目 錄

頁次		
i	中文摘要	
iii	英文摘要	
iv	誌謝	
v	目錄	
viii	表目錄	
X	圖目錄	
xviii	附錄目錄	
1 1 3	第一章、緒論 1-1 紫質分子的自我組裝 1-2 紫質的分子間作用力	
6	1-3 紫質的聚集形式	
6	I-3-1 H-聚集	
8	1-3-2 J-聚集	
11	1-3-3 分子之激子偶和模型	
13	1-4 氧化鋁奈米材料的應用	
14	1-5 本論文的研究	

第二章、實驗	致技術	16
2-1	時間相關單光子計數系統	16
2-2	電子元件	19
2-2-1	分數式時間鑑別器	19

2-2-2	時間-振幅轉換器	19
2-2-3	類比-數位轉換器	21
2-2-4	多頻道分析儀	21
2-2-5	可調節式延遲器	21
2-2-6	雙光柵光譜儀	21
2-3	雷射光源	22
2-4	時間—解析螢光非等向性光譜技術	22
2-5	紫外-可見光光譜儀	25
2-5-1	電荷偶和裝置	26
2-6	螢光光譜儀	27
2-7	資料分析	27
2-8	樣品處理	28
2-8-1	氧化鋁奈米管的製成	29

第三章、紫	質在有機溶液中及陽極氧化鋁奈米環境下的光譜及動力學	32
3-1	ZnPP 在 THF 溶液中之吸收及螢光光譜	32
3-2	ZnPP在THF溶液中之S1激發態生命期	38
3-3	ZnPP 在 AAO 奈米管內之聚集行為	43
3-3-2	L ZnPP/AAO的靜態吸收及螢光光譜	46
3-3-2	2 ZnPP/AAO 的瞬態螢光光譜及其激發態動力學	50
3-3-3	3 浸泡時間的影響	57

第四章、	紫質在不同 pH 值水溶液中及與脫輔基肌紅蛋白結合下的光譜及動力學	63
4-1	樣品配置	64

4-2	ZnPP 在不同 pH 值下之吸收及螢光光譜	65
4-3	ZnPP在不同pH值下之S1激發態生命期	69
4-4	ZnPP-Mb 錯合物之吸收及螢光光譜	74
4-5	ZnPP-Mb 錯合物之瞬態螢光光譜	77
4-6	ZnPP-Mb 錯合物的時間—解析螢光非等向性動力學	80

第五章、結論	83
附錄	84

表 目 錄

		頁次
表 3-1	ZnPP/THF溶液在不同濃度下之螢光光譜以高斯函數擬合的結果	37
表 3-2	ZnPP/THF 溶液中的螢光瞬態光譜,在不同濃度條件之動力學擬合結果	41
表 3-3	ZnPP/THF 溶液中的螢光瞬態光譜之動力學擬合結果	43
表 3-4	ZnPP/AAO不同孔徑大小之螢光光譜以高斯函數擬合的結果	50
表 3-5	ZnPP在AAO奈米管內(C _i = 4.8x10 ⁻⁶ M, AAO 奈米管d = 15 nm, 浸泡時 間為 48 小時。)螢光瞬態光譜之動力學擬合結果	53
表 3-6	.ZnPP在AAO奈米管內(C _i = 4.8x10 ⁻⁵ M, AAO 奈米管d = 15 nm, 浸泡時 間為 48 小時。)螢光瞬態光譜之動力學擬合結果	53
表 3-7	ZnPP在AAO奈米管內(C _i = 4.8x10 ⁻⁴ M, AAO 奈米管d = 15 nm, 浸泡時 間為48小時。)螢光瞬態光譜之動力學擬合結果	53
表 3-8	ZnPP在AAO奈米管內(C _i = 4.8x10 ⁻⁶ M, AAO 奈米管d = 70 nm, 浸泡時間為48小時。)螢光瞬態光譜之動力學擬合結果	54
表 3-9	ZnPP在AAO奈米管內(C _i = 4.8x10 ⁻⁵ M, AAO 奈米管d = 70 nm, 浸泡時 間為 48 小時。)螢光瞬態光譜之動力學擬合結果	54
表 3-10	ZnPP在AAO奈米管內(C _i = 4.8x10 ⁻⁴ M, AAO 奈米管d = 70 nm, 浸泡時 間為 48 小時。)螢光瞬態光譜之動力學擬合結果	54
表 3-11	ZnPP在AAO奈米管內(浸泡時間:30 分鐘)螢光瞬態光譜之動力學擬合結果。(C _i =4.8x10 ⁻⁵ M, d=15 nm)	60
表 3-12	ZnPP在AAO奈米管內(浸泡時間:3小時)螢光瞬態光譜之動力學擬合結 果。(C _i =4.8x10 ⁻⁵ M, d=15 nm)	60

表 3-13	ZnPP在AAO奈米管內(浸泡時間:12 小時)螢光瞬態光譜之動力學擬合 結果。(C _i =4.8x10 ⁻⁵ M, d=15 nm)	60
表 3-14	ZnPP在AAO奈米管內(浸泡時間:48 小時)螢光瞬態光譜之動力學擬合 結果。(C _i =4.8x10 ⁻⁵ M, d=15 nm)	61
表 4-1	ZnPP 在鹼性環境中之螢光光譜以高斯函數擬合的結果	69
表 4-2	ZnPP 在 pH= 10 溶液下的螢光瞬態光譜之動力學擬合結果	72
表 4-3	ZnPP 在 pH= 12 溶液下的螢光瞬態光譜之動力學擬合結果	72
表 4-4	ZnPP 在緩衝溶液下之螢光光譜以高斯函數擬合的結果	77
表 4-5	ZnPP-Mb 在緩衝溶液下螢光瞬態光譜之動力學擬合結果	77

圖 目 錄

		頁次
圖 1-1	Protoporphyrin (IX) Zinc (II) 之結構圖。	2
圖 1-2	ZnPP 利用酸基和金的表面形成化學鍵之示意圖。	3
圖 1-3	紫質—紫質大環之間的作用力示意圖。	4
圖 1-4	Protopporphyrin (IX)的結構圖。	5
圖 1-5	兩側親水性紫質的雙體結構。	5
圖 1-6	H ₂ PP之(A)吸收光譜、(B) RLS光譜及(C)螢光光譜。 實線、點線及虛線分別為在 pH=1、4.8 及 12 之實驗條件下所得之結果。	7
圖 1-7	H ₂ PP 形成H型雙體的分子模型。	7
圖 1-8	H ₂ PP 形成聚集的分子模型。	8
圖 1-9	四個芳香基取代的紫質結構。	9
	吸收光谱。	
回 1 10	(A)為TPPH2,(B)為TPyPH2,(C)為TMPyH2,(D)為TCPPH2,(E)為	
回 1-10	TSPPH ₂ , 實現為沒有加三氟醋酸, 虛線為加了 10%的三氟醋酸。	9

螢光光譜。(A)為TPPH2,(B)為TPyPH2,(C)為TMPyH2,(D)為TCPPH2,
(E)為TSPPH2,實線為沒有加三氟醋酸,虛線為加了10%的三氟醋酸。
(A)、(B)、(C)實線之激發波長分別為414nm、413nm、421nm;虛線為

- 圖 1-12 可能的 J-聚集之分子模型。..... 10

圖 1-13	(A)強型偶和之光譜示意圖,(B)中型偶和之光譜示意圖,(C) 弱型偶和 之光譜示意圖。	12
圖 1-14	躍遷偶極力矩同向的排列方式。	12
圖 1-15	恆躍遷偶極力矩不同向的排列方式。	13
圖 1-16	激子偶和模型所預測的雙體在不同排列方式下之能階圖。	13
圖 2-1	TCSPC 的工作原理。	17
圖 2-2	Fluo Time 200 儀器配置圖。	17
圖 2-3	TCSPC 模組之訊號擷取及計時程序。	18
圖 2-4	當輸入鑑別器的訊號低於一特定門檻的電壓高度時,則被分數式時間鑑 別器視為雜訊去除。	19
圖 2-5	TAC 偵測單一光子的計時機制	20
圖 2-6	 (A) LDH-P-C 400 (B) LDH-P-C 435 的儀器相關函數。脈衝重複頻率為 40 MHz,半高寬為 80 ps。 	22
圖 2-7	測量螢光非等向性光譜之實驗示意圖。	24
圖 2-8	反射式吸收光譜之儀器裝置圖。	25
圖 2-9	CCD 之內部結構示意圖。	27
圖 2-10	AAO 試片之製成流程圖。	30
圖 2-11	AAO 試片在製備過程中的 SEM 圖,過程分別是:(1)做完第一次陽極 處理之試片表面,所使用的電解液分別為(a)硫酸及(d)草酸;(2)利用化 學蝕刻法除去 AAO 後之試片表面,所使用的溶劑分別為(b)磷酸及(e) 鉻酸;(3)做完第二次陽極處理之 AAO 試片表面,AAO 奈米管孔徑之	

平均大小分別為(c) 15 nm (f) 70 nm。..... 31

經過兩次陽極處理及擴孔後所完成之AAO試片的SEM圖,插圖為AAO
 篇 2-12
 奈米管的深度,AAO 奈米管之孔徑大小分別為(a) 15 nm 及(b) 70 nm,
 AAO 奈米管孔徑之平均大小分別為(a) 74.5 μm 及(b) 51.1
 μm。

31

34

ATT ILLER

 ZnPP 在THF溶液中,不同濃度下的歸一化螢光光譜。插圖為溶液濃度

 4.8x10⁻⁴ M及 4.8x10⁻⁵ M未歸一化的螢光光譜光譜。激發波長為 435 nm。

 (其中 4.8x10⁻⁴ M及 4.8x10⁻⁵ M的光譜使用 1mm的樣品槽測得,而

 4.8x10⁻⁶ M及 4.8x10⁻⁷ M的光譜由 1cm的樣品槽測得。).....

Mannun .

> ZnPP在THF溶液中的螢光光譜,經由高斯函數擬合的結果,紅色線為 實驗值,黑色線為擬合結果,藍色線為單體,桃紅色線為雙體,綠色線 及紫色線為聚集體。激發波長為435 nm。溶液濃度分別為:(A)4.8x10⁻⁷

圖 3-5

	度為 4.8x10 ⁻⁶ M 。	39
	色線為t1的模擬結果,綠色線為t2的模擬結果。激發波長為435 nm,濃	
圓 3-0	(B)610 nm (C)650 nm (D)670 nm。圈圈為實驗值,黑線為擬合結果,藍	
回 2 6	ZnPP在THF溶液中的螢光瞬態光譜,偵測波長分別為:(A)590 nm	

 圖 3-7
 ZnPP在THF溶液中,不同濃度的螢光瞬態光譜,偵測波長分別為:(A)

 ⑤ 3-7
 590 nm (B) 610 nm (C) 650 nm (D) 670 nm。激發波長為 435 nm。......

ZnPP在THF溶液中的螢光瞬態光譜,偵測波長分別為:(A)590 nm

- 圖 3-10 ZnPP及ZnOEP在氧化鋁奈米管內之反射式吸收光譜。(A)圖為 反射率; (B)圖為ΔR/R光譜。實驗條件如下:AAO奈米管的平均孔徑 大小為15nm,浸泡溶液濃度為4.8x10⁻⁵M,浸泡時間為3小時).....

ZnPP 在不同製備條件的試片之反射光譜。製備條件分別為:以超音波 震盪器洗過再以 550°C熱處理過後之鋁片(A-1,紅色線)、接前一步驟後 進行拋光及熱處理並通氧氣以生成氧化鋁塊材 (A-2,綠色線)、接著前

圖 3-11

步驟後再長AAO 15 分鐘後,以化學蝕刻法除去AAO 20 分鐘 (A-3,暗 紅色線)及接著前面步驟後,除去AAO 60 分鐘(A-4,藍色線)。實驗條 件如下:浸泡溶液濃度為 4.8x10⁻⁵ M,浸泡時間為 30 分鐘。......

45

ZnPP在AAO奈米管內之反射式吸收光譜:(A)圖為反射能量光譜;(B) 圖為反射率光譜;(C)圖為ΔR/R光譜。浸泡溶液的濃度說明如下:紅色 為4.8x10⁻⁶M,綠色線為4.8x10⁻⁵M,藍色線為4.8x10⁻⁴M。黑線為光源

圖 3-12 的能量光譜,虛線為AAO空白片,淺藍色線為ZnPP/THF溶液,插圖為 波長範圍 300~590 nm的放大圖。實驗條件如下:AAO奈米管的平均孔 徑大小為 15 nm,浸泡時間為 48 小時。.....

> ZnPP在AAO奈米管內之反射式吸收光譜:(A)圖為反射能量光譜;(B) 圖為反射率光譜;(C)圖為ΔR/R光譜。浸泡溶液的濃度說明如下:紅色 為4.8x10⁻⁶M,綠色線為4.8x10⁻⁵M,藍色線為4.8x10⁻⁴M。黑線為光源

46

49

A Shiller

圖 3-13

ZnPP 在氧化鋁奈米管內之螢光光譜經由高斯函數擬合的結果。

圖 3-14 紅色線為實驗值,黑色線為擬合的結果,藍色線為單體,桃紅色線為雙 體,綠色線及紫色線為較低階的聚集體 (lower aggregates),暗紅色線為 較高階的聚集體 (higher aggregates)。所使用之激發波長為 435 nm。...

"ALLING

ZnPP在不同環境之螢光瞬態光譜。三角形為ZnPP/THF溶液、圈圈為 ZnPP/AAO奈米管d=15nm,以及方塊為ZnPP/AAO奈米管d=70nm,

- 圖 3-16 ZnPP / THF 溶液在 545 nm 之吸收度對濃度的關係圖。..... 55

浸泡奈米管後所測得 ZnPP/THF 溶液之吸收光譜。

ZnPP在AAO奈米管內之反射式吸收光譜:(A)圖為反射能量光譜;(B) 圖為反射率光譜;(C)圖為ΔR/R光譜。AAO奈米管的浸泡時間說明如 下:紅色線為 30 分鐘,綠色線為 3 小時,藍色線為 12 小時,紫色線為

圖 3-18 48 小時。黑線為光源的能量光譜,虛線為AAO空白片,淺藍色線為 ZnPP/THF溶液,插圖為波長範圍 300~590 nm的放大圖。實驗條件如下: AAO奈米管的平均孔徑大小為 15 nm,浸泡溶液濃度為 4.8 x 10⁻⁵ M。

58

ZnPP 在 AAO 奈米管內之螢光光譜。AAO 奈米管的浸泡時間說明如下:

圖 3-20	ZnPP 在氧化鋁奈米管內之瞬態光譜。偵測波長分別為:(A)610 nm (B)	
	650 nm (C) 690 nm (D) 710 nm。AAO 奈米管浸泡時間說明如下:紅色	
	線為 30 分鐘,綠色線為 3 小時,藍色線為 12 小時,紫色線為 48 小時。	
	所使用之激發波長為 435 nm。	59
圖 3-21	在AAO 奈米管浸泡不同時間後所測得 ZnPP/THF 溶液之吸收光譜。0	
	min 表示浸泡前之 ZnPP/THF 溶液,樣品槽寬度為 1 mm。	61
圖 3-22	ZnPP/AAO(d=15nm)在不同浸泡時間條件下之 SEM 圖。浸泡時間說	
	明如下: (A)30 分鐘; (B)3 小時; (C)12 小時; (D)48 小時。	62
圖 4-1	(A) 肌紅蛋白(myoglobin)之結構圖。 ^[1] 其中A-H表示 8 個α-螺旋體	
	(α-helix)的片段。(B) 原血紅素(Heme)之結構圖。	63
圖 4-2	三種修飾肌紅蛋白的方法之示意圖。	64
	H ₂ PP在不同pH值溶液條件下之(A)吸收光譜及(B)螢光光譜。	
圖 4-3	溶液之 pH 值分別為:pH=1(桃紅色線)、 pH=4(藍色線)及 pH=12(綠	

ZnPP 在不同 pH 值溶液條件下之(A)吸收光譜及(B)螢光光譜。

ZnPP 在鹼性環境下的螢光光譜,經由高斯函數擬合的結果,溶液之 pH

圖 4-5 值分別為: (A) pH=10 及(B) pH= 12。紅色線為實驗值,黑色線為擬合結果,藍色線為單體,桃紅色線為雙體,綠色線及紫色線為聚集體。... 68

ZnPP在pH = 10 溶液下的螢光瞬態光譜, 偵測波長分別為: (A) 590 nm

 圖 4-6 (B) 610 nm (C) 630 nm (D)670 nm。圈圈為實驗值,黑線為擬合結果, 藍色線為τ₁的模擬結果,綠色線為τ₂的模擬結果。激發波長為 435 nm。 70

ZnPP在pH = 12 溶液下的螢光瞬態光譜, 偵測波長分別為: (A) 590 nm

圖 4-7 (B) 610 nm (C) 630 nm (D)670 nm 。 圈圈為實驗值,黑線為擬合結果, 藍色線為τ₁的模擬結果,綠色線為τ₂的模擬結果。激發波長為 435 nm 。 71

 ZnPP 在三種不同環境下之吸收光譜,這些環境分別為:ZnPP/THF 溶

 圖 4-9

 液(黑色線)、ZnPP-Mb / buffer 溶液(紅色線)以及 ZnPP / buffer (藍色線)。

ZnPP 在三種不同環境下之螢光光譜,這些環境分別為:ZnPP/THF 溶

ZnPP 在緩衝溶液下的螢光光譜以高斯函數擬合的結果。(A)圖為 ZnPP/ buffer 溶液,(B)圖為 ZnPP-Mb/buffer 溶液,紅色線為實驗值,黑色線

ZnPP-Mb在緩衝液下的螢光瞬態光譜, 偵測波長分別為: (A) 590 nm (B)

- 圖 4-12 630 nm (C) 670 nm (D)710 nm。圈圈為實驗值,黑線為擬合結果,藍色
 線為τ₁的模擬結果,綠色線為τ₂的模擬結果。激發波長為 435 nm。.... 78

Station .

ZnPP-Mb/buffer 之不同偏極方向的螢光瞬態光譜,右上角插圖為其時圖4-14(A)—解析螢光非等向性光譜。黑線為實驗值,紅線為擬合的結果,綠線為驗值與擬合值的差。激發波長為435 nm,偵測波長為590 nm。......

44000

圖 4-14(B)	ZnPP-Mb / buffer 之不同偏極方向的螢光瞬態光譜,右上角插圖為 G	
	/ 值。激發波長為 435 nm, 偵測波長為 590 nm。	81

81

	ZnPP / THF 之不同偏極方向的螢光瞬態光譜,右上角插圖為 G 值。激	
圖 4-15(B)) 發波長為 435 nm,偵測波長為 590 nm。	82

附錄目錄

頁次

圖 5

89

1896

 ZnPP / AAO (C_i = 4.8x10⁵ M, d = 70 nm, T_i = 48 hrs)之螢光瞬態光譜。

 圓 9
 偵測波長分別為: (A) 610 nm、(B) 630 nm、(C) 650 nm、(D) 670 nm、

 (E) 690 nm、(F) 710 nm及(G) 730 nm。圈圈為實驗值,實線為擬合結果。

 激發波長為 435 nm。
 92

xix

ZnPP/AAO (C_i = 4.8x10⁻⁵ M, d = 15 nm, T_i = 12 hrs)之螢光瞬態光譜。
 (A) 610 nm、(B) 630 nm、(C) 650 nm、(D) 670 nm、
 (E) 690 nm、(F) 710 nm、(G) 730 nm及(H) 750 nm。圈圈為實驗值,實線為擬合結果。激發波長為 435 nm。...

96

97

ZnPP/AAO (C_i = 4.8x10⁻⁵ M, d = 15 nm, T_i = 48 hrs)之螢光瞬態光譜。 偵測波長分別為: (A) 610 nm、(B) 630 nm、(C) 650 nm、(D) 670 nm、 (E) 690 nm、(F) 710 nm及(G) 730 nm。圈圈為實驗值,實線為擬合結果。 激發波長為 435 nm。....

圖 14

ZnPP-Mb /buffer 之螢光瞬態光譜。偵測波長分別為:(A) 580 nm、(B) 590

	ZnPP-Mb /buffer 之螢光瞬態光譜。偵測波長分別為:(F) 670 nm、(G) 690	
圖 16	nm、(H) 710 nm、(I) 730 nm、(J) 750 nm 及(K) 770 nm。圈圈為實驗值,	
	實線為擬合結果。激發波長為 435 nm。	99