Outline of Contents

Abstract (in Chinese)	Ι
Abstract (in English)	III
Acknowledgments	V
Outline of Contents	VI
List of Tables	IX
List of Figures	Х

Chapter 1 Introduction

1.1	Atom Transfer Radical Polymerization	1
	1.1.1 Mechanistic Understandings of ATRP	1
	1.1.2 Typical Phenomenology for ATRP	2
	1.1.3 Composition for ATRP	4
	1.1.4 Applications of ATRP	8
1.2	Polymer Miscibility and Interaction	9
Refe	rences	11

Chapter 2 Miscibility Behavior and Interactions of Poly(hydroxyethyl methacrylate)/ Poly(vinylpyrrolidone) Blends and Poly(hydroxyethyl methacrylate)-b-Poly(vinylpyrrolidone)

Abstract		12
2.1	Introduction	13
2.2	Experimental Section	15
	2.2.1 Materials	15
	2.2.2 Characterization	15

	2.2.3 Synthesis of Difunctional Initiator	16
	2.2.4 Polymerization Procedures	17
	2.2.5 Blend Preparation	18
2.3	Results and Discussion	19
	2.3.1 Polymer Characterization	19
	2.3.2 DSC Analyses	19
	2.3.3 FT-IR Analyses	20
	2.3.4 Solid-state NMR Analyses	22
2.4	Conclusions	24
References		31

STATISTICS.

Chapt	er 3 Miscibility Behavior and Interactions of Linear and Four-Arm Poly(tert-butyl	
	acrylate)/Polybenzoxazines Blends	
Abstr	act 1896	32
3.1	Introduction	33
3.2	Experimental Section	35
	3.2.1 Materials	35
	3.2.2 Characterization	35
	3.2.3 Synthesis of Tetrafunctional Initiator	36
	3.2.4 Polymerization Procedures	37
	3.2.5 Blend Preparation	38
3.3	Results and Discussion	39
	3.3.1 DSC Analyses	39
	3.3.2 FT-IR Analyses	39
	3.3.3 Solid-state NMR Analyses	40

3.4 Conclusions

References

Chapter 4 Influence of Specific Interactions of Polyhedral Oligoneric Silsesquioxanes-

42

48

Containing	Doly (mothy)	matheomylate	/Dhanalia	Dlanda
Containing	r ory(meary)	memacrylate		Dicitus

Abstı	bstract	
4.1	Introduction	50
4.2	Experimental Section	53
	4.2.1 Materials	53
	4.2.2 Characterization	53
	4.2.3 Synthesis of Initiator	54
	4.2.4 Syntheses of Polymer	54
	4.2.5 Blend Preparation	55
4.3	Results and Discussion	56
	4.3.1 DSC Analyses	56
	4.3.2 FT-IR Analyses	57
	4.3.3 2D IR Analyses	59
4.4	Conclusions	61
Refe	References	
Chap	oter 5 Conclusions	71
Intro	duction to Author	72

List of Tables

- Table 2.1Summary of synthesis parameters, molecular weight data, and cloud points for25HEMA homopolymers. (prepared via ATRP in methanol at 25°C)
- Table 2.2 Summary of molecular weight date and cloud points for HEMA and NVP 25 diblock copolymers. (prepared via conventional radical polymerization1 at 70 °C)
- Table 2.3 Carbonyl group curve-fitting results of the (a) blends and (b) diblock 25 copolymers.
- Table 2.4 Relaxation times, $T_{1\rho}^{H}$, and domain size for (a) blends and (b) diblock 26 copolymers at the magnetization intensities of 60 ppm.

William .

- Table 3.1
 Carbonyl group curve-fitting results of the (a) linear PtBA and (b) four-arm
 43

 PtBA/PBZZ blends.
 6
- Table 3.2 Relaxation times, $T_{1\rho}^{H}$, for (a) linear PtBA and (b) four-arm PtBA/PBZZ 43 blends at the magnetization intensities of 127 ppm.
- Table 2.1 Carbonyl group curve-fitting results of the (a) LPMMA, (b) POSS-LPMMA, 62(c) HPMMA, and (d) POSS-HPMMA /phenolic blends.

List of Figures

Figure 1.1	Schematic representation of the dependence of the conversion on time in	3
	linear and semilogarithmic coordinates.	
Figure 1.2	Monomers for ATRP.	5
Figure 1.3	Iinitiators for ATRP.	6
Figure 1.4	Metal catalysts for ATRP.	6
Figure 1.5	Ligands for copper catalysts.	7
Figure 1.6	Schematic representation of controlled topologies, compositions,	8
	functionalities and molecular composites prepared by ATRP.	
Figure 2.1	The DSC curves of the (a) blends and (b) diblock copolymers with different	27
	compositions (weight ratio).	
Figure 2.2	The T_g vs. composition curves based on (a) the Gordon-Taylor equation, (b)	28
	the Kwei equation for blends system, (c) the Kwei equation for diblock	
	copolymers system, (\blacksquare) experimental date of the blends, and (\bullet) experimental	

date of the diblock copolymers system.

- Figure 2.3 FTIR spectra at room temperature in the 2700-3700 cm⁻¹ region for (a) blends 28 and (b) diblock copolymers with different compositions (weight ratio).
- Figure 2.4 FTIR spectra at room temperature in the 1620-1780 cm⁻¹ region for (a) blends 29 and (b) diblock copolymers with different compositions (weight ratio).
- Figure 2.5 The fraction of hydrogen bonded carbonyl vs. PHEMA content for (a) blends 29(■) and (b) diblock copolymers (○) from FTIR spectra.
- Figure 2.6 ¹³C CP/MAS NMR for (a) blends and (b) diblock copolymers with different 30 compositions (weight ratio).

- Figure 2.7 Logarithmic plots of the intensities of 60 ppm vs. delay time for (a) blends 30 and (b) diblock copolymers with different compositions (weight ratio).
- Figure 3.1 The DSC curves of the (a) linear and (b) four-arm PtBA/PBZZ with different 44 compositions (weight ratio).
- Figure 3.2 The T_g vs. composition curves based on (a) the Gordon-Taylor equation, (b) 45 the Kwei equation for linear PtBA/PBZZ, (c) the Kwei equation for four-arm PtBA/PBZZ, (■) experimental date of the linear PtBA/PBZZ, and (●) experimental date of the four-arm PtBA/PBZZ.
- Figure 3.3 FTIR spectra at room temperature in the 1690-1780 cm⁻¹ region for (a) linear 45 and (b) four-arm PtBA/PBZZ with different compositions (weight ratio).
- Figure 3.4 The fraction of hydrogen bonded carbonyl vs. PBZZ content for (a) linear 46 PtBA/PBZZ (■), and (b) four-arm PtBA/PBZZ (○), from FTIR spectra.
- Figure 3.5 ¹³C CP/MAS NMR for (a) linear and (b) four-arm PtBA/PBZZ with different 46 compositions (weight ratio).
- Figure 3.6 ¹³C CP/MAS NMR Chemical shift of 174 and 127 ppm of blends with 47 different compositions (weight ratio)
- Figure 3.7 Logarithmic plots of the intensities of 127 ppm vs. delay time for (a) linear 47 and (b) four-arm PtBA/PBZZ with different compositions (weight ratio).
- Figure 4.1 The ¹H-NMR spectra of (a) POSS-Cl, (b) POSS-PMMA, and (c) PMMA. 64
- Figure 4.2 The DSC curves of (a) LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) 64 POSS-HPMMA/phenolic blends with different compositions (weight ratio).

- Figure 4.3 The *T_g* vs. composition curves based on (a) the Gordon-Taylor equation, (b) 65 the Kwei equation for POSS-LPMMA/phenolic blends, (c) the Kwei equation for LPMMA/phenolic blends, (■) experimental date of LPMMA/phenolic blends.
- Figure 4.4 The *T_g* vs. composition curves based on (a) the Gordon-Taylor equation, (b) 65 the Kwei equation for POSS-HPMMA/phenolic blends, (c) the Kwei equation for HPMMA/phenolic blends, (■) experimental date of HPMMA/phenolic blends.
- Figure 4.5 FTIR spectra at room temperature in the 2700-3700 cm⁻¹ region for (a) 66 LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) POSS-HPMMA/phenolic blends with different compositions (weight ratio).
- Figure 4.6 FTIR spectra at room temperature in the 1675-1765 cm⁻¹ region for (a) 67 LPMMA, (b) POSS-LPMMA, (c) HPMMA, and (d) POSS-HPMMA/phenolic blends with different compositions (weight ratio).
- Figure 4.7 The fraction of hydrogen bonded carbonyl vs. phenolic content for (a) 68 LPMMA/phenolic (■), (b) POSS-LPMMA/phenolic (●), (c) HPMMA/ phenolic (□), and (d) POSS-HPMMA/phenolic blends (○), from FTIR spectra.
- Figure 4.8 2D IR spectra at room temperature for (a) LPMMA/phenolic blends in the 69 1250-1800cm⁻¹ region, (b) POSS-LPMMA/phenolic blends in the 400-1150 cm⁻¹ region, and (c) POSS-LPMMA/phenolic blends in the 1150-1800 cm⁻¹ region.
- Figure 4.9 2D IR spectra at room temperature for (a) HPMMA/phenolic and (b) 69 POSS-HPMMA/phenolic blends in the 1150-1750 cm⁻¹ region.