Samples(wt%)	Free C=O H-bonded C=O			fb ^a (%)	
	$\nu_{\rm f}(\rm cm^{-1})$	$A_f(\%)$	$\nu_{\rm b}(\rm cm^{-1})$	$A_b(\%)$	
(a)PtBA / PBZZ					
90 /10	1728.1	87.77	1705.1	12.23	8.5
70 /30	1728.2	79.79	1705.3	20.21	14.4
50 /50	1727.2	78.14	1705.9	21.86	15.7
30 /70	1728.3	80.17	1705.2	19.83	14.2
10 /90	1727.1	94.60	1705.2	5.40	3.6
(b)Four-arm PtBA/PBZZ					
90 /10	1731.1	78.36	1704.9	21.74	15.6
70 /30	1731.3	75.45	1705.3	24.55	17.8
50 /50	1731.2	70.32	1705.2	29.68	21.9
30 /70	1731.5	76.01	1705.7	23.99	17.4
10 /90	1731.6	88.63	1705.1	11.37	7.8

Table 3.1. Carbonyl group curve-fitting results of the (a) linear PtBA and (b) four-arm PtBA/ PBZZ blends.

 $\nu_{\rm f}$: wavenumber of free C=O of PtBA; $\nu_{\rm b}$: wavenumber of hydrogen bonded carbonyl of PtBA; A_f: fress C=O area fraction of PtBA; A_b : C=O area fraction of hydrogen bonded PtBA. fb^a : fraction of hydrogen E D bonded PtBA= $(A_b/1.5)/(A_b/1.5+A_f)$.

Table 3.2. Relaxation times, $T_{1\rho}^{H}$, for (a) linear PtBA and (b) four-arm PtBA/PBZZ blends at the magnetization intensities of 127 ppm.

Samples(wt%)	$T_{1\rho}^{H}$ (ms)			
(a)Linear PtBA / PBZZ				
90 /10	12.54 (80%)	7.74 (15%)		
70 /30	11.59 (70%)	10.56 (70%)		
50 /50	10.56 (70%)	9.12(25%)		
30 /70	10.36 (75%)	8.16(20%)		
10 /90	6.85 (75%)			
(b)Four-arm PtBA/PBZZ				
90 /10	10.72 (86.6%)			
70 /30	10.97 (53.3%) 9.25 (26%)			
50 /50	9.98 (90.1%)			
30 /70	9.94 (50.1%)			
10 /90	5.93 (33.3%)	11.88 (66%)		

Pure PBZZ: $T_{1\rho}^{H} = 7.53 \text{ ms.}$

benzoxazine (BZZ) (B-a type) PBZZ (B-a type) Scheme 3.1. The thermal curing of benzoxazines (BZZ).

Scheme 3.2. The schematic representation of hydrogen bonding. (a) inter-association of PtBA/PBZZ blends, (b)intra-association of the pure PBZZ, and (c) inter-association of the pure PBZZ.

Figure 3.1. The DSC curves of the (a) linear and (b) four-arm PtBA/PBZZ with different compositions (weight ratio).

Figure 3.2. The T_g vs. composition curves based on (a) the Gordon-Taylor equation, (b) the Kwei equation for linear PtBA/PBZZ, (c) the Kwei equation for four-arm PtBA/PBZZ, (\blacksquare) experimental date of the linear PtBA/PBZZ, and (\bigcirc) experimental date of the four-arm PtBA/PBZZ.

Figure 3.3. FTIR spectra at room temperature in the 1690-1780 cm⁻¹ region for (a) linear and (b) four-arm PtBA/PBZZ with different compositions (weight ratio).

Figure 3.4. The fraction of hydrogen bonded carbonyl vs. PBZZ content for (a) linear PtBA/PBZZ (**•**), and (b) four-arm PtBA/PBZZ (**•**), from FTIR spectra.

Figure 3.5. ¹³*C CP/MAS NMR for (a) linear and (b) four-arm PtBA/PBZZ with different compositions (weight ratio).*

Figure 3.6. ¹³C CP/MAS NMR Chemical shift of 174 and 127 ppm of blends with different compositions (weight ratio).

Figure 3.7. Logarithmic plots of the intensities of 127 ppm vs. delay time for (a) linear and (b) four-arm PtBA/PBZZ with different compositions (weight ratio).

References

- [1] Grayer, V.; Dormidontova, E. E.; Hadziioannou G. Macromolecules 2000, 33, 6330.
- [2] Yamaoka, I.; Kimura, M. Polymer 1993, 34, 439.
- [3] Morton, M.; Helminiak, T. E.; Gadkary, S. D.; Bueche, F. J. Polym. Sci. 1962, 57, 471.
- [4] Simms, J. A.; Spinelli, H. J. In *Macromolecular Design of Polymeric Materials*; Hatada,
 K.; Kitayama, T.; Vogl, O.; Eds.; Marcel Dekker: New York, **1997**, 379.
- [5] Ning, X.; Ishida, H. J. Polym. Sci. Chem. Ed. 1994, 32, 1121.
- [6] Ning, X.; Ishida, H. J. Polym. Sci. Phys. Ed. 1994, 32, 921.
- [7] Makhaeva, E. E.; Tenhu, H.; Khokhlov, A. R. Macromolecules 1998, 31, 6112.
- [8] Kirsh, Yu. Ye. Polyvinylpyrrolidome and others poly(N-vinylamides); Nauka: Moscow, 1998.

ALL DATE

- [9] Khokhlov, A. R.; Kramarenko, E. Yu.; Makhaeva, E. E.; Starodubtsev, S. G. Theory. Macromol. Chem. Theory Simul. 1992, 1, 105.
- [10] Matyjaszewski, K.; Miller, P. J.; Pyun, J.; Kickelbick, G.; Diamanti, S. Macromolecules 1999, 32, 6526.
- [11] Cortazar, M.; Pomposo, J. A. Macromolecules 1994, 27, 252.
- [12] Serman, C. J.; Painter, P. C.; Coleman, M. M. Polymer 1991, 32, 1049.