

(D) 520、(E) 530 及(F) 560 nm 的時間-解析螢光光譜,激發波長為 435 nm。圓圈為實驗值,黑線為擬合結果。

圖 A-2. 激發 DPBMN 在 n-hexane 溶劑中, 螢光波長為 (G) 580、(H) 600、(I) 620、 及(J) 640 nm 的時間-解析螢光光譜, 激發波長為 435 nm。圓圈為實驗值, 黑線 為擬合結果。

圖 A-3. 激發 DPBMN 在 THF 溶劑中,螢光波長為 (A) 460、(B) 480、(C) 500、 (D) 510、(E) 520 及(F) 530 nm 的時間-解析螢光光譜,激發波長為 435 nm。圓圈 為實驗值,黑線為擬合結果,綠線為 residual。

圖 A-4. 激發 DPBMN 在 THF 溶劑中,螢光波長為 (G) 540、(H) 550、(I) 560、 (J) 580、(K) 600 及(L)620 nm 的時間-解析螢光光譜,激發波長為 435 nm。圓圈 為實驗值,黑線為擬合結果。

圖 A-5. 激發 DPBMN 在 THF 溶劑中, 螢光波長為 (M) 640、(N) 660、(O) 680、 (P) 700 及(Q)720 nm 的時間-解析螢光光譜, 激發波長為 435 nm。圓圈為實驗值, 黑線為擬合結果。

圖 A-6. 激發 DPBMN 在 CH₂Cl₂ 溶劑中,螢光波長為 (A) 480、(B) 490、(C) 500、 (D) 510、(E) 520 及(F) 530 nm 的時間-解析螢光光譜,激發波長為 435 nm。圓圈 為實驗值,黑線為擬合結果,綠線為 residual。

圖 A-7. 激發 DPBMN 在 CH₂Cl₂ 溶劑中,螢光波長為 (G) 540、(H) 550、(I) 560、 (J) 580、(K) 600 及(L)620 nm 的時間-解析螢光光譜,激發波長為 435 nm。圓圈 為實驗值,黑線為擬合結果,綠線為 residual。

圖 A-7. 激發 DPBMN 在 CH₂Cl₂ 溶劑中,螢光波長為 (M) 640、(N) 660、(O)680、 (P) 700、(Q) 720 及(R)750 nm 的時間-解析螢光光譜,激發波長為 435 nm。圓圈 為實驗值,黑線為擬合結果。

附錄B

附錄 B. DPBMN正已烷溶液之理論計算:

A. S_0 state :

1. S_0 optimization Cartesian Coordinates :

command : b3lyp/6-311+G(d,p) opt freq SCRF(pcm,read) nosymmcav eps=1.9 epsinf=1.8903 rsolv=4.60

Standard orientation:

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.208976	-0.221182	-0.090016
2	6	0	-5.113643	1.170173	0.580571
3	6	0	-0.682240	0.779888	0.363942
4	6	0	-0.342305	-1.417852	-0.599916
5	6	0	2.487004	-1.145113	0.039644
6	6	0 🔊	2.158939	1.282554	-0.054710
7	6	0 🌅	-2.051046	0.598853	0.308514
8	6	0	-1.712667	-1.590249	-0.649707
9	6	0 🚍	-2.614456	-0.595388	-0.202953
10	6	0 🗐	1.775675	2.207375	-1.036388
11	6	0 🌍	3.125902	1.641279	0.893845
12	6	0	2.344106	3.480169	-1.054915
13	6	0	3.310310	3.836442	-0.111664
14	6	0	3.700991	2.910631	0.858008
15	6	0	2.301366	-2.144931	1.004948
16	6	0	3.575477	-1.226086	-0.839186
17	6	0	3.187831	-3.218541	1.076533
18	6	0	4.274247	-3.297498	0.202532
19	6	0	4.465668	-2.295300	-0.750809
20	6	0	-4.022174	-0.882478	-0.306920
21	6	0	-5.133684	-0.145011	0.020572
22	6	0	-6.433141	-0.705202	-0.202983
23	1	0	4.449229	3.179110	1.598633
24	1	0	0.313240	-2.199036	-0.966681
25	1	0	-2.690186	1.389913	0.681044
26	1	0	-4.249926	-1.862216	-0.722020
27	1	0	5.306340	-2.348534	-1.437074
28	1	0	4.967090	-4.131603	0.265802
29	1	0	3.035411	-3.987705	1.828697
30	1	0	3.718935	-0.449325	-1.583843
31	1	0	1.465947	-2.074470	1.694816
32	1	0	-0.284977	1.700381	0.775805
33	1	0	3.755909	4.826734	-0.133182
34	1	0	2.039228	4.190007	-1.818864
35	1	0	3.421313	0.923198	1.652401

36	1	0	1.035971	1.924696	-1.779105
37	1	0	-2.109861	-2.515952	-1.059380
38	7	0	-7.485512	-1.167767	-0.387841
39	7	0	1.590992	-0.031332	-0.033122
40	7	0	-5.111262	2.241900	1.036577

2. S_0 state frequency :

22	30	34	46	54	66	82	89	101	133
173	186	227	251	258	268	315	349	371	409
421	422	426	449	461	480	523	531	550	617
629	632	637	638	651	657	710	712	723	737
775	778	794	831	847	853	854	878	914	920
943	949	950	969	970	976	985	995	996	1018
1018	1025	1056	1058	1112	1114	1162	1190	1193	1194
1200	1208	1214	1231	1275	1294	1325	1335	1360	1364
1365	1371	1374	1416	1485	1499	1503	1540	1541	1553
1586	1618	1638	1643	1652	1654	1669	2326	2341	3179
3187	3188	3189	3196	3197	3208	3208	3214	3215	3218
3219	3227	3231	3249		18.0.				

3. S_0 state TD :

command : #B3LYP/6-311+G** TD(50-50,nstates=4) SCRF(pcm,read)

nosymmcav eps=1.9 epsinf=1.8903 rsolv=4.60

Excited State 1: Triplet-A 1.9015 eV 652.05 nm f=0.0000 83 -> 85 -0.22841 84 -> 85 0.73831

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 84 -> 85	2:	Singlet-A 0.64682	2.7503 eV	450.80 nm	f=0.9568
Excited State 78 -> 85 81 -> 85 82 -> 85 83 -> 85 84 -> 85	3:	Triplet-A 0.28827 0.16725 -0.19579 0.60492 0.17642	3.0134 eV	411.44 nm	f=0.0000
Excited State 80 -> 85 80 -> 88 81 -> 86 81 -> 89 82 -> 86 82 -> 90	4:	Triplet-A -0.10669 0.18243 0.11918 0.15103 -0.14113 -0.16217	3.3108 eV	374.49 nm	f=0.0000

B.S₁(min) state :

1. $S_1(min)$ state optimization Cartesian Coordinates :

command : #CIS(singlets,root=1,nstates=2)/6-31g* opt freq

standard orientation:

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	0.328517	-1.415295	-0.717090
2	6	0	-0.220267	-0.222825	-0.119838
3	6	0	0.695792	0.751834	0.396322
4	6	0	2.033881	0.563196	0.332700
5	6	0	2.609337	-0.626659	-0.268271
6	6	0	1.662269	-1.599306	-0.788119
7	1	0	-0.351005	-2.143996	-1.137924
8	1	0	0.294398	1.635937	0.873156
9	1	0	2.693324	1.307921	0.753803
10	1	0	2.059055	-2.490498	-1.259741
11	7	0	-1.601388	-0.026092	-0.050811
12	6	0	-2.160356	1.308260	-0.080651

				1000	L. L.				
25	29	42	59	64	83	93	112	112	153
177	208	255	276	280	299	349	356	386	456
474	481	486	489	499	536	542	588	596	692
696	697	706	709	710	713	801	802	825	826
884	884	890	928	939	955	1019	1019	1019	1031
1051	1104	1108	1110	1148	1149	1151	1168	1167	1186
1186	1195	1203	1203	1203	1205	1269	1271	1279	1327
1359	1361	1370	1370	1373	1396	1402	1451	1501	1520
1534	1546	1551	1611	1662	1709	1723	1730	1743	1770
1773	1779	1893	1901	1903	1915	1959	2597	2644	3709
3780	3714	3716	3728	3728	3734	3736	3736	3742	3742
3744	3748	3748	3767						

2.	S	(min)	state frequency	:	
----	---	-------	-----------------	---	--

13	6	0	-3.214362	1.646848	0.774200
14	6	0	-1.649252	2.264463	-0.963509
15	6	0	-3.743125	2.923445	0.741309
16	1	0	-3.605710	0.908355	1.461880
17	6	0	-2.186115	3.539313	-0.983392
18	1	0	-0.843455	1.997739	-1.635292
19	6	0	-3.231731	3.874035	-0.133823
20	1	0	-4.556624	3.182299	1.408450
21	1	0	-1.789140	4.274960	-1.672724
22	1	0	-3.648950	4.873576	-0.153655
23	6	0	-2.502976	-1.152299	0.060555
24	6	0	-3.692312	-1.174194	-0.675249
25	6	0	-2.189086	-2.223428	0.902496
26	6	0	-4.548311	-2.253846	-0.566312
27	1	0	-3.932464	-0.347361	-1.331160
28	6	0	-3.053534	-3.299358	0.998967
29	1	0	-1.276709	-2.198422	1.484451
30	6	0	-4.232966	-3.319986	0.267394
31	1	0	-5.466547	-2.268020	-1.141213
32	1	0	-2.807605	-4.124348	1.656857
33	1	0	-4.907119	-4.164157	0.347404
34	6	0	3.983154	-0.894747	-0.379028
35	1	0	4.234845	-1.836193	-0.854181
36	6	0	5.096461	-0.137432	0.034015
37	6	0	5.053485	1.139662	0.676739
38	6	0 🎿	6.410126	-0.671826	-0.196960
39	7	0 🎒	7.467415	-1.113534	-0.388478
40	7	0 🌌	5.049964	2.178636	1.200027
	2. $S_1(min)$ state	frequency :	1890		

3. $S_1(min)$ state TD : command : #B3LYP/6-311+G** TD(50-50,nstates=3 SCRF(pcm,read) nosymmcav eps=1.9 epsinf=1.8903 rsolv=4.60 Excited State 1: Triplet-A 1.6242 eV 763.37 nm f=0.0000 83 -> 85 0.23941 84 -> 85 0.76479 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. **Excited State** 2: Singlet-A 2.5729 eV 481.89 nm f=1.0061 84 -> 85 0.63359 Excited State 3: Triplet-A 2.7870 eV 444.87 nm f=0.0000 78 -> 85 0.19819 82 -> 85 0.12220 83 -> 85 0.69000 84 -> 85 -0.16423 Excited State 4: Triplet-A 3.3048 eV 375.16 nm f=0.0000 80 -> 85 -0.1291680 -> 88 0.11202 80 -> 90 -0.14027 81 -> 85 0.11608 81 -> 88 -0.15975 82 -> 86 0.16983 82 -> 89 0.10856 83 -> 87 -0.24222 -0.28246 84 -> 86 0.54743 84 -> 87 3.5508 eV 349.18 nm f=0.0148 Excited State 5: Singlet-A 79 -> 85 -0.1077281 -> 85 0.18578 84 -> 86 0.63529 Excited State 3.6943 eV 335.61 nm f=0.1764 6: Singlet-A 83 -> 85 0.63740 84 -> 88 -0.12200

C.P state :

1.P state optimization Cartesian Coordinates : command : #CIS(singlets,root=1,nstates=2)/6-31g* opt=z-matirx freq

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Type	X	Y	Z
1	6	0	0.207032	-0.754996	-1.102673
2	6	0	-0.259075	-0.255472	0.165430

3	6	0	0.704752	0.278278	1.072332
4	6	0	2.033812	0.203174	0.815189
5	6	0	2.530956	-0.357186	-0.428717
6	6	0	1.528800	-0.800669	-1.377802
7	1	0	-0.525547	-1.074044	-1.833179
8	1	0	0.349143	0.712870	1.997921
9	1	0	2.741618	0.570696	1.544026
10	1	0	1.866464	-1.154751	-2.344160
11	7	0	-1.639577	-0.000237	0.392211
12	6	0	-2.504058	-1.151436	0.235716
13	6	0	-3.686128	-1.123185	-0.512637
14	6	0	-2.112347	-2.346720	0.852652
15	6	0	-4.457620	-2.264666	-0.625944
16	1	0	-3.987458	-0.214239	-1.013564
17	6	0	-2.891382	-3.481760	0.729215
18	1	0	-1.199407	-2.365667	1.433523
19	6	0	-4.067831	-3.445935	-0.007592
20	1	0	-5.368256	-2.235743	-1.211282
21	1	0	-2.582121	-4.398858	1.214749
22	1	0	-4.677616	-4.335486	-0.102730
23	6	0	-2.176620	1.315181	0.093261
24	6	0	-3.364752	1.729217	0.711799
25	6	0	-1.490038	2.202214	-0.738078
26	6	0	-3.866679	2.991453	0.469596
27	1	0	-3.878884	1.052225	1.381041
28	6	<u> </u>	-2.002443	3.468769	-0.968886
29	1	5 / 0	-0.567039	1.894355	-1.209370
30	6	0	-3.188613	3.867076	-0.372907
31	1	- 0	-4.786968	3.303239	0.947487
32	1		-1.469044	4.146966	-1.623230
33	1	2 0	-3.584151	4.857925	-0.557288
34	6	0	3.890690	-0.475230	-0.774693
35	1	0	4.083846	-0.913195	-1.747386
36	6	0	5.045079	-0.122764	-0.061167
37	6	0	5.077882	0.479420	1.238585
38	6	0	6.326876	-0.375576	-0.664743
39	7	0	7.353976	-0.585911	-1.165402
40	7	0	5.130696	0.968802	2.292593
	,			0.700002	2.2922

2.P state frequency :

22	28	35	49	67	72	88	92	113	153
178	206	242	267	274	309	342	361	389	439
473	478	482	493	509	534	539	580	598	684
696	698	701	707	709	710	796	805	822	824
871	901	902	927	934	952	1016	1017	1019	1036
1041	1094	1106	1109	1147	1147	1150	1166	1181	1186
1187	1195	1202	1203	1204	1208	1269	1273	1276	1318
1350	1361	1366	1371	1372	1392	1414	1447	1479	1502
1512	1543	1548	1573	1648	1702	1708	1721	1730	1766

1770	1771	1890	1896	1901	1910	1954	2593	2637	3707
3708	3714	3714	3723	3729	3729	3733	3737	3737	3745
3746	3751	3752	3763						

3.P state TD : command : #B3LYP/6-311+G** TD(50-50,nstates=3) SCRF(pcm,read) nosymmcav eps=1.9 epsinf=1.8903 rsolv=4.60 **Excited State** 1: Triplet-A 1.8421 eV 673.06 nm f=0.0000 80 -> 85 0.24690 83 -> 85 0.12250 84 -> 85 0.68026 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-A 2.0600 eV 601.86 nm f=0.1670 Excited State 2: 84 -> 85 0.68947 Excited State 522.38 nm f=0.0000 3: Triplet-A 2.3734 eV 77 -> 85 0.13228 78 -> 85 -0.11654 79 -> 86 -0.10978 80 -> 85 0.62522 81 -> 85 -0.12851 0.18885 82 -> 85 0.29213 83 -> 85 84 -> 85 -0.22370 1111 Excited State Triplet-A 3.1738 eV 390.65 nm f=0.0000 4: 79 -> 85 -0.12809 80 -> 85 -0.10146 81 -> 91 0.14097 81 -> 93 -0.12822 82 -> 85 0.20785 82 -> 91 0.14021 82 -> 93 0.13459 83 -> 86 0.10634 83 -> 89 0.14262 83 -> 90 0.13468 84 -> 86 -0.27200 84 -> 88 0.55333 Excited State Singlet-A 3.2676 eV 379.43 nm f=0.0526 5: 83 -> 85 0.67580 Excited State 3.4240 eV 362.10 nm f=0.0230 6: Singlet-A 82 -> 85 0.68427