

圖 14 M2Ge 所算出來的 band structure

圖 2-14 中, band structure 是間接能隙, 間接能隙的電子要從導電帶跳 到價電帶會有動量差,導致電導係數比直接能隙還要差,但是介於 T 和 Y 之間的導電帶和價電帶相當接近,如果在結構上兩個位置也很相近的話, 或許電子可以直接從這個地方傳輸,而不是經由最靠近 Fermi level 的地方 傳輸,則電導係數可能可以提高。

圖 2-15 FAT BAND 圖(a)Sb1 貢獻度(b)M1Sb 貢獻度(c)M2Ge 貢獻度

圖 2-15 FAT BAND 圖,最靠近 Fermi level 價電帶的原子貢獻是 [GeSbSe₂]區塊中的 M1 原子,而最靠近 Fermi level 導電帶的原子貢獻是 [SbSe]區塊中的 SB1 原子。在 band structure 說明可以利用 T 到 Y 之間兩條 能帶來傳導電子,這個假設似乎不能成立,因為依照 FAT BAND 來看,電 子傳遞的方式可能有兩種:第一種是藉由最靠近 Fermi level 的兩條能帶來 傳輸,不過因為是間接能隙,所以電子躍遷不易;第二種方式是在 T 到 Y 之間,這兩條能帶也靠很近,但是因為分別屬於 SB1 原子和 M1,兩個原子 在結構上來說,間隔了 M2 和 Se,所以電子傳遞也同樣不好,這或許可以 解釋為什麼即使能隙小,但是電導係數卻沒有很高的原因。

圖 2-16 GeSb₂Se₃的partial DOS圖,黑色線是SB1 的貢獻,紅色線是M1 的貢獻,藍色線是M2 的貢獻

圖 2-16 是GeSb₂Se₃對於陽離子的partial DOS圖,在Fermi level以上的部 分,貢獻度依序是 M1→M2→ SB1,在Fermi level 以下貢獻度是 SB1→M2→M1,這和FAT BAND所得到的結果是一樣的,也說明了即使能 隙很小,但如果電子要從SB1 能階跳到M1 能階並不容易。

圖 2-17 (a)Sb1 的 Partial DOS 圖,紅色線為 p 軌域貢獻, 黑色線為 s 軌域貢獻 (b)COHP 紅色線為 Sb1-Sb1 所提 供,黑色線為 Sb1-Se5。

圖 2-17(a)為。[SbSe]中 Sb1 的 Partial DOS 圖,紅色線為 p 軌域貢獻,黑 色線為 s 軌域貢獻,圖 2-17(b)是針對。[SbSe]中 Sb1 這個原子,畫出 Sb1-Sb1 和 Sb1-Se5 的 COHP 圖。零點線條之右邊為鍵結,而左邊則表示反鍵結, 紅色線代表 Sb1-Sb1 的鍵結情形,黑色線代表 Sb1-Se5 的鍵結情形。而從圖 2-17(a)Partial DOS 證明在 Fermi level 以下,Sb1 的 P 軌域貢獻集中在 0~-5 eV,圖 2-17(b)COHP 圖中 Sb1-Sb1 的電子在 0~-5 eV 有很強的鍵結作用。 這兩個結果顯示,Sb-Sb 鍵結屬於共價鍵。

Sb1和 Se5 距離為 2.6205 Å,而 Sb-Se 的 COHP 雖然在 Fermi level 以下有反鍵結的部分,但整體的-ICOHP 為-2.1518eV/cell,如果在。[SbSe]區塊中的 Sb 價電荷為-1 價的模型時,Sb1和 Se5 就存在著孤對電子的斥力,其-ICOHP 數值不會為-2.1518eV/cell,而應該趨近於零或是正值,這個理論計算可以證明 Sb1和 Se5 的確有鍵結存在,所以。[SbSe]中 Sb 的價電荷不會是-1 價。

圖 2-18 (a)黑色線代表 M1Sb 和周圍五個 Se, 紅色線代表 M1Sb 和周 圍三個鍵長短的 Se, 藍色線代表 M1SB 和周圍兩個鍵長長的 Se (b)黑色線代表 M2Ge 和周圍五個 Se, 紅色線代表 M2Ge 和周圍三個 鍵長短的 Se, 藍色線代表 M2Ge 和周圍兩個鍵長長的 Se

圖 2-18 說明了混合佔據 M1 和 M2 兩個位置分別放入 Ge 和 Sb 的 COHP 圖。(a)圖 中黑色線是 M1Sb 和周圍五個 Se,(b)圖 中黑色線為 M2Ge 和周圍 五個 Se。M1 和 M2 位置的五個 Se 都是三個鍵長較短,兩個鍵長較長。再 細分畫出鍵長短的 COHP 圖為紅色線,鍵長長的 COHP 圖為藍色線。如果 將 COHP 的數值積分,可以得到-ICOHP 數值,如下表 2-10。藍色線只有在 接近 Fermi level 的部分有一些鍵結,其餘 Fermi level 以下幾乎都是沒有鍵 結, -ICOHP 數值在-0.1eV/cell 左右,表示鍵長長的這兩個數值鍵結能力都 很小,幾乎為沒有鍵結,這和之前結構部分所下的結論是相符合的。而紅 色線在 Fermi level 以下都是鍵結,-ICOHP 數值都在-1~-2eV/cell 之間,所 以幾乎所有的鍵結都是由三個短的鍵長所提供。M1 和 M2 和五個 Se 的鍵 結關係應該:三個鍵長短的 Se 有鍵結,兩個鍵長長的 Se 是沒有鍵結的, 為一個三配位的環境。

表 2-10 M1Sb 和 M2Ge 的周圍 Se 環境和-ICOHP 數值

	M1Sb (A)	-ICOHP(eV/cell)		M2Ge(A)	-ICOHP(eV/cell)
Se6	2.540	-2.471	Se4	2.550	-2.027
Se6	2.810	-1.004	Se6	2.770	-1.016
Se6	2.800	-1.060	Se6	2.780	-1.012
Se4	2.990	-0.407	Se5	3.120	-0.177
Se4	2.990	-0.412	Se5	3.130	-0.162

V 結論

在過去的文獻當中,Ge、Sb、Se這三種元素所形成的化合物皆是不具結晶性的玻璃態化合物。本章節中,使用固態合成法,成功地合成出具有結晶性的GeSb₂Se₃三元化合物,此種晶體結構非常獨特,在已知結構中並未發現類似之結構。GeSb₂Se₃三元化合物具有¹₀[SbSe]¹⁻¹₀[GeSbSe₂]¹⁺這兩種區塊。¹₀[GeSbSe₂]¹⁺中的陽離子M1、M2 填佔位置的電子密度應該是Ge和Sb混合填佔,從環境與配位鍵結判斷M1 的性質比較偏向Sb原子的性質,M2 則偏向Ge原子的性質。另外一個特殊的結構是¹₀[SbSe]¹⁻,其中Sb的價電荷+1 價,在過去文獻中從未發現,最後得到的比例為(Ge₁)⁺²(Sb₁)⁺³(Sb₁)⁺¹(Se₃)⁻²。

從LMTO 理論計算中,算出來 DOS 和其他理論計算圖形所採用的模型 是 M1 代入 Sb 原子, M2 代入 Ge 原子。DOS 圖看出,能隙約在 0.08eV, 是具有半導體性質,而 Band structure 中得到的是間接能隙。

熱電性質方面,電阻隨著溫度升高而降低,具有半導體性質。而在室 溫下的電導系數是 28.82Ω⁻¹ cm⁻¹, Seebeck係數是-396μVK⁻¹,為n-type性質的 半導體, power factor數值為 4.5μW/cmK²,是相當具有潛力的熱電材料。這 一系列的化合物曾嘗試做過同族元素的替換,而實驗部分仍在進行中。

Ⅶ. 參考文獻

- 1. Feutelais, Y.; Rodier, L. B.; Agafonov, N. *Trudy Instituta Kristallografii, Akademiya Nauk SSSR.* **1954**, *10*, 76-83.
- 2. Agaev, K. A.; Talybov, A. G. Kristallografiya. 1966, 11, 454-456.
- 3. Shelimova, L. E.; Karpinskii,O. G.; Kretova, M. A.; Kosyakov, V. I.; Shestakov, V. A.; Zemskov, V. S.; Kuznetsov, F. A. *Neorg. Mater.* **2000**, *36*, 928-936.
- 4. Karpinskii, O. G.; Shelimova, L. E.; Kretova, M. A.; Fleurial, J. P. J. Alloys Compd. **1998**, 268, 112-117.
- 5. Petrov, I. I.; Imamov, R. M.; Pinsker, Z. G. Kristallografiya. 1968, 13, 417-421.
- 6. Petkov, V.; Qadira, D.; Shastri, S.D. Solid State Commun. 2004, 129, 239-243.

- 7. Cernosek, Z.; Holubova, J.; Cernoskova, E.; Frumar, M. *Journal of optoelectronics and advances materials.* **2001**, *3*. 459-462.
- 8. Vateva, E.; Savova, E. J. Non-Cryst. Solids. 1995, 193, 145-148.
- 9. Cervinka, L.; Bergerova, J.; Tichy, L. J. Non-Cryst. Solids. 1995, 193, 45-48.
- 10. Wakkad, M. M.; Shokr, E. K.; Mohamed, S. H. J. Non-Cryst. Solids. 2000, 265, 157-166.
- 11. Kim, S. J.; Park, Y. D.; An, S. H.; Kim, S. Y. Thin Solid Films. 2004, 455, 675-678.
- 12. Savova, E.; Skordeva, E.; Vateva, E. J. Phys. Chem. Solids. 1994, 55, 575-578.
- 13. SAINT Version 4; Siemens Analytical X-ray Instruments Inc.: Madison, WI. 1995.
- 14. Hoenle, W.; Schnering, H.G. Zeitschrift fur Kristallograhie. 1981, 155, 307-314.
- 15. Cromer, D.T. Acta Crystallographica. 1959, 12, 41-45.
- 16. Schnering, H.G.; Hoenle, W.; Krogull, G. Zeitschrift fuer Naturforschung, Teil B. 1979, 34, 1678-1682.
- 17. Deller, K.; Eisenmann, B. Z. Anorg. Allg. Chem. 1976, 425, 104-108.
- Keller, R.; Holzapfel, W. B.; Schulz, H. *Physical Review, Serie 3. B Solid State.* 1977, 16, 4404-4412.
- 19. Keeffe, M. O.; Brese, N. E. J. Amer. Chem. Soc. 1991, 113, 3226-3229.
- 20. Von Dreele, R. B.; Jorgensen, J. D.; Windsor, C. G. J. Appl. Crystallogr. 1982, 15, 581.
- Larson, L. C.; Von Dreele. R. B.; *LANSCE*, Msh805; Los Alamos National Laboratory:los Alamos, NM, **1995**.
- 22. Rowe, D. M.; P. D.; D. Sc, Handbook of Thermoelectrics.
- 23. Andersen, O. K. Phys. Rev B, 1975, 12, 3060.
- 24. Andersen, O. K. Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571-2574.

44 million

第三章 四元系統:Sr₃GeSb₂Se₈

摘要

新的四元化合物Sr₃GeSb₂Se₈和Sr₃SnSb₂S₈,使用固態法合成出來,將反 應元素封在真空石英管中進行真空燒結,反應溫度設定在 750°C恆溫三天, 緩慢降溫至 500°C,再自然降溫至室溫。Sr₃GeSb₂Se₈和Sr₃SnSb₂S₈這兩個晶 體的結構測定都是斜方晶係,空間群是Pna2₁,Sr₃GeSb₂Se₈晶胞常數為a = 12.633Å, b = 4.3006Å, c = 28.693Å, V = 1558.8 Å³(Z =4), R1/wR2=0.0515/0.1235,GOF=1.077,Sr₃SnSb₂S₈晶胞常數為a = 12.037(2)Å, b = 4.2026(8)Å, c = 27.785(6)Å, V = 1405.5(5) Å³ (Z =4), R1/wR2=0.0573/0.1203,GOF=1.011。

在過去的文獻當中,並沒有這些元素所組合成的四元化合物,也沒有 相類似的結構。在Sr₃GeSb₂Se₈結構中,具有四面體的_∞¹[GeSe₄]⁴和共邊的雙 四角錐形的_∞¹[Sb₂Se₈]¹⁰⁻單元,這兩種單元被Sr原子所區隔開來。

Sr₃GeSb₂Se₈和Sr₃SnSb₂S₈這兩個化合物是利用相同的實驗條件所合成 出來,具有相同的結構。但在Sr₃SnSb₂S₈中,Sn和Sb的電子數只差1,無法 用單晶結果來判斷這兩個原子填佔的位置,所以利用相同結構的 Sr₃GeSb₂Se₈來決定Sb和Sn的填佔位置和混合填佔的比例。

Sr₃GeSb₂Se₈在空氣中可能會與水或氧反應,所以無法測量其物理性質,若測量還未變質時的電阻,大約在 1MΩ之間。而Sr₃SnSb₂S₈則仍無法確定是否會和水或氧反應,因此,並沒有進行物理性質的測量。

I.緒論

關於含有Ge-Sr-X(X=S、Se)的化合物中,在1970年左右,Maurin,M. 實驗室做出Sr₂GeS₄¹,Teske,C.L. 實驗室做出SrCu₂GeS₄²,最近有 Johrendt, D實驗室在2000年做出的Sr₂(Ge₂Se₅)³,2001年做出的SrCu₂(GeSe₄)⁴,2003 年做出的Sr₂(GeSe₄)⁵,除了上述這些化合物之外,並沒有其他與Ge、Sr、Se 相關的系列化合物。這一系列的化合物中,Ge和Cu都是四面體的環境AQ₄(A =Cu、Ge)(Q=S、Se)。

如果將Ge換成Sn原子,上述的化合物包括Sr₂SnS₄⁵、SrCu₂SnS₄⁶都曾被 成功地合成出來,但其餘的化合物目前並無任何文獻記載。而在Sr、Sb、 Se的三元化合物中,也沒有已知化合物,只有Sr、Sb、S的相關化合物,如 Schaefer, H實驗室所做的Sr₃Sb₄S₉⁷和Kanatzidis, M.G. 實驗室所做的 Sr₆Sb₆S₁₇⁸。

Sr₃GeSb₂Se₈和Sr₃SnSb₂S₈是相當新穎獨特的結構。關於Sr的三元化合物 中,Sr和IV族、V族和S或Se所形成的例子並不多,例如Sr₃Sb₄S₉、Sr₃SnSe₅、 Sr₆Sb₆S₁₇,這些化合物的結構被Sr原子所區隔開來,但環境都分別只有四面 體或是五配位,這兩個化合物的Sb都是三配位或五配位的環境,Sr原子將 SbS區塊分隔開來。

本章節最初的構想是希望從Sr₃Sb₄S₉比例衍生出來,以期望得到 Sr₃Sb₂Ge₂Se₉的化合物,但最後可能是電荷平衡的原因,所以生成了符合價 電平衡的比例:Sr₃GeSb₂Se₈。這個新的結構,結合了兩種三元化合物的區 塊,分別是四面體的¹_∞[GeSe₄]⁴和共邊的雙四角錐的¹_∞[Sb₂Se₈]¹⁰⁻,而這兩種區 塊又分別被Sr原子所區隔開來,形成了兩種區域。

Sr₃GeSb₂Se₈在空氣中會與水和氧產生反應,形成橘色結晶的新氧化物,但因為這個氧化物在空氣中並不穩定,目前只能得到初步的模型。

36

Ⅱ 實驗

A. 反應試劑

在此次的實驗反應中,所用的藥品包括 powder Selenium(Se) 99.999%, -200 mesh Alfa Aesar, Antimony(Sb) 99.50%, -325 mesh Alfa Aesar, tin(Sn) 99.8%, -325 mesh Alfa Aesar, sulfer(S) 99.5%, -325 mesh Alfa Aesar 和 Germanium(Ge) 99.999%, -100 mesh Alfa Aesar, block Strontium(Sr) 99.0% Alfa Aesar,所有藥品皆儲存於手套箱中,以避免掺有水氣或變質。

B. 合成

(1)Sr₃GeSb₂Se₈

Sr3GeSb₂Se₈這個四元晶體的反應條件,在無氧及無水且充滿氫氣之 手套箱內,取元素態鍶、緒、銻、硒為起始物,以Sr:Ge:Sb:Se=3:2: 2:9比例,裝填在內部真空達10⁴ Torr的石英管中(長15公分,內徑9公 釐),避免元素在反應過程中和氧氣產生反應,用氫氧焰快速地將石英管封 住後置入高溫爐(Thermolyne furnace 1300 Iowa, USA),設定高溫爐溫度 750 ℃恆溫三天,以1.2℃/hr的降溫速率降溫至 550℃,之後自然降溫至室溫。 將Sr3GeSb₂Se₈從高溫爐取出石英管,管底部分有明顯和管壁反應的黑褐色 塊狀化合物。因為怕含有鍶的化合物會與水或氧反應,所以將石英管放入 手套箱中開管,測量粉末X光繞射(Bruker AXS D8 Advance (Leipzig, Germany))時,在樣品上貼上膠帶以防止粉末快速和氧或水反應。經比對 JCPDS資料庫後認為可能具有未知相,所以進一步挑取晶體測其晶胞。將測 完的粉末撕開膠帶後放在室溫環境下,約過一個小時後發現粉末膨脹,可 能是與水或氧反應,此外,把膨脹的粉末再去測一次粉末X光繞射,得到之 訊號峰與之前完全不一樣,而且已經沒有明顯的訊號峰,似乎是沒有結晶 性的粉末,所以判定這個四元晶體是怕水怕氧的化合物。

(2) $Sr_3SnSb_2S_8$

參考(a)所做出來的Sr₃GeSb₂Se₈,利用相同的比例,將Ge改成Sn,Se改

成S,在無氧及無水狀態下充滿氫氣之手套箱內,取元素態鍶、錫、錦、硫 為起始物,以Sr:Sn:Sb:S=3:1:2:8比例,裝填在內部真空達 10^{-4} Torr 的石英管中(長 15 公分,內徑 9 公釐),避免元素在反應過程中與氧氣產 生反應,用氫氧焰快速地將石英管封住後置入高溫爐(Thermolyne furnace 1300 Iowa, USA),因為怕Sr和石英管反應,所以採用緩慢生溫的條件,設 定兩天的時間從室溫至 750° 、 750° C恆溫三天,以 1.2° C/hr的降溫速率降溫 至 550° C,之後自然降溫至室溫。將Sr₃SnSb₂S₈從高溫爐取出石英管,化合 物並沒有和管壁反應,但並沒有特殊的晶體形狀。這個化合物並沒有像 Sr₃GeSb₂Se₈的化合物一樣,在空氣下有明顯的變化,至目前為止,至少可 以維持一個星期具有結晶性。

C. 結構測定

(1)Sr₃GeSb₂Se₈

(a)X 光單晶繞射(CAD4)

因為這個晶體怕水怕氧,所以將晶體從手套箱拿出來之後泡在礦物 油中。選取塊狀晶體,挑選長寬高分別約為 0.3*0.6*0.6mm³大小之晶體,使 用AB膠將晶體沾黏於玻璃纖維上,置入CAD4 (CAD4 Enraf Nonius FR590) 單晶繞射儀做晶胞常數測定,在設定角度範圍內,讓機器任意尋找繞射點, 待繞射儀收 25 個繞射點,得到一組晶胞常數結果,對照ICSD(Inorganic Crystal Structure Database)與SCI (Science Citation Index-Expanded),並沒有 比對出和已知物結構一樣的晶胞,所以判定可能是一個新化合物。

(b)X 光單晶繞射(CCD)

再將此一新化合物用單晶X光繞射分析儀(Bruker smart 1000CCD Diffractometer system)配有graphite-monochromatized的Mo靶Kα輻射光源 (λ=0.71073)來收集數據(晶體到偵測器的距離為 5.000cm),收集繞射數據是 處於室溫。在室溫下對倒置空間中半個球體的繞射點拍照。繞射點的照相 過程,是利用儀器配備的繞射裝置採取沿Ω軸 0.3°/frame的掃描速率收集四 組共 2070 張照片,且每一張照片對晶體拍照的時間都在 60 秒左右,直到 角度達到 20=56.54°。把收集到的晶體數據利用軟體Smart來篩選強度為I/o >20 的繞射點來決定出晶胞常數,隨後利用SAINT軟體、SaintPlus⁹軟體以 積分方式收集繞射數據、SADABS來作吸收校正,最後利用SHELX-97 軟體 以直接法(direct method)和最小平方法來進行結構精算解析。

在精算這個化合物的結構時,利用 atoms 此軟體來畫出 SHELXTL 收集 數據所分析出來的模型結構,判斷其各個原子間的鍵結、鍵長在空間中的 排列是否合理,並由模型來計算出理論計算的 X 光粉末繞射圖譜,與實驗 所得圖譜做比較,可判斷解出之晶體結構是否為主產物,或者是否含有其 他雜質。

回 5-1 上千投為車面繞射數據理論計并所存之PARD圖,下千投為 Sr3GeSb2Se8PXRD圖。

Sr₃GeSb₂Se₈由單晶精算後,最精確的化學式應該為Sr₃Ge_{0.95}Sb_{2.05}Se₈, 純化反應利用調整比例或改變溫度,因為Sr元素會和石英管管壁反應,所以 升溫過程必須緩慢進行,實驗結果發現,最適當的反應條件是三小時從室 溫升溫到250℃,再用48小時升溫到到750℃,750℃反應72小時,以1.2 ℃/hr降溫至550℃,後自然降溫。用Sr₃GeSb₂Se₈這個比例可以得到很純的 產物,利用GASA¹⁰⁻¹¹理論計算得到圖3-1。圖3-1中,上半部為GSAS理論 計算所得到的X光粉末繞射圖,對照下半部為Sr₃GeSb₂Se₈實驗得到X光粉末 繞射圖,圖中可以看出,並沒有SrSe或是其他二元不純相。

(2). $Sr_3SnSb_2S_8$

(a) X 光單晶繞射(CAD4)

這個四元化合物並沒有特別的晶體形狀,挑選塊狀的晶體,其長 寬高分別約為 0.1*0.1*0.1mm³大小之晶體,使用AB膠將晶體沾黏於玻璃纖 維上,置入CAD4(CAD4 Enraf Nonius FR590)單晶繞射儀做晶胞常數測定, 在設定角度範圍內,讓機器任意尋找繞射點,待繞射儀收 25 個繞射點,得 到一組晶胞常數結果,和Sr₃GeSb₂Se₈相當相似,猜測有可能為相同結構。 使用CAD4(Enraf Nonius FR590)收晶體數據,收集 1/8 的晶體繞射點,為斜 方晶系的最小單位,並做了六個高角度的HKL做吸收校正。

在精算這個化合物的結構時,利用 atoms 軟體來畫出 SHELXTL 收集數 據所分析出來的模型結構,判斷其各個原子間的鍵結、鍵長在空間中的排 列是否合理,並由模型來計算出理論計算的 X 光粉末繞射圖譜,與實驗所 得圖譜做比較,可判斷解出之晶體結構是否為主產物,或者是否含有其他 雜質。

D. 物性测量

(1)元素分析

Sr₃GeSb₂Se₈經測試發現應該可以在空氣下維持一個小時不與水或氧 反應,所以在反應完後迅速取出塊狀晶體作元素分析,選取乾淨晶體表面, 使用打點的方式來測量,發現裡面含有鍺、銻、硒、鍶四種元素,並無氧 元素的訊號峰,其比例列於表 3-1,所以判定此化合物為包含鍺、銻、硒、 鍶等四種元素的四元化合物。這些元素並沒有重疊的訊號峰,而且在元素 分析過程中,並沒有發現其他不純物,例如氧化矽或是其他元素出現。

Sr ₃ GeSb ₂ Se ₈	Ι	П	Ш	Ave	比例
Ge	3.61	3.09	4.96	3.887(1)	1
Sr	21.3	20.72	21.23	21.083(3)	5.4245
Sb	16.8	17.83	16.32	16.983(8)	4.36964
Se	58.3	58.36	57.49	58.050(5)	14.9357

表 3-1: Sr3GeSb2Se8 EDX比例分析

(2) 電導係數

電導係數所要測量的樣品,須先將樣品用壓片器壓成大小為 5*1*1mm³ 的塊材,再置入高溫爐以溫度 670°C來作高溫退火 (anneling) 以減少壓成 塊材的晶界 (grain boundary)。電導係數的量測主要是以自組裝電阻測量 儀,一台電壓計(KEITHLEY 181 NANOVOLTMETER),一台電流供應器 (KEITHLEY 224 PROGRAMMABLE CURRENT SOURCE)。在真空環境底 使用四點探針法,將四條金屬銅線用銀膠等距黏附於壓成 5*1*1mm³大小的 樣品上,從樣品外側兩端通入 0.1mA電流,測量中間兩點電壓差,實驗測 量溫度範圍在 180K~300K。

因為這個晶體在空氣下並不穩定,所以在從石英管打開後迅速壓片, 用三用電表測量電阻,發現塊材的電阻大於1MΩ,因電阻過大並非良好的 熱電材料,所以並沒有作 Seebeck 的實驗。

(3)熱分析

熱分析儀 (Seiko SSC 5000*) 測量數據在固定氮氣流速為 100 ml/min、 升溫速率為 5 ℃/min 的參數下,從 400℃升到 920℃, 吹氮氣使之自然降溫。

41

圖 3-2 Sr₃Sb₂GeSe₈ (a)TGA圖 (b)DTA圖

圖 3-2 是Sr₃GeSb₂Se₈的DTA圖,在739℃的地方有一個訊號峰,對照TGA 圖,在TGA圖中,除了 697℃有一個急速下降的訊號,並沒有其他重量下降 的訊號,所以猜測這個化合物應該沒有熔點,直接昇華,或是這個溫度已 經達到Se元素的沸點,所以觀察不到Sr₃GeSb₂Se₈的熔點或是沸點。另外, 也可能是因為這個晶體怕水怕氧,所以測到的晶體已經氧化成另外一種化 合物了。

Ⅲ 結果與討論

A.單晶解析

晶體原始的反應為Sr:Ge:Sb:Se=3:2:2:9,以這樣的比例去燒 結,期望得到四元的化合物。EDX的結果中,晶體裡面含有的元素有緒、 錦、硒和鍶。如果假定這個晶體為斜方晶系(orthorhombic),此模型的internal R value為 0.0497,藉消光效應可以決定此化合物的空間群,計算出兩種空 間群分別是Pnma和Pna21。使用SHELXTL軟體以直接法分析晶胞中各原子 的排列,並以最小平方法進行精算,而無論選擇Pnma或是Pna21,所解出來 的R1 value都大約是 0.05 左右, R2 value約 0.12,所以選擇對稱性高的空間 群Pnma來精算這個四元化合物的模型,而最後從單晶數據得到的比例是 Sr₃GeSb₂Se₈,晶體數據列於表 2~5。

衍生物Sr₃SnSb₂S₈的晶體數據使用WinGX轉檔,從消光效應來判斷其空 間群也是Pnma和Pna2₁這兩個選擇,其R_m=0.1299。用SHELXTL的直接法解 出晶胞中原子排列結構,再以最小平方法做精算。最初輸入的化學式就是 以Sr₃Sb₂GeSe₈當作基本模型,將其中的元素替換成Sn和S,化學式變為 Sr₃Sb₂SnS₈。選定和Sr₃Sb₂GeSe₈一樣的高對稱性的空間群Pnma後,以最小平 方法進行第一次精算,所有陽離子和陰離子位置均和Sr₃GeSb₂Se₈一樣。再 者,因X-ray繞射強度與原子之電子數相關,但在做四元Sr₃SnSb₂S₈新化合物 分析時,Sn與Sb只差一個電子,所以從單晶繞射數據來看,並不能有效分 辨Sn與Sb的位置,因此這兩個原子位置都以Sr₃Sb₂GeSe₈當作模型,來定原 子位置和混合填佔的比例,最後得到的R1/wR2=0.0582/0.1221 晶體數據列 於表 6~9。

表3-2. Sr3GeSb2Se8 單晶數據	
Refined composition	Sr ₃ Sb ₂ GeSe ₈
Formula weight (g/mol)	1210.63
Instrument; Temperature	Smart CCD; 298(2)
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group, Z	Pnma (No.62)
<i>a</i> [Å]	12.633(4)
<i>b</i> [Å]	4.3006(14)
<i>c</i> [Å]	28.693(7)
V[Å ³]	1558.8(8)
$\theta_{\min}, \theta_{\max} (deg)$	1.50, 28.27°
Size(mm)	0.3*0.3*0.6
Independent, observed reflections (R_{int})	2188, 0.0497
$d_{\text{calcd.}} [g/m^3]$	5.158
Absorption coefficient [mm ⁻¹]	34.153 mm ⁻¹
Reflections collected	17875
Refinement method	Full-matrix least-squares on F2
Goodness-of-fit on F2	1.077
R1, wR2 (all data)a	0.0515, 0.1235
R1, wR2 (I > $2\sigma(I)$)	0.0586, 0.1276
Largest diff. peak and hole $R1=\Sigma \parallel F_0 \mid - \mid F_c \parallel \Sigma \mid F_0 \mid wR2= \{ \Sigma \mid \Sigma \mid S_0 \mid$	6.411 and -4.209 e.Å ⁻³ $[w(F_0^2 - F_c^2)^2] /\Sigma [w(F_0^2)^2] $

Atom	Site	Х	у	Z	Ueq	Site occ.	
M1		0.4547(1)	0.25	0.0672(1)	30(1)	Sb	0.94(2)
						Ge	0.05(2)
M2		0.2656(1)	0.25	0.4719(1)	31(1)	Sb	0.76(2)
						Ge	0.23(2)
M3		0.0716(2)	0.25	0.2178(1)	41(1)	Ge	0.65(2)
						Sb	0.34(2)
Sr(4)		0.1717(1)	0.25	0.6853(1)	19(1)		
Sr(5)		0.3056(1)	0.25	0.8433(1)	20(1)		
Sr(6)		0.4699(1)	0.25	0.5878(1)	27(1)		
Se(7)		0.0015(1)	0.25	0.3441(1)	18(1)		
Se(8)		0.1612(1)	0.25	0.1429(1)	21(1)		
Se(9)		0.2351(1)	0.25	0.2622(1)	21(1)		
Se(10)		0.3520(1)	0.25	0.3881(1)	19(1)		
Se(11)		0.1827(1)	0.25	0.5755(1)	28(1)		
Se(12)		0.3816(1)	0.25	0.9492(1)	37(1)		
Se(13)		0.1050(2)	0.25	0.0052(1)	36(1)		
Se(14)		0.0278(2)	0.25	0.7787(1)	88(1)		

表 3-3. 原子位置與熱參數 $Sr_3GeSb_2Se_8$. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

1 3-40	51300502508	一小 1 7	可的杰沙教	(pm)		
atom	U^{11}	U ²²	U ³³	U ²³	U^{13}	U ¹²
M1	28(1)	45(1)	18(1)	0	0(1)	0
M2	22(1)	49(1)	21(1)	0	2(1)	0
M3	55(1)	35(1)	34(1)	0	-21(1)	0
Sr(4)	20(1)	17(1)	19(1)	0	2(1)	0
Sr(5)	26(1)	15(1)	19(1)	0	-2(1)	0
Sr(6)	29(1)	17(1)	35(1)	0	3(1)	0
Se(7)	18(1)	17(1)	19(1)	0	1(1)	0
Se(8)	19(1)	26(1)	17(1)	0	3(1)	0
Se(9)	24(1)	26(1)	13(1)	0	-1(1)	0
Se(10)	19(1)	20(1)	16(1)	0	0(1)	0
Se(11)	24(1)	40(1)	19(1)	0	3(1)	0
Se(12)	23(1)	64(1)	23(1)	0	-5(1)	0
Se(13)	33(1)	50(1)	24(1)	0	-5(1)	0
Se(14)	22(1)	217(4)	26(1)	0	8(1)	0
			S/	2		

表 3-4. Sr₃GeSb₂Se₈各原子非均向熱參數(pm²)

		S E F S	
表 3-5.	原子間距離	(Å) for Sr ₃ GeSb ₂ Se ₈	

Contacts	Distance (Å)	Contacts	Distance (Å)
M1-Se(7)	2.6110(2)	Sr(4)-Sr(4)	4.3006(2)
M1-Se(11)	2.7740(1)	Sr(5)-Se(12)	3.187(2)
M1-Se(12)	3.0200(2)	Sr(5)-Se(10)	3.2001(2)
M2-Se(10)	2.6421(2)	Sr(5)-Se(9)	3.2083(2)
M2-Se(13)	2.8642(2)	Sr(5)-Se(7)	3.2503(2)
M2-Se(12)	2.9170(2)	Sr(5)- $Sr(5)$	4.3006(2)
M3-Se(9)	2.428(2)	Sr(5)-Sr(6)	4.680(2)
M3-Se(8)	2.429(3)	Sr(6)-Se(8)	3.1420(2)
M3-Se(14)	2.4922(2)	Sr(6)-Se(13)	3.166(3)
Sr(4)-Se(11)	3.154(2)	Sr(6)-Se(10)	3.1883(2)
Sr(4)-Se(7)	3.1818(2)	Sr(6)-Se(11)	3.645(3)
Sr(4)-Se(14)	3.236(3)	Sr(6)-Sr(6)	4.3006(1)
Sr(4)-Se(8)	3.2505(2)	Sr(6)-Sr(5)	4.680(2)
Sr(4)-Se(9)	3.2984(2)	Sr(6)- $Sr(4)$	4.695(2)
Sr(4)-Sb(3)	4.002(2)		

表3-6. Sr₃SnSb₂S₈ 單晶數據

Refined composition	$Sr_3SnSb_2S_8$
Formula weight (g/mol)	881.53
Instrument; Temperature	Smart CCD; 298(2)
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group, Z	<i>Pnma</i> (No.62), 4
<i>a</i> [Å]	12.037(2)
<i>b</i> [Å]	4.2026(8)
<i>c</i> [Å]	27.785(5)
V [Å ³]	1405.5(5)
$\theta_{\min}, \theta_{\max} \text{ (deg)}$	1.47, 27.45°
Size(mm)	0.1*0.1*0.1
Independent, observed reflections (Rint)	1835, 0.1232
$d_{\text{calcd.}} [\text{g/m}^3]$	4.166
Absorption coefficient [mm ⁻¹]	17.998 mm ⁻¹
Reflections collected	2057
Refinement method	Full-matrix least-squares on F2
Goodness-of-fit on F2	1.011
R1, wR2 (all data)	0.0582, 0.1221
$ \begin{array}{l} \text{R1, wR2 (I > 2\sigma(I))} \\ \text{R1=}\Sigma \parallel F_0 \mid \text{ - } \mid F_c \parallel /\Sigma \mid F_0 \mid \textit{wR2=} \{ \Sigma \mid C_{c} \mid C_{$	0.1088, 0.1429 w(F ₀ ² - F _c ²) ²] / Σ [w(F ₀ ²) ²]} ^{1/2}

Atom	Site	Х	у	Z	Ueq	Site occ.	
M1		0.2358(1)	0.25	0.4717(1)	20(1)	Sb	0.94(2)
						Sn	0.05(2)
M2		0.0439(1)	0.25	0.0686(1)	19(1)	Sb	0.76(2)
			0.25			Sn	0.23(2)
M3		0.4373(2)	0.25	0.2159(1)	26(1)	Sn	0.65(2)
			0.25			Sb	0.34(2)
Sr(4)		0.2029(2)	0.25	0.8429(1)	13(1)		
Sr(5)		0.3275(2)	0.25	0.6835(1)	14(1)		
Sr(6)		0.0350(2)	0.25	0.5825(1)	24(1)		
S (7)		0.1472(4)	0.25	0.3910(2)	17(1)		
S(8)		0.4982(4)	0.25	0.3448(2)	12(1)		
S(9)		0.3408(4)	0.25	0.1408(2)	21(1)		
S(10)		0.2695(4)	0.25	0.2612(2)	16(1)		
S (11)		0.3236(5)	0.25	0.5751(2)	40(2)		
S(12)		0.4530(5)	0.25	0.7803(2)	51(2)		
S(13)		0.3870(6)	0.25	0.0045(2)	60(3)		
S(14)		0.1200(5)	0.25	0.9478(2)	78(4)		
			TIM	10000000			

表 3-7. Sr₃SnSb₂S₈原子位置與熱參數. U_{eq} is defined as one third of the trace of the orthogonalized U_{ii} tensor.

	2-52-220			(1)		
atom	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
M1	14(1)	28(1)	18(1)	0	0(1)	0
M2	18(1)	23(1)	17(1)	0	2(1)	0
M3	28(1)	23(1)	27(1)	0	12 (1)	0
Sr(4)	15(1)	10(1)	13(1)	0	-3(1)	0
Sr(5)	12(1)	11(1)	17(1)	0	-1(1)	0
Sr(6)	27(1)	13(1)	31(1)	0	-3(1)	0
S(7)	16(2)	18(3)	16(2)	0	5(2)	0
S(8)	9(2)	13(2)	15(2)	0	-1(2)	0
S(9)	17(3)	21(3)	24(3)	0	11(2)	0
S(10)	17(3)	22(3)	10(2)	0	0(2)	0
S(11)	22(3)	73(5)	24(3)	0	0(2)	0
S(12)	16(3)	109(7)	28(3)	0	0(3)	0
S(13)	37(4)	128(8)	15(3)	0	1(3)	0
S(14)	16(3)	202(1)	16(3)	0	-1(2)	0
				E AL		

表 3-8. Sr₃SnSb₂S₈ 各原子非均向熱參數(pm²)

annun .

表 3-9. Sr₃SnSb₂S₈ 原子間距離

Contacts	Distance (Å)	Contacts	Distance (Å)
M1-S(7)	2.485(5)	Sr(4)-Sr(4)	4.2026(2)
M1-S(11)	2.726(5)	Sr(4)-Sr(6)	4.503(3)
M1-S(11)	2.726(5)	Sr(4)-Sr(5)	4.577(1)
M1-S(14)	2.805(4)	Sr(5)-S(13)	3.012(7)
M1-Sr(6)	3.914(2)	Sr(5)-S(8)	3.071(4)
M2-S(8)	2.468(5)	Sr(5)-S(9)	3.150(4)
M2-S(13)	2.644(4)	Sr(5)-S(12)	3.087(7)
M2-S(14)	2.918(5)	Sr(5)-S(10)	3.233(4)
M3-S(10)	2.380(5)	Sr(5)-Sn(3)	3.923(2)
M3-S(9)	2.386(6)	Sr(5)-Sr(5)	4.2026(8)
M3-S(12)	2.484(3)	Sr(6)-S(13)	3.003(7)
M3-Sr(5)	3.923(6)	Sr(6)-S(9)	3.047(4)
Sr(4)-S(10)	3.110(4)	Sr(6)-S(7)	3.125(4)
Sr(4)-S(7)	3.076(4)	Sr(6)-S(13)	3.161(5)
Sr(4)-S(14)	3.082(7)	Sr(6)-S(11)	3.481(6)
Sr(4)-S(8)	3.206(4)	Sr(6)-Sr(6)	4.2026(8)
Sr(4)-S(12)	3.476(6)	Sr(5)-Sr(4)	4.503(3)
	TIM	A LOSE MAN	

圖 3-3 Sr₃GeSb₂Se₈晶體結構圖

圖 3-3 是從b軸投影的Sr₃GeSb₂Se₈晶胞圖。這個結構中的 Sr原子是用離 子鍵的模型來做鍵結的。Sr3 原子旁邊有八個Se原子,Sr4 原子旁邊有七個 Se原子,Sr5 原子旁邊有七個Se原子,鍵長平均約在 3.1~3.2 Å之間,這對 離子模型來說是合理的。另外兩種陽離子,分別區分成兩種區塊,一種是 ¹[GeSe₄]⁴⁻,一種是。[Sb₂Se₈]¹⁰⁻。Ge原子周圍有四個Se原子,形成扭曲的四面 體,如圖 3-4(a)。如果和其他四面體比較其鍵長,在圖 3-4(b)中,GeSe₂中 四面體鍵長是 2.36Å,Sr₂GeSe₄中四面體的鍵長約在 2.35~2.36Å,而 Sr₃GeSb₂Se₈的鍵長分別是 2.43 Å和 2.49 Å,明顯長了一些,這符合單晶解 出來的結構,因為在Sr₃GeSb₂Se₈的Ge原子裡混有 34% 的Sb原子,所以鍵長 會明顯長一點。

圖 3-4(a)Sr₃GeSb₂Se₈中的GeSe₄區塊 (b)GeSe₂中的GeSe₄區塊

表 3-10 GeSe2和Sr3GeSb2Se和SrGeSe4中的四面體的鍵台	:比較
---	-----

	GeSe ₂ (Å)	GeSr ₃ Sb ₂ Se ₈ (Å)	Sr ₂ GeSe ₄ (Å)
Se	2.36	2.49	2.35
Se	2.36	2.49	2.35
Se	2.36	2.43	2.369
Se	2.36	2.43	2.354
	ΞĿ		

M1 和 M2 的原子周圍都有三個近的 Se 原子兩個遠的 Se 原子,所以形成。¹[Sb₂Se₈]¹⁰⁻的區塊如圖 3-5。

圖3-5 Sr₃GeSb₂Se₈中。¹_∞[Sb₂Se₈]¹⁰⁻區塊黃色原子為Se

表 3-11 是Sb₂Se₃和M1、M2 的鍵長比較。M1 有 94.46% 的Sb和 5.54% 的Ge, M2 有 76.11% 的Sb和 23.89% 的Ge, M1 和M2 的Sb原子都佔有大部分,所以和Sb₂Se₃的鍵長並不會差太多。

表 3-11 Sb₂Se₃和M1、M2 的鍵長比較

	Sb ₂ Se ₃ (Å)		M1(Å)		M2(Å)
Se3	2.58	Se7	2.61	Se10	2.64
Se2	2.79	Se11	2.78	Se12	2.86
Se2	2.79	Se11	2.78	Se12	2.86
Se3	2.98	Se12	3.01	Se13	2.92
Se3	2.98	Se12	3.01	Se13	2.92

圖 3-6 假設Sr和Sr之間有鍵結,用粉紅色的鍵結顏色(a) $Sr_3GeSb_2Se_8$ 沿著b軸投影,(b) $Sr_3Sb_4S_9$ 沿著c軸投影,藍色原子為Sb,黃色原子 為S,紅色原子為Sr (c) Sr_3SnSe_5 沿著c軸投影,綠色原子為Sn,黃色 原子為Se,紅色原子為Sr (d) $Sr_6Sb_6S_{17}$ 沿著a軸投影,藍色原子為Sb, 黃色原子為S,紅色原子為Sr

圖 3-6 是Sr₃GeSb₂Se₈、Sr₃Sb₄S₉、Sr₃SnSe₅、Sr₆Sb₆S₁₇的比較圖,為了解 釋結構,假設Sr和Sr之間有鍵結,用粉紅色的鍵結顏色,(b)圖和(d)中的Sb 原子全部都是五配位,三個短的鍵,兩個長的鍵,和(a)中的Sb環境一樣。 (c)圖中的Sn原子,和(a)圖中的Ge具有相同的四面體環境,鍵長大約在 2.5~2.6 Å之間。這四個化合物,同樣都是被Sr原子區隔開來,Sr3GeSb2Se8的 結構大略可分成兩層區域,一層區域是四面體,一層區域是共邊雙四角錐, 等於是綜合了(b)、(c)化合物的結構,在之前的文獻當中並沒有見過這樣的 結構。

Ⅳ 結論

這一章節討論的新四元含Ge的化合物: $Sr_3GeSb_2Se_8$,這個新結構包含 了兩種區塊,四面體的 ${}_{o}^{1}[GeSe_4]^{4-}$ 和共邊雙四角錐的 ${}_{o}^{1}[Sb_2Se_8]^{10-}$,這兩種區塊 又分別被Sr原子所區隔開來。Ge和Sb原子互相混合填佔,但Ge含有比較多 的Sb,所以Sr_3GeSb_2Se_8中的四面體鍵長比一般的GeSe_4四面體長一些,而Sb 的五配位鍵長並沒有很明顯的變化。Sr_3GeSb_2Se_8所帶的價電荷分別為 $(Sr_3)^{+2}(Sb_2)^{+3}(Ge)^{+4}(Se_8)^{-2}$,是符合價電平衡的比例。

在衍生物方面,以Sr₃GeSb₂Se₈四元化合物的比例,將Ge替換成Sn,Se 替換成S,形成了衍生物Sr₃SnSb₂S₈。但因為Sb和Sn只差一個電子數,所以 無法分辨這兩個的原子位置和是否有混合填佔,所以都以Sr₃GeSb₂Se₈為模 型,固定混合填佔的比例。而其他相關衍生物如Sr₃SnSb₂Se₈、Sr₃GeSb₂S₈、 Sr₃PbSb₂S₈、Sr₃PbSb₂Se₈,其實驗仍然在進行中,詳細部分寫在後面的章節 中。

Sr₃GeSb₂Se₈在空氣下會和水跟氧反應,形成另外一種含氧的新化合物,所以無法測量物理性質,但收數據的晶體用礦物油包住,並不影響晶 體數據的準確度。而Sr₃SnSb₂S₈至目前為止,可以維持兩個星期內仍然有結 晶性且不變質。電阻方面,利用三用電表測量燒結出來的塊材電阻,顯示 是絕緣體,猜測應該是具有很大電阻的塊材,所以並無測量物理性質包括 電導系數和Seebeck。

V. 參考文獻:

- 1. Ribes, M.; Philippot, E.; Maurin, M. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques. **1970**, 270, 1873-1874.
- 2. Teske, C.L. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie. **1979** *34*, 386-389.
- 3. Johrendt, D.; Tampier, M. Chem. Eur. J. 2000, 6, 994-998.
- 4. Tampier, M.; Johrendt, D. Zeitschrift fuer Anorganische und Allgemeine Chemie 2001 627, 312-320.
- 5. Pocha, R.; Tampier, M.; Hoffmann, R. D.; Mosel, B. D.; Poettgen, R.; Johrendt, D.

Zeitschrift fuer Anorganische und Allgemeine Chemie. 2003, 629, 1379-1384.

- 6. Teske, C.L. Z. Anorg. Allg. Chem. 1976, 419, 67-76.
- 7. Cordier, G.; Schwidetzky, C.; Schaefer, H. *Revue de Chimie Minerale*. **1982**, *19*, 179-186.
- 8. Choi, K. S.; Kanatzidis, M.G. Inorg. Chem. 2000, 39, 5655-5662.
- 9. SAINT Version 4; Siemens Analytical X-ray Instruments Inc.: Madison, WI. 1995.
- 10. Von Dreele. R. B.; Jorgensen, J. D.; Windsor, C. G. J. Appl. Crystallogr. 1982, 15, 581.
- 11. Larson, L. C.; Von Dreele. R. B.; LANSCE, Msh805; Los Alamos National Laboratory:los Alamos, NM, **1995.**

第四章 結論

GeSb₂Se₃為第一個Ge-Sb-Se三元系統中,具有結晶性的化合物。
GeSb₂Se₃是一個層狀結構,結構分成。[SbSe]¹⁻。[GeSbSe₂]¹⁺ 兩種區塊,
¹[GeSbSe₂]¹⁺類似Sb₂Se₃的結構,但其中兩個陽離子M1和M2位置的電子密度
認為是Ge和Sb混合填佔。從環境與配位鍵結判斷M1的性質比較偏向Sb原子的性質,M2則偏向Ge原子的性質。另外,。[SbSe]¹⁻是Sb原子Z字形的Sb-Sb
鏈狀鍵結,其中Sb的價電荷為+1 價。

從LMTO理論計算中,DOS圖中 $E_{gap}=0.08eV$,是具有半導體的性質。從 Band structure中看出是間接能隙,可能因為間接能隙導致電導係數沒有因為 能隙小而很高。熱電性質方面,300K下,Seebeck數值約為-395 μ VK⁻¹,是 n-type 性質的半導體,電導係數為 28.82 Ω^{-1} cm⁻¹, power factor為 4.5 μ W/cmK²。這一系列的化合物嘗試做過同族元素的替換,實驗部分仍在 進行中。

2. 第三章討論的新四元 $Sr_3GeSb_2Se_8$ 和其衍生物 $Sr_3SnSb_2S_8$,包含了兩種 區塊,四面體的 $_{o}^{1}[MSe_4]^{4-}(M=Sn,Ge)$ 和共邊的雙四角錐 $_{o}^{1}[Sb_2Se_8]^{10-}$,這兩種 區塊又分別被Sr原子所區隔開來。Ge和Sb的位置都互有混合填佔,但Ge混 合較多的Sb,所以 $Sr_3GeSb_2Se_8$ 中四面體的 $GeSe_4$ 的鍵長都比一般的 $GeSe_4$ 四 面體還要長。 $Sr_3GeSb_2Se_8$ 所帶的價電荷分別為 $(Sr_3)^{+2}(Sb_2)^{+3}(Ge)^{+4}(Se_8)^{-2}$ 。

Sr₃GeSb₂Se₈晶體在空氣下會與水跟氧反應,形成另外一種含氧的五元 化合物,所以無法測量物理性質,但收數據的晶體用已礦物油包住,並不 影響晶體數據的準確度。Sr₃GeSb₂Se₈的衍生反應,嘗試用Ge那一族作替換 反應,例如Sr₃GeSb₂S₈、Sr₃SnSb₂Se₈、Sr₃PbSb₂S₈、Sr₃PbSb₂Se₈,目前實驗 仍在進行中。

附錄 I GeSbSrSeO 五元化合物

在第三章所描述的四元化合物Sr₃GeSb₂Se₈是會與水或氧產生反應,如 果將Sr₃GeSb₂Se₈用水洗調多餘的Se元素後,壓片後靜置在空氣中,會產生 橘色柱狀晶體。將此橘色柱狀晶體利用CAD4 單晶繞射儀做晶胞常數測定, 在設定角度範圍內,讓機器任意尋找繞射點,待繞射儀收 25 個繞射點,得 到一組晶胞常數結果為a = 15.525(3) Å, b = 9.6412(19) Å, c = 17.308(4) Å α = 90°, β = 91.39(3)°, γ = 90°, V = 2589.9(9) Å³, 對照ICSD(Inorganic Crystal Structure Database)與SCI (Science Citation Index-Expanded),並沒有比對出和 已知物結構一樣的晶胞常數,所以判定可能為一新化合物。

判斷這個橘色晶體應該會吸水,所以以比例 Sr:Ge:Sb:Se=3:2: 2:9下反應,將合成出來的化合物開管後迅速丟入約 50mL 的去離子水中, 發現水變成橘色,利用顯微鏡觀察發現有一些橘色晶體產生,推測這些橘 色晶體應該和之前是相同東西。

橘色晶體在EDX測量下,得到結果如附錄表 1-1,裡面含有的元素並沒 有重疊的訊號峰,所以可以確定橘色晶體裡含有這五種元素,圖 1-1 (a)為 四元晶體的EDX圖形,(b)為五元晶體的EDX圖形,四元GeSb₂Sr₃Se₈中的確 沒有氧的訊號峰,和橘色晶體不相同。目前已知文獻中,並沒有這五種元 素所合成的東西,所以利用CAD4 收集晶體數據,得到下列晶體數據表格, 不過因為並未收集完整晶體繞射數據,因此下面僅列出初步結果,後續實 驗仍在進行中。橘色晶體在空氣下仍然不穩定,雖然是在室溫下生成,不 過經過大約一個月晶體會由亮橘色變為暗銀色再變為黑色,最後成為沒有 結晶性的化合物,所以在收集數據方面需要在表面沾附一些礦物油以減緩 晶體變質。

-					
180W	Ι	П	Ш	Ave	比例
0	47.44	47.82	63.20	47.63	9.95
Ge	4.64	4.93	2.02	4.79	1.00
Sb	5.87	4.49	3.85	5.18	1.08
Sr	13.98	14.31	11.48	14.15	2.96
Se	28.07	28.46	19.46	28.27	5.91

附錄表 1-1 取橘色晶體測 EDX 的結果,得到五種元素,灰色數字因為和其他兩組數據相差較多,所以不算入平均當中。

附圖 1-1 (a)圖為Sr₃GeSb₂Se₈ EDX圖 (b) Sr₃GeSb₂Se₈生成橘色晶體的氧合物

附圖 1-2 O₁₅Ge_{0.51}Se₅Sr₂Sb_{1.49} 從b軸投影,紅色原子為Sr,藍色原子為Sb和Ge混合填佔,黃色原子為Se,藍色原子為O。

圖 1-2 為五元晶體結構,大約分成兩部分,一部份為Sr周圍包圍七個 氧,距離都大約在 2.5~2.7 Å之間,另外一部份為Sb和Ge混合填佔的位置, 周 圍 接 三 個 Se, 鍵 長 約 在 2.5~2.6 之 間。 晶 體 大 約 的 比 例 為 (O₁₅)(Ge_{0.51})(Se₅)(Sr₂)(Sb_{1.49}),因為陰離子偏多,不符合價電平衡的原則。猜 測在Sr原子附近的氧如果是水的話,可能較符合電荷平衡,但目前仍無證據 是否是水或是氧。

類似的Sr氧化物有Sr₃Fe₂(SeO₃)₆¹、SrFe₂(SeO₃)₄²、Sr₂Co(SeO₃)₃³、 Sr₂Cu(SeO₃)₃⁴、SrCu(SeO₃)⁵、SrSe₂O₅⁶,這些化合物的Sr都具有八配位的氧, 距離也約在2.5~2.7Å, Fe、Cu、Co都具有六配位的氧,Se價電荷為+4,具 有三配位的氧,這些Sr的氧化物結構明顯和解出來的晶體結構不太相同,雖 然只有用不到1/8的點解出來的R1 = 0.0683, wR2 = 0.1635,是可以接受的 範圍,不過在結構方面卻不太能解釋為什麼在氧的周圍沒有Sb或Ge原子, 是不穩定的結構。

Refined composition	$O_{15}Ge_{0.51}Se_5Sr_2Sb_{1.49}$				
Formula weight (g/mol)	550.1				
Instrument; Temperature	Smart CCD; 298(2)				
Wavelength (Å)	0.71073				
Crystal system	monoclinic				
Space group, Z	<i>C2/c</i> (No.15), ?				
<i>a</i> [Å]	15.525(1)				
<i>b</i> [Å]	9.6412(1)				
c [Å]	17.308(4)				
β	91.39(3)°				
$V[Å^3]$	2589.9(9)				
$\theta_{\min}, \theta_{\max} (deg)$	4.23, 27.46°				
Crystal Size(mm)	-3*3*8				
Independent, observed reflections (R_{int}) 1270, 0.000					
$d_{\text{calcd.}} [\text{g/cm}^3]$	5.362				
Absorption coefficient [mm ⁻¹]	29.286 mm ⁻¹				
Reflections collected	7070				
Refinement method	Full-matrix least-squares on F2				
Goodness-of-fit on F2	1.109				
R1, wR2 (all data)a	0.0683, 0.1635				
$ \begin{array}{l} \text{R1, wR2 (I > 2\sigma(I))} \\ \textbf{R1=} \Sigma \parallel F_0 \mid \textbf{-} \mid F_c \parallel \Sigma \mid F_0 \mid \textbf{wR2=} \{ \Sigma \mid \Sigma \mid F_0 \mid \textbf{wR2=} \} \\ \end{array} $	$\begin{array}{c} 0.0978, 0.1814 \\ [\ w(F_0{}^2 - \ F_c{}^2)^2 \] \ /\Sigma \ [\ w(F_0{}^2)^2 \] \} \ ^{1/2} \end{array}$				

附錄表1-2. O₁₅Ge_{0.51}Se₅Sr₂Sb_{1.49}的晶體數據
参考文獻

- 1. Giester, G. Z. Anorg. Allg. Chem. 1996, 622, 1788-1792.
- 2. Giester, G.; Wildner, M. J. Alloys Compd. 1996, 240, 25-32.
- 3. Wildner, M. J. Alloys Compd. 1995, 217, 209-212.
- 4. Effenberger, H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1988, 44, 800-803.
- 5. Effenberger, H. J. Solid State Chem. 1987, 70, 303-312.
- 6. Effenberger, H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43, 182-184.

附錄Ⅱ 其他

第二章的晶體GeSb₂Se₃中的Ge、Sb、Se作同族元素的替換,Ge替換成 Sn、Pb,Sb替換成Bi,Se換成S和Te。衍生反應結果並不好,推測結果可能 因為溫度或是反應時間並沒有調整到一個好的條件,所以目前只有GeBi₂Se₃ 這個比例的粉末X光繞射圖,經比對JCPDS資料庫後認為可能具有未知相, 其他並沒有做出確定相似的衍生化合物。

第三章中的四元化合物Sr₃Sb₂GeSe₈,在最初反應比例為Sr:Sb:Ge: Se=3:2:2:9或Sr:Sb:Ge:Se=3:2:1:7時,已經將Sb替換成Bi,Se 換成S和Te。反應結果中,Sr₃Ge₂Bi₂Se₉和Sr₃Ge₂SbS₇的粉末X光繞射圖,比 對JCPDS資料庫後認為可能具有未知相,實驗仍在進行中,無法確定是否是 相似結構或是新化合物。另外,在Sr:Sb:Ge:Se=3:2:1:8的衍生反 應中,有Sr₃PbSb₂S₈和Sr₃PbSb₂Se₈這兩個化合物的粉末X光繞射比較有可能 是類似化合物,測得EDX,得到附錄表 2-1的結果:

$Sr_3PbSb_2Se_8$	*1	44000	*	Ave	
Pb	7.33	6.78	7.51	7.21(0)	1.00
Sb	12.93	17.07	15.14	15.05(2)	2.09
Sr	14.35	15.84	17.71	15.97(1)	2.22
Se	65.37	60.30	59.64	61.77(3)	8.57
Sr ₃ PbSb ₂ S ₈				Ave	
Sr ₃ PbSb ₂ S ₈ Pb	4.49	6.93	4.68	Ave 5.37(1)	1.00
Sr ₃ PbSb ₂ S ₈ Pb Sb	4.49 15.44	6.93 16.63	4.68 17.75	Ave 5.37(1) 16.61(1)	1.00 3.09
Sr ₃ PbSb ₂ S ₈ Pb Sb Sr	4.49 15.44 16.29	6.93 16.63 17.16	4.68 17.75 18.09	Ave 5.37(1) 16.61(1) 17.18(1)	1.00 3.09 3.20

附錄表 2-1 Sr₃PbSb₂S₈和Sr₃PbSb₂Se₈EDX的結果表格

Sr₃PbSb₂Se₈這個晶體有挑出針狀晶體,利用CAD4 單晶X光繞射,隨機 測出 25 組繞射點,得到一組晶胞為a= 4.2413,b=16.1336,c=47.55, α =90.0342,B= 90.0025, γ = 90.0016,V=3256.4920,仍未收單晶數據,但 在已知的文獻中,並沒有這四個元素的化合物,所以應該是一個 新的化合物,從晶胞來判斷似乎不相同於Sr₃GeSb₂Se₈的衍生物,應該是另 外一種結構。Sr₃PbSb₂S₈這一個化合物並沒有挑到好的晶體,所以現今仍未 測定其結構。

附錄Ⅲ 反應列表

M:主產物, m:次產物

編號	比例式	反應過程	主, 次產物
1	GeV_2S_5	$600^\circ\!\mathrm{C}$, $10hr$	GeV ₄ S ₈ (M)
2	GeTa ₄ S ₈	$600^\circ\!\!\mathbb{C}$, $10hr$	$GeTa_3S_6(M)$
3	GeNb ₄ S ₈	$600^\circ\!\!\mathbb{C}$, $10hr$	$GeS_2(M)$
4	GeNb ₄ Se ₈	$600^\circ\!\mathrm{C}$, $10hr$	$Nb_{1.29}Se_2(M)$
5	GeTa ₄ Se ₈	$600^\circ\!\mathrm{C}$, $10hr$	TaSe ₂ (m), GeSe(M), Ge
6	GeV ₄ Te ₈	$600^\circ\!\mathrm{C}$, $10hr$	$V_{1.04}$ Te ₂ (M), GeTe(m)
7	GeTa ₄ Te ₈	$600^\circ\!\mathrm{C}$, $10hr$	TaTe ₂ (M)
8	GeNb ₃ S ₆	$600^\circ\!\mathrm{C}$, $10hr$	$GeS_2(M)$
9	GeV ₂ S6	$600^\circ\!\mathrm{C}$, $10hr$	$V_2S_4(M), VS_2(m)$
10	GeNb ₂ S ₆	600° C , 10hr	$GeS_2(M), GeV_4S_8(m)$
11	GeTa ₂ S ₆	600°C, 10hr	$GeS_2(M)$
12	GeCr ₄ S ₈	700°C, 12hr	$Cr_3S_4(M), S_8(m)$
13	GeW ₄ S ₈	700°C, 12hr	WS ₂ (M)
14	GeNb ₃ Se ₆	700°C, 12hr	$GeSe(M), GeSe_2(m)$
15	GeCr ₄ S ₈	800°C, 12hr	$\operatorname{CrS}_3(\mathbf{m}), \operatorname{GeS}_2(\mathbf{M})$
16	$\mathrm{GeW}_4\mathrm{S}_8$	800°C, 12hr	$WS_2(M)$
17	$GeMo_4S_8$	$800^\circ\!\mathrm{C}$, $12hr$	$GeS_2(M)$
18	$CuGe_4Bi_4S_{10}$	800° C, 12hr	$BiS_2(m)$, $Cu_2GeS_3(M)$
19	CuGe ₄ Bi ₄ Se ₁₀	800°C, 12hr	$Cu_2GeSe_3(M), Cu_{1.6}Bi_{4.8}Se_8(m)$
20	CuGeBi ₃ S ₆	800° C, 12hr	$BiS_2(m)$, $Cu_2GeS_3(M)$
21	CuGe ₄ Bi ₄ Se ₁₀	950°C , 36hr	Cu ₂ GeSe ₃ (M)
22	CuGeBi ₃ Se ₆	950°C , 36hr	$Bi_2Se_3(m)$, $Cu_2GeSe_3(M)$
23	GeNbS ₂	700° C, $48hr$	$Ge(m)$, $NbS_2(M)$
24	NbS_2	$800^\circ\!\mathrm{C}$, $48hr$	Nb _{0.92} S(M)
25	GeV ₃ S ₆	$800^\circ\!\mathrm{C}$, $30hr$	$GeV_4S8(M), S_8(m)$
26	$Ge_{0.3}NbS_2$	$800^\circ\!\mathrm{C}$, $30hr$	Nb _{1.25} S ₂ (M)
27	Ge _{0.3} NbTe ₂	$800^\circ\!\mathrm{C}$, $30hr$	$Nb_{3}Ge_{0.89}Te_{6}(M)$
28	Ge _{0.3} NbSe ₂	$800^\circ\!\mathrm{C}$, $30hr$	NbSe ₃ (M)
29	GeMgP2Se ₇	$800^\circ\!\mathrm{C}$, $24hr$	unknow
30	GeMgLaSe ₉	$800^\circ\!\mathrm{C}$, $24hr$	$LaSe_2(M)$
31	GeAgInTe ₃	800°C, 24hr	AgInTe ₂ (M), GeTe(m)

32	CaS	$800^\circ\!\mathrm{C}$, $24hr$	CaS(M)
33	SrS	800° C , 24hr	SrS(M)
34	BaS	800° C , 24hr	BaS(M)
35	GePSe ₃	800° C , $36hr$	$P_2Se_5(M)$
36	GeMgP ₂ Se ₇	800° C , $36hr$	$GeSe_2(M), P_2Se_5(m)$
37	Ge ₄ CaLa ₆ S ₁₄	800° C , $36hr$	$La_2Ge_3S_{12}(M)$
38	Ge ₄ BaLa ₆ S ₁₄	800° C , $36hr$	$Ba_2GeS_4(M)$
39	GeLaMgSe ₅	800° C , $36hr$	MgSe(M), La(m)
40	$GeMg_2Se_{22}P_4$	800° C , $36hr$	$P_2Se_5(m)$, unknow
41	CaSe	800° C , $36hr$	CaSe(M)
42	SrSe	800° C , $36hr$	SrSe(M)
43	BaSe	800° C , $36hr$	BaSe(M)
44	$GeLaCa_2S_4$	850° C , $36hr$	$CaS(m)$, $Ca_2GeS_{4(}M)$
45	GeLaBa ₂ S ₄	850°C 36hr	$Ba_2GeS_4(M)$
46	Cu_4GeSe_4	850° C , $48hr$	$Cu_2GeSe_3(M)$
47	Ag ₄ GeSe ₄	850°C, 48hr	$Ag_8GeSe_6(M)$
48	Ag_4GeS_4	850°C, 48hr	$Ag_8GeS_6(M)$
49	GeNb ₃ S ₆	800°C , 24hr	$S_6(m)$, Nb _{1.66} S ₂ (M)
50	Sr ₃ Ge ₂ SbS ₇	900°C , 35hr	$Sr_2GeS_4(M), S_8(m)$
51	Sr ₃ Ge ₂ SbSe ₇	900°C, 35hr	GeSe(M), unknow
52	Sr ₃ Ge ₂ SbTe ₇	900°C, 35hr	SrTe(m), GeSb ₂ Te ₄ (M)
53	$Ge_4In_2Bi_4S_{13}$	850° C , 24hr	$GeS_2(M)$
54	$Ge_4In_3Bi_7S_{18}$	850° C , 24hr	$In_2S_3(M)$
55	$Ge_{1.6}In_8Bi_4S_{19}$	850° C , 24hr	$GeS_2(M)$
56	$Ge_4In_2Bi_6S_{16}$	850° C , 24hr	$In_2S_3(M)$
57	Ge ₄ In ₃ Bi ₇ Se ₁₈	$1000^\circ\!\mathrm{C}$, $24hr$	$In_2Se_3(M), Bi_2Se_3(m)$
58	Ge ₄ In ₂ Bi ₆ Se ₁₆	$1000^\circ\!\mathrm{C}$, $24hr$	amorphous
59	Ag ₂ BiGeS ₄	$1000^\circ\!\mathrm{C}$, $24hr$	amorphous
60	Ag ₂ BiGeSe ₄	$1000^\circ\!\mathrm{C}$, $24hr$	AgBiSe ₂ (M)
61	Cu_2BiGeS_4	$1000^\circ\!\mathrm{C}$, $24hr$	$BiS_2(m)$, $Cu_2GeS_3(M)$
62	Cu ₂ BiGeSe ₄	$1000^\circ\!\mathrm{C}$, $24hr$	$Cu_2GeSe_3(M), Cu_{1.6}Bi_{4.85}Se_8(m)$
63	BiGeS ₅	$1000^\circ\!\mathrm{C}$, $24hr$	amorphous
64	BiGeSe ₅	$1000^\circ\!\mathrm{C}$, $24hr$	amorphous
65	SbGeS ₅	$1000^\circ\!\mathrm{C}$, $24hr$	amorphous
66	GeCuSbS ₃	$800^\circ\!\mathrm{C}$, 24hr	$Cu_2GeS_3(M)$
67	GeAgSbS ₃	$800^\circ\!\mathrm{C}$, 24hr	amorphous
68	GeAuSbS ₃	800°C, 24hr	amorphous

69	GeCuSbSe ₃	$800^\circ\!\mathrm{C}$, $24hr$	$Cu_2GeSe_3(M)$
70	GeAgSbSe ₃	$800^\circ\!\mathrm{C}$, $24hr$	GeSe(M)
71	GeAuSbSe ₃	$800^\circ\!\mathrm{C}$, $24hr$	amorphous
72	GeCuSb ₃ S ₆	$800^\circ\!\mathrm{C}$, $24hr$	$Sb_2S_3(M)$
73	GeAgSb ₃ S ₆	$800^\circ\!\mathrm{C}$, $24hr$	amorphous
74	GeAuSb ₃ S ₆	$800^\circ\!\mathrm{C}$, $24hr$	amorphous
75	GeCuSb ₃ Se ₆	$800^\circ\!\mathrm{C}$, $24hr$	$Sb_2Se_3(M)$
76	GeAgSb ₃ Se ₆	$800^\circ\!\mathrm{C}$, $24hr$	unknow
77	GeAuSb ₃ Se ₆	$800^\circ C$, $24hr$	$Sb_2Se_3(M)$
78	$Ge_4Sb_6FeS_{14}$	$800^\circ C$, $24hr$	unknow
79	$Ge_4Sb_6FeSe_{14}$	$800^\circ\!\mathrm{C}$, $24hr$	Sb(M), amorphous
80	$Sr_3Ge_2SbS_7$	938°C, 40hr	$Sr_2GeS_4(M)$
81	Sr ₃ Ge ₂ SbSe ₇	938°C, 40hr	unknow
82	Sr ₃ Ge ₂ SbTe ₇	938°C, 40hr	SrTe(M), Te(m), Sb ₂ O ₄ (M)
83	Ge ₂ BiS ₄	938°C, 40hr	$Bi(m), GeS_2(M)$
84	GeBi ₂ S ₄	938°C, 40hr	Bi2S3(M)
85	GeBi ₂ S ₅	938°C, 40hr	Bi2S3(M)
86	Ge ₂ SbS ₄	938°C, 40hr	amorphous
87	GeSb ₂ S ₄	938°C, 40hr	amorphous
88	GeSb ₂ S ₅	938°C, 40hr	amorphous
89	Ge3Sb ₄ S ₉	938°C, 40hr	amorphous
90	$Ge_4In_3Bi_7S_{18}$	800°C, 15hr	unknow
91	Ge ₄ In ₃ Bi ₇ Se ₁₈	800° C, 15hr	$In_2Se_3(M)$
92	$Ge_4In_3Sb_7S_{18}$	800° C, 15hr	$In_2Se_3(M)$
93	$Ge_4In_3Sb_7Se_{18}$	800° C, 15hr	unknow
94	$Ge_4Ga_3Bi_7S_{18}$	800° C, 15hr	amorphous
95	$Ge_4Ga_3Bi_7Se_{18}$	800° C, 15hr	unknow
96	$Ge_4Ga_3Sb7S_{18}$	800° C, 15hr	amorphous
97	$Ge_4Ga_3Sb_7Se_{18}$	800° C, 15hr	amorphous
98	Ge ₄ In ₃ Bi ₇ Te ₁₈	800° C, 15hr	GeBi ₂ Te ₄ (M), Bi ₂ Te ₃ (m)
99	$Ge_4In_3Sb_7Te_{18}$	800° C, 15hr	$Ge_{0.95}Sb_{2.01}Te_4(M)$
100	Ge ₄ Ga ₃ Bi ₇ Te ₁₈	800° C, 15hr	$GeBi_2Te_4(m), Bi_2Te_3(m)$
101	$Ge_4Ga_3Sb_7Te_{18}$	800° C, 15hr	$Ge_2Te_3(M), Ge_{0.95}Sb_{2.01}Te_4(m)$
102	GeInPb ₂ S ₄	815° C , 6hr	PbS(M), S(m)
103	GeInNiS ₄	$815^\circ\!\mathrm{C}$, $6hr$	$GeS_2(M)$, $In(m)$
104	GeMnPbS ₄	$815^\circ\!\mathrm{C}$, $6hr$	$GeS_2(M)$
105	$ZnFe_3Ge_2S_8$	800° C, 12hr	$Fe_2SnS_4(M), Fe_2GeS_4(m)$

106	$ZnFe_3Ge_2Se_8$	800°C, 12hr	GeSe ₂ (M)
107	$ZnFe_3GeSnS_8$	800°C, 12hr	$SnS_2(M), GeS_2(m)$
108	$Co_3Ge_2Sn_5S_{17}$	800°C, 12hr	$SnS_2(M), Sn_2S_3(m)$
109	$Mn_3Ge_2Sn_5S_{17}$	800°C, 12hr	$SnS_2(M)$, $Sn2S4(m)$
110	$Zn_3Ge_2Sn_5S_{17}$	800°C, 12hr	$SnS_2(M), Zn_S(m)$
111	$Co_3Ge_2Sn_5Se_{17}$	800° C, 12hr	SnSe(M)
112	$Fe_3Ge_2Sn_5S_{17}$	800° C, 12hr	$GeSnS_3(M), SnS_2(m)$
113	Fe ₃ Ge ₂ Sn ₅ Se ₁₇	800° C, 12hr	Fe(M)
114	$Fe_3Ge_2Pb_5S_{17}$	800°C, 12hr	$GePb_2S_4(M)$
115	Fe ₃ Ge ₂ Pb ₅ Se ₁₇	800° C, 12hr	FeSe ₂ PbSe(M)
116	$Zn_3Ge_2Sn_5Se_{17}$	800° C, 12hr	ZnSe(M), SnSe ₂ (m)
117	Pb ₂ GeTe ₄	800° C, 12hr	PbTe(M), GeTe(m)
118	Pb ₂ GeIn6Te ₁₃	800° C, 12hr	$PbIn_6Te_{10}(M)$, $PbTe(m)$, $In_2Te_3(m)$
119	$Sr_3Sb_2Ge_2S_9$	$750^\circ\!\mathrm{C}$, $72hr$	$Sr_2GeS_4(M)$
120	Sr ₃ SbGe ₂ S ₇	$750^\circ\!\mathrm{C}$, $72hr$	$Sb(m), Sr_2GeS_4(M)$
121	Sr ₃ Sb ₂ Ge ₂ Se ₉	750°C, 72hr	unknow
122	Sr ₃ Sb ₂ Ge ₂ Se ₇	750°C, 72hr	wnknow unknow
123	Sr ₃ Sb ₂ Ge ₂ Te ₉	750°C, 72hr	SrTe(m), GeSb ₂ Te ₄ (M), Te(m)
124	Sr ₃ Bi ₂ Ge ₂ Te ₉	750°C, 72hr	SrTe(M), $Bi_4Te_3(m)$
125	Sr ₃ Bi ₂ Ge ₂ S ₉	750°C, 72hr	$\operatorname{Bi}_2S_3(M), \operatorname{Sr}_2\operatorname{GeS}_4(m)$
126	Sr ₃ BiGe2S ₇	750° C, 72hr	$Sr_2GeS_4(M), Bi(m)$
127	Sr ₃ Bi ₂ Ge ₂ Se ₉	750°C, 72hr	$Bi_2Se_3(M)$
128	$Sr_3BiGe_2Se_7$	750°C, 72hr	sensitive in air
129	Sr ₃ SbGe ₂ Te ₇	750°C, 72hr	SrTe(M), SrGeO ₃ (m)
130	SrBiGe ₂ Te ₇	750°C, 72hr	$SrTe(M), Bi_2Ge_3Te_6(m), Bi_4Te_3(m)$
131	Mn ₃ Ge ₂ Pb4Se ₁₃	1000°C,24hr	PbTe(M), MnSe(m)
132	$Co_3Ge_2Pb_4Se_{13}$	1000°C,24hr	$PbSe(M)$, $CoSe_2(m)$, $Co_2GeSe_4(m)$
133	$Ni_3Ge_2Pb4Se_{13}$	1000°C ,24hr	$PbSe(M)$, $NiSe_2(m)$
134	$Ge_2Pb_2In6S_{13}$	1000°C ,24hr	$In_{21.33}S_{32}(M)$, $Pb_3In_{6.67}S_{13}(m)$
135	$Ge_2Mn_2In6S_{13}$	1000°C ,24hr	$MnIn_2S_{4(}M)$
136	$Ge_2Co_2In6S_{13}$	1000°C ,24hr	CoIn ₂ S(M)
137	$Sr_3Sb_2Pb_2Se_9$	750°C, 72hr	unknow
138	$Sr_3Sb_2Pb_2S_9$	750°C, 72hr	unknow
139	$Ge_{0.25}Sb_{2.75}Se_3$	550°C, 12hr	$GeSb_2Se_3(M)$, $Sb_2Se_3(m)$
140	$Ge_{0.5}Sb_{2.5}Se_3$	550° C, 12hr	$GeSb_2Se_3(M), Sb_2Se_3(m)$
141	$Ge_{0.75}Sb_{2.25}Se_3$	550° C, 12hr	$GeSb_2Se_3(M), Sb_2Se_3(m)$
142	$Ge_{1.25}Sb_{1.75}Se_3$	550°C, 12hr	$GeSb_2Se_3(M), Sb_2Se_3(m)$

143	$Ge_{1.5}Sb_{1.5}Se_3$	$550^\circ\!\mathrm{C}$, $12hr$	$GeSb_2Se_3(M), Sb_2Se_3(m)$
144	$Ge_{1.75}Sb_{1.25}Se_3$	$550^\circ\!\mathrm{C}$, $12hr$	$GeSb_2Se_3(M), Sb_2Se_3(m)$
145	$Sr_3GeSb_2Se_8$	$750^\circ\!\mathrm{C}$, $72hr$	Sr ₃ GeSb2Se8(M)
146	$Sr_3Ge_2Sb_2Se_9$	$750^\circ\!\mathrm{C}$, $72hr$	Sr ₃ GeSb ₂ Se ₈ (M), SrTe(m)
147	$Sr_3Ge_{0.66}Sb_{2.33}Se_8$	$750^\circ\!\mathrm{C}$, $72hr$	Sr ₃ GeSb ₂ Se ₈ (M), SrTe(m)
148	$Ge_{0.95}Sb2.05Se_{3}$	$550^\circ\!\mathrm{C}$, $12hr$	$GeSb_2Se_3(M)$, $Sb_2Se_3(m)$
149	$Ge_{0.9}Sb_{2.1}Se_3$	$550^\circ\!\mathrm{C}$, $12hr$	$GeSb_2Se_3(M)$, $Sb_2Se_3(m)$
150	$Ge_{0.85}Sb_{2.15}Se_3$	$550^\circ\!\mathrm{C}$, $12hr$	$GeSb_2Se_3(M), Sb_2Se_3(m)$

