| 24 | 7 |
|----|---|
| 菿  | K |

| 中文摘要i                     |
|---------------------------|
| 英文摘要iii                   |
| 謝誌v                       |
| 目錄vi                      |
| 合成目錄x                     |
| 表目錄xi                     |
| 圖目錄xii                    |
| <ul> <li>第一章 緒論</li></ul> |
| 1.2 截条與例里4<br>1.2.1 光譜分析4 |
| 1.2.2 顯微鏡影像4              |
| 1.2.3 散射分析5               |
| 1.2.4 模擬5                 |
| 1.3 典型的兩性化合物6             |
| 1.4 醣類雨性化合物之分子自組裝7        |

| 1.5 液晶的簡介           | 12                           |
|---------------------|------------------------------|
| 1.5.1 液晶的發現與形成      | 12                           |
| 1.5.2 液晶形成的條件       | 14                           |
| 1.5.3 液晶的種類         | .14                          |
| 1.5.3.1 以液晶相形成之方式分類 | .14                          |
| 1.5.3.2 以液晶分子形狀分類   | .16                          |
| 1.6 液晶之性質           | 20                           |
| 1.7 研究動機            | .22                          |
| 第二章 實驗部份            | 23                           |
| 2.1 試藥              | 23                           |
| 2.2 儀器              | .23                          |
| 2.2.1 核磁共振光譜儀       | .23                          |
| 2.2.2 偏光顯微鏡系統       | .23                          |
| 2.2.3 微差掃描卡計        | .24                          |
| 2.2.4 熱重分析儀         | .24                          |
| 2.2.5 傅立業紅外光光譜儀鑑定   | .24                          |
| 2.2.6 紫外線與可見光光譜儀    | .25                          |
| 2.2.7 穿透式電子顯微鏡      | 25                           |
| 2.2.8 場發射掃描式電子顯微鏡   | 25                           |
|                     | <ol> <li>1.5 液晶的簡介</li></ol> |

|   | 2.3   | 合成部份2                                             | 25 |
|---|-------|---------------------------------------------------|----|
|   | 2.3.1 | 化合物 1a~1m 的合成2                                    | 6  |
|   | 2.3.2 | 化合物 2 的合成2                                        | 27 |
|   | 2.3.3 | 化合物 3a~3m,5a 與 5b 的合成2                            | 28 |
|   | 2.3.4 | 含 ferrocene 化合物 8 的合成3                            | 6  |
|   | 2.3.5 | 含 cinnamate group 化合物 10 的合成3                     | 8  |
|   | 2.4   | 分子自組裝實驗過程4                                        | -3 |
| 絴 | 5三章   | 結果與討論4                                            | 4  |
|   | 3.1   | Chiral Shiff-base Rod-Coil Amphiphiles 化合物之分子自組裝4 | 4  |
|   | 3.1.1 | 含醣類雙向性分子之分子自組裝效應4                                 | 4  |
|   | 3.1.1 | 1分子設計與合成                                          | -5 |
|   | 3.1.1 | 2 分子自組裝過程的研究與探討4                                  | -6 |
|   | 3.1.1 | 3 碳鏈長度效應對自組裝後形態的影響5                               | 51 |
|   | 3.1.1 | 4 分子模擬5                                           | 54 |
|   | 3.1.1 | 5 燕尾型分子形成之囊胞狀形態5                                  | 7  |
|   | 3.1.1 | 6 結論5                                             | 8  |
|   | 3.1.2 | 旋光效應與碳鏈長度對螺旋結構之螺旋度的相對關係5                          | 9  |
|   | 3.1.3 | 熱向型液晶之液晶相行為6                                      | 5  |
|   | 3.2   | 含 ferrocene 之雙向性化合物自組裝與磁場控制自組裝排列7                 | '1 |

| 3.3 | 含  | cinnam | ate group | )之雨!  | 生化合   | 物之            | 自組裝   | 支與          | UV | 光聚    | 交聯之   | 效果 | 81  |
|-----|----|--------|-----------|-------|-------|---------------|-------|-------------|----|-------|-------|----|-----|
| 第四章 | Ī  | 結論     |           | ••••• | ••••• |               |       |             |    |       | ••••• | 8  | \$5 |
| 參考文 | こ獻 | •••••  |           | ••••• |       | • • • • • • • | ••••  | • • • • • • |    | ••••• | ••••• | 80 | 6   |
| 學術著 | 作  | 表      |           |       |       | •••••         | ••••• | ••••        |    | ••••  |       | 9  | 1   |



## 合成目錄

| Scheme | 1 | Synthesis | of | compound | s 3a-3m, | 5a        | and   | 5b | .40 |
|--------|---|-----------|----|----------|----------|-----------|-------|----|-----|
| Scheme | 2 | Synthesis | of | compound | 8        | • • • • • |       |    | .41 |
| Scheme | 3 | Synthesis | of | compound | 10       | ••••      | ••••• |    | .42 |



## 表目錄

| Table 1 | Phase behavior of all materials . |  |
|---------|-----------------------------------|--|
|---------|-----------------------------------|--|



## 圖 目 錄

## ALL LAND

Figure7 (A and B) FE-SEM and (C and D) TEM images of the double-helical

|          | silica nanotube obtained from the mixed gel of $1 \mbox{ and } 2 \mbox{ (1:1 } \mbox{w/w)}$ |
|----------|---------------------------------------------------------------------------------------------|
|          | after calcination, and (E) schematic representation of the                                  |
|          | double-helical structure of the silica nanotubes through SEM and                            |
|          | TEM observations11                                                                          |
|          |                                                                                             |
| Figure8  | 液晶發現之歷史13                                                                                   |
| Eigung   | · · · · · · · · · · · · · · · · · · ·                                                       |
| Figure9  | <b>波</b> 庙 分 丁 之 基 本 朱 稱                                                                    |
| Figure10 | 液向型液晶之聚集方式15                                                                                |
| C        |                                                                                             |
| Figure11 | 熱向型液晶形成方式15                                                                                 |
|          | ESAN                                                                                        |
| Figure12 | 桿狀型分子排列形式16                                                                                 |
| Figure13 | 般狀液晶之三種基本化學結構 18                                                                            |
| 11901015 |                                                                                             |
| Figure14 | 盤狀液晶分子之筒狀排列19                                                                               |
|          |                                                                                             |
| Figure15 | 盤狀液晶分子之細部排列形式19                                                                             |
| Figure16 | Corresponding (a) UV-vis spectra and (b) CD results of 4-NADG in                            |
| C        | THF (1) or water (2), respectively                                                          |
|          |                                                                                             |
| Figure17 | (a) UV-vis spectra of compound 1a ~ 1g in THF. (b) The CD results                           |
|          | of compound 1a ~ 1g in THF48                                                                |

Figure19 FT-IR spectra of compound **3e** in (a) pure THF and (b) THF/H<sub>2</sub>O Figure20 FESEM (left) and TEM (right) micrographs of compound (a) **3a**; (b) FESEM (left) and TEM (right) micrographs of compound (a) 3e; (b) Figure20 Figure21 Molecular simulation results. (a) Single chiral Schiff-based rod-coil amphiphiles. (b) Aggregate morphology in the self-assembly Twisting and bending chiral Schiff-based rod-coil amphiphiles of Figure22 (a) FESEM and (b) TEM micrographs of spherical vesicles.......57 Figure23 *Nature*, 2004, vol. 431, 966 Figure 1 ......59 Figure24 Figure25 TEM morphology of compound 3h(n=14).....61 Figure26 TEM morphology of compound 3i n=15(a) and 3j n=16(b) ......62 Figure27 TEM morphology of compound 3l(a) and 3m(b)......62 Figure28 Figure29 Polarizing optical micrographs for the schiff base compounds; (a) 3e 

| Figure18 T | 'ime-resolved | UV-vis | spectra of | compound | le in | $THF/H_2O$ | 49 |
|------------|---------------|--------|------------|----------|-------|------------|----|
|------------|---------------|--------|------------|----------|-------|------------|----|

| Figure31 | The overall DSC results of compound 1 recorded from the 2 <sup>nd</sup> |
|----------|-------------------------------------------------------------------------|
|          | heating and cooling scanning processes. (rate = $20^{\circ}$ C/min)69   |

- Figure32 TEM morphology of compound glu-rod coil-Fe (Pd sputtering)73,74
- Figure34 高温碳化後所剩之奈米鐵顆粒聚集......76

- Figure37 控溫與應加磁場實驗......79