個的滑面 (glide), 沒有鏡面 (mirror)。與AgPbSb₃Se₆具有相同結構的化合物還有AgPbBi₃S₆^[19] (圖 2-7), 兩者之間的差異在於Pb原子以及Bi (AgPbBi₃S₆)和Sb (AgPbSb₃Se₆)原子的鍵結情形。

圖 2-7. $AgPbBi_3S_6$ 之Cmcm結構, 藍色為Bi原子, 紅色為Pb原子, 綠色為Ag/Bi原子混合

4-1-2.CuPbSb₃Se₆

使用CAD4 X光單晶繞射儀中偵測繞射訊號後計算得到的CuPbSb₃Se₆ 晶胞常數與AgPbSb₃Se₆的晶胞常數非常相近,因此在晶體解析時以CAD4 單晶繞射儀計算得到的晶胞常數作為基準進行解析;當晶胞常數為a = 4.1604(17)Å,b=13.846(7)Å,c=19.972(11)Å,V=1150.5(10)Å³,空間 群為Cmc2₁的斜方晶系結構,經由一次直接法與數次最小平方法精算後,可 得到R₁/wR₂/GOF=0.0508/0.1102/1.126,達價電平衡的化合物化學式為 Cu_{0.84}Pb_{1.13}Sb_{2.98}Se₆。然而以Atoms軟體繪出其結構時,可以明顯看到在M11 的位置出現disorder的情形(如圖 2-8 所示,紅色為Pb原子,粉紅色為Sb原 子,深藍色為Pb與Cu原子混合填佔(M22),淺藍色為Sb未完全填佔(M11), 黃色為Se原子)。

圖 2-8.(a) 晶胞常數a=4.1604(17) Å與(b) a = 8.321(4) Å沿a軸看下去的CuPbSb3Se6結構。

圖 2-9.(a) 晶胞常數a=4.1604(17)Å,(b) a=8.321(4)Å沿b轴看下去的CuPbSb₃Se₆結構。

在SHELX軟體的分析中,M11位置是由Sb原子不完全的填佔,相當於 AgPbSb₃Se₆結構中M2(Sb/vacancy)的位置,配位環境均為六配位。倘若不考 慮AgPbSb₃Se₆結構中,連接兩層不同方向波浪狀 3D結構的橋樑的Pb原子附 近所填入的陽離子種類,其化學環境與可填入的原子大小(以價態半徑為 考量)是一樣的;因此M11位置與AgPbSb₃Se₆結構中Ag(價態半徑 1.29Å) 的位置均具有相同的空間,所以M11的位置由Sb原子填入時,由於Sb原子 在帶正三價電荷六配位的環境時,其價態半徑為 0.9Å,所以M11位置的擾 動情況是合理的存在。

以Atoms軟體分析M11 中兩個擾動原子的距離為 0.76 Å,明顯地較一般 原子振動的距離偏高;由於在處理CCD X光單晶繞射儀所收的數據時發現 CuPbSb₃Se₆的繞射訊號沿著a軸有超晶格存在,所以將原本的晶胞常數固定 並將a值延伸兩倍,經SaintPlus與SHELX一次直接法與數次最小平方法精算 後最後得到晶胞常數a = 8.321(4) Å, b = 13.846(7) Å, c = 19.972(11) Å, V = 2301(2) Å³,空間群為 $P2_12_12_1$ 的斜方晶系結構, R_1 /w R_2 = 0.0644/0.1670, 其結構如圖 **2-8** (b)所示。將晶胞常數分別為a = 4.1604(17) Å與 8.321(4) Å的 CuPbSb₃Se₆結構中有擾動情況的位置作比較(圖 **2-8**(a)與(b)中的M11, M33,M44 位置):M22 位置的原子是由Pb與Cu原子以 0.144/0.856 的比例 混合填佔,沒有擾動的現象;在晶胞常數沿a軸變為兩倍的CuPbSb₃Se₆結構 中,M33 與M44 的位置同M11都有原子擾動的情形,其原子擺盪的幅度分 別為 0.604 Å與 0.453 Å;M55 的位置同M22 由Pb與Cu原子混合填佔。兩者 擾動位置的比較如下表 **2-2**所示:

CuPbSb ₃ Se ₆	a = 4.1604(17) Å	a = 8.321(4) Å
相對應位置	M11 (Sb/Cu)	M33 (Sb/Cu)
擾動距離	0.760 Å	0.604 Å
相對應位置	M22 (Pb/Cu)	M44 (Sb/Cu)
擾動距離	無	0.453 Å

表 2-2.晶胞常數a = 4.1604(17) Å與a = 8.321(4) Å之CuPbSb3Se6 擾動位置比較表。

從圖 2-8 可以明顯的看出,當CuPbSb₃Se₆的晶胞常數放大後結構中的變 化趨勢可以看得更加清楚。除有擾動情形的位置其原子熱振動參數變得較 小且合理,由Pb與Cu原子混合填佔的位置(M55)與擾動位置(M33、M44) 在結構中出現的趨勢也明朗化為前後交錯交替出現(如圖 2-9(a)與(b))。然 而結構中Sb原子與Cu原子混合填佔位置所產生的原子擾動仍無法解決,且 為使整個化學式達到價電平衡所做的原子比例微調使wR2 值大幅上升,因 此於晶體數據資料上仍以較小的晶胞常數為主,而結構的比較上在此則以 較小的晶胞常數之結構與AgPbSb₃Se₆的晶體結構作相互討論。

4-1-3. AgPbSb₃Se₆, CuPbSb₃Se₆與其他相同結構化合物

CuPbSb₃Se₆與AgPbSb₃Se₆的晶體結構空間群分別為Cmc2₁與P2₁2₁2₁,兩 者原子的配位環境與鍵結方式近乎完全相同,然而當AgPbSb₃Se₆結構中的 Ag原子被同族的Cu原子取代時,不僅有了擾動情況的產生,原本在 AgPbSb₃Se₆中有空洞產生的Sb原子(圖 2-10(b)中之M2)與Ag原子完全填佔 的位置在CuPbSb₃Se₆的結構(圖 2-10 (a)中之M2'與M2")中有了不同的表現。

圖 2-10. (a) CuPbSb3Se6, (b) AgPbSb3Se6沿a軸看下去之結構。

AND DECK

圖 2-10 中AgPbSb ₃ Se ₆ 與	與CuPbSb3Se6過渡元素填入	位置之電子密度如下
表所示:	ESAN	
AgPbSb ₃ Se ₆	M2(Sb/vacancy)	Ag
電子數	44.523	47
CuPbSb ₃ Se ₆	M2'(Sb/ vacancy)	M2''(Pb/Cu)
電子數	48.297	36.632

 電子數
 48.297
 36.632

 CuPbSb3Se6結構中M2'在上一部份的討論中,視為與AgPbSb3Se6結構中

 M2 位置一樣由Sb原子單獨填入(Largest diff. peak結果尚有剩餘約 4 個電子)

 且有空洞產生,而於M2'位置未全數填佔的Sb會部分地跑到M1'的位置與Pb

 產生混合填佔。微調M1'位置Pb與Sb填佔的比例以達價電平衡,可得到化學

式為Cu_{0.84}Pb_{1.13}Sb_{2.98}Se₆。

然而,上表中M2'位置的電子數為48.297,亦可視為由Cu與Sb原子混合填佔(原子序:29/51),其所處配位環境之價態半徑Cu/Sb為0.91/0.9Å,因此有擾動情形發生是合理的。以此假設重新以代數法計算後,可得到達價電平衡的化學式為Cu0.97Pb0.96Sb3.07Se6,但由於以M2'位置電子數去計算此位

置Cu原子所混合填佔的比例並不高,因此M2'位置仍視為與AgPbSb₃Se₆結構 中M2 位置一樣為Sb/vacancy的情形。

由上述討論以及上表中的電子數可以歸納,相同結構中作為連接兩層 不同方向波浪狀 3D 結構的橋樑的 Pb 原子附近的陽離子(如圖 2-10 中紅色 畫框所標示)傾向有過渡金屬的填入,以及 Sb 原子的不完全填佔。

具有相同結構的AgPbBi₃S₆與AgSnBi₃S₆(圖 **2-11** (a)與(b))相同結構位置的電子數如下表所示,其中M3'與M3"均為Bi與Ag原子混合填佔的位置。

圖 2-11. (a)AgPbBi₃S₆, (b)AgSnBi₃S₆延a軸看下去之結構。

AgPbBi ₃ S ₆	Ag/Bi	
電子數	65	
AgSnBi ₃ S ₆	M3' (Bi/Ag)	M3'' (Bi/Ag)

將圖 2-10 與圖 2-11 相比對,圖 2-11 中M3"的位置相當於圖 2-10 中M2 的位置,而且M3"位置的電子數比M3'位置的電子數略少;顯示雖然其他六 配位的位置也有Ag原子與之產生混合填佔的可能,但在相同的AgPbSb₃S₆結 構中作為連接兩層不同方向波浪狀 3D結構的橋樑原子附近的陽離子(如圖 2-10 紅色畫框所標示)會更傾向有過渡金屬的填入。

由上表中M3'與M3"的電子數以及圖 2-11 兩者的比較,無法明確地判斷 在AgPbBi₃S₆與AgSnBi₃S₆的結構中,M3'是否同M2 位置一樣有vacancy的存 在;因為Ag與Sn的原子序相近(原子序:47/50),所以M3'與M3"的位置除了 可視為Bi/Ag混合填佔外,亦有可能為Bi/Sn的混合填佔。若能合成化合物 CuPbBi₃S₆,將有助於更進一步地瞭解M3'與M3"位置的真實情況。

4-2 晶體結構解析數據

以CCD X-ray單晶繞射儀收集數據,經由SHELXTL軟體所分析得到的 AgPbSb₃Se₆結構模型為斜方晶系的晶胞,空間群為P2₁2₁2₁;與CuPbSb₃Se₆結 構模型為斜方晶系的晶胞,空間群為Cmc2₁。詳細的晶體資料、原子於結構 中的位置、鍵結長度與非等向性熱參數表如表 2-3~2-10 所示。

Empirical formula	AgPbSb ₃ Se ₆
Formula weight	1154.07
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group, Z	$P2_12_12_1, 4$
<i>a</i> [Å]	4.130(2)
$b[\text{\AA}]$	13.730(8)
C[Å]	20.283(12)
Volume	1150.0(12) Å ³
Density (calculated)	6.6681 g/cm ³
F(000)	1458
Absorption coefficient	31.611 mm ⁻¹
Crystal size	$0.4 \ge 0.03 \ge 0.33 \text{ mm}^3$
Theta range for data collection	1.79 to 28.32°
Index ranges	-5<=h<=5, -18<=k<=18, -27<=l<=27
Independent reflections	2881 [R(int) = 0.0748]
Completeness to theta = 28.32°	99.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2881 / 0 / 103
Goodness-of-fit on F ²	1.045
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0692, wR_2 = 0.1153$
Largest diff. peak and hole	3.629 and -1.752 e.Å ⁻³
$\mathbf{R}_1 = \Sigma \parallel \mathbf{F}_0 \mid - \mid \mathbf{F}\mathbf{c} \parallel / \Sigma \mid \mathbf{F}_0 \mid \mathbf{w} \mathbf{R}_2 =$	= { $\Sigma [w(F_0^2 - Fc^2)^2] / \Sigma [w(F_0^2)^2] }$

表 2-3. AgPbSb3Se6晶體數據

	X	У	Z	U(eq)	Occp.
M1A	0.2505(9)	0.1921(1)	0.2500(2)	41(1)	0.659(12)(Pb1)
M1B	0.2505(9)	0.1921(1)	0.2500(2)	41(1)	0.341(12)(Sb1)
Sb(2)	0.2504(13)	0.0798(3)	0.6325(2)	32(1)	0.873(8)
Sb(3)	0.2469(11)	0.3627(2)	0.5525(1)	26(1)	1
Sb(4)	0.2513(11)	0.3627(2)	0.9473(1)	22(1)	1
Ag (5)	0.2499(14)	0.0802(3)	0.8676(2)	36(1)	1
Se(6)	0.2514(13)	0.4560(3)	0.8346(2)	21(1)	1
Se(7)	0.2450(16)	0.2584(3)	0.0995(2)	23(1)	1
Se(8)	0.2564(17)	0.2586(3)	0.4012(2)	25(1)	1
Se(9)	0.2489(17)	0.1619(1)	0.7505(3)	28(1)	1
Se(10)	0.2472(19)	0.4558(3)	0.6660(2)	21(1)	1
Se(11)	0.2600(18)	0.0003(4)	0.5001(3)	28(1)	1

表 2-4. AgPbSb₃Se₆ Positional Parameters and Equivalent Displacement Parameters

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Pb(1)-Se(9)	2.873(6) ×2	Sb(3)-Se(11)	3.010(8) ×2
Pb(1)-Se(9)	2.883(6) ×2	Sb(4)-Se(6)	2.616(5)
Pb(1)-Se(7)	3.180(6)	Sb(4)-Se(7)	2.784(6)
Pb(1)-Se(8)	3.201(6)	Sb(4)-Se(7)	2.851(7) ×2
Sb(2)-Se(9)	2.648(7) ×2	Sb(4)-Se(11)	2.967(7)
Sb(2)-Se(6)	2.755(7) ×2	Sb(4)-Se(11)	3.022(8) ×2
Sb(2)-Se(6)	2.757(7)	Ag(5)-Se(9)	2.626(8) ×2
Sb(2)-Se(11)	2.897(8)	Ag(5)-Se(10)	2.761(8) ×2
Sb(3)-Se(10)	2.638(4)	Ag(5)-Se(10)	2.770(8)
Sb(3)-Se(8)	2.791(7)	Ag(5)-Se(11)	2.906(8) ×2
Sb(3)-Se(8)	2.835(8) ×2	Ag(5)-Se(7)	3.086(8) ×2
Sb(3)-Se(11)	2.969(8) ×2		

表 2-5. AgPbSb3Se6中各個鍵結長度(Å)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
M1A	23(1)	43(1)	59(1)	0(1)	-1(2)	0(2)
M1B	23(1)	43(1)	59(1)	0(1)	-1(2)	0(2)
Sb(2)	27(2)	31(2)	38(2)	3(1)	-8(2)	8(2)
Sb(3)	25(1)	31(2)	24(2)	-10(1)	-8(2)	-1(2)
Sb(4)	22(1)	20(1)	21(1)	1(1)	-6(2)	6(2)
Ag(5)	37(2)	28(2)	42(2)	0(1)	-6(3)	-9(2)
Se(6)	7(1)	24(2)	31(2)	-7(1)	-19(2)	10(2)
Se(7)	22(2)	23(2)	26(2)	-2(2)	-5(3)	-10(3)
Se(8)	30(2)	18(2)	25(2)	4(1)	-7(3)	12(3)
Se(9)	22(1)	22(1)	42(1)	-7(2)	15(3)	2(3)
Se(10)	43(2)	18(2)	6(1)	-8(1)	3(2)	6(3)
Se(11)	25(1)	34(1)	25(1)	-10(1)	-3(3)	5(3)

表 2-6. AgPbSb3Se6非等向性熱參數值(Å²x 10³)

The anisotropic displacement factor exponent takes the form:

 $-2\pi^2 \left[h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12} \right]$

Empirical formula	CuPbSb ₃ Se ₆
Formula weight	1109.74
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group, Z	$Cmc2_1$, 4
a[Å]	4.1604(17)
$b[\text{\AA}]$	13.730(8)
$C[\text{\AA}]$	20.283(12)
Volume	1150.5(10) Å ³
Density (calculated)	6.4092 g/cm ³
F(000)	936
Absorption coefficient	21.139 mm ⁻¹
Crystal size	$0.4 \ge 0.2 \ge 0.2 \text{ mm}^3$
Theta range for data collection	2.04 to 28.34°
Index ranges	-5<=h<=5, -18<=k<=18, -20<=l<=26
Independent reflections	1453 [$R(int) = 0.0462$]
Completeness to theta = 28.41°	100.0 %
Refinement method 🛛 📃 🜙	Full-matrix least-squares on F ²
Data / restraints / parameters	1453 / 1 / 78
Goodness-of-fit on F ²	1.126
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0508, wR_2 = 0.1102$
Largest diff. peak and hole	3.828 and -3.217 e.Å ⁻³
$\mathbf{R}_1 = \Sigma \parallel \mathbf{F}_0 \mid - \mid \mathbf{F}\mathbf{c} \parallel / \Sigma \mid \mathbf{F}_0 \mid \mathbf{w} \mathbf{R}_2 =$	$\{ \Sigma \ [w(F_0^2 - Fc^2)^2] / \Sigma \ [w(F_0^2)^2] \}^{1/2}$

表 2-7. CuPbSb3Se6 之晶體數據資料

	X	У	Z	U(eq)	Occp.
M1A	0.5000	0.3065(1)	0.7457(2)	31(1)	0.819(1)(Pb1)
M1B	0.5000	0.3065(1)	0.7457(2)	31(1)	0.181(1) (Sb1)
M2A	0	0.0849(3)	0.6330(2)	29(1)	0.144(1) (Pb5)
M2B	0	0.0849(3)	0.6330(2)	29(1)	0.856(1) (Cu5)
Sb(2)	0.5000	0.1363(2)	0.0464(1)	26(1)	1
Sb(3)	0.5000	0.1359(3)	0.4447(1)	34(1)	1
Sb(4)	0.5000	0.4122(5)	0.3646(3)	38(2)	0.586(2)
Sb(6)	0.5000	0.4631(11)	0.3503(5)	47(4)	0.361(2)
Se(7)	0.5000	0.0424(3)	0.3291(2)	27(1)	1
Se(8)	0.5000	0.2444(3)	0.8986(2)	31(1)	1
Se(9)	0.5000	0.0437(3)	0.1612(2)	20(1)	1
Se(10)	0.5000	0.2433(3)	0.5957(2)	25(1)	1
Se(11)	0.5000	0.3404(1)	0.2483(5)	51(1)	1
Se(12)	0.5000	0.4992(9)	0.9969(8)	83(1)	1

表 2-8. CuPbSb₃Se₆ Positional Parameters and Equivalent Displacement Parameters

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

表 2-9. CuPbSb3Se6中各個鍵結長度(Å)

Pb(1)-Se(11)	2.9096(18) ×2	Sb(4)-Se(7)	2.843(5) ×2
Pb(1)-Se(10)	3.122(5)	Sb(4)-Se(12)	2.912(18) ×2
Pb(1)-Se(8)	3.172(5)	Pb(5)-Se(11)	2.524(11)
Sb(2)-Se(9)	2.627(6) ×2	Pb(5)-Se(9)	2.795(4) ×2
Sb(2)-Se(10)	2.842(3) ×2	Pb(5)-Se(12)	2.958(18) ×2
Sb(2)-Se(12)	2.984(6)×2	Pb(5)-Se(10)	3.113(4) ×2
Sb(3)-Se(7)	2.646(6)	Sb(6)-Se(7)	2.390(8) ×2
Sb(3)-Se(8)	2.814(4) ×2	Sb(6)-Se(11)	2.653(12) ×2
Sb(3)-Se(12)	2.986(7)×2	Sb(6)-Se(12)	2.974(18) ×2
Sb(4)-Se(11)	2.528(12) ×2		

	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
M1A	23(1)	33(1)	37(1)	-7(1)	0	0
M1B	23(1)	33(1)	37(1)	-7(1)	0	0
M2A	17(2)	43(2)	26(2)	-1(2)	0	0
M2B	17(2)	43(2)	26(2)	-1(2)	0	0
Sb(2)	13(1)	34(1)	33(2)	-7(1)	0	0
Sb(3)	36(1)	42(1)	24(2)	-11(1)	0	0
Sb(4)	32(3)	12(3)	70(4)	14(2)	0	0
Sb(6)	39(3)	40(7)	62(5)	-16(5)	0	0
Se(7)	28(2)	29(2)	22(2)	-8(2)	0	0
Se(8)	32(2)	26(2)	34(3)	-2(2)	0	0
Se(9)	18(2)	21(2)	22(2)	-4(1)	0	0
Se(10)	32(2)	29(2)	15(2)	-3(2)	0	0
Se(11)	18(1)	20(1)	115(3)	5(3)	0	0
Se(12)	36(1)	95(2)	117(3)	82(2)	0	0

表 2-10. CuPbSb3Se6非等向性熱參數值

The anisotropic displacement factor exponent takes the form:

 $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^{*} b^{*} U_{12}]$

4-3 粉末繞射圖譜

將合成的AgPbSb₃S₆, AgPbSb₃Se₆與CuPbSb₃Se₆磨成粉末後以X光粉末 繞射儀測量長時間($0.02^{\circ}/2$ sec/step, $20^{\circ} \sim 60^{\circ}$)的粉末繞射圖譜,其中 AgPbSb₃S₆直接與資料庫中的繞射圖譜比對,而AgPbSb₃Se₆則是與GSAS模 擬的理論計算繞射圖相疊比較(如圖 2-12 所示),可確定AgPbSb₃S₆與 AgPbSb₃Se₆均可由元素態粉末以 1/1/3/6 的莫爾比合成純相產物。

將CuPbSb₃Se₆的長時間粉末繞射圖譜(0.01°/2.7sec/step,20°~60°)與 GSAS模擬的理論計算繞射圖相疊比較(如圖 2-13 所示),在27°附近有一 根明顯為雜訊的繞射峰出現,經資料庫比對為Cu₃SbSe₄。物性的量測需要純 度較高的樣品,CuPbSb₃Se₆的純化反應還在進行中。

圖 2-13. CuPbSb₃Se₆粉末繞射圖(黑)與GSAS模擬繞射圖(紅)

4-4 電子結構(Electronic Structure)與電導係數

為得到合理且具有比較性的理論能帶結構計算,AgPbSb₃S₆的能帶架構 計算模型是直接套用AgPbSb₃Se₆的晶體模型下去做理論模擬計算;這樣的 計算是合理的,因為AgPbSb₃Se₆的晶胞確實為AgPbSb₃S₆結構中的次晶胞之 一,最後計算所得到的能階密度圖如圖 **2-14**(a)(b)所示。

圖 2-14. (a)AgPbSb₃S₆的DOS圖形; (b)AgPbSb₃Se₆的DOS圖形。

由圖 2-14 (a)與(b)可以明顯地看出當AgPbSb₃S₆中的S被Se取代時,由於 Se具有較高的電荷密度所以能將原本AgPbSb₃S₆中大於 0.5eV的能隙降低到 AgPbSb₃Se₆中的 0.5eV以下。事實上,如果直接以三用電表直接量測反應完 後的融熔塊狀物,也的確可以得到AgPbSb₃Se₆的電阻比AgPbSb₃S₆還要來的 小的結果。為了更精準的量測AgPbSb₃S₆與AgPbSb₃Se₆實際的能隙與探討其 是否確實具有半導體的性質,我們先將融熔塊狀的產物以研缽磨碎成細粉 狀後,壓成 5*1*1 mm的長柱形塊材。壓成片狀的塊材先以三用電表量測, 發現AgPbSb₃S₆完全量不到電阻,之後以導電度計進行較精密的量測一樣沒 有量測到電阻;雖然AgPbSb₃Se₆在三用電表與導電度計上均有觀測到電阻 值,但由於在低溫時電阻過大無法進行量測,因此將兩者的塊材重新以石 英管封好後用高溫爐進行 500℃,8小時退火。將外觀有些微融熔態的長柱 狀AgPbSb₃S₆與AgPbSb₃Se₆重新以導電度計量測,得到的量測結果如圖 2-15 所示。

圖 2-15. (a) AgPbSb₃S₆與(b) AgPbSb₃Se₆的電阻(Ω)與導電度(σ)對溫度的趨勢圖。

圖2-15為量測由180k到300k之間自然升溫的情況下,輸入電流為10⁻⁶安 培時,將所量測到的電壓值轉換為電阻值對溫度(T)所做的趨勢圖(藍線), 以及導電度對溫度的趨勢圖(紅線)。當溫度由180K開始自然升溫時,可 以看到不論是AgPbSb₃S₆還是AgPbSb₃Se₆,其電阻值均有由大變小的趨勢, 且導電度也隨著溫度的上升而緩慢地成線性遞增,由此可看出AgPbSb₃S₆與 AgPbSb₃Se₆均具有半導體的特性。

此外,由圖2-15 (a)與(b)的比較可以發現,AgPbSb3Se6的導電性優於

AgPbSb₃S₆,電阻值也遠比AgPbSb₃S₆還要來的低!與圖2-14兩者的電子密 度能階圖相對照可知,能帶結構中的價電帶多由陰離子所貢獻,所以當 AgPbSb₃S₆中的S原子被Se原子所取代時,由於結構中電子密度的增加,使 得AgPbSb₃Se₆導電性大幅上升了兩個order。

五、結論:

本章節中成功地以元素態粉末作為起始物並用高溫燒結合成純相的 AgPbSb₃S₆、AgPbSb₃Se₆以及CuPbSb₃Se₆,同時藉由X光單晶繞射儀鑑定其 晶體結構,確定AgPbSb₃Se₆結構中Ag與Sb的位置,以及當Ag被Cu取代時, 由於結構中相同位置的空間變大而有了擾動的情形發生。雖然在 AgPbSb₃Se₆結構中由於晶體在CAD4 X光單晶繞射儀中的訊號太弱,而無法 證實其與AgPbSb₃S₆和CuPbSb₃Se₆均有超晶格的存在,但藉由之後實驗上較 大顆晶體的養成與挑選,AgPbSb₃Se₆結構中是否具有超晶格仍有很大的探 討空間。

藉由線性原子球軌道模型(linear muffin tin orbitals,LMTO)計算能帶 結構的變化以及電導係數的測量,當AgPbSb₃S₆結構中的S原子被Se原子取 代成為AgPbSb₃Se₆時,由於結構中電子密度增加相對地降低了能隙,使得 導電度增加;但因AgPbSb₃S₆的電阻值過大無法進行Seebeck係數的量測,而 AgPbSb₃Se₆在Seebeck係數量測的部分仍在嘗試進行中。

六、參考文獻:

- [1] Sawada I. K. H., Hellner E., Tokonami M., Z. Kristallogr. 1987, 180, 141.
- [2] Kanatzidis, M. G.; Sutorik, A. Prog. Inorg. Chem. 1995, 43, 151.
- [3] Eichhorn, B. W. Prog. Inorg. Chem. 1994, 42, 139.
- [4] Matsushita, Y.; Kanatzidis, M. G. Z. Naturforsch. 1998, 53b, 23.
- [5] Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Solid State Ionics. 2000, 130, 97.
- [6] Kawada, I.; Hellner, E. Neues Jahrb. Mineral. Monatsh. 1971, 551.

- [7] Moëlo, Y.; Makovicky, E.; Karup-Møller, S. *Neues Jahrb. Mineral. Monatsh.* 1984, 175.
- [8] Matsushita Y.; Ueda Y. *Inorg. Chem.* **2003**, *42*, 7830.
- [9] Nuffield, E. W. Trans. R. Soc. Can. 3rd Ser., Sect. IV 1945, 31, 41.
- [10] Hellner, E. J. Geol. **1958**, 66, 503.
- [11] (a)Andersen, O. K. *Phys. Rev. B* 1975, *12*, 3060.
 (b)Skriver, H. L. *The LMTO Method*; Springer : Berlin, 1984.
 (c)Hedin, L.; Lundqvist, B. I. *J. Phys. C* 1971, *4*, 2064.
- [12] Ladd M. F. C. and Palmer R. A. Structure Determination by X-Ray Crystallography 2nd Edition. 1987,135
- [13] SMART Version 5.054 Data Collection and SAINT-Plus Version 6.22 Data Processing Software for the SMART System, Madison, WI, 2000.
- [14] Sparks R. A., Computational Crystallography. Edited by D. Sayre. Clarendon Press, Oxford, 1982.
- [15] Sheldrick G. M., Madison, WI, 2000.
- [16] Von Dreele. R. B.; Jorgensen, J. D.; Windsor, C. G. J. Appl. Crystallogr. 1982, 15, 581.
- [17] Larson, L. C.; Von Dreele. R. B.; *LANSCE*, MSH805; Los Alamos National Laboratory: los Alamos, NM, 1995.
- [18] Cotton, F. A., Wilkinson, G.: Advanced Inorganic Chemistry. 1966.
- [19] Bente, K.; Engel, M.; Steins, M. Z. Kristallogr. 1993, 205, 327.