三元硒化物 La₄In_{4.66}Se₁₃ 之合成及陽離子填佔在 Na-La-M-In-Se 系統中之研究 學生: 黃文亨 指導教授: 李積琛 博士 國立交通大學應用化學研究所 碩士班 ## 摘 要 在本論文中,所有化合物都是以該比例的元素態反應物在 825° C 的溫度下合成。單晶解析的結果顯示,此些化合物的空間群皆為 Pbam,斜方晶系,並與兩種已知物 $La_4In_5S_{13}$ 及 $Pb_4In_2Bi_4S_{13}$ 為相同之結構。 La₄In_{4.66}Se₁₃ 的晶格常數為 a=12.434(4) Å, b=22.168(7) Å and c=4.1946(12) Å, R1/wR2=0.0432/0.1107。結構上主要是由 $InSe_6$ 以鄰邊共享的方式連結,並在端點的地方與 $InSe_4$ 相接形成二維的層狀結構後,再以 La-Se 的離子鍵將層與層串連起來。單晶數據的結果顯示,其中一八面體的中心位置是僅被三分之二的 In 填佔。我們分別建構三種不同的分子模型去瞭解此化合物的電子結構,結果顯示 $La_4In_{4.66}Se_{13}$ 應為一電子傳導效率不佳的半導體。 一系列的四元硒化物在以 NaCl 為助熔劑的反應中得到,如 $Na_2La_4In_4Se_{13}$,晶格常數為 a=21.36(1) Å, b=26.39(1) Å, c=4.151(2) Å, R1/wR2=0.0320/0.0650。而摻雜金屬的化合物,包含 Mg、Ca、Sr、Mn、Pb 亦是在類似的反應中製備而成。此系統中的化合物都是相同的結構,藉由六個 $InSe_6$ 八面體及兩個 MSe_6 八面體所形成的單元 $M_2In_6Se_{26}$,以兩個不同的方向堆疊所組成。比較金屬位置上的電子密度,我們可以了解金屬離子是根據 其環境的喜好及鍵結類型與 Na、La 混合填佔在所有的金屬位置上。 ## Synthesis of ternary selenide La₄In_{4.66}Se₁₃ and cation site preference study on Na-La-M-In-Se System Student: Weng-Hen Huang Advisor: Dr. Chi-Shen Lee (李積琛)* Department of Applied Chemistry, Nation Chiao Tung University, Hsinchu(300), Taiwan ## **ABSTRACT** In this dissertation, the title compounds were synthesized at 825°C by stoichiometric ratios of elements. Single crystal study revels two structure types of known compound La₄In₅S₁₃ and Pb₄In₂Bi₄S₁₃ are obtained and all crystallizes in the space group *Pbam* of the orthorhombic system. $La_4In_{4.66}Se_{13}$ with cell dimension a=12.434(4) Å, b=22.168(7) Å and c=4.1946(12) Å, R1/wR2=0.0432/0.1107, which is mainly structured by edge shared $InSe_6$ octahedra with $InSe_4$ tetrahedra connected at the corners, forming 2-D layers linked by La-Se ionic bonding. Single crystal analysis revels that one of the metal octahedra sites is occupied by 2/3 of In. Three molecule models were constructed to understand the electronic structure. The result indicates that the $La_4In_{4.66}Se_{13}$ should be a semiconductor with low electron transference efficiency. A series of quaternary chalcogenides, such as Na₂La₄In₄Se₁₃ with cell dimension a = 21.36(1) Å, b = 26.39(1) Å, c =4.151(2) Å, R1/wR2 = 0.0320 /0.0650, were found in the reaction using NaCl as flux and doped by Mg \cdot Ca \cdot Sr \cdot Mn \cdot Pb in similar process. The structure of these compounds are the same, which is composed by two directional $M_2In_6Se_{26}$ units that formed by six InSe₆ octahedra and two MSe₆ octahedra. From the comparison of electron density on metal sites, the result indicates that doped metal ions are mix-occupied with Na and La in all metal sites depending on environmental preference and types of bonding.