附錄 I

(M_xIn_{1-x})Pb₄In₈X₁₇(M=Mn, Fe, Cu, Ag, Au; X=S, Se; x=0.5, 1.0)系統的延伸與變化

1. 導電性的改善

因為導電性優劣受 Fermi level 上電子的移動能力影響,若是 Fermi level 上的電子愈容易移動,其電荷轉移(charge transfer)就愈容易,便會使得導電性質更好。所以要了解材料的導電性質,可以由電子結構來獲得相關資訊,也能夠藉此訊息對材料進行特定物理性質的改善。

不論是前述的 MPb₄In₈Se₁₇(M=Mn, Fe)系統或者是 M₀₅Pb₄In₈₅S₁₇ (M=Cu, Ag, Au)系統的半導體材料,都可以經由能帶計算的結果或是透過 物理性質測量得知是屬於大電阻的半導體。從 MPb₄In₈Se₁₇(M=Mn, Fe)的 DOS 投影圖(見第二章、圖 2-11a)了解到 MnPb₄In₈Se₁₇ 的 Fermi level 落 在獨立的 Mn 的 3d 軌域,其上的電子與週遭相鄰的原子軌域作用力弱(見 圖 2-11b), 並且 Fermi level 上的 DOS (電子能階密度)幾乎全由 Mnd 軌 域貢獻。所以把 Mn 換成過渡元素 Fe 後,原本的 Fermi level 能量往上 提升,上升到很小的 DOS 區域並大部分集中於 Fermi level 附近,重要的是 Fermi level 依然位於獨立的 Fe 的 3d 軌域,所以 Fermi level 上的電子仍 是偏向定域化的(localized),不容易與相鄰的原子軌域有電荷傳遞的現象 (見第二章、圖 2-13a, 2-13b)。因此將 Mn 以 Fe 作取代後,雖然整體電 子總數多一, Fermi level 能量往提升上,提升到附近 DOS 面積稍微增加 的能量區間,但是因為過渡元素的特殊角色(Mn 或 Fe 的 3d 軌域獨立存 在,與週遭原子作用力弱),使得整體的導電性並沒有明顯變好。為了解決 此種現象,我們採用其他的取代反應,比如說:利用常見氧化態 3+的 Bi 來 取代此結構中的 In³⁺,若是成功取代,那麼整體系統依然會維持價電平衡,

可是電子總數卻明顯增加,也可以預期取代後的 Fermi level 相對於 MPb₄In₈Se₁₇(M=Mn, Fe)的 Fermi level 來說,能量會往上升,而且會脫離 過渡元素的 d 軌域能階,如此一來電子傳導就更加容易,導電性也會跟著 變好。以下是與上述想法有相同原理,但是不同替換反應的實驗。

2. MPb₄In₈Se₁₇(M=Mn, Fe)系統:

鑒於在原本系統中的 \ln^{3+} 與 Pb^{2+} 重金屬角色,我們採用 Bi 與 Sn 來取代原本的 In 與 Pb,這會使原系統的電子總數有顯著增加。取代的考 量有半取代與全取代二種方法,前者根據結構中原子位置 M12 與 M13 是 50% 的 In 與 50% 的 Mn,假設只有此二位置的 In 可以被 Bi 取代,後 者則是假設原本結構中的 In 與 Pb 全部被 Bi 與 Sn 取代。依照上述做 法,實驗進行了 MnPb4BiIn7Se17、MnPb4Bi8Se17、MnSn4Bi8Se17 三種組合, 將這三種組合同樣以第二章的反應方法進行加熱,並利用 X-ray 繞射實驗 鑑定產物的結構後,發現此三種取代反應的產物都與原本系統的結構不同。 其中 MnPb4BiIn7Se17 的產物呈片狀分佈,從粉末繞射圖譜可以發現有主產 物 Pb712In1888Se34(針狀晶體)與未知相存在,以 CAD4 單晶繞射儀對疑似 是未知物的片狀晶體進行晶胞常數測定,得到一組晶胞常數為 a=4.086(2)Å, b=21.729(9)Å, c=27.048(6)Å, V=2401(1)Å³, $\alpha=\beta=\gamma=90^{\circ}$, 與現有的結構資料庫 作比對後,並沒有發現相同元素組合有此類似的晶胞常數被發表,不過卻 有化合物 SnSb₂Se₄,空間群是 Pnnm, 晶系屬於 orthorhombic, a=26.610(3)Å, b=21.066(3)Å, c=4.042(1)Å, V=2266.0Å³, R=0.045, 此組數據與 $MnPb_4BiIn_7Se_{17}$ 的晶胞常數相似,結構也是層狀分佈。沿著 c 軸投影, SnSb₂Se₄的結構是由(Sn/Sb)-Se 形成的 NaCl-type 單元結構往 a 軸方向 堆疊延伸,當中每一個陽離子都是以33%的 Sn 與66%的 Sb 作混合填

佔(見圖 I-1),所以我們初步推測 MnPb₄BiIn₇Se₁₇ 的反應產物和 SnSb₂Se₄

82

一樣是層狀結構,但是實際組成的元素還是得靠單晶解析與元素分析決定 。至於 MnPb4Bi8Se17 與 MnSn4Bi8Se17 同樣與原系統結構相異,而且由 X-ray 繞射都發現有主產物 Bi-Se 二元相與其他未知相存在,但是產物並 沒有顯著的晶體生成。總括來說,以 Bi 與 Sn 元素進行取代反應後,Bi 與 Sn 並無法代替原本的 In 與 Pb 填佔的位置,反而會破壞原本結構而產生 新的結構組合。

圖 I-1. SnSb₂Se₄延b 軸投影的結構圖(ICSD)。

3. M_{0.5}Pb₄In_{8.5}S₁₇(M=Cu, Ag, Au)系統:

以與 2.相同的取代方法配製 Ag_{0.5}Pb₄Bi_{1.5}In₇S₁₇、Ag_{0.5}Pb₄Bi_{8.5}S₁₇、 Ag_{0.5}Sn₄Bi_{8.5}S₁₇、Cu_{0.5}Pb₄Bi_{1.5}In₇S₁₇、Cu_{0.5}Pb₄Bi_{8.5}S₁₇ 與 Cu_{0.5}Sn₄Bi_{8.5}S₁₇ 等六 種組合的反應比例,並在 900°C下進行反應。反應完後利用 X-Ray 繞射鑑 定產物結構,得知只有 Cu_{0.5}Pb₄Bi_{1.5}In₇S₁₇ 得繞射圖譜有未知相存在,其餘 五種比例的產物皆是生成已知的三元或四元結構(比如 In_{26.67}Pb₁₂S₅₂, PbBi₂S₄ 或是 Bi₁₁Pb₂Cu₅S₂₁ 等等)。所以在(Cu, Ag, Au)-Pb-In-S 系統中,以 Bi 與 Sn 取代 In 與 Pb 元素後,原本結構已經被破壞,而且多數形成已 知結構的混合物。

4. 特殊物理性質的調控

利用 SHELX-97 將(M_xIn_{1-x})Pb₄In₈X₁₇(M=Mn, Fe, Cu, Ag, Au; X=S, Se; x=0.5, 1)二結構的原子排列作有系統的重整(把二系統相對位置的陰陽離子 作編號排列)後,我們可以發現原本在 MPb₄In₈Se₁₇ 系統中過渡元素(Mn 或 Fe)是填估於 M12 與 M13 的原子位置(見圖 I-2 左圖),屬於六配位環境, 對於 M_{0.5}Pb₄In_{8.5}S₁₇ 系統的過渡元素(Cu 與 Ag)則變換到位置 M10 與 M11(見圖 I-2 中圖),屬於四配位環境,但是對 Au 來說卻只有填在 M10 位置,又轉成六配位環境,由這些結構上的微妙變化,便有可能利用不同 的過渡元素作搭配反應以期待有特殊物理性質的表現。比如說:可以將 Mn 與 Ag 兩種不同列的過渡元素在同一系統反應,期待在結構上能夠同時產 生 M10 與 M11 位置由 Ag 填佔,而 M12 與 M13 位置則被 Mn 元素佔據 (見圖 I-2 右圖),若是在同一系統中有上述的填佔方式生成,那麼就可能 因為 Mn 與 Ag 在 d 軌域電子的差異造成材料電子傳輸的變化,進而用來 調控材料的物理特性。

根據上述想法進行特定的合成實驗,我們分別合成(Mn-Ag 或是 Mn-Cu)-Pb-In-Se 與(Fe-Ag 或是 Fe-Cu)-Pb-In-Se 的組合,配製成比例為 MnAg0.5Pb4In7.5Se17、MnCu0.5Pb4In7.5Se17、FeAg0.5Pb4In7.5Se17 與 FeCu0.5Pb4In7.5Se17的純元素混合物,並且在 750°C下進行反應。同樣待反應 完後以 X-ray 繞射進行產物鑑定,發現 MnCu0.5Pb4In7.5Se17 與 FeAg0.5Pb4In7.5Se17 的繞射圖譜都與原本系統的圖譜相似,但是會出現 PbSe 雜相,所以推測此種反應至少會維持原結構不變,並沒有破壞原本的系統。 不過 MnAg0.5Pb4In7.5Se17 與 FeCu0.5Pb4In7.5Se17 則各別在 20=49°~50°與 20=34°~45°的繞射位置與原本結構的繞射圖相較下有較大的改變,這有可 能真的使搭配的二種過渡元素反應入系統裡,並讓結構產生變化所致。雖 然在粉末繞射實驗裡獲得正面的訊息,但是真正結構的細部變化仍得依靠

84

單晶解析與元素分析才能夠取得更為詳盡的結果,才可以對物理性質作進 一步探討。

圖 I-2. MPb4In8Se17(M=Mn, Fe)(左圖)與 M0.5Pb4In8.5S17(M=Cu, Ag, Au)(中圖)是 不同過渡元素形成不同的填佔位置的結構圖。藉過渡元素混合搭配,期待造成的結 構變化示意圖(右圖)。淺藍色與粉紅色原子都是過渡元素填佔的位置。

4000

5. 結構的轉換

尋找與二、三章有相關性的系統化合物(過渡元素加上二主族元素的 硫、硒、錦材料)進行結構探討,會發現三元相與四元相之間會因為過渡元 素參與反應後造成結構上的轉變。例如: Pb₅Sb₆S₁₄ 三元化合物的晶系是 triclinic,可是以少量過渡元素 Fe 取代少量原系統的 S 後,就會轉變成 FePb₄Sb₆S₁₄,結構晶系變成 monoclinic;還有本論文二、三章發表的系統也 有相似變化,如結構由原本的三元的 orthrohombic Pb_{7.12}In_{18.88}Se₃₄ 轉變成 四元的 monoclinic MnPb₄In₈Se₁₇。因此我們可以利用現存的含有兩種主族元 素的三元 Chalcogenides,試著加入第四種過渡元素來取代少量的陰離子觀 察結構上的變化,甚至能夠對物理性質進行改善與調控。 6. 結論

- 藉 LMTO 的電子計算結果,發現有機會利用取代方式來改善第二章與 第三章系統的導電性質。選用 Bi 與 Sn 作為取代的元素,實驗的結果 都無法成功取代原 In 與 Pb(原結構已被破壞),但是 MnPb4BiIn7Se17、MnPb4Bi8Se17、MnSn4Bi8Se17 與 Cu0.5Pb4Bi1.5In7S17 的粉 末繞射圖有未知相存在,其中 MnPb4BiIn7Se17 的晶胞常數與 SnSb2Se4 相似,故推測結構也是層狀分佈。
- 把 MPb₄In₈Se₁₇(M=Mn, Fe)與 M_{0.5}Pb₄In_{8.5}S₁₇(M=Cu, Ag, Au)二同結構 相對應的陽離子編號,發現二系統的過渡元素填佔位置不同,其中 Mn 與 Fe 填於原子 12 與 13 位置, Cu, Ag 則變換到原子 10 與 M11, Au 更 只佔據原子 10 的位置。
- 3. 對於物理性質的調控,有機會藉 2.的發現進行相關實驗設計,如果可以 順利將結構變成 M10, M11, M12 與 M13(M:原子位置)同時都有過渡 元素填佔,那麼就有可能因為不同過渡元素的 d 軌域電子差異產生有趣 的結果。我們有進行了相關合成,粉末繞射圖的訊息也是正面的(相混合 的過渡元素未使原整體結構產生改變),但是結構細部仍得倚賴單晶解析 才能夠確知。
- 從第二或第三章相關的系統發現,在三元相與四元相之間會因為第四個 過渡元素參與反應,使得晶系與結構產生轉變。由此特殊變化就可以將 現有相似的三元化合物和微量過渡元素反應,觀察是否會有類似效果, 進而可以調控物理性質。

附錄 Ⅱ

反應列表

M:主產物, m:次產物

编號	比例式	反應過程	主, 次產物
1	PbS	850°C, 36hr	PbS(M)
2	PbSe	700°C, 36hr	PbSe(M)
3	РbТе	950°C, 36hr	PbTe(M)
4	MgS	750°C, 65hr	MgS(M)
5	MgSe	750°C, 65hr	MgSe(M)
6	ZrPbSe3	850°C, 73hr	PbSe(m), ZrSe ₃ (M)
7	ZrPbSe4	850°C, 73hr	Pb, (m) $Se(m)$, $ZeSe_3(M)$
8	MgZrSe	850°C, 73hr	ZrSe ₃ (M), MgSe(m)
9	Zr2PbS5	850°C, 62hr	$PbSe(m), ZrSe_3(M)$
10	Zr3PbSe7	850°C, 62hr	$Ze_{3.75}Se_6(M)$, PbSe(m)
11	Zr2PbSe3	850°C, 62hr	ZeSe ₃ (M), PbSe(m)
12	BaPbSe2	850°C, 56hr	BaO(m), PbSe(M), Se(M)
13	MgPbTe2	850°C, 56hr	Te(m), MgTe(M), PbTe(M)
14	BaPbTe2	850°C, 56hr	PbTe(M), BaTe(m), BaTe ₂ (m)
15	BaPbS2	850°C, 56hr	$S_{18}(M)$, $PbS(M)$, $BaS_3(m)$
16	BaPbSe2	850°C, 56hr	$Se(M)$, $Pb(M)$, $BaPb_3(m)$
17	MgPbS2	850°C, 56hr	$S_{18}(M)$, PbS(M), Mg ₂ Pb(m)
18	MgPbSe2	850°C, 56hr	PbSe(M), MgSe(M)
19	MgPb2S2	850°C, 56hr	PbS(M)
20	MgPb2Te2	850°C, 56hr	PbTe(M)
21	SrPbTe2	800°C, 56hr	PbTe(M), Sr(m)
22	SrPbSe2	850°C, 56hr	PbSe(M)
23	TiPbS	850°C, 48hr	Pb(m), Ti _{0.685} S(M)
24	TiPbS2	850°C, 48hr	PbS(M), Pb(m)
25	TiPbS3	850°C, 48hr	PbTiS ₃ (M)
26	MgBi2S4	800°C, 56hr	$S_8(M), Bi_2S_3(m), MgS(M)$
27	MgBi2S3Se	800°C, 56hr	$Bi_2S_3(M)$
28	HfPbS3	850°C, 42hr	HfPbS ₃ (M)
29	HfPbSe3	850°C, 42hr	PbSe(M), HfSe ₃ (M), Pb(m)
30	HfPbTe3	850°C, 48hr	$Te(m)$, $Hf_2Te(M)$, $HfTe_5(M)$, $PbTe(m)$
31	ZrPbSeO	950°C, 48hr	SrO ₂ (m), PbSeO ₃ (m), ZrSe ₃ (M)
32	ZrPbSe2O	950°C, 48hr	SrO ₂ (m), PbSeO ₃ (m), ZrSe ₃ (M)

33	ZrPbSe3O	950°C, 48hr	$PbSe(M), ZrSe_3(M)$
34	Pb3.38Sb4.42Se10	750°C, 120hr	Sb ₂ Se ₃ (m), unknown
35	HfPbTe3	550°C, 72hr	PbSe(m), HfSe ₃ (M), Pb(m)
36	Ba2HfPbS5	550°C, 72hr	PbHfS ₃ (M), BaS(m)
37	VPb4Sb6S14	550°C, 72hr	S ₈ (m), Sb ₂ Se ₃ (M), Pb _{1.12} VS _{3.12} (m)
38	MnPb4Sb6Te14	500°C, 72hr	PbTe(m), MnTe(m), Sb ₂ Te ₃ (M)
39	MnPb4Sb6Se14	550°C, 72hr	MnSe ₂ (m),PbSb ₂ Se ₄ (m),Pb _{3.58} Sb _{4.42} Se ₁₀ (M)
40	Hf5Pb3Se	550°C, 72hr	$Hf_{1.35}Se_2(M), Hf(m), Pb(m)$
41	NiPb4Sb6Se14	550°C, 72hr	$Pb_{3.58}Sb_{4.42}Se_{10}(M)$
42	MgZrPbS4	550°C, 72hr	PbZrS ₃ (M), PbS(m)
43	Ni6Pb2S2	550°C, 72hr	$Ni_3Pb_3S_2(M)$, $Ni(m)$
44	Ni9Pb2S2	700°C, 26hr	$Ni_3Pb_3S_2(M)$, $Ni(m)$
45	NiPb4Sb6Te14	700°C, 26hr	Ni _{1.055} Te ₂ (M), PbTe(M), Sb ₂ Te ₃ (m)
46	SrZrS3	950°C, 240hr	SrZrS ₃ (M)
47	Sr3Zr2S7	950°C, 240hr	$Sr_3Zr_2S_7(M)$
48	Mg3Zr2Se7+25%MgCl	900°C, 118hr	Se, Zr _{2.464} Se ₄ (M)
49	Mg3Hf2Se7+25%MgCl	900°C, 118hr	$Hf_{1.35}Se_2(M), Hf(m), MgSe(m)$
50	Mg3Zr2Se7	950°C, 118hr	$MgSe(m), Zr_2Se_3(M)$
51	Mg3Hf2Se7	950°C, 118hr	$Hf_{1.35}Se_2(M), Se_6(m), MgSe(m)$
52	MgZrSe3	950°C, 118hr	$Zr_{2.46}Se_4(M), MgSe(m)$
53	MgHfSe3	950°C, 118hr	HfSe ₃ (M), MgSe(m)
54	NiPb4Sb6Se14	800°C, 74hr	$Pb_{3.58}Sb_{4.42}Se_{10}(M)$
55	VPb4Sb6Se14	800°C, 74hr	$Pb_{3.58}Sb_{4.42}Se_{10}(M)$
56	CuPb4Sb6Se14	800°C, 74hr	Pb _{3.58} Sb _{4.42} Se ₁₀ (M), Cu ₃ SbSe ₄ (m)
57	Ni3MnPbS2	800°C, 74hr	$Mn+2S(m)$, $Ni_3Pb_3S_2(M)$
58	Ni3CrPbS2	800°C, 74hr	$Ni(m)$, $Ni_3Pb_3S_2(M)$
59	Ni3MoPbS2	800°C, 74hr	$Ni_3Pb_3S_2(M)$, $MoS_2(m)$
60	Mg6Zr5Se16	1000°C, 140hr	Zr ₂ Se ₃ (m), MgSe(m), ZrSe ₃ (M)
61	Mg6Hf5Se16	1000°C, 140hr	$Zr_{2.46}Se_4(M), MgSe(m)$
62	Mg5Zr4Se13	1000°C, 140hr	Zr _{3.75} Se ₆ (M), Zr _{2.46} Se ₄ (m), MgSe(m)
63	Mg5Hf4Se13	1000°C, 140hr	$Hf_{1.35}Se_2(m), MgSe(m), HfSe_3(M)$
64	P2Se5	500°C, 30hr	$P_2Se_5(M)$
65	Mg2ZrP6Se27	750°C, 120hr	ZrSe ₃ (m), unknown(M)
66	Mg2HfP6Se27	750°C, 120hr	Hf _{0.92} Se(m), HfSe ₃ (M), P(m)
67	ZrPSe	750°C, 120hr	burn
68	HfPSe	750°C, 120hr	burn
69	AgPb4In6Se14	750°C, 120hr	PbSe(m), In ₆ Se ₇ (M), AgIn ₅ Se ₈ (m)
70	FePb4P6Se14	750°C, 120hr	$PbPSe_3(M), Pb_2P_2Se_6(m)$

71	FePb4In6Se14	750°C, 120hr	$FeIn_2Se_4(m)$, $In_4Se_3(M)$, $PbSe(m)$
72	La5Pb3	1000°C, 140hr	$La_5Pb_3(M)$
73	MgZr2P2Se2	750°C, 120hr	Burn
74	MgHf2P2Se2	750°C, 120hr	Burn
75	FePb4In6S14	750°C, 72hr	Pb ₃ In _{6.67} S ₁₃ (M), PbS(m)
76	MnPb4In6S14	750°C, 72hr	PbS(m), In ₂ S ₃ (m), Pb ₃ In _{6.67} S ₁₃ (M)
77	MnPb4In6Se14	750°C, 72hr	Unknown compound
78	AgPb4In6S14	900°C, 84hr	unknown compound
79	MgTaP2Se12	750°C, 72hr	TaSe ₃ (M), unknown
80	Mg2Ta2P2Se12	750°C, 72hr	$Mg_3P_2(m)$, $TaSe_3(M)$, $P_4Se_4(M)$
81	Mg2PbP4Se13	750°C, 72hr	$P_4Se_3(M)$
82	Mg2InP4Se13	750°C, 72hr	InP(M)
83	MgLaPbSe9	900°C, 108hr	$La_5Pb_4(M), Se(m)$
84	MgGdPbSe9	900°C, 108hr	PbSe(m), Se(M), GdSe(m)
85	MgPbSnSe9	900°C, 108hr	PbSe(M)
86	Mg2SnP4Se13	900°C, 108hr	$SnPSe_3/Sn_2P_2Se_6(M)$
87	MnPb4In8Se17	750°C, 72hr	New compound
88	Ag2Pb4In8S17	900°C, 84hr	New compound
89	Pb4In8.67Se17 🎒	750°C, 72hr	$Pb_{7.12}In_{18.88}Se_{34}(M)$
90	Pb4In8.67S17	900°C, 84hr	$Pb_4In_9S_{17}(M)$
91	Pb4In9Se17	750°C, 72hr	$Pb_{7.12}In_{18.88}Se_{34}(M)$
92	Pb4In9S17	900°C, 84hr	$Pb_4In_9S_{17}(M)$
93	Mn2Pb4In7Se17	750°C, 72hr	New compound
94	Ag0.5Pb4In8.5S17	900°C, 84hr	New compound
95	AgPb4In8S17	900°C, 84hr	New compound
96	Ag0.5Pb4In8.5Se17	900°C, 84hr	Unknown compound
97	CuPb4In8S17	900°C, 84hr	Unknown compound
98	CuPb4In8Se17	900°C, 84hr	$In_6Se_7(M), Cu_{12.32}In_{18.04}Se_{32}(m)$
99	AuPb4In8S17	900°C, 84hr	Unknown compound
100	AuPb4In8Se17	900°C, 84hr	Unknown compound
101	Mn1.37Pb8In16.63Se34	750°C, 72hr	New compound, PbSe(m)
102	MnPb4In8S17	900°C, 84hr	$Pb_{2.99}In_{6.67}Se_{13}(M)$
103	MnPb4In8Te17	900°C, 84hr	$PbTe(m)$, $In_2Te_3(M)$
104	MnPb4In8Te17	700°C, 84hr	$PbTe(M), In_2Te_3(m)$
105	FePb4In8Se17	750°C, 84hr	New compound
106	FePb4In8S17	900°C, 84hr	$Pb_{2.99}In_{6.67}Se_{13}(M)$
107	FePb4In8Te17	900°C, 84hr	$PbTe(M), In_2Te_3(m)$
108	FePb4In8Te17	700°C, 84hr	$PbTe(M), In_2Te_3(m)$

109	MnPb4BiIn7Se17	750°C, 84hr	In ₆ Se ₇ (m), unknown(M)
110	MnPb4Bi8Se17	750°C, 72hr	$Bi_2Se_2(m)$, $Bi_4Se_3(m)$, unknown
111	MnSn4Bi8Se17	750°C, 72hr	Unknown
112	MnAg0.5Pb4In7.5Se17	750°C, 72hr	Unknown
113	MnCuPb4In7Se17	750°C, 72hr	Unknown
114	FeCuPb4In7Se17	750°C, 72hr	$Cu_{0.8}In_{2.4}Se_4(m)$, PbSe(M)
115	FeAg0.5Pb4In7.5Se17	750°C, 72hr	AgInSe ₅ (m), Pb _{7.12} In _{18.88} Se ₃₄ (M)
116	Ag0.5Pb4Bi1.5In7S17	900°C, 84hr	Unknown
			Bi _{2.98} Pb _{1,27} S _{5.75} (M), PbBi ₂ S ₄ (M),
117	Ag0.5Pb4Bi8.5S17	900°C, 84hr	PbAgBi ₃ S ₆ (m)
118	Ag0.5Sn4Bi8.5S17	900°C, 84hr	$Ag_{2.58}Bi_{6.5}S_{12}(m), Bi_2S_3(M)$
119	Ag0.5Pb4In8.5Te17	700°C, 72hr	$PbTe(M), In_2Te_3(m)$
120	CuPb4In8Te17	700°C, 72hr	$PbTe(M), In_2Te_3(m)$
121	CuPb4BiIn7S17	900°C, 84hr	CuInS ₂ (m), PbIn ₂ S ₄ (M)
122	CuPb4Bi8S17	900°C, 84hr	$Pb_{3}Bi_{2}S_{6}(M), Bi_{11}Pb_{2}Cu_{5}S_{21}(m)$
123	CuSn4Bi8S17	900°C, 84hr	$Cu_4Bi_7S_{12}(m), Bi_2S_3(M)$
124	Cu0.5Pb4In8.5S17	900°C, 84hr	New compound
125	Au0.5Pb4In8.5S17	900°C, 84hr	New compound
126	CoPb4In8S17	900°C, 84hr	待測
127	CoPb4In8Se17	750°C, 84hr	待測
128	MgPb3Sn2Se17 🛃	900°C, 84hr	待測
129	MgLa3PbSe9	900°C, 84hr	待測
130	MgLaPbSe9	800°C, 324hr	待測
131	MgMnPbSe9	800°C, 324hr	待測
132	MgCuPbSe9	800°C, 324hr	待測
133	MgNiPbSe9	800°C, 324hr	待測
134	BaMnPb3Se6	800°C, 324hr	待測
135	BaPb3CuSe6	800°C, 324hr	待測
136	MgAgPbSe9	800°C, 324hr	待測
137	SrMnPb3Se6	800°C, 324hr	待測
138	SrPb3CuSe6	800°C, 324hr	待測

_