
272 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Accurate Rank Ordering of Error Candidates
for Efficient HDL Design Debugging

Tai-Ying Jiang, Chien-Nan Jimmy Liu, and Jing-Yang Jou, Fellow, IEEE

Abstract—When hardware description languages (HDLs) are
used in describing the behavior of a digital circuit, design errors
(or bugs) almost inevitably appear in the HDL code of the circuit.
Existing approaches attempt to reduce efforts involved in this
debugging process by extracting a reduced set of error candidates.
However, the derived set can still contain many error candidates,
and finding true design errors among the candidates in the set may
still consume much valuable time. A debugging priority method
[21] was proposed to speed up the error-searching process in the
derived error candidate set. The idea is to display error candidates
in an order that corresponds to an individual’s degree of suspicion.
With this method, error candidates are placed in a rank order
based on their probability of being an error. The more likely an
error candidate is a design error (or a bug), the higher the rank
order that it has. With the displayed rank order, circuit designers
should find design errors quicker than with blind searching when
searching for design errors among all the derived candidates.
However, the currently used confidence score (CS) for deriving the
debugging priority has some flaws in estimating the likelihood of
correctness of error candidates due to the masking error situation.
This reduces the degree of accuracy in establishing a debugging
priority. Therefore, the objective of this work is to develop a new
probabilistic confidence score (PCS) that takes the masking error
situation into consideration in order to provide a more reliable
and accurate debugging priority. The experimental results show
that our proposed PCS achieves better results in estimating the
likelihood of correctness and can indeed suggest a debugging
priority with better accuracy, as compared to the CS.

Index Terms—Error diagnosis, hardware description language
(HDL), HDL code debugging, verification.

I. INTRODUCTION

W ITH THE increasing complexity of very large scale
integration circuit designs, the design cycle of a digital

circuit often involves several design stages. Verification is used
to monitor the consistency in designs between subsequent
stages. When the verification process finds that a design in the
current stage (implementation) is not consistent with that in the
previous stage (specification), design error diagnosis is needed.

Manuscript received March 18, 2008; revised September 26, 2008. Current
version published January 21, 2009. This paper was recommended by Associate
Editor V. Narayanan.

T.-Y. Jiang is with the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu 300, Taiwan (e-mail: taiyingjiang@realtek.
com.tw).

C.-N. J. Liu is with the Department of Electrical Engineering, National
Central University, Jhongli City 320, Taiwan.

J.-Y. Jou is with the Department of Electronics Engineering, National Chiao
Tung University, Hsinchu 300, Taiwan and is Vice Chancellor (Academic
Affairs) of the University System of Taiwan.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2009163

Most of the previous studies on the topic of design error
diagnosis target the diagnosis of gate-level or lower level
implementations. These methods can be roughly divided into
two categories: 1) symbolic approaches and 2) simulation-
based approaches. Symbolic approaches [1]–[6] use a binary
decision diagram (BDD) to represent functional manipulation
with BDD to formulate the necessary and sufficient condition
of fixing design errors. Some recent symbolic works exploit the
progress of a Boolean satisfiability (SAT) solver and develops
SAT-based approaches [6]. On the other hand, simulation-based
approaches [7]–[14] rely on simulating erroneous test vectors
to gradually reduce impossible error candidates. Some of these
methods are error-model-based methods, some are structure-
based methods, and some are a combination of the two. Such
error models include gate errors (missing gate, extra gate,
wrong logical connective, etc.), line errors (missing line, extra
line, etc.), and unknown models (Xs).

In addition to the gate or other lower levels, design errors can
also occur at the very first design stage, i.e., modeling the circuit
behavior using hardware description languages (HDLs). Tra-
ditionally, debugging a faulty HDL design relies on manually
tracing the faulty HDL code. However, a simple HDL design
today can probably have thousands of code lines. Manually
tracing the faulty HDL code to debug is not an effective
debugging method.

In the literature, some researches have targeted techniques
that assist HDL design debugging. Peischl and Wotawa [20]
focused on the model-based diagnosis paradigm and employed
structures and behaviors for source-code-level debugging with
respect to their error models. There are also error-model-free
methods, which should have better applicability to various
kinds of design errors. Khalil et al. [15], [16] proposed an
approach that can automatically derive four sets of error can-
didates in a sequence, i.e., from the smallest set to the biggest
set. In doing so, they hope that designers can find bugs in the
smaller error candidate sets to reduce the required debugging
efforts. However, this is not always possible, and the efforts in
reviewing the first three sets may be wasted. Shi and Jou [17]
applied data dependence analysis, execution statistics, and the
characteristics of HDL operations to filter out impossible error
candidates. In this method, only one error space is derived for
examination, and it is acceptable in size. Huang et al. [18] fur-
ther exploited the extra observability of assertions in an attempt
to derive a smaller error space. Instead of automatic methods,
Hsu et al. developed two useful utilities to help designers
explain the locality of bugs with manual interventions [19].

Deriving a reduced set of error candidates is certainly helpful
for HDL debugging. However, the derived error candidate set

0278-0070/$25.00 © 2009 IEEE

JIANG et al.: ACCURATE RANK ORDERING OF ERROR CANDIDATES FOR EFFICIENT HDL DESIGN DEBUGGING 273

(called “error space” in this paper) can still contain many error
candidates, and identifying true design errors by examining
candidates one by one still requires much effort and time. An
interesting technique called debugging priority has been pro-
posed for accelerating error searching in the derived candidate
set [21]. A measurement called confidence score (CS) has been
developed to assess the likelihood of correctness of each error
candidate. Then, by sorting error candidates according to the
CS, error candidates are displayed in a prioritized order: from
the most likely to the least likely one. With this ranked order,
true design errors would be placed in the first few lines and
should be found by designers if they search errors according
to the order. However, here, it is implicitly assumed that the
masking error situation, in which the erroneous effects caused
by design errors cannot be observed at the outputs, seldom
occurs and is not considered within the CS [21]. Without con-
sidering the masking error situation, the CS may overestimate
the likelihood of correctness of the true design error, as the
latter may not be placed in the first few lines, as expected.
Unfortunately, the benefits of debugging priority are limited.

Therefore, this paper attempts to develop a new probabilistic
measurement called probabilistic confidence score (PCS) that
takes the masking error situation into consideration to more
suitably estimate the likelihood of correctness of an error
candidate. Instead of proposing a new approach for deriving a
reduced set of error candidates, this paper focuses on obtaining
a more accurate debugging priority to speed up the error-
searching process among the candidates in the derived error
space. Designers can apply any approaches to derive an error
space and then use our method to obtain a reliable debugging
priority. The inputs of our algorithm are given as follows:
1) an error space; 2) a faulty HDL design; and 3) a value change
dump file obtained during the simulation. The output will be a
candidate list, with the debugging priority sorted according to
our proposed PCS.

The remainder of this paper is organized as follows: The
motivation of this work is introduced in Section II. Section III
describes the modeling of the likelihood that a masking error
situation occurs and defines the PCS. An effective PCS calcu-
lation algorithm is introduced in Section IV. The experimental
results are presented in Section V. Finally, we conclude this
paper in Section VI.

II. MOTIVATION

When estimating the likelihood of correctness of an error
candidate to obtain the debugging priority, Jiang et al. assumed
that the erroneous effects of activated errors are seldom masked
and can often be propagated to the primary outputs (POs) [21].
With this assumption, if there were no incorrect simulation
values at the POs (PO1, PO2, PO3, . . . , POm) at time instance
t = ti, the sensitized statements (SSs) of the POs tended to be
correct.1 As a result, the SSs of the POs receive CS points
according to the formula of the CS. In short, the CS did not
model the masking error situation to estimate the likelihood

1Otherwise, erroneous values caused by the SSs should make the simulation
values of the POs inconsistent with the expected values at t = ti.

Fig. 1. HDL example. (a) HDL code. (b) Input stimulus. (c) Simulation result.

Fig. 2. Erroneous simulation results and debugging priority. (a) Erroneous
simulation result. (b) Debugging priority and the CS.

of correctness of the error candidates. However, many HDL
operations can actually mask the erroneous effects and prevent
them from appearing at the POs. If the erroneous effects were
masked, preventing them from being observed at the POs, the
SSs may get CS points, even if some of them have design errors
hiding within. An example follows to illustrate this point.

Suppose that the HDL code that a designer intends to write
is the Verilog HDL code in Fig. 1(a). This HDL code has only
one PO, i.e., PO1, on which the simulation results are compared
against the expected values. The clock period of the clock signal
clk is assumed to be 10 ns. If the HDL code is simulated with the
input stimulus shown in Fig. 1(b), the simulation result obtained
is shown in Fig. 1(c). We consider the result in Fig. 1(c) as the
golden result, because the code in Fig. 1(a) is what the designer
intends to write.

However, if the statement in line 7 (which is denoted as S7)
“counter = counter + 1” is carelessly written as “counter =
counter + 2,” the simulation result will become that shown in
Fig. 2(a). It can be seen that the simulation value of PO1 at
t = 25 in Fig. 2(a) is different from its expected value shown
in Fig. 1(c). According to the definition in [21], PO1 is an
erroneous PO, and the clock cycle ranging from Time = 15 to
Time = 25 is the error-occurring clock cycle (EOC). By using
the error space identification approach in [21], an error space,
i.e.. {S1,S2,S3,S4,S5,S6,S7}, can be obtained.

After obtaining the error space, the CS for each error
candidate will be calculated. Each SS of a PO with correct
simulation at a time instance before the EOC gets one CS point.
Finding SSs requires backward tracing from the POs in the
reverse direction of the data flow until the primary inputs (PIs),
registers, or constants are reached. When reaching a conditional
vertex, such as S2 and S5 in Fig. 1(a), the authors propose

274 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

to traverse the taken branch(es) and the control signal, and
ignore the untaken branch(es). For example, at Time = 1, since
the evaluation result of “if(reset)” at Time = 1 is TRUE, the
traversal reaches S5 and then backward traverses the TRUE
branch and the control signal (i.e., reset). The obtained SSs for
PO1 at Time = 1 are {S5,S6}, and both receive one CS point.
As can be seen, all the traversals must commence with one
PO. Each PO traversal is completed in a particular simulation
instance. This process is repeated until all the PO traversals in
a particular simulation instance have been completed. Finally,
once all the PO traversals in all the simulation instances have
been completed, the debugging priority shown in Fig. 2(b) is
obtained. The numbers within parentheses are the CSs of the
corresponding error candidates.

It can be seen that the design error in statement S7
“counter = counter + 2” is not placed in the first line but
the fifth line in Fig. 2(b). If circuit designers examine error
candidates according to this debugging priority, four trials
would be wasted before the true error S7 can be found. Design
error S7 is placed in the fifth line, because S7 receives two CS
points; this is because the erroneous values caused by S7 are
masked twice on its way propagating to PO1.

The first masking error situation occurs at Time = 5. It can
be seen that the erroneous statement S7 causes an incorrect
value (i.e., 3, which is different from the correct value shown
in Fig. 1(c), i.e., 2, as highlighted using an underline) to be
displayed on the signal counter at Time = 5. However, this in-
correct value 3 is masked by the operation “counter < PI2” in
S2, because both the correct (i.e., 2) and incorrect values (i.e., 3)
yield the same result at the output of the operation “counter <
PI2,” i.e., they are both smaller than the value of PO2 (i.e., 4). A
similar masking error situation occurs at Time = 15 although
the incorrect value of counter is propagated through the output
of “counter < PI2,” causing it to be FALSE. However, the
incorrect result (i.e., FALSE) does not alter the value of PO1
(i.e., 4). This means that signal a is 4 at Time = 15. It is
masked by the conditional operation “if (. . .) . . . else . . .” and
cannot cause incorrect values at PO1 at Time = 15. Because
the CS does not consider the possible masking error situation
that may be caused by the operation “counter < PI2” and the
conditional operation “if (. . .) . . . else . . .,” S7 is given a CS
score of two points. This puts S7 in line 5 in the candidate list
in Fig. 2(b). The accuracy of the debugging priority is reduced
due to the lack of consideration for the masking error situation
of the CS.

Observing the masking error situation, this work aims at
estimating the likelihood of error masking (LOEM) for an SS to
assess the score it can receive. If the LOEM of an arbitrary SS,
i.e., SSi, is quite low, it is almost impossible for the masking
error situation to occur on SSi’s way to the POs. It should be
comparatively safe to consider SSi as a correct statement and
give SSi a high score. On the contrary, if the LOEM of SSi is
high, it should be given a low score.

III. PCS

In the following introduction, the input-faulty HDL design is
modeled as a modified control/data flow graph (CDFG) G =

Fig. 3. CDFG of the HDL code in Fig. 1.

(V ,E), where V is the set of vertices and E is the set of edges
connecting the vertices. Let v be a vertex in V . Each vertex
v corresponds to an operation in the HDL code. Function fv

and variable yv are also associated with vertex v. Function fv is
the function of the operation to which v corresponds. Variable
yv is the output variable of fv or the left-hand variable of
the operation. The Verilog HDL code fragment in Fig. 1(a) is
used as an example, and its CDFG is constructed, as shown in
Fig. 3. Vertex “1 : ∗” corresponds to operation “a = PI1 ∗ 4”
in the statement in line 1 (S1). Function f1:∗ is multiplication
“(∗),” and y1:∗ is signal a. Vertex “2 : if (. . .) . . . else”
corresponds to the operation “if (. . .) . . . else . . .” in lines 2–4.
The functionality of vertex “2 : if (. . .) . . . else . . .” is quite
similar to that of a multiplexer. Vertex PO1 is a special vertex
representing the only PO of the circuit, i.e., PO1.

Edge (v, u) ∈ E indicates that the input of vertex u is data
dependent on the output of v. As shown in Fig. 3, an edge
(1 : ∗, 4 :=) exists since the operation “4 :=” takes the output
of vertex “1 : ∗” as its input. The fan-out of v is a set of
vertices u, such that there is an edge from v to u. The fan-in
of v is a set of vertices k, such that there is an edge from
k to v. A path P from vertex u to vertex u′ is a sequence
of vertices 〈v0, v1, v2, . . . , vk〉, such that u = v0, u′ = vk, and
(vi−1, vi) ∈ E.

Suppose that the verification finds an incorrect circuit be-
havior at the nth positive edge of the clock signal t = cn.2

This special positive edge of the clock is called the error-
occurring edge (EOE). Assume that the faulty design under
verification (DUV) has m POs {PO1, PO2, . . . , POm} and that
n − 1 clock cycles pass before the EOE (t = cn). To show how
we model the masking error situation and estimate LOEM,
we first consider that a design error hides within an arbitrary
statement v. If the erroneous statement v caused an incorrect
value w on its left-hand variable yv at time instance t = ti,
this incorrect value w would not cause any incorrect behaviors
at any POs at all the rising edges of the clock before t = cn.
Otherwise, the EOE is not t = cn but another earlier rising
edge of the clock. More specifically, for an arbitrary POj at
an arbitrary rising edge of clock t = ck before the EOE, the
incorrect value w is masked by some vertices on the paths
from statement v at t = ti (which is denoted as v@t = ti) to
POj at t = ck (which is denoted as POj@t = ck), causing the

2We assume that the simulation values of all the POs are compared with
the correct values only on the rising edges of the clock signal. If the DUV
is a falling-edge-triggered or double-edge-triggered design, the modeling and
computation algorithm can easily be changed to fit to it.

JIANG et al.: ACCURATE RANK ORDERING OF ERROR CANDIDATES FOR EFFICIENT HDL DESIGN DEBUGGING 275

simulation value of POj to be the same as the correct value at
t = ck, i.e.,

fv@t=ti→POj@t=ck
(w) = CV (POj@t = ck) (1)

where fv@t=ti→POj@t=ck
is the function of the paths from

v in time frame t = ti to POj in time frame t = ck, and
CV (POj@t = ck) is the correct value of POj at t = ck.

For all the other POs of the DUV, the incorrect value w would
also be masked on the way to the POs at all the rising edges
before the EOE, so that it could remain uncovered before EOE.
That is, for each PO POj at each rising edge of clock t = ck

before EOE, the function of the path(s) from vertex v at t = ti
to POj at t = ck must generate the correct value of POj at
t = ck with w, even if w is an incorrect value. The preceding
description can be modeled as

m⋂
j=1

n−1⋂
k=0

fv@t=ti→POj@t=ck
(w) = CV (POj@t = ck). (2)

We now consider the likelihood that the incorrect value w truly
exists on yv but is masked from causing any incorrect values
on the POs at any time instances before the EOE. We first
notice that all the possible values of yv that can satisfy (2)
form a special set of values. We call this the masked value set
(MVS) of vertex v at time instance t = ti, which is denoted as
MVS(v@t = ti) and is given by

MVS(v@t = ti) =

{
x
∣∣∣ m⋂

j=1

n−1⋂
k=0

fv@t=ti→POj@t=ck
(x)

= CV (POj@t = ck)

}
. (3)

Each element in MVS(v@t = ti) retains the correct values
of all the POs at all the rising edges of the clock before the
EOE, regardless if it is a correct value or not. The correct value
of the output of vertex v at t = ti is, of course, contained in
MVS(v@t= ti). This justifies the existence of MVS(v@t= ti).
If MVS(v@t= ti) contains only one element, obviously, it will
be the correct value of yv at t = ti. In this case, no incorrect
values ever exist in MVS(v@t = ti), and the masking error
situation can never occur. Statement v at t = ti is given a high
score. On the other hand, if the set contains many elements, an
incorrect value is very likely to exist in the set and become an
incorrect value that remains unrevealed at all the rising edges of
the clock before the EOE. The correctness of statement v is less
obvious. In other words, the more elements MVS(v@t = ti)
contains, the more likely the simulated value of v at t = ti
is a masked incorrect value. Hence, we define the LOEM of
statement v at time instance t = ti as follows:

LOEM(v@t = ti) =
|MVS(v@t = ti)| − 1

2n − 1
. (4)

Its complement is the likelihood that an erroneous value of
v at t = ti is propagated to at least one PO before the EOE

and observed, i.e., the likelihood of error propagating (LOEP)
of v at t = ti, which is given by

LOEP(v@t = ti) = 1 − |MVS(v@t = ti)| − 1
2n − 1

. (5)

In the given input value change dump file, the output variable
yv of an arbitrary statement v can change its value many
times, e.g., l times, at different time instances before the EOE
{t = t1, t = t2, . . . , t = tl}. Each time the value of yv changes
at time instance t = ti, there will be one particular value of
LOEP(v@t = ti). The PCS of v, i.e., PCS(v), is defined as the
maximum among these LOEP values, as described in

PCS(v) = max {LOEP(v@t = ti)} ,

where ti ∈ {t = t1, t = t2, . . . , t = tl}. (6)

A low LOEP (high LOEM) means that any erroneous effects
caused by v at t = ti are very possible to be masked. The
correctness of v at t = ti may become doubtful, even if the
simulation values of all the POs are correct before the EOE.
It is reasonable to give v less PCS due to its small LOEP value.
On the other hand, if the LOEP value is high, it is equally
reasonable to give it more PCS. Therefore, we define PCS
as (6). It can be seen that PCS computation now turns into
the problem of efficiently computing the MVSs of each error
candidate at different time instances before an EOE.

IV. PCS COMPUTATION ALGORITHM

The proposed PCS computation algorithm is a topology-
based analysis with time frame expansion for handling the
sequential behavior of the DUV. While calculating the LOEP
of the output variable of vertex v in time frame t = ti, the
algorithm will consider each sensitized path from v in time
frame t = ti to any PO in each time frame before the EOE.
This path-oriented computation scheme is defined as follows:

MVS(v@t = ti) =
m⋂

j=1

n−1⋂
k=0

{
x|fv@t=ti→POj@t=ck

(x)

= CV (POj@t = ck)} (7)

which can be derived from (3).
The set {x|fv@t=ti→POj@t=ck

(x) = CV (POj@t = ck)} is
defined as the MVS of vertex v at time instance t = ti with
respect to POj at t = ck (which is denoted as MVS(v@t =
ti)POj@t=ck

). An element of the set other than the correct value
can be regarded as an incorrect value that is masked by some
vertices on the path(s) from v at t = ti to POj at t = ck, thus
keeping the correct value of POj at t = ck.

According to (7), if it is possible to derive MVS(v@t =
ti)POj@t=ck

for each POj at each time frame t = ck, then in-
tersecting these sets yields MVS(v@t = ti). If there is exactly
one path from v at t = ti to a PO POj at t = ck, an induction-
based computation approach is proposed to compute an exact
MVS(v@t= ti)POj@t=ck

, which is introduced in Sections IV-A
and IV-B. If there are multiple paths from v at t = ti to POj

at t = ck, i.e., reconvergent paths, a quick estimation approach
that guarantees lower bound LOEP estimations will be applied,

276 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 4. Path from b@t = ti to POj@t = ck .

Fig. 5. Pseudocode of the MVS computation for a single path.

which is introduced in Section IV-C. Two time-saving strate-
gies are introduced in Section IV-D. The entire algorithm is
presented in Section IV-E and incorporates each part that was
introduced before.

A. MVS Computation for a Single Path

Assume that there is a single path P from a vertex b at
time instance t = ti to a PO POj at a rising edge of clock
t = ck〈b@t = ti, an, an−1, . . . , a2, a1, POj@t = ck〉, as shown
in Fig. 4. An algorithm written as a pseudocode, as shown in
Fig. 5, is used to compute MVS(b@t = ti)POj@t=ck

.
For each PO at each rising clock edge, the algorithm in Fig. 5

will recursively call subroutine MVS_for_Vertex to perform an
MVS computation and use a depth-first search strategy for
backward traversals (from POj at t = ck to b@t = ti). The
input of the subroutine comprises a previously computed set of
integers (PreviousMVS), the currently traversed vertex v, and
the current time frame ti. If the currently traversed vertex v
is a normal vertex, all the fan-in vertices of vertex v will be
traversed (line 7). However, if vertex v is a control vertex, the
fan-in vertices on the untaken branch(es) will be marked as
“inactive” and will not be traversed (line 5).

The key step of this algorithm (line 12) is the computation of
a set of all u’s output values (CurrentMVS) that can make the
function of v, i.e., fv generate an output value that is in the set
PreviousMVS. Then, the newly computed set CurrentMVS will
become the input PreviousMVS of subroutine MVS_for_Vertex
and will be recorded on vertex u, along with the time in-
formation after the subroutine is called again. Section IV-B

introduces the procedures for computing CurrentMVS based on
PreviousMVS (line 12). The following is an explanation of how
this algorithm can derive MVS(b@t = ti)POj@t=ck

, in the case
of a single path from b at t = ti to POj at t = ck.

Theorem 1: As shown in Fig. 4, function fn is the composite
function of the vertices from a1 to an and comprises fan

and
fn−1. For an arbitrary value x on the output of vertex b at t =
ti, x is in MVS(b@t = ti)POj@t=ck

if and only if fan
(x) is in

MVS(c@t = ti)POj@t=ck
, which can be represented as

MVS(b@t = ti)POj@t=ck

=
{
x|fan

(x) ∈ MVS(c@t = ti)POj@t=ck

}
. (8)

Proof: Claim 1

MVS(b@t = ti)POj@t=ck

⊇
{
x|fan

(x) ∈ MVS(c@t = ti)POj@t=ck

}
.

For each value x contained in {x | fan
(x) ∈ MVS(c@t =

ti)POj@t=ck
}, x must satisfy fn−1(fan

(x)) = CV (POj@t =
ck) and thus also satisfy fn(x) = CV (POj@t = ck). That is, x
is contained in MVS(b@t = ti)POj@t=ck

. This proves Claim 1.
Claim 2

MVS(b@t = ti)POj@t=ck

⊆
{
x|fan

(x) ∈ MVS(c@t = ti)POj@t=ck

}
.

By way of contradiction, first, assume that there is a value
x that is in MVS(b@t = ti)POj@t=ck

, but fan
(x) is not

in MVS(c@t = ti)POj@t=ck
. Since x is in MVS(b@t =

ti)POj@t=ck
, then fn(x) = CV (POj@t = ck), which im-

plies that fn−1(fan
(x)) = CV (POj@t = ck). This means that

fan
(x) is contained in MVS(c@t = ti)POj@t=ck

. This is a
contradiction.

From Claims 1 and 2, it is proven that

MVS(b@t = ti)POj@t=ck

=
{
x|fan

(x) ∈ MVS(c@t = ti)POj@t=ck

}
.

When subroutine MVS_for_Vertex is called for the first
time, the computed CurrentCVS {x|fa1(x) ∈ {CV (POj@t =
ck)}} is actually MVS(g@t = ck)POj@t=ck

according to the
definition. When the subroutine is called for the second
time, the computed CurrentMVS {x|fa2(x) ∈ MVS(g@t =
ck)POj@t=ck

} should be MVS(e@t = ck)POj@t=ck
accord-

ing to Theorem 1. Similarly, the computed Current-
MVS {x|fa3(x) ∈ MVS(e@t = ck)POj@t=ck

} is MVS(d@t =
ck)POj@t=ck

when the subroutine is called for the third time.
Therefore, when the computation reaches vertex an, the com-
puted CurrentMVS {x|fan

(x) ∈ MVS(c@t = ti)POj@t=ck
} is

the MVS of b at t = ti with respect to POj at t = ck.
From the preceding discussion, it shows that a CurrentMVS

set is the MVS of a traversed vertex with respect to POj at
t = ck. According to (7), these MVSs will be intersected by
other MVSs of the same vertex with respect to the other POs

JIANG et al.: ACCURATE RANK ORDERING OF ERROR CANDIDATES FOR EFFICIENT HDL DESIGN DEBUGGING 277

at different time instances. After all the POs at all the positive
clock edge have been applied, the MVS of each traversed vertex
in a time frame will be computed and recorded for the PCS
calculation later in the process.

B. MVS Formula for Operations

Given a previously computed MVS set (PreviousMVS), ver-
tex v, and one of the fan-in vertices u of v, CurrentMVS
is the set of all the values at u’s output yu that make the
function of vertex v, i.e., fv , generate an output value that is
in PreviousMVS. To compute CurrentMVS, we first consider a
particular value p in PreviousMVS and try to find the set of all
the values that make fv generate p at v’s output yv. If such
a set can be derived for each particular value p in Previous-
MVS, then the union of these sets for each p in PreviousMVS
yields CurrentMVS. We denote this special set for value p as
Sub_CurrentMV Sp.

For most unary and binary operations, Sub_CurrentMV Sp

can easily be derived by inversing fv . Take the operation “yv =
−yu” as an example. If p = −2, inversing the minus operation
“−” produces yu = 2. Take the operation “yv = yu + b1” as
another example. If p = 8 and b1 = 3, inversing “+,” i.e.,
yu = 8 − 3, shows that yu is equal to 5. Integer b1 is the
simulated value of an operand other than the output of u yu

and is recorded in the dump file. The formula for computing
Sub_CurrentMV Sp is summarized in the third column of
Table I. The second column shows the necessary conditions for
the result of Sub_CurrentMV Sp to exist. If the conditions
are not met, in most of cases, Sub_CurrentMV Sp = {∅},
except in comparisons. The derivation of Sub_CurrentMV Sp

formulas for some representative operations is explained here.
1) Operations that choose a bit range (“[i]” and “[i : j]”):

For operation “[i : j],” the only constraint on the input
values is that the binary values of the bits selected by
“[i : j]” must be the same as the those of value p. The
binary values of the unselected bits are arbitrary and can
be of any possible value. Thus, the value of the unselected
bits from 0 to j − 1 can be any integer ranging from 0
to 2j − 1. The value of the unselected bits from i + 1 to
w − 1 can be any integer ranging from 0 to 2w−i−1 − 1.
Hence, the formula for operation “[i : j]” appears in the
third column of Table I. Sub_CurrentMV Sp for “[i]”
can be derived by treating i the same as j in the “[i : j]”
formula.

2) Control vertices (“if (. . .) . . . else . . .” and “case(. . .)”):
If yu is the control signal, yu can only have values that
select suitable branches to keep the output of vertex v yv

at p. This computation can be done by comparing the
value of each variable on each branch with p. If yu is the
signal on the taken branch, yu can only be p, such that
yv is p.

3) Comparison operations (“>,” “<,” “==,” etc.): Take
“<” as an example. If p is equal to 1, yu can only have
values smaller than b1. These values are {[0 ∼ b1 − 1]}.
The derivations for other comparisons are quite similar.

4) Right shift “�” and left shift “�”: Either a right shift
or a left shift by b1 incurs information loss. The “[i : j]”

Fig. 6. Modeling information loss in the right and left shifts.

formula can tackle the information loss. As shown in
Fig. 6, the entire right shift (left shift) is the cascade
of an operation that selects the bit range from i to j
“[i : j]” and a divide (multiply) operation. Therefore, to
derive the formula of a right shift (left shift) operation,
the divide (multiply) formula is first applied; then, the
“[i : j]” formula is applied. For formula derivation of
other operations, such as “+,” “−,” and “∗,” the “[i : j]”
MVS formula can also be applied to model the informa-
tion loss if encountered.

If the formulas listed in the third column of Table I are
directly applied to compute CurrentMVS, for a PreviousMVS
with n integers, the formula should be applied n times before
deriving the union of all the Sub_CurrentMV Sp to produce
CurrentMVS. Take the operation “b = a[1 : 0]” as an exam-
ple. Assume that a is four bit wide, b is two bit wide, and
PreviousMV S = {0, 1, 2}. To compute CurrentMVS, first,
the “[i : j]” formula with i = 1, j = 0, w = 4, and p = 0 is
applied, which yields

24−1−1−1⋃
k=0

{
[0 · 20 + k · 21+1 ∼ 0 · 20 + k · 21+1 + 20 − 1]

}
= {0, 4, 8, 12}. (9)

The same formula can be used, with p = 1 and p = 2 in
sequence, to obtain {1, 5, 9, 13} and {2, 6, 10, 14}, respectively.
The union {0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14} is Current-
MVS. The computation may take much time if there are many
elements in PreviousMVS. The following observations are used
to refine the Sub_CurrentMVS formulas for deriving the MVS
formulas used in the subroutine MVS_for_Vertex.

Taking a closer look at the results obtained with p=0, p=1,
and p=2, it can be observed that 0 ∗ 20+ k∗ 21+1+ 20−1=
k ∗ 21+1 and 1 ∗ 20 + k ∗ 21+1 = k ∗ 21+1 + 1 are two con-
tinuous integers, as well as 1 ∗ 20 + k ∗ 21+1 + 20 − 1 = k ∗
21+1 + 1 and 2 ∗ 20 + k ∗ 21+1 = k ∗ 21+1 + 2. Therefore,
the union of the preceding three sets can more concisely be
represented as

24−1−1−1⋃
k=0

{
[0 · 20 + k · 21+1 ∼ 2 · 20 + k · 21+1 + 20 − 1]

}

=
3⋃

k=0

{[k · 4 ∼ 2 + k · 4]} . (10)

278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

TABLE I
Sub_CurrentMV Sp FORMULAS

More generally, for a set of continuous integers from p to q
in PreviousMVS, the computed CurrentMVS is

2w−i−1−1⋃
k=0

{
[p × 2j + k × 2i+1∼q × 2j + k × 2i+1 + 2j − 1]

}
.

(11)

The “[i : j]” MVS formula is derived and listed in the third
column of Table II.

The “�” operation is another example of the derivation of
the “�” formula listed in the third column of Table II. First, the
smallest integer p′ in the set {[p ∼ q]} is found, which satisfies
p′%2b1 [b1] = 0. If there is no such p′ in the set {[p ∼ q]},
CurrentMVS will be φ. If p′ exists in {[p ∼ q]}, p′ + 2b1 needs
to be is in the range of p−q. If it is, the union of the two result
sets obtained by p′ and p′ + 2b1 can be expressed as

2b1−1
∪

k=0

{
[k · 2b1 + p′/2b1 ∼ k · 2b1 + (p′ + 2b1)/2b1]

}
. (12)

Repeating the preceding derivations produces the “�” for-
mula in Table II.

For a subset of integers {[p ∼ q]} in PreviousMVS, applying
the MVS formulas listed in the third column of Table II can
much more quickly produce results than the application of the
formulas in Table I. In addition, all the integers in the subset
{[p ∼ q]} can be memorized by recording only p, q, and the

special tag “∼.” This storage format enhances memory usage
and alleviates the problem of memory explosion.

C. MVS Estimation for Reconvergent Paths

The algorithm shown in Fig. 5 can compute the exact MVS
of vertex b in time frame t = ti with respect to POj in time
frame t = ck only if there is a single path from b at t = ti to
POj at t = ck. If there are multiple reconvergent paths, another
approach is needed.

A quick estimation strategy for handling reconvergent paths,
instead of some other complex methods that may need more
computation time, is adopted in this paper. If there are multiple
reconvergent paths from v at t = ti to POj at t = ck, the
universe U is used, instead of real MVS(b@t = ti)POj@t=ck

in the intersection operation. The estimation result obtained
using the universe must include the exact result obtained by
intersecting the real MVS(b@t = ti)POj@t=ck

, as the latter is
included in the universe U . Consequently, this estimation result
has a larger MVS set. That causes the estimated LOEP to be
less than the real one. Therefore, this estimation approach guar-
antees lower bound estimations of LOEP for an arbitrary error
candidate v on reconvergent paths. This reduces the possibility
of the correctness of any design errors to be overestimated
and the design errors to be placed in the first few lines of a
debugging priority.

JIANG et al.: ACCURATE RANK ORDERING OF ERROR CANDIDATES FOR EFFICIENT HDL DESIGN DEBUGGING 279

TABLE II
MVS FORMULAS FOR HDL OPERATIONS

Fig. 7. Vertex v and one of its fan-in vertex v′.

D. Time-Saving Strategies

To reduce the computation time, we develop the bounded tra-
versal strategy and the limited traversed frame (LTF) strategy.
The bounded traversal strategy can avoid unnecessary traver-
sals during MVS computation without causing any accuracy
loss. The LTF strategy saves additional time at the expense of
accuracy loss. It provides additional flexibility for tool users to
determine how they like to trade off between accuracy and time.

1) Bounded Traversal Strategy: In the proposed MVS com-
putation, after some backward traversals, there are MVS sets
recorded on vertices that have been traversed. As shown in
Fig. 7, let vertex v′ at t = tn be one of the fan-in vertices
of vertex v at t = tn, and both were also traversed. As-
sume that MVS(v@t = tn) and MVS(v′@t = tn) are already
recorded on v and v′. MVS(v′@t = tn) should be {x | fv(x) ∈
MVS(v@t = tn)} according to the CurrentMVS computation
shown in line 12 of the MVS_for_Vertex pseudocode in Fig. 4.

If another backward traversal from a PO arrives
at vertex v in time frame t = tn, PreviousMVS and
MVS(v@t = tn) are intersected, as described in line 4 of the
MVS_for_Vertex pseudocode. If the result of the intersection
remains to be MVS(v@t = tn), i.e., MVS(v@t = tn) ⊆
PreviousMV S, then, when the computation reaches v′, the
result of the intersection will also be MVS(v′@t = tn). More
specifically, if MVS(v@t = tn) ⊆ PreviousMV S, then
MVS(v′@t= tn)⊆ {x|fv(x)∈PreviousMV S}. Theorem 2
provides a statement and proof.

Theorem 2: If MVS(v@t = tn) ⊆ PreviousMV S, then
MVS(v′@t = tn) ⊆ {x | fv(x) ∈ PreviousMV S}. The orig-
inally recorded MVS(v′@t = tn) remains unchanged after the
intersection.

Proof: The MVS(v′@t= tn) is computed based on
MVS(v@t= tn). That is, MVS(v′@t= tn) is the set {x |
fv(x)∈MVS(v@t= tn)}. For an arbitrary element x in
MVS(v′@t= tn), fv(x) is in MVS(v@t= tn) and is thus also in
PreviousMVS since MVS(v@t= tn)⊆PreviousMV S. There-
fore, if MVS(v@t= tn)⊆PreviousMV S, then MVS(v′@t=
tn)⊆{x|fv(x)∈PreviousMV S}. The originally recorded
MVS(v′@t= tn) remains unchanged after the intersection.

If v′ has at least one fan-in vertex v′′, by mathematical
deduction, MVS(v′′@t = tn) should also remain unchanged

280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 8. Pseudocode of the PCS computation algorithm.

after the intersection. So do the vertices that are in the transitive
fan-in of vertex v. Therefore, when PreviousMVS includes
the recorded MVS of a vertex v, an immediate return from
subroutine MVS_for_Vertex can avoid unnecessary traversals
and computations since further computations will not change
any recorded MVSs.

2) LTF Strategy: The bounded traversal strategy can avoid
unnecessary traversals. However, in some cases, necessary
backward traversals can still expand many frames. Although
accurate results are produced, the required computation time
may become unaffordable. Therefore, we propose the LTF strat-
egy, which provides an optional and flexible tradeoff between
accuracy and speed.

The idea of the LTF strategy is to restrict the number of
backward-traversed frames in time frame expansion. It only
requires a simple check on whether the number of expanded
frames reaches the maximum allowable number of frames
(which is denoted as the frame_limit). frame_limit is a
configurable parameter that can be adjusted by the users. It can
be set as a small number for a quick estimation or as infinite
for the highest accuracy. Unlike the bounded traversal strategy,
this strategy may experience some accuracy loss. However, a
lower bound estimation of observability is always guaranteed,
such that our observability measures seldom overestimate the
correctness of the DUV. The reason is given here.

For a vertex u in time frame t = ck, if the expanded frames
are not limited, each MVS of u at t = ck will be intersected
with respect to an observation point at a positive clock edge
in the set of MVS sets {MVS1, MVS2, . . . , MVSm}. With the
frame_limit restriction, some MVSs of u at t = ck with
respect to some OPs are not obtained since the backward traver-

sals are bounded and do not reach u in time frame t = tk. As-
sume that the obtained MVSs are {MVS1, MVS2, . . . , MVSn},
where n < m. The intersection of all the MVSs in the set
{MVS1, MVS2, . . . , MVSn} includes the intersection of all
the MVSs in the set {MVS1, MVS2, . . . , MVSm}. Larger
MVS set intersections turn out to be less observable ac-
cording to the definition of observability in (5). Therefore,
our LTF strategy also guarantees lower bound estimations of
observability.

E. PCS Computation Algorithm

To incorporate MVS estimation for reconvergent paths and
the time-saving strategies, we modify the algorithm shown in
Fig. 4 and derive the one abstracted as pseudocode in Fig. 8.
Hence, the algorithm that we use to calculate PCS incorporates
the following: 1) MVS computation for a single path; 2) MVS
estimation for reconvergent paths; 3) the bounded-traversal
strategy; and 4) the LTF strategy. The input of this algorithm are
given as follows: 1) the DUV described in an HDL; 2) the value
change dump file during simulation; 3) the EOE; 4) an error
space obtained by any error space identification approach; and
5) the frame_limit value selected by the tool user.

During traversal(s) that starts from a PO (StartPO) at a time
instance (StartTime), if vertex v is visited for the first time,
the single-path case is temporarily assumed. The PreviousMVS
will be intersected with MVS(v@t = ti), which is already the
intersection of many PreviousMVSs. However, if this vertex v
is found to be traversed for two or more times in the traversal
starting from StartPO at StartTime, there are reconvergent paths
from v at t = ti to StartPO at StartTime. Then, the previously

JIANG et al.: ACCURATE RANK ORDERING OF ERROR CANDIDATES FOR EFFICIENT HDL DESIGN DEBUGGING 281

Fig. 9. Computation processes starting from PO1 at t = 1.

recorded MV SforRecovery(v@t = ti) is used to cancel the
intersections made in this traversal before.

Two conditions are added for incorporating the two
time-saving strategies. The condition in line 5 of the
MVS_Com_for_Vertex subroutine is added to incorporate the
bounding traversal strategy. The last condition in line 16 is
added because of the LTF strategy. Once one of the conditions
is met, the succeeding computation processes can be skipped,
and the program can directly return from the subroutine to save
computation time. Aside from being bounded by time-saving
strategies, traversals are also bounded if there is no frame to
expand (th < 0) or there is no fan-in vertex to traverse.

The preparation phases of this algorithm are shown in lines 1
and 2 of CS_computation. The three-address code generations
and the conditional statement modification developed in [22]
must be conducted first for the information required in the MVS
computation for control vertices (conditional statements). The
detailed conditional statement modification algorithm can be
found in [22]. Next, a CDFG based on the input DUV described
in HDL is constructed.

The example in Fig. 1 is used to demonstrate the processes
of our PCS computation and its performance in the derivation
of a debugging priority. After some initializations, the CDFG
of the DUV based on the HDL code in Fig. 1 is constructed,
as shown in Fig. 9(a). Then, a backward traversal from PO1 at
t = 1 commences by calling subroutine MVS_Com_for_Vertex,
with the inputs PreviousMV S = {4}, vertex v = “2 : if",
StartPO = PO1, and StartT ime = 1.

When subroutine MVS_Com_for_Vertex is called for the first
time, the traversal also reaches vertex “2:if” in time frame t = 1
for the first time. As shown in Fig. 9(b), the recorded MVS(2 :
if@t = 1) = {4}, and no MVSforRecovery is recorded. Vertex
“2:if” in time frame t = 1 is a control vertex. Therefore, there
are two fan-in vertices “2 :<” and “3 :=” for further back-
ward traversals. We decide to traverse “2 :<” before traversing
“3 :=” and compute CurrentMVS. Because PreviousMVS is
{4}, the MVS computation for the conditional statements will
be used, and we obtain CurrentMVS {1}. The computation
process is shown in Fig. 9(b).

Fig. 10. Computation starting from PO1 at t = 5 and t = 15.

Subroutine MVS_Com_for_Vertex is then called for the sec-
ond time, and “2 :<” in time frame t = 1 is reached. The
computation status is shown in Fig. 9(c). Similar computations
are recursively repeated vertex by vertex until vertex “6 :=”
in time frame t = 1 is reached. The computation results along
the traversal from “2:if” to “6 :=” are shown in Fig. 9(d),
where each set of integers next to an edge is the recorded
MVS. Since vertex “6 :=” in time frame t = 1 has no fan-
in vertex, the computation will traverse another fan-in vertex
“3 :=” of vertex “2:if.” The repetitious calling of subrou-
tine MVS_Com_for_Vertex can produce the results shown in
Fig. 9(e). After completing the traversals and MVS computa-
tions starting from PO1 in time frame t = 1, continuing the
backward-traversal-based MVS computation from PO1 in time
frame t = 5 can produce the results shown in Fig. 10(a) and (b).
When the computation reaches vertex “5:if” in time frame

282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 11. Debugging priority and the PCS.

t = 1, PreviousMVS {[0 ∼ 15]} will include MVS(5 : if@t =
1) = {[0 ∼ 3]}. The bounded traversal condition is satisfied,
and the traversal is bounded here.

After all the POs at all the positive clock edges before the
EOE are applied in the MVS computation, the PCS is calculated
with formulas based on the computed MVSs. With the PCS, a
debugging priority with the PCS (in round brackets) is obtained,
as shown in Fig. 11. It can be seen that the design error S7 is
displayed in the first line. A search for design errors according
to this debugging priority will immediately succeed. In the
experimental results in Section V, it is also proven that the
proposed PCS can efficiently deliver the debugging priority
with high accuracy, which greatly reduces both the time and
effort required for design error searches in the input error space.

V. EXPERIMENTAL RESULT

The experiments were conducted on a subset of the ITC’99
benchmark [23] and four other designs written in Verilog
HDL. The four designs are given as follows: pcpu is a simple
32-bit pipelined DLX central processing unit; div16 is a 16-bit
divider; blkJ is a controller of a black jack card game, and Mtrx
implements a two-by-two matrix multiplication. The number
of lines (#line) of all the designs and the number of variables
(#var) are presented in Table III.

For every design case, one statement is randomly chosen and
injected with an artificial design error based on typical bugs
that designers usually induce [24]. With the injected error, a
simulation is run until some incorrect values occur on the POs.
Then, the error space identification approach proposed in [21]3

is applied to obtain an error space. After that, the CS calcula-
tion in [21] and our PCS calculation are both applied to derive
two respective debugging priorities for the same error space.

With a debugging priority, the error candidates that a digital
circuit designer has to examine before he/she can find a design
error are often less than those with blind searching. In a sense,
we can think that the size of the error space is thus reduced,
as a result of the debugging priority. With respect to the two
debugging priorities, since the injected error may have two
different ranked orders, the effectiveness of the two debugging
priorities on the size reduction of the same error space is also
different. To compare the effectiveness of the two debugging
priorities, a quantitative metric called the effective size ratio
(ESR) is formulated as “the rank of the injected error divided
by the number of error candidates in the error space.” The two

3We apply the error space identification method proposed in [22]. However,
the proposed PCS is theoretically applicable to any other error candidate
identification methods.

debugging priorities sorted with the CS and PCS have their
own different ESRs. A smaller ESR means that the error has
a better rank with respect to the size of the error space. This
also implies that the effective size reduction contributed by the
corresponding debugging priority is larger and that the efforts
required for design error searching in the error space are less.

With each design case, the aforementioned experimental
processes are repeated 50 times. In each repetition, the ESRs of
the CS and PCS are calculated and recorded. The average ESR
values with respect to the CS and PCS are also presented in the
“Avg_ESR_CS” and “Avg_ESR_PCS” columns, respectively.
The number of times in which the ESR values of the CS and
PCS appear in three ESR value ranges is also recorded to show
the distribution of the ESR values. The three ESR ranges are
“ESR < 0.2(0 ∼ 0.2),” “0.2 < ESR < 0.5 (0.2 ∼ 0.5), ” and
“0.5 < ESR(0.5 ∼ 1.0).” The number of times is presented in
the “#case_CS” and “#case_PCS” columns.

In Table III, it can be observed that, when the PCS is used to
obtain a debugging priority, in all the design cases, the average
ESR values are all less than 0.2 and the average ESR values
of the CS. For example, in design “B02,” if the CS is used to de-
rive the debugging priority, the ESR value is less than 0.2 in 38
of the 50 experiments. In other words, our created errors are
placed within the first 20% of the displayed list of error space
in 38 of the 50 experiments. However, if the PCS is applied in-
stead, in each of the 50 repetitions, the injected error always ap-
pears in the first 20%. If a designer conducts error searching on
design “B02,” with the debugging priority sorted with the PCS,
he/she can locate the error by checking less than 20% of the
derived error candidates. At least 80% of the searching effort is
saved. Moreover, it can be seen that the ESR values of the PCS
is never greater than 0.5 in the 50 repetitions. This means that,
even in the worst case of the 50 repetitions, a debugging priority
sorted with the PCS can still save more than half the amount
of effort needed for design error searching in the error space.
In contrast, the CS method cannot offer this benefit.

From the values of Avg_ESR_PCS and Avg_ESR_CS, it can
be observed that the effective size reduction with respect to
the PCS is much greater than that with respect to the CS. The
ratio of Avg_ESR_PCS to Avg_ESR_CS shown in the “ESR
Ratio” column is about 0.49 in average and 0.38 in the best
case; this means that, with the PCS, further size reduction of
50%, on average, is possible, and a size reduction of 62% is
also achieved in the best case, compared to the CS.

In design cases “B01” and “B02,” it can be observed that the
ESR ratio is not as small as that in other cases. In these two
cases, there are few operations that can mask erroneous effects.
In other words, the erroneous effects are seldom masked in the
two cases, making the advantage of calculating the PCS not
obvious. However, in most designs, the HDL operations that
can mask erroneous effects, such as “==,” “>,” “[:],”and “�,”
are widely applied. Using the PCS in those cases should be
beneficial. As demonstrated in other design cases, the proposed
PCS method saves more time in the error-searching process
than the CS method, showing that the PCS is more suitable to
derive the debugging priority in most cases.

Another interesting observation is also found in our experi-
ments. In the design case “pcpu,” we observe that the design

JIANG et al.: ACCURATE RANK ORDERING OF ERROR CANDIDATES FOR EFFICIENT HDL DESIGN DEBUGGING 283

TABLE III
COMPARISON OF THE CS AND PCS PERFORMANCES

Fig. 12. PCS values of the design errors and observation cycles.

errors with smaller PCS values often take more simulation
cycles to observe their erroneous effect on the POs, as shown
in Fig. 12, after the errors are exercised. Similar correlations
also exist in design cases with many operations that can mask
erroneous effects in our experiments. However, for small design
cases with few operations that can mask erroneous effects, such
as design cases “B02” and “B01,” such relationship may not be
obvious.

The cost of this performance improvement is little computa-
tion time, compared to the CS. The computation time needed
for the two measurements PCS and CS is presented in the “t(s)”
columns. It can be seen that, in the worst case, it takes additional
2 s to obtain the PCS, compared to the time required to obtain
the CS (4.1 s). The extra computation time is acceptable if we
notice that it should usually take more than 2 s for a designer
to examine one error candidate to justify its correctness, but the
number of examinations saved as a result of applying the PCS
is numerous.

VI. CONCLUSION

In this paper, a probabilistic measurement PCS for deriving
an accurate and reliable debugging priority for quick error
searching among error candidates in an error space has been
presented. Instead of assuming that the erroneous effects caused
by some activated errors are seldom masked, the proposed
PCS takes the masking error situation into consideration and

estimates the LOEP of an error candidate. The idea is, if the
LOEP is high, a masking error situation is unlikely to occur, and
the error candidate is a false candidate with high possibility, i.e.,
the candidate tends to be a correct statement. On the other hand,
if the LOEP is low, occurrence of a masking error situation
becomes quite possible. Suspicion of the error candidate still re-
mains, and this candidate should thus receive a low PCS score.

The experimental results confirm that the proposed PCS
measurement is indeed accurate in estimating the likelihood
of correctness of error candidates. In most experimental cases,
the created design errors can be located in the first few lines
of the candidate list of the input error space. As a result,
the debugging priority sorted with the proposed PCS can
effectively speed up the error-searching process in the input
error space. As compared to the CS, the proposed PCS-based
debugging priority can save more than half of the effort (or
time) needed for the error-searching process in an error space
in our experiments, at the cost of a little extra computation time.
The savings in time contributed by the proposed PCS method
is usually much larger than the extra computation time that the
PCS calculation needs. Therefore, the gain from the proposed
PCS can often outweigh the cost of the extra computation time
that the PCS needs.

REFERENCES

[1] C. C. Lin, K. C. Chen, S. C. Chang, and M. M. Sadowska, “Logic syn-
thesis for engineering change,” in Proc. IEEE/ACM Des. Autom. Conf.,
Jun. 1995, pp. 647–652.

[2] H. T. Liaw, J. H. Taih, and C. S. Lin, “Efficient automatic diagnosis
of digital circuits,” in Proc. Int. Conf. Comput. Aided Des., Nov. 1990,
pp. 464–467.

[3] D. Brand, “Incremental synthesis,” in Proc. Int. Conf. Comput. Aided
Des., Nov. 1994, pp. 14–18.

[4] M. Tomita and H. H. Jiang, “An algorithm for locating logic design
errors,” in Proc. IEEE/ACM Des. Autom. Conf., Jun. 1990, pp. 468–471.

[5] P. Y. Chung, Y. M. Wang, and I. N. Hajj, “Diagnosis and correction of
logic design errors in digital circuits,” in Proc. IEEE/ACM Des. Autom.
Conf., Jun. 1993, pp. 503–508.

[6] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using Boolean satisfiability,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 10, pp. 1606–1621, Oct. 2005.

284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

[7] S. Y. Huang, K. T. Cheng, K. C. Chen, and D. I. Cheng, “ErrorTracer: A
fault simulation-based approach to design error diagnosis,” in Proc. IEEE
Int. Test Conf., 1997, pp. 974–981.

[8] S. Y. Huang and K. T. Cheng, “ErrorTracer: Design error diagnosis based
on fault simulation techniques,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 18, no. 9, pp. 1341–1352, Sep. 1999.

[9] D. W. Hoffmann and T. Kropf, “Efficient design error correction of digital
circuits,” in Proc. Int. Conf. Comput. Des., Sep. 2000, pp. 465–472.

[10] A. D’Souza and M. Hsiao, “Error diagnosis of sequential circuits using
region-based model,” in Proc. 14th Int. Conf. VLSI Des., Jan. 2001,
pp. 103–108.

[11] N. Sridhar and M. S. Hsiao, “On efficient error diagnosis of digital cir-
cuits,” in Proc. Int. Test Conf., 2001, pp. 678–687.

[12] A. Veneris, S. Venkataraman, I. N. Hajj, and W. K. Fuchs, “Multi-
ple design error diagnosis and correction,” in Proc. VLSI Test Symp.,
Apr. 1999, pp. 58–63.

[13] V. Boppana, I. Ghosh, R. Mukherjee, J. Jain, and M. Fujita, “Hierarchical
error diagnosis targeting RTL circuit,” in Proc. Int. Conf. VLSI Des.,
Jan. 2000, pp. 436–441.

[14] V. Boppana and M. Fujita, “Modeling the unknown! Towards model-
independent fault and error diagnosis,” in Proc. Int. Test Conf., 1998,
pp. 1094–1101.

[15] M. Khalil, Y. Le Traon, and C. Robach, “Towards an automatic diagnosis
for high-level validation,” in Proc. Int. Test Conf., 1998, pp. 1010–1018.

[16] M. Khalil, O. Benkahla, and C. Robach, “An experimental compari-
son of software diagnosis methods,” in Proc. 25th EUROMICRO Conf.,
Sep. 1999, pp. 146–149.

[17] C. H. Shi and J. Y. Jou, “An efficient approach for error diagnosis in HDL
design,” in Proc. Int. Symp. Circuits Syst., May 2003, pp. IV-732–IV-735.

[18] B. R. Huang, T. J. Tsai, and C. N. Liu, “On debugging assistance
in assertion-based verification,” in Proc. 12th Workshop Synthesis Syst.
Integr. Mixed Inform. Technol., Oct. 2004, pp. 290–295.

[19] Y. C. Hsu, B. Tabbara, Y. A. Chen, and F. Tsai, “Advanced technique
for RTL debugging,” in Proc. IEEE/ACM Des. Autom. Conf., Jun. 2003,
pp. 362–367.

[20] B. Peischl and F. Wotawa, “Automated source-level error localization in
hardware designs,” IEEE Des. Test Comput., vol. 23, no. 1, pp. 8–19,
Jan./Feb. 2006.

[21] T. Y. Jiang, C. N. Liu, and J. Y. Jou, “Effective error diagnosis for RTL
designs in HDLs,” in Proc. 11th Asia Test Symp., 2002, pp. 362–367.

[22] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM—Efficient computation
of observability-based code coverage metrics for functional verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 8,
pp. 1003–1015, Aug. 2001.

[23] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 bench-
marks and first ATPG results,” IEEE Des. Test Comput., vol. 17, no. 3,
pp. 44–53, Jul.–Sep. 2000. [Online]. Available: http://www.cad.polito.it/
tools/itc99.html

[24] A. Offutt and G. Rothermel, “An experimental evaluation of selective
mutation,” in Proc. Int. Conf. Softw. Eng., May 1993, pp. 100–107.

Tai-Ying Jiang received the B.S. degree in electrical
engineering from National Tsing Hua University,
Hsinchu, Taiwan, in 1999 and the M.S. degree in
electronics engineering from National Chiao Tung
University, Hsinchu, in 2001. He is currently work-
ing toward the Ph.D. degree in electronics engineer-
ing in the Department of Electronics Engineering,
National Chiao Tung University.

His research interests include functional validation
and semiformal verification for HDL designs and
error diagnosis for HDL designs.

Chien-Nan Jimmy Liu received the B.S. and Ph.D.
degrees in electronics engineering from National
Chiao Tung University, Hsinchu, Taiwan.

He is currently an Assistant Professor with the De-
partment of Electrical Engineering, National Central
University, Jhongli City, Taiwan. His research inter-
ests include functional verification for HDL designs,
high-level power modeling, and analog behavioral
models for system verification.

Prof. Liu is a member of Phi Tau Phi.

Jing-Yang Jou (S’82–M’83–SM’02–F’05) received
the B.S. degree in electrical engineering from Na-
tional Taiwan University, Taipei, Taiwan, in 1979
and the M.S. and Ph.D. degrees in computer science
from the University of Illinois, Urbana-Champaign,
in 1983 and 1985, respectively.

He was with GTE Laboratories from 1985 to
1986 and AT&T Bell Laboratories, Murray Hill, KY,
from 1986 to 1994. From 2000 to 2003, he was a
Full Professor and the Chairman of the Department
of Electronics Engineering, National Chiao Tung

University, Hsinchu, Taiwan. From February 2004 to March 2007, he was
the Director General of the National Chip Implementation Center, National
Applied Research Laboratories, Hsinchu. Since April 2007, he has also been the
Executive Director of the National SoC Program. He is with the Department of
Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
and is Vice Chancellor (Academic Affairs) of the University System of Taiwan
(consisting of four research universities: National Central University, Jhongli
City, Taiwan; National Chiao Tung University; National Tsing Hua University,
Hsinchu; and National Yang Ming University, Taipei). He has authored more
than 160 technical papers. His research interests include logic and physical syn-
thesis, design verification, computer-aided design for low power, and network
on chips.

Dr. Jou currently serves as Associate Editor for the IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. He was the
Technical Program Chair of the 2007 International Symposium on VLSI
Design, Automation, and Test (VLSI-DAT), the 12th VLSI Design/CAD
Symposium (2001), and the Asia-Pacific Conference on Hardware Description
Languages (APCHDL’97). He was also the Honorary Chair of the 2006
International Workshop on Multi-Project Chip and the Executive Chair of the
2nd Taiwan–Japan Microelectronics International Symposium (2002). He was
also elected President of the Taiwan Integrated Circuit Design Society during
2007–2008. He was the recipient of the Distinguished Paper Award of the IEEE
International Conference on Computer-Aided Design in 1990; the Outstanding
Academy–Industry Cooperation Achievement Award from the Ministry of Ed-
ucation, Taiwan, in 2002; and the Outstanding Electrical Engineering Professor
Award from the Chinese Institute of Electrical Engineering in 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

