Samples(wt%)	Free C=O	Free C=O		H-bonded C=O	
	$\nu_{\rm f}(\rm cm^{-1})$	$A_f(\%)$	$\nu_{\rm b}(\rm cm^{-1})$	$A_b(\%)$	
(a)PMMA/phenolic					
70 /30	1731.2	69.31	1705.3	30.78	22.8
50 /50	1731.2	45.04	1705.9	55.04	44.9
30 /70	1731.3	38.64	1705.2	61.36	51.4
10 /90	1731.1	38.28	1705.2	61.72	51.8
(b)POSSPMMA/pheno	olic				
70 /30	1731.3	78.63	1705.3	21.37	15.3
50 /50	1731.2	71.34	1705.2	28.66	21.1
30 /70	1731.5	64.72	1705.7	35.28	26.6
10 /90	1731.6	60.04	1705.1	39.96	30.7
(c)PMMA/phenolic		•			
70 /30	1731.3	56.83	1705.3	43.17	33.6
50 /50	1731.5 🔬	54.22	1705.2	55.78	40.6
30 /70	1731.2	42.64	1705.6	57.36	47.2
10 /90	1731.6	38.56	1705.2	61.44	51.5
(d)POSSPMMA/pheno	olic 🛛	1896			
70 /30	1730.4	58.82	1705.3	41.18	31.8
50 /50	1731.2	55.96	1705.3	44.04	34.4
30 /70	1730.7	47.51	1705.5	52.49	42.4
10 /90	1731.1	38.72	1705.1	61.28	51.3

Table 4.1. Carbonyl group curve-fitting results of the (a) LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) POSS-HPMMA /phenolic blends.

 $\nu_{\rm f}$: wavenumber of free C=O of PMMA; $\nu_{\rm b}$: wavenumber of hydrogen bonded carbonyl of PMMA; $A_{\rm f}$: fress C=O area fraction of PMMA; $A_{\rm b}$: C=O area fraction of hydrogen bonded PMMA. fb^a: fraction of hydrogen bonded PMMA= $(A_{\rm b}/1.5)/(A_{\rm b}/1.5+A_{\rm f})$.

Scheme 4.2. Schematic diagram showing carbon number and type of interaction between *PMMA* and phenolic resins.

Figure 4.1. The ¹*H*-NMR spectra of (a) POSS-Cl, (b) POSS-PMMA, and (c) PMMA.

Figure 4.2. The DSC curves of (a) LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) POSS-HPMMA/phenolic blends with different compositions (weight ratio).

Figure 4.3. The T_g vs. composition curves based on (a) the Gordon-Taylor equation, (b) the Kwei equation for POSS-LPMMA/phenolic blends, (c) the Kwei equation for LPMMA/phenolic blends, (\blacksquare) experimental date of LPMMA/phenolic blends, and (\bigcirc) experimental date of POSS-LPMMA/phenolic blends.

Figure 4.4. The T_g vs. composition curves based on (a) the Gordon-Taylor equation, (b) the Kwei equation for POSS-HPMMA/phenolic blends, (c) the Kwei equation for HPMMA/phenolic blends, (\blacksquare) experimental date of HPMMA/phenolic blends, and (\bigcirc) experimental date of POSS-HPMMA/phenolic blends.

Figure 4.5. FTIR spectra at room temperature in the 2700-3700 cm⁻¹ region for (a) LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) POSS-HPMMA/phenolic blends with different compositions (weight ratio).

Figure 4.6. FTIR spectra at room temperature in the 1675-1765 cm⁻¹ region for (a) LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) POSS-HPMMA/phenolic blends with different compositions (weight ratio).

Figure 4.7. The fraction of hydrogen bonded carbonyl vs. phenolic content for (a) LPMMA/phenolic (\blacksquare), (b) POSS-LPMMA/phenolic (\bullet), (c) HPMMA/phenolic (\square), and (d) POSS-HPMMA/phenolic blends (\circ), from FTIR spectra.

Figure 4.8. 2D IR spectra at room temperature for (a) LPMMA/phenolic blends in the 1250-1800cm⁻¹ region, (b) POSS-LPMMA/phenolic blends in the 400-1150 cm⁻¹ region, and (c) POSS-LPMMA/phenolic blends in the 1150-1800 cm⁻¹ region.

440000

Figure 4.9. 2D IR spectra at room temperature for (a) HPMMA/phenolic and (b) POSS-HPMMA/phenolic blends in the 1150-1750 cm⁻¹ region.

References

- [1] Novak, B. M. Adv. Mater. **1993**, *5*, 442.
- [2] Tamaki, R.; Chujo, Y.; Kuraoka, K.; Yazawa, T. J. Mater. Chem. 1999, 8, 1741.
- [3] Chujo, Y.; Kure, S.; Matsuki, H.; Saegusa, T. Polym. Prepr. Jpn. 1993, 42, 839.
- [4] Brinker, C. J.; Scherer, G. W. Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing; Academic Press: San Diego, 1990.
- [5] Agag, T.; Takeichi, T. Polymer 2000, 41, 7083.
- [6] Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Macromolecules 1995, 28, 8435.
- [7] Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302.
- [8] Zhou, X.; Goh, S. H.; Lee, S. Y.; Tan, K. L. Macromolecules 1992, 32, 942.
- [9] Djordjevic, M. B.; Porter, R. S. Polym. Eng. Sci. 1983, 23, 650.
- [10] Huang, C. F.; Kuo, S. W, Chang F. C. Polymer 2004, 45, 5913.
- [11] Xia, J. H.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1998, 31, 5989.
- [12] Haddleton, D. M.; Kukulj, D.; Duncalf, D. J.; Heming, A. J.; Shooter, A. J. Macromolecules 1998, 31, 5201.
- [13] Patten, T. E.; Xia, J.; Abernathy, T.; Matyjaszewski, K. Science 1996, 272, 866.
- [14] Kuo, S. W.; Huang, C. F. Macromolecules 2001, 34, 4089.
- [15] Moskala, E. J.; Varnell, D. F.; Coleman, M. M. Polymer 1985, 26, 228.
- [16] Cortazar, M.; Pomposo, J. A. Macromolecules 1994, 27, 252.
- [17] Serman, C. J.; Painter, P. C.; Coleman, M. M. Polymer 1991, 32, 1049.
- [18] Noda, I. J. Am. Chem. Soc., 1989, 111, 8116.