肆.總結

第貳章中成功地以元素態粉末作為起始物並用高溫燒結合成純相的 AgPbSb₃S₆、AgPbSb₃Se₆以及CuPbSb₃Se₆,同時藉由X光單晶繞射儀鑑定其 晶體結構,確定AgPbSb₃Se₆結構中Ag與Sb的位置,以及當Ag被Cu取代時, 由於結構中相同位置的空間變大而有了擾動的情形發生。雖然在 AgPbSb₃Se₆結構中由於晶體在CAD4 X光單晶繞射儀中的訊號太弱,而無法 證實其與AgPbSb₃S₆和CuPbSb₃Se₆均有超晶格的存在,但藉由之後實驗上較 大顆晶體的養成與挑選,AgPbSb₃Se₆結構中是否具有超級胞仍有很大的探 討空間。

藉由線性原子球軌道模型(linear muffin tin orbitals,LMTO)計算能帶 結構的變化以及電導係數的測量,當AgPbSb₃S₆結構中的S原子被Se原子取 代成為AgPbSb₃Se₆時,由於結構中電子密度增加相對地降低了能隙,導電 度增加;量測AgPbSb₃S₆與AgPbSb₃Se₆壓成塊材並經退火程序後於 180K-300K之間導電度的變化,兩者的電阻均隨著溫度上升而降低,導電度 則是隨著溫度的升高而增加。以LMTO所計算出來的電子密度能階圖可知能 帶結構中的價電帶多由陰離子所貢獻,因此當AgPbSb₃S₆中的S原子被Se原 子所取代時,結構中的電子密度增加,使得AgPbSb₃Se₆導電性增加,由導 電度的測量可知其大幅上升了兩個order。

第參章主要是探討在SnSe-Sb₂Se₃系統中,由SnSb₂Se₄所延伸出來的 Sn-Ga-Sb-Se化合物中微量Ga在結構中的存在與否以及反應過程中Ga對 Sn_{3.042}Ga_{0.625}Sb_{1.333}Se₆生成產量的影響。

實驗過程中,Sn₃Sb₂Se₆已經證明可由加入助融劑NaCl的元素態粉末, 以莫爾數比Sn/Sb/Se = 3/2/6 的比例來合成。同時藉由SHELXTL軟體對CCD X-ray單晶繞射儀數據的分析與X光吸收光譜的EXAFS量測,推測Ga可能有

58

摻雜入Sn₃Sb₂Se₆結構中的部分位置。

由LMTO計算能帶結構變化的結果可以看出:當Ga摻雜入Sn₃Sb₂Se₆的 結構中並形成Sn_{3.042}Ga_{0.625}Sb_{1.333}Se₆的六A族化合物時,由於其電子密度較 低,對整個能帶結構中能隙大小的變化一定具有相當的影響力。電導係數 的量測證明了Sn_{3.042}Ga_{0.625}Sb_{1.333}Se₆為半導體材料,而Seebeck係數的測量結 果顯示其為p-type的半導體。對於Ga是否成功摻雜的探討,在EXAFS的數據 分析上,尚須Sb,Sn與Se的量測數據以作更完善的模擬與分析,Seebeck係 數的測量也需要Sn₃Sb₂Se₆的量測數據方能作更完善的模擬與分析,無論Ga 的摻雜與否,在整個合成反應中Ga元素的存在是構成晶體長成與產率的重 要關鍵。

而相關系統的延伸反應,目前已經確定在反應比例為SnIn_{0.25}Sb_{1.75}Se₄, SnIn_{0.4}Sb_{1.6}Se₄,SnIn_{0.75}Sb_{1.25}Se₄,PbIn_{0.25}Sb_{1.75}Se₄,PbIn_{0.4}Sb_{1.6}Se₄, PbIn_{0.75}Sb_{1.25}Se₄,PbGa_{0.25}Sb_{1.75}Se₄,PbGa_{0.4}Sb_{1.6}Se₄及PbGa_{0.75}Sb_{1.25}Se₄,以X 光粉末繞射儀量測後比對資料庫均有未知的繞射訊號存在,由此或許可以 另外發展出另一系統。這些未知物雖然於融熔塊狀表面有些許針狀結晶的 痕跡,但在以X光粉末繞射儀量測時發現其結晶性並不好,因此若要作進一 步的結構鑑定或許需要更長反應時間的燒結,以利晶體形成作CAD4X光單 晶繞射儀的量測。

附錄 I. 其他相關未完成之反應

無論是在第貳章的TMPbSb₃X₆(X=S,TM=Ag; X=Se, TM=Ag, Cu)系統或 是第參章的Sn(Ga_xSb_{1-x})₂Se₄系統,均曾嘗試以同族的不同元素與之進行替 換,試圖去發現新的化合物,並對其整個物性作一系列的探討。但是在整 個實驗的過程,以及後續物性測量的實驗中,產生與原先預期不同的產物, 而這些產物並無法歸類到第貳章或是第參章的系統當中。本章節主要就是 針對這些無法歸類的產物去進行簡單的分析與探討。

實驗步驟與流程:

系統 I. AgPbSb₃X₆(X=S, Se)系統之衍生物

在AgPbSb₃S₆與AgPbSb₃Se₆的長晶過程中,除了如第貳章所敘述地拉長 降溫時間之外,也嘗試過將AgPbSb₃S₆與AgPbSb₃Se₆壓成片狀後以石英管封 管,於高溫爐內進行緩慢降溫。其反應溫度條件為 15 小時升至 950℃以六 天的時間降至 500℃後自然降溫。其中在AgPbSb₃S₆的部分出現了叢生的針 狀晶體以及厚片柱狀晶體。分別挑選兩種晶體數個,以CAD4 X-ray單晶繞 射儀亂數偵測 25 個繞射點後計算個別的晶胞常數。與線上ICSD資料庫比對 後,得知針狀晶體為已知的Sb₂S₃,但厚片柱狀的晶體則為未知化合物,其 於CAD4 X-ray單晶繞射儀計算所得的晶胞常數與AgPbSb₃S₆於CAD4 X-ray 單晶繞射儀而得的晶胞常數如下表所示:

	a(Å)	b(Å)	c(Å)	αβγ	V(Å ³)
AgPbSb ₃ S ₆	4.26(3)	13.05(4)	19.28(1)	90.00(1) 90.04(6) 90.02(4)	1073.22(4)
未知化合物	4.26(4)	6.84(9)	19.23(2)	90.00(8) 89.99(6) 108.08(3)	533.98(9)

將未知化合物的b軸長度與AgPbSb₃S₆相比較,並非剛好為AgPbSb₃S₆的 一半,不屬於AgPbSb₃S₆超級結構中的副晶胞之一。然而其真正包含的元素 與結構,需要進一步的實驗方能確定。

此外,於測量電導係數時發現AgPbSb₃Se₆可能於退火過程中形成其他 化合物,將融熔態的塊材磨碎後以粉末繞射儀量測可得到繞射圖譜如下:

融熔態的AgPbSb₃Se₆塊材粉末繞射圖與原始的AgPbSb₃Se₆粉末繞射圖 相疊比較,在35°與45°均多一根繞射訊號,且整體而言較原始的AgPbSb₃Se₆ 粉末繞射圖向低角度偏移。經退火後融熔態的AgPbSb₃Se₆塊材是否形成其 他位置化合物還需進一步的實驗加以證明。

系統Ⅱ. AuPbSb₃X₆(X=S, Se)系統

在成功合成出CuPbSb₃Se₆後,試圖以相同反應溫度重新燒結AuPbSb₃X₆ (X=S,Se),燒結後均得到融熔塊狀物,其中AuPbSb₃Se₆在顯微鏡下可看見 明顯針狀排列在塊狀物表面或是凹洞中,且較具有金屬光澤。以X光粉末繞 射儀量測後,AuPbSb₃S₆結晶性很差,比對資料庫無法明確判斷其為哪些化 合物之混合物;AuPbSb₃Se₆的X光粉末繞射圖經資料庫比對後除有未反應完 的金(Au)存在外,並沒比對到相同或相似的化合物。於是挑選數個細針 狀晶體,目前以CAD4 X光繞射儀進行量測中。

系統Ⅲ. Sn(Ga_xSb_{1-x})₂Se₄系統之衍生物

為了將結構中的 Sn 與 Sb 原子的位置做出清楚的判別,除了以已知化 合物的鍵長作為判斷依據之一外,於實驗上嘗試以同族元素進行替代進行 反應。反應溫度如下表所示:

編號	反應組成	反應結果
1	SnIn _{0.25} Sb _{1.75} Se ₄	In ₂ Se ₃ , SnSe, 未知繞射訊號
2	SnIn _{0.4} Sb _{1.6} Se ₄	In ₂ Se ₃ , SnSe, 未知繞射訊號
3	SnIn _{0.75} Sb _{1.25} Se ₄	In ₂ Se ₃ , SnSe, 未知繞射訊號
4	PbIn _{0.25} Sb _{1.75} Se ₄	In ₆ Se ₇ , PbSe, Sb ₂ Se ₃
5	PbIn _{0.4} Sb _{1.6} Se ₄	In ₂ Se ₃ , PbSe, Sb ₂ Se ₃ , 未知繞射訊號
6	PbIn _{0.75} Sb _{1.25} Se ₄	Sb ₂ Se ₃ ,未知繞射訊號
7	PbGa _{0.25} Sb _{1.75} Se ₄	Ga ₂ Se ₃ , PbSe, Sb ₂ Se ₃ , 未知繞射訊號
8	PbGa _{0.4} Sb _{1.6} Se ₄	GaSe, PbSe, Sb ₂ Se ₃ , 未知繞射訊號
9	PbGa _{0.75} Sb _{1.25} Se ₄	Sb ₂ Se ₃ ,未知繞射訊號

反應編號1~6的溫度條件為:12小時升至800℃並停留30小時後,以12小時降至645℃,最後緩慢地以12小時降至600℃後自然降溫。

反應編號 7~9 的溫度條件為:8 小時升至 800℃並停留1小時後,以 60 小時降至 700℃,最後緩慢地以 60 小時降至 600℃後自然降溫。

上述的九管反應產物均為具有金屬光澤之融熔塊狀物,表面有些微針 柱狀痕跡,由 X-ray 粉末繞射圖譜的訊號強度可知其結晶性不好,或許需要 更長的反應時間以使晶體長成,以供 CAD4 X-ray 單晶繞射儀的晶胞常數量 測計算及結構判定。

附錄Ⅱ.反應列表

編號	實驗比例	反應溫度條件	XRD 結果 (M:主產物 m:次產物)
1	Sb ₂ S ₃	550°C 2d	$Sb_2S_3(M)$, S
2	Sb ₂ Se ₃	550°C 2d	$Sb_2Se_3(M)$, Se
3	Sb_2S_3	550°C 2d	$Sb_2S_3(M) \rightarrow S$
4	Sb_2Se_3	550°C 2d	$Sb_2Se_3(M)$, Se
5	Sb ₂ Te ₃	550°C 2d	Sb ₂ Te ₃ (M) , Te
6	Zn_4Sb_3	950°C 1.5d	$Zn_4Sb_3(M)$, $ZnSb$
7	Zn_4Sb_3	950°C 1.5d	$Zn_4Sb_3(M)$, $ZnSb$
8	CrSbS ₃	757°C 3d	$Sb_2S_3(M)$, $Cr_2S_3(m)$
9	CrSbSe3	757°C 3d	CrSbSe ₃ (M)
10	CrSbTe3	850°C 2d	$Sb_2Te_3(M)$, $Cr_5Te_8(m)$, Te
11	Cr+Sb+S	757°C 3d	$CrSbS_3(M)$, $Sb_2S_3(m)$
12	Cr+Sb+Se	757°C 3d	CrSbSe ₃ (M)
13	Cr+Sb+S	757°C 3d	$CrSbS_3(M)$, $Sb_2S_3(m)$
14	Cr+Sb+Se	757°C 3d	CrSbSe ₃ (M)
15	Cr+Sb	680°C 2d	$CrSb_2$ (M)
16	$Sr_3Sb_4Se_9$	900°C 3d	$Sr_3Sb_4Se_9$ (M)
17	$Sr_3Sb_4Se_9$	757°C 5d	$Sr_3Sb_4Se_9$ (M)
18	$Sr_3Sb_4Se_9$	650°C 3d	$Sr_3Sb_4Se_9$ (M)
19	$Sr_3Sb_4Se_9$	650°C 3d	$Sr_3Sb_4Se_9$ (M)
20	CoSbSe ₃	800°C 2d	$Sb_2Se_3(M)$, $CoSe_2(m)$
21	Hf+CrSbS ₃	750°C 3d	$HfS_2(M)$, unknown peak
22	Hf+CrSbSe ₃	750°C 3d	$CrSe(M)$, $Hf_{1.35}Se_2(m)$
23	$Sr_3Sb_4Se_9 + 4CrSbS_3$	750°C 2d	$Sb_2S_3(M)$, unknown peak
24	$Sr_3Sb_4Se_9 + 4CrSbSe_3$	750°C 2d	$Sb_2Se_3 (M) \cdot CrSbSe_3 (m)$
25	$Sr_3Sb_4Se_9 + 4CrSbSe_3$	750°C 2d	$Sb_2Se_3 (M) $, $CrSbSe_3 (m)$
26	$Sr_3Sb_4Se_9$	750°C 3d	$Sr_3Sb_4Se_9(M)$
27	$Sr_3Sb_4Se_9$	750°C 3d	$Sr_3Sb_4Se_9(M)$
28	$Hf_{0.5}Cr_{0.5}SbSe_3$	850°C 104hr	$Sb_2Se_3(M)$, $HfSe_2(m)$, Cr
29	$Ti_{0.5}Cr_{0.5}SbSe_3$	850°C 104hr	$Sb_2Se_3(M)$, $TiSe_2(m)$
30	W _{0.5} Cr _{0.5} SbSe ₃	850°C 104hr	$Sb_2Se_3(M)$, $WSe_2(m)$
31	Zn _{0.5} Cr _{0.5} SbSe ₃	1d-920°C 1d-1dRT	$Sb_2Se_3(M)$, $ZnCr_2Se_4(m)$
32	Cu _{0.5} Cr _{0.5} SbSe ₃	1d-920°C 1d-1dRT	$Sb_2Se_3(M)$, $CuCrSe_2(m)$, Se
33	Co _{0.5} Cr _{0.5} SbSe ₃	1d-920°C 1d-1dRT	$CrSbSe_3(M) \cdot CoSe_2(m)$
34	Gd_6ZnSb_{15}	500°C - 6hr- 600°C 10hr	GdSb (M) , Sb , Zn
35	Gd ₆ NbSb ₁₅	500°C - 6hr- 600°C 10hr	GdSb (M) , Sb , Nb

36	Nb _{0.5} Cr _{0.5} SbSe ₃	$800^{\circ}\text{C} 5\text{hr} \rightarrow 20\text{hr} \rightarrow 700^{\circ}\text{C}$	$CrSbSe_{3}(m)$, $Sb2Se_{3}(M)$, Nb
37	CrSbSe3量產	800°C 1d	CrSbSe ₃
38	Li ₃ CrSbSe ₃	757°C 3d	$LiCrO_2/LiO_2\left(M\right),Sb_2O_4,SiO_2$
39	Li ₃ CrSbSe ₃	757°C 3d	爆開
40	Mg ₃ (CrSbSe ₃) ₂	757°C 3d	MgSe (M) , β -Cr ₂ Se ₃ , Sb
41	AgSnSe ₃ Sb	800° C 12hr \rightarrow 12hr \rightarrow 600°C	$AgSbSe_2(M)$, $SnSe(m)$
42	CuSnS ₃ Sb	800° C 12hr \rightarrow 12hr \rightarrow 600°C	$CuSbS_2(M)$, SnS (m)
43	CuPbSe ₃ Sb	800° C 12hr \rightarrow 12hr \rightarrow 600°C	PbSe, Unknown peak
44	Ag ₄ FeSb ₂ Se ₆	800° C 12hr \rightarrow 12hr \rightarrow 600°C	Fe , AgSbSe ₂ (M) , FeSe
45	Ag ₄ RuSb ₂ Se ₆	800° C 12hr \rightarrow 12hr \rightarrow 600°C	RuSe2(m) , AgSbSe ₂ (M)
46	$Ag_4RuSb_2S_6$	800° C 12hr \rightarrow 12hr \rightarrow 600°C	$Ag_3SbS_3(M)$, $RuS_2(m)$
47	Cu ₄ FeSb ₂ Se ₆	$800^{\circ}\text{C} 12\text{hr} \rightarrow 12\text{hr} \rightarrow 600^{\circ}\text{C}$	$CuFeSe_2(M)$, $Cu_2Se(m)$, $FeSe$
48	Cu ₄ RuSb ₂ Se ₆	800° C 12hr \rightarrow 12hr \rightarrow 600°C	$Cu_3SbSe_3(M) \ , \ RuSe_2(m) \ , \ Cu_2Se$
49	$Cu_4RuSb_2S_6$	800° C 12hr \rightarrow 12hr \rightarrow 600°C	$Cu_{12}Sb_4S_{13}(M)$, $RuS_2(m)$
50	AgPbSb ₃ S ₆	800° C $30hr \rightarrow 24hr \rightarrow 700^{\circ}$ C	$AgPbSb_3S_6$
51	AgPbSb ₃ Se ₆	800°C 30hr→24hr→700°C	Unknown peak
52	CuPbSe ₃ Sb	800°C 16hr→24hr→600°C	Cu ₃ SbSe ₃ (M) , PbSe
53	$Cu_4RuSb_2Se_6$	800°C 16hr→24hr→600°C	Unknown peak ' $RuSe_2$ ' Cu_3SbSe_3 ' Ru
54	Ag_2InSbS_4	800°C 24hr→36hr→600°C	$AgSbS_{2}(M)$, $AgInS_{2}(m)$
55	Cu_2InSbS_4	800°C 24hr→36hr→600°C	$CuSbS_2(M)$, $CuInS_2(m)$
56	$AgSn_2SbS_4$	800°C 24hr→36hr→600°C	$SnS(M)$, $Ag_4Sn_3S_8$
57	AgPbSb ₃ Se ₆ (flux)	800°C 24hr→36hr→600°C	Unknown peak
58	Ag_2GaSbS_4	750°C 1d→2d→500°C	$AgGaS_2(m)$, $AgSbS_2(M)$
59	Cu_2GaSbS_4	750°C 1d→2d→500°C	$Cu_{3}SbS_{4}(M)$, $CuSbS_{2}(m)$
60	AgZnSbS ₄	750°C 1d→2d→500°C	$AgSbS_2$, ZnS
61	AgPbSb ₃ Se ₆	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	Unknown peak
62	AgPbSb ₃ Se ₆	800° C $30hr \rightarrow 12hr \rightarrow 645^{\circ}$ C $12hr$	Unknown peak
63	$SnGa_{0.25}Sb_{1.75}Se_4$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	Unknown peak
64	$SnGa_{0.4}Sb_{1.6}Se_4$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	Unknown peak
65	$SnGa_{0.75}Sb_{1.25}Se_4$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	$SnSb_2Se_4(M)$, $Ga_2Se_3(m)$, Ga
66	AuPbSb ₃ S ₆	$800^{\circ}C 40hr \rightarrow 36hr \rightarrow 700^{\circ}C$	Au , $Pb_4Sb_6S_{13}(M)$
67	AuPbSb ₃ Se ₆	$800^{\circ}C 40hr \rightarrow 36hr \rightarrow 700^{\circ}C$	Au , Au ₂ Pb , unknown peak
68	AuPbSb ₃ Te ₆	$800^{\circ}C 24hr \rightarrow 36hr \rightarrow 700^{\circ}C$	Au , PbTe , Sb
69	AgPbSb ₃ Te ₆	$800^{\circ}C 24hr \rightarrow 36hr \rightarrow 700^{\circ}C$	Ag , PbTe , Sb
70	$Sn_3Sb_2Se_6$	$700^{\circ}C 31hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	$SnSe(M)$, $SnSb_2Se_4$
71	$SnSb_2Se_4$	$700^{\circ}C 31hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	$SnSb_2Se_4$
72	$Sn_9Ga_2Sb_4Se_{18}$	700° C 31hr \rightarrow 12hr \rightarrow 645 $^{\circ}$ C 12hr	SnSe (M) , Unknown peak

73	Sn36.5Ga7.5Sb16Se72	700° C 31hr \rightarrow 12hr \rightarrow 645 $^{\circ}$ C 12hr	SnSe (M) , Unknown peak
74	$Sn_3Sb_2Se_6$	700° C 31hr \rightarrow 12hr \rightarrow 645 $^{\circ}$ C 12hr	$SnSb_2Se_4$
75	$SnGa_{0.4}Sb_{1.6}Se_4$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	Unknown peak
76	$SnGa_{0.25}Sb_{1.75}S_4$	$850^{\circ}\text{C} 8hr \rightarrow 72hr \rightarrow 480^{\circ}\text{C}$	$Sn_3Sb_2S_6$, Ga_2Se_3
77	$SnGa_{0.4}Sb_{1.6}S_4$	$850^{\circ}\text{C} 8hr \rightarrow 72hr \rightarrow 480^{\circ}\text{C}$	$Sn_3Sb_2S_6$, Ga_2Se_3
78	$SnGa_{0.75}Sb_{1.25}S_4$	$850^{\circ}C 8hr \rightarrow 72hr \rightarrow 480^{\circ}C$	$Sn_3Sb_2S_6$, Ga_2Se_3
79	$Sn_3Sb_2S_6$	$850^{\circ}\text{C} 8hr \rightarrow 72hr \rightarrow 480^{\circ}\text{C}$	$\mathrm{Sn}_3\mathrm{Sb}_2\mathrm{S}_6$
80	$Sn_3Ga_{0.25}Sb_{1.75}Se_6$	$800^{\circ}C 30hr \rightarrow 20hr \rightarrow 645^{\circ}C 12hr$	SnSe (M) , Unknown peak
81	$Sn_{2.5}Ga_{0.5}Sb_2Se_6$	800° C $30hr \rightarrow 20hr \rightarrow 645^{\circ}$ C $12hr$	SnSe (M) , Unknown peak
82	Sn ₃ Sb ₂ Se ₆ (NaCl)	800°C 12hr→2d→600°C	Sn ₃ Sb ₂ Se ₆ (極少), SnSe(M)
83	$SnSb_2Se_4$	800°C 12hr→2d→600°C	$SnSb_2Se_4$
84	$AgPbSb_3S_6$	800°C 12hr→2d→600°C	$AgPbSb_3S_6$
85	AgPbSb ₃ Se ₆	800°C 12hr→2d→600°C	Unknown peak
86	$SnIn_{0.25}Sb_{1.75}Se_4$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	In_2Se_3 , SnSe, Unknown peak
87	$SnIn_{0.4}Sb_{1.6}Se_4$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	In_2Se_3 , SnSe, Unknown peak
88	$SnIn_{0.75}Sb_{1.25}Se_4$	800°C 30hr→12hr→645°C 12hr	In_2Se_3 , SnSe, Unknown peak
89	$PbIn_{0.25}Sb_{1.75}Se_4$	800°C 30hr→12hr→645°C 12hr	In_6Se_7 , PbSe , Sb_2Se_3
90	$PbIn_{0.4}Sb_{1.6}Se_4$	800°C 30hr→12hr→645°C 12hr	In_2Se_3 , PbSe , Sb_2Se_3 , Unknown peak
91	$PbIn_{0.75}Sb_{1.25}Se_4$	800°C 30hr→12hr→645°C 12hr	Sb_2Se_3 , Unknown peak
92	$PbGa_{0.25}Sb_{1.75}Se_4$	800°C 1hr→120hr→600°C	Ga_2Se_3 , PbSe , Sb_2Se_3 , Unknown peak
93	$PbGa_{0.4}Sb_{1.6}Se_4$	800°C 1hr→120hr→600°C	GaSe , PbSe , Sb_2Se_3 , Unknown peak
94	$PbGa_{0.75}Sb_{1.25}Se_4$	800°C 1hr→120hr→600°C	Sb_2Se_3 , Unknown peak
95	$Sn_{36}Ga_{2.09}Sb_{21.91}Se_{72}$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	大量 SnSe
96	$Sn_{36}Ga_{5.19}Sb_{18.81}Se_{72}$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	大量 SnSe
97	$Sn_{30.81}Ga_{5.19}Sb_{24}Se_{72}$	$800^{\circ}C 30hr \rightarrow 12hr \rightarrow 645^{\circ}C 12hr$	大量 SnSe
98	CuPbSb ₃ S ₆	800°C 12hr→2dr→600°C	amophous
99	CuPbSb ₃ Se ₆	$800^{\circ}\text{C} 12\text{hr} \rightarrow 2\text{dr} \rightarrow 600^{\circ}\text{C}$	Unknown peak
100	$Sn_{36}Ga_{5.19}Sb_{18.81}Se_{72}$	$12hr \rightarrow 800^{\circ}C 1d \rightarrow quench$	SnSe (M) , Unknown peak
101	$Sn_{30.81}Ga_{5.19}Sb_{24}Se_{72}$	$12hr \rightarrow 800^{\circ}C 1d \rightarrow quench$	SnSe (M) , Unknown peak
102	$AuPbSb_3S_6$	800°C 12hr→2d→600°C	amophous
103	AuPbSb ₃ Se ₆	800°C 12hr→2d→600°C	Au , Unknown peak
104	Sn ₃ Sb ₂ Se ₆ (flux)	820°C 12hr→2d→600°C	Sn ₃ Sb ₂ Se ₆ (極少), SnSe(M)
105	SnSb ₂ Se ₄ (flux)	$820^{\circ}C 12hr \rightarrow 2d \rightarrow 600^{\circ}C$	SnSb ₂ Se ₄ (極少), SnSe(M)