第三章 化合物 Na₂La₄In₄Se₁₃ 及其掺雜金屬化合物

$Na_{2-x}La_{4-x}M_{2x}In_{4}Se_{13}(M=Mg \cdot Ca \cdot Sr \cdot Mn \cdot Pb)$

之合成與研究

在 La-In-Se 系統的研究中,以前一章節的反應為基礎加入少量的 NaCl,在825℃的温度環境下發現含 Na 的四元化合物 Na₂La₄In₄Se₁₃。另外 藉由相同的方法將不同的金屬元素加入反應,成功地合成五種摻雜金屬元 素的化合物。單晶結構解析的結果顯示此些化合物的空間群皆為 Pbam, Z=4,與已知物 Pb₄In₂Bi₄S₁₃¹的結構相同。單位晶格長數分別為 $Na_2La_4In_4Se_{13}$: a = 21.36(1) Å, b = 26.39(1) Å, c = 4.151(2) Å, R1/wR2/GOF= 0.0320/0.0650/1.160; Na_{1 82}La_{3 52}Mg_{0 48}In_{4 22}Se₁₃: a = 21.35(1) Å, b = 26.301(2)Å, c = 4.145(2)Å, R1/wR2/GOF = 0.0926/0.1440/1.309; $Na_{1.83}La_{3.66}Ca_{0.26}In_{4.23}Se_{13}$: a = 21.482(7) Å, b = 26.64(1) Å, c = 4.173(1) Å, R1/wR2/GOF = 0.1130/0.02123/1.380; $Na_{1.65}La_{3.85}Sr_{0.35}In_{4.04}Se_{13}$: a =21.469(6) Å , b = 26.620(9) Å , c = 4.183(1) Å , R1/wR2/GOF = 0.0498/0.0939/1.264; $Na_{0.58}La_{3.52}Mn_{1.42}In_4Se_{13}$: a = 21.349(4) Å , b = 26.280(4) Å , c = 4.1271(7) Å , R1/wR2/GOF = 0.0811/0.1579/1451; $Na_{1.37}La_{3.11}Pb_{1.55}In_{4.07}Se_{13}$: a = 21.541(8) Å , b = 26.68 (1) Å , c = 4.168(1) Å , R1/wR2/GOF = 0.0968/0.1936/1.416 ° 主要結構包含由 $InSe_6$ 八面體組成的邊界共享的多面體群 $[In_3Se_{14}]_2^{\infty}$,並在兩 側對稱連接 MSe6 八面體形成一獨立單元 [M2In6Se26][∞]。此獨立單元沿 c 軸有 兩種不同方向的排列,利用 MSe6 最外側的端點串聯成層狀結構;層與層之 間則是再以 La 與 Se 的弱鍵結構成整個立體的結構。晶體解析的數據顯示, 掺雜的金屬元素不會固定在特定的位置上以一定的比例進行填佔。仔細研 究每個陽離子位置上的電子密度與化合物體積的關係,可以發現金屬元素 依填佔環境的喜好及鍵結的類型,選擇性的與Na及La混合摻雜在M(1)~(4) 及 M(23)、(24) 的位置上。

3.1 緒論

1A 族(A)或 2A 族(B)元素與 6A 族(Q)元素組合所形成的化合物在過往 的文獻中已被大量的發表,同時在結構特徵上也表現出其多樣性,包含獨 立的 metal-chalcogenide 的單元、1-D 的鏈狀結構、2-D 的層狀結構及 3-D 的網狀結構等²。在物理性質上,一些化合物也表現出相當具有前景的熱電 性質,如 CsBi₄Te₆在 250K 的溫度以下就擁有較 Bi₂Te₃ 更好的熱電優值³。 這一類的化合物的研究目標大致分為兩個方向:一是以 Kanatzidis 為主的團 隊,在液態氨中形成 AQ₂與 B₂Q₃等前驅物後,再加入主族元素合成三元或 四元化合物⁴⁻⁶;另外則是以 Ibers 為主的團隊,利用 reactive-flux method 合 成含過渡元素的新穎化合物⁷。上述實驗的方法皆是以預先處裡的方式,降 低鹼金與鹼土族元素的不穩定性以利合成過程的進行。但在某些反應中, 利用穩定的鹽類化合物亦可做為此兩類元素的合成來源,如 CsHo₃Te₅、 Cs₃Tm₁₁Te₁₈⁸便是藉由 CsCI 與元素態的反應物加以合成。

在本章節的實驗中以少量的 NaCl 參與稀土族與 6A 族的反應,成功的 合成含 In 的四元化合物 Na₂La₄In₄Se₁₃。透過晶體的解析,也可以發現 Na 與 La 彼此有混合填佔的狀況。利用其他實驗的結果,可以更確實的定出 Na₂La₄In₄Se₁₃對於摻雜元素的限制及只有在 NaCl 參與反應的情形下能合成 此含鹼金族元素的化合物。本章節還會討論 Na₂La₄In₄Se₁₃ 的結構、解晶過 程及元素分析得到的結果。

另外在以金屬元素作摻雜的實驗中,依初步解晶的結果,晶體內的陽 離子的分佈變得更加複雜,如 Na 與 In、Na 與 La、Na 與 Metal elements, 甚至三個元素同時混合填佔的情形等。為了進一步瞭解陽離子在每個位置 實際的填佔情況,實驗進行了 Mg、Ca、Sr、Mn、Pb 等金屬的摻雜,企圖 擴大數據的收集,利用電子密度對晶體體積的變化來歸納出金屬離子偏好 填佔於那一個位置上。

3.2 實驗

3.2.1 合成

3.2.1.1 Na₂La₄In₄Se₁₃

在手套箱內先以元素態 La (Lanthanum; Alfa Aesar 99.9%): In (Indium; Alfa Aesar 99.99%): Se (Selenium; Alfa Aesar 100%) = 4:4.66:13 的莫耳比 例配製,再連同反應物總重約40%克數的 NaCl (Sodium Chloride; Alfa Aesar 99.0%)一起放入石英管內。自手套箱中將石英管取出後並將之抽真空至2Pa 左右後再以氫氧焰封結,便可放入可自動調節溫度的高溫爐中開始進行加 熱反應。

反應物以每小時 100°C 的速度快速加熱到 950°C 讓 La 完全融化,隨後 在一小時內將溫度降至反應溫度 825°C 並持續 18 小時。降溫過程是以 120 小時的時間自 825°C 降至 500°C 後,關掉高溫爐使其自然冷卻到室溫。反 應完成後可以發現 NaCl 分佈在管壁的兩側,而底部則是一團以灰黑色針狀 晶體為主的塊材。開管後用研缽將產物稍微壓碎,以去離子水洗滌去除 NaCl 後放入烘箱內烘乾再進行下一步的解析。

$3.1.1.2 \text{ Na}_{2-x} \text{La}_{4-x} \text{M}_{2x} \text{In}_{4} \text{Se}_{13}$

掺雜金屬元素之化合物的配製比例為 M:La:In:Se=1:4:4:13, M = Mg (Magnesium; Alfa Aesar 99.50%)、Ca (Calcium; Alfa Aesar 99%)、 Sr (Strontium; Alfa Aesar 99%)、Ba(Barium; Alfa Aesar 99%)、Mn (Manganese; Alfa Aesar 99.60%)、Zn(Zinc; Alfa Aesar 97.50%)與 Pb (Lead; Alfa Aesar 99.90%),再掺入反應物總重約 40%克數的 NaCl,以相同的溫度 時間燒結合成。反應完成後,同樣的再以去離子水洗去 NaCl 後可以得到以 灰黑色針狀晶體為主要的產物。

3.1.1.3 不同鹽類的作用

為了解在相同的反應條件下,不同的鹽類其陽離子是否也可以參與反 應形成類似的四元化合物,茲將合成 Na₂La₄In₄Se₁₃ 實驗中,以其他的鹽類 取代 NaCl 後再與相同比例的元素態反應物進行反應。實驗的鹽類包含 KCl(Potassium Chloride; Alfa Aesar 99.0~100.5%)、CsCl(Cessium Chloride; Alfa Aesar 99%)、 MgCl₂(Magnesium Chloride; Alfa Aesar 99%)及 CaCl₂(Calcium Chloride 93%)。掺入 CsCl 的生成物在外觀上有黃色的產物出 現,其餘的反應則被包覆在鹽類的晶塊中的黑色產物。所有產物都經過去 離子水洗淨鹽類後再進行檢測。

3.1.1.4 同族元素間的取代反應

根據文獻資料顯示,同族間的元素由於價電數及性質的類似,在同一化 合物中是可以互相取代共存的,如已知物 CuIn_{0.5}Ga_{0.5}Se₂⁹。為了嘗試 In 與 Ga 是否有取代亦或混合填佔的現象,將元素態反應物以 La:Ga(Gallium; Alfa Aesar 99.99%):In:Se = 6:1:1:12 的莫耳比例在手套箱內配製,以 上述的升溫條件進行反應。反應完成後 NaCl 亦分佈在管壁的兩側,並有少 許黑色的針狀晶體附著在上面。石英管底部則是灰色的塊狀產物為主,並 掺有紅色的副產物在其中。

配合解晶的結果,為了瞭解 Ga 的取代比例,逐進一步地以初步解析出的分子比例,另以莫耳比 La:Ga:In:Se=4:x:(4.66-x):13 的元素態反應物在相同的溫度及條件下進行反應。

3.1.1.5 反應列表

反應編號	La	Μ	In	Ga	Se	salt
Na ₂ I	La4In4Se13	及 Na _{2-x}	La _{4-x} M _{2x} In ₄ Se ₁₃	的合	成反	應
Ι	4		4.66		13	NaCl
П	4	1(Mg)	4		13	NaCl
Ш	4	1(Ca)	4		13	NaCl
IV	4	1(Sr)	4		13	NaCl
\mathbf{V}	4	1(Mn)	4		13	NaCl
VI	4	1(Pb)	4		13	NaCl
VII	4	1(Zn)	4		13	NaCl
VIII	4	1(Ba)	4		13	NaCl
		不同	鹽類的	作用		
IX	4		4.66		13	KCl
Х	4		4.66		13	CsCl
ΧI	4		4.66		13	MgCl ₂
ΧП	4		4.66		13	CaCl ₂
	同	族元	素間的	取代	反應	
ХШ	6		ESTA	1	12	NaCl
XIV	4		4.66		13	NaCl
ΧV	4		4.33	0.33	13	NaCl
X VI	4	7	4	0.66	13	NaCl
ΧVII	4		3.66	1	13	NaCl
X VIII	4		3.33	1.33	13	NaCl
XIX	4		3	1.66	13	NaCl
XX I	4		2.66	2	13	NaCl
ΧХΠ	4		2.33	2.33	13	NaCl

3.2.2 單晶結構鑑定

在顯微鏡下挑選針狀的晶體,以AB 膠固定在玻璃做的纖維上。晶體先 利用單晶繞射儀(CAD4 Enraf Nonius FR590)以不固定θ、ψ與ω的方式,搜 尋 25 個繞射點來決定初步的單位晶格常數,確定晶體體積有因為金屬元素 的加入而改變後,再送到清華大學貴儀中心的單晶繞射儀(BRUKER SMART 1000 CCD Diffractometer System)收集完整的繞射點數據,四組共 2070 張各曝光一分鐘的照片。用 SMART 軟體¹⁰以設定的訊雜比自照片中 擷取繞射點,依序進行 index、bravias,及最小平方法得到標準差在小數點 以下 2~3 位的單位晶格數值。之後以 SAINT 軟體¹¹ 對繞射點做積分,並利 用 SADABS 進行吸收校正。接下來用 SHELXL 軟體¹² 以直接法(direct method)和最小平方法¹³精算來進行結構解析,根據解析出來每個位置的電 子雲密度指定該位置可能的元素。配合 atom 軟體繪出的晶體模型及熱參數 值,適度地將每個位置修改為適合的元素,便可決定出晶體正確的結構與 化學式。

3.2.3 X 光粉末繞射鑑定

將反應好的石英管破真空並且收集管中黑色晶體產物,將這些黑色晶 體產物磨成粉末後,利用粉末繞射儀(Bruker AXS D8 Advance (Leipzig, Germany),銅靶,Kα輻射)進行粉末 X-ray 繞射實驗,繞射角度(2θ)從 5° 到 60°,得到粉末繞射圖譜。利用 EVA 軟體處理數據,並用 Joint Committee on Powder Diffraction Standards (JCPDS)資料庫比對與產物之間的繞射峰相 對位置,來判斷產物是否為未被發現的新化合物。

在解出晶體結構後,即可利用晶體數據以軟體 GSAS¹⁴計算理論的粉末 繞設圖譜。並將之與測量產物所得的圖譜比較,判斷產物是否為與單晶相 同組成的化合物。

3.2.4 元素分析

利用高解析度場放射掃描式電子顯微鏡(SEM-S4700,Tokyo Japan)及配 備的元素分析儀(Hitachi H-7500, Japan)鑑定產物的化學組成。為了確保測量 的數值不會受到其他不純物的干擾,偵測的樣品皆挑選單晶進行元素分 析。偵測的位置挑選晶體與觀測方向垂直的表面光滑處,以避免元素放射 的特性光因角度散射而增加了測量元素組成的誤差。另外為避免產物非均

質的狀況,分別取得三個點及一個平面的數據以求得最佳的平均值。

3.2.5 熱分析

利用熱分析設備(TA)熱重分析及差示熱分析儀 300 型(Seiko TG/DTA) 測量配製產物在高溫下的重量及相變化。測量前先將樣品研磨成粉末放在 Al₂O_{3(s)}坩鍋中,在保持氮氣流速(100ml/mol)的環境下,以每分鐘 5°C 的速 率自室溫加熱到 920°C,每間隔 0.5 秒就紀錄一次數據。透過由數據繪製的 圖表,便可以推測產物的熔點或者可能發生的反應,如熱分解等。摻雜 Mg、 Ca、Sr、Mn 的樣品目前仍在送測中。

3.2.6 電導係數測量

測量電導係數所使用的儀器是自組裝的電阻測量儀(電壓計: KEITHLEY 181 Nanovoltmeter,電流供應器: KEITHLEY 224 Programmable Current Source),以四點探針法進行實驗。待測物測量前須先以油壓機壓製 成長條的塊材並固定在加熱器上,再用銀膠將四條銅線以等距的方式黏於 樣品表面。在樣品兩端的二條銅線通入固定的直流電,同時測量樣品中間 兩條金屬接線的電壓差,如此便可以獲得電阻值(R=V/I),再經由公式轉 換就可以得到電導係數。

a sulling

3.2.7 UV-Vis 反射光譜

量測 UV-Vis 反射光譜的機臺是 Hitachi/U-3010,配備有 φ60 積分球 的光譜儀。測量前須先以壓塊的 Al₂O₃ 進行背景值的校正。待測物須預先研 磨成粉末,鋪平在以透明石英片為底做成的鋁製 holder;若待測物的量不 多,則須再以 Al₂O₃ 的粉末填滿。使用的光源是低壓的 D₂ lamp 所放出的連 續光譜,測量待測物在 190nm~1000nm 之間的反射情形。

3.3 結果與討論

3.3.1 實驗部份

3.3.1.1 掺雜不同的金屬反應

從 Na₂La₄In₄Se₁₃ 的晶體數據可以得知在 M(1)~(4)、M(23)及 M(24)(見 圖 3-2)的位置上是 La 與 Na 的混合填佔,特別是在 M(23)及 M(24)這兩個位 置。根據填佔元素的價電數推測這兩個位置上偏好的電荷數應介 1⁺到 3⁺之 間。為了證實這個推論,故在實驗上以不同帶正二價的金屬元素加入反應, 期望可以得到在這兩個位置上被正二價陽離子完全填佔的結果。

元素分析是判斷金屬元素是否有參與反應的重要參考之一;結果列於 表 3-1,以混合 Ba 與 Zn 進行的合成反應在元素分析的結果上並沒有得到摻 雜的證據。摻雜金屬在化合物中是相對的微量,但在元素分析儀所能解析 的靈敏度內還是可以得到其比例。以 Ba、Zn 進行摻雜的反應雖然也同樣有 針狀的晶體產生,但不論以打點或者以打面的方式進行檢測,都沒有 Ba、 Zn 的訊號被偵測出。相反的,元素分析的訊號只有 La、In、Se 與 Na,且 比例上與 Na₂La₄In₄Se₁₃接近。

反應編號	Na	La	М	In	Se
Ι	0.36	4.19		4.61	17.50
Ш	1.77	5.04	0.54(Mg)	6.04	13.32
Ш	2.34	5.50	0.39(Ca)	5.53	13.07
IV	2.86	4.74	0.51(Sr)	5.11	14.49
\mathbf{V}	2.10	4.39	1.33(Mn)	5.16	14.89
VI	1.41	3.33	0.95(Pb)	3.98	17.13
VII	1.77	4.10	0(Zn)	4.66	10.78
VIII	3.10	3.90	0(Ba)	3.99	11.76

表 3-1. 掺雜不同金屬元素的晶體之元素分析結果

依據資料,Ba、Zn 的 Shannon crystal radii¹⁵ 分別為 1.49Å 及 0.88Å。從 趨勢上來看,Ba 若為晶體的組成元素之一其體積應大於摻雜 Pb 的晶體, 而摻雜 Zn 的體積約與 Mg 的相當。然而從這兩種反應的產物中挑出的晶體 以單晶繞射儀得到的體積分別為 2334(1)Å³ 及 2338(1)Å³,也幾乎等同於 Na₂La₄In₄Se₁₃之體積。

上述的結果顯示,在這樣的合成條件下,Ba、Zn 無法如同其他的金屬 參與形成五元化合物;根據元素分析及晶體解析的數據判斷,此兩種反應 都指向形成 Na₂La₄In₄Se₁₃。探究其原因,應該是在此晶體中可以讓金屬填 佔的位置並非 Ba 及 Zn 可以穩定存在的環境。對 Ba 而言,其離子半徑明顯 已大於 Sr 很多;對 Zn 而言,探查已知物中,普遍的 Zn-Se 鍵長範圍皆在 2.4~2.5Å,亦明顯小於 M23 及 M24 這兩個位置與相鄰的 Se 之平均鍵長 2.8~2.9Å。由此歸納 Na₂La₄In₄Se₁₃ 能允許金屬摻雜的 Shannon crystal radii 的最大值應介於 1.33(Sr⁺)~1.48 Å(Ba⁺)之間。

3.3.1.2 不同鹽類的反應結果

透過 NaCl 的加入,可以得到含 Na 的四元化合物。在已知的文獻中, 類似的反應也被提及,如 CsHo₃Te₅所含的鹼金族元素也是自 CsCl 的反應物 中所得。因此以其他鹼金、鹼土族鹽類檢驗是否可以有相同合成反應便成 為此實驗的主要目標。因此在相同的條件下以 KCl、CsCl、MgCl₂及 CaCl₂ 等四種鹽類進行嘗試。由於反應後同樣有鹽類的存在,因此須先以去離子 水將產物洗滌後再以粉末繞射儀進行檢驗。詳細的結果列於表 3-2。

由表八可以看出鹼金族與鹼土族的鹽類在相同條件下的反應性有明顯 的不同。若鹽類在反應中僅做為助熔劑的角色,在不參與反應的情形下隨 著去離子水的洗滌而消失在產物的檢測上。結果顯示有 MgCl₂與 CaCl₂參與 反應所形成的產物中還是以 La、In、Se 三者元素為主要構成元素。相反的

反應編號	鹽類	產物(依據粉末繞射圖比對結果)
X	KCl	$K_{14}(In_4O_{13}) \cdot K_2Se_3 \cdot LaCl3$
ΧI	CsCl	$Cs_2Se_5 \cdot La_3Se_4 \cdot Cs_2(InCl_5(H_2O))$
ΧШ	MgCl ₂	LaCl $\$ LaSe ₂ $\$ In ₂ Se ₃ $\$ MgIn ₂ Se ₄
ХШ	$CaCl_2$	α -In ₂ Se ₃ \cdot LaSe _{1.9}

表 3-2. La: In: Se = 4: 4.66: 13 搭配不同鹽類進行實驗之反應列表

在 KCl 與 CsCl 參與的反應中,兩者的陽離子應與 In 及 Se 預先形成某種化 合物,且此物極不穩定,在去離子水的洗滌下另外轉變成含水的化合物, 如圖 3-1 所示,成為沒有金屬光澤而結構鬆散脆的產物。

歸納上述實驗的結果,鹼金族的鹽類除了助熔劑的角色外更做為反應 物之一。如同已經合成的 Na₂La₄In₄Se₁₃,證實在如此設計的反應條件下, 只有帶正一價電荷的離子可以與 In、Se 甚至 La 形成化合物。然而 Cs 與 K 參與反應後再與水作用前的產物為何仍需進一步的查驗。但就目前的實驗 結果顯示,唯有 NaCl 才可以成功的提供鹼金屬反應成穩定的四元化合物。

圖 3-1. 圖左為 La₄In_{4.66}Se₁₃ 以 KCl 進行鹽浴反應,以去離子水洗滌後的產物。圖右則為使用 CsCl 的結果。

3.3.1.3 同族元素 Ga 及 In 的取代實驗

本章節所探討含 Na 之四元化合物最主要的合成方法是 La:In:Se 以 4:4.66:13 另加入 NaCl 所備製而成。然而最先發現此 Na₂La₄In₄Se₁₃ 的晶體卻 是在同族元素的取代實驗中。由於該實驗目標在於合成含 Ga 之四元化合物,使得最初在解析晶體的過程中一直未放棄考慮 Ga 的存在一即使電荷無法平衡。在當時的認知中,由於 M23 與 M24 存在較少量的電子,故被認為此二個位置是由 Ga 的部份填佔所致,並一度將 La4GaxIn4.66-xSe13 認定為合成晶體的化學式。為了得知 Ga 實際的含量,以不同的 Ga 含量進行反應, 結果如表 3-3 所示。

反應編號	La ₄ Ga _x In _{4.66-x} Se ₁₃ with NaCl	產物(依據粉末繞射圖比對結果)
X IV	$\mathbf{x} = 0$	$Na_2La_4In_4Se_{13}$
ΧV	x = 0.33	$Na_2Ga_2Se_3 \cdot In_4Se_{13} \cdot LaSe_{1.9} \cdot Ga_2Se_3$
X VI	x = 0.66	$Na_6Ga_2Se_6 \cdot In_4Se_{13} \cdot NaInSe \cdot LaSe_{1.9}$
X VII	x = 1	$In_4Se_{13} \cdot LaSe_{1.9} \cdot Ga_2Se_3 \cdot Ga$
X VIII	x = 1.33	$Na_6Ga_2Se_6 \cdot bata-Ga_2Se_3 \cdot LaSe_2$
XIX	x = 1.66	$Na_6Ga_2Se_6 \cdot Ga_2Se_3 \cdot LaSe_{1.9}$
XХI	x = 2	$\mathbf{N}_{a_6} \mathbf{G}_{a_2} \mathbf{S}_{e_6} \cdot \mathbf{G}_{a_2} \mathbf{S}_{e_3} \cdot \mathbf{G}_{a_5}$
ΧХΠ	x = 2.33	bata-Ga ₂ Se ₃ \cdot LaSe _{1.9} \cdot In ₆ Se ₇ \cdot Ga

表 3-3. La₄Ga_xIn_{4.66-x}Se₁₃ 與 NaCl 之反應列表

當 x = 0,亦即反應以 La:In:Se = 4:4.66:13 加入少量的 NaCl 進行時,得 到的產物正是 Na₂La₄In₄Se₁₃。當 Ga 開始做為反應物時,其活性明顯破壞四 元化合物的成形。反應列表中的產物是利用粉末繞射圖與 JCPDS 資料庫比 對所得的結果,可以看到 Ga 偏向與 Na 及 Se 優先合成三元化合物; In 及 La 則與 Se 形成穩定的二元化合物。隨著量的增加,Ga 更與 Se 形成二元的 副產物,甚至還保留了未反應完全的 Ga。

當組成的陽離子半徑改變而導致體積有所差異時,粉末繞射圖的繞射 峰在位置上應會有位移的現象。在 x ≤ 1 時,產物的粉末繞射圖依稀可以比 對出有與 Na₂La₄In₄Se₁₃ 相同峰型的存在。但是仔細觀察這些波峰存在的角 度,相對於 Na₂La₄In₄Se₁₃ 並沒有位移的現象發生。顯示若產物中若真有四 元化合物的存在,Ga應不為構成的元素之一。另外當 x ≥ 1 時,在 Se 大部分與 Ga 反應的情形下,已無法辨識有 Na₂La₄In₄Se₁₃ 的存在。

上述的實驗結果顯示 Ga 無法形成與 Na₂La₄In₄Se₁₃相同結構之四元或五 元化合物;換句話說,在本章節設計的實驗條件下,同族元素 In 與 Ga 間 並無法互相取代形成固定的多元化合物。

3.3.2 晶體數據分析

3.3.2.1 Na₂La₄In₄Se₁₃

此實驗原本是依 La₄Ga_xIn_{4.66-x}Se₁₃ 的比例以鹽浴法進行的反應,故一開 始在解析晶體時並沒有將 Na 考慮為產物的組成元素之一。純以 La、In、Se 三個元素解晶的結果,其比例為 La_{3.80}In_{4.65}Se₁₃,在電荷數上並不能得到平 衡,而且在 M23、M24 這兩個位置上以 In 進行完全填佔會明顯地超出實際 的電子密度許多。配合元素分析的結果,將這兩個位置進行 In 與 Na 混合 填佔的解析,得到的比例為 Na_{1.69}La_{3.80}In_{4.27}Se₁₃;若進一步的將 La 與 Na 混 合填佔,所得的比例為 Na_{1.82}La_{3.75}In_{4.27}Se₁₃。雖然混合填佔的操作對於 R1、 wR2 及 GooF 值(0.0320/0.0650/1.160)造成的變動皆在 0.1% 以下,但在價電

圖 3-2. Na₂La₄In₄Se₁₃與摻雜金屬元素化合物之結構圖

平衡的考量下,四元化合物才是較合理的結果,因此將此晶體的化學式決 定成 Na₂La₄In₄Se₁₃。Na₂La₄In₄Se₁₃的結構繪於圖 3-2 中。詳細的晶體數據、 熱參數及鍵距列於下列表中。

chemical formula	Na ₂ La ₄ In ₄ Se ₁₃	$Na_{1.82}La_{3.52}Mg_{0.48}In_{4.22}Se_{13}$
Fw [g/mol]	2087.31	2053.48
T of measurement [K]	273(2) K	273(2) K
λ [Å]	0.71073 Å	0.71073 Å
crystal system	orthorhombic	orthorhombic
space group	<i>Pbam</i> (No.55)	<i>Pbam</i> (No.55)
a [Å]	21.362(11)	21.358(11)
b [Å]	26.388(14)	26.301(16)
c [Å]	4.151(2)	4.145(2)
V [Å ³]	2340 (2)	2329(2)
Z	4	4
$\mu [mm^{-1}]$	20.508	22.244
d _{calcd} [Mg/m ³]	4.796	4.393
F(000)	2869	2562
θ for data collection	1.23° to 28.33°	1.23 to 28.35°
index range	$-27 \leq h \leq 27$	-28 \leq h \leq 25
	$-34 \leq k \leq 34$	$-30 \leq k \leq 35$
	$-5 \leq 1 \leq 5$	$-5 \leq 1 \leq 5$
reflections collected	19843	26844
independent reflections	3255 [R(int) = 0.0269]	3310 [R(int) = 0.1393]
GOF on F^2	1.064	1.309
$R(F_0)^{a}/R_w(F_o^{2})^{a}$	R1/wR2 = 0.0410/0.0736	R1/wR2 = 0.0926/0.1440
^a $\overline{\mathbf{R}(\mathbf{F}_0)} = \Sigma \mathbf{F}_0 - \mathbf{F}_c $	$ \Sigma \overline{F_0} = R_w(\overline{F_0}^2) = \{\Sigma [w(\overline{F_0})^2] \in \{\Sigma [w(\overline{F_0})^2] \in \mathbb{R}^2\}$	${}_{0}^{2}-{}_{c}F_{c}^{2})^{2}] /\Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

表 3-4、Na₂La₄In₄Se₁₃及 Na_{1.82}La_{3.52}Mg_{0.48}In_{4.22}Se₁₃化合物之晶體數據

chemical formula	Na _{1.83} La _{3.66} Ca _{0.26} In _{4.23} Se ₁₃	Na _{1.65} La _{3.85} Sr _{0.35} In _{4.04} Se ₁₃
Fw [g/mol]	2073.05	2119.80
T of measurement [K]	273(2) K	273(2) K
λ [Å]	0.71073 Å	0.71073 Å
crystal system	orthorhombic	orthorhombic
space group	<i>Pbam</i> (No.55)	<i>Pbam</i> (No.55)
a [Å]	21.482(7)	21.469(7)
b [Å]	26.636(11)	26.620(10)
c [Å]	4.1734(16)	4.1827(13)
V [Å ³]	2388.0(16)	2390.5(14)
Z	4	4
μ [mm ⁻¹]	21.818	23.290
$d_{calcd} [Mg/m^3]$	4.324	4.417
F(000)	2553	2607
θ for data collection	1.22 to 28.65°	1.22 to 28.25°
index range	$-28 \leq h \leq 28$	-28 \leq h \leq 28
	$-35 \leq k \leq 35$	$-35 \leq k \leq 35$
	$-5 \leq 1 \leq 5$	$-5 \leq l \leq 5$
reflections collected	27045	27626
independent reflections	3433 [R(int) = 0.0781]	3367 [R(int) = 0.0636]
GOF on F ²	1.379	1.271
$R(F_0)^{a}/R_w(F_o^{2})^{a}$	R1/wR2 = 0.1130/0.2112	R1/wR2 = 0.0504/0.0916
^a $R(F_0) = \Sigma F_0 - F_c $	$ \Sigma F_0 = R_w(F_o^2) = \{\Sigma \in W(F_o^2) \in \{\Sigma \in W(F_o^2)\} \in$	$p_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

表 3-5、Na_{1.83}La_{3.66}Ca_{0.26}In_{4.23}Se_{13}及 Na_{1.65}La_{3.85}Sr_{0.35}In_{4.04}Se_{13}之晶體數據

chemical formula	Nao 59La2 52Mn1 42In4Se12	Na1 27La2 11Pb1 55In4 07Se12
Fw [g/mol]	2066.42	2278.43
T of measurement [K]	273(2) K	273(2) K
λ[Å]	0.71073 Å	0.71073 Å
crystal system	orthorhombic	orthorhombic
space group	<i>Pbam</i> (No.55)	Pbam (No.55)
a[Å]	21.349(4)	21.541(8)
b [Å]	26.280(4)	26.683(10)
c [Å]	4.1271(7	4.1684(14)
V [Å ³]	2315 5(7)	2395 9(15)
Z	<u> </u>	4
u [mm ⁻¹]	22 725	26 831
$d_{calcd} [Mg/m^3]$	 A AA5	4 737
F(000)	2568	2739
θ for data collection	1 23 to 28 30°	1 21 to 28 35°
index range	$-28 \le h \le 28$	$-28 \le h \le 28$
inden funge	$-35 \le k \le 35$	$-35 \le k \le 35$
	$-5 \le 1 \le 5$	$-5 \le 1 \le 5$
reflections collected	26833	27361
independent reflections	3278 [R(int) = 0.0577]	3402 [R(int) = 0.0695]
$GOF \text{ on } F^2$	1 451	1 416
$R(F_0)^a/R_w(F_0^2)^a$	R1/wR2 = 0.0811/0.1574	R1/wR2 = 0.0968/0.1923
$\frac{1}{a} \frac{R(F_0) = \Sigma F_0 - F_c }{R(F_0) = \Sigma F_0 - F_c }$	$\frac{ \Sigma F_0 }{ \Sigma F_0 } \stackrel{b}{\to} R_w(F_0^2) = \{\Sigma \mid w(F_0^2)\}$	$p_0^2 - F_c^2)^2] /\Sigma [w(F_0^2)^2]]^{1/2}$

表 3-6、Na_{0.58}La_{3.52}Mn_{1.42}In_4Se_{13}及 Na_{1.37}La_{3.11}Pb_{1.55}In_{4.07}Se_{13} 之晶體數據

Sites	Х	Y	Z	$U(eq)(Å*10^3)$	Occup.
M(1)	0.8262(1)	0.0632(1)	0.5000	13(1)	La/Na = 0.98/0.02
M(2)	0.9682(1)	0.3529(1)	0.5000	12(1)	La/Na = 0.97/0.03
M(3)	0.6207(1)	0.2530(1)	0.5000	12(1)	La/Na = 0.93/0.07
M(4)	0.8268(1)	0.2271(1)	0.5000	12(1)	La/Na = 0.87/0.13
In(5)	0.6543(1)	0.1075(1)	1.0000	27(1)	1
In(6)	0.9799(1)	0.1607(1)	0.0000	32(1)	1
In(7)	0.7699(1)	0.3510(1)	0.0000	19(1)	1
In(8)	1.0000	0	0	67(2)	1
$In(9A)^*$	1.0000	0.5000	0.8650(20)	15(2)	0.65
$In(9B)^*$	0.9861(8)	0.5121(7)	0.0000	26(4)	0.35
Se(10)	0.5652(1)	0.1804(1)	1.0000	12(1)	1
Se(11)	0.8819(1)	0.9890(1)	0	18(1)	1
Se(12)	0.7275(1)	0.2594(1)	0.0000	12(1)	1
Se(13)	0.7464(1)	0.4033(1)	0.5000	22(1)	1
Se(14)	0.8779(1)	0.3059(1)	0.0000	14(1)	1
Se(15)	0.8574(1)	0.1465(1)	ESON	13(1)	1
Se(16)	0.6007(1)	0.3370(1)	1.0000	16(1)	1
Se(17)	0.9223(1)	0.4301(1)	1.0000	18(1)	1
Se(18)	0.9772(1)	0.0792(1)	0.5000	24(1)	1
Se(19)	0.7127(1)	0.1526(1)	0.5000	19(1)	1
Se(20)	0.7303(1)	0.0301(1)	0	15(1)	1
Se(21)	0.4737(1)	0.2714(1)	0.5000	17(1)	1
Se(22)	1.0711(1)	0.4374(1)	0.5000	22(1)	1
M(23)	0.6568(3)	0.9795(2)	0.5000	20(2)	Na/La = 0.92/0.08
M(24)	0.6118(2)	0.4121(2)	0.5000	22(2)	Na/La = 0.83/0.17

表 3-7、Na₂La₄In₄Se₁₃之原子位置及均向熱參數值

* In(9A)與 In(9B)這兩個位置在解析上為兩個不可忽略卻相當靠近(0.69Å)的電子雲。推 測可能是多晶亦或原子在該位置上有明顯震盪的現象所造成。參考相同結構的已知 物,判斷在該位置上只有單一個原子存在,故藉由改變空間座標的方式將此兩個電子 雲歸納成同一個 In。

$\chi 50$ $\Pi u_2 L u_4 \Pi u_4 50 I_3 \sim 3F^{-3} \Pi R g^{-3} \mathfrak{K} (\Pi I 0)$

	U^{11}	U^{22}	U ³³	U ²³	U ¹³	U ¹²
M(1)	15(1)	15(1)	10(1)	0	0	0(1)
M(2)	10(1)	14(1)	10(1)	0	0	-1(1)
M(3)	10(1)	13(1)	11(1)	0	0	0(1)
M(4)	11(1)	14(1)	12(1)	0	0	0(1)
In(5)	25(2)	24(1)	35(1)	0	0	11(1)
In(6)	11(1)	51(1)	38(1)	0	0	-4(1)
In(7)	22(1)	18(1)	16(1)	0	0	1(1)
In(8)	13(1)	88(2)	122(2)	0	0	-14(1)
In(9A)	20(2)	15(2)	32(5)	0	0	-5(1)
In(9B)	27(4)	26(5)	24(6)	0	0	-15(4)
Se(10)	10(1)	15(1)	11(1)	0	0	-1(1)
Se(11)	14(1)	23(1)	19(1)	0	0	5(1)
Se(12)	9(1)	15(1)	13(1)	0	0	0(1)
Se(13)	24(1)	24(1)	20(1)	0	0	-1(1)
Se(14)	11(1)	15(1)	14(1)	0	0	-3(1)
Se(15)	13(1)	14(1)	12(1)	0	0	-1(1)
Se(16)	13(1)	19(1)	16(1)	0	0	2(1)
Se(17)	21(1)	14(1)		0	0	-2(1)
Se(18)	22(1)	26(1)	25(1)	0	0	1(1)
Se(19)	16(1)	18(1)	21(1)	0	0	-3(1)
Se(20)	15(1)	16(1)	14(1)	0	0	2(1)
Se(21)	12(1)	18(1)	20(1)	0	0	-1(1)
Se(22)	20(1)	20(1)	25(1)	0	0	-4(1)
M(23)	19(1)	18(1)	22(1)	0	0	0(1)
M(24)	22(1)	20(1)	23(1)	0	0	-1(1)

M(1)-Se(11)	3.0953(14) × 2	In(5)-Se(15)	2.7065(16)
M(1)-Se(13)	3.0891(13) × 2	In(5)-Se(19)	2.6988(13) × 2
M(1)-Se(18)	3.252(2)	In(5)-Se(20)	2.6087(16)
M(1)-Se(19)	3.3812(17)	In(5)-Se(22)	$2.9779(14) \times 2$
M(1)-Se(20)	3.0456(13) × 2		
		In(6)-Se(11)	2.6419(18)
M(2)-Se(12)	$3.0941(13) \times 2$	In(6)-Se(16)	2.5805(18)
M(2)-Se(15)	3.0619(13) × 2	In(6)-Se(18)	2.9916(16) × 2
M(2)-Se(17)	3.0683(13) × 2	In(6)-Se(21)	$2.7443(14) \times 2$
M(2)-Se(21)	3.283(2)		
M(2)-Se(22)	3.1320(16)	In(7)-Se(10)	2.5413(12) × 2
		In(7)-Se(12)	2.5983(16)
M(3)-Se(14)	$3.0867(14) \times 2$	In(7)-Se(14)	2.5821(17)
M(3)-Se(15)	3.0632(13) × 2		
M(3)-Se(16)	3.0667(14) × 2	In(8)-Se(13)	2.5399(16) × 2
M(3)-Se(19)	3.2982(17)	In(8)-Se(18)	$2.9848(14) \times 4$
M(3)-Se(21)	3.183(2)	E	
		In(9A)-Se(17)*	$2.541(3) \times 2$
M(4)-Se(11)	3.0444(14) × 2	In(9A)-Se(22)*	2.719(8) × 2
M(4)-Se(12)	3.1324(13) × 2	LUN CONTRACTOR	
M(4)-Se(14)	3.0874(13) × 2	In(9B)-Se(17)*	2.482(6)
M(4)-Se(19)	3.1304(16)	In(9B)-Se(17)*	2.559(8)
M(4)-Se(21)	3.136(2)	In(9B)-Se(22)*	2.753(16) × 2

表 3-9、Na₂La₄In₄Se₁₃之 M(1)、(2)、(3)、(4)-Se 及 In-Se 鍵長(Å)

*此環境如上表註解,在單一原子的狀態下應只有六個鍵長。

表 3-10、M23、M24 與相鄰 Se 之鍵長(Å)

Na(24)-Se(11)	2.9077(19) × 2	Na(24)-Se(16)	2.880(3)
Na(24)-Se(13)	2.887(3)	Na(24)-Se(13)	2.979(2) × 2
Na(24)-Se(16)	2.8810(19) × 2	Na(24)-Se(20)	2.921(2) × 2
Na(24)-Se(18)	2.884(3)	Na(24)-Se(22)	2.858(3)
Mg(23)-Se(13)	$2.845(6) \times 2$	Mg(24)-Se(14)	2.857(6)× 2
Mg(23)-Se(15)	2.883(7)	Mg(24)-Se(15)	2.849(8)
Mg(23)-Se(16)	2.842(7)	Mg(24)-Se(19)	2.893(6)× 2
Mg(23)-Se(18)	2.823(5)× 2	Mg(24)-Se(22)	2.826(3)
Ca(23)-Se(12)	2.952(8) × 2	Ca(24)-Se(15)	2.908(13)
Ca(23)-Se(13)	2.901(11)	Ca(24)-Se(16)	2.991(10)× 2
Ca(23)-Se(15)	2.914(11)	Ca(24)-Se(21)	2.980(10)× 2
Ca(23)-Se(18)	$2.928(8) \times 2$	Ca(24)-Se(22)	2.872(13)
Sr(23)-Se(12)	2.959(3)× 2	Sr(24)-Se(14)	2.891(7)
Sr(23)-Se(14)	2.919(4)	Sr(24)-Se(17)	3.024(3)× 2
Sr(23)-Se(15)	2.896(4)	Sr(24)-Se(18)	2.965(3)× 2
Sr(23)-Se(19)	2.930(3)× 2	Sr(24)-Se(22)	2.875(5)
	1896	ALL ST	
Mn(23)-Se(14)	2.813(4)× 2	Mn(24)-Se(12)	2.801(6)× 2
Mn(23)-Se(15)	2.815(6)	Mn(24)-Se(16)	2.837(5)
Mn(23)-Se(16)	2.888(6)	Mn(24)-Se(20)	2.851(4)× 2
Mn(23)-Se(18)	2.796(4)× 2	Mn(24)-Se(22)	2.801(6)
Pb(23)-Se(10)	3.002(4)× 2	Pb(24)-Se(12)	2.865(5)
Pb(23)-Se(11)	2.891(5)	Pb(24)-Se(16)	2.899(4)× 2
Pb(23)-Se(18)	2.914(7)	Pb(24)-Se(18)	2.910(5)
Pb(23)-Se(19)	2.900(3)× 2	Pb(24)-Se(22)	2.898(4)×2

3.3.2.2 掺雜金屬元素之晶體

配備有 CCD 的單晶繞射儀於室溫下收集 Ewald sphere 中半個球體的所 有繞射點,利用軟體 RLATT 可以將這些繞射點以三度空間的方式表現出 來。觀看後發現,雖然大部分的繞射點仍整齊地排列,但是原本該為平面 的分佈卻略微呈現曲面,特別是發生在摻雜 Ca 與 Pb 的這兩個單晶上。推 斷可能是在收集繞射點的過程中晶體因為某些因素晃動,或者在開始操作 時並未將晶體準確地置中而導致這樣的現象。如此使得在軟體 SHELEX 中 操作得到的晶體模型與部分曲面上的繞射點產生誤差,進而無法將 R 值降 到理想的 0.05 以下。

雖然 R 值不佳,卻無礙於晶胞數據上的解析。摻雜金屬元素後的化合物在結構上仍與 Na₂La₄In₄Se₁₃相同。在 M23、M24 上的電子密度為 14~33 個電子,依舊小於其他陽離子位置的電子密度。由於這兩個位置在 Na₂La₄In₄Se₁₃ 中是 Na 與 La 的混合填佔,故在解析其他晶體時,亦判斷此 位置為金屬與 Na 的混合填佔。但是這樣的填佔方式並不一定適用於每個晶 體。表九為電荷平衡的狀態下,非 In 的陽離子位置的填佔元素。不只 M23 及 M24,原本預期 La 填佔的位置也被摻雜的金屬元素所混合佔據。

位置	Mg	Ca	Sr	Mn	Pb
M(1)~M(4)	La • Mg	La • Ca	La	La	La • Pb
M(23) • M(24)	Na • La	Na • La	Sr 、 Na	Mn • Na	Pb 、Na

表 3-11. 掺雜金屬元素晶體在電荷平衡下非 In 之陽離子位置所填佔元素

金屬元素填佔的狀況在 M(1)~(4)、M23 及 M24 的位置上似乎沒有規則 性可言。在這些位置的電子密度或換算後各元素所佔的百分比,亦不隨著 摻雜金屬元素的電子密度多寡而呈現直接關連性的變化。雖然不論何種的 填佔方式,以電荷平衡為前提還是可以解得完整的晶體資訊。但要更進一 步的瞭解金屬元素在這個系統中摻雜的機制,在下面的篇幅中將繼續歸納討論,而晶體詳細的熱參數與鍵長附錄於本章節末。

3.3.3 X 光粉末繞射分析

3.3.3.1 Na₂La₄In₄Se₁₃

Na₂La₄In₄Se₁₃所得的粉末繞射圖如圖 3-3 中黑色的部份所示。由於繞射 峰相當多而雜,因此在初始的比對上並無法直接的斷定此為單一化合物的 繞射圖譜。故在與軟體 GASA 計算出的理論圖譜進行比對後,才能明確地 篩選出 Na₂La₄In₄Se₁₃及其他已知相的繞射峰。在 12~13°及 18~19°之間可以 觀察到有雜質的繞射峰出現。使用 EVA 軟體將粉末繞射圖與 Joint Committee on Powder Diffraction Standards(JCPDS)資料庫比對的結果,前者 應為 NaInSe₂的繞射峰,後者為α-In₂Se₃。

圖 3-3. Na₂La₄In₄Se₁₃之粉末繞射圖。紅色為 GASA 計 算的理論圖譜;黑色為實驗所得。

3.3.3.2 掺雜金屬元素之晶體粉末

掺雜金屬元素之化合物從晶體解析的結果得知結構上與 Na₂La₄In₄Se₁₃ 相同,因此在粉末繞射圖譜的繞射峰也會與 Na₂La₄In₄Se₁₃ 相同。然而體積 的差異,讓繞射峰在位置上產生些微的變化,如圖 3-4 所示。當化合物的體 積越大,其繞射峰越往圖譜左側位移。因此藉由這樣的差異,可以作為區 別摻雜金屬產物與 Na₂La₄In₄Se₁₃ 的參考之一。

圖 3-4. 5°~30°區段之繞射圖譜比較。黃色的繞射圖為 Na_{0.58}La_{3.52}Mn_{1.42}In₄Se₁₃, 藍色為 Na₂La₄In₄Se₁₃,黑色為含 Na_{1.37}La_{3.11}Pb_{1.55}In_{4.07}Se₁₃之化合物。圖 譜由上而下體積越小。

3.3.4 熱分析及純化

如圖 3-3 所示,產物中含有 α-In₂Se₃ 等雜質,必須加以去除後才能達到 純化的目地。其中的一種方法是管狀爐的利用。將粉末狀的 Na₂La₄In₄Se₁₃ 放入長約三十公分的石英管中,抽真空封結後放入管狀爐內並讓一端的石 英管暴露在爐外,藉由溫差將雜質凝結在石英管的冷端而達到分離雜質的 效果。

熱分析的實驗的結果如圖 3-5°由圖中的數據顯示Na₂La₄In₄Se₁₃在 620°C 時開始分解。根據Binary alloy phase diagrams¹⁶的資料,α-In₂Se₃的熔點為 630°C,因此在這個溫度下進行純化必須更為小心。純化時以 630°C的

圖 3-5. Na₂La₄In₄Se₁₃之 DTA 與 TGA 圖

溫度燒結二小時,結果發現在最外側的石英管確實附著一層褐色的化合物, 而產物依舊是粉末的狀態。由於此褐色的化合物在量上並不足以進行 粉末繞射鑑定,但將純化前後的粉末繞射圖做比較,發現19°附近不純物的 繞射峰不但消失且整個產物的繞射峰形更接近理論計算的結果(圖3-6)。

繼續以管狀爐進行檢驗相變化及熱分解的實驗。在 680°C 及 760°C 兩 種溫度下分別進行四個小時的燒結,結果樣品分解的情況隨溫度升高而嚴

圖 3-6. 純化後 Na₂La₄In₄Se₁₃之粉末繞設圖。紅色為 GASA 計算的理論圖譜;黑色為實驗所得。

重。在管壁上附著極多黑色與褐色的化合物,以粉末繞射儀進行分析發現 管壁上的化合物包含 In₃Se₄、In₆Se₇、LaSe₂等二元化合物。留在管底的粉末, 在經過 680°C 的重燒後雖仍保有 Na₂La₄In₄Se₁₃ 的繞射峰,但強度上已經減 弱;而經過 760°C 重燒後的粉末,如同熱分析的資料的預測,已完全分解 為 La₃Se₄、In₂Se₃等二元化合物。

因此,純化的作業可以利用 Na₂La₄In₄Se₁₃ 接近熱分解的溫度(630°C)將 部分 In 與 Se 形成的二元雜相分離;雖然 12°到 13°間的繞射峰顯示還有雜 項 NaInSe₂,但顧及主產物 Na₂La₄In₄Se₁₃ 的完整性,在無法以更高的溫度去 除此雜相的情形下,只能得到此純度較高的 Na₂La₄In₄Se₁₃。

3.3.5 結構描述

由於 Na₂La₄In₄Se₁₃ 及掺雜多種金屬元素的晶體具有相同的結構,故描述上以 Na₂La₄In₄Se₁₃ 為範本進行說明。圖 3-7 為 Na₂La₄In₄Se₁₃ 之多面體結構圖。

 圖 3-7. (a)為 Na₂La₄In₄Se₁₃之結構多面體圖。棕色與橘色框選部份為 [In₃Se₁₄][∞]; 灰色框選部份為[M₂In₆Se₂₆][∞]。
 (b)為上下兩個獨立的[M₂In₆Se₂₆]彼此連結之立體結構圖。

這個結構共包含五種不同環境的 InSe₆八面體、一種 InSe₄四面體及兩種不同的 MSe₆八面體。茲以藍色的多面體代表所有 InSe₆,以綠色的多面 體代表所有 MSe₆,如圖 3-7(a)所示。結構中,所有的 InSe₆都是以鄰邊共享 的方式串連成兩種不同方向的[In₃Se₁₄],並沿著 c 軸以 NaCl 的結構形式延 伸成為一 2-D 的層狀結構。進一步以[In₃Se₁₄]₂為一個單位來看,在其上下 的對角兩側各有一個以金屬元素 M 為中心的八面體,以鄰邊共享的方式與 [In₃Se₁₄]₂組合成一單元[M₂In₆Se₂₆]。Na₂La₄In₄Se₁₃基本上就是由藉由此單元 重複的堆疊而形成主要的結構。

從立體空間中來看,如圖 3-7(b)所示,[M₂In₆Se₂₆]在構型上是以內側兩 個 In(In8 - In8 及 In9 - In9)連線之中點為中心開始,向外側對稱連結兩個 NaSe₆ 及四個 InSe₆。單元與單元之間藉由 MSe₆ 八面體最外側的 Se 以端點 共享的方式串聯成 ac 平面方向的層狀結構,並在此端點另外銜接一個 InSe₄ 四面體。和 La₄In_{4.66}Se₁₃相同,層與層之間再藉由 La 以八配位的方式與 Se 用弱鍵結聯繫起來,而完成 Na₂La₄In₄Se₁₃ 的立體結構。

[M₂In₆Se₂₆]的獨立單元同樣可見於其他已知的化合物中。圖 3-8 為 Pb₃In_{6.67}S₁₃¹⁷的結構圖。由圖中可以清楚地觀察到類似結構的存在,不同的 是此單元中 Na 是被 In 所取代而形成[In₈S₂₆]。在 Pb₃In_{6.67}S₁₃中, [In₈S₂₆]並

圖 3-8. Pb₃In_{6.67}S₁₃之結構圖。紅色為 Pb, 藍色為 In。 灰色框選的部份為多面體群[In₈Se₂₆]

不如[M₂In₆Se₂₆]般有兩組不同方向的排列,而是延著 a 軸以另外的 InS₆八面 體連結成一面狀結構,並夾在以 NaCl 結構排列的 In-S 多面體群之間,形成 兩層不同的層狀結構。

如前面所述, $[M_2In_6Se_{26}]$ 包含 MSe₆、兩側的 InSe₆及中心的 InSe₆。 Pb₃In_{6.67}S₁₃中的[In₈S₂₆] 也同樣地依此相對位置包含三種環境不同的 In-S 八 面體。一般來說 In-S 化合物的鍵長為 2.5Å 左右,而在 Pb₃In_{6.67}S₁₃內的八面 體裡,兩側及中心的 InS₆卻有 2.7Å,甚至 3.0Å 的鍵長出現。相同的狀況也 發生在 $[M_2In_6Se_{26}]$ 上,其中 In(8)Se₆有四個 2.98Å 的長軸,In(5)Se₆與 In(6)Se₆ 各有兩個近 3Å 的長軸,皆大於 In-Se 的 Shannon crystal radii 在六配位環境 下的鍵距 2.78Å。儘管如此,參考相同結構的 Ca₄Nd₂In₄Se₁₃¹⁸及已知物 In₆Se₇¹⁹, 也有近 3Å 的長軸出現在 InSe₆八面體上,故此長度的鍵距還是 可以視為合理的鍵長。根據表 3-5, M23 及 M24 兩個位置上的金屬離子與 相鄰的 Se 之平均鍵長分別為 2.82~2.93Å 及 2.82~2.96Å。除了 Sr 與 Pb 外, 這樣的距離大致符合各個金屬與 Se 以 Shannon crystal radii 計算的離子鍵 長。

圖 3-9. M(1)與 Se 之配位環境圖

圖 3-9 為 M(1)與 Se 的配位環境圖。根據晶體解析的結果,在 M(1)這

個位置上大部分的比例是由 La 所填佔。因此在環境與鍵結的判定上,將 M(1)設定為 La 進行說明。

圖 3-9 中可以觀察到 La 是處在一個八配位的環境。在晶體結構中,四 個 La 皆是如此沿著 c 軸與相鄰的 La 以共享一三角平面的方式堆疊。由圖 中可以觀察到 c 軸方向與垂直 c 軸方向的 La-Se 鍵在鍵距上有明顯的差異, 因此在整個三角柱外側的兩個 Se 和 La 似乎只是一種弱鍵結的關係。沿 c 軸方向的 La-Se 鍵約在 3.04~3.10Å 之間,相較於 Shannon crystal radii 的鍵 距為 3.14Å (La³⁺: 1.3Å, Se²⁻: 1.84Å), La-Se 鍵的鍵距皆在一合理的範圍。

3.3.6 電子密度分析

單晶繞射儀收集的繞射強度數據經過積分與吸收校正後,再透過 SHELXTL軟體的操作便可以得到晶體模型及每個位置上的電子密度,並依 此與指定的一個或二個元素相較,得到單一或混合填佔的百分比。摻雜金 屬元素之晶體經解析後,發現在 M(1)~(4)、M(23)、M(24)位置上的電子密 度並不會隨著摻雜元素呈現何種線性的比例關係;意即金屬元素在晶體中 摻雜的狀況,並非是以固定的比例在某個固定的位置上進行填佔。

將所有的晶體數據進行交叉比對,可以發現在 M(1)~(4)、M(23)、M(24) 位置上的電子密度對體積,特別是 M(1)~(3),是有較明顯的正比趨勢。因 此,利用電子密度的變化或趨勢,或許可以瞭解金屬元素在這個系統中的 摻雜機制。

在進一步討論之前,需先對金屬元素在掺雜之前的環境做一定的假設。由於金屬元素是在 Na₂La₄In₄Se₁₃ 的反應條件上進行合成並形成相同結構的晶體,因此推測金屬元素在掺雜時應在幾乎接近 Na₂La₄In₄Se₁₃ 的環境 底下,依相同的原子數及平衡的電荷狀態來取代的原有的陽離子。因此, 利用數學的關係式來推測原子間取代的情形如下:

金屬 M 欲掺雜的化學式為 Na₂La₄In₄Se₁₃

由於 M(1)~(4)、M(23)、M(24)是由 Na 及 La 混合填佔

故假設 Na 被取代的原子個數為 x

La 被取代的原子個數為 y

M掺雜的原子個數為z

則摻雜後的化學式變化為 Na_{2-x}La_{4-y}M_zIn₄Se₁₃

摻雜前後需維持相同的原子數及平衡的電荷狀態,故可得到兩關係式 原子數 2+4=(2-x)+(4-y)+z

 $\mathbf{x} + \mathbf{y} = \mathbf{z} \tag{1}$

電荷數 1x + 3y = 2z (2)

 $(2) - (1) \ge 2$

得 y−x=0

x = y 帶回(1)式,得 z = 2x = 2y 故掺雜後的化學式為 Na_{2-x}La_{4-x}M_{2x}In₄Se₁₃

再藉由(1)式與 x、y、z 的關係,可以推論當金屬原子要掺雜進入 Na₂La₄In₄Se₁₃時,必須以兩個帶正二價的金屬原子為單位進行填佔,同時取 代出一個 La 及一個 Na。在接下來利用圖表的討論中,將以此做為思考的 前提與規則。

圖 3-10 及圖 3-11 分別為 M(1)~(4)及 M(23)、M(24)位置上的電子密度 依單位晶格體積的大小順序(Mn<Mg<Na₂La₄In₄Se₁₃<Ca<Sr<Pb)所做的 圖。比較相同的位置,金屬元素似乎偏好填入 M(1)~(3)的位置而造成電子 密度的差異。在 M(4)、M(23)~(24)的位置,電子密度則是在固定的範圍內 呈現增減的震盪,因此較不易判斷金屬元素是否偏好填入這些位置;除了 Mn 及 Pb,在 M(23)~(24) 位置上的電子密度有明顯的增加。

圖 3-11. 體積對 M(23)、M(24)電子數之關係圖

3.3.6.1 Sr · Mg

由於已證明摻雜作用是以兩個金屬原子取代一個 La 及一個 Na,因此 電子密度的增減應是以兩倍金屬原子的電子密度(Sr:76、Mg:24)是否大 於 68(57+11)作為判斷。正如比較結果,摻雜 Sr 的晶體在 M(1)~(3)上的電子 密度是增加的,而摻雜 Mg 及 Mn 的晶體在 M(1)~(3)上的電子密度是減少的。 3.3.6.2 Ca

若依據 Sr 及 Mg 的計算方式,掺雜 Ca 在電子密度上的變化並不如預 期。參考過去已知物的結構,Na 偏好存在於六配位、與相鄰的陰離子相距 約 3 Å 的環境中。Ca 則常見於八配位的環境,與相鄰的陰離子相距 3.1Å 左 右,如在已知物 CaGa₂Se₄ 中,Ca(3)與相鄰的八個 Se 在距離上呈現 3.08~3.29Å 的分布,相當類似於 Na₂La₄In₄Se₁₃ 中 La 的配位環境。因此在化 合物反應的過程中,Ca 是較 Mg、Sr 甚至 Na 更適合與 La 並存在相同的環 境。故推測攙雜的兩個 Ca 在 M(1)~(3)上取代的是同位置上的兩個 Na,因 此電子密度是呈現增加的趨勢(22 → 40),同時為求得電荷上的平衡,在另 外三個陽離子的位置上應有等量的 Ca 取代 La 的現象發生。

3.3.6.3 Mn • Pb

Mn、Pb 在 M(1)~(3)的掺雜取代作用符合一開始在電子密度上的預測。 此外,Mn、Pb 的價電子位於 d 軌域及 p 軌域,和 Se 的交互作用因混成軌 域是屬於共價鍵結。M(23)~(24)分別位於兩八面體的中心,而此八面體更是 做為 Na_{2-x}La_{4-x}M_{2x}In₄Se₁₃內結構之主要連結,故鍵結方向上必需要有明顯的 方向性。相較於 Mg、Ca 及 Sr 與 Se 的交互作用有較多的離子性,推測 Mn 與 Pb 因鍵結類型的不同,除了在 M(1)~(3)上既有的掺雜取代作用外,亦有 偏好填佔在 M(23)~(24)上的選擇性。 因此,由單晶解得的化學比例中, Mn 與 Pb 的掺雜比例是較其他三者高出許多。

3.3.7 電導度及 UV-Vis 反射光譜

在本章節中所得到的化合物都是在 NaCl 參與反應的情形得到,因此在 開管後的塊狀產物皆夾雜鹽類的情形下,無法直接測量其電阻值。將純化 後的粉末以油壓機製成條狀塊材後,在室溫下以三用電表測量其導電度,

卻無法得到電阻值。進一步的以自組裝的電阻測量儀測量的結果,在100K 的溫度下得到的電阻值都相當的大,範圍介於8.35~9.62 MΩ之間。或許由 於電阻值過大,隨著溫度上昇測得的電壓值極不穩定,因此無法概略的判 斷其電性為何。而推測電阻過大的原因,可能是在產物中依舊包含其他鹽 類的不純物或者塊材中有極大的 grain boundary;另外,由單晶解析的結果 中,可以得知此化合物的結構間除了 In-Se 外包含許多離子性較大的鍵結, 因此也可能是造成導電度不佳的原因之一。

圖 3-12. Na₂La₄In₄Se₁₃及其他金屬摻雜化合物之 UV-Vis 吸收光譜圖。

\$ 1896

圖 3-12 為產物測量 UV-Vis 反射光譜的結果。圖中顯示所有的產物在 2.5~4.0 eV 間沒有明顯的吸收情形。由於本系統的化合物在同一個位置上可 能包含三種元素,加上沒有確切的比例,因此無法以理論計算的結果來輔 助實際能隙的判斷。而圖 3-12 的結果說明,摻雜金屬在能隙的調整上似乎 無法發揮明顯的作用。

3.4 結論

利用 NaCl 的參與反應, Na 成功地加入 La₄In_{4.66}Se₁₃ 的反應過程,在 825°C 的溫度下得到灰黑色的晶體 Na₂La₄In₄Se₁₃。Na₂La₄In₄Se₁₃ 為斜方晶 系,空間群為 *Pbam*。在結構中以[Na₂In₆Se₂₆]的多面體群為組合單元,以兩 個不同的排列方向堆疊成層狀結構;而層與層間則是藉由 La 與 Se 的弱鍵 結連結。晶體解析的結果,得知Na是在M(1)~(4)、M(23)及M(24)的位置上 與La進行混合填佔。在相同的條件下,無法以其他的鹽類合成類似此含第 一或第二族元素的化合物。另外在反應中加入帶正二價的金屬元素,配合 元素分析的結果,證實可以得到微量摻雜金屬元素,與Na2La4In4Se13結構相 同的化合物。藉由單晶解析的結果分析電子密度消長的關係,可以得到金 屬摻雜的化學通式為Na2-xLa4-xM2xIn4Se13。另外將各晶體體積對每個陽離子 位置上的電子密度作圖,推測帶二價的金屬元素在沒有其他因素的影響 下,主要是摻雜在M(1)~(3)的位置,如Sr、Mg;而Ca因為配位環境尚與La 極為類似,故較Na更偏好摻雜在M(1)~(3)的位置;此外,Mn與Pb因為在鍵 結類型屬於方向性較大的共價鍵,故除了M(1)~(3)外更偏好摻雜於穩定結構 的M(23)、(24)的位置上。

-

- 1. Kraemer, V. Acta Crtstallogr. C 1986, 42, 1089-1091.
- 2. Gutzmann, A.; Nather, C.; Bensch, W. Acta Crtstallogr. C 2004, 60, i11.
- Chung, D. Y. H., T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M. G., *Science* 2000, 287, 1024.
- Chung, D. Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M. G. J. Am. Chem. Soc. 1997, 119, 2505-2515.
- Chung, D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher C.; Kanatzidis, M. G. *Chem. Mater.* **1997**, 9, 3060-3071.
- Kanatzidis, M. G.; McCarthy, T. J.; Tanzer, T. A.; Chen, L. H.; Iordanidis, L.; Hogan, T.; Kannewurf, C. R.; Uher, C.; Chen, B. *Chem. Mater.* **1996**, 8, 1465-1474.
- 7. Mitchell, K.; Ibers, J. A., Chem. Rev. 2002, 102, (6), 1929-1952.
- 8. Yao, I; Deng, B.; Ellis D. E.; Ibers, J.A. J. Solid State Chem. 2005, 178, 41-46.
- Diaz, R.; Martin, T.; Merino, J. M.; Leon, M.; Martin de Vidales, J. L.; Rueda, F. J. Appl. Phys. 2000, 88, 1776-1783.
- 10. Poltmann, F. E.; Hahn, H. Naturwissenschaften 1971, 58, 54-54.
- 11. SMART Version 5.054 Data Collection and SAINT-Plus Version 6.22 Data Processiong Software for the SMART System.; 2000
- 12. Sheldrick, G. M. *SHELXL-97*; Institut fur Anorganische Chemie der Universitat Gottingen: Gottingen. 1993.
- 13. Jansen, Z. H. Ultramicroscopy 2002, 90, 291.

- 14. Toby, B. H. J. Appl. Cryst. 2001, 34, 210.
- 15. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751.
- 16. Massalski, T. B.; Murray, J. L.; Baker, H.; Kacprzak, L. *Binary alloy phase diagrams*. American Society for Metals: Metals Park, Ohio, 1986
- 17. Ginderow, D. Acta Crystallogr. B 1978, 34, 1804-1811.
- 18. Hwu, S. J.; Carpenter, J. D. Inorg. Chem. 1995, 34, 4647-4651.
- 19. Hogg, J. H. C. Acta Crystallogr. B 1971, 27, 1630-1634.

掺雜金屬化合物之晶體數據

Sites	Х	Y	Ζ	U(eq)($Å*10^{3}$)
M(1)	0.3242(1)	0.107(1)	0.5000	11(1)
M(2)	0.1193(1)	0.2536(1)	-1.5000	8(1)
M(3)	0.3256(1)	0.2256(1)	-0.5000	9(1)
M(4)	0.4661(1)	0.3525(1)	-1.5000	11(1)
In(5)	0.1522(1)	0.1077(1)	0.0000	22(1)
In(6)	0.4788(1)	0.1595(1)	0.0000	23(1)
In(7)	0.2692(1)	0.3513(1)	0.0000	14(1)
In(8)	0.5000	0.0000	0.0000	35(2)
In(9)	0.5000	0.5000	-2.0000	56(2)
Se(10)	0.3560(2)	0.1437(1)	0.0000	10(1)
Se(11)	0.3772(2)	0.3049(1)	0.0000	10(1)
Se(12)	0.3801(2)	0.361(1)	-1.0000	13(1)
Se(13)	0.2261(2)	0.2590(1)	0.0000	9(1)
Se(14)	0.2456(2)	0.4066(1)	-1.5000	14(1)
Se(15)	0.5637(2)	0.3194(1)	-2.0000	9(1)
Se(16)	0.1003(2)	0.3399(1)	-2.0000	10(1)
Se(17)	0.4176(2)	0.4305(1)	-2.0000	15(1)
Se(18)	0.4785(2)	0.264(2)	0.5000	20(1)
Se(19)	0.2117(2)	0.1512(1)	0.5000	15(1)
Se(20)	0.2252(2)	0.278(1)	0	14(1)
Se(21)	0.4728(2)	0.2268(1)	-1.5000	11(1)
Se(22)	0.5684(2)	0.4401(2)	-1.5000	20(1)
M(23)	0.3893(4)	-0.877(3)	0.5000	13(3)
M(24)	0.6555(4)	0.5208(4)	-1.5000	10(3)

表 3-12、Na_{1.82}La_{3.52}Mg_{0.48}In_{4.22}Se₁₃之原子位置及均向熱參數值

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
M(1)	11(1)	14(1)	9(1)	0	0	-1(1)
M(2)	6(1)	10(1)	8(1)	0	0	-1(1)
M(3)	5(1)	9(1)	12(1)	0	0	0(1)
M(4)	10(1)	12(1)	11(1)	0	0	0(1)
In(5)	20(1)	20(1)	26(1)	0	0	10(1)
In(6)	6(1)	40(2)	28(2)	0	0	-3(1)
In(7)	20(1)	11(1)	11(1)	0	0	2(1)
In(8)	9(2)	46(3)	56(3)	0	0	-6(1)
In(9)	33(2)	43(3)	121(5)	0	0	-30(2)
Se(10)	10(1)	7(1)	12(1)	0	0	0(1)
Se(11)	7(1)	12(1)	12(1)	0	0	-2(1)
Se(12)	9(1)	16(1)	18(2)	0	0	4(1)
Se(13)	6(1)	11(1)	13(1)	0	0	1(1)
Se(14)	18(1)	13(1)	12(2)	0	0	5(1)
Se(15)	5(1)	12(1)	9(1)	0	0	-1(1)
Se(16)	4(1)	13(1)	16(2)	0	0	1(1)
Se(17)	15(1)	11(1)	22(2)	0	0	-7(1)
Se(18)	19(2)	16(2)		0	0	-1(1)
Se(19)	12(1)	15(2)	16(2)	0	0	-6(1)
Se(20)	13(1)	12(1)	17(2)	0	0	4(1)
Se(21)	6(1)	13(1)	16(2)	0	0	-1(1)
Se(22)	17(1)	19(2)	24(2)	0	0	-3(1)
M(23)	6(4)	13(4)	17(5)	0	0	9(3)
M(24)	3(4)	16(5)	16(5)	0	0	-1(3)

表 3-13、Na_{1.82}La_{3.52}Mg_{0.48}In_{4.22}Se₁₃之非均向熱參數(Å*10³)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(1)-Se(10)	3.106(3) × 2	In(5)-Se(10)	2.661(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(1)-Se(12)	3.110(3) × 2	In(5)-Se(13)	$3.003(4) \times 2$
$\begin{array}{cccccccc} M(1)-Se(20) & 3.416(4) & In(5)-Se(19) & 3.014(3)\times 2\\ M(1)-Se(21) & 3.058(3)\times 2\\ & In(6)-Se(12) & 2.535(4)\times 2\\ M(2)-Se(11) & 3.101(3)\times 2 & In(6)-Se(13) & 3.037(3)\times 4\\ M(2)-Se(16) & 3.087(3)\times 2\\ M(2)-Se(17) & 3.085(3)\times 2 & In(7)-Se(17) & 2.724(4)\\ M(2)-Se(19) & 3.300(4) & In(7)-Se(20) & 2.709(3)\times 2\\ M(2)-Se(22) & 3.145(4) & In(7)-Se(21) & 2.629(5)\\ & In(7)-Se(22) & 3.001(4)\times 2\\ M(3)-Se(14) & 3.101(3)\times 2\\ M(3)-Se(14) & 3.077(3)\times 2 & In(8)-Se(11) & 2.625(5)\\ M(3)-Se(18) & 3.071(3)\times 2 & In(8)-Se(14) & 2.607(4)\\ M(3)-Se(19) & 3.191(4) & In(8)-Se(15) & 2.576(3)\times 2\\ M(3)-Se(20) & 3.294(4) & In(9)-Se(16) & 2.571(5)\times 2\\ M(4)-Se(10) & 3.050(3)\times 2\\ M(4)-Se(11) & 3.156(3)\times 2\\ M(4)-Se(14) & 3.107(3)\times 2\\ M(4)-Se(19) & 3.160(4)\\ M(4)-Se(20) & 3.156(4) \\ \end{array}$	M(1)-Se(13)	3.231(5)	In(5)-Se(18)	2.757(4)
$\begin{array}{cccccccc} M(1)-Se(21) & 3.058(3)\times 2 \\ & & & In(6)-Se(12) & 2.535(4)\times 2 \\ M(2)-Se(11) & 3.101(3)\times 2 & In(6)-Se(13) & 3.037(3)\times 4 \\ M(2)-Se(16) & 3.087(3)\times 2 & \\ M(2)-Se(17) & 3.085(3)\times 2 & In(7)-Se(17) & 2.724(4) \\ M(2)-Se(19) & 3.300(4) & In(7)-Se(20) & 2.709(3)\times 2 \\ M(2)-Se(22) & 3.145(4) & In(7)-Se(21) & 2.629(5) \\ & & In(7)-Se(22) & 3.001(4)\times 2 \\ \end{array}$	M(1)-Se(20)	3.416(4)	In(5)-Se(19)	$3.014(3) \times 2$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	M(1)-Se(21)	$3.058(3) \times 2$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			In(6)-Se(12)	$2.535(4) \times 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(2)-Se(11)	3.101(3) × 2	In(6)-Se(13)	$3.037(3) \times 4$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(2)-Se(16)	$3.087(3) \times 2$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(2)-Se(17)	$3.085(3) \times 2$	In(7)-Se(17)	2.724(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(2)-Se(19)	3.300(4)	In(7)-Se(20)	$2.709(3) \times 2$
$In(7)-Se(22) 3.001(4) \times 2$ $M(3)-Se(14) 3.101(3) \times 2$ $M(3)-Se(17) 3.077(3) \times 2 \qquad In(8)-Se(11) \qquad 2.625(5)$ $M(3)-Se(18) 3.071(3) \times 2 \qquad In(8)-Se(14) \qquad 2.607(4)$ $M(3)-Se(19) 3.191(4) \qquad In(8)-Se(15) \qquad 2.576(3) \times 2$ $M(3)-Se(20) 3.294(4) \qquad In(9)-Se(16) \qquad 2.571(5) \times 2$ $M(4)-Se(10) 3.050(3) \times 2 \qquad In(9)-Se(22) \qquad 2.724(9) \times 4$ $M(4)-Se(11) 3.156(3) \times 2$ $M(4)-Se(14) 3.107(3) \times 2$ $M(4)-Se(19) 3.160(4)$ $M(4)-Se(20) 3.156(4)$	M(2)-Se(22)	3.145(4)	In(7)-Se(21)	2.629(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$			In(7)-Se(22)	$3.001(4) \times 2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(3)-Se(14)	3.101(3) × 2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(3)-Se(17)	$3.077(3) \times 2$	In(8)-Se(11)	2.625(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(3)-Se(18)	3.071(3) × 2	In(8)-Se(14)	2.607(4)
$\begin{array}{cccccccc} M(3)-Se(20) & 3.294(4) & & & & & & & \\ M(4)-Se(10) & 3.050(3)\times 2 & & & & & & \\ M(4)-Se(11) & 3.156(3)\times 2 & & & & & & \\ M(4)-Se(14) & 3.107(3)\times 2 & & & & & & \\ M(4)-Se(19) & 3.160(4) & & & & & & & \\ M(4)-Se(20) & 3.156(4) & & & & & & & \\ \end{array}$	M(3)-Se(19)	3.191(4)	In(8)-Se(15)	$2.576(3) \times 2$
$\begin{array}{c ccccc} In(9)-Se(16) & 2.571(5)\times 2\\ M(4)-Se(10) & 3.050(3)\times 2\\ M(4)-Se(11) & 3.156(3)\times 2\\ M(4)-Se(14) & 3.107(3)\times 2\\ M(4)-Se(19) & 3.160(4)\\ M(4)-Se(20) & 3.156(4) \end{array}$	M(3)-Se(20)	3.294(4)	E	
$M(4)$ -Se(10) $3.050(3) \times 2$ $In(9)$ -Se(22) $2.724(9) \times 4$ $M(4)$ -Se(11) $3.156(3) \times 2$ $M(4)$ -Se(14) $3.107(3) \times 2$ $M(4)$ -Se(19) $3.160(4)$ $M(4)$ -Se(20) $3.156(4)$			In(9)-Se(16)	$2.571(5) \times 2$
$M(4)$ -Se(11) $3.156(3) \times 2$ $M(4)$ -Se(14) $3.107(3) \times 2$ $M(4)$ -Se(19) $3.160(4)$ $M(4)$ -Se(20) $3.156(4)$	M(4)-Se(10)	3.050(3) × 2	In(9)-Se(22)	$2.724(9) \times 4$
$M(4)$ -Se(14) $3.107(3) \times 2$ $M(4)$ -Se(19) $3.160(4)$ $M(4)$ -Se(20) $3.156(4)$	M(4)-Se(11)	3.156(3) × 2	ALL ST	
M(4)-Se(19) 3.160(4) M(4)-Se(20) 3.156(4)	M(4)-Se(14)	3.107(3) × 2	te.	
M(4)-Se(20) 3.156(4)	M(4)-Se(19)	3.160(4)		
	M(4)-Se(20)	3.156(4)		

表 3-14、Na_{1.82}La_{3.52}Mg_{0.48}In_{4.22}Se₁₃之 M(1)、(2)、(3)、(4)-Se 及 In-Se 鍵長(Å)

Sites	Х	Y	Z	U(eq)(Å* 10^{3})
M(1)	0.6728(1)	0.4355(1)	-0.5000	7(1)
M(2)	0.316(1)	0.3530(1)	-0.5000	7(1)
M(3)	0.3790(1)	0.2525(1)	0.5000	5(1)
M(4)	0.1727(1)	0.2727(1)	0.5000	8(1)
In(5)	0.5200(2)	0.3384(2)	0	29(1)
In(6)	0.5000	0.5000	0	84(4)
In(7)	0.3449(2)	0.1077(1)	0	21(1)
In(8)	0.2298(1)	0.3506(1)	0	11(1)
In(9A)	0.0000	0.5000	-1.1340(40)	8(4)
In(9B)	0.135(10)	0.5116(8)	-1.0	17(8)
Se(10)	0.6426(2)	0.3525(2)	0	6(1)
Se(11)	0.1212(2)	0.3059(2)	0	8(1)
Se(12)	0.6173(2)	0.5098(2)	-1.0	11(1)
Se(13)	0.5234(2)	0.4193(2)	-0.5000	15(1)
Se(14)	0.2723(2)	0.2591(2)	() 0	6(1)
Se(15)	0.2536(2)	0.4040(2)	-0.5000	9(1)
Se(16)	0.278(2)	0.4298(2)	-1.000	9(1)
Se(17)	0.4344(2)	0.1802(1)	0	4(1)
Se(18)	0.3993(2)	0.3356(2)	0	6(1)
Se(19)	0.5254(2)	0.2708(2)	0.5000	8(1)
Se(20)	0.2877(2)	0.1533(2)	0.5000	13(1)
Se(21)	0.7680(2)	0.4688(2)	-1.0000	8(1)
Se(22)	-0.0711(2)	0.4368(2)	-0.5000	14(1)
M(23)	0.3888(6)	0.4119(5)	0.5000	30(4)
M(24)	0.8440(7)	0.5204(6)	-0.5000	25(5)

表 3-15、Na_{1.83}La_{3.66}Ca_{0.26}In_{4.23}Se₁₃之原子位置及均向熱參數值

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
M(1)	10(1)	8(1)	5(1)	0	0	-1(1)
M(2)	6(1)	9(1)	6(1)	0	0	-2(1)
M(3)	6(1)	8(1)	1(1)	0	0	2(1)
M(4)	6(1)	9(1)	8(1)	0	0	-2(1)
In(5)	6(1)	48(2)	40(2)	0	0	-6(1)
In(6)	5(3)	143(9)	130(9)	0	0	-27(4)
In(7)	20(2)	18(2)	25(2)	0	0	-11(1)
In(8)	16(1)	9(1)	7(1)	0	0	0(1)
In(9A)	15(6)	5(6)	37(17)	0	0	3(6)
In(9B)	6(18)	0(19)	30(30)	0	0	5(15)
Se(10)	5(2)	7(2)	9(2)	0	0	-4(1)
Se(11)	6(2)	12(2)	10(2)	0	0	1(1)
Se(12)	10(2)	15(2)	11(2)	0	0	6(1)
Se(13)	9(2)	15(2)	22(2)	0	0	-2(1)
Se(14)	6(1)	6(2)	10(2)	0	0	3(1)
Se(15)	11(2)	9(2)	8(2)	0	0	-1(1)
Se(16)	12(2)	5(2)	12(2)	0	0	6(1)
Se(17)	4(1)	7(1)	2(2)	0	0	0(1)
Se(18)	8(2)	7(2)	5(2)	0	0	0(1)
Se(19)	7(2)	7(2)	13(2)	0	0	0(1)
Se(20)	13(2)	8(2)	15(2)	0	0	0(1)
Se(21)	5(2)	9(2)	8(2)	0	0	2(1)
Se(22)	14(2)	11(2)	17(2)	0	0	4(1)
M(23)	10(1)	8(1)	5(1)	0	0	-1(1)
M(24)	6(1)	9(1)	6(1)	0	0	-2(1)

表 3-16、Na_{1.83}La_{3.66}Ca_{0.26}In_{4.23}Se₁₃之非均向熱參數(Å*10³)

M(1)-Se(10)	3.086(3) × 2	In(5)-Se(15)	2.690(3)
M(1)-Se(12)	$3.097(3) \times 2$	In(5)-Se(19)	$2.685(2) \times 2$
M(1)-Se(18)	3.20(4)	In(5)-Se(20)	2.620(4)
M(1)-Se(19)	3.381(4)	In(5)-Se(22)	$3.014(3) \times 2$
M(1)-Se(20)	$3.082(3) \times 2$		
		In(6)-Se(10)	2.649(3)
M(2)-Se(13)	3.081(2) × 2	In(6)-Se(16)	2.595(3)
M(2)-Se(15)	$3.067(3) \times 2$	In(6)-Se(18)	$3.012(3) \times 2$
M(2)-Se(16)	3.102(3) × 2	In(6)-Se(21)	$2.731(3) \times 2$
M(2)-Se(19)	3.338(4)		
M(2)-Se(21)	3.173(3)	In(7)-Se(11)	2.611(3)
		In(7)-Se(13)	2.599(4)
M(3)-Se(10)	3.061(3) × 2	In(7)-Se(14)	2.583(2) × 2
M(3)-Se(11)	3.137(3) × 2		
M(3)-Se(13)	3.097(2) × 2	In(8)-Se(12)	$2.586(3) \times 2$
M(3)-Se(19)	3.123(3)	In(8)-Se(18)	$2.923(2) \times 4$
M(3)-Se(21)	3.146(3)	E	
		In(9A)-Se(17)	$2.538(3) \times 2$
M(4)-Se(11)	3.081(2) × 2	In(9A)-Se(22)	$2.986(2) \times 2$
M(4)-Se(15)	3.064(2) × 2	ALL ST	
M(4)-Se(17)	3.094(3) × 2	In(9B)-Se(16)	$2.512(15) \times 2$
M(4)-Se(21)	3.309(4)	In(9B)-Se(22)	$2.790(13) \times 2$
M(4)-Se(22)	3.171(4)		

表 3-17、Na_{1.83}La_{3.66}Ca_{0.26}In_{4.23}Se₁₃之 M(1)、(2)、(3)、(4)-Se 及 In-Se 鍵長(Å)

Sites	Х	Y	Z	U(eq)($Å*10^{3}$)
M(1)	0.6725(1)	0.4356(1)	-1.0000	10(1)
M(2)	0.3790(1)	0.2525(1)	0.0000	9(1)
M(3)	0.6725(1)	0.2724(1)	-1.0000	9(1)
M(4)	0.5312(1)	0.1467(1)	-2.0000	10(1)
In(5)	0.3447(1)	0.1078(1)	-0.5000	26(1)
In(6)	0.5000	0.5000	-0.5000	86(2)
In(7)	0.7297(1)	0.1488(1)	-1.5000	14(1)
In(8)	0.5196(1)	0.3386(1)	-0.5000	32(1)
In(9A)	0.5000	0.0000	-1.6380(20)	14(3)
In(9B)	0.4848(6)	0.131(5)	-1.5000	21(5)
Se(10)	0.6212(1)	0.1939(1)	-1.5000	11(1)
Se(11)	0.6421(1)	0.3525(1)	-0.5000	10(1)
Se(12)	0.6174(1)	0.5095(1)	-1.5000	15(1)
Se(13)	0.4342(1)	0.1802(1)	-0.5000	9(1)
Se(14)	0.7532(1)	0.0962(1)	-2.0000	14(1)
Se(15)	0.5233(1)	0.4192(1)	-1.0000	19(1)
Se(16)	0.2721(1)	0.2592(1)	-0.5000	9(1)
Se(17)	0.5769(1)	0.0700(1)	-2.5000	14(1)
Se(18)	0.7679(1)	0.4685(1)	-1.5000	11(1)
Se(19)	0.3992(1)	0.3355(1)	-0.5000	12(1)
Se(20)	0.2871(1)	0.1534(1)	0.0000	16(1)
Se(21)	0.5258(1)	0.2707(1)	0.0000	13(1)
Se(22)	0.4283(1)	0.0633(1)	-2.0000	18(1)
M(23)	0.6112(3)	0.5880(2)	-2.0000	28(2)
M(24)	0.6569(4)	0.0199(3)	-2.0000	27(3)

表 3-18、Na_{1.65}La_{3.85}Sr_{0.35}In_{4.04}Se₁₃之原子位置及均向熱參數值

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
M(1)	14(1)	10(1)	7(1)	0	0	0(1)
M(2)	10(1)	11(1)	6(1)	0	0	1(1)
M(3)	10(1)	9(1)	8(1)	0	0	0(1)
M(4)	10(1)	11(1)	9(1)	0	0	0(1)
In(5)	25(1)	20(1)	33(1)	0	0	-12(1)
In(6)	12(1)	131(3)	153(4)	0	0	-24(1)
In(7)	21(1)	13(1)	11(1)	0	0	2(1)
In(8)	10(1)	51(1)	41(1)	0	0	-4(1)
In(9A)	16(2)	11(3)	19(6)	0	0	-2(2)
In(9B)	22(5)	22(5)	22(9)	0	0	-12(4)
Se(10)	10(1)	12(1)	12(1)	0	0	-2(1)
Se(11)	12(1)	9(1)	9(1)	0	0	-1(1)
Se(12)	14(1)	19(1)	13(1)	0	0	5(1)
Se(13)	9(1)	12(1)	7(1)	0	0	1(1)
Se(14)	19(1)	12(1)	10(1)	0	0	2(1)
Se(15)	16(1)	23(1)	21(1)	0	0	0(1)
Se(16)	8(1)	11(1)	11(1)	0	0	0(1)
Se(17)	18(1)	10(1)	13(1)	0	0	-2(1)
Se(18)	12(1)	12(1)	9(1)	0	0	1(1)
Se(19)	12(1)	12(1)	11(1)	0	0	-1(1)
Se(20)	14(1)	13(1)	19(1)	0	0	2(1)
Se(21)	10(1)	14(1)	18(1)	0	0	1(1)
Se(22)	18(1)	16(1)	21(1)	0	0	-5(1)
M(23)	27(2)	25(2)	29(2)	0	0	0(2)
M(24)	25(2)	26(2)	30(3)	0	0	-1(2)

表 3-19、Na_{1.65}La_{3.85}Sr_{0.35}In_{4.04}Se₁₃之非均向熱參數(Å*10³)

M(1)-Se(11)	3.114(2) × 2	In(5)-Se(13)	2.721(3)
M(1)-Se(12)	$3.105(2) \times 2$	In(5)-Se(18)	2.616(3)
M(1)-Se(15)	3.232(3)	In(5)-Se(20)	$2.715(2) \times 2$
M(1)-Se(18)	$3.056(2) \times 2$	In(5)-Se(22)	$3.000(3) \times 2$
M(1)-Se(20)	3.416(3)		
		In(6)-Se(12)	$2.532(3) \times 2$
M(2)-Se(13)	$3.081(2) \times 2$	In(6)-Se(15)	$3.041(2) \times 4$
M(2)-Se(16)	3.109(2) × 2		
M(2)-Se(19)	$3.073(2) \times 2$	In(7)-Se(10)	2.621(3)
M(2)-Se(20)	3.295(3)	In(7)-Se(14)	$2.5675(19) \times 2$
M(2)-Se(21)	3.189(3)	In(7)-Se(16)	2.612(3)
M(3)-Se(10)	$3.155(2) \times 2$	In(8)-Se(11)	2.656(3)
M(3)-Se(11)	$3.058(2) \times 2$	In(8)-Se(15)	$2.999(3) \times 2$
M(3)-Se(16)	3.108(2) × 2	In(8)-Se(19)	2.587(3)
M(3)-Se(20)	3.157(3)	In(8)-Se(21)	$2.767(2) \times 2$
M(3)-Se(21)	3.149(3)	E	
		In(9A)-Se(17)	$2.555(3) \times 2$
M(4)-Se(10)	3.112(2) × 2	In(9A)-Se(22)	$2.739(6) \times 2$
M(4)-Se(13)	3.083(2) × 2	23	
M(4)-Se(17)	3.084(2) × 2	In(9B)-Se(17)	2.492(11)
M(4)-Se(21)	3.303(3)	In(9B)-Se(17)	2.577(11)
M(4)-Se(22)	3.132(3)	In(9B)-Se(22)	$2.762(11) \times 2$

表 3-20、Na_{1.65}La_{3.85}Sr_{0.35}In_{4.04}Se₁₃之 M(1)、(2)、(3)、(4)-Se 及 In-Se 鍵長(Å)

Sites	Х	Y	Z	U(eq)(Å* 10^{3})
M (1)	0.8230(1)	0.0597(1)	-0.5000	12(1)
M(2)	0.8252(1)	0.2249(1)	0.5000	9(1)
M(3)	0.9655(1)	0.3525(1)	-0.5000	11(1)
M(4)	0.6187(1)	0.2537(1)	-0.5000	9(1)
In(5)	0.7694(1)	0.3511(1)	0.0000	14(1)
In(6)	0.9785(1)	0.1590(1)	0.0000	20(1)
In(7)	1.0000	0.0000	-1.0000	26(1)
In(8)	0.6512(1)	0.1082(1)	-1.0000	21(1)
In(9A)	1.0000	0.5000	-1.0000	34(2)
In(9B)	0.8558(1)	0.1427(1)	0.0000	8(1)
Se(10)	0.7254(1)	0.2588(1)	0.0000	8(1)
Se(11)	0.7226(2)	0.266(1)	-1.0000	13(1)
Se(12)	0.8769(1)	0.3041(1)	0.0000	10(1)
Se(13)	0.8793(1)	-0.0150(1)	-1.0000	12(1)
Se(14)	0.9795(2)	0.0752(1)	-0.5000	18(1)
Se(15)	0.7458(2)	0.4071(1)	- 0 .5000	14(1)
Se(16)	1.0628(1)	0.3198(1)	-1.0000	9(1)
Se(17)	0.6008(1)	0.3414(1)	-1.0000	10(1)
Se(18)	0.9725(1)	0.2261(1)	0.5000	11(1)
Se(19)	0.9152(2)	0.4310(1)	-1.0000	14(1)
Se(20)	0.7117(2)	0.1505(1)	0.5000	16(1)
Se(21)	1.0673(2)	0.4418(1)	-0.5000	19(1)
Se(22)	0.8892(3)	-0.0874(2)	-1.5000	18(2)
M(23)	0.8449(3)	0.4793(2)	-0.5000	15(2)
M(24)	0.8230(1)	0.0597(1)	-0.5000	12(1)

表 3-21、Na_{0.58}La_{3.52}Mn_{1.42}In₄Se₁₃之原子位置及均向熱參數值

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
M(1)	13(1)	13(1)	9(1)	0	0	0(1)
M(2)	8(1)	7(1)	9(1)	0	0	1(1)
M(3)	11(1)	11(1)	10(1)	0	0	0(1)
M(4)	8(1)	11(1)	8(1)	0	0	-1(1)
In(5)	21(1)	9(1)	10(1)	0	0	2(1)
In(6)	8(1)	34(1)	22(1)	0	0	-3(1)
In(7)	11(2)	33(2)	37(2)	0	0	-4(1)
In(8)	24(1)	20(1)	18(1)	0	0	9(1)
In(9A)	28(2)	30(2)	55(3)	0	0	-21(1)
In(9B)	10(1)	6(1)	10(1)	0	0	1(1)
Se(10)	8(1)	9(1)	10(1)	0	0	0(1)
Se(11)	13(1)	12(1)	15(1)	0	0	2(1)
Se(12)	9(1)	11(1)	10(1)	0	0	-2(1)
Se(13)	11(1)	16(1)	13(1)	0	0	2(1)
Se(14)	24(1)	11(1)	20(2)	0	0	1(1)
Se(15)	19(1)	12(1)	9(1)	6 0	0	3(1)
Se(16)	8(1)	11(1)	8(1)	0	0	-2(1)
Se(17)	9(1)	10(1)	14(1)	0	0	2(1)
Se(18)	9(1)	12(1)	13(1)	0	0	2(1)
Se(19)	15(1)	12(1)	17(1)	0	0	-5(1)
Se(20)	16(1)	19(1)	14(1)	0	0	-10(1)
Se(21)	18(1)	17(1)	23(2)	0	0	1(1)
Se(22)	16(3)	18(3)	22(3)	0	0	3(2)
M(23)	15(3)	17(3)	20(3)	0	0	0(2)
M(24)	13(1)	13(1)	9(1)	0	0	0(1)

表 3-22、Na_{0.58}La_{3.52}Mn_{1.42}In₄Se₁₃之非均向熱參數(Å*10³)

M(1)-Se(10)	$3.082(2) \times 2$	In(5)-Se(11)	2.601(4)
M(1)-Se(12)	3.100(3) × 2	In(5)-Se(13)	2.608(4)
M(1)-Se(14)	$3.092(3) \times 2$	In(5)-Se(16)	$2.583(2) \times 2$
M(1)-Se(15)	3.356(4)		
M(1)-Se(21)	3.369(4)	In(6)-Se(10)	2.655(4)
		In(6)-Se(15)	$3.018(3) \times 2$
M(2)-Se(10)	$3.059(2) \times 2$	In(6)-Se(18)	2.611(4)
M(2)-Se(11)	$3.097(3) \times 2$	In(6)-Se(19)	$2.718(3) \times 2$
M(2)-Se(13)	3.131(3) × 2		
M(2)-Se(19)	3.146(4)	In(7)-Se(14)	$2.607(3) \times 2$
M(2)-Se(21)	3.113(4)	In(7)-Se(15)	$2.890(2) \times 4$
M(3)-Se(10)	$3.155(2) \times 2$	In(8)-Se(12)	2.631(4)
M(3)-Se(11)	$3.058(2) \times 2$	In(8)-Se(17)	2.673(4)
M(3)-Se(16)	3.108(2) × 2	In(8)-Se(21)	$2.677(3) \times 2$
M(3)-Se(20)	3.157(3)	In(8)-Se(22)	$3.031(3) \times 2$
M(3)-Se(21)	3.149(3)	E	
		In(9)-Se(20)	$2.563(3) \times 2$
M(4)-Se(13)	3.075(3) × 2	In(9)-Se(22)	$2.943(2) \times 4$
M(4)-Se(17)	3.052(3) × 2	ALL STREET	
M(4)-Se(19)	3.326(4)		
M(4)-Se(20)	3.109(3) × 2		
M(4)-Se(22)	3.198(4)		

表 3-23、Na_{0.58}La_{3.52}Mn_{1.42}In₄Se₁₃之 M(1)、(2)、(3)、(4)-Se 及 In-Se 鍵長(Å)

Sites	Х	Y	Z	$U(eq)(Å*10^3)$
M (1)	0.8805(1)	0.2521(1)	0.5000	13(1)
M(2)	0.6727(1)	0.2261(1)	-0.5000	12(1)
M(3)	0.5306(1)	0.3536(1)	-1.5000	14(1)
M(4)	0.6742(1)	0.642(1)	-1.5000	25(1)
In(5)	0.5205(2)	0.1622(2)	-1.0000	26(1)
In(6)	0.7290(2)	0.3495(1)	-1.0000	13(1)
In(7)	0.8449(2)	0.1093(2)	0.0000	26(1)
In(8)	0.5000	0.0000	-2.0000	48(3)
In(9A)	0.5000	0.5000	-2.0000	91(5)
In(9B)	0.6210(2)	0.3055(2)	-1.0000	9(1)
Se(10)	0.6187(2)	-0.122(2)	-2.0000	17(1)
Se(11)	0.7730(2)	0.2592(2)	0.0000	8(1)
Se(12)	0.9343(2)	0.1799(2)	0.0000	8(1)
Se(13)	0.7540(2)	0.4034(2)	-1.5000	17(1)
Se(14)	0.5213(2)	0.0776(2)	-1.5000	23(1)
Se(15)	0.7867(2)	0.1525(2)	-0.5000	17(1)
Se(16)	0.7721(2)	0.0302(2)	-2.0000	16(1)
Se(17)	0.8999(2)	0.3385(2)	0.0000	12(1)
Se(18)	1.0256(2)	0.2719(2)	0.5000	11(1)
Se(19)	0.5790(2)	0.4303(2)	-2.0000	18(1)
Se(20)	0.4304(2)	0.4382(2)	-1.5000	21(1)
Se(21)	0.6414(2)	0.1466(2)	-1.0000	8(1)
Se(22)	0.6112(2)	-0.0868(2)	-2.5000	22(2)
M(23)	0.6578(2)	0.4799(2)	-1.5000	16(2)
M(24)	0.8805(1)	0.2521(1)	0.5000	13(1)

表 3-24、Na_{1.37}La_{3.11}Pb_{1.55}In_{4.07}Se₁₃之原子位置及均向熱參數值

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
M(1)	11(1)	17(1)	10(1)	0	0	5(1)
M(2)	11(1)	16(1)	11(1)	0	0	-2(1)
M(3)	9(1)	24(1)	12(1)	0	0	-5(1)
M(4)	48(1)	18(1)	15(1)	0	0	6(1)
In(5)	3(1)	55(2)	35(2)	0	0	2(1)
In(6)	17(1)	11(1)	11(1)	0	0	0(1)
In(7)	24(2)	22(2)	27(2)	0	0	-14(1)
In(8)	7(2)	82(5)	78(5)	0	0	15(2)
In(9A)	74(5)	81(5)	158(10)	0	0	69(4)
In(9B)	7(1)	15(2)	11(2)	0	0	2(1)
Se(10)	11(2)	27(2)	19(2)	0	0	-8(1)
Se(11)	4(1)	12(1)	13(2)	0	0	1(1)
Se(12)	4(1)	13(1)	7(1)	0	0	-1(1)
Se(13)	22(2)	16(2)	10(2)	0	0	-7(1)
Se(14)	13(2)	24(2)	32(2)	0	0	4(1)
Se(15)	15(2)	14(2)	19(2)	0	0	5(1)
Se(16)	15(2)	13(2)	17(2)	0	0	-6(1)
Se(17)	6(1)	18(2)	15(2)	0	0	-1(1)
Se(18)	5(1)	14(2)	17(2)	0	0	0(1)
Se(19)	21(2)	14(2)	19(2)	0	0	11(1)
Se(20)	16(2)	23(2)	27(2)	0	0	8(1)
Se(21)	5(1)	10(1)	13(2)	0	0	2(1)
Se(22)	20(2)	19(2)	23(2)	0	0	-3(1)
M(23)	16(2)	19(2)	18(2)	0	0	-3(1)
M(24)	11(1)	17(1)	10(1)	0	0	5(1)

表 3-25、Na_{1.37}La_{3.11}Pb_{1.55}In_{4.07}Se₁₃之非均向熱參數(Å*10³)

M(1)-Se(12)	3.121(4) × 2	In(5)-Se(15)	3.069(5) × 2
M(1)-Se(13)	$3.066(4) \times 2$	In(5)-Se(18)	2.598(6)
M(1)-Se(16)	3.336(5)	In(5)-Se(19)	$2.729(4) \times 2$
M(1)-Se(18)	3.132(4) × 2	In(5)-Se(22)	2.638(6)
M(1)-Se(19)	3.172(5)		
		In(6)-Se(10)	2.604(5)
M(2)-Se(10)	$3.171(4) \times 2$	In(6)-Se(12)	2.587(5)
M(2)-Se(12)	3.128(4) × 2	In(6)-Se(14)	$2.587(4) \times 2$
M(2)-Se(16)	3.143(5)		
M(2)-Se(19)	3.168(5)	In(7)-Se(13)	2.692(6)
M(2)-Se(22)	$3.047(4) \times 2$	In(7)-Se(16)	$2.690(4) \times 2$
		In(7)-Se(17)	2.627(6)
M(3)-Se(10)	$3.127(4) \times 2$	In(7)-Se(21)	$3.057(5) \times 2$
M(3)-Se(13)	$3.073(4) \times 2$		
M(3)-Se(19)	3.346(5)	In(8)-Se(11)	$2.577(5) \times 2$
M(3)-Se(20)	3.098(4) × 2	In(8)-Se(15)	$2.971(4) \times 4$
M(3)-Se(21)	3.120(6)	E	
		In(9)-Se(20)	$2.520(5) \times 2$
M(4)-Se(11)	3.149(4) × 2	In(9)-Se(21)	$3.050(4) \times 4$
M(4)-Se(15)	3.313(6)	and the second s	
M(4)-Se(16)	3.377(6)	¢.,	
M(4)-Se(17)	$3.100(4) \times 2$		
M(4)-Se(22)	3.109(4) × 2		

表 3-26、Na_{1.37}La_{3.11}Pb_{1.55}In_{4.07}Se₁₃之 M(1)、(2)、(3)、(4)-Se 及 In-Se 鍵長(Å)