第一章 緒論

催化反應在我們日常生活中扮演了很重要的角色。在生物體內,各 式各樣的蛋白質經由不同的催化過程而建構許多複雜的化學反應,維持 著生命所必須的種種功能。此外,光合成反應(Photosynthesis reaction)及 多數可被應用的化學反應均屬於催化反應。

因為具有快速達到化學平衡的功能,所以在工業上,許多的催化反應已經被應用多時。1814年,Kirchhoff首先使用酸將澱粉水解成葡萄糖。 隨後,陸續有各式各樣的金屬被應用在反應中。1817年,H. Davy利用鹽 酸在空氣中與金屬 Pt 和 Zn 反應產生些微火焰做為照明工具,並曾在 19 世紀初期流行一時。近代以來,哈伯法製 NH₃ 已是工業上最重要的反應 之一,利用金屬 Fe 的催化可以使得在空氣中極難產生的 N_{2(g)}斷鍵反應, 式 (1-1),在金屬 Fe 上進行催化作用產生 N 原子,此反應的活化能大幅 降低至 12 kJ/mole。根據 Gabor A. Somorjai 和 G. Ertl¹, NH₃ 在金屬 Fe 上

$$N_{2(g)} \rightarrow 2N_{(g)}$$
 Ea = 1,120 kJ/mole (1-1)

的催化反應及其可能的反應位能圖,分別可用下列式子及圖 1 表示。其中『*』表示金屬表面的活化位置,而『分子_(ad)』表示吸附在金屬上的分子或原子。

$$H_2^{} + * \rightarrow 2H_{(ad)} \tag{1-2}$$

$$N_2 + * \to N_{2(ad)} \tag{1-3}$$

$$N_{2(ad)} + * \rightarrow 2N_{(ad)} \tag{1-4}$$

$$N_{(ad)} + H_{(ad)} \rightarrow NH_{(ad)}$$
(1-5)

$$\mathrm{NH}_{\mathrm{(ad)}} + \mathrm{H}_{\mathrm{(ad)}} \to \mathrm{NH}_{\mathrm{2(ad)}} \tag{1-6}$$

$$\mathrm{NH}_{2(\mathrm{ad})} + \mathrm{H}_{(\mathrm{ad})} \longrightarrow \mathrm{NH}_{3(\mathrm{ad})} \tag{1-7}$$

$$\mathrm{NH}_{3(\mathrm{ad})} \to \mathrm{NH}_{3(\mathrm{g})} \uparrow \tag{1-8}$$

長久以來,多種金屬被用來取代 Fe 做為 NH₃ 的合成,並進而測驗其 轉化效率。A. Nielson²和 Ozaki³分別以理論計算與實驗的方式研究過渡金 屬對於 NH₃ 的生成效率,他們發現 NH₃ 的生成效率與其 d 軌域的電子數 目有極大關係,其 NH₃ 生成效率隨著電子數目的增加而呈現先增加後減 少的趨勢。因此,對於哈柏法製 NH₃,因為其在工業上的重要,在過去 50 年已有多篇報導研究 N₂與 H₂在不同金屬表面產生 NH₃論文。但是對 此催化反應之逆反應,式 (1-9),其有關的動力學研究卻是相對較少。

NH₃+ 金屬 → 中間產物 → H₂ + N₂ + · · · (1-9) 因此,研究 NH₃ 在金屬表面的催化過程,中間產物在反應過中所扮演的 角色,將更能幫助我們對哈柏法製 NH₃機制的瞭解。此外,由於 NH₃在 金屬表面分解後⁴的主要產物是 H₂及 N₂,而 H₂為燃料電池 (fuel cell) 的原料,因此,選擇適當的催化劑進行 NH₃的分解,是 NH₃應用在燃料 電池上的一個新挑戰^{5,6,7},因而對 NH₃分解反應細節之瞭解將有助於催化 劑的選擇。

V.I. Shvachko⁸ 和 M. Weiss⁹ 分別在 1964 年和 1979 年利用質譜技術 (Mass-spectrometry)偵測 NH₃ 在金屬 Pt 和金屬 Fe 表面熱分解後的產物, 他們皆認為 NH 自由基是 NH₃ 催化過程中的主要產物。其它研究群^{10,11,12} 分別利用 XPS、 AES、UPS、 LEED 等表面科學技術,探討不同金屬表 面結構,指出了多種中間產物的出現。但是對於這些產物直接的光譜證 據或是在催化過程中所扮演角色的探討卻是缺少的。1981 年,林明璋教 授研究組¹³ 利用雷射誘發螢光技術 (Laser induced fluorescence) 成功地 在氣相偵測到 NH₃ 被金屬 Pt 及金屬 Fe 催化時所產生的 NH 自由基,但他 們並未偵測到 NH₂ 自由基之生成。此研究中發現 NH 螢光訊號會隨著加 入 H₂ 的增加而呈現先增加而後減少的趨勢,其螢光訊號最大可增至無 H₂ 時的 10 倍左右,說明了 H₂參與金屬表面的反應,對於 NH 自由基從金屬 Pt 表面的脫附作用有重要的影響。

2003年,Hideki Matsumura¹⁴研究群利用雷射誘發螢光及質譜技術對 於金屬W的催化NH₃分解作用作了詳細的探討,他們認為NH₂自由基為 催化過程中的一級產物(primary product),是直接由催化金屬表面產生, 而NH自由基可能是二級產物(secondary product),並認為NH自由基的 產生可能是自由基與自由基在氣相反應而來,而不是由金屬的表面脫附 直接產生。文中並提出證據說明NH₂自由基為一級產物,他們計算出在 相同的實驗條件下(2300 K), NH₂自由基的產量約為 NH 自由基的 10 倍, 且隨著 NH₃ 的濃度提高, NH₂ 的產量呈現線性的增加, 而 NH 的產量是 呈現二次方增加。此外, 他們在 NH₃ 裂解的過程中, 觀察到 H 原子的產 生, 並比較了 H 原子從金屬表面脫附的活化能與 NH₂自由基脫附的活化 能,發現兩者的活化能均為 150 kJ/mole。由此推論 NH₂自由基為一級產 物, 但這個論點與林明璋教授研究組在金屬 Pt 與金屬 Fe 上的研究有顯著 差異,雖然不同金屬間的催化過程不能相提並論, 但也顯示了中間產物 的生成在整個催化的反應中, 可能是隨著金屬與金屬的不同而有顯著的 差異。

在本研究中,我們選擇了有最高熔點的金屬 W 及化性較為穩定的 Pt/Rh 合金做為研究對象,因為金屬 W 取得方便而價格便宜,且其可控制 的溫度範圍最大,而 Pt/Rh 合金雖然可用來做實驗的溫度範圍遠低於金屬 W,但卻是製烷工業上一個很重要的催化劑。本實驗利用雷射光解與雷射 誘發螢光法,在不同的金屬溫度、壓力及濃度下偵測 NH,被催化過程中 的可能產物 NH 與 NH₂自由基,並試著討論 NH₃在金屬表面分解的動力 學。

圖 1:NH₃在金屬 Fe 上分解的位能圖(kJ/mol)

第二章 實驗原理

在本實驗中,我們的目的是要偵測 NH₃ 催化後的產物-自由基,由 於自由基的活性很大,其反應速率極快,所以必須用快速的量測技術 加以研究。利用測量自由基濃度隨著不同反應條件的變化,可得到相 關的參數,例如反應的速率常數值或活化能等。常用的自由基產生的 方式有閃光光解法(flash photolysis),氣流管法(discharge flow tube),雷 射光解法(laser photolysis),…等等。以下,我們就簡單介紹實驗室中 常用來產生自由基及偵測自由基的方法。 -.自由基產生方法:

閃光光解法在 1950 年由 Norrish 和 Porter¹⁵發展出來,它是利用光解 (Photodissociation)的方式來製造自由基,由於是瞬間產生自由基,且自由 基生命極短,故需要一個反應很快的偵測器,以得到較佳時間解析度(time resolution)的時間輪廓(time profile);因自由基僅在反應槽中心的部份被光 解產生,並且利用即時(real time)的偵測方法,自由基尚未擴散至反應器 壁即被偵測,故不會有異相反應的限制。但閃光光解需要適當的前驅物 (precusor)與光源配合才能成功的製造出想獲得的自由基,若系統中另一 個反應物也會吸收此光源所發出的光子而產生不必要的自由基,將會使反 應複雜化。

(2) 氣流管法(discharge flow tube)

氟流管法首度由 Small Wood¹⁶ 在 1929 年應用在自由基動力學的研究 上。氣流管的方法是指利用放電(electric discharge)分解前驅物來產生自 由基,然後再參與反應。此方法是控制管內氣體在穩定態條件下,由測 量自由基濃度和反應距離(相當於反應時間)的衰變關係求得速率常數。 而"flow"則是指利用大量且安定性高的氣體(如氦氣,He)當做載流氣體 (carrier gas),由氣流管前端不斷流入,帶動反應物,然後被末端的幫浦 抽走。當這些自由基進入氣流管後可直接參與反應或經由化學反應產生 其它我們要的自由基再參與反應。氣流管的好處是利用化學反應來產生 自由基,產物的靈活度大,因自由基產生並進入氣流管後,被大量的載 400000 流氣體所稀釋,而易於控制其二次反應(secondary reaction)的影響。此 法的缺點是自由基易在管壁上發生異相反應(heterogeneous reaction),此 **異相反應可能會造成所測得之速率常數值有嚴重的誤差。此外,濃度梯** 度和壓力梯度也是需要考慮的問題。上述的種種原因限制了氣流管法只 能在較低壓下進行,壓力 10 Torr 以上的數據偏差過大,不容易獲得。氣 流管的基本構造,包含以下各部份:(1)原子或自由基產生器;(2)氣流管 本體和活動進氣管;(3)偵測系統。氣體在氣流管內維持穩定的黏滯流。 氣體的流速一定,當自由基與反應物在活動進氣管末端相混合並開始反

應。若移動活動進氣管的位置,即可改變活動進氣管末端與偵測區的距 離,改變反應距離也就改變了反應的時間。測量自由基的訊號與反應距 離的關係,即可求得反應速率常數。

(3) 雷射光解法(laser photolysis)

由於雷射的出現,使我們漸漸捨去閃光燈而採用雷射做光源。雷射光 解的原理與閃光光解原理是相同的,但雷射具有高能量、高光子密度、 單光性和波長可調性等特性,使我們可以選擇不同的波長光解適當的前 驅物得到想要的自由基,可避免產生不必要的其他自由基干擾反應。雷 射具有高亮度(brightness)、單光(monochromaticity)、高方向性以及高相 干性(coherence)的特性,比較容易選擇出適當波長的雷射光,來有效地 光解前驅物而產生所需的自由基,避免產生不必要的自由基來干擾。而 脈衝雷射的高方向性及較短的脈衝寬可降低散射光並縮小觀測時間,目 前普遍使用的雷射其脈衝脈寬約為10 ns,故可以用在快速反應的研究。 二.自由基的偵測

自由基值测的方法很多,如:吸收光譜法(absorption)、雷射誘發螢光法 (laser induced fluorescence)、共振螢光法(resonance fluorescence)、質譜法 (mass spectroscopy)、…等等。質譜法雖然極為靈敏且可以同時看到所有 的反應物與生成物的消長,但由於其破壞性的偵測法,偵測物種的信號可 能有部分來自其母體的貢獻而無法分辨,則是此偵測技術的最大缺點。吾 人實驗室中常用之自由基值測的方法有三種: (1)吸收光譜法 (absorption)、(2)共振螢光法(resonance fluorescence)、(3)雷射誘發螢光法 (laser induced fluorescence)。

(1)吸收光譜法

其原理是利用待測物(sample)的吸光特性來做作為偵測的依據,先量得 反應槽在未置待測物時的通過光量,再量得反應槽置有待測物時的通過光 量,依據比爾定律(Beer's law),即可求得待測物的濃度。此方法原理簡單, 但是在大量的背景光下,欲精確量出微小的變化並不容易,故靈敏度不 高,誤差也較大。

當被激發分子鬆弛(relaxation)回到較低能階時,會以光子釋放出過多能 量。在氣態中,其行為如獨立的個體且通常僅產生少數特定波長的輻射。 一般放射光譜(emission spectrum)有三種類型:線光譜、帶光譜以及連續 光譜。由特定光源產生的輻射線,可經由放射光譜鑑定其特徵。線光譜是 由一系列狹窄的尖峰所組成,代表原子中不同軌域的躍遷。帶光譜則為分 子鬆弛時放射光譜的特性。

(2) 共振螢光(Resonance Fluorescence)

螢光可發生於氣相、液相及固相的化學系統。最簡單之一種螢光是由 稀薄的原子蒸氣所呈現。例如:蒸氣態的鈉原子基態的 3s 電子(²S)可以吸 收波長 589.0 nm 及 589.6 nm 之輻射而被激發。約 10⁻⁵ 到 10⁻⁸ 秒之後,電 子回到基態,同時向各方向放出與此二波長相同之輻射。此種螢光是吸收 輻射後,而再發射出的波長與用來激發輻射的波長相同,故稱為共振螢 光。共振螢光法與傳統的連續式光譜比較,其優點是共振燈會放射出特定 的輻射譜線,且僅有特定的分子被激發,而不會激發其他的分子,因此具 有特殊地專一性,不易受其他分子的干擾。我們偵測共振螢光的強度,就 可以知道系統內自由基濃度的變化。

(3) 雷射誘發螢光法

雷射誘發螢光(Laser Induced Fluorescence 簡稱 LIF)為一研究光譜以了 解分子結構的重要技術,基本原理是以雷射激發待測分子或自由基至電子 激發態(electronic excited state),再觀測分子或自由基回到基態時放出的 螢光。在激發光源的強度維持一定時,所偵測到的螢光訊號的大小與電子 激發態的分子或自由基濃度成正比,也就和電子基態的分子或自由基濃度 成正比,所以可做為測量分子或自由基濃度的分法。利用雷射誘發螢光法 取得數據或光譜的方法有兩種:激發掃描(excitation scan)以及螢光掃描 (fluorescence scan)¹⁶。激發掃描如圖(2-1)所示,讓不同波長之雷射掃描分 子的吸收帶,以濾光片(interference filter 或 cut-off filter)選擇偵測分子的部 分或全部的螢光,每當一個吸收線符合雷射頻率,而且躍遷機率不為零 時,分子就會吸收雷射光而躍遷至激發態然後產生螢光,所以激發掃描光 譜與吸收光譜非常類似。但不同的是,吸收光譜是在一片強的背景光下偵 測分子吸收產生微小的訊號變化,很容易因為外來的干擾造成訊號跳動變 大而影響偵測;而激發光譜是在無背景光的干擾下偵測分子發出的螢光訊 號,因此,激發光譜較吸收光譜靈敏。螢光掃描是雷射頻率固定在特定位 置,然後偵測其激發至特定能階後所放出的螢光,通常是有較強吸收的譜 線,然後掃描單光儀(monochromator)得到不同波長的螢光放光,利用螢光 掃描光譜可得分子在基態(或較低電子能態)的光譜性質。若分子的振動弛 緩速率(vibrational relaxation rate)比螢光放光速率快,則無論雷射光將分子 激發到電子激態的任一振動能階,分子都會快速的弛緩到電子激態的振動 基態再放射螢光。相反地,若分子電子激態的振動弛緩速率比螢光放射速 率慢,則偵測到的螢光訊號將是由雷射光將分子激發到電子激態的振動能 階(v['] ≥0)躍遷到較低電子態或電子基態的振動能階產生。雷射誘發螢光 411111 法的優點在於:(一)有很好的靈敏度,與吸收光譜比較靈敏度可以達其 1000 倍以上;(二)選擇性好,可以分辨不同種類的分子;(三)對所偵測的 物質不會產生破壞性。但雷射誘發螢光法亦有其缺點:(一)有些分子其電 子激態並不穩定,容易經由 ISC、預分解(predissociation)、解離(photodissociation)的途徑解離而不發螢光或是電子激態以無放光的弛緩途徑回 到基態,因而限制了此雷射誘發螢光法適用的對象;(二)目前雷射光的波 長在可見光及近紫外光區的可調性是連續的,但在真空紫外光區和紅外光 區可調性卻有限,因此對吸收波長在真空紫外光區的分子而言,雷射誘發 螢光法便難以適用。

圖 2-1:(A) 激發光譜 (B) 螢光光譜

第三章 實驗系統

一、 前言

本研究所使用的雷射光解-雷射誘發螢光系統是由雷射光源、反應系 統與自由基產生系統、真空系統、溫度控制與偵測系統及訊號偵測與處理 系統組成。而實驗的主要部分是利用金屬催化 NH, 產生自由基, 並以偵 测雷射做為激發光源取得自由基螢光訊號,隨後並搭配光解雷射系統做濃 度上的校正。如圖 3-1 所示為實驗整體之儀器架構,圖 3-2 為反應槽本體 之細部組成。實驗是在一體積約為 250ml 之 Pyrex 玻璃反應槽中進行,將 自由基前驅物 NH3 由載流氣體(He, N2)帶入反應槽內, 再利用機械幫浦 將其從反應槽末端抽走,使得此反應混合物在反應槽中能保持緩慢流動的 狀態(流速約為 2-15 cm s⁻¹); 在實驗進行前,將長 38 cm 的 W 絲或 Pt/Rh 411111 合金線繞成線圈,放置於離偵測雷射光約 1-2 cm 的位置,並利用直流電 源供應器將金屬線圈加熱到所需溫度,當反應氣體通過高溫金屬後生成可 能產物自由基,自由基在系統中經由幫浦的抽氣而流向偵測區移動,並在 此被偵測雷射由電子基態激發至電子激態,當其回到電子基態時會發出螢 光,我們在垂直於偵測雷射的方向,以一光學鏡組收集此螢光後送入光電 倍增管(photomultiplier tube)加以轉換放大為電壓訊號,再將此訊號傳送至 閘式積分器(gated integrator)累積、平均後再經由 IEEE-488(GPIB)介面 傳送到電腦作數據的分析與處理。而把自由基螢光訊號校正為真實濃度

時,我們利用脈衝/延遲產生器(pulse/delay generator)控制偵測雷射與光解 雷射的時間差,由光解雷射光解一已知濃度之前驅物所產生的自由基螢光 強度對自由基濃度做圖。整個實驗的進行是由一台個人電腦經由 Asyst 語 言所寫成的程式控制。以下各節分別詳述各部份的裝置與原理。

二、光解及偵測光源

(1) 光解雷射系統

準分子雷射(Excimer laser) - 光解光源

準分子雷射是紫外光區高輸出高效率雷射,以波長 193 nm 的準分子雷 射為例:利用惰性原子(Ar)和鹵素(F₂)混合,加以緩衝氣體(Neon、Helium) 並施加高電壓(17~23 kV)來激發原子,使形成激發態的 ArF*分子後放出 波長 193 nm 的雷射光,然後回到基態。由於基態 ArF 分子非常不穩定, 其存活期約為 10⁻¹²-10⁻¹³ 秒即分解成個別 Ar 或 F 原子,這稱為無束縛的 遷移(bound free transition)。由於無束縛的遷移不存在激態的分子 ArF*。 由此 ArF 很容易處於居量反置(Population Inversion)的狀況,可得到很高的 雷射增益(gain),有利於雷射光的產生,其位能圖如圖 3-3 所示。一般的 準分子雷射常用的氣體組合及其波長有 ArF(193 nm)、KrF(248 nm)、 XeCl(308 nm)或 XeF(351 nm)等等。緩衝氣體的功能為改善氟體放電的均 匀性、平衡氟體溫度…等等。表 3-1 為 Lambda Physik 公司出品的 Lextra 50 準分子雷射相關參數表。本實驗所選用雷射波長為 193 nm,其所使用的 氣體為 F₂/He(5% Mixture), Ar (99.997%)及 Ne(99.995%)。

(2)偵測光源-釹釔鋁石榴石雷射抽提染料雷射(Nd-YAG laser pumped dye laser)

Nd-YAG 雷射為固態雷射,其活性介質(active medium)是參雜(doped) 在 yttrium aluminum garnet (YAG) 晶體內的 Neodymium ion (Nd³⁺)。當利 用 Xe 閃光燈來抽提(pump)時,活性介質中的 Nd 離子吸收光子,而被激 發至 E4 能帶,此能帶並不是單一能階,而是一連串單一能階所組成的, 如圖 3-4。當 Nd 離子由 E₄ 快速降至 E₃ 時,是以無放光 (radiationless) 的弛緩釋出能量。因而促使雷射的活性介質發熱,同樣地由 E_2 傳遞至 E_1 通常亦為不放光傳遞。 E_2 能階的居量(population)與各位能能階遲緩速率 皆依據活性介質的溫度而定,因此使用水冷方式來移去多餘的熱,同時消 除周圍的熱能來減少下層能階的居量。主要的雷射光是產生於⁴F_{2/3}至 4 I_{11/2}的受激放光(stimulated emission),所發射為 1064 nm 的近紅外光。 為了加強雷射激光的能量輸出,在腔內振盪器與全反射鏡之間加入一組Q 開關(Q-Switch),其組件包含一個偏光鏡(polarizer), 普客爾盒(pockel cell) 及1/4 波片(quarter-wave plate),如圖 3-5 所示。它的基本原理是利用 pockel cell 中單軸晶體(KDP)的線性電光效應(electro-optical effect),在晶體受到 高電壓時,會使得通過之光束的偏振狀態(polarization)改變,因而利用此 原理可得到最大的增益(gain)。藉瞬間高電壓(本實驗為 3600 kV)加於 cell,可達到接通或切斷腔內振盪光路的開關作用。Q開關器中的"Q"

表示雷射共振腔的品質,當Q開關關閉時,Q-switch阻止了內部光束回 授(Feedback)而保持迴路增益值為零,直到儲存在活性介質中的能量達到 最大值為止,如此產生最大的居量反轉。此時打開 Q 開關時迴路增益值 迅速上升到最大值,乃因迅速接通了光子往返的迴路而瞬間消耗累積的分 佈居數反轉(population inversion),因而產生短時間高功率的雷射輸出。當 pockel cell 加入 3600 V 時迴路接通,產生雷射光。若未加電壓時,則迴 路切斷並未有雷射光產生。Nd-YAG 雷射所發出波長為 1064nm 的雷射 光,在進入倍頻 KDP 晶體組(SHG, THG)後,波長被倍頻轉換為 532nm, 355nm。由於經過倍頻晶體出來的光與原波長的光混在一起,所以必須藉 助分光鏡(dichroic mirror)組合來選擇所需之波長的雷射光,以用來抽提 染料雷射。本實驗使用 Continuum 公司出品的 NY-61 YAG 雷射及 ND 60 44111111 染料雷射。圖 3-6 為 NY-61 的內部結構造圖。我們選擇 NY-61 產生的波 長為 532 nm 的雷射光作為染料雷射抽提光源。染料雷射其活性介質為一 定濃度的有機染料溶液。當此溶液中的染料吸收抽提雷射的能量,而使基 態的染料分子躍遷至高能階,在足夠能量的抽提光源激發下達到分佈居數 反轉而形成雷射振盪。由於染料分子的振動-轉動能階多且密,故其放射 光譜帶非常寬,因此具有輸出波長可以在較大範圍內連續可調的特點。若 使用多種染料並配合倍頻(doubling)或混頻(mixing)的技術,將可獲得從近 紅外光至紫外光任一波長的雷射光,因此染料雷射在雷射光譜研究上是不

可或缺的。圖 3-7 所示為本實驗所使用之 Continuum ND-60 染料雷射構 造。由 NY-61 產生的波長 532 nm 的雷射光,進入 ND-60 後先經過第一個 分光鏡(beam splitter,1),將 532 nm 光分成兩束。其中一束為振盪光束 通過一組透鏡聚焦,從側面激發共振染料槽(oscillator dye cell, 14)內染 料,再配合光栅和稜鏡,以選擇所需雷射光的波長。另外一束光為放大光 束,當放大光束通過第二個分光鏡(2)時分成兩束光。其中一束光為前 置放大光束,通過一組透鏡聚焦激發前置染料槽(preamplifier cell, 19)中 的染料,以增加輸出染料雷射的增益(gain),另一穿透光束為放大光束, 經由稜鏡和一組凹凸透鏡聚焦,從側面進放大染料槽(amplifier dye cell, 21)與前置染料槽輸出的窄頻寬染料雷射光重合,進而產生高能量的雷射 光束。本實驗所用來偵測 NH 自由基及 NH, 自由基的染料分別為 LDS698 411111 及 RG610,前者經倍頻後可產生 336.1 nm 的波長來偵測 NH 自由基,後 者可產生 597.7nm。表 3-3 及表 3-4 分別為兩種染料 LDS698 及 RG610 的 基本性質。由於在實驗操作中,染料雷射輸出之波長並非維持不變,可能 由於溫度或其他因素影響硬體造成最大放光位置發生微位移(約+ 0.005nm),為了確保有最好的 S/N 值,因此在實驗進行中必須加以微調。 (3) 倍頻器

本實驗所使用的倍頻器是 Continuum 公司生產 UVX-1 Harmonic Generation,其中包含控制器(controller)和偵測盒(detector box)兩部分,並

且與染料雷射 ND60 相連接。裝置圖如 3-8 所示:當 Dye Laser Beam 經過 三個直角稜鏡後,進入 DCC 倍頻晶體後即產生倍頻之雷射光,再經由 Pellin-Broca 稜鏡 (PB-1)將 fundamental beam 和 doubling beam 分離。由 於染料雷射進入 DCC 倍頻晶體的角度必須隨波長的不同而有所調整,在 此以轉動改變 DCC 角度為之,但也使得倍頻後輸出之雷射光之方向改 變。所以在染料雷射入射前,藉由 QCC crystal 的輔助,使得輸出之倍頻 光方向不隨波長而變。

偵測盒中包含許多光學元件,其功能如下:

(a) QCC crystal:QCC 是一個石英晶體,通常與 doubling crystal
(DCC) 相連接。因為 DCC crystal 的角度可變調,所以當角度改變時,
fundamental beam 的入射位置將會隨之改變。即所謂的"Walk"。因此,須
藉由 QCC crystal 輔助將 laser beam 位置修正至原位。

(b) DCC crystal : doubling crystal 是一個 KD^{*}P(Potassium Dideuterium phosphate KD_2PO_4) 晶體。

(c) Attenuation prism: 是一小型的 Glan-taylor prism,可以藉由它來調整雷射進入 dual photodiode 的能量。

(d) Cylindrical lens:可以將雷射聚焦在某一平面上。

(e) Filters:可用來消除不必要的光源,且只允許倍頻雷射通過,使得 dual photodiode 可偵測到正確的波長。 (f) Dual photodiodes:由兩個小型的 photodiode 組成,彼此十分靠近。 cylindrical lens 將雷射光聚焦在兩者之間時,每 photodiode 將會偵測到 laser beam 的其中一邊之能量。藉由兩邊能量差,使得 tracking system 得 以追蹤波長的變化。

(g) ID photodetector:可用來決定 tracking system 是否具有足夠的能量 去追蹤波長的變化。Beam splitter 的兩面可將雷射分出兩道光,一道光進 入 Dual photodiodes,另一道光則進入 ID photodetector。如果染料雷射的 能量降至某一程度時,則 UV 信號使得 Dual photodiodes 無法偵測,這時 ID photodetector 將會發出信號使得 tracking system 停止自動追蹤。 Autotracking 的運作原理為:當 doubling crystal 的角度不恰當時,使得 laser beam 的某一邊能量衰退,造成雷射兩邊能量不同。此時藉由 Dual 400000 photodiodes 偵測 laser beam 兩邊的能量差, 幫助 tracking system 決定 doubling crystal 調整之方向,如圖 3-9 所示。要特別注意的是 Dual photodiodes 的位置須位於雷射焦點之前,否則 doubling crystal 將會轉往 相反方向。所以 autotracking 是否能正常運作,除了染料雷射的能量之外, dye laser 之 beam quality 和 alignment 以及 Dual photodiodes 的位置也是 非常重要。18

三、反應系統

系統中流量最大且不參與反應的氣體,稱之為載流氣體(carrier

gas),必須藉助它將各反應物帶入反應槽中。它也決定了系統的壓力、溫度、與流速等物理性質。一般載流氣體必須具備安全性高,擴散性佳及良好的導熱度等特性,He為一極佳的選擇。He 是以高壓儲存於鋼瓶中,利 用調壓器(regulator)將輸出壓力控制在 2 大氣壓下,再利用針閥(needle value)控制流量。系統的管路大部分是以 1/4 吋的不銹鋼

(stainless-316)管與連接頭(Swagelok fittings)所組成。管路與石英槽之間則 是利用可彎曲鋼管(flexible tube)與便捷 O-形環連接頭(Ultratorr fitting)連 接。反應物如 NH₃(ammonia)則是與 N₂(nitrogen)混合配置不同比例的混合 氣體,分別儲存在 22 升的玻璃球中,再利用 1/4 吋的鐵弗龍管與系統相 連。最後與載流氣體混合並流入反應槽中。 (1) 反應槽

反應槽約 15 cm 長,直徑 5 cm,由派瑞克斯(Pyrex)玻璃製成容積約 250 cm³,一端為進氣口,另一端則為出氣口;反應槽的溫度由一K型熱 電偶(OMEGA,K-type thermocouple)溫度計所量測,此熱電偶是由反應 槽下方伸入,其尖端位於反應區(偵測雷射光)下方約 3 cm 處,避免催化 金屬高溫所產生的熱輻射直接照射,造成所讀到的溫度是由高溫金屬熱輻 射所產生,而不是氣相的溫度。於實驗時,為避免系統器壁因金屬加熱時 溫度過高而變形,我們利用 COCONO 公司生產的恆溫冷浴循環器 (BL-20, Low Temperature Bath/Circulator)做為冷卻循環水。此外,反應槽

接了四隻互成 90°的玻璃管臂(arm),做濃度校正時,光解雷射及偵測雷 射由此進入反應槽,並且使兩道光線互相垂直並交錯於系統中間;玻璃管 臂末端貼上的是石英片(S1 UV)視窗(Window),角度約 31.5°(Brewster's angle),其作用是使入射雷射光的穿透率最大,反射量最少,以减少散射 光; 雷射光離開系統的兩根管臂末端裝有塗黑的牛角光陷(light trap)收集 反射光,以防止雷射光散射造成的雜訊影響訊號的穩定度;另外管臂內裝 有阻光片(baffle)可降低雷射散射光對螢光訊號的干擾;此外,反應槽外部 均被塗黑,以防止光線的反射,並以不透光材質的布層層包裹,阻絕非訊 號光源的干擾。反應槽內的氣體是利用機械幫浦抽取使其流動,而反應槽 內之正確壓力讀數,是由 0.000-10.000 Torr 和 0.0-1000.0 Torr 兩組電容 式絕對壓力計(MKS Baratron 122A)來量測,並配置自動切換頻道讀數計 411111 (MKS PDR-C-2 power supply / readout)分別讀取兩壓力計之壓力,另有 一組 10.0 Torr 的電容式相對壓力計,用於校正流量計或以用 $\Delta P/\Delta t$ 法测 量反應物的流量時使用。載流氣體氮氣和 NH, 的混合氣體的流量(flow rate) 均使用 Tylan 公司生產的質量流量計測量,依流量需求分別有 10 SCCM (SCCM 為 STP cc/min, STP 為標準狀況)、100 SCCM 及 1 SLM (SLM 為 STP liter/min)三種規格。流量計測量前必須先作校正,其校正誤差約在3 %以內。視需求選擇下列三種其一來作校正:溼式測量儀法(Wet test meter, 適用的流量大於 100 SCCM); 氣泡校正法(Bubble calibration, 適

用的流量小於 100 SCCM,但大於 10 SCCM);以及定容下壓力對時間 變化率法(適用的流量小於 10 SCCM)將其分別概述於下:

(a) 溼式測量儀法與氣泡校正法

均屬於利用排水測氣的方法,測量流出氣體隨時間的變化,再換算為 STP 標準狀況。

$$F = (dV/dt) \times (P - P_s) / 760 \times (273.15/T)$$
 (3-1)

其中F表流量(STP cc/sec), dV/dt 表體積變化率(cm³/s), P 表大氣壓力 (Torr), P_s表室溫下水的飽和蒸汽壓(Torr), T 表室溫(K)。

(b) 定容下壓力對時間變化率法(dP/dt法)

其原理為將一定流量的待測氣體通入一已知體積(V)之玻璃球中,量測該 玻璃球壓力 P (Torr)隨時間 t (sec)之變化率,即 d P / d t 值,再參考當時的 室溫 T(K),修正後可得在標準狀況下的氣體流量 F(cc/s)。公式表示如下:

$$F = (dC / dt) \times (V / C) = (dP / dt) \times (V/P)$$
(3-2)

V 為玻璃球體積,C 為待測物之濃度,P 為平均壓力,dP/dt 即是已知玻 璃球體積內壓力隨時間的變化;若以 STP 為標準,則可轉換為:

$$F = (dP/dt) \times (V/760) \times (273.15/T)$$
 (3-3)

再乘上混合比例因子(factor),可求得該待測物的流量 F_{sample} 。

$$F_{sample} = F \times factor$$
 (3-4)

(2) 產物及反應物的流量

為了不讓反應物與產物在反應槽內累積,所以實驗在適當之流速下進 行,載流氣體的流速必須夠快,以避免前一發光解雷射所產生之自由基被 偵測到或繼續反應而干擾所觀測的反應,若光解雷射光束通過系統中心時 的直徑為5mm,則系統流速必須至少為5mm/pulse,雷射及儀器均控制其 取點重覆率為5Hz,所以系統的總流速至少必須為2.5 cm/sec,而流速 v 的計算公式如下:

$$v = (1/\pi r^2) \times (760/P_{sys}) \times (T_{sys}/273.15) \times F_t$$
 (3-5)

 F_t 為系統氣體總流量(STP cc/s), T_{sys} 為系統溫度(K), P_{sys} 為系統壓力 (Torr), πr^2 為反應槽截面積(cm²), v 為系統氣體的平均流速(cm / sec)。

(3) 反應物與自由基濃度的估算

由於本實驗利用金屬催化得到之自由基螢光訊號無法直接換成濃度,因此必須藉助光解系統的輔助來確認濃度。而以下說明利用光解來得到自

由基濃度的方法。至於螢光訊號與濃度間的校正,將在第四章討論。在 反應系統中,各反應物之濃度是由反應槽內的溫度T_{sys}(K)和壓力P_{sys}(Torr) 及流量等參數來計算。例如氣態反應物濃度[sample]可以用莫耳分率的關 係式表示,公式如下:

$$[\text{sample}] = (F_{\text{sample}}/F_{\text{t}}) \times (P_{\text{sys}}/T_{\text{sys}}) \times 9.66 \times 10^{18} \text{ molecule cm}^{-3} \qquad (3-6)$$

其中 F_{sample} 和 F_t 各代表樣品流量和系統氣體總流量。而光解產生之自由 基的濃度則由下式計算: $[radical]_o = \Phi \times \sigma_{sample} \times F \times [sample]$ (3-7)

 Φ 為量子產率(quantum yield), σ_{sample} 為吸收截面積(absorption cross section), F表光解雷射的光子密度(fluence, photons/cm²)。需由所量測的 雷射能量及其截面積計算得到。計算方式如下:

$$F = (E_L / E_p) \times (1 / \pi r^2)$$
 (3-8)

r是進入反應槽雷射光束的半徑(cm)

E₁ 是進入反應槽雷射的能量(J),用能量計測量的。

 E_p 是每個入射光子的能量(J/photon)。

四、溫度測量及控制系統

整個系統是由 C Type 熱電偶線 (W-5%Re/W-26%Re)、OMEGA 公 司所產微型溫度補償器 (Miniature Cold Junction Compensator)、三用電表 (KEITHLEY AUTORANGING MULTIMETER)及直流電源供應器 (DC Power Supply)所組成,利用電焊機將 C Type 熱電偶線與催化金屬 (W 絲 及 Pt/Rh 合金線)銲成一點,並將 C Type 熱電偶線與微型溫度補償器相接, 因 C Type 的兩條熱電偶線因為金屬功函數的不同產生電壓,我們用三用電 表將之讀取,並參照表 3-5¹⁹把所得的電壓值換成金屬表面溫度。 五、訊號偵測與處理系統

(1) 處理控制系統

整個實驗是由一台 16 位元的微電腦控制,此電腦配備 I/O Tech 的 IEEE-488 介面卡以便與脈衝產生器 (pulse/delay generator Stanford Research system, DG535), 閘式積分器 (Boxcar integrator Stanford Research system, SR 250) 互相溝通。控制程式是利用 Macmillan 軟體公司所發展 之 Asyst 的語言所撰寫,內容包含了實驗中儀器的控制,數據的傳送,處 理與讀存作業。在數據處理部份包含了作圖,線性最小平方根法(linear leastsquares fitting method)以及誤差的計算。在儀器控制方面,電腦透過 IEEE-488 介面發出二台雷射擊發的時間的指令到脈衝產生器(DG535),使 其發出脈衝先後啟動光解雷射及偵測雷射系統,兩道雷射光束間之延遲時 間即為反應時間。當光電倍增管偵測到螢光後並將其轉換為電流後,隨之 送往前置放大器(Hamamatsu, C-1053-01, DC-5MHz)放大,再傳送至開 式積分器(Boxcar integrator, SR 250)做累積和平均。我們藉由一台數位 示波器(Tektronix 2232, 100 MHz digital storage oscilloscope)觀察訊號 大小,開寬(gate width)及開閘的延遲時間(delay time),並加以調整之。開 式積分器所得的訊號之平均值輸入類比/數位轉換(A/D convertor)的電腦 介面卡(SR245)後再經由 IEEE-488 介面卡傳回電腦,做數據讀取及處理。 當電腦接到從積分器送來的訊號後,在發出下一組延遲時間的指令給脈衝 產器,以進行下一組不同雷射擊發時間差的自由基濃度量測。

(2) 偵測系統

(a) 光電倍增管(photomultiplier tube, PMT)

光電倍增管(PMT)放置在與二道雷射光束互相垂直的方向,做為收 集微弱螢光的偵測器。為了減少散射光干擾及有效收集螢光訊號,實驗上 除了在管壁加上遮光環(baffle)及牛角光陷(woods horn)等,來減弱散射光 外,更在光電倍增管上方加上一組平凸透鏡(焦距分別為3吋及2吋)及可 調式光圈(iris)控制進入光電倍增管的光量,並將大部分管壁反射而來的散 射光給濾掉,只收集反應槽中心的螢光訊號。同時為了減少散射光進入光 電倍增管及選定某特定波長範圍的放光,而使用二組玻璃濾光片(glass filter)及干涉濾光片(interference filter),其構造如圖 3-10 所示。圖 3-11 為 收集 336.1 nm 波長範圍 NH 放光的光學設計。玻璃濾光片 WG305 用來減 少光解雷射 193 nm 散射光進入光電倍增管。

光電倍增管(PMT)包含了一個光陰極(photocathode),一組加上了等電 位差的增益電極群(dynodes)及一個陽極(anode)。當光子照在功函數很小 的材質製成的光陰極上時,由於光電效應的結果使之放出電子,此電子 受到高電壓電場加速後,在連續撞擊具有電位差的增益電極群,光電子 流因此逐級放大倍增,電子流逐級放大,由一個電子在短時間內(20-50 ns)放大為 $10^5 - 10^8$ 個電子($10^{-11} - 10^{-14}$ 庫倫),以達到可偵測的程度,其 半高寬約 3-10 奈秒,形成尖峰值約 lµA-3 mA 的電流脈衝,電流訊號 11111 再經前置放大器轉換成電壓並加以放大後,傳送至巴斯卡積分器。一般 光電倍增管有其頻譜回應(spectral response)主要取決於光陰極材料及封 管視窗;本研究所使用光電倍增管為 Hamamatus R1104 型,其陽極靈敏 度為 1.3×10° Amp/W,有效波長範圍 185-850 nm,最大反應波長為 420 nm,當外加的電壓達 1500 伏特時,會有最大的電流放大率 2.0×10^7 倍, 在本實驗中,外加電壓約在170V。其訊號輸出經由一個寬頻前置放大器 (Hamamatsu, C-1053-01型)放大處理;即使是無光線照射的狀態下, 光電倍增管亦會產生一些雜訊(又稱暗電流),一般分為三類:(1)訊號高

度低於光電子之脈衝,大多來自次級電極的熱電子,這些電子受到光電 倍增管放大的倍數較小,但數目多是構成暗電流的主要成分;(2)訊號高 於光電子之脈衝,主要來源是宇宙射線(cosmic rays)或電子偏離正常運動 軌跡,撞擊管壁而產生的玻璃閃光(glass scintillation),會形成非常高的脈 衝輸出;(3)訊號高度與光電子的脈衝相近之輸出,主要是光陰極產生之 熱電子,由於受到放大的倍數與光電子相近,輸出的脈衝高度接近光電 子電流脈衝;為減少熱電子干擾,將光電倍增管冷卻可獲得改善。

(b) 閘式積分器

開式積分器為 Stanford Research System 出品的電容式積分器(SR 240),亦稱為巴斯卡積分器(Boxcar integrator),利用電容充電的方式,將 所得訊號送至介面(SR 245),經類比/數位轉換器(A/D converter)轉換後傳 至電腦。實驗時為撷取最佳訊號狀況,會將訊號接至示波器(Oscilloscope) 以便於觀察;另外為避開雷射散射光並收集到最大的訊號,便需微調積分 器的延滯時間(time delay),同時配合自由基電子弛緩速度,調整閘門(gate) 寬度,本實驗約控制在 0.1-0.2 μs 之間,訊號累積(平均)的方式有兩種: 一為總和累積(summation),另一為指數累積法(exponent)。前者將每次 的訊號累積起來,將最後的總和除以總訊號數,這種方式每次的訊號比重 (weight)都一樣。後者原理類似充電器的充電方式,剛開始的訊號比重 大,後來的比重越來越小,猶如指數的關係逐漸逼近最大值。根據電容的 充電關係式如下:

$$S_t = S_f \times (1 - e^{1 - t} / t_p)$$
 (3-9)

 t_p 為 time constant 與電容大小有關, S_t 是累積到時間 t 的訊號值, S_f 是趨 近無限大時的訊號值。由於訊號在 Boxcar 中是以指數形式累積,故每次 訊號所佔的比重皆不同,取樣範圍由1到10K samples。根據定義,若選 擇 300 次 samples 在累積 300 次後, 訊號僅僅達全部信號的 67%, 由式(3 -9)可知取樣次數達 600、900、1200、1500 後,訊號達到最大值的 89 %、 95 %、99 %、100 %。對要平均 100 次螢光訊號的實驗而言,若要達到 最大積分訊號的95%就必須把取樣次數設為30。取樣次數越多,訊號雜 訊比(S/N ratio)會越好,相對累積時間就越長,但過長的取樣時間會使實 4111111 驗條件改變而對實驗產生誤差的影響。積分器的優點有:(1)多次地累積 及平均特定時域的放光訊號以提高訊號雜訊比;(2)設定不同的取樣時 間,可以降低雷射散射光的干擾。本實驗閘式積分器設定之取樣的點數 (sample)為 20 點,在平均 10 次螢光訊號(即完成一個數據點需時間 20 秒)後,再輸出至電腦聯結介面卡,然後將訊號送至電腦處理。

(c) 示波器(Oscilloscope)

可以捕捉瞬間的訊號觀察到訊號波形的變化,因此對選擇閘式積分器 之開閘時間、開閘寬度及檢查兩道雷射光之時間差助益不少。本實驗中選 用 Tektronic 2232 的數位儲存示波器(digital storage oscilloscope),取樣速度 100 Ms/s,頻寬 400 MHz。

(d) DG535 脈衝/延時產生器

本實驗所使用的脈衝產生器為 Stanford Research System 出品(型號 DG535),有T_o、A、B、C、D 五個頻道輸出,其中T_o是脈衝產生器同 步觸發(trigger)以作為各頻道的脈衝輸出的基準點。A和B及C和D又 可互相結合為 AB(positive)、AB(negative)及 CD(positive)、CD(negative) 輸出;在A、B、C、D中,最長延遲時間者(channel C)其脈衝寬度為0.8 μs, 此也決定了 T_o 以及其餘三個頻道(A、B、D)的脈衝寬度。實驗設定每秒 發出 5 發脈衝,首先將 DG535 設定為 A=T₀+50 ms, B=A+250µs, B =D-delay time;即是以頻道 D 控制準分子雷射的擊發時間,此為製造 411111 參與反應自由基的首要步驟。頻道 B 用來擊發染料雷射,以便偵測螢光 訊號之變化;今在頻道B、D間,設定一延遲時間(delay time)以利於偵測 訊號的產生。此外,亦將頻道 A 設為與頻道 B 同步,便於利用頻道 C 觸 發閘式積分器追蹤訊號;同時,亦在頻道 B 使用 T 型轉接頭接至示波器 用以微調訊號擷取到最大值;各輸出頻道之時脈關係圖可見於圖 3-12。 六、氣體樣品配製

(1) NH₃ (Ammonia): 熔點-163.6 °C, 沸點-151.7 °C, Matheson 公司出品,
 純度 99.99%。與 He 及 N, 配成濃度約4%的混和氣體儲存於 22 升之玻

璃球中,靜置一天後使用。

(2) HN_3 (Hydrazoic Acid): 首先將適量(約濃度 85%,50ml)的磷酸 (H₃PO₄) 和疊氮化鈉 (NaN₃)約8.0g(sodium azide, Riedel-deHaen 公司出品,純 度=99%, vapor pressure = 121 Torr at 25℃)放入試管中,利用乾冰反 覆將水分移除後,用液氮將 HN₃收集於玻璃管中。之後,收集 HN₃在常 溫的蒸氣,並將 HN₃氣體與 N₂配成濃度約1%的混和氣體,靜置一夜後 使用。

七、 實驗步驟和條件

本實驗以高溫金屬催化法法產生自由基。製造 NH 自由基的方法是以 NH₃ 通過高溫金屬,利用氣體與金屬進行吸附作用(adsorption)後產生 熱分解(thermal decomposition),並經由脫附作用(desorption)後進入氣 相中,並利用雷射誘發螢光法偵測之。

A SHILLER

為確保實驗進行中能將氧氣的影響降低,我們在機械幫浦全關的情況之下,將系統控制到壓力每5秒上升1m-Torr的情況下做實驗。並且避免所使用的金屬 W 及 Pt/Rh 合金之表面殘存其它有機物,在實驗之前,打開 幫浦,利用直流電源供應器將金屬加熱到我們所需要的溫度後,持續約1 分鐘,等待金屬上吸附的有機物質被揮發後,再緩慢降到常溫。反應物 NH₃分別與 N₂ 混和配成約4%的混和氣體貯存於22升玻璃球中直接流入 反應槽中使用。載流氣體氮氣(N₂,99.99%),是以高壓存於鋼瓶中,經調 壓器將輸出壓力控制在大約 2 大氣壓下使用。實驗中均由針閥控制其流 量,而流量經由校正後的質量流量計(Tylan FM360)量測,由於反應物 NH_3 濃度要求精確,因此使用 $\Delta p/\Delta t$ 法量測其流量。載流氣體和反應物先 在不鏽鋼軟管中均勻混和後再進入反應槽中,實驗狀況控制在緩慢流動 $(slow flow, 5-10 cm s^{-1})$ 下。在催化過程中,以下步驟來取得螢光訊號: 當未加入反應物(NH₃)時,先將所有的儀器設定在適當值,並放入載流 氣體 (N_2) 到需要之壓力後,將直流電源開啟加熱金屬至需要的溫度,隨 後,將雷射散射光所造成的訊號歸零後,將反應物(NH3)通入,並控制 在適當的壓力下待其穩定(約數秒鐘)後,其所增加的螢光訊號即為自由 基所放出的螢光訊號,由於系統為穩定態(steady state),因此螢光訊號在 觀察的時間內(數分鐘內)並不會隨著時間變化而改變。為了取得較準確 411111 之螢光讀值,用 LIF KINETIC 程式取數據。其作法是,將準分子雷射關 閉去執行程式,由於程式的X軸標示著是偵測雷射與光解雷射的時間差, 在催化的過程中,螢光訊號與 X 軸標示的時間是不相關的,因此,我們 忽略所得 X 軸標示的時間。而 Y 軸所記錄的讀值是每隔兩秒內的訊號平 均,將取得之10點訊號再做一次平均即為每一條件下的螢光讀值。而要 校正自由基濃度時,我們需要準分子雷射做為光解光源,利用延遲/脈衝 產生器觸發準分子雷射 ArF(λ =193 nm)光解 NH₃ 產生 NH 及 NH₂ 自由基 後, 再利用 336.1nm 及 597.7nm 作為激發光源。經一段時間延遲後再以染 料雷射分別將 NH 由 $X^{3}\Sigma_{g}^{-}$ 激發至 $A^{3}\Pi_{u}$ state,以及 NH₂ 由 $X^{2}B_{1}(0,0,0)$ 激發至 $A^{2}A_{1}(0,9,0)$ state。然後收集 NH 及 NH₂在激發光源為 336.1 nm 及 597.7nm 時放出的螢光訊號。此訊號經由光電倍增管及前置放大器放大 後,送入閘式積分器平均,所得的數值經由 IEEE-488 匯流排的介面傳送 至微電腦再進一步做數據處理分析。

實驗進行時的條件如下:

系統壓力: P = 50 - 200 Torr (He/N₂)

系統氣體總流量: $F_{total} = 2-11 \text{ STP cm}^3 \text{ s}^{-1}$

系統溫度 : T ~ 300 K - 320 K

金屬催化溫度:W:1350K-2100K

```
Pt/Rh 合金: 1100 K - 1200 K
```

染料雷射能量: ~ 0.3 mJ (336.1nm)及 1-3 mJ (597.7nm)

Excimer 雷射能量: ~ 1.0 mJ

圖 3-1: 雷射光解 / 雷射誘發螢光系統的儀器配置圖。

圖 3-2:反應槽之細部裝置圖

圖 3-3:準分子雷射高、低能態位能圖。

稀有氣體	(鹵素) F (nm)	Cl (nm)	Br (nm)
Ar	193	175	
Kr	248	222	
Xe	351	308	282

表 3-1:稀有氣體鹵素雷射的振盪波長。

圖 3-4: Nd-YAG 雷射受激發射(stimulation emission)。

Cavity Open and Lasing

圖 3-5: Q-switch 裝置簡圖。

NY61	1064nm	532nm	355nm	266nm
Energy (mj)	650	300	170	50
Pulse width (ns)	6-8	5-7	5-7	5-7
Energy stability (±%)	2.5	3.5	4	10
Power drift $(\pm\%)$	3.0	5.0	5.0	

表 3-2: Nd-YAG 雷射相關參數表

染料種類	波峰 (nm)	光區 (nm)	濃度 (g/L)	溶劑
LDS698	695	658-738	0.23 (Osc)	methanol
		Summerce.	0.11 (Amp)	

表 3 - 3: LDS698 雷射染料相關參數表

染料種類	波峰 (nm)	光區 (nm)	濃度 (g/L)	溶劑
R610	591	581-607	0.11 (Osc)	methanol
			0.037 (Amp)	

表 3-4 : R610 雷射染料相關參數表

Thermoelectric Voltage in Millivolts

													-												
°C	0	1	2	3	4	5	6	7	8	9	10	°C	°C	0	1	2	3	4	5	6	7	8	9	10	°C
1000	18 257	18 275	18 204	18 312	18 330	18 340	18 367	19 395	18 404	18 422	19.440	1000	1500	26 722	26 738	26 753	26 768	26 784	26 700	26,815	26,830	26.845	26,861	26 876	1500
1000	10.207	10.275	10.204	10.012	10.000	10.010	40.007	40.000	10.007	10.422	40.000	4040	4540	00.070	00.000	00.007	20.700	00.704	00.0=0	00.010	00.000	00.040	07.044	07.000	4640
1010	18.440	18.459	18.477	18.495	18.513	18.532	18.550	18.308	18.58/	18.005	18.023	1010	1510	20.870	20.892	20.907	20.922	20.938	20.903	20.908	20.984	20.999	27.014	27.030	1510
1020	18.623	18.641	18.660	18.678	18.696	18.714	18.732	18.751	18.769	18.787	18.805	1020	1520	27.030	27.045	27.060	27.076	27.091	27.106	27.121	27.137	27.152	27.167	27.183	1520
1030	18.805	18.824	18.842	18.860	18.878	18.896	18,914	18,933	18,951	18,969	18,987	1030	1530	27,183	27,198	27.213	27.228	27.244	27.259	27.274	27.289	27.304	27.320	27.335	1530
1010	40.007	10.005	40.000	10.041	10.000	10.070	10.000	10.114	10.100	10.150	10.100	1040	4540	07.005	07.050	07.000	07.000	07.000	07.444	07 400	07 444	07 450	07.474	07.400	4640
1040	18.987	19.005	19.023	19.041	19.060	19.078	19.096	19.114	19.132	19.150	19.168	1040	1540	27.335	27.350	27.365	27,380	27.396	27.411	27.426	27.441	27.456	27.471	27.480	1540
1050	19.168	19.186	19.204	19.223	19.241	19.259	19.277	19.295	19.313	19.331	19,349	1050	1550	27.486	27.502	27.517	27.532	27.547	27.562	27.577	27.592	27.607	27.622	27.637	1550
1060	10 240	10.267	10 295	10.402	10.421	10.420	10.457	10/75	10.402	10 511	10 520	1060	1560	97 697	97.652	27 669	27 602	27 600	97 719	97 790	97 749	97 760	97 779	97 700	1660
1000	19.048	10.507	10.000	18,405	19/421	10.408	18,407	18/4/ 5	18,480	19.011	18.528	1000	1000	21.001	27.000	27.000	27.000	27.080	27.710	21.120	21.140	27.730	21.110	27.700	1000
10/0	19.529	19.547	19.565	19.583	19.601	19.619	19.637	19.655	19.673	19.691	19.709	1070	15/0	27.788	27.803	27.818	27.833	27.848	27.863	27.878	27.893	27.908	27.923	27.938	1570
1080	19.709	19.727	19.744	19.762	19.780	19.798	19.816	19.834	19.852	19.870	19.888	1080	1580	27.938	27.953	27.968	27.983	27.997	28.012	28.027	28.042	28.057	28.072	28.087	1580
1000	10 888	10 005	10 023	10 041	10 050	10 077	10 005	20.013	20.020	20.048	20.066	1000	1500	28 087	28 102	28 117	28 1 32	28 146	28 161	28 176	28 101	28 206	28 221	28 236	1500
1000	10.000	10.000	10.020	10.011	10.000	10.011	10.000	20.010	20.000	20.010	20.000	1000	1000	20.007	20.102	20.117	20.102	20.140	20.101	20.170	20.101	20.200	20.221	20.200	1000
1100	20.066	20.084	20.102	20.120	20.137	20.155	20.173	20.191	20.208	20.226	20.066	1100	1600	28.236	28.250	28.265	28.280	28.295	28.310	28.324	28.339	28.354	28.369	28.384	1600
1110	20.244	20.262	20.279	20.297	20.315	20.333	20.350	20.368	20.386	20.404	20.421	1110	1610	28 384	28,398	28.413	28 4 28	28.443	28.457	28 472	28 497	28 502	28.516	28,531	1610
4400	00.404	00.400	00.457	00.474	00.400	20.000	00.000	20.000	00.000	00.000	00.000	4400	4000	00 = 04	00 = 40	00 = 00	00.070	00 = 00	00.004	00.040	00.004	00.040	00.000	00.001	4000
1120	20.421	20.439	20.457	20.474	20.492	20.510	20.527	20.949	20.303	20.580	20.398	1120	1620	28.331	28.340	28.000	28.575	28.390	28.004	28.019	28.034	28.048	28.003	28.078	1020
1130	20.598	20.616	20.633	20.651	20.669	20.686	20.704	20.721	20.739	20.757	20.774	1130	1630	28.678	28.692	28.707	28.722	28.736	28.751	28.765	28.780	28.795	28.809	28.824	1630
1140	20.774	20.792	20.809	20.827	20.845	20.862	20.890	20.897	20.915	20.932	20.950	1140	1640	28.824	28.838	28.853	28.868	28.882	28.897	28.911	28.926	28.940	28.955	28.969	1640
1150	20.950	20.967	20.985	21.002	21.020	21.037	21.055	21.072	21.090	21.107	21.125	1150	1650	28.969	28.984	28.998	29.013	29.027	29.042	29.056	29.071	29.085	29.100	29.114	1650
1160	21.125	21.142	21.160	21.177	21.195	21.212	21.230	21.247	21.265	21.282	21.299	1160	1660	29.114	29.129	29.143	29.158	29.172	29.187	29.201	29.215	29.230	29.244	29.259	1660
1170	21 200	91 917	21 224	94 969	24 260	300 10	21.404	21.421	21.420	91.456	21 / 72	1170	1670	20.250	90 979	20 207	20.202	20.246	20 224	20.246	20.250	20.274	20.200	20.402	1670
1100	21.200	21.017	21.004	21.002	21.008	21.000	21.404	21/121	21,408	21.400	21,410	1100	1070	20.200	20.210	20.201	20,002	20.010	20.001	20.040	20.000	20.014	28.000	20.402	1070
1180	21.473	21.491	21.508	21.525	21.543	21.560	21.577	21.595	21.612	21.629	21.647	1180	1680	29.402	29.417	29.431	29.445	29.460	29.474	29.488	29.503	29.517	29.531	29.546	1680
1190	21.647	21.664	21.681	21.698	21.716	21.733	21.750	21.768	21.785	21.802	21.819	1190	1690	29.546	29.560	29.574	29.588	29.603	29.617	29.631	29.645	29.660	29.674	29.688	1690
4000	04.040	04 007	04.054	04 074	04 000	04 00c	04.000	04.040	04.057	04.074	04.004	4000	4700	00.000	00 700	00.740	00 704	00 745	00 750	00 770	00 707	00.000	00.040	00.000	4700
1200	21.819	21.837	21.894	21.871	21.888	21.905	21.923	21.940	21.957	21.974	21.891	1200	1/00	29.088	29.702	29.710	29.731	29.745	28.108	29.773	29.787	29.802	29.810	29.830	1700
1210	21.991	22.009	22.026	22.043	22.060	22.077	22.094	22.112	22.129	22.146	22.163	1210	1710	29.830	29.844	29.858	29.872	29.886	29.901	29.915	29.929	29.943	29.957	29.971	1710
1220	22.163	22.180	22.197	22.214	22.231	22.249	22.266	22.283	22.300	22.317	22.334	1220	1720	29.971	29.985	29,999	30.013	30.027	30.041	30.056	30.070	30.084	30.098	30.112	1720
1220	22 224	22.25	030.000	20.006	22.402	22 /10	22.426	22/62	22/170	99 /07	22 604	1220	1720	20 112	20 126	20 140	20.154	20.160	20 102	20.106	20.240	20.224	20.220	20.252	1720
1200	22.004	22.00	22.000	22.000	22.402	22.418	22.400	22.400	22.470	22.407	22.304	1230	1730	00.112	30.120	30.140	00.104	30.100	00.102	30.190	30.210	00.224	30.230	00.202	1730
1240	22.504	22.521	22.538	22.555	22.5/2	22.589	22.606	22.623	22.640	22.65/	22.674	1240	1/40	30.252	30.266	30.280	30.294	30.308	30.321	30.335	30.349	30.363	30.377	30.391	1/40
1250	22 674	22,601	22 708	92 725	22.742	22 750	22 776	22.702	22,800	22,826	22 843	1250	1750	30 301	30.405	30.410	30.433	30.447	30.460	20.474	30.488	30 502	30.516	30.530	1750
4000	00.040	00.000	00.0	00.004	00.044	00.000	00.044	00.004	00.070	00.005	00.040	4000	4700	00.001	00.044	00.000	00.004	00.000	00.000	00.040	00.007	00.040	00.004	00.000	4700
1260	22.843	22.860	22.877	22.894	22.911	22.928	22.944	22.961	22.978	22.995	23.012	1260	1/60	30.530	30.544	30.557	30.571	30.585	30.599	30.613	30.627	20.640	30.654	30.668	1/60
1270	23.012	23.029	23.045	23.062	23.079	23.096	23.113	23.129	23.146	23.163	23.180	1270	1770	30.668	30.682	30.695	30.709	30.723	30.737	30.750	30.764	30.778	30.792	30.805	1770
1280	23.180	23,196	23.213	23.230	23.247	23.263	23,280	23,297	23.314	23.330	23,347	1280	1780	30.805	30.819	30.833	30.846	30.860	30.874	30.887	30.901	30.915	20.928	30.942	1780
1200	22.247	22.264	22.200	22 207	22.444	99 494	22 4 47	22.464	22.401	99 407	22 514	1200	1700	20.042	20.056	20.060	20.002	20.007	21.010	91.094	91 0 90	91.051	21.065	21.070	1700
1290	20.047	20.004	20.000	20.081	20.414	20.401	20.447	20.404	20.401	20.487	20.014	1290	1/80	30.942	30.930	20.909	30.863	30.997	31.010	31.024	31.030	31.031	31.000	31.0/0	1780
1300	23.514	23.530	23.547	23.564	23.580	23.597	23.614	23.630	23.647	23.663	23.680	1300	1800	31.078	31.092	31.105	31.119	31.133	31.146	31.160	31.173	31.187	31.200	31.214	1800
1310	23,680	23,607	23,713	23,730	23.746	23,763	23,779	23,796	23,812	23,820	23,846	1310	1810	31,214	31,227	31.241	31,254	31,268	31,281	31,205	31,308	31,322	31,335	31,349	1810
4000	00.040	00.000	00.070	00.000	00.040	00.000	00.045	00.004	00.070	00.004	04.040	4000	4000	01.211	01.000	04.070	04.000	01.200	01.440	01.200	01.000	04.450	04.4-0	04.400	4000
1320	23.846	23.862	23.879	23.895	23.912	23.928	23.945	23.961	23.978	23.994	24.010	1320	1820	31.349	31.362	31.376	31,389	31.403	31.416	31.429	31.443	31.455	31.470	31.483	1820
1330	24.010	24.027	24.043	24.060	24.076	24.093	24.109	24.126	24.142	24.158	24.175	1330	1830	31.483	31.496	31.510	31.523	31.536	31.550	31.563	31.577	31.590	31.603	31.617	1830
1340	24.175	24.191	24.208	24.224	24.240	24.257	24.273	24.290	24.306	24.322	24.339	1340	1840	31.617	31.630	31.643	31.656	31.670	31.683	31.696	31.710	31.723	31.736	31.749	1840
10-0												10-0	10-0	a a			o								10-0
1350	24.339	24.355	24.371	24.388	24.404	24.420	24.437	24.453	24.46	24.485	24.502	1350	1850	31.749	31.763	31.776	31.789	31.802	31.816	31.829	31.842	31.855	31.869	31.882	1850
1360	24.502	24.518	24.534	24.551	24.567	24.583	24.599	24.616	24.632	24.648	24.664	1360	1860	31.882	31.895	31.908	31.921	31.934	31.948	31.961	31.974	31.987	32.000	32.013	1860
1270	24 664	24 680	24 607	24 713	24 720	24 745	24 762	24 778	24 704	24,810	24 826	1370	1870	32 013	32 026	32 040	32.053	32.066	32 070	32 002	32 105	32 118	32 131	32 144	1870
4000	04.000	04.040	04.050	04.070	04.004	04.007	04.000	04.000	04.000	04.074	04.000	4000	4000	00.444	00.457	00.470	04.400	00.400	00.000	00.000	00.005	00.040	00.004	00.074	4000
1380	24.820	24.842	24.809	24.875	24.891	24.907	24.923	24.939	24.900	24.971	24.988	1380	1880	32.144	32.197	32.170	31.183	32.190	32.209	32.222	32.235	32.248	32.201	32.274	1880
1390	24.988	25.004	25.020	25.036	25.052	25.068	25.084	25.100	25.116	24.132	25.148	1390	1890	32.274	32.287	32.300	31.313	32.326	32.339	32.352	32.365	32.378	32.391	32.404	1890
1400	25 140	25 164	25 100	25 106	25 242	25 220	25 244	25 260	25 276	25 202	25 200	1400	1000	92 404	99 417	22.420	22 442	22.456	22.460	22.404	22.404	92 507	22 620	22 522	1000
1400	23.140	20.104	23.100	25.180	20.212	23.220	20.244	23.200	23.270	29.282	23,300	1400	1800	02.404	32.417	02.400	02.440	02.400	32,400	02.401	02.484	32.307	32.320	02.000	1900
1410	25.308	25.324	25.340	25.356	25.372	25.388	25.404	25.420	25.436	25.452	25.468	1410	1910	32.533	32.546	32.558	32.571	32.584	32.597	32.610	32.623	32.635	32.648	32.661	1910
1420	25.468	25.484	25.500	25.516	25.532	25.547	25.563	25.579	25.595	25.611	25.627	1420	1920	32.661	32.674	32.686	32.699	32.712	32.725	32.737	32.750	32.763	32.776	32.788	1920
1420	25 627	25 642	25 658	25 674	25 600	25 706	25 7 22	25 729	25 752	25 760	25 785	1430	1020	22 7 9 9	22,801	32 914	32 826	22 820	22,852	22.864	22 877	32.800	32 002	22 015	1020
1400	05.705	05.004	05.047	0= 000	20.000	05.004	05.000	25.700	05.044	05.007	05.040	4440	4040	00.045	00.000	00.040	00.050	02.008	00.070	00.004	00.000	00.040	00.000	00.044	1040
1440	25.785	25.801	25.817	25.832	25.848	25.864	25.880	25.896	25.911	25.927	25.943	1440	1940	32.915	32.928	32.940	32.953	32.966	32.978	32.991	33.003	33.016	33.028	33.041	1940
1450	25.943	25,959	25.974	25.990	26.006	26.021	26.037	26.053	26.069	26.084	26,100	1450	1950	33.041	33.054	33,066	33.079	33.091	33,104	33,116	33.129	33,141	33.154	33,166	1950
1460	26 400	26 440	26 494	96 447	26 462	26 4 70	26 104	26.000	26.005	26 244	26.956	1460	1000	99.460	99 470	22 404	29.004	99.940	29 220	99.944	99.954	99.966	00.070	22.204	1000
1400	20.100	20.110	20.131	20.14/	20,103	20.176	20.194	20.209	20.223	20.241	20.200	1400	1900	33,100	00.178	00.191	00.204	00.210	00.228	00.241	00.204	00.200	00.100	00.281	1900
1470	26.256	26.272	26.288	26.303	26.319	26.334	26.350	26.366	26.381	26.397	26.412	1470	1970	33.291	33.303	33.316	33,328	33.341	33,353	33.365	33.378	33.390	33.402	33.415	1970
1480	26.412	26.428	26.443	26.459	26.474	26.490	26.505	26.521	26.537	26.552	26.568	1480	1980	33.415	33.427	33.439	33.452	33.464	33.476	33.489	33.501	33.513	33.525	33.538	1980
1490	26,568	26.583	26,599	26.614	26.629	26.645	26,660	26.676	26,691	26,707	26,722	1490	1990	33,538	33,550	33,562	33,575	33,587	33,500	33,611	33,623	33.636	33,648	33.660	1990
. 199	20.000	20.000	_0.000											20.000	-0.000	-0.00%		2010/01	-91990	-91911	201020	-0.000			
00	0	4	2	0		F	c	7	0	0	10	00	00	0	4	2	2		F	c	7	0	0	10	00
6	0	1	4	0	4	0	0	1	0	3	10	0		0	1	4	0	4	0	0	1	0	5	10	0

表 3-5: C type Thermocouple 電壓溫度轉換表

圖 3-6: NY-61 雷射構造圖。取自 Continuum NY-61 雷射手册。

圖 3-7: Continuum ND-60 染料雷射構造圖。取自 Continuum ND-60 雷射手冊。

圖 3-8:UVX-1 倍頻器構造。

圖 3-9:追蹤原理 (Tracking theory)。

FOCUS LENS f=3" GLASS FILTER WG305 INTERFERENCE FILTER FOCUS LENS f=2"

IRIS

圖 3-10: 收集雷射螢光的光學元件配置圖

圖 3-11 干涉式濾光鏡(Interference340+Interference334)的穿透率圖譜。

圖 3-12:本實驗各儀器間的時間相關圖。

第四章 結果與討論

本實驗分別使用 W 及 Pt/Rh 合金來催化分解 NH₃,並利用雷射誘發螢 光(laser-induced fluorescence)技術偵測其可能產物 NH 及 NH₂自由基,以 下分別對 NH 及 NH₂自由基討論之。

一. NH自由基:

(一) NH光譜鑑定:

由本研究結果得知以W及Pt/Rh合金催化分解NH₃後可以LIF技術偵測到 NH自由基之生成,如圖4-1(W)及圖4-2(Pt/Rh)所示,其與文獻上之NH 激發光譜圖4-3²⁰及圖4-4²¹相符。同時,前人的研究也顯示以193 nm的雷射光 光解HN₃會生成NH自由基。此為另一鑑定NH之方法。圖4-5所示為我們光解 HN₃後得到之NH激發光譜,其與圖4-1及圖4-2吻合,可確認在本實驗的條件 下確實有NH自由基之產生。由圖4-1中可知,NH自由基在吸收336.1 nm之雷 射光後有最大的放光,因此在NH自由基定量研究中,我們選用此波長的雷射 光來激發NH($A^3 \Pi \rightarrow X^3 \Sigma$),並以兩濾光片組合後收集其在適當範圍內的放光。 (二)NH自由基訊號取得:

在本實驗中,我們利用LIF KINETIC程式取得NH之螢光數據,其作法 已在第三章的實驗步驟中說明。圖4-6為利用LIF KINETIC程式取得之螢光訊 號,其平均值即為在該實驗條件下的螢光強度。

(三) NH 濃度校正:

在實驗過程中,我們所得到的是在不同的反應條件下之 NH 的螢光訊號,但是並無法知道確實之 NH 的濃度,所以必須加以校準 (calibration)。 本實驗中,我們由一已知反應,式 (4-1)

$$HN_3 + hv (193 \text{ nm}) \rightarrow NH + N_2$$
 (4-1)

求出 NH 螢光訊號對 NH 濃度之校正曲線。由文獻²² 得知 HN,經由 193 nm 雷射光解後所得之各個電子激發態及基態之量子產率分別為 NH(a)= 0.4, NH(b)= 0.02, NH(X)≦ 0.002, NH(A)= 0.0002, NH(c)= 0.0006, 經由 載流氣體 N2 對各電子激發態在一段時間(~20 µs)內行焠熄作用,使所有的 激發態電子降至基態後,再用另一束偵測雷射將電子基態的自由基激發至激 態後,收集其螢光,在這一段時間內 HN3光解所產生的 NH 基態量子產率即 11111 為所有 NH 激發態的量子產率總和,其值約為 0.4228。圖 4-7 為利用 193 nm 光解 HN_3 所產生的螢光訊號對延遲時間作圖,可見約 $20 \, \mu s$ 後方達最大訊 號。根據文獻²³, HN₃在 193 nm 的吸收截面積為 2.65 × 10^{-18} cm²,由此可 利用式(3-7)可計算出 NH 的濃度,藉由螢光訊號對 NH 自由基濃度作圖, 我們可得到螢光強度對濃度之校正曲線,並由此校正曲線做內差或外差法可 進一步得到催化分解NH3後所產生之NH自由基濃度。圖4-8為在50-200 Torr N,之壓力下,螢光訊號對 NH 自由基濃度之校準,由此我們可以發現在此壓 力範圍時,氣體總壓力對於 NH 螢光訊號並沒有影響,意謂所有之基態 NH 已全被焠熄至基態,且對激態之 NH 的焠熄效應也未見。經線性回歸處理後, 得到在壓力 50-200 Torr 之範圍, NH 濃度與螢光訊號之良好線性關係,可用 於計算熱解產生之 NH 濃度。

(四)影響 NH 濃度之因素:

在催化反應中,反應的結果會隨著種種條件的不同而改變,如:溫度、 壓力、金屬表面結構、前驅物濃度參數等為幾個主要的因素。以下我們分別 討論這些參數對我們測量結果的影響。

(1) 金屬表面溫度:

我們分別就(a) Pt/Rh 合金(70% Pt, 30% Rh)及(b) W 討論之。

(a) Pt/Rh 合金:

催化反應是發生在金屬的表面,因此,金屬表面的溫度對反應有很大 的影響。在催化反應中,反應速率R(每單位時間每單位面積所產生的產 物分子數)可以下式表示:

$$\mathbf{R} = k \times f(P_i) \tag{4-2}$$

其中 k 為反應速率常數, f(P_i)為與反應物壓力有關的項次, P_i為反應物濃度 而我們可以把反應速率常數表示成指數形式,

$$k = A \exp\left(-\frac{\Delta E^*}{RT}\right) \tag{4-3}$$

其中A為與溫度無關的項次,ΔE^{*}為催化反應活化能,T為催化表面溫度。 因此,改變催化時的溫度將使的催化速率改變,進而影響產率。然而,金屬 表面組成對金屬的催化效率有很大的影響。而隨著不同的溫度條件,金屬表面的組成會發生改變,將會影響自由基的產率。而金屬表面分佈與溫度的關係可見下式²⁴

$$\frac{x_2^s}{x_1^s} = \frac{x_2^b}{x_1^b} \exp\left[\frac{0.16(\Delta H_{subl_1} - \Delta H_{subl_2})}{RT}\right]$$
(4-4)

其中 x_1^i 為金屬 1 在合金表面的莫爾分率, x_2^i 為金屬 2 在合金表面的莫爾分率, x_1^b 為金屬 1 在合金內部的莫爾分率, x_2^b 為金屬 2 在合金內部的莫爾分率, ΔH_{subl_1} 為金屬 1 的昇華熱, ΔH_{subl_2} 為金屬 2 的昇華熱。

根據上式,我們可以推斷在本實驗系統中,Pt/Rh 合金隨著溫度升高而 表面分佈變化的情形,由於我們無法查得 Pt 與 Rh 的昇華熱,因此,僅能很 大略的使用融化熱與氣化熱的和為昇華熱。²⁵ 其中, $\triangle H_{fus,Pt} = 20.0 \text{ kJ/mol}, <math>\triangle$ $H_{fus,Rh} = 21.7 \text{ kJ/mol}, <math>\triangle H_{vap,Pt} = 490.0 \text{ kJ/mol}, <math>\triangle H_{vap,Rh} = 495.0 \text{ kJ/mol}$ 。由此可 算出在本實驗溫度條件 (1100 K - 1200 K)下,合金的表面組成約為 Pt 及 Rh 各佔 50%, 說明 NH₃ 催化的結果是由兩金屬共同參與,因此螢光訊號是 由兩種金屬共同催化產生的。圖 4-9 為在本實驗條件下,利用 Pt/Rh 合金催 化分解 NH₃所得 [NH] 與溫度的關係圖,我們可以發現當金屬溫度逐漸增 加時, [NH] 也隨之增加,因為在本實驗中,所得是在氣相中所測得的自由 基濃度,而隨著金屬溫度增加,我們在氣相中測得的溫度變化並不大,因此 當探討氣相反應可能造成的影響時,其受氣體溫度影響不大。當表面溫度的 變化範圍約從 1100 K~1200 K 時,在此催化金屬表面溫度變化約為 100 K, 其氣相溫度約從 303 K 變化至 308 K。由圖 4-9 中我們可以得出其活化能為 Ea = 60-70 kJ/mol,此值與純 Pt 金屬得到之活化能 Ea = 276.3 kJ/mol 有相當 大的差距¹³,推測其原因可能是我們所使用的為參雜 Rh 的合金,而 Rh 分解 NH₃之效率比 Pt 佳,其金屬表面情況因 Rh 的參與使 NH 脫附的活化能改變。

(b) W:

由於W是純金屬,因此沒有表面金屬比例隨溫度變化而改變的情形發 生。然而,我們的實驗顯示,需要較高的溫度(>1400 K)才能偵測到 NH 自由基,而隨著溫度的增高,由高熱之W絲所造成的背景光也隨之增強,進 而對螢光訊號的取得會造成嚴重的影響。雖然我們以濾光片(BG38)過濾掉 大部分的干擾光,但是仍有部分的光線會進入光電倍增管中被放大,使得自 由基的螢光訊號被扭曲,而讓我們的測量產生誤差。我們曾試圖將催化金屬 置於離螢光偵測區較遠之位置以減少熱源輻射光的干擾,但是較遠的距離會 使的氣相反應時間加長,並且增大自由基與腔體壁反應的機會,導致螢光訊 號減低。因此我們將金屬催化位置與偵測位置固定在離偵測區域 1-2 cm 之 處。圖 4-10 為在本實驗條件下,W 金屬溫度與 NH 自由基濃度之關係圖。圖 中可見線性不佳,我們認為在高溫時其螢光訊號被扭曲較不能代表真正的自 由基濃度,因此我們取其金屬表面溫度約在 1670 K 以下的數據來計算其活化 能,得到 NH 從金屬 W 脫附的活化能為 Ea = 110-120 kJ/mol。

(2) 反應物濃度:

根據式 (4-2), 產物濃度取決於反應物之氣體分壓 P_i, 在本實驗中我們 改變反應物〔NH3〕來探討產物〔NH〕與其之關係。圖 4-11 及圖 4-12 所示 為利用 W 及 Pt/Rh 合金做為催化金屬,並分別在不同 N,壓力下所偵測得之 [NH],我們發現在這兩種實驗條件下,產物 NH 濃度都隨著 NH,濃度增加 而增加,而其總流速雖隨著 NH,濃度變高而增加,根據式 3-5,我們計算出 50 Torr 下其最大 NH, 濃度與最低 NH, 濃度之總流量有約 30% 的差距。然 而,在此條件之下,其螢光訊號有2倍的差距,因此,即使考慮了流速,即 可能之氣態反應的影響,其 NH 濃度的增加仍來自於 NH,濃度提高,使金 屬催化產量變多。此外,我們發現,在NH3濃度固定且使用N2做為載流氣 411111 體條件之下,NH 濃度隨著壓力上昇而減少。在金屬 W 的系統中,當壓力 到達 200 Torr 時,即無法偵測到 NH,根據我們對 NH 濃度的校正曲線,當 壓力在 50 Torr 至 200 Torr 之範圍,其螢光訊號並未因壓力有明顯的焠熄作 用。由此,我們認為 NH 濃度減少,可能來自於 N2 參與金屬的表面反應。 根據 Madey²⁶ 的研究,他們將等量 ${}^{14}N_{2(g)}$ 及 ${}^{15}N_{2(g)}$ 混合,用金屬 W 催化並控 制其壓力在約 10⁻⁶ Torr,改變不同的抽氣幫浦速率,發現當金屬溫度超過 1000 K 時,有¹⁴N¹⁵N 生成,且其¹⁴N¹⁵N 的產量隨著抽氣幫浦速率增大而減 少,此結果說明了 N_{2(g)}會在金屬 W 表面分解形成 N_(ad),並在表面上參與反

$${}^{14}N_{2(g)} \rightarrow {}^{14}N_{2(ad)} \rightarrow {}^{14}N_{(ad)} + {}^{14}N_{(ad)}$$
 (4-5)

$${}^{15}N_{2(g)} \rightarrow {}^{15}N_{2(ad)} \rightarrow {}^{15}N_{(ad)} + {}^{15}N_{(ad)}$$
 (4-6)

$${}^{14}N_{(ad)} + {}^{15}N_{(ad)} \rightarrow {}^{14}N^{15}N_{(ad)} \rightarrow {}^{14}N^{15}N_{(g)}$$
(4-7)

而當 N_(ad)在金屬表面生成後,會與金屬 W 形成 W-N 鍵結,²⁷ 減少金屬表面 的有效催化面積,使 NH_3 更不易被分解。此外,在金屬 W 表面生成的 $N_{(ad)}$, 可能與 $NH_{(ad)}$ 反應,造成 $NH_{(ad)}$ 濃度降低,此種反應已被報導於金屬 Pt 上 13 。 另外,在 Pt/Rh 系統,由於一般認為低溫時 N2在 Pt^{28,29}或 Rh³⁰表面上不會 進行分解,然而在高溫情況之下,有關 N2在表面上的行為的報導卻很少。 文獻曾報導利用 Pt 及 Rh 於合成 NH_3 之效果, 其將 H_2 和 N_2 轉換為 NH_3 的 效率不如 Fe, $Pt < < Rh < Fe^{2}$ 此點說明了 N_{2} 也能在 Pt 或 Rh 表面分解, 只是其效率遠不如 Fe,因此一般不被用於 NH,的合成。此點與我們的觀察 吻合,在我們 Pt/ Rh 系統中,隨著 N, 壓力升高, NH 濃度亦跟著降低, 然 而其下降幅度卻小於 W 系統,比較 $[NH_3]$ 約同在 1.6×10^{16} molecules/cm³, 總壓為 50 Torr 及 150 Torr 情況之下, 在金屬 W 系統中, NH 濃度在 50 Torr 時約為 150 Torr 時的 4-5 倍, 而在金屬 Pt/ Rh 系統中,僅約為 2 倍。告訴我 們在 Pt/Rh 系統中 [NH] 隨著 N, 濃度之變化較 W 系統小, 符合我們的推

應,

測。此外,Bell³¹等人比較了NH₃在Pt,Ru,Fe,及Re表面上反應的活化 能,得到下列反應會隨著金屬不同而有很大差異

$$N_{2(g)} \rightarrow 2 N_{(ad)}, Ea = \triangle E_{f}$$
 (4-8)

$$2 \operatorname{N}_{(\mathrm{ad})} \rightarrow \operatorname{N}_{2(\mathrm{g})}, \operatorname{Ea} = \triangle \mathrm{E}_{\mathrm{r}}$$

$$(4-9)$$

以△E_f (kcal/mol) 而言, Pt (21) > Ru (6) > Fe (5) > Re (4), 而△E_r (kcal/mol) 為 Re (62) > Fe (57) > Ru (50) > Pt (27)。此結果說明 N₂ (g) 最不易在 Pt 表面分解, 且一旦分解為 N_(ad) 時也易於重新結合為 N₂(g)。 因此 N_(ad) 在 Pt 最不易生成, 可能參與 N_(ad) + NH_(ad)反應機會較小, 使得 因 N₂ 壓力變化而造成的 [NH] 降低不若金屬 W 明顯。

(3) 氣體流速:

在這個系統(金屬 W 催化)中,由於我們是以氣相中 NH 濃度的變化去 研究金屬 W 表面的催化情形,但氣相中之自由基反應可能會影響最後所測 得之濃度。因此,在研究催化反應時,我們必須探討氣相反應對螢光訊號 的影響。其首要步驟是確認所觀察到的產物 NH 是來自何種反應機制:來 自氣相反應或直接由表面脫附產生。而這兩種機制生成的產物皆必須經由 一段時間才能到達偵測區域,因此系統的氣體流速會影響氣相反應時間, 決定濃度如何隨時間變化。由於自由基在氣相反應複雜,我們選擇利用

Facsimile 程式去模擬系統中反應物與產物之濃度隨時間變化情形,並與我 們測量結果比較。Facsimile 程式有兩個主要功能,分別是模擬(simulation) 及適解 (fitting)。利用模擬功能,可得到出所有列於程式中的反應物或生 成物之濃度隨時間變化的情形。在進行模擬之前,我們遵循以下模擬步驟: (1) 輸入系統中所有可能的反應及其反應速率常數值, 如表 4-1 所示;(2) 輸入某些分子的起始濃度。由於本系統並未偵測 NH,通過 W 時所產生的其 它產物,例如: H₂、H等,因此,有關的參數則是參考 Matsumura¹⁴等人 報導中的濃度比例,由此對於未偵測的物質做濃度上的推估。在本實驗條 件中,我們的金屬表面溫度為(1540 ± 10 K),其 N₂:H₂:NH₃=1:2.5: 20,因此在模擬時,我們所用的H2濃度為NH3濃度的1/8,而其中N2是經 由NH3分解而產生的。並根據 Matsumura¹⁴的數據,在W 金屬溫度為 2300 K 時, NH₂: H=1: 40, 而我們推算出在約 1540 K 時, 其 NH₂: H = 1: 200。因此,在不同的金屬表面溫度,其濃度比值會不同,在模擬時我們將 改變不同的濃度比例;(3)指定欲模擬產物及反應物的反應時間範圍;(4) 經由上列步驟, Facsimile 程式便會在我們設定之的反應機構與速率常數 下,計算出各反應物與產物濃度隨時間的變化圖,我們將模擬的結果與實 驗所測得之 NH 比較,判斷在何種模擬條件下較符合我們的測量值。

我們分三種機制去模擬實驗條件。(一):NH₃熱解僅產生NH₂而無NH, 並分別改變不同NH₂自由基濃度及H濃度進行模擬。(二):僅NH從金屬表 面產生,而無 NH₂產生,並分別在不同 NH 自由基及 H 濃度及下模擬。(三): NH 及 NH₂皆可由金屬表面產生,並改變 NH、NH₂自由基及 H 濃度的濃度比 例進行模擬。

以下,我們將分別以上述三種機制模擬 NH 濃度對時間之關係並討論。 機制 (一): 假設 NH 不從金屬表面產生, 而是經由 NH, 在氣相反應產生。 模擬時,我們設定 $[NH_3] = 5 \times 10^{15}$ molecules/cm³, $[NH_2] = 5 \times 10^{13}$ molecules/cm³ , [H] = 5 × 10¹³ molecules/cm³ \mathcal{B} [NH₃] = 5 × 10¹⁵ molecules/cm³, $(NH_2) = 5 \times 10^{15}$ molecules/cm³, $(H) = 5 \times 10^{15}$ molecules/cm³ 兩種情形,其結果如圖 4-13 所示,顯然與測量結果有很大差異。接著我們將 NH₂及H的濃度分別提高100倍到5×10¹⁵ molecules/cm³,此代表經過金屬W 的 NH3 全被分解為 NH2 及 H,若在這種情形之下都不能有足夠的 NH 產生, 4000 則在產生更低濃度 NH2 的條件下,更不可能產生足夠的 NH 符合我們實驗所 測得的數值。根據圖 4-13 的模擬,在 NH_2 及 H 的濃度分別提高到 5 × 10^{15} molecules/cm³的條件下,我們可得到最大的[NH] = 10^{10} - 10^{9} molecules/cm³, 此值與我們量測到約 NH 濃度約 10¹² molecules/cm³ 明顯不符。因此,機制 一之 NH 自由基不由金屬表面產生,而是經由 NH,自由基在氣相反應產生之 假設經模擬結果顯然與我們的量測結果不符,故可排除。

接著以機制(二)模擬時,我們設定[NH₃] = 5 × 10¹⁵ molecules/cm³, [NH] = 5 × 10¹³ molecules/cm³, [H] = 5 × 10¹³ molecules/cm³ 及[NH₃] = 1.0×10^{16} molecules/cm³, [NH] = 1.0×10^{14} molecules/cm³ [H] = 1.0×10^{14} molecules/cm³ 兩種情形去模擬, 其模擬結果如圖 4-14 所示, 與實驗測 量所的相符。

機制(三):模擬時,我們在機制二的條件下,分別加入[NH₂] = 5 × 10¹³ molecules/cm³及[NH₂] = 1.0 × 10¹⁴ molecules/cm³,其模擬結果如圖 4-15 所示。比較機制二及機制三,我們發現兩者在可觀察到的實驗時間範圍(0.1 s -1 s)內,其數量級上並沒有很大差異,說明了 NH₂是否於金屬表面產生,對 於 NH 濃度的模擬,結果並沒有很大影響。因此,由我們所做的模擬,可判 斷 NH 應是由金屬表面產生,而不是由 NH₂ 在氣相之反應所產生。

此外,我們也曾試著在系統中值測 NH₂,因此也將以 Facsimile 模擬 NH₂ 濃度對時間關係之結果加以做討論。由於在本系統實驗條件下,我們並沒有 辨法偵測到 NH₂,而我們利用光解 NH₃得到 NH₂並以 LIF 技術偵測之,其在 本系統偵測極限約為 5 × 10¹² molecules/cm³ (詳述如後)。因此在我們模擬的 條件下(機制二與機制三) NH₂濃度,如果在可觀察的時間範圍 (0.1 s-1.0 s) 內高於 5 × 10¹² molecules/cm³,將能為本系統所偵測。圖 4-16 為利用程式 Facsimile 模擬出的 NH₂濃度對時間關係圖,發現 NH₂是否一開始於金屬 W 表 面產生,在我們觀測時間範圍內(0.1-1s),其濃度都是小於 10¹⁰ molecules/cm³, 低於我們的偵測極限 5 × 10¹² molecules/cm³,此點與我們未能觀測到 NH₂自 由基之結果相符。圖 4-17 是我們模擬短時間內有無 NH,從金屬表面產生的機 制,並比較[NH₃] = 5 × 10¹⁵ molecules/cm³, [NH] = 5 × 10¹³ molecules/cm³, [H] = 5 × 10¹³ molecules/cm³ 及[NH₃] = 5 × 10¹⁵ molecules/cm³, [NH₂] = 5 × 10¹⁵ molecules/cm³, [NH] = 5 × 10¹³ molecules/cm³, [H] = 5 × 10¹³ molecules/cm³ 的雨種情形,如果我們欲分辨 NH₂的生成機制,根據短時間的模擬結果其濃度是高於我們之偵測極限,如 果能偵測到 $\leq 250 \mu s$ 時間範圍的 NH₂濃度變化,我們將有機會分辨 NH₂是由 氣相產生或由金屬表面產生。由於受到幫浦抽氣效率的影響,使的本實驗能 研究的反應時間範圍有所限制,因而無法得到更短時間對濃度關係圖。

然而, Matsumura¹⁴ 偵測到 NH_2 之生成, 我們根據其發表之數據, 推算出 其在金屬表面溫度為 1540 K 時的 $(NH_2) = 3.2 \times 10^{10}$ molecules/cm³, 並根 據其實驗條件, 推算其系統之流速 V:

v = $[1/\pi (20 \text{ cm})^2] \times 760 \text{ Torr} \div [(20 \text{ Pa}/133 \text{ Pa}) \times 1 \text{ Torr}] \times (320 \text{ K}/273.15 \text{ K}) \times 500 \text{ sccm} = 39.3 \text{ cm/s}$

由於其偵測區域距其催化位置為 10 cm,因此其在氣相反應時間約為 0.25s, 我們將此時間(0.25s)對應到我們之 NH_2 模擬的數值,其濃度約為 10^9-10^{10} molecules/cm³,約與從 Matsumura¹⁴ 實驗數值推算出的 NH_2 濃度(約 3.2×10^{10} molecules/cm³)有一個數量級上的差別。而在 Matsumura¹⁴ 觀察時 間範圍(0.25s)內,並無法分辨出 NH_2 的生成機制,因為在模擬系統中是否 加入 NH₂ 為起始物,對於 NH₂ 在 t = 0.25s 之濃度的模擬結果,並無很大差異,因此,也不能排除 NH₂是由 NH 在氣相中產生的可能性。

$$NH + NH \rightarrow NH_2 + N$$
 (4-10)

$$H + NH_3 \rightarrow NH_2 + H_2 \tag{4-11}$$

此外,由於我們在金屬 W (T = 1540 K)的實驗中只能偵測到 NH, 且由模擬得到 [NH₂] <5.0 × 10¹² molecules/cm³,而 Matsumura¹³的研究結 果顯示在金屬 W 之溫度在 1970 K - 2300 K 時之 [NH₂] = $10^{12} - 10^{13}$ molecules/cm³,且他們報導 NH₂濃度約為 NH 濃度 10 倍。因此,我們試圖 去模擬他們在約 2000 K 時的條件,其 [NH₃] = 4.8×10^{10} molecules/cm³, 並在圖 4-16 條件下改變其他參數,例如: [NH],[H] 和 [H₂]。然而,在 這些模擬條件下,我們模擬值得到 [NH₂] 皆小於 1.0 × 10¹⁰ molecules/cm³, 奧他們量測值有 100-1000 倍之差距。然而,由於他們 ¹⁴ 並沒有報導較低溫情 況下所得之的 [NH] 及 [NH₂],且他們在偵測 NH₂時有±200 % 的可能誤差, 其實際 NH 及 NH₂濃度可能與推論的不同。此外,[NH]/[NH₂] 可能隨著 金屬溫度不同而有不同的比例。

綜上所述,根據 Facsimile 模擬出 NH 的濃度關係圖,我們認為系統中 NH 主要由金屬 W 表面產生,如果其僅由 NH₂之氣相反應產生

$$\mathrm{NH}_2 + \mathrm{H} \to \mathrm{NH} + \mathrm{H}_2 \tag{4-12}$$

$$NH_2 + NH_2 \rightarrow NH + NH_3$$
 (4-13)

則在模擬上所得之數量級與測量明顯不符。我們的模擬結果無法判斷出 NH₂ 之產生機制為何,直接由金屬表面或來自於氣相反應皆有可能。

二. NH2 自由基:

在本實驗的第二部分,我們嘗試去利用 Pt/Rh 合金及金屬 W 催化分解去偵測 NH₂自由基。

我們的結果與林明璋教授研究組¹³之 Pt 的結果一致,均未在氣相中偵 測到 NH₂自由基。根據林教授研究組之報導³²,金屬 Pt 表面對 NH₂自由基 的移除有很高的效率,此乃由 NH₂的 LIF 訊號得知,當在常溫下,NH₂自由 基通過金屬 Pt 時,NH₂自由基螢光訊號降至原先之 9%,而隨著溫度超過 500 K 時,螢光訊號降至原先之 2% 左右,此結果說明了 NH₂自由基在金屬 Pt 表 面容易遭受破壞而轉變為其它分子。根據此一結果,他們推測其可能的反應 機制為下:

$$NH_2 + 3 Pt \rightarrow Pt-NH_2 + 2 Pt$$
 (4-13)

$$\rightarrow \text{Pt-NH}_2 + \text{Pt-H} + \text{Pt} \qquad (4-14)$$

$$\rightarrow$$
 Pt-N+2 Pt-H (4-15)

$$NH_2 + Pt - N + Pt \rightarrow N_2 + 2 Pt - H$$
(4-16)

此結果告訴我們,NH2易吸附在 Pt 上並反應產生 N2及 H_(ad)。因此,在 Pt/Rh 合金系統中,如果產生 NH2,也容易在表面上分解,不益於脫附產生。 (二)以金屬 W 為催化劑:

在金屬 W 表面温度為 2300 K 時, Matsumura¹³ 報導了 NH₂ 濃度約為 NH 的 10 倍,並取得 NH₂自由基的激發光譜。而在本實驗的條件(T=1540 K) 下,我們可以得到大於 10¹² molecules/cm³ 的 NH 自由基,若依其研究結果, 在我們的系統中 NH₂自由基的濃度應大於 10¹³ molecules/cm³。我們試著利用 193 nm 去光解 NH₂自由基的前驅物 NH₃,取得 NH₂自由基的雷射誘發螢光 光譜圖,由此得到在本實驗系統下的 NH₂自由基之偵測極限。圖 4-18 為在不 同 NH₃濃度下所取得的 NH₂自由基($A^2A^1 \leftarrow X^2B^1$)的激發光譜,由圖中可知, 在本實驗條件下,當 NH₂自由基濃度大於 1.0 × 10¹³ molecules/cm³ 時即可被 偵測到,但我們不論利用金屬 W 或 Pt/Rh 合金來分解 NH₃均無法測得 NH₂ 自 由基之存在,說明若 NH₂自由基本實驗條件下若可能產生其濃度也應低於 5 × 10¹² molecules/cm³。

三. 實驗誤差分析:

(一) 濃度估算:

實驗中系統總流量的誤差小於 3% , 壓力計誤差小於 1% 。而在配製校 正 NH 螢光訊號的前驅物 HN₃上,由於 HN_{3(g)} 是一穩定氣體,在室溫下不易 分解,因此收集 HN₃₍₁₎蒸氣與 N₂配成約 1% 的混合氣體,其濃度誤差應小於 1% 。此外, HN₃的吸收截面積及量子產率也是造成估計 NH 濃度之一誤差來 源。

(二)流速估算:

本實驗利用 Facsimile 程式去模擬 NH 生成機制,因此自由基在氣相反 應時間對於模擬是很重要的。由於反應的時間之計算是利用催化金屬到偵測 位置的距離以及系統總流速,而在估算距離時可能會有誤差,因為我們並無 法將催化金屬完全平行於偵測審射光,且因為金屬成捲曲狀,其距離奧真實 自由基在氣相中行走的距離可能不如我們所估算的。另外,系統流速的估算 也可能有偏差,我們利用式 (3-5) v = $(1/\pi r^2) \times (760/P_{sys}) \times (T_{sys}/273.15)$ × F_t 來計算流速,其中 r 為垂直於氣體前進方向的器壁半徑,因為我們將催 化金屬放置於 3/4 吋管與 7/4 吋管之間,造成流速由半徑小的管徑進入半徑大 的管徑時會有流速不穩定的情況,且在系統中心,有向四方外接的四根管柱, 造成其半徑瞬間變大。在估算半徑時,我們採用 7/4 吋管的管徑計算,因此 其估算流速將會有一定的誤差。

(三)材料雜質:

在金屬 W 系統,有 0.2% 的雜質,而在 Pt/Rh 合金中,並沒沒有其雜質

比例的資料。因此,這些雜質對於進行金屬催化反應時所造成的影響我們無法估計,可能造成有不同的金屬表面結構。

圖 4-2 利用 Pt/Rh 合金在 1100 K 催化分解 NH₃ 所得 NH($A^3 I → X^3 \Sigma$)之激發光

譜。

圖 4-5 利用 193nm 光解 HN_3 所得 $NH(A^3 \square → X^3 \Sigma)$ 之激發光譜。

圖 4-6:利用 LIF KINETIC 程式取得不同條件下之 NH 螢光訊號,將其平均 並利用校正曲線,可將之轉換成真正的自由基濃度(■為 NH_3 =4.79 ×10¹⁵ molecules/cm³ ●為 NH_3 = 1.70 × 10¹⁶ molecules/cm³)。

圖 4-7: 系統壓力為 50 Torr (N_2) 時, NH 螢光訊號隨時間變化之關係圖。

圖 4-8:由光解 HN_3 所得之 NH 螢光訊號之校正曲線圖。T = 297 K, P = 64-232 Torr (N_2) 。NH 螢光訊號 = $(-0.26\pm0.17) + [(8.60\pm0.35) \times 10^{-13}]$ × [NH]。誤差值為 2σ 。

圖 4-9: Pt/Rh 合金金屬溫度與 NH 自由基濃度的關係。 P = 50 Torr (N₂) , ■為 NH₃ = 3.36 × 10¹⁵ molecules/cm³, ● 為 NH₃ = 7.20 × 10¹⁵ molecules/cm³

圖 4-10:W 金屬溫度與 NH 自由基濃度的關係。 P = 50 Torr (N₂), ■為 NH₃=3.67 × 10¹⁵ molecules/cm³, ● 為 NH₃=7.68 × 10¹⁵ molecules/cm³

圖 4-11:NH 濃度與 NH₃ 濃度關係圖,利用金屬 W 催化(T=1540 K), 載流氣體是 N₂。

■為總壓 50 Torr,●為總壓 100 Torr▲為總壓 150 Torr

圖 4-12:NH 濃度與 NH₃ 濃度關係圖,利用 Pt/Rh 合金催化 (T = 1113 K),載流氣體是 N₂。

■為總壓 50 Torr●為總壓 100 Torr▲為總壓 150 Torr▼為總壓 200 Torr

圖 4-13:利用 Facsimile 模擬金屬 W 催化時 NH 濃度隨時間關係圖。實驗條 件 T = 1540 K, P = 50 Torr。

■及●為模擬情形:■ $[NH_3] = 5.0 \times 10^{15} \text{ molecules/cm}^3 \cdot [NH_2] = 5.0 \times 10^{13} \text{ molecules/cm}^3 \cdot [H] = 5.0 \times 10^{13} \text{ molecules/cm}^3 \oplus [NH_3] = 5.0 \times 10^{15} \text{ molecules/cm}^3 \cdot [NH_2] = 5.0 \times 10^{15} \text{ molecules/cm}^3 \cdot [H] = 5.0 \times 10^{15} \text{ molecules/cm}^3 \cdot [H] = 5.0 \times 10^{15} \text{ molecules/cm}^3$ $\blacksquare (NH_3) = 1.0 \times 10^{16} \text{ molecules/cm}^3$

圖 4-14:利用 Facsimile 模擬金屬 W 催化時 NH 濃度隨時間關係圖。實驗條 件 T = 1540 K, P = 50 Torr。

■及●為模擬情形:■[NH₃]=5.0 × 10¹⁵ molecules/cm³, [NH]=5.0 × 10¹³ molecules/cm³, [H] = 5.0 × 10¹³ molecules/cm³ ● [NH₃] = 1.0 × 10¹⁶ molecules/cm³, [NH] = 1.0 × 10¹⁴ molecules/cm³, [H] =1.0 × 10¹⁴ molecules/cm³, ▲及▼為實驗數據: ▲ [NH₃] = 5.0 × 10¹⁵ molecules/cm³, ▼ [NH₃] = 1.0 × 10¹⁶ molecules/cm³

圖 4-15:利用 Facsimile 模擬金屬 W 催化時 NH 濃度隨時間關係圖。實驗條 件 T =1540 K,P =50 Torr。■及●為模擬情形:■ $[NH_3] = 5.0 \times 10^{15}$ molecules/cm³, $[NH_2] = 5.0 \times 10^{13}$ molecules/cm³, $[NH] = 5.0 \times 10^{13}$ molecules/cm³, $[H] = 5.0 \times 10^{13}$ molecules/cm³ ● $[NH_3] = 1.0 \times 10^{16}$ molecules/cm³, $[NH_2] = 1.0 \times 10^{14}$ molecules/cm³, $[NH] = 1.0 \times 10^{14}$ molecules/cm³, $[H] = 1.0 \times 10^{14}$ molecules/cm³ ↓ $[NH_3] = 1.0 \times 10^{14}$ molecules/cm³, $[H] = 1.0 \times 10^{14}$ molecules/cm³ ↓ $[NH_3] = 1.0 \times 10^{14}$

圖 4-16:利用 Facsimile 模擬金屬 W 催化時 NH₂濃度隨時間關係圖。實驗條 件 T =1540 K, P =50 Torr。 ■●▲▼ 為模擬情形: ■ $[NH_3] = 5.0 \times 10^{15}$ molecules/cm³, $[NH_2] = 5.0 \times 10^{13}$ molecules/cm³, $[NH] = 5.0 \times 10^{13}$ molecules/cm³, $[H] = 5.0 \times 10^{13}$ molecules/cm³ $(NH_3] = 1.0 \times 10^{16}$ molecules/cm³, $[NH_2] = 1.0 \times 10^{14}$ molecules/cm³, $[NH] = 1.0 \times 10^{14}$ molecules/cm³, $[H] = 1.0 \times 10^{14}$ molecules/cm³ $(NH_3] = 5.0 \times 10^{15}$ molecules/cm³ $(NH_3) = 5.0 \times 10^{14}$ molecules/cm³, $[H] = 5.0 \times 10^{15}$ molecules/cm³ $(NH_3) = 1.0 \times 10^{16}$ molecules/cm³, $[H] = 1.0 \times 10^{14}$ molecules/cm³, $[H] = 1.0 \times 10^{16}$ molecules/cm³ $(NH_3) = 1.0 \times 10^{14}$

圖 4-17:利用 Facsimile 模擬 NH_2 濃度隨時間關係圖。實驗條件 T =1540 K, P =50 Torr。

●及■為模擬情形:■ $[NH_3] = 5.0 \times 10^{15}$ molecules/cm³, $[NH_2] = 5.0 \times 10^{13}$ molecules/cm³, $[NH] = 5.0 \times 10^{13}$ molecules/cm³, $[H] = 5.0 \times 10^{13}$ molecules/cm³ $(NH_3] = 5.0 \times 10^{15}$ molecules/cm³ $[NH] = 5.0 \times 10^{13}$ molecules/cm³, $[H] = 5.0 \times 10^{13}$ molecules/cm³, $[H] = 5.0 \times 10^{13}$ molecules/cm³

Reaction	Rate constant(320K)	Ref
	$(\text{cm}^3/\text{molecule s}) \cdot (\text{cm}^6/\text{molecule s}^2)$	
$1. \text{ NH}_3 + \text{NH}_2 \rightarrow \text{NH}_3 + \text{NH}_2$	4.24×10 ⁻²¹	1
2. $NH_3 + NH \rightarrow NH_2 + NH_2$	2.43×10 ⁻²⁸	2
3. $NH_3 + H \rightarrow H_2 + NH_2$	7.64×10 ⁻²⁰	3
4. $NH_2^+ NH \rightarrow NH_2 NH$	1.16×10 ⁻¹⁰ (349K)	4
5. $H + NH_2 \rightarrow NH_3$	2.66×10 ⁻¹¹ (349K)	4
6. $H + NH_2 \rightarrow H_2 + NH$	9.56×10 ⁻¹⁷	5
7. $H_2 + NH_2 \rightarrow NH_3 + H$	2.60×10^{-18}	1
8. $H_2 + NH \rightarrow H + NH_2$	1.62×10^{-21}	6
9. $NH_2 + NH_2 \rightarrow NH_3 + NH$	2.77×10^{-15}	7
10. $NH_2 + NH_2 \rightarrow H_2 + HN = NH$	1.30×10^{-12}	8
11. $HN=NH+H \rightarrow H_2 + HN=N$	7.84×10 ⁻¹³	9
12. HN=NH + $NH_2 \rightarrow NH_3$ + HN=N	1.63×10 ⁻¹⁶	10
13. $H + NH_2 NH \rightarrow NH_2 + NH_2$	2.66×10 ⁻¹²	11
14. $N_2H_4 + H \rightarrow H_2 + NH_2NH$	2.30×10^{-13}	12
15. $N_2H_4 + NH_2 \rightarrow NH_3 + NH_2NH$	5.15×10 ⁻¹³	11
16. NH + NH \rightarrow NH ₂ + N	4.16×10 ⁻¹³	13
17. NH + N \rightarrow N ₂ + H	1.99×10 ⁻¹¹	14
18. NH+ NH \rightarrow N ₂ +H ₂	8.33×10 ⁻¹⁴	4
19. $NH_2 + N \rightarrow NH + NH$	1.45×10 ⁻²³	15
20. $NH_2 + NH_2 \rightarrow H + NH_2NH$	1.30×10^{-13}	16
21. $NH_2 + NH_2 \rightarrow N_2H_4$	8.0×10 ⁻¹¹	17
22. H + N + N ₂ \rightarrow NH+N ₂	1.35×10 ⁻³³	18
23. $H_2 + N \rightarrow NH_2$	1.94×10 ⁻²⁰	19
24. $H_2 + N \rightarrow H + NH$	1.38×10 ⁻³²	20
25. $NH_2 + NH \rightarrow HN = NH + H$	1.39×10^{-10}	21
26. $NH_3 + NH + N_2 \rightarrow N_2H_4 + N_2$	5.02×10 ⁻³⁵	22
27. $HN_2 \rightarrow N_2 + H$	6.50×10^7	23
28. $NH_2NH+NH_2NH \rightarrow NH_3+NH_3+N_2$	5.00×10 ⁻¹²	24
29. N+N +N ₂ \rightarrow N ₂ +N ₂	7.20×10 ⁻³³	25
30. H+HN ₂ \rightarrow H ₂ +N ₂	1.66×10 ⁻¹²	26

表 4-1: Facsimile 中所列之反應機構與速率常數值

Reference:

1.Mebel, A.M.; Moskaleva, L.V.; Lin, M.C. J. Mol. Struct. THEOCHEM., 1999, 461, 223.

2. Rohrig, M.; Romming, H.-J.; Wagner, H.Gg. Ber. Bunsenges. Phys. Chem. 1994, 98.1332.

- 3. Corchado, J.C.; Espinosa-Garcia, J. J. Chem. Phys. 1997, 106, 4013.
- 4. Pagsberg, P.B.; Eriksen, J.; Christensen, H.C. J. Phys. Chem. 1979, 83.562.

- 5. Rohrig, M.; Wagner, H.G. Symp. Int. Combust. Proc. 1994,25,975.
- 6. Dove, J.E.; Nip, W.S. Can. J. Chem. 1979, 57.
- 8. Stothard, N.; Humpfer, R.; Grotheer, H-H. Chem. Phys. Lett. 1995, 240, 474.
- 9. Xu, Z-F.; Fang, D-C.; Fu, X-Y. Int. J. Quant. Chem. 1998.
- 10. Linder, D.P.; Duan, X.; Page, M. J. Chem. Phys. 1996,104,6298.
- 11. von Gehring, M.; Hoyermann, K.; Wagner, H.Gg.; Wolfrum, J. Ber. Bunsenges. Phys. Chem. 1971,75.
- 12. Vaghjiani, G.L. Int. J. Chem. Kinet. 1995,27,777.
- 13. Zu, Z-F.; Fang, D-C.; Fu, X-Y. Chem. Phys. Lett. 1997, 275, 386.
- 14. Caridade, P.JSB.;Rodrigues, S.PJ.;Sousa, F.;Varandas, A.JC.J. Phys. Chem. A 2005, 109, 2356.
- 15. Mayer, S.W.; Schieler, L.; Johnston, H.S. Symp. Int. Combust. Proc. 1967, 11, 837.
- 16. Stothard, N.; Humpfer, R.; Grotheer, H-H. Chem. Phys. Lett. 1995, 240, 474.
- 17. Sarkisov, O.M.; Cheskis, S.G.; Nadtochenko, V.A.; Sviridenkov, E.A.; Vedeneev, V.I. Arch. Combust. 1984, 4.
- 18. Mavroyannis, C.; Winkler, C.A. Can. J. Chem. 1962, 40, 240.
- 19. Aleksandrov, E.N.; Basevich, V.Y.; Vedeneev, V.I. Khim. Fiz. 1994, 13, 90.
- 20. Koshi, M.; Yoshimura, M.; Fukuda, K.; Matsui, H. J. Chem. Phys. 1990, 93.
- 21.Davidson, D.F.; Kohse-Hoinghaus, K.; Chang, A.Y.; Hanson, R.K. Int. J. Chem. Kinet. 1990, 22.
- 22. Zetzsch, C.; Stuhl, F. Ber. Bunsenges. Phys. Chem. 1981,85.
- 23. Miller, J.A.; Glarborg, P. Int J. Chem. Kinet. 1999, 31, 757.
- 24. Schiavello, M.; Volpi, G.G. J. Chem. Phys. 1962,37.6
- 25. Yamashita, T. J. Chem. Phys. 1979, 70.
- 26. Bozzelli, J.W.; Dean, A.M. Int. J. Chem. Kinet. 1995, 27, 1097.

圖 4-18: 不同 NH₂ 自由基濃度與螢光強度關係圖

第五章 結論

本實驗利用雷射光解/雷射誘發螢光技術,研究金屬 W 及 Pt/Rh 合金對 NH₃ 催化分解過程中的中間產物。在本實驗的條件下,金屬 W(T = 1400 K-2010 K)及 Pt/Rh 合金(T = 1100 K-1200 K)均會產生 NH 自由基,且其 NH 濃 度隨前驅物 NH₃濃度增加與表面金屬溫度提高而增加。但我們並未能在兩系 統中偵測到 NH₂,推測其未生成或濃度小於偵測極限。此外,我們發現在較 低溫(約1100 K)的條件下,Pt/Rh 合金的催化效果優於金屬 W,並且兩種 金屬的催化效果在 N₂ 做為載流氣體的條件下均隨著壓力的升高而降低,此 點結果說明在高溫下,N₂會與金屬的表面產生反應抑制 NH 之生成。此外, 我們藉由研究自由基分子的氣相反應,得到 NH 自由基應是直接由金屬 W 催化反應產生而不是由氣態中之二次反應產生,此點結果與 Matsumura¹³ 的 結果不同,由於受限於設備,無法測量較短氣態反應時間之結果,因此在判 斷氣相反應所可能之影響上,仍需要更進一步的研究。

參考文獻

[1] G. Ertl. Elementary Steps in Ammonia Stnthesis: The Surface Science Approach.In:J.R.Jennings, editor, Plenum Press, New York. **1991**.

[2] J. K. Nørskov and P. Stolze, *Surf. Sci.* **1987**, 189/190, 91.

- [3] J. R. Anderson and M. Boudart, *Catalysis: Science and Technology*, Volume 1. Springer-Verlag, Berlin. **1981**.
- [4] J. J. Vajo, W. Tsai and W. H. Weinberg, J. Phys. Chem. 1985, 89, 3243.
- [5] L. Schlapbach and A. Zuttel, *Nature*. **2001**, 414, 353.
- [6] T. V. Choudary, C. Sivadiinarayana and D. W. Goodman, *Catal. Lett.*2001, 72, 197.
- [7] R. Metkemeijer and P. A. Chard, Int. J. Hydrogen Energy. 1994, 19, 535.
- [8] Y. N. Lin and B. S. Rabinovitch, J. Phys. Chem. 1970, 74, 3151.
- [9] I. Oref and B. S. Rabinovitch, Chem. Phys. 1977, 26, 385.
- [10] M. Grunze, F. Bozso, G. Ertl and M. Weiss, Appl. Surf. Sci. 1978, 1, 241.
- [11] M. Weiss, G. Ertl and F. Nitschke, *Appl. Surf. Sci.* **1979**, 2, 641.
- [12] J. L. Gland, Surf. Sci. 1978, 327, 71.
- [13] Gary S. Selwyn and M.C. Lin, *Chemical Physics*. 1982, 67, 213.
- [14] H. Umemoto, K. Ohara, D. Morita, T. Morimoto, M. Yamawaki, A. Masuda and H. Matsumura, *Jpn. J. Appl. Phys.* **2003**, 42, 5315.

[16] H. M. Smallwood, J. Am. Chem. Soc. 1985, 1929, 51.

^[15] J. I. Steinfekd, J. S. Francisco and W. L. Hase, "*Chem. Kinet . and Dynam.*" **1989**.

- [17] G.Black and L. E. Jusinski, *Chem. Phys. Lett.* **1987**, 136, 241.
- 【18】 Continuum公司出品之UVX & UVT Generation 操作手册, 1991.
- [19] OMEGA Complete Temperature Measurement Handbook and Encyclopedia
- [20] D. I. Shin, G. Petter, T. Dreier, H.-R. Volpp and J. Wolfrum, *Proceedings of the Combustion Institute*. **2000**, 28, 319.
- [21] M. Clerc, M. Schmidt, J. Hagege Temman and J. Bellonilb, *J. Phys. Chem.*1971, 75, 2908.
- [22] F. Rohrer and F. Stuhl, *J. Phys. Chem.* **1988**, 88, 8.
- [23] H. Okabe, J. Chem. Phys. 1968, 49, 2726.
- [24] S. Overbury, P. Bertrand, and G. A. Somorjai, Chem. Rev. 1975, 75, 547.
- [25] http://www.webelements.com/webelements/elements/text/Pt/heat.html

411111

- [26] T. E. Madey and John T. Yates. Jr, J. Chem. Phys. 1966, 44, 1675.
- [27] P. T. Dawson and Y. K. Peng, J. Phys. Chem. 1973, 77, 135.
- [28] W. Andreoni and C. M. Varma, *PHYSICAL REVIEW B.* 1981, 23, 437.
- [29] C. Emil Tripa, Tykhon, S. Zubkov, John T. Yates, Jr. Mano Mavrikakis and Jens K. Nørskov, *J. Chem. Phys.* **1999**, 111, 8651.
- [30] R. M. van Hardeveld, R.A. van Santen and J. W. Niemantsverdriet, J. *Phys. ChemB.* 1997, 101, 998.
- [31] Evgeny Shustoovich and Alexis T. Bell, *Surface Science Letters*.**1991**, 259, 791.
- [32] Gary S. Selwyn, G. T. Fujimoto and M. C. Lin, *J. Phys. Chem.* **1982**, 86, 760.