

圖一 LaCl₃主體晶格中三價鑭系離子波數範圍0-42,000(cm⁻¹)之4fⁿ能階 圖譜(又稱為Dieke diagram)^[8]

圖二 LaF₃主體晶格中三價鑭系離子的4fⁿ能階圖譜,能量範圍擴展 到50,000 cm^{-1[9]}

圖三 Extended Dieke's diagram: LiYF4主體晶格中三價鑭系離子的 4fⁿ能階圖譜,能量範圍擴展到70,000 cm^{-1[13]}

圖四 具量子剪裁效應的化合物可能有的四種發光機制示意圖[19]

圖五 Er³⁺-Gd³⁺-Tb³⁺組合之量子剪裁機制示意圖^[20]

圖八 LiYF₄:Gd³⁺之放射光譜圖:(a)300 K與(b)9 K (λ_{ex} = 194.7 nm)^[17]

圖九 Gd³⁺-Eu³⁺組合之量子剪裁機制示意圖^[19,20]

圖+ LiGdF4:Eu³⁺(0.5mol%)之放射光譜圖^[19,20]: (a)以波長202 nm激發Gd³⁺⁸S_{7/2}→⁶GJ躍遷; (b)以波長273 nm激發Gd³⁺⁸S_{7/2}→⁶IJ躍遷 (以⁵D1→⁷FJ躍遷為歸一化基準)

圖十一 真空紫外光譜儀實驗裝置示意圖[30]

圖十二 不同溫度所合成 BaGdF₅ XRD 圖譜之比較: (a)700℃; (b)800℃; (c)900℃

圖十三 BaGdF5之 SEM 影像圖

圖十四 BaGdF₅:5%Eu³⁺之放射光譜圖:(a)以波長195 nm激發Gd³⁺⁸S_{7/2}→⁶G」躍遷; (b)以波長273 nm激發Gd³⁺⁸S_{7/2}→⁶I」躍遷 (以⁵D₂→⁷F₃躍遷為歸一化基準)

圖十五 BaGdF₅:5%Eu³⁺之激發光譜圖:(a)監控波長為592 nm之Eu³⁺⁵D₀→⁷F₁放射峰; (b)監控波長為510 nm之Eu³⁺⁵D₂→⁷F₃放射峰

圖十六 摻雜不同濃度 Eu³⁺之 BaGdF5 量子剪裁效率趨勢

圖十七 Gd³⁺-Er³⁺組合之量子剪裁機制示意圖^[36]

圖十八 LiGdF₄:0.1%Eu³⁺激發光譜圖^[36](垂直細線代表此能量範圍所有Gd³⁺激發的譜線位置; 垂直粗桿則表示此能量範圍中從Er³⁺ low spin 4f¹⁰5d state放射的所有放射譜線位置)

圖十九 BaGdF₅:5%Er³⁺之放射光譜圖: (a)以波長156 nm激發Er³⁺⁴I_{15/2}→4f¹⁰5d躍遷; (b)以波長273 nm激發Gd³⁺⁸S_{7/2}→⁶I_J躍遷 (以²P_{3/2}→⁴I_{13/2}躍遷為歸一化基準)

圖二十 BaGdF₅:5%Er³⁺之激發光譜圖:(a)監控波長為540 nm之Er³⁺⁴S_{3/2}→⁴I_{15/2}放射峰; (b)監控波長為401 nm之Er³⁺²P_{3/2}→⁴I_{13/2}放射峰

圖二十一 摻雜不同濃度 Er³⁺之 BaGdF5 量子剪裁效率趨勢

圖二十二 Gd³⁺-Tb³⁺組合之量子剪裁機制示意圖^[39]

圖二十四 BaGdF₅:5%Tb³⁺之放射光譜圖: (a)以波長187 nm激發Tb³⁺⁷F₆→4f⁷5d躍遷; (b)以波長215 nm激發 Tb³⁺⁷F₆→4f⁷5d躍遷; (c)以波長273 nm激發Gd³⁺⁸S_{7/2}→⁶I_J躍遷 (以⁵D₃→⁷F₆躍遷為歸一化基準)

圖二十六 摻雜不同濃度 Tb³⁺之 BaGdF5 量子剪裁效率趨勢

圖二十七 不同溫度所合成 Ca₂₂Gd₃F₅₃ XRD 圖譜之比較: (a)1000℃; (b)900℃; (c)800℃

圖二十八 Ca₂₂Gd₃F₅₃之 SEM 影像圖

圖二十九 Ca₂₂Gd₃F₅₃:5%Eu³⁺之放射光譜圖:(a)以波長195 nm激發Gd³⁺⁸S_{7/2}→⁶G」躍遷; (b)以波長273 nm激發Gd³⁺⁸S_{7/2}→⁶I」躍遷 (以⁵D₂→⁷F₃躍遷為歸一化基準)

圖三十 Ca₂₂Gd₃F₅₃:5%Eu³⁺之激發光譜圖:(a)監控波長為591 nm之Eu³⁺⁵D₀→⁷F₁放射峰; (b)監控波長為508 nm之Eu³⁺⁵D₂→⁷F₃放射峰

圖三十一 摻雜不同濃度 Eu³⁺之 Ca₂₂Gd₃F₅₃ 量子剪裁效率趨勢

圖三十二 $Ca_{22}Gd_3F_{53}:5\%Er^{3+}$ 放射光譜圖: (a)以波長155 nm激發 $Er^{3+4}I_{15/2} \rightarrow 4f^{10}5d$ 躍遷; (b)以波長273 nm激發 $Gd^{3+8}S_{7/2} \rightarrow {}^{6}I_{J}$ 躍遷 (以 $^{2}P_{3/2} \rightarrow {}^{4}I_{13/2}$ 躍遷為歸一化基準)

 $Tb^{3+7}F_6 \rightarrow 4f^75d$ 躍遷;(c)以波長273 nm激發Gd^{3+8}S_{7/2} → ⁶I_J躍遷 (以⁵D₃ → ⁷F₆躍遷為歸一化基準)

圖三十四 Ca₂₂Gd₃F₅₃:5%Tb³⁺激發光譜圖:(a)監控波長為541 nm之Tb³⁺⁵D₄→⁷F₅放射峰; (b)監控波長為380 nm之Tb³⁺⁵D₃→⁷F₆放射峰

圖三十五 摻雜不同濃度 Tb³⁺之 Ca₂₂Gd₃F₅₃ 量子剪裁效率趨勢