison of some VBSME core 

  [61]  [62] This work 
PE numbers 1D array with 16 PE 2D array with 256 PE One PE 
Process 0.13 um 0.35 um 0.18 um 
Voltage 1.2 N/A 1.8 
Frequency 294 MHz 66.67 MHz 86.8 MHz 
Gate count 61k 91k without the 

internal memory 
16k 

Average 
Cycles/SR 4176 1583 *4096 

* This value in case of no termination process, when applying termination it will be in 
average 1032 

3.4 Summary 

To reduce the motion estimation burden represented by the extensive computations 

needed to find the target motion vector, a fast algorithm and its architecture were 

presented to reduce this burden by reducing the amount of the computations required to 

process one search window. 

The proposed algorithm adopted PDE to early terminate the candidate position by 

applying a test based on threshold value. If the candidate position generated a distortion 

larger than threshold at any instant of time, the process will be terminated and the 
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remaining computations will be skipped. The key point is that the threshold value is 

adaptively updated and modified during the matching process. This adaptively changing 

threshold can give more chances to some candidate positions to be tested and gets more 

accurate motion vector. Moreover, the algorithm showed a good performance when 

applied to variable block size motion estimation, which degrades any early termination 

algorithm. The proposed algorithm outperformed other similar algorithms, achieving a 

complexity reduction of 78% and 51% for MPEG-4 and H.264 respectively. 

The corresponding architecture adopted tree-adder architecture to implement the 

proposed algorithm. The architecture supports the variable block size, and the early 

termination scheme. The hardware design will degrades a little of the performance due 

to some limitations of the hardware considerations.  

The architecture described has been designed by using VERILOG and synthesized 

by SYNOPSYS design Compiler with UMC 0.18um CMOS standard cell library.  The 

gate count is 16 K and the operated frequency is 86.8 MHz. this architecture can process 

720×480 @15 fps video size without applying any termination process. If we assume 

the termination process will save only 50% of complexity as a worst case, then we can 

process the same video size @ 30fps. The design can be pipelined by one stage to raise 

the operating frequency if needed to process large video sizes. Table 3.8 shows the 

clock cycles needed to finish one search range. 
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Chapter 4 Data Reuse Exploration 

Between Vertical Adjacent 

Macro Blocks. 

4.1 Introduction 

Power consumption of multimedia applications executing on embedded systems is 

heavily dependent on data transfers between system memory and processing units. 

Efficient exploitation of temporal locality in the memory accesses on array signals can 

have a very large impact on the power consumption in embedded data dominated 

applications, especially for motion estimation.  

In motion estimation (ME), in order to find the best matched candidate and its 

corresponding motion vector (MV), a search window within one reference frame has to 

be searched. The traffic between frame buffer and ME core is very heavy (in the order 

of TB/s for SDTV videos). The instruction profiling shows that 2.76 tera-operations/s 

(TOPS) of computational loading and 4.25 tera-bytes/s (TB/s) of memory access are 

required for real-time encoding SDTV (YUV420, 720x480, 30fps) videos (JM8.5, 

baseline options, full search, four reference frames, search range [-32, +31]). It 

consumes too much power and is not achievable in today’s VLSI technology. The 

common solution is to design local buffers to store reusable data. By means of local 

memory access, the external memory bandwidth can be greatly reduced. Four data reuse 

strategies have been proposed with different tradeoffs between local memory size and 

system bus bandwidth, and are indexed from level-A to D [64],  [74]. Data reuse concept 

can be explored to reduce this amount of data transfer. Minimizing accessing the main 

system memory will result in reducing the power consumed by such a huge memory 

system, and also will avoid the latency to acquire data from the main memory. 
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Moreover, reducing the memory access will result in reducing the interconnection 

power consumption. 

Recently, to reduce the number of memory accesses in one search block, a block 

matching method within a search area to reuse the search data is provided using systolic 

process arrays. To further reduce the data access and computation time during the block 

matching, the data shared between search range windows explored. Only 1/3 of the 

search window data need to be accessed after processing the first macroblock  [62]. 

More data reuse can be explored through the reuse of the previously-search data in two 

dimensions as addressed in  [63]. Parallel processing in the horizontal direction will 

speed up the ME process, also will reduce the memory access by reusing shared data 

between the adjacent search windows. This approach to reduce the memory access 

demands more buffer memory, while we can achieve the same memory access reduction 

by implementing Level C of data reuse scheme with less buffer memory. The proposed 

approach address the vertical processing for more than two processing elements to 

achieve higher processing speed for high end applications, also to further reduce the 

memory access compared to the horizontal parallel processing.   

 

This Chapter is organized as follows. First, we briefly introduce the data reuse 

within the motion estimation algorithm, and explore the different levels of data reuse. 

Then we propose an algorithm to explore more data reuse with less system resources, , 

Its associated hardware implementation is also presented. Finally, a summary will be 

given in section 4.4. 

 

4.2 Data reuse in the motion estimation  

Motion estimation searches the reference frame for a candidate block to match the 

current block with minimum distortion error. This process will access both the current 

and the reference frame for pixels more than once. These pixels can be reused by saving 

them on a local memory, rather than accessing them from the main memory system. 

Four levels of data reuse are introduced and discussed in  [64],  [74] in details. Level A 

reuses the shared pixels between adjacent candidate blocks, while Level B achieves 

more data reuse by reusing shared pixels among adjacent strips of candidate blocks 

within one search window. Pixels shared between adjacent search windows will save 
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more memory access by reusing them. Level C of data reuse explores the shared data 

between adjacent search windows, while Level D explores those shared pixels between 

adjacent strips of search windows. Unfortunately, saving more memory access will 

come with the expense of implementing larger buffer memory on chip. This amount of 

buffer memory will differs from one architecture design to another. Fig. 4.1 shows the 

geometry of the four reuse levels. 

Table 4.1 summaries for each reuse scheme the Redundancy Access Count Ra and the 

required memory size needed to apply each Level scheme in case of using single PE to 

process one candidate block. Ra represents the average access count per pixel in FSBM 

processing, with a smaller value indicating greater reduction of memory bandwidth.   It 

is clear that, to reduce the data redundancy, more buffer memory is needed. From Table 

4.1, Level D achieves the minimum memory access by one-access for every pixel in the 

reference frame. However, the amount of the buffer memory needed is high. In our 

approach, we want to get as close as to Level D in low memory access, with minimum 

buffer memory by vertical parallel processing of adjacent candidate macro blocks.  

4.3 Data reuse and parallel processing of 

vertical blocks. 

In the previous sections we review four levels of data reuse, namely Level A, B, C 

and D. Among the four levels, Level C scheme is often used because it is easy to reuse 

the horizontally overlapped region between two adjacent search regions. The required 

local memory size for the reference frame in Level C scheme depends on the detailed 

implementation of ME architecture. In general, the buffer size in this level is equal to 

one search range size. As for the Level D scheme, it can minimize the memory access 

by fully reusing the horizontally and vertically overlapped search regions but with a 

huge local memory size, (W+SRH-1)×(SRV-1)+(SRH-1)×N where W is the width of the 

frame, and SRH and SRV are the horizontal and vertical size of the search window. The 

required buffer size could be as large as one frame size. 
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Table 4.1  Redundancy access count and buffer size needed by each reuse level. 

 Redundancy Access Count Buffer memory size in bytes 
Level A. 

SR
SR

NV
H× +

⎛
⎝⎜

⎞
⎠⎟1  

N×(N – 1) 

Level B. 
1 1+
⎛
⎝⎜

⎞
⎠⎟ × +

⎛
⎝⎜

⎞
⎠⎟

SR
N

SR
N

H V  
(N + SRH)×(N - 1) 

Level C. 
1+⎛
⎝⎜

⎞
⎠⎟

SR
N

V  
(N+SRV-1)×(SRH-1) 

Level D. 1 (W+SRH-1)×(SRV-1)+(SRH-1)×N 
 
 

 
Fig 4.1 Four data reuse levels (a) Level A (b) Level B (c) Level C and (d) Level D. 

 
For today’s high quality video sequence, it’s impossible to execute motion estimation 

with only one PE to meet the real time constraints. Parallel processing is the solution for 

this issue. Using more than one PE will also affect the amount of memory required in 

every reuse Level scheme. For example, 2-D systolic array with 256 PE's will eliminate 

the need for the current block buffer (N×N). Parallel processing may not only applied to 

the same current block, but also to process more than one adjacent current block at the 

same time. Processing adjacent blocks in parallel will explore two levels of data reuse, 

namely Level C and D. To improve the data reuse to be close to the Level D without too 

large buffer cost, the design in  [63] explores the data reuse in both directions, which is 

classified in  [65] to be Level C+ scheme. Their design processes four current blocks at 
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the same time, two at the horizontal direction and two at the vertical direction. Thus, the 

search range data can be reused not only at the horizontal direction as that in Level C 

but also at the vertical direction. However, their scheme just reduces the number of 

memory access by one. Every overlapped search range stripe will still be accessed twice 

as shown in Fig. 4.2 (one access for each search range). Thus, it is still far away from 

the Level D reuse scheme: one time access. Besides, this data reuse scheme will not be 

beneficial when dealing with large search regions for large video sizes like HDTV. For 

example, for ±16 search range, each stripe needs to be accessed twice for the design like 

 [63] (i.e. Fig. 4.2). While for ±32 search range, each line will be accessed three times 

due to larger overlapped regions.  Thus, for larger search range, the scheme in  [63] still 

needs large number of data access.  

To further improve the data reuse to approach the Level D reuse scheme, we propose 

a general approach that adopts multiple vertically adjacent current blocks for parallel 

searching and share their overlapped search range. When the parallelism is increased, 

the required memory access will approach to that in the Level D scheme. Therefore, this 

approach can be regarded as a general method to implement the Level D like reuse 

scheme. 

 

Fig. 4.2 Memory access diagram in  [63]. The overlapped search region (gray part) 

will be accessed twice. Each block in the diagram denotes one MB. 
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To demonstrate its effectiveness, we also design a motion estimation architecture 

that can efficiently implement the approach. The resulting design can easily achieve real 

time SDTV processing and needs lower bandwidth than previous designs with small 

buffer size increase. 

4.3.1 Proposed data reuse scheme 

As mentioned in the previous section, the level D scheme can effectively reduce the 

memory access to only once. However, the main problem with this level is the huge 

buffer memory required. Thus, our proposed scheme is to be midway between saving 

more memory bandwidth and using less buffer memory through the use of multiple 

current blocks arranged vertically and working in parallel in horizontal direction. With 

this, Level D scheme can be applied partially to those overlapped search range.  

Fig. 4.3 shows an example with five current blocks. In this example, since five current 

blocks are processed simultaneously, the central overlapped search range of these 

current blocks will only be accessed once for the ME processing. Only the top and 

bottom boundaries of the search range overlapped with vertical adjacent ME processing 

will be accessed twice. The one-time access region can be increased with more parallel 

processed blocks to save more memory bandwidth, but this will also increase the 

required buffer cost.  

 

Fig. 4.3 Proposed scheme with five current blocks 
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Table 4.1 shows the search range buffer cost and the average number of memory 

access for different number of current blocks. The required buffer cost increases linearly 

with the number of current blocks. Each additional current block will increase the 

memory size by (16+2P) ×16 bytes (where the size of the MB is 16×16 and P is half of 

the search range), but this is still much smaller than that in Level D scheme. The 

average number of memory access is also higher for larger search range but it is reduced 

significantly with more parallel processed current blocks. 

These numbers of memory access can be derived as followings. When using single 

current block and ±16 search range, the number of memory access per MB is 3H’-2 (H’ 

= H/16, and H is the height of the image frame). For two current blocks and above the 

access times will be according to the following simple equation: [(H’(Nc+2)/Nc)-

2Nc+2] (where Nc is the number of current blocks used in the design). Meanwhile For a 

single current block and ±32 search range, the average number of memory per MB is 

5H’-6. For two current blocks this will be 3H’-4, and for three current blocks this will be 

7H’/3-4, and for four current blocks and above this will be [(H’(Nc+4)/Nc)-2Nc+4]. 

Table 4.1  Number of access and search range buffer size for different number of 

current blocks. 

* Assuming the frame height is much larger than block height (16 pixels) 

 

Fig. 4.4(a) shows the comparison of number of memory access with the single 

current blocks. As the number of current blocks is increased, the number of memory 

access decreases quickly and we can achieve partial Level D scheme of data reuse. This 

comes with an extra buffer size for every added MB, which is the usual cost for the data 

no. of 
current 
blocks 

Average no. of 
accesses of one 
MB stripe* SR buffer size in bytes 

Current MB 
buffer size  

 ±16 SR ±32 SR ±16 SR ±32 SR  
1 3 5 3x3xNxN 5x5xNxN 256 
2 2.00 3.00 4x3xNxN 6x5xNxN 512 
3 1.67 2.33 5x3xNxN 7x5xNxN 768 
4 1.50 2.00 6x3xNxN 8x5xNxN 1024 
5 1.40 1.80 7x3xNxN 9x5xNxN 1280 
6 1.33 1.67 8x3xNxN 10x5xNxN 1536 
7 1.29 1.57 9x3xNxN 11x5xNxN 1792 
8 1.25 1.50 10x3xNxN 12x5xNxN 2048 
9 1.22 1.44 11x3xNxN 13x5xNxN 2304 
10 1.20 1.40 12x3xNxN 14x5xNxN 2560 
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reuse. As shown in Fig. 4.4(b) the percentage increase in buffer size compared to single 

block is increasing, but the percentage increase for ±32 search range is less than that for 

±16 search range. We can draw from above; our proposed architecture can achieve 

lower memory access with lower percentage increase in search range buffer size for 

larger search ranges, which is more suitable for large video sizes with better quality. 

When compared with previous design, the proposed scheme can save a lot of memory 

bandwidth, as shown in Table 4.2. In  [63], it explores the processing of more than one 

current block in both horizontal and vertical direction to make use of the shared data 

between overlapped search regions. In our approach, we expand the parallelism only in 

the vertical direction that works in parallel in horizontal direction. As an example, for 

CIF size (352x288) and ±16 search range, using the architecture of  [63], the number of 

reference data pixels accessed from the reference main memory for one frame will be 

almost (2x288-2x16)x352 = 191488. By applying our scheme to the same conditions as 

above but with the four-current blocks in the vertical direction, the number of reference 

data pixels accessed from the reference main memory for one frame will be (6x288/4-

6x16)x352 = 118272, which are 38% lower. The extra SR buffer memory is only 12.5% 

larger than that in  [63].  

 
Table 4.2 Comparisons for CIF format, search range ±16 and using 4 PE. PE is 

assumed to be 1-D array.  

Design 
pixels 
accessed/frame 

SR buffer 
(bytes) 

Single current block 304128 3x3xNxN 
 [63] 191488 4x4xNxN 
proposed 118272 6x3xNxN 

  

Table 4.3 Memory access cycles for different number of current blocks in the 2-D 

array case. 

Number of 
current blocks 1 2 3 4 5 6 7 8 9 10 

Clock cycles 
for 32-bits bus 576 760 960 1152 1366 1536 1728 1920 2112 2304 
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4.3.2 Architecture Design 

4.3.2.1 Consideration for Parallelism. 

The limitation of number of current blocks is the data availability for such 

parallelism, which could be determined by system bandwidth. A trade off between the 

SAD processing elements (PE) and system data width should be made carefully to 

insure smooth and un-interrupted processing, which strongly depends on the ME 

architectures. In ME architectures, two styles of designs are often used, 1-D and 2-D 

systolic arrays. A 2-D systolic array presented in  [62] will process every candidate 

position in one clock cycle, with a latency of 16- clock cycles for the first candidate 

position. It can complete the ME process of one search range in 1,536 clock cycles. 

Now, if the main system data bus width is 32-bits, and we use one 2-D array for one 

current block, the clock cycles needed to fill the search range data for different number 

of current blocks can be tabulated in Table 4.3 (as an extreme case we consider filling 

the full search range buffer with data, rather than considering filling only 1/3 of the 

search range buffer). It is clear that for more than six current blocks the available data 

rate will be less than that needed by the 2-D array and results in idle hardware 

utilization. So for 2-D array designs, we can limit the design to no more than six parallel 

current blocks. For the 1-D array, it processes every candidate position in 16 clock 

cycles, and a total of 16,384 clock cycle to scan all the search range. Similar limitation 

can be derived to determine the maximum available parallelism.  

4.3.2.2 Architecture Design. 

In the architecture design of the proposed scheme, the most critical issue is how to 

distribute the search range data without too much overhead. For easy data distribution, 

we divide the search range in the unit of MB height (i.e. 16 pixels height) since each 

ME processing is overlapped by one MB height. Thus, for the case of ±16 search range 

and four parallel current block processing, the total data can be divided into six smaller 

search range buffers, as shown in Fig. 4.5. Each buffer is 16-pixels height and 48-pixels 

width (which is 1/3 of the search range data for ±16 search range) and the total search 

range buffer size is 48×96 words. Since each overlapped search range region is 

allocated into single buffer, the data can be easily shared between different processing 

units. Thus, each PE will connect to three search range buffers and share these data. 

This configuration can minimize the wiring connection between different PE’s and the 



 71

memory modules and will also simplify the addressing and control circuit. Besides, this 

also avoids data conflict by reading from two different positions from the same memory 

module by two PE’s and thus eliminate the use of multi port memories. 
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Fig. 4.4 (a) Percentage of number of memory when normalized to one current 

block, (b) the percentage increase in buffer memory size normalized to one current 

block. 
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Fig. 4.5 shows the block diagram of the architecture for four parallel current blocks 

processing that contains four PE’s, six search range buffers (M0 to M5), four current 

block buffers (CB0 to CB3) and finally four 128-bits multiplexers to exchange data 

between two memory modules. The proposed design can be easily scaled for higher 

processing rate by directly add one more PE, current block buffer and 1/3 of the 

associated search range buffer. Fig. 4.6(a) shows the block diagram of each PE. It 

consists of two small data exchanged PE’s, PE_a and PE_b, which include two absolute 

difference blocks (AD_a and AD_b), and two SAD accumulation blocks.  

 
Fig. 4.5 Block diagram for the proposed architecture with 4-PE’s. 
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(C) 

Fig. 4.6 (a) Detailed block diagram of PE.(b) block diagram of absolute different 

block (c) block diagram of SAD accumulation block, where AC denotes the 

accumulator and R denotes the registers. 

 
The data exchange between the absolute difference blocks and the SAD 

accumulation blocks is done by two 40-bits multiplexers mux_a and mux_b. With this, 

each PE can compute two SAD’s at the same time, one for top half of the search range, 

and one for the bottom half of the search range. Both generated SAD's will be 

forwarded to the same compare and select circuit. To facilitate such computation and 

ease search range data sharing, the reference data of absolute difference blocks are from 

different sources, one from the center 1/3 of the search range (i.e. AD_a in PE0 is 

connected to M1) and one from the rest of search range (i.e. AD_b is connected to M0 

and M2 by the multiplexer MUX0). The output from the absolute difference blocks will 

be directed to its proper accumulator and its associated register by the multiplexers. The 

detailed circuit diagram of the PE is shown in Fig. 4.6(b) and (c).Each small PE is a 1-D 

array that can process 16-pixles in one clock cycle and support variable block size ME 

in H.264 with the tree structure addition. The output from the PE will be directed to the 

compare and select circuit to generate the final motion vector.  
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Fig. 4.7 PE operation for the (a) first candidate position and (b) second candidate 

position showing the data multiplexing between both PE’s. 

 
Fig. 4.8 Mapping of memory modules to the search range for every PE. 

 

The operation of the proposed architecture is described below, as illustrated in Fig. 

4.7 and Table 4.7. The numbers shown beside every memory modules in Table 4.7 

represent the pixel lines as numbered in Fig. 4.8 (i.e. 2-15/M0 means processing the 

lines 2 to 15 from the search range which is located in memory module M0, and 32-

33/M2 processing lines 32 to 33 from the search range which is located in memory 

module M2). Below we will describe the process of PE0 as an example, which is the 

same for all PE’s in the architecture. First, for processing the first candidate position, 

PE_a will get the reference data from M0, and PE_b will get its data from M1 as shown 
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in Fig. 4.7(a) and Table 4.4. When proceeding to the next candidate position (we use the 

vertical direction first scan order), PE_a will process the first 15-lines from M0, while 

the last line is located in M1 (the shaded strip S1 as shown in Fig. 4.7) and the same 

condition is also applied to PE_b (the shaded strip S2). Thus, PE_a can’t process the last 

line which is located in M1 because it is not connected to that memory module, but 

PE_b can process it. Similar condition also happens to PE_b. Therefore PE_b will 

process the last line associated for PE_a which is located in M1 and the result will be 

directed to reg_a through MUX_a as shown in Fig. 4.6(a). A similar operation is also 

done in PE_a. Finally, reg_a will hold the absolute difference for the top candidate 

position, and reg_b will hold the absolute difference for the lower candidate position. 

During the process, though we switch the process between two PE’s and different 

memory modules, the addressing for the current block buffer and search range buffer 

are not changed, which simplifies the addressing and control circuit. 

With above scheduling, the proposed architecture can complete the ME process in 

(16×16×16)/2 (two small PE’s) = 2048 clock cycles for four parallel current blocks with 

±16 search range for each block. Thus, we can generate one MV for 512 cycles in 

average, which is more than the performance of the 2-D array case. 

Table 4.4 Timing and data accessed from different memory modules for every PE. 
Time slot 0 1 2 3 … 14 15 

PE_a 0-15/M0 1-15/M0 
32/M2 

2-15/M0 
32-33/M2 

3-15/M0 
32-34/M2 … 14-15/M0 

32-46/M2 
15/M0 
32-47/M2 PE0 

PE_b 16-31/M1 17-31/M1 
16/M1 

18-31/M1 
16-17/M1 

19-31/M1 
16-18/M1 … 30-31/M1 

16-30/M1 
31/M1 
16-31/M1 

PE_a 16/31/M1 17-31/M1 
48/M3 

18-31/M1 
48-49/M3 

19-31/M1 
48-50/M3 … 30-31/M1 

48-62/M3 
31/M1 
48-63/M3 PE1 

PE_b 32-47/M2 33-47/M2 
32/M2 

34-47/M2 
32-33/M2 

35-47/M2 
32-34/M2 … 46-47/M2 

32-46/M2 
47/M2 
32-47/M2 

PE_a 32-47/M2 33-47/M2 
64/M4 

34-47/M2 
64-65/M4 

35-47/M2 
64-66/M4 … 46-47/M2 

64-78/M4 
47/M2 
64-79/M4 PE2 

PE_b 48-63/M3 49-63/M3 
48/M3 

50-63/M3 
48-49/M3 

51-63/M3 
48-50/M3 … 62-63/M3 

48-62/M3 
63/M3 
48-63/M3 

PE_a 48-63/M3 49-63/M3 
80/M5 

50-63/M3 
80-81/M5 

51-63/M3 
80-82/M5 … 62-63/M3 

80-94/M5 
63/M3 
80-95/M5 PE3 

PE_b 64-79/M4 65-79/M4 
64/M4 

66-79/M4 
64-65/M4 

67-79/M4 
64-66/M4 … 78-79/M4 

64-78/M4 
79/M4 
64-79/M4 

 

4.3.2.3 Implementation  

The proposed architecture has been designed by using VERILOG and synthesized 

by SYNOPSYS design Compiler with UMC 0.18um CMOS standard cell library.  

The gate count is 61 K and the operated frequency is 154 MHz in the worst case. In 
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which, the gate count for single PE is almost 16 K. The critical path for the 

architecture is 6.49 ns. Thus, with 512 cycles per MV processing rate, this 

architecture can process 300,781 MB/sec which is able to process 1280×1024 @30 

fps video size in real time.  

4.3.3 Design comparisons  

The system presented in  [63] uses four current blocks processing to reuse the data 

shared between adjacent search memories in two columns and two rows. The speedup 

for this architecture will be four times faster than single PE. Though data in the 

horizontal directions can be reused well, data reuse between adjacent vertical search 

ranges is still poor. Such access redundancy can be efficiently removed in our design. 

As we showed above, our proposed system reduces the memory access times by 38% 

compared to  [63] using the same number of PE’s. Table 4.5 shows the architectural 

comparison with other ME designs in  [62] and  [61]. All these designs can support the 

variable block size ME in H.264. The gate count of our design is similar to that in the 1-

D array  [61], and much less than that in 2-D array  [62]. Meanwhile, with the new data 

reuse scheme, the required data bandwidth is reduced by 61%, which is much lower 

than that in both designs.  

Table 4.5  Comparison between our scheme and others for 352×288 CIF 

format, search range ±16 and using 4 current blocks, where N is assumed to be 16.  

PE #  [62]  [61] proposed 
process technology 0.35um 0.13um 0.18um 
Gate count 106K 61K 61K 
Max. Frequency 66.67MHz 294 MHz 154 MHz 

Architecture 2-D array 1-D array Four 1-D array 
Memory access/frame* 
(32-bits data bus width) 76,032 76,032 29,568 (-61%) 

Cycles to process one frame 608,256 3,244,032 
(+433.3%)

811,008 
(+33.3%) 

Search range buffer size* 3N×3N 3N×3N 3N×6N 
Current block buffer size* N×N N×N 4N×N 

  * These numbers based on the assumption that Level C scheme of data reuse 
is already implemented and used. 
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4.4 Summary  

A new approach to save memory access through vertical processing had been 

presented. The gaol of the appraoch is to achive more data reuse as closer to Level D as 

possible, while the buffer memory size maintained within reasonable limits compared to 

the orignial  Level D buffer memory required. The proposed approach outperforms the 

approach in  [63] in terms of reducing the memory access, specially for larger search 

window which is used in high quality video applications. The more processing elements 

working in parallel vertically, the more reduction in memory access will be achived and 

higher processing speed. Design space for the proposed appraoch was explored, 

showing the limitations  of implementing it. Finally, design archtecture was proposed 

with four processing elements. The design is easly extendable to any number of 

processing elements to serve the needs of different applications. The reduction in 

memory access was almost 61%. 

The proposed architecture has been designed by using VERILOG and synthesized 

by SYNOPSYS design Compiler with UMC 0.18um CMOS standard cell library.  The 

gate count is 61 K and the operated frequency is 154 MHz in the worst case. In which, 

the gate count for single PE is almost 16 K. The critical path for the architecture is 6.49 

ns. Thus, with 512 cycles per MV processing rate, this architecture can process 300,781 

MB/sec which is able to process 1280×1024 @30 fps video size in real time. 
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Chapter 5 Future Work and Conclusion 

 
The contributions made through the past chapters will be summarized. Future 

works related to motion estimation process and mode selection will be addressed. In the 

first sub-section, fractional motion estimation will be addressed, later we will present 

the idea of applying the Hilbert Transform to the mode selection. Finally, Binary 

Motion estimation for texture encoding will be presented in brief. 

5.1 Contributions Summary  

All the works presented in the thesis were about motion estimation. The heavy 

burden of the motion estimation represented by two main parts: huge memory access 

from the main memory, and the extensive computations required through out the 

searching process. In MPEG-4, shape coding introduced another burden through its 

working on the bit-level rather than word-level. While H.264 introduced the variable 

block size and mode decision which increased this burden a lot.  The presented works 

contributed to reduce the burden on both sides; the memory access and the 

computations.  

 

In Chapter two, shape coding in MPEG-4 were addressed. Binary motion 

estimation was the real burden in that part, due to its bit-level nature and complexity 

represented by distortion measurement. The complexity reduction achieved by applying 

an algorithm, which classifying and testing every candidate BAB. If a candidate BAB 

belongs to the same class as the current BAB, the distortion measure will be held, else 

skip that position and advanced to a new one. The algorithm fully scans the search 

window, but skips the unlikely positions after a simple test. Also, the adaptivety of the 

algorithm, which represented by overlapping more than one class, gives the ability to 

tune the performance with the increase in encoded shape-bits. The saving in complexity 

ranges from 96.69% to 99.71% comes with the expense of increasing the shape encoded 

bits by 0.7 %to 12.8%. 

Hardware implementation for the BME algorithm was presented. Due to the 

regularity of data flow, the control and address generator unit was simple, and no data 
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scheduling. The hardware explored the data reused between the horizontal adjacent 

BAB's and eliminated the need for any shift and pack operations through using the 

dispatching technique. Due to the possibilities that more than one adjacent BAB's 

belongs to the same class, they can be processed at the same time, which will increase 

the speedup of the algorithm. Due to the simplicity and the regularity of the algorithm, 

the proposed hardware is also regular and needs only 11582 gate count. 

 

Integer motion estimation which is the real burden of any video coding system 

addressed in Chapter 3. The computational complexity reduced significantly with the 

proposed algorithm. The video quality almost remained the same with a little increase in 

encoded bit-stream. Moreover, the proposed algorithm showed a good performance 

with the variable block size motion estimation which is adopted by H.264. Variable 

block size reduces the efficiency of any early termination algorithm, but the proposed 

algorithm showed high reduction in computational complexity. The threshold value 

used to terminate the matching process is adaptive. It can be set to increase the skipping 

ratio or getting more accurate motion vector. Also, the threshold value modified 

regularly during the matching process and not constant as that in the normal PDE 

algorithms. The proposed algorithm outperformed other similar algorithms, achieving a 

complexity reduction of 78% and 51% for MPEG-4 and H.264 respectively. 

To further assist reducing the motion estimation on the system, a dedicated 

hardware implementation for the proposed algorithm was presented. The dedicate 

hardware can work in parallel with the general purpose processor to generate the motion 

vector. The design generates motion vectors for all block sizes included in the 

macroblock. Early termination scheme easily implemented due the simple idea of the 

early termination scheme proposed. It is more close to 2-D array in performance, while 

keeping low silicon area as that in 1-D array. The proposed architecture process one MB 

in 16 clock cycle, and scan 16x16 search window in 4096 clock cycle (without any 

termination process and an average 1032 clock cycles with termination process) using 

only 16 registers and 31 adders. 

 

The computational burden reduced with the proposed algorithms mentioned above. 

Moreover, the huge memory access can be reduced also. The next part will deal with 

this problem. 
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Motion estimation module generates a huge amount of memory requests to get 

pixel data from the current and reference main memory. Data reuse can reduce this 

amount of requests by saving data temporarily on buffers located on chip. Moreover, the 

real time constraints of video application hardly can be met by using one processing 

element. Multiple processing elements can be integrated either to process one search 

window or to process more than search window. More than one processing element 

processing one search window, will speed up the motion estimation process, however, 

the memory access will not reduced. Processing more than one search window will 

speed up the motion estimation process. The way this scheme will affect memory access 

depends on the way these processing elements are arranged.  

In the proposed approach, the parallel processing elements are working in vertical 

manner. Vertically adjacent search windows will be processed simultaneously, making 

use of the overlapped pixels between them to reduce the external memory access. This 

approach makes it feasible to get closer to Level D of data reuse with a small on chip 

buffer memory. Design space for this approach explored to show the limitations of 

using it. Also, a suggested design introduced, characterized with regularity and ease to 

be extended to any number of PE without extra cost to the control circuit or any change 

in the data flow.  Meanwhile, with the new data reuse scheme, the required data 

bandwidth is reduced by 61%, which is much lower than other presented designs. 

 

To integrate all the works presented into one working system, we may face some 

problems and limitations. In the case of the Binary Motion Estimation, it can be easily 

integrated with the Integer Motion Estimation part for MPEG-4 without any problems. 

However, applying the early termination scheme to the approach of vertical processing 

has limitations. This will introduce complications for data flow between different search 

windows. One search window may skip one candidate position, while adjacent search 

window may need to process that position. In this case we can disable other processing 

elements while processing that position by the potential processing elements. This will 

reduce the hardware utilization factor.  

 

In the following subsections, more work to enhance and extend the presented 

works. Fractional motion estimation contributed a lot in the coding efficiency and 

worthy to be addressed as an extend work to the Integer motion estimation. Fractional 

motion estimation introduced a new burden to the system, that is, filters need to be 
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implemented to generate fractional pixels values. Moreover, computational complexity 

should be reduced too. Mode decision is the next block after the motion estimation. By 

estimating which modes to process will reduce the burden of motion estimation too 

much in case of H.264. Finally, Binary motion estimation is an effective way to reduce 

the complexity of the Integer motion estimation by working on the bit-level. The 

possibilities of apply the algorithm in Chapter 2 to the binary motion estimation for 

texture is open. Careful study for the nature of the generated bit map is needed. 

 

 

5.2 Future Work 

5.2.1 Fractional Motion Estimation 
Generally motion estimation is conducted into two steps: the first step is integer 

pixel motion vector estimation; and the second is fractional pixel motion vector 

estimation. For fractional pixel motion estimation, 1/2-pel accuracy is frequently used 

(H.263, MPEG-1, MPEG-2, MPEG-4), higher resolution motion vector are adopted 

recently in MPEG-4 (1/4-pel accuracy) and H.26L (1/4, 1/8-pel accuracy).  

Algorithms on fast motion estimation are always hot research spot. Especially fast 

integer pixel motion estimation has achieved much more attention because traditional 

fractional pixel motion estimation (such as ½-pel) only takes a very little proportion in 

the computation load of motion estimation. However, with the development of integer 

fast motion estimation algorithm and the decreasing of integer motion search points, 

computation load of fractional pixel motion estimation become more and more 

comparable to that of integer case. For instance, some center-biased fast integer motion 

vector estimation algorithms have reduced the checking pixel positions averagely down 

to 10  [65] [66], while 8 ½-pel positions are needed to be checked around the best integer 

pixel matching position in full ½-pel motion estimation, and more positions should be 

searched if higher resolution motion estimation is adopted 

 

As a complete work for the motion estimation, Fractional Motion Estimation 

(FME) should be addressed. As mentioned above, Fast Integer Motion Estimation 

(FIME) reduced the search points dramatically, and achieved a high speed up, also the 
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number of search points of the fractional motion estimation become comparable to that 

of the fast integer motion estimation; the need for applying fast fractional motion 

estimation is a must. 

 

In the following two sub-sections, we will introduce two methods to minimize the 

fractional pixel search positions and the filtration process. The main concept of the first 

method is to minimize the number of search positions (maximum are 9 positions for 

half and quarter pel ME). The other method will reduce the computational complexity 

of the filtration process used to compute the ½ and ¼ fractional pixels. 

 
 
5.2.1.1 Proposed Fast Motion Estimation. 

The proposed algorithm depends on the assumption that, the error surface model is 

homogenous and uni-modal. The error surface will follow one direction and there is no 

many minimum. Fig. 5.1 shows 9-search positions numbered according to the order the 

JM9.0 test these positions, it starts with position 0 then up to position one and so on. 

 
Fig. 5.1 Nine search positions numbered according to their accessing order as in 

JM9.0 

The proposed Algorithm 

Depending on the uni-modal error surface, we assume that the minimum SAD can be 

traced by testing the search points one by one, then make the choice about the next 

search position rather than testing all the 9 points in case of  ½  fractional pixel 

resolution. The algorithm can be summarized as follow:  

 

1. Start by testing points 5, 0, and 6 respectively, and then determine the position 

with the lowest SAD among them. 
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2. After locating the position with the lowest SAD above, test the top position 

according the one located in step 1. If this position has lower SAD, then 

terminate the process and assign this position as the target MV. 

3. Else test the bottom position, if the generated SAD for this position is less than 

the position in step 1, then assign this position as the target MV and terminate 

the process, else the target position is the middle position. 

 

For example, we start by testing 5, 0 and 6, assume position 6 has the lowest SAD 

value, then we proceed by testing position 4. If position 4 has lower SAD, then 

terminate the process and assign position 4 as the target MV. Else we test position 8, if 

the generated SAD is lower than position 6, then assign this position to be the target 

MV. If neither positions 4 or 8 has lower SAD value, then assign position 6 to be the 

target MV. Fig 5.2 shows three testing patterns belonging to the same algorithm. The 

numbers shown on the arrows representing the order in which every position will be 

tested. Fig.5.2(a) represents the above mentioned algorithm, while (b) and(c) shows 

another possible testing pattern. The saving in search positions of (a) and (b) is about 

4~5 positions (44% to 55% reduction in search points), and for that of (c) 2~4 positions 

(22% to 44%)  Table 5.1 shows the PSNR, encoded bit stream and complexity reduction 

when applying the pattern in Fig. 5.2(a).  

 
Table 5.1  PSNR, encoded bit stream and complexity reduction for the proposed 

algorithm. 

 
  foreman Stefan news coastguard M&D mobile 
PSNR Y 0.01 -0.03 -0.02 -0.02 -0.06 -0.04
Total bit increase 
(%) 2.53 0.45 0.98 0.11 1.03 1.02

Skipped ratio(%) 50.80 49.57 53.58 47.97 52.89 48.29
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Fig. 5.2 Testing patterns for the proposed algorithm. 

 
5.2.1.2 Reduce the Interpolation Cost by SAD Estimation 

The fractional pixel values are generated by interpolation. In the case of ½  pixel 

resolution, 6-tap filter is used to generate one pixel, while in the case of 1/4 pixel 

resolution, 8-tap interpolation filter is used to generate one pixel. This process is power 

consuming also the filters occupy significant silicon area. In order to reduce the power 

consumption and save the time needed to compute all the fractional pixel values, we can 

compute those fractional pixels which are related to position zero (as shown in Fig. 5.1) 

and then use the normalized-SAD to generate the estimated SAD for the other positions.  

 

Fig.5.3 shows the nine positions and the shared areas between those positions. The 

MB boundary of position zero contains the most shared pixels with the other positions. 

So we can make use of the overlapped area by estimating the SAD of other ½ or ¼ 

pixels without calculating their values by interpolation. The idea is simple, first generate 

all the fractional-pixel values for position zero, then compute the SAD value for this 

position, and finally, normalize this SAD value by dividing it by 256 (shift to the right 

by 8-positions). To compute the SAD for the other positions, firstly we compute the 

SAD for the pixels in the overlapped area (i.e. they are already generated for position 

0). Then for those pixels which are not generated, we add the normalized SAD in 

according to every pixel. 

For example, to find the SAD for position one, we compute the SAD value for the 

overlapped region as usual, because these fractional pixel values are already calculated 

and ready to be used. The pixels in the top row in the MB boundary in position one are 

not generated, so we add the sum of the normalized SAD 16-times to replace the real 
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SAD value of the top row of position one. The formula below can summarize this 

process as follows: 

SAD total = SAD overlapped + SAD normalized x (number of pixels not generated). 

 

The total estimated SAD value for every pixel not belongs to the overlapped area can be 

summarized as follows: 

- Positions 1, 2, 5 and 6 each contains 16 pixels (simply shift the normalized-SAD 

to the right 4 times and the result to the real computed SAD of the other pixels). 

- Other positions each contains 31 pixels(this can be done by shifting the 

normalized SAD to the left 5 times and subtracting one normalized SAD then 

adding the result to the computed SAD of the other pixels). 

Applying this scheme will result in saving the interpolation process for about 68 

fractional pixels (almost 21% saving). Also, simplify the SAD computation process, 

such that rather than process every pixel to generate the SAD, we can simply shift the 

normalized SAD to the left 4 or 5 times and adding the result to the computed SAD for 

other pixels located in the overlapped area (almost 10% reduction in SAD process).  

 

 
Fig. 5.3 Shows the nine searching positions, and the overlapped region between 

them. 
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In conclusion, the real burden of the fractional motion estimation is in the interpolation 

phase, i.e. the hardware cost, power consumption and the time required to generate the 

fractional pixels. The focus should address this part of the motion estimation, trying to 

reduce the cost while keeping the efficiency of the fractional motion estimation process. 

5.2.2 Mode Selection and Hilbert Scan. 
The newest video compression standard H.264/AVC introduces various coding 

modes. All modes at macroblock (MB) level for luma components are illustrated in Fig. 

5.4(a). There are two intra prediction modes which are denoted as Intra 16x16 and Intra 

4x4. The Intra 16x16 does spatial predictions of 16x16 luma block and the Intra 4x4 

consists of sixteen 4x4 luma blocks that are separately predicted. For inter-frame 

prediction, each MB mode corresponds to a specific partition of the MB. For 8x8 inter 

prediction mode which is denoted as Inter 8x8, each of the four 8x8 blocks is split 

further in four ways. Fig. 5.4(b) shows five candidate modes for a 8x8 block in B-type 

frames. In general, selecting a mode with a large partition size means that a small 

number of bits for motion information are required; however, motion estimation may 

not be accurate resulting in generating a large number of bits for sending transform 

coefficients. On the other hand, selecting a mode with a small partition size may require 

a small number of bits needed to signal residual information but produce a large number 

of bits for motion vectors and side information. Therefore, the choice of coding mode 

has a significant impact on compression efficiency. In order to select an optimal mode 

in Rate-Distortion (R-D) sense, Lagrangian minimization is successfully applied to 

mode selection problem by Wiegand  [67]. A general form of cost function used in 

Lagrangian R-D optimized (RDO) mode selection method is  

J = D + λR  (5.1)

where J, D and R are R-D cost, distortion and rates of a mode, respectively and λ is a 

Lagrangian multiplier. In H.264/AVC, calculation of D is much easier than other 

standards because of integer transform and quantization that require only integer 

operations  [67]. Calculation of R also can be implemented in a efficient way using a 

table lookups  [68]. However, although Lagrangian R-D cost calculation for a single 

mode may have low-complexity, computation for RD costs of all modes becomes huge 

because a large number of candidate modes are provided in H.264/AVC  [69]. 

In JVT reference software, motion estimation is performed mode by mode with full 

search scheme, that is, we need to perform motion estimation for each coding mode in 
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every previous reference frame. The allowed modes are interl6xl6, interl6x8, inter8xl6, 

inter8x8, intra4x4 and intral6xl6. Note that the inter8x8 block can be further partitioned 

into smaller blocks. 

In addition, all kinds of coding modes are not averagely 'distributed in RD 

optimization. Therefore we should analyze scenes that are suitable for different coding 

modes. For encoding macroblock, either we can accurately select one/few coding modes 

or eliminate some redundant coding modes which is not suitable for this macroblock. 

Based on analyzing the candidate macroblock for texture complexity; a lot of 

unnecessary computation can be saved  [70].  

 

 
Fig. 5.4 Coding modes in H.264 

 

Some macroblocks may belong to one object because they don't contain edge 

information. If more than one object are contained in a macroblock and moving in 

different directions, it is suitable if this macroblock splited into multiple sub-blocks for 

motion estimation and compensation. Reversely if this macroblock contains edge 

information (its texture is complex); it is not always splited into smaller sub-blocks. For 

example, in test sequence Paris, there are complex textures in its background, but they 
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mostly select larger block size coding mode because they belong to still background 

region and there is no motion  [71].  

 

In 1891, Hilbert curve is one of Peano curves which is called a space-filling curve. 

Fig. 5.5 shows an example of Hilbert curves. The Hilbert scan is the result of scanning a 

2-D image through one of its Hilbert curves, as depicted in Fig. 5.5. The Hilbert scan 

extracts clusters in an image easier than other scanning methods (e.g. raster scan) and it 

preserves 2-D coherence. The edge information in a 2-D image is preserved in its 1-D 

Hilbert-scan sequence more effectively than the raster scan, which may miss edges due 

to its scanning direction. 

The proposed idea is to use one of the Hilbert curves to scan the candidate 

macroblock prior to the mode selection process, and depending on the generated edge 

information and coherency between sub-blocks we may be able to estimate the targeted 

modes.   

 
Fig. 5.5 Hilbert scan example for 16x16 block. 

5.2.3 Binary Motion Estimation. 
Many fast motion estimation algorithms were proposed to reduce the complexity of 

the motion estimation. One of the important headlines in the field of fast algorithms 

is the Binary Motion Estimation. The integer motion estimation represents a very 
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heavy burden on the video encoding system. Every pixel represented by 8-bits, and 

the architectures designed to serve this process will occupy large silicon area and 

consumes large power. In a system with a highly restrictions on the power 

consumption, we need to change the strategy, rather than processing the integer 

values, we may process pixels represented with lower bit resolution down to 1-bit. 

This will come with expense of using filters, degrading in the PSNR and increasing 

the generated bit stream. Also, H.264 represents other challenges when dealing with 

small block sizes such 4x4 in which it maybe represented by all zeros or ones, and 

in this case hardly can be find the target MV. 

Many binary motion estimation schemes were proposed to significantly decrease 

both the computational complexity and bus bandwidth by reducing the bit depth. 

Based on a binary pyramid structure, a fast binary ME algorithm was proposed in 

 [72], namely fast binary pyramid motion estimation (FBPME). The pyramidal 

structure of FBPME contains one integer layer at the lowest resolution (smallest 

picture size) and three binary layers that contain detail information. FBPME 

performs the tiled motion search with exclusive OR (XOR) Boolean block-matching 

criterion on binary layers and MAD on the integer layer. The block matching uses 

XOR operations that are much simpler and faster to implement than MAD 

operations. The problem of the integer layer mentioned above solved by the design 

proposed in  [73], the proposed algorithm is shown in Fig. 5.6. The different 

algorithms and schemes based on converting the 8-bit pixels to 1-bit by different 

methods such as  using filters or averaging with sounding pixels. The method used 

to generate the binary image affects a lot the resulted PSNR and encoded bit stream. 

H.264 introduced another problem by employing motion estimation for small block 

sizes (4x4). 

A new methods and strategies are needed to convert the images into binary form 

taking into consideration higher compression performance, low area cost and 

compatible with smaller block sizes. The proposed idea depends on two parts: 

- Software approach: implementing a new simple algorithm to generate the binary 

image based on the Hilbert Scan mentioned in the pervious sub-section. Based 

on the edge information of the small blocks to generate the binary image. 

- Hardware approach: to be able to process both binary and 8-bit pixels, so the 

hardware should be flexible without high extra hardware cost. 
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Fig. 5.6 Illustration of ABME search strategy with XOR block-matching criterion. 

 

5.3 Summary 

Motion estimation still a hot spot to be addressed. Contributions to reduce its 

complexity and enhancing the fast algorithms performance are arising. As continues 

work for the Integer motion estimation, fractional motion estimation should be added. 

Two ways to reduce the algorithm complexity were presented. One way is to reduce the 

number of processed search positions, and the other is by reducing the filtration burden. 

Mode decision can reduce a lot the motion estimation burden by limiting the modes 

needed to be processed rather than process the seven modes. Finally, Binary motion 

estimation for texture can achieve a lot of complexity reduction by transforming the 

pixels representation from eight bits into one bit. Moreover, the work presented in 

Chapter 2 can be integrated to achieve more computation reduction.   
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