Table of Contents

中文摘要	i
Abstract	iv
謝誌	viii
Table of contents	ix
List of Figures	xiv
List of tables	xx
List of Chemicals	xxii

Chapter 1

Organic Light-Emitting Diodes	1
1-1 Introduction	1
1-1-1 Inorganic Light-Emitting Diodes (LEDs)	1
1-1-2 Organic Light-Emitting Diodes (OLEDs)	2
1-1-3 Polymer Light-Emitting Diodes (PLEDs)	2
1-1-4 Device configuration of OLEDs.	3
1-1-5 Materials in OLEDs	5
1-1-5-1 Hole-transporting materials	5
1-1-5-2 Electron-transporting and hole-block materials	5
1-1-5-3 Light-emitting materials	6
1-2 Motivation	8
1-3 References	9

Chapter 2

Red	Emitting	Fluorenes	as	the	Efficient	Host	Emitter	for	Non-Doped	Red	Organic
Light	t-Emitting	Diodes	••••								11
2-1 I	ntroduction	n									11

2-1-1 Recent non-doped red organic light-emitting diodes	14
2-2 Motivation of research	22
2-3 Experimental	24
2-3-1 Materials	24
2-3-2 Instruments	24
2-3-3 Synthesis	26
2-4 Results and Discussion	33
2-4-1 Synthesis	33
2-4-2 Analysis of X-ray Crystal structure	34
2-4-3 Thermal Analysis	35
2-4-4 Fluorescence Analysis.	36
2-4-5 Characterization of red OLEDs.	37
2-5 Conclusion	40
2-6 References	41
Chapter 3	

Influence of Molecular Dipoles on the photoluminescence and Electroluminescence o
Dipolar Donor-Acceptor-Substituted Spirobifluorene Fluorophores4
3-1 Introduction4
3-1-1 Short Introduction4
3-1-2 Electronic Coupling of the Spiro-linked π -system
3-2 Motivation of research
3-3 Experimental
3-3-1 Materials
3-3-2 Instrument
3-3-3 Synthesis
3-4 Results and Discussion

3-4-1 Improved synthesis of 2,2'-dibromo-9,9'-spirobifluorene and its 2,2'-bisdonor-
7,7'-bisacceptor-substituted -9,9'-spirobifluorene derivatives
3-4-1-1 Synthesis of 2,2'-dibromo-9,9'-spirobifluorene
3-4-1-2 Synthesis of 2,2'-bisdonor-7,7'-bisacceptor-substituted-9,9'-spirobifluorene
derivatives
3-4-1-3 Optical properties of 2,2'-bisdonor-7,7'-bisacceptor-substituted-9,9'-spirobifluorene
derivatives
3-4-1-4 Summary
3-4-2 Characterization of BisPhSPDPV vs PhSPDPV, BisPhSPCHO vs PhSPCHO and
BisPhSPDCV vs PhSPDCV
3-4-2-1 Thermal analysis
3-4-2-2 Crystal X-ray Structure
3-4-2-2 Molecular dipole moments
3-4-2-3 Optical properties analysis
3-4-2-3-1 Absorption and fluorescence analysis
3-4-2-3-2 Solvatochromic effect
3-4-2-3-3 Photoluminescence quantum yield in solution and electric field
3-4-2-3-4 Energy level of spirobifluorenes and their OLED layer structure
analysis
3-4-2-4 Characterization of red, orange and yellow OLEDs
3-4-2-5 Non-Dopant Green OLEDs Based on PhSPCHO and BisPhSPCHO as well as
Non-dopant Blue OLEDs Based on PhSPDPV and BisPhSPDPV91
3-5 Conclusions
3-6 References

Chapter 4

Diaza-Substituted Spirobifluorenes Having Enhanced	Electron	Transporting	Ability	for
Highly Efficient Non-Doped Blue Organic Light-Emitting	, Diodes			107
4-1 Introduction				107
4-2 Motivation of research				107
4-3 Experimental				109
4-3-1 Materials				109
4-3-2 Instrument				109
4-3-3 Synthesis				110
4-4 Results and Discussion				113
4-4-1 Synthesis				113
4-4-2 Thermal properties				114
4-4-3 Photophysical properties and energy levels				114
4-4-4 Electrochemistry				116
4-4-5 OLEDs Characterization				117
4-4-5-1 High performance blue devices				117
4-4-5-2 Current Density-Voltage characteristic of electron	n or hole o	only devices		118
4-4-5-3 PhSPDPV and PhSP _{N2} DPV OLED test				120
4-5 Conclusions				123
4-6 References				124
Chapter 5				
Potent Blue Emitting Ambipolar Fluorenes Dopants for I	Enhancing	the Performa	nce of D	eep
Blue Organic Light-Emitting Devices			1	29
5-1 Introduction				129

5-1 Introduction	12)
5-2 Motivation of research	
5-3 Experimental	
5-3-1 Materials	

5-3-2 Instrument.	
5-3-3 Synthesis	133
5-4 Results and Discussion	145
5-4-1 Synthesis	145
5-4-2 Absorption and fluorescence spectroscopic analysis	146
5-4-3 Electroluminescence properties	148
5-4-3-1 Devices test of oFPhFBT	148
5-4-3-2 Devices test of PhFBT	150
5-5 Conclusion	157
5-6 Reference	157
Appendix ¹ H and ¹³ C NMR spectra	160

List of Figures

Page
Figure 1-1. Configuration of ITO/bis(triarylamine)/Alq ₃ /Mg:Ag device and molecular
structures
Figure 1-2. Configuration of devices based on PPV and MEH-PPV
Figure 1-3. A configuration of Anode/HTL/ETL/Cathode device and energy level
diagram4
Figure 1-4. The structures of TPD, NPB, mTDATA and Spiro-TAD5
Figure 1-5. The structures of PBD, Spiro-PBD, TPBI, BCP and PyPySPyPy6
Figure 1-6. The structures of Bebq ₂ and DSA-amine
Figure 1-7. The structures of C545T, DCJTB, DSA, and BCzVBi
Figure 2-1. Fluorescence image of Nile Red, DCM and TPP in solution (1,4-dioxane) and in solid state. 12
Figure 2-2. Fluorescence spectra of Alq ₃ doped with DCM as a function of DCM concentration
Figure 2-3. Relative EL quantum efficiencies as a function of dopant concentration in Alq ₃
Figure 2-4. The chemical structure of (PPA)(PSA)Pe-1, and the EL spectra of devices
Figure 2-5. The chemical structures of acen , and the EL spectra of devices: ITO/NPB/ acen /BCP/Alq ₃ /Mg:Ag closed square: acen1 , opened circle: acen2 , opened triangle:
acen3, cross: acen4)15
Figure 2-6. The chemical structures of BSN and 2-TNATA
Figure 2-7. The chemical structures of D-CN and OXD, and the characterization of
devices16

Figure 2-8. The chemical structures bzta1, bzta2 and bzta3, and electroluminescence spectra
of ITO/ btza /TPBI/Mg:Ag17
Figure 2-9. The synthetic route of NPAFN
Figure 2-10. The PL and EL spectra of NPAFN
Figure 2-11. The chemical structures TPZ1, TPZ2, CAPP, CAPQ and QPMA20
Figure 2-12. The chemical structures NPAMLMe and INDMLMe
Figure 2-13. The PL and EL spectra of NPAMLMe
Figure 2-14. The chemical structure of fluorene
Figure 2-15. X-ray determined molecular structure and crystal packing diagram of
pTSPDCV (left column) and PhSPDCV (right column)35
Figure 2-16. White light (top) and UV (bottom) illumination of the powder of Nile Red,
DCM, pTFDCV , pTSPDCV , and PhSPDCV
Figure 2-17. CIE 1931 chromaticity diagram (left) and EL spectra (right) of device I, II, and
III containing pTFDCV , pTSPDCV , and PhSPDCV , respectively
Figure 2-18. External quantum efficiency-Current density-EL intensity (η_{EXT} -I-L)
characteristics of devices I-V40
Figure 3-1. General structure of substituted of 9'9-spirobifluorene
Figure 3-2. Model of spiro conjugation of molecular orbitals
Figure 3-3. The chemical structures 9'9-spirobifluorene, Spiro-6P and Spiro-PBD48
Figure 3-4. (a) Photoinduced electron transfer (PET) from the donor to the acceptor of
spirobifluorene. (Reprinted from ref 15) (b) The chemical structures D1A1, D1A2, D2A1 and
D2A248
Figure 3-5. The chemical structures Spiro-AMO-tBu, Spiro-AMPO-tBu, Spiro-AMO-CN and
Spiro-AMPO-CN
Figure 3-6. ¹ H NMR spectra of 2,2'-dibromo-9,9'-spirobifluorene and Single crystal X-ray
structure of 2,2'-dibromospirobifluorene

Figure 3-7. (a) Absorption spectra, (b) emission spectra, (c) emission spectra of solid state,
(d) Fluorescence images of the solution (e) Fluorescence images (spin-coated solid films) of
BisPhSP, BisPhSPDPV, BisPhSPCHO, BisPhSPDBTV, BisPhSPCNBTV and
BisPhSPDCV in chlorobenzene, respectively
Figure 3-8. X-ray determined molecular structure and crystal packing diagram of
BisPhSPDCV
Figure 3-9. Close-up view of the interaction between BisPhSPDCV molecules72
Figure 3-10. BisPhSPDCV crystal packing diagrams containing solvated molecules, toluene
(left figure) and carbon tetrachloride (right figure)
Figure 3-11. X-ray determined molecular structure and crystal packing diagram of
PhSPCHO
Figure 3-12. X-ray determined molecular structure and crystal packing diagram of
BisPhSPCHO
Figure 3-13. An unparallel ring-to-ring contact between C19 and C45 (3.34 Å) of
РЬЗРСНО
Figure 3-14. An edge-to-edge side way interaction between two phenyl rings of
neighboring molecules of PhSPCHO 75
Figure 3-15. The face-on π - π interaction between formyl acceptor and the phenyl ring of
diphenylamino donor of BisPhSPCHO 75
Figure 3-16. Dipole moment in unit of Debye (D) of PhSPDCV, BisPhSPDCV, PhSPCHO,
BisPhSPCHO, PhSPDPV and BisSPDPV76
Figure 3-17. Fluorescence spectra of PhSPDCV, BisPhSPDCV, PhSPCHO, BisPhSPCHO,
PhSPDPV, and BisPhSPDPV80
Figure 3-18. Relative energy-level alignments and layer thickness of OLEDs85

Figure 3-19. Photoluminescence spectra of thin films of PhSPDCV and BisPhSPDCV
compared with EL spectra of corresponding non-dopant and dopant
OLEDs
Figure 3-20. 1931 CIE color chromaticity diagram of dopant and non-dopant PhSPDCV and
BisPhSPDCV OLEDs
Figure 3-21. Absorption spectra of PhSPDCV, DCM, and rubrene and emission spectrum of
solid state Alq ₃ 90
Figure 3-22. The EL spectra of ITO/NPB (50 nm)/red dopant (0.5 %) in Alq ₃ (40 nm)/BCP
(10 nm)/Alq ₃ (30 nm)90
Figure 3-23. Photoluminescence spectra of thin films of PhSPCHO, BisPhSPCHO,
PhSPDPV, and BisSPDPV compared with EL spectra of corresponding non-dopant
OLEDs
Figure 3-24. 1931 CIE color chromaticity diagram of non-dopant PhSPCHO, BisPhSPCHO,
PhSPDPV, and BisPhSPDPV OLEDs
Figure 3-25. Efficiency-current density-electroluminance and current density-voltage
characteristics of non-dopant OLEDs based on PhSPCHO and BisSPCHO as well as
PhSPDPV and BisPhSPDPV94
Figure 4-1. Chenical structures of BPhen, BCP, Ansole-diazaF, terfluorene and
diaza-terfluorene
Figure 4-2. Chenical structures of PhSPDPV and PhSP _{N2} DPV109
Figure 4-3. DSC and TGA scans of PhSPDPV and PhSP _{N2} DPV114
Figure 4-4. Normalized UV-vis absorption and photoluminescence spectra of PhSPDPV and
PhSP _{N2} DPV
Figure 4-5. (a) Oxidation and (b) reduction of cyclic voltammograms of PhSPDPV and
PhSP _{N2} DPV116

Figure 4-6. Electroluminescence (EL) characteristics of blue non-dopant OLEDs based on
PhSPDPV and PhSP _{N2} DPV118
Figure 4-7. Characterization of Carrier-only devices
Figure 4-8. Efficiency-current density-electroluminescence (η_{EXT} -I-L) and Current
density-voltage (I-V) characteristics of devices
Figure 5-1. The chemical structures of DPVBi, AND, and MADN130
Figure 5-2. The chemical structures of BCzVBi, DSA-Ph, BD-1, TBP, and 5a131
Figure 5-3. The chemical structures of DBP and DBzA
Figure 5-4. Ambipolar design of fluorene- and spirobifluorene-based blue
fluorophores132
Figure 5-5. Absorption and fluorescence spectra of fluorene and spirobifluorene
compounds
Figure 5-6. (a) Efficiency-current density-electroluminescence (η_{EXT} -I-L) characteristics of
devices.; (b) The EL spectra of devices
Figure 5-7. (a) The diagram of energy levels.; (b) the overlap of the absorption and PL spectra
of oFPhFBT and the PL spectra of MAND in chlorobenzene
Figure 5-8. The overlap of the absorption spectra of PhFBT and oFPhFBT and the PL
spectra of MAND in chlorobenzene
Figure 5-9. The EL spectrum of device ITO/NPB (50 nm)/MADN (40nm)/Alq ₃ (10 nm)/LiF
(1 nm)/Al (150 nm)152
Figure 5-10. Electroluminescence (EL) characteristics of PhFBT based
devices153
Figure 5-11. The overlap of the film PL and device EL spectra of 3 % PhFBT in MADN or
ТРВІ154
Figure 5-12. The film PL spectra of x % PhFBT in MADN at room temperature155
Figure 5-13. The PL spectra of PhFBT with increasing solvent polarity (in the cosolvent of

toluene and	CHCl ₃)	155
Figure 5-13.	The film PL spectra of x % PhFBT in MADN at ~100 K	155

List of Tables

Page
Table 2-1. The EL Performance of Non-Doped Host-Emitting Red OLEDs
recently
Table 2-2. Optical and thermal properties of red emitting fluorenes
Table 2-3. Characteristics of OLEDs containing pTFDCV, pTSPDCV, and
PhSPDCV
Table 3-1. Fluorescence and absorption data of 2,2'-bisdonor-7,7'-bisaccaptor-substituted
9,9'-spirobifluorenes
Table 3-2. Thermal properties of spirobifluorene compounds
Table 3-3. Calculated ground state dipole moments and differences in permanent dipole
moments of the first excited state and ground state
Table 3-4. Absorption and fluorescence properties
Table 3-5. Solution and solid state photoluminescence quantum yield of six
9'9-spirobifluorene fluorophores
Table 3-6. Energy levels of these six spirobifluorene compounds
Table 3-7. Characteristics of dopant and non-dopant OLEDs of PhSPDCV,
BisPhSPDCV
Table 3-8. Characteristics of non-dopant OLEDs of PhSPCHO, BisPhSPCHO PhSPDPV, and
BisPhSPDPV
Table 4-1. Thermal properties of PhSPDPV and PhdiazaSPDPV
Table 4-2. Optical properties as well as energy levels of PhSPDPV and
PhSP _{N2} DPV115
Table 4-3. Characteristics of non-dopant OLEDs of PhSPDPV and PhSP _{N2} DPV 117
Table 4-4. Characteristics of non-dopant OLEDs of PhSPDPV and PhSP _{N2} DPV120

Table 5-1. Optical properties and energy levels of fluorene and	spirobifluorene
compounds	148
Table 5-2. Characteristics of OLEDs containing oFPhFBT	148
Table 5-3. Characteristics of OLEDs containing PhFBT	

List of Chemicals

