3.4 光學性質分析

使用紫外可見光光譜測量 P1~P4 的光譜,得到波長由 200~400nm的吸收光譜,由於放光範圍不落於可見光範圍之內,作為 電洞傳輸層將不會影響元件的 EL 光譜。UV-Visible 光譜如 Fig. 3-2 所示。

Fig. 3-2 UV-Visible spectra of $P1 \sim P4$

3.5 電化學性質分析

3.5.1 循環伏安計量(Cyclic Voltammetry)

為了瞭解發光材料於光激發光或電激發光過程中,電子和電洞的注入情形,我們利用循環伏安計量量測高分子 P1~P4 材料的

HOMO 及 LUMO 等能帶高低關係,實驗時以濃度 0.1M 之 TBAHFP₆ (tetrabutylammonium hexafluorophosphate)的 acetonitrile 溶液為電解 質,待測物溶液以塗覆在 Pt 電極上量測,Ag/Ag⁺為參考電極,以 Fe/Fe⁺ 為內參考電位,白金絲為導電電極。由於 P3 及 P4 會溶解於 acetonitrile 中,因此每個樣品測量完之後必須重配電解質溶液,量測時以 50 mV/sec 的速率掃描記錄其氧化還原曲線。

3.5.2 HOMO 與 LUMO 能帶計算

電洞傳輸材料的 HOMO 能帶結構能直接影響電洞注入的能力, 故這一方面的數據亦是評估電洞傳輸材料的一項重要指標。對於高分 子材料之電子游離能(Ionization potential, IP)與電子親和力 (Electronic affinity)數據的取得,最簡單的方法就是以 CV 數據配合 UV-Visible 光譜之吸收波長數據來計算。一般發光材料 IP、EA 及能 隙(Energy gap, Eg)的標準表示法如下:

 $| HOMO | = IP = 4.4 + E_{ox,onset}$ $| LUMO | = EA = 4.4 + E_{red,onset}$ $E_g = IP - EA$

其中常數 4.4 為 Fe 相對於真空的能量數值

由於高分子材料在量測CV所表現出的還原曲線會因為有水或其 他物質的出現而變得非常雜亂,導致材料本身的還原曲線並不明顯, 因而無法直接得到 EA 值,故對於高分子能隙的取得一般藉由 UV-visible 光譜中的最長波長吸收峰的起始波長(λonset)來計算:

$$E_g = 1240 / \lambda_{onset}$$

其中 λ_{onset} 單位為 nm, 而所得 E_g 的單位為 eV

依據上述方法,將 P1~P4 經 Fe 標準品校正求得高分子 P1~P4 的氧化電位(E_{ox,onset})、能階差(Energy gap, E_g)、與 HOMO、LUMO 電位數據數值列於 Table 3-4。由此表可知聚苯硫胺(P1)的 HOMO 位 於-5.07eV,大約是 ITO 與 PEDOT 的中間值,而含有側鏈的聚苯硫胺 衍生物(P3 及 P4)具有比 P1 更接近於 ITO 的 HOMO 能帶, P2 由於多 導入一個苯胺結構,使 HOMO 能帶只有-4.82eV。高分子 P1~P4 的 CV 圖及計算後的能帶圖附於 Fig. 3-4~Fig. 3-7。

Table 5.5 Energy level of polymers F1~F4							
	Polymer	UV(onset)	E _{ox,onset} (eV) -	Energy level (eV)			
				НОМО	LUMO	Eg	
	P1	363.2	0.67	5.07	1.66	3.41	
	P2	375.2	0.42	4.82	1.52	3.30	
	P3	305.4	0.58	96 4.98	0.92	4.06	
	P4	371.4	0.57	4.97	1.63	3.34	

Table 3.3 Energy level of polymers $P1 \sim P4$

Fig. 3-3 Energy level diagram of P1~P4

Fig. 3-7 Cyclic voltammogram of the oxidation and energy band diagram of P4