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ABSTRACT

In the paper, first of all;>a model selection technique between two
empirical Bayes models for-categorical data in manufacturing is proposed.
Next, two useful empirical Bayes models for categorical data in
manufacturing are introduced. Finally; the performance of the proposed
method is illustrated by an example through simulations.
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1. INTRODUCTION

In a manufacturing process, suppose that there are k possible types of defects in a
product for some known positive integer k. For each tested product item, the result could
be classified as one and only one of the following k + 1 disjoint categories: {the first defect
type, ..., the kth defect type, pass}. Such data are called either binary for £ = 1 or
polytomous for k£ > 2. In the paper, categorical data denote either binary data for k = 1
or polytomous data for k > 2. See, e.g., McCullagh and Nelder (1989, Chapters 4 and 5)
or Agresti (2002) for the categorical data analysis.

In the Bayesian framework, it is assumed that the unknown random parameters have a
known prior distribution. In practicé; ¢hoosing an'appropriate subjective or objective prior
distribution is usually a non-trivial task for practitioners. Instead of a Bayesian approach,
an empirical Bayes approach is ‘commontyyusedsin the literature. For an empirical Bayes
inference, the marginal distribution of the'observed data is utilized to estimate the unknown
hyperparameters and then a Bayesian inference is made for the random parameters as if
the estimated prior distribution were the prior distribution.

There are some researches for the empirical Bayes process monitoring techniques for
categorical data in manufacturing. For example, Yousry et al. (1991) used the beta-binomial
empirical Bayes model for binary data utilizing the method of moments for estimation of
the hyperparameters. Recently, Shiau et al. (2005) used the Dirichlet-multinomial empirical

Bayes model for polytomous data utilizing both the method of moments and the pseudo-



likelihood method for estimation of the hyperparameters. Chen et al. (2004) used the beta-
binomial or Dirichlet-multinomial empirical Bayes model for categorical data utilizing the
maximum likelihood (ML) method for estimation of the hyperparameters and the likelihood
ratio (LR) method for monitoring the manufacturing process. Similarly, Chen et al. (2005)
used the transformed-normal-binomial or transformed-normal-multinomial empirical Bayes
model for categorical data utilizing the same methods as Chen et al. (2004).

To proceed the discussion, we first briefly introduce a Bayesian inference as follows: In
the Bayesian framework, it is assumed that the unknown random parameter vector 8 has a
known prior probability density function (p.d.f.) or probability mass function (p.m.f.) 7w(0)
and that the response vector y has a knownseonditional p.d.f. or p.m.f. f(y|6) given §. Then

a Bayesian inference is based on.the posterior p.d.f. or p.m.f., p(f]y), of 6 given y, where

p(Oy)ocfyld) m(0).

It is common practice to estimate € by the posterior mean, E(f|y), or the posterior mode,

mode(f]y), of 6 given y, where

_Jo 0510 7(0)d8  Fgeq 0 £(3160)7(6)
Jo I&10)78)d0 " g F10)7(0)

E(0]y)

and
mode(f|y) = arg sup p(fly) = arg sup f(y|¢) 7 (0)
ISC) 0cO

with P({6 € ©}) = 1. See, e.g., Gelman et al. (2004) or O’Hagan and Forster (2004) for

the Bayesian data analysis.



Next, we briefly introduce an empirical Bayes inference as follows: In the empirical
Bayes framework, it is assumed that the unknown random parameter vector 6 has a prior
p.d.f. or p.m.f. 7(0;\) and that the response vector y has a known conditional p.d.f. or
pm.f. f(y|0) given 0, where A is an unknown hyperparameter vector and = (-;-) is a known
function. Then an empirical Bayes inference is based on the estimated posterior p.d.f. or

p.m.f., p(f]y; )\)\)\:;\(y), of 6 given y, where
p(0ly; A) o< f(y|0) w(6; \)

and A(y) is an estimator of A. In practice, A(y) is frequently chosen as the maximum
likelihood estimator (MLE) or a method-of-moments estimator (MME) of A. Similarly, it
is common practice to estimate ¢ by the estimated posterior mean, E(0|y; \)|,_ Ay) OF the

estimated posterior mode, modé(@]y; A)|,_ Ay): OF 0 given y, where

o OO T(0; M) dO <y 0 f(y10) (05 N)

BN = S om0 >y J(y10) 7(0: )

and
mode(f]y; A) = arg sup p(fly; A) = arg sup f(y|0) 7(6; A)
(<(C] 0O

with P({# € ©};\) = 1. See, e.g., Carlin and Louis (2000) for the empirical Bayes data
analysis.

The remaining part of the paper is organized as follows. A model selection technique
between two empirical Bayes models for categorical data in manufacturing is proposed

in Section 2. In Section 3, two useful empirical Bayes models for categorical data are



introduced. The performance of the proposed method is illustrated by an example through

simulations in Section 4. Some concluding remarks and future work are given in Section 5.

2. A MODEL SELECTION TECHNIQUE

Assume that each tested product item is classified as one and only one of the following
k + 1 categories: {the first defect type, ..., the kth defect type, pass}, where k is a known
positive integer. Let t be any positive integer. Suppose that there are n; tested product
items manufactured at time ¢, where n; is a known positive integer. For ¢ € {1,...,k}, let
0;+ denote the probability that a product item manufactured at time ¢ is of the ith defect
type. Then 1 — Zle it (= Ok+14+) is the probability that a product item manufactured at
time t passes the test. Assume that ;> 0-ford €41,...,k+1}. Fori € {1,...,k}, let
yit denote the number of the tested product items which are of the ith defect type among
the n; tested product items manufactured at time.t. Then n; — Zle Yit (= Ypy1,) s the
number of the tested product items which pass the test among the n; tested product items
manufactured at time t. Set 0; = (01¢,...,0k)", y¢ = Y1ty Yke) L, © = {0; : 014, . .., Opy >
0 and Zle O;e < 1}, and Vo, = {yt : v1t-- -y € {0,1,...,n¢} and Zle Yir < ngt

Assume that y; has the conditional binomial(n;; 6;) or multinomial(ny; 6;) distribution
given 0;. Let Fp, and Fy, |9, denote, respectively, the prior cumulative distribution function

(c.d.f.) of 6; and the conditional c.d.f. of y; given ;. Then y; has the conditional p.m.f.

k+1

nt! i
f(ye]0:) = 1y, (ye) - T gl : 11 0} (1)



given 6, where 1y, (yr) = 1 for y; € YV, and 0 otherwise. Thus, y; has the marginal p.m.f.

k+1

F(yes Fa,) = 1y, (v1) Hkﬂ / HeyltdFet (6). @)

7 1y’Lt

Throughout the paper, we say that the manufacturing process is in control at time ¢
when Fy, = F, where F' is a c.d.f. on © with some unknown p.d.f. 7(-). For any posi-
tive integer m, set R™ = (—o0,00)™, let 0,,%x1 denote the m x 1 vector (0,...,0)T, and
let 1,,%1 denote the m x 1 vector (1,...,1)T.

For v € {1, 2}, let model u denote the parametric family {F, », : Ay € Ay}, where A, is
a gy % 1 hyperparameter vector for some known positive integer ¢, each F;, , is a c.d.f. on ©
with known p.d.f. m,(;\y), and A, is a known open subset of R%. Without loss of
generality, assume that ¢; < go. JAssume that @%m,(0s; \y)/ONONL exists for 6, € O,
Au € Ay, and u € {1,2}. For A, € A, and.-@ € {1;2}, let Fy,., », denote the marginal

c.d.f. of y; when Fy, = F, »,. Then y; has themarginal p.m.f.

k+1

ny! .
e Fun) = 1, 00 - [ T[04 aPun. 0) Q
i=1 Yit: i=1

when Fy, = F, », for some A\, € A, and u € {1,2}.

For A, € A, and u € {1,2}, the Kullback-Leibler distance between F' and F, », is

A(FF) = [ 1o Lfe(ft;)] AF(6) (= du(M)). (4)

By the Jensen inequality,

do(he) = /@ ~log {W] dF(8) > —log [ /e W-w(et)det}

= — 10g / 7ru(9t; )\u) d@t Z — lOg |:/ 7ru(9t; >\u> d@t:| = O,
{9,5:7r(9t)>0} (S

5



where dy()\,) = 0 if and only if F, \, = F.
For A\, € A, and u € {1, 2}, assume that all of the following conditions hold: d,(\,) <

00, O?dy (M) /ONONL exists,

0 [ 9 oo i

and

et~ s (oo [ | e

For u € {1,2}, assume that there exists a unique A\Y € A, such that

A =arg inf dy(\y). (5)

Au€Ay

Suppose that we are interested in ehoosing ‘either model 1 or model 2 as an approximate
model for monitoring the manufacturing proeess: For this purpose, we would like to consider
the hypothesis testing problem with the null hypothesis Hy : d1(A\}) < do()\9) versus the
alternative Hy : d1(\?) > d2(\9). Then we choose model 2 if and only if we reject Hyp in
favor of H;.

Note that ddy(Au)/OAulx,=x0 = Og,x1 for u € {1,2}. For A, € Ay and u € {1,2},
set gu(Ay) = —0dy(My)/ONy and hy(Ny) = —0gu(My)/ONL. Then, for A\, € A, and u €

{1? 2}’

i = 0

/ Sui ) dF(0) = B (Su(huih); F) (6)
©



and

B 0Su(Ay; 01)
ha(h) = /@ - ar o,

_ / TuOui0) dE(B)) = B (Ju(h60): F). (7)
(C]

When both g, (\,) and hy(A,) have closed-form formulas for A, € A, and u € {1,2} in
a simulation study, we may utilize the following Newton-Raphson method to obtain A%: First

(0)

choose a good initial value )\2 for A0 and then iterate the following equations

A+ — 30(0) [hu (A?L(”))}_lgu (Ag(”)) (8)

for v =10,1,... until AL converges to A\0. When g, (\,) or h,()\,) does not have a closed-
form formula for some A, € A, andw € {1, 2} in a'simulation study, we may first simulate
an i.i.d. sample {9151), e Gt(R)} of size R, e.g.s"R ="100 000, from the c.d.f. F' and then nu-

merically evaluate g, (\,) and h, () by RESom 8 (A Gy)) and R0 (O Gt(r)),

respectively.

Suppose that there is an available in-control historical data set {yi,...,yr} in the
manufacturing process for some known positive integer T, where (87 ,y7)T, ..., (Hg,y%)T
are independent 2k x 1 random vectors. Set 0 = (07,...,05)T y = (yf,...,y5) T, and Y =
Vg X - X V.

Given y and under model u for u € {1,2}, the log-likelihood function for A, is

T

T
= Zlog[f(yt;FuyAu)] = qu()\u;}ﬁ:), (9)
t=1

t=1

T
lu(Ausy) = log [H f(ye Fux,)
t=1




the score function for A, is

; = M — ET M
Su(Ay) = O, > o
T T
- Zaf(}’t;Fu,\)/E?)\u

and the observed (Fisher) information for A\, is

. 85 d aSu u,yt) — .
Tu(ry) = T ; oA = ;Jum,yt). (11)

Given y and under model u for u € {1,2}, the MLE A, (y) (= Ay) of A, solves the
score equation Sy,(A\y) = Og,x1 for Ay. That is, Su(Ay) = Ogux1 for u € {1,2}. We may

utilize the following Newton-Raphson method to obtain ), for u € {1,2}: First choose a

1(0)

good initial value Ay’ for M. and thien iterate:the following equations

300 = 50+ [ (8l | T, (A0:y) (12)
for v=0,1,... until XSU) converges to T

Let Fy denote the c.d.f. of y with p.m.f. f(y;F). For A\, € A, and u € {1,2},
let Fy.,», denote the c.d.f. of y with p.m.f. f(y;F,,) when Fy, = ... = Fy, = F, .

For A\, € A, and u € {1, 2}, the Kullback-Leibler distance between Fy and Fy., , is

F)

Fu Au)

d (Fy’ FY;“J\u) = Z 1 |:

yey

] fy; F)

= ZT: > log[ be: F) :|f(Yt§F)

=1 Yteyn yta uku)

T

d(Fy,, Fyun,) (= dyt " (M) (13)

t=1



For u € {1,2}, assume that there exists a unique A\y""7 € A, such that

N1y inf M1y, VT w) 14
Au arg inf dy1" () (14)
When ny = ... = np, set d?'(\,) = dy* """ (\y) and N1 = N\ "7 for A\, € Ay and u €

{1,2}. Then d;*(\y) =T - d(Fy,, Fy,:u,n,) for Ay € Ay and u € {1,2}.
Note that Ody"""" (Ay)/ONuly, _ym1mr = 0g,x1 for u € {1,2}. For A, € A, and u €
{1,2}, set gu """ (A\y) = =T~ 1-0dy 7" (M) /Oy and hy 7" () = =T 1-0gy " (Ay)

JOXL. Then, for A\, € A, and u € {1,2},

T
1 1
ng""’”T()\u) = T . Z Z S u,yt yt;F) =F (T : Zsu()\u;yt);F) (15)
t=1 yteynt t=1
and
1 & 1 <
gttt O) = Y | Y Sy Hn ) | = E (T-ZJuw;yt);F) . (16)
t=1 Yteynt t=1
When ny = ... = np, set ¢"(A\i) = gu" 7" (Ag)-and A (\,) = hyt " (N\,) for Ay €
A, and u € {1,2}. Then
= > Suluiy1) fy; F) = E(Sulhu;y1); F) (17)
y1€37n1
and
R w) = Y JuQuiyy) (1 F) = B (Ju(\ui y1); F) (18)
yleynl
for A, € Ay and v € {1,2}. When n; = ... = ng, it can be shown that Ny = A+

O0,(1/VT) as T — oo for A\, € A, and u € {1,2}. Thus, it is very likely that Ay "7 ~

A0 for large min{ni,...,nr} and A, ~ X0 for large T and min{ns, ..., nr}.



When both g;" "7 (\,) and hy' "7 (\,) have closed-form formulas for A\, € A, and
u € {1,2} in a simulation study, we may utilize the following Newton-Raphson method to

7(0) for AIMLonT

obtain Ay'"7T: First choose a good initial value Aptoeesm and then iterate

the following equations
)\Zl,..A,nT(erl) _ )\Zl,...,nT(v) + [hZLl,...,nT (/\Zl,.A.,nT('U)>}_1 ng,.A.,nT ()\Zl,A..,nT(v)> (19)

for v = 0,1,... until AP converges to A" When gl " (\,) or A" (\,)
does not have a closed-form formula for some A, € A, and u € {1,2} in a simulation study,
we may first simulate an i.i.d. sample {y("), ..., y} of size R, e.g., R = 100000, from the
c.d.f. Fy and then numerically evaluate gp'"""(\,) and k"7 (\,) by R~ -0 (11
ZZ;I Su(Au; yy))} and R~!- Zle[T_l . Zg;l T, ; yy))}, respectively.

When ny = ... = np and bothigl* (A\,) and k¥ (Agz) have closed-form formulas for A, €
A, and u € {1,2} in a simulation study, we may utilize the following Newton-Raphson

method to obtain All': First choose a goodiinitial value )\31(0) for \7' and then iterate the

following equations
AR =) [ (xp )] 7 g (xp) (20)

for v = 0,1,... until Am(©) converges to A"'. When gI''(\,) or hl''()\,) does not have a
closed-form formula for some A, € A, and v € {1,2} in a simulation study, we may simply
simulate an i.i.d. sample {y(ll), . ,ng)} of size R, e.g., R = 100000, from the c.d.f. Fy,, and
then numerically evaluate g7t ()\,) and k" ()\,) by R™!- Zle Su(Ay; yY)) and R71- Zle

Ju(Ay; y(lr)), respectively.

10



Now, consider the simple case where F' belongs to either model 1 or model 2. For A\; €

A1, Ao € Ay, and y € ), set

L for f(y; Fia) < F(¥5 F2);

0 otherwise. (21)

S = {

Then ¢35, In=200=29 (= ¢§?,>\3) is the likelihood ratio test (LRT) for testing the new
hypothesis testing problem with the null hypothesis Hj : F = F A0 Versus the alterna-
tive H| : F = Fyyg- Let ¢ be any randomized test, i.e., 0 < ¢(y) < 1 fory € ).
When y is observed and the randomized test ¢ is used for this new hypothesis testing
problem, we reject H|, in favor of H{ with probability ¢(y). For any randomized test ¢,
let ay and By denote, respectively, the type I error and the type II error of ¢ for this new

hypothesis testing problem. Then,*for any randomized test ¢,

ag+Bs = Y ) Ff (y;FMg) + )1 ¢(y)] f (y; Fug)

yey Y&y
= 1+ ¢(y) [f (Y;Fl,)\(l)) —f <Y§F2,)\8>]
yey
> 1+ Prog(Y) {f (y;Fl,x;> —f (y;Fmgﬂ = %90, +6¢39A8' (22)
yey

Thus, gb;?’/\g is a test which minimizes oy + (35 among all randomized tests for this new
hypothesis testing problem.

Note that dy* """ (A\y) — 0 as dy(Ay) — 0 for u € {1,2} and that

; F
0 )~ a5 ) = B (g | £ 5 ) )

for A1 € Ay and Ay € Ao. When f(y; Fia)ly, 5, < f(¥iFono)ly,—5,, it is very likely
that di" "7 (A7) > dyt " T(AS"T) and di(A]) > de(Ay). Thus, in the paper,

11



we suggest to use the test ¢} )\2|/\17;\1 /\27;\2(5 gb”i 5 ) for the original hypothesis test-
’ T eT 1,72

ing problem with the null hypothesis Hy : di(A}) < da(\9) versus the alternative H :

di1(\?) > da()\9). That is, we choose model 2 for f(y; Fio)ly =, < f(yiFon,)ly,—3, and

model 1 otherwise.

3. AN EXAMPLE

For A; € Ay, let Fy ), denote the c.d.f. of the beta(A;) or Dirichlet(\;) distribution,
a conjugate prior of the binomial(n;6¢) or multinomial(ny; ;) distribution, where \; =

(M1 Mes1)T and Ay = (0, 00)*L. In this case, ¢ = k + 1. For A\; € Ay,

k1
F()‘lS) Ai—1
T (0 M) = 1olly) ——=——- 05,
i Tow) =7

where 1g(6;) = 1 for 6; € © and-0 otherwise: Set A\ = Zfill A1 and ] = A/ As.

Set 7 = (log(01¢/Ok+1.4); - - - 10g(Okt Ok 1)) A= (me, -, me)™). Then 0 = exp(nic)/
1+ Zf,:l exp(n;)] for i € {1,...,k}. Let N(u,X) denote the k-variate normal distribu-
tion with mean vector p and k x k positive definite covariance matrix 3. When 7, has
the N(u,X) distribution for some u (= (u1,...,u)") € R¥ and positive definite covari-
ance matrix ¥ (= (X;)kxk), we say that 6; has the transformed-normal(Az) distribu-
tion, where Ao = (pf,SM, ... B 522 52 ST (= (Ag1, .- Ao k(ersy2)T) with
(Zii')kxk = X1 For Ay € Ao, let F3 », denote the c.d.f. of the transformed-normal(A2) dis-
tribution, where Ay = RF x {(X11, ..., 01 022 92k kT . (9i'y, 1 isa kX k pos-

itive definite covariance matrix}. Then Ag is an open subset of REE+3)/2 In this case,

12



@ =k(k+3)/2=q+ (k-1)(k+2)/2 > q, where 1 = ¢ if and only if k¥ = 1.

For \y € Ag,
1 1 _ 877t
0.2 _ v ot - Tz 1 _ Jdet | —=
2 (0; A2) e P [ 5 (e — 1) B (me u)] ’ e (aetT>‘
! exp [~ — 172 — )
pu— : X - 5 - -
ORI 6, L 2 T
where
ant . 1 1 1 T
89? 1ag { 91,5 th } 9k+1,t kx1 LEgx1

For \; € Ay, it follows from Johnson et al. (1997, pages 80 and 81) that

neg—1 ] + 1 k+1y;e—1 ] + 1
o -1 . 1 — 1
Flyes Fin) = 1y, (y2) - exp jzo ©8 <)\1s +j> Z Z o8 (>\1i +j)

i=1 j=0
For A2 € Ag, let ¢), and ®y, denote, respéetively, the p.d.f. and the c.d.f. of the

N (u, %) distribution. For Ay € Ag,

1! exp(y{ m)
f(ye; Fop,) = 1y, (yi): / d®y,(m)
: ST i AR L+ Y exp(m)e
nt!

= 1ynt (yt) : : a()\Z;yt)'

k+1
H¢:1 Yit!

For \g € Ag, set b(\2;y:) = 0a(N2;y:) /02 and c(N2;yy) = 0b(N2;y:)/ONL. Then

0P, () /OA2 exp(y{ )
b(Ag; = . dd
(A2;y¢) /Rk ¢A2(77t) 1 +Zi‘€:1 exp(nig)]™ >\2(77t)
and
0% Pr; (1) /OX20N exp(y7 )
Mo _ . dod
C( 2aYt) /Rk b, (77t) [1 + Z?:l eXp(mt)]”*' A2 (nt)

for Ay € Aa. A quick way to numerically evaluate a(A2;y+), b(A2;yt), and c(Ae;yy) for t €
{1,...,T} is to utilize the method of the multivariate Gauss-Hermite integration, e.g.,

13



see Fahrmeir and Tutz (2001, pages 447-449). All of nodes and weights of the Hermite
polynomial of 32 degrees are shown in the appendix for the method of the multivariate
Gauss-Hermite integration.

Observe that, for A\; € A1, A2 € Ay, and y; € V),

ng—1 j+1 k+1 yie—1
Oy = 1 o
CUCIDY os (E5) - X S (25).

i=1 75=0
k+1
l(A23yr) = log(ny!) = log (yir!) + log [a(Ag; y1)],
i=1
y1e—1 Yk+1,6—1 T ne—1
Si(Aye) = jZ: )\11+j . Z )\1k+1+J ;)\1 ¥ Lik41)x15
b(A2; yt)
Sa(Az; =
)=y
Y1e=l 1 Yry1,6—1 1
Ji (i = dia . 3 S
1(A1;y1) g A P +7)° j;o (Aki1 +7)2

1
_ Z - A 1T
e (Aot ) DXL ()X
J=0
and

b(A2;ye) b7 (A2;ye) — a(Aas ye) - c( Ao ye)

Jo(A2sye) = [a(A2; ye))?

For Ay € Ay and y € Y, set Ji(A1;y) = diag {b1(y), ., ba1(¥)} — bs - Lag1)x1 1%'];“)“.
Then by = Y 1_; 00" 1/ (M +4)% and bi(y) = Yoy Y000 1/ (A +4)? for i € {1,
k+1} and y € Y. When by(y),...,bxr1(y) > 0 and 1/bs # ZkH 1/bi(y) fory € Y, we

have

17 = dia L -
eyl = d g{bl(y)’”"bkﬂ(}’)}

N 1 ( 1 1 >T< 1 1 )
1/bs — S 1 /bi(y) \bi(y)” " T lera(y) ) \bi(y)bega(y) )

14



4. A SIMULATION STUDY

In this section, consider the situation where ' = p* - F1x: + (1 — p*) - Fp 5, ie.,

w(-) =p* - m(5A]) + (1 — p*) - ma(5 A5), for some p* € [0,1], A} € Ay, and \j € As.
For A\, € A, and u € {1, 2},
gu(Au) = p* -FE (Su()\m et); Fl,)\’l‘) + (1 _p*) -k (Su(Au; Ht); FQ,)\S)
and

hu(Au) =0 E (Ju(u; 00); Fras) + (1 —p*) - B (Ju(Au; 00); Fopg ) -

For the simulation study, we choose T' = 300 and n; = ... = ny = 35. Consider the

following three possible cases.

Case 1: F = Fyr, L.e, p*=Tland A\] = A9

Observe that, for Ay € Ao,

92(A\2) = L [c‘)log(|2‘1]) B (3(7lt — )= (g = p) >

P
2 Oy g LA
and
1 | 9%log(|Z7Y)) (e — )" =7 (g — )
ho(Ng) = —= . | 22542 U p F ,
22 =5 [ OA2ON] OA20ON] A
where

E (maﬂ,w) =L (10g(9¢t);F1,,\t1>> -F (10g(9k+1,t)3F1,>\?>

15



and

E ("%'t Ni't; F1,>\<1))
_ E (log(eit) log(8;); FLA?) —E (1og(9k+1,t) llog(0i¢) + log(6¢)] ;FLA?)
+E ([10g(9k+1,t)]2 ; F1,,\(1>>

for 4,i’ € {1,...,k} with k& > 2. When 6; has the beta(\}) or Dirichlet(\}) distribution,

0;+ has the beta(\Y;, A}, — AJ,) distribution and

! I'(AY,) A0, —1 A0 A0 1
s 050 (1 — 0 MM g, = 1
/0 (A TN, — A9,

for i € {1,...,k + 1}. Taking the derivative with respect to A{, for i € {1,... k + 1}, we

have
E (10g(9¢t); Fl,)&f) =1 ()‘?i) — Y ()\(1)5) ;

where ¥ (x) = dlog [I'(x)] /dx for £:> 0. For x > 0,

1
¢($)__C+(x_1)';i(z‘+x—1)’

where ¢ (= 0.5772156649) is the Euler constant. See, e.g., Abramowitz and Stegun (1964,

page 259). Taking the derivative with respect to Ay, twice for i € {1,...,k + 1}, we have
B (llog(0:e))% Frag ) = v (AL) = (ML) + [v (M%) — v (A0))7,

where ¢/(z) = dy(x)/dx for x > 0, For x > 0.

wl(x) = Z (.CC—il-Z)2

=0
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See, e.g., Abramowitz and Stegun (1964, page 260). Since 6; has the Dirichlet(\}) distribu-
tion for k > 2, (0, 0;:)" has the Dirichlet(A);, A%, A}, — X9, — A0,,) distribution and

vy A0 1 A1 A0 20 _\0 7
[ O Tt
0 0

LAY T(AL) DAY, = A = A%y)

A6y | doy, =1

for i #4 and i,i’ € {1,...,k+1} with k > 2. Taking the derivative with respect to A}, and

then )‘(1]1"7 we have

B (log(0:)1og(01n); Fr sg ) = =o' (M) + [0 (A%) = v ()] [¥ (A%) = (A0,)]

for i # 4 and i,7' € {1,...,k + 1} with k > 2. Finally, A} can be numerically evaluated by
utilizing the Newton-Raphson method.

We simulate an i.i.d. sample {y(l), Ly Loof size R, e.g., R = 100000, from the
c.d.f Fyq NE Since all of A2, A9, and A5t are knewn in asimulation study, we can numerically
evaluate P({GZ)T\%AQ(Y) = 1}§F1,>\‘1’) and P({Qbip)\? (y) = 1}§F1,>\?) by [{r: QZ’;?’,\g(y(r)) =
1}/R and |{r : ¢;?17A;1 (y) = 1}/R; respectively, where |S| denotes the number of
elements in S for any set S. Since both A\Y and \J are unknown in a real problem, we can
numerically evaluate P({qﬁ?lk (y) =1} Fy »0) by [{r: ¢/’f\1(y(7‘))7;\2(ym)(y(r)) =1}|/R.

For the simulation study, consider the case where F' = F A0 with )\(1) = (7,2,1)T. We
simulate an i.i.d. sample {9,51), ce Ht(R)} of size R, e.g., R = 100000, from the c.d.f. Fl .

Set 100 = (M(1)(0)7 .. ,,uz(o))T and X000 = (EO(O))kxk, where

i’

R (r)

o0 _ 1. 3 O3t
M'L — R log Q(T)
r=1 k+1,t

17



and

R (r) (r)
1 0. 0;
20(/0) = - . 10g it _MQ(O) 10g i't o 0/(0)
i 12 (r) i (r) i
R-1 r=1 k+1,t k+1,t

fori,i’ € {1,...,k}. Iterating equation (8), we obtain A = (—1.450, —2.450, 1.273, —0.109,
0.565)7". Tterating equation (20), A}' is obtained and shown in Table 1 for ny € {35,70,140}.
It is easily seen from Table 1 that ||A}* — AJ||2 decreases as my increases, where ||AJ' —
Ml = [(AFF = ADT (A — A))]Y2. Finally, we obtain P({$39 50(y) = 1} Fy ) & 0.007,
P({d)i?g,’/\gg,(y) = 1} F} o) ~ 0.064, and P({gf);l’;\Q(y) = 1}; Fy o) ~ 0.127 which are less

than 0.5 and shown in Table 3.

Case 2: F = Fy s, ie, p*=0and \j = Ay, where Fong €{F1 0 A1 € A1}

Observe that, for \y € Ay,

M) = YO L = @) P Agg))”

+ (B (1088ig); Fapg )i B (10g(0h41,); P, A3))T

and

hi(h) = diag {¢' (A1), 9 Aprn) } = 9" (M) - Ly xa Ly cas

where

E (long‘t); F2,,\g) = Ng +FE (IOg(ng,t); F2,>\3)

%FQ,/\3> :

forie{l1,...,k} and

k

1+ Z exp(nit)

E(IOg(ek—&-l,t);Fz,)\g) = -E (log
=1
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Here E (log[1+2f:1 exp(nit)]; F5 xg) can be numerically evaluated by the method of the mul-
tivariate Gauss-Hermite integration. Finally, A can be numerically evaluated by utilizing
the Newton-Raphson method.

We simulate an ii.d. sample {y(M,... y} of size R, e.g., R = 100000, from the
c.d.f. Fy;27)\3. Since all of A9, \J, and A7' are known in a simulation study, we can nu-
merically evaluate P({qﬁig)\g (y) = 0} Fy ) and P({gf);Tl’)\;l (y) = 0} Fy ) by [{r :
¢§?v\3 (y")) =0}|/R and |{r : ¢:’fl,>\;‘1 (y(")) = 0}|/R, respectively. Since both A and A are
unknown in a real problem, we can numerically evaluate P({gb;l’ S (y) = 0}; F5 xg) by [{r:

31(y(r))75\2(y(7‘))(y(r)) = 0}[/R.

For the simulation study, consider thecase.where F' = F2,>\8 with A9 = (—1.450, —2.450,
1.273,-0.109,0.565)". We simulate fanli.ild. samplé {9751), .. ,HﬁR)} of size R, e.g., R =
100000, from the ¢.d.f. Fy yo. Set A = Age AL, where A{"” is the MME of A;, proposed

s

in Shiau et al. (2005) and

Iterating equation (8), we obtain A} = (5.771,1.707,0.884)T. Tterating equation (20),
A7' is obtained and shown in Table 2 for n; € {35,70,140}. Similarly, it is easily seen
that [|A]* — AY||2 decreases as np increases, where || A\/* — A9||3 = [(AT* — AT (At — A9)] /2,
Finally, we obtain P({qu{?,)\g(y) = 0}; Fy y9) ~ 0.021, P({¢:?1)\;1 (y) = 0}; Fy 5g) ~ 0.008,
and P({gb’)f\l& (y) = 0}; F 5g) &~ 0.014 which are all less than 0.5 and shown in Table 3.

Case 3: F' = p*- Fix: + (1 — p*) - Fp»; for some 0 < p* < 1, A\] € Ay, and Aj € Ao,
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where p* - Iy x; + (1 —p*) - Fong € {Fun,  Au € Ay and u € {1,2}}.

We simulate an ii.d. sample {y(M,... y} of size R, e.g., R = 100000, from the
c.d.f. Fy. The initial value of AY for u € {1,2} can be obtained by the same methods in Case
1and 2. Tterating equation (8), AY can be numerically evaluated. When dy (A}) < d2()\9), we
can numerically evaluate P({qbf\?v\g (y) =1} F), P({¢;?57A%5 (y)=1}; F), and P({gbihj\2 (y)
= 1 F) by [ 6 (7)) = L) /R [ 6500 (57) = )I/Boamd [ 65 o (910)
= 1}|/R, respectively. When d;(\}) > d2(A)), we can numerically evaluate P({(ﬁ)\o )\0( ) =
0}: F). P({630,535(y) = 0} F), and P({65_ (y) = 0}:F) by |{r : 6}, (y") = O}|/R.
{r: ¢:§5,>\§5( ")) = 0}[/R, and |{r : ¢* S (y™) )\2(y('r))(y(r)) = 0}/ R, respectively.

First, consider the case where F' = pf 1 Fyps + (1 —p*)- Fy s for p* € {1/6,1/3,1/2,2/3,
5/6} with A\i = (7,2,1)7 and \j.& (+1.450, =2.450, L.273, —0.109,0.565)". Tterating equa-
tion (8), we can numerically evaluate A\) forw € {1,2} di()\)), d2()\9), and the probability
of choosing the wrong hypothesis for each of P0.50% ¢§35 \5, and ¢ ¢ are shown in Table 3.

1572 1972 A1,A2
It is easily seen from Table 3 that d1(\}) decreases and dz()\9) increases as p* increases. The
probability of choosing the wrong hypothesis is less than 0.5 except for ¢§1 S with p* = 2/3.

Next, consider the case where F' = p*- Fy xr +(1—p*)- Fy s for p* € {1/6,1/3,1/2,2/3,
5/6} with A} = (5.771,1.707,0.884)T and A} = (—1.450,—2.450,1.273, —0.109, 0.565)7 .
Iterate equation (8), we can numerically evaluate A for u € {1,2}. d1(\)), d2()\)), and the
probability of choosing the wrong hypothesis for each of ¢y o, #135 \35, and ¢  are shown

172 172 A1,A2
in Table 4. Similarly, it is easily seen from Table 4 that d; (\?) decreases and da()\9) increases

as p* increases. The probability of choosing the wrong hypothesis is less than 0.5 except
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for qﬁ’/‘\?’/\g with p* = 1/2. The main reason is that d;(\?) (= 2.980) and da()\9) (= 2.944) are
nearly the same.

Finally, we would like to investigate the results of the empirical Bayes process moni-
toring scheme proposed in Chen et al. (2004) and Chen et al. (2005) by ignoring the fact
that the model used is only an approximate model. Let « denote the false alarm rate, i.e.,
the probability that an out-of-control signal occurs when the manufacturing process is in
control. Conventionally, ~ is taken to 2®(—3) (~ 0.0026998).

For u € {1,2}, we order the 100000 \,’s in decreasing order of d(Fu g Fun)ly,—i,

(=d(Fypno, F, Xu))’ a measure of how close F| 5 is to F, 5o in our study, where

d (FL)\?’Fl?)‘l)

I'(A,) (N a
nrm] i | {H’“Hrl(xu } F 2 (=) [0 (%) v ()]

=1

= log

for \; € A1 and

A (Fong Fon,)

= ;{lo [|§J|]+E(( ~ )" = ) — (e — 1) (207 ("t—ﬂo)§F2,Ag>}

for Ay € Ag. Set & = B2 (g — p0), /' = BY2(u— p0), and V = (£0)1/28-1(29)1/2, Then

B (& =)'V (&~ #): Fag)
= o (VE(@-w) &) Fg)) = tr(V(I+u"))
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and

d <F2,Ag> F2,A2)

{log(\ED —log (|1Z%) + E ((ft - #/)TV (& — 1) ;Fz,,\g) -F (ftTft;FQ,,\g)}

N = N

{10g (15)) = 1og (|=°) + tr (Z°27) + (= 1) D7 (- 1°) — k}.

Thus, we pick the MLE’s corresponding to the best 10th, 30th, 50th, 70th, and 90th per-
centiles of these 100 000 MLE’s based on this measure. For the true A, and each MLE picked,
compute the in-control probability and the average run length ARLy when the process is
in control. When the process is out of control, compute the out-of-control probability and
the average run length ARL;.

Consider the case where I = Fj o pwith A%.=1(7,2,1)T. Utilizing model 2 with A\ =
(—1.450, —2.450, 1.273, —0.109, 0.565)T for monitoring the in control probability and ARLg
for A and the best 10%, 30%, 50%;:70%, 90% \g’s-are shown in Table 5. It is easily seen
from Table 5 that the Qv and all the V5, are less than v. When 6; has an out of control
c.d.f. Fy 5 with A1 = (5,3,2)T different from the in-control c.d.f. F} yo. The out of control
probability and ARL; for A\ and the best 10%, 30%, 50%, 70%, 90% Ao’s are shown in
Table 6.

Consider the case where F' = F27)\g with /\g = (—1.450, —2.450, 1.273, —0.109, 0.565)"".
Utilizing model 1 with A} = (5.771,1.707,0.884)7 for monitoring, the in control probability
and ARLg for A9 and the best 10%, 30%, 50%, 70%, 90% \o’s are shown in Table 7. It is

easily seen from Table 7 that the Y0 and all the 5 ~are larger than ~.
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First, consider the case where I = p*- Fy x+ +(1—p*)- Fy s for p* € {1/6,1/3,1/2,2/3,
5/6} with \j = (7,2,1)1 and A3 = (—1.450, —2.450, 1.273, —0.109, 0.565)T". Utilizing model
2 for monitoring, the in control probability and ARLg for )\g and the best 10%, 30%, 50%,
70%, 90% A2’s are shown in Table 8. It is easily seen from Table 8 that the Y9 and
all the 75, are less than ~. Utilizing model 1 for monitoring, the in control probability
and ARLg for A and the best 10%, 30%, 50%, 70%, 90% Ai’s are shown in Table 9. It
is easily seen from Table 9 that the Y0 and all the 75, are large than . When 6; has an
out of control c.d.f. F =p-F 5 + (1 —p)- Fys, for pe{1/6,1/3,1/2,2/3,5/6} with A =
(5,3,2)7 and A = (—0.583,—1.083,1.787, —0.456,1.271)T different from the in control
cdf. F'=p*  Fir + (1 —p*) - Fp ;. Utilizing model 2 for monitoring, the out of control
probability and ARL; for A\ and the best 10%y. 30%, 50%, 70%, 90% Ao’s are shown in
Table 10 and 11, respectively.

Next, consider the case where = p*- I} ) +(T—p*)- I 55 for p* € {1/6,1/3,1/2,2/3,
5/6} with A} = (5.771,1.707,0.884)T and A = (—1.450, —2.450, 1.273, —0.109, 0.565)7. Uti-
lizing model 2 for monitoring, the in control probability and ARLg for A9 and the best 10%,
30%, 50%, 70%, 90% \o’s are shown in Table 12. It is easily seen from Table 12 that
the VA and all the 75, are less than . Utilizing model 1 for monitoring, the in control
probability and ARLg for A? and the best 10%, 30%, 50%, 70%, 90% \1’s are shown in Table
13. It is easily seen from Table 13 that the Y0 and all the Vs, are large than v. When 6; has
an out of control c.d.f. F = j-F 5 +(1—p)-Fy5, for p € {1/6,1/3,1/2,2/3,5/6} with A\ =
(5,3,2)T and Ay = (—0.583, —1.083,1.787, —0.456,1.271)7 different from the in-control
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c.df. F'=p*- Fixr + (1 —p*) - Fp ;. Utilizing model 2 for monitoring, the out of control
probability and ARL; for the \J and the best 10%, 30%, 50%, 70%, 90% \o’s are shown in

Table 14 and 15, respectively.

5. CONCLUSIONS AND FUTURE WORK

In the paper, we develop a model selection technique for categorical data in manufac-
turing process. Then an example of choosing two empirical Bayes models for categorical
data is discussed. If F' = p*- F1 xs + (1 —p*)- Fa s, for p* € [0, 1], A} € A1, and A5 € Ao, then
the probability of choosing the wrong hypothesis are almost less than 0.5. For the process
monitoring, since these two parametric,models under consideration are only approximate
models, the critical point is incorrect [such that the probability of signaling out-of-control is
different from the v. What we want to do'next is'to/utilize the resampling method to find

an approximate critical point for mouitoring.
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APPENDIX

All of nodes and weights of the Hermite polynomial of 32 degrees are shown in the

following table. This table is obtained from the following website:

http://www.efunda.com/math /num _integration/findgausshermite.cfm

No.: abscissas x; | weights w;
1 | —7.12581390983 | 7.31067642754 x 10~23
2 | —6.40949814928 | 9.23173653482 x 10~ 19
3 | —5.81222594946 | 1.19734401957 x 10~ 1°
4 | —5.27555098664 | 4.21501019491 x 1013
5 | —4.77716450334 | 5.93329148347 x 10~
6 | —4.30554795347 | 4.09883215841 x 109
7 | —3.85375548542 | 1.57416779440 x 10~7
8 | —3.41716749282.] 3.65058512533 x 10~ ©
9 | —2.99249082501 | 5.41658405999 x 10>
10 | —2.57724953773 | 5:36268365495 x 10~*
11 | —2.16949918361 | 3.65489032677 x 10~3
12 | —1.76765410946 | 1.75534288315 x 102
13 | —1.37037641095 | 6.04581309559 x 102
14 | —0.97650046359 | 1.51269734077 x 10~ !
15 | —0.58497876544 | 277158142303 x 10~ 1
16 | —0.19484074157 | 3.75238352593 x 10!
17 0.19484074157 | 3.75238352593 x 10T
18 0.58497876544 | 2.77458142303 x 10T
19 0.97650046359 | 1.51269734077 x 101
20 1.37037641095 | 6.04581309559 x 102
21 1.76765410946 | 1.75534288315 x 102
22 2.16949918361 | 3.65489032677 x 10~3
23 2.57724953773 | 5.36268365495 x 10~ %
24 2.99249082501 | 5.41658405999 x 10~
25 3.41716749282 | 3.65058512533 x 10~°
26 3.85375548542 | 1.57416779440 x 107
27 4.30554795347 | 4.09883215841 x 107
28 4.77716450334 | 5.93329148347 x 10~
29 5.27555098664 | 4.21501019491 x 1013
30 5.81222594946 | 1.19734401957 x 10~ 1°
31 6.40949814928 | 9.23173653482 x 1019
32 7.12581390983 | 7.31067642754 x 1023
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Table 1: AJ' and ||[A5* — AJ||2 for ny € {35,70,140} with A\ = (—1.450, —2.450,1.273,
—0.109, 0.565)7".

n Ay X5 — A3l
35 | (—1.430, —2.344, 1.475, —0.194, 0.862)7 0.385
70 | (—1.435, —2.366, 1.423, —0.172, 0.798) 0.296
140 | (—1.440, —2.387,1.376, —0.154, 0.741)7 0.218
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Table 2: AT* and [|[A]' — AJ||2 for ny € {35,70,140} with \Y = (5.771,1.707,0.884)7.

m ALt [N = A9l
35 | (6.935,1.991,1.004)T 0.229
70 | (6.779,1.953,0.990) 0.172
140 | (6.597,1.909,0.973)7 0.121

Table 3: di(\)), d2()\)), and the probability of choosing the wrong hypothesis for each

of (ﬁi?,Ag? (b’;\;ll’/\;lla and ¢3

A2

for p* € {0,1/6,1/3,1/2,2/3,5/6,1} with A*

A5 = (—1.450, —2.450,1.273, —0.109,0.565)T, T =300, and n; = ... =ngp = 35.

the probability of choosing

p* di(\)) | d2(N9) the wrong hypothesis
g | A | %5,
0 10.049 0.000 0.021 0.008 0.014
1/6 7.665 0.231 0.071 0.064 0.041
1/3 5.499 0.941 0.189 0.147 0.100
1/2 3.575 2.167 0-409 0.296 0.219
2/3 1.933 3.966 0.317 0.488 0.589
5/6 0.659 6.441 0.097 0.247 0.351
1 0.000 9.859 0.007 0.064 0.127

(7,2, )7,

Table 4: di(\)), d2(A\)), and the probability of choosing the wrong hypothesis for

each of ¢f\‘{,>\8’ ¢’:\?17)\;1, and qﬁ’)f\h;\Q for p* € {0,1/6,1/3,1/2,2/3,5/6,1} with A}
(5.771,1.707,0.884)T, X5 = (—1.450, —2.450,1.273, —0.109,0.565)7, T = 300, and ny

the probability of choosing

p* di(\)) | da(N)) the wrong hypothesis
g | Do | A,
0 10.049 0.000 0.021 0.008 0.014
1/6 7.290 0.333 0.085 0.072 0.049
1/3 4.930 1.319 0.249 0.172 0.132
1/2 2.980 2.944 0.515 0.340 0.285
2/3 1.466 5.209 0.211 0.429 0.497
5/6 0.433 8.141 0.049 0.190 0.264
1 0.000 11.841 0.004 0.049 0.116
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Table 5: 7y, 73, ARLgyg, and ARLg;, for the best 10%, 30%, 50%, 70%, 90% of
these 100000 ii.d. experiments in a decreasing order by d(Fj g, F,5,) with Ay =
(—1.450, —2.450,1.273, —0.109,0.565)", T = 300, and ny = ... = ny = 35 when F =
Fy yo with A} = (7,2,1)7.

10% | 30% | 50% | 70% | 90%
A9 Vo Vi, V3o V5o V5o
0.0005 | 0.0003 | 0.001 | 0.001 | 0.0003 | 0.001

10% 30% 50% 0% 90%
ARL, o | ARL,;, | ARL,;, | ARL;; | ARL; | ARL
2073.867 | 2021.422 | 1280.703 | 1168.032 | 3826.315 | 1000.012

Table 6: Pout,Ag,Z\l , Pout,S\g,S\l , ARLl,Ag,S\l , and ARLLS\Q’;\1 for  the
best 10%, 30%, 50%, 70%, 90% of these 100000 i.i.d. experiments in a decreasing or-

der by the d(Fj g, F,5,) with A3 = (—1.450,—2.450,1.273, -0.109,0.565)", T = 300,

and n; = ... =ny =35 when F' = F| X with A\ = (5,3,2)7.
10% 30% 50% 70% 90%
Pout,kg,j\l Pout,j\g,j\l Pout,j\z,j\l Pout,j\g,xl Pout,ig,j\l Pout,ﬂz,jq

0.017 0.012 0.024 0.024 0.009 0.027

10% 30% 50% 70% 90%
A]F{LL)\Q,;\1 ARLl,ﬁ\z,Z\l ARLL;%;1 ARLl,ig,S\l ARLL;\%;\1 ARLl,S\g,S\l
60.267 80.561 42:014 41.456 115.074 36.492

Table 7: vy, 735, ARLgxo, and ARLy; ~for the best 10%,30%,50%,70%,90% of
these 100000 i.i.d. experiments in a decreasing order by the d(Fy yo, F) 5 ) with A =
(5.771,1.707,0.884)", T' = 300, and ny = ... = ny = 35 when F = F \g with \J =
(—1.450, —2.450, 1.273, —0.109, 0.565)7 .

10% | 30% | 50% | 70% | 90%
/y)\(l) 75\1 75\1 75\1 75\1 75\1
0.010 | 0.009 | 0.016 | 0.015 | 0.012 | 0.012

10% 30% 50% 70% 90%
ARLO)\? ARL, 5 ARL, 5 ARL, 5y ARL, 5 ARL, 5
97.912 | 110.413 | 62.723 | 68.348 | 86.875 | 83.515
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Table 8: 7y, 73,» ARLgyg, and ARLgj, for the best 10%, 30%, 50%, 70%, 90% of
these 100000 i.i.d. experiments in a decreasing order by the d(F27/\g,F27;\2) with T' =
300 and my = ... = nr = 35 when F = p" - Fiy + (1 — p*) -
Fyyy for p* € {1/6,1/3,1/2,2/3,5/6} with A} = (7,2,1) and A} =
(—1.450, —2.450, 1.273, —0.109, 0.565)7 .

10% | 30% | 50% | 70% | 90%
e o T e O e O W e O P e o
1/6 | 0.002 | 0.002:/.0:002 | 0.002 | 0.002 | 0.002
1/310.002 | 0:002 | 0.003 [70:002 | 0.002 | 0.003
1/2]0.002.40.001 | 6,001 0.001 | 0.003 | 0.001
2/3 1 0.001=| 0:001 | 0:004 | 0.00L | 0.002 | 0.002
5/6 | 0.001| 0.001 | 0:001 | 0.001: | 0.001 | 0.001

10% 30% 50% 0% 90%
" | ARLg o | ARLy 5 BARL . J7ARL ;| ARL,; | ARL
1/6 | 429.149 | 458.667 | 452.298 | 617.770 | 428.381 | 668.522
1/3 | 510.049 | 572.669 | 309.477 | 407.377 | 405.927 | 369.132
1/2| 628538 | 714.295 | 1096.739 | 828.135 | 316.158 | 681.330
2/3 | 818.737 | 1333.622 | 848.331 | 734.249 | 554.763 | 617.768
5/6 | 1173.996 | 1013.322 | 1345.436 | 1156.539 | 1151.260 | 689.321
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Table 9: 7y, 73, ARLgyo, and ARLgj; ~for the best 10%, 30%, 50%, 70%, 90% of
these 100000 i.i.d. experiments in a decreasing order by the d(FL/\‘f’FL/\}) with T' =
300 and my = ... = nr = 35 when F = p" - Fiy + (1 — p*) -
Fyyy for p* € {1/6,1/3,1/2,2/3,5/6} with A} = (7,2,1) and A} =
(—1.450, —2.450, 1.273, —0.109, 0.565)7 .

10% | 30% | 50% | 70% | 90%
T WV e VO e VU MNes VI e/ VO oW
1/6 [ 0.010 | 0.013:}.0:0L% | 0.007 | 0.008 | 0.008
1/3]0.008 | 0:010 | 0.009 [10:009 | 0.008 | 0.005
1/2 ] 0.007.3:0.013 | 6:008 }.0.006 | 0.006 | 0.006
2/3 ] 0.006-] 0:006 | 0:006| 0.006, | 0.005 | 0.009
5/6 | 0.004] 0.006 | 02003 | 0.009:| 0.004 | 0.004

10% 1> 0% 150% |  70%]  90%
" | ARLy 0 | ARLy 5 JARL 3 |ARL,; | ARL,; |ARL,;
1/6 | 104.101 | 78.989 | ' 93.531 | 136.475 | 120.389 | 119.532
1/3 | 118.335 | 104.301 | 107.397 | 113.588 | 133.027 | 187.852
1/2 | 133595 | 78.626 | 132.239 | 170.435 | 179.943 | 181.045
2/3 | 169.300 | 163.799 | 166.018 | 178.248 | 195.913 | 117.159
5/6 | 226.574 | 179.740 | 330.658 | 113.433 | 268.169 | 222.592
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Table 10: Py and P, for the best 10%,30%,50%,70%,90%

o out /\g,p
these 100000 i.i.d. experiments in a decreasing order by the d(F BUI S ) with p*

{1/6,1/3,1/2,2/3,5/6}, T = 300, and ny = ... = np = 35 “when F

peFis, +(1—p) Fys, for p € {1/6,1/3,1/2,2/3, 5/6} with A = (5,3,2)7 and Ay =

(—0.583, —1.083,1.787, —0.456, 1.271)7.

10% 30% 50% 70% 90%
P’ Pout,/\g,ﬁ=1/6 Pout,ﬁ\g,ﬁzl 6 Pout,ﬁ\g,pﬁzl 6 Pout,ﬁ\g,pﬁzl 6 Pout,ﬁ\g,ﬁzl 6 Pout,ﬁ\g,ﬁzl 6
1/6 0.018 0.019 0.016 0.010 0.016 0.008
1/3 0.018 0.017 0.032 0.017 0.024 0.027
1/2 0.018 0.015 0.010 0.014 0.038 0.010
2/3 0.018 0.010 0.017 0.019 0.024 0.014
5/6 0.018 0.022 0.015 0.019 0.014 0.029
10% 30% 50% 70% 90%
v Pout,/\S,ﬁ=1/3 Pout,ﬁ\g,ﬁ:1 3 Pout,j\gﬁzl 3 Pout,ﬁ\g,ﬁ:1 3 Pout,5\2,ﬁ:1 3 Pout,ﬁ\g,ﬁzl 3
1/6 0.018 0.019 0.016 0.009 0.016 0.008
1/3 0.018 0.017 0.032 0.017 0.024 0.026
1/2 0.018 0.015 0.010 0.014 0.037 0.010
2/3 0.018 0.010 0:017 0.018 0.024 0.014
5/6 0.018 0.022 0.015 0.018 0.014 0.029
10% 30% 50% 70% 90%
P Pout«\%ﬁ:l/Q Pout,j\g,ﬁzlﬁ Pout,j\z,ﬁzl/Z POut,j\Q,ﬁZl 2 Pout,j\g,;ﬁ:l 2 Pout,j\g,;ﬁ:l 2
1/6 0.017 0.018 0.016 0.009 0.016 0.008
1/3 0.017 0.017 0:032 0:017 0.024 0.026
1/2 0.017 0.015 0.010 0.014 0.037 0.010
2/3 0.017 0.010 0.017 0.018 0.024 0.014
5/6 0.017 0.022 0.014 0.018 0.013 0.028
10% 30% 50% 70% 90%
P’ Pout,AS,ﬁ=2/3 Pout,ﬁ\g,p':2 3 Pout,ﬁ\g,p':2 3 Pout,ﬁ\g,ﬁ=2 3 Pout,ﬁ\g,ﬁ=2 3 Pout,ﬁ\g,ﬁ=2 3
1/6 0.017 0.018 0.015 0.009 0.016 0.007
1/3 0.017 0.016 0.031 0.017 0.024 0.026
1/2 0.017 0.015 0.009 0.014 0.037 0.009
2/3 0.017 0.010 0.016 0.018 0.024 0.014
5/6 0.017 0.022 0.014 0.018 0.013 0.028
10% 30% 50% 70% 90%
i Pout,/\‘%,ﬁ:5/6 Pout,S\g,ﬁ:5 6 Pout,ﬁ\g,ﬁ:5 6 Pout,?\g,ﬁ:5 6 Pout,ﬁ\g,ﬁ:5 6 Pout,i\g,ﬁ:5 6
1/6 0.017 0.018 0.015 0.009 0.015 0.007
1/3 0.017 0.016 0.031 0.016 0.023 0.026
1/2 0.017 0.015 0.009 0.014 0.036 0.009
2/3 0.017 0.010 0.016 0.017 0.023 0.013
5/6 0.017 0.022 0.014 0.018 0.013 0.028
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Table 11:  ARL; o ; and ARL, 5 - for the best 10%,30%,50%,70%,90% of
these 100000 i.i.d. experiments in a decreasmg order by the d(F, LIS ) with p* €
{1/6,1/3,1/2,2/3,5/6}, T = 300, and n; = ... = np = 35 when F o= p-
Fi5, + (1 =p)- Fy5, for p € {1/6,1/3,1/2,2/3, 5/6} with A\; = (5,3,2)7 and Ay =
(—0.583, —1.083,1.787, —0.456, 1.271)7.
10% 30% 50% 70% 90%
P|ARLy xg 5-1/6 ARLLS\Q,ﬁ:l/ﬁ ARL, 5, 5-1/6 ARLLJ\Z,ﬁ:UG ARL, 5, 5=1/6 ARL1 5, 5-1/6
1/6 56.099 53.492 63.070 104.086 61.277 129.189
1/3 56.099 58.840 30.879 57.219 41.165 37.370
1/2 56.099 64.748 102.242 71.053 26.646 99.071
2/3 56.099 98.407 58.573 53.786 41.032 69.115
5/6 56.099 44.761 67.726 53.632 72.064 34.400
10% 30% 50% 70% 90%
PYIARLy xg —1/3|ARLy 5, 51 /3| ARLy 5, 513/ ARL) 5, 5o /g ARLy 5, 51 /3| ARLy 5, 521/
1/6 56.886 54.063 63.773 105.968 62.250 131.093
1/3 56.886 59.566 31.224 58.061 41.538 37.813
1/2 56.886 65.411 103.591 71.634 26.864 101.090
2/3 56.886 99.995 59:329 54.676 41.509 70.506
5/6 56.886 45.038 68.392 54.315 73.222 34.747
10% 30% 50% 70% 90%
p* ARLl,Ag,ﬁ:m ARLLiQ,ﬁ:lm ARLl,S\g,ﬁzl/z ARLl,J\Q,ﬁzl 2 ARLLXg,ﬁzl 2 ARLl,J\Q,ﬁ:1 2
1/6 57.695 54.646 64.492 107.918 63.255 133.053
1/3 57.695 60.310 31.577 58.927 41.919 38.266
1/2 57.695 66.087 104.976 72.224 27.086 103.192
2/3 57.695 101.634 60.105 55.596 41.997 71.954
5/6 57.695 45.318 69.072 55.017 74.418 35.100
10% 30% 50% 70% 90%
P’ ARLI,/\S,:&=2/3 ARLLXQ,;S:Q 3 ARLLS\Q,ﬁ:Q 3 ARLl,Xg,ﬁzz 3 ARLLS\Q,ﬁﬁ 3 ARLLXg,pﬁ:z 3
1/6 58.528 55.242 65.227 109.942 64.292 135.073
1/3 58.528 61.072 31.938 59.820 42.307 38.730
1/2 58.528 66.778 106.399 72.825 27.313 105.383
2/3 58.528 103.328 60.901 56.547 42.497 73.463
5/6 58.528 45.602 69.765 55.736 75.654 35.461
10% 30% 50% 70% 90%
pARLl,/\B,ﬁ:5/6 ARL1,§\2,;5:5 6 ARL1,5\243:5 6 ARLLZ\Q,;&:s) 6 ARL1,J\2,ﬁ:5 6 ARL1,5\2,;3:5 6
1/6 59.385 55.852 65.979 112.044 65.364 137.155
1/3 59.385 61.855 32.307 60.740 42.702 39.206
1/2 59.385 67.484 107.860 73.435 27.542 107.670
2/3 59.385 105.080 61.718 57.531 43.009 75.036
5/6 59.385 45.889 70.471 56.475 76.931 35.829
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Table 12: 759, 73,, ARLg, and ARLg5 ~for the best 10%, 30%, 50%, 70%, 90% of
these 100000 i.i.d. experiments in a decreasing order by the d(F27/\g,F27;\2) with T' =
300 and my = ... = nr = 35 when F = p" - Fiy + (1 — p*) -
Fyyy for p* € {1/6,1/3,1/2,2/3,5/6} with A} = (5.771,1.707,0.884) and \; =
(—1.450, —2.450, 1.273, —0.109, 0.565)7 .

10% | 30% | 50% | 70% | 90%
Pl omg | s, | s, Y5 | Vi
1/6 [ 0.002 | 0.002+410.002:. 0.004 | 0.004 | 0.001
1/310.002 | 0:002 | 0.002 [0:001 | 0.001 | 0.004
1/2 ] 0.001 £:0.001 [:0.002 [:0.001 | 0.002 | 0.003
2/3 1 0.001={ 0:001 | 0.001+[ 0.0004 | 0.001 | 0.002
5/6 | 0.0015[ 0.001 | 0.001 | 0.00% | 0.002 | 0.001

10% 30% 50% 0% 90%
" | ARLg o | ARLy 5 BARL . J7ARL ;| ARL,; | ARL
1/6 | 470.175 | 595.580 | 443.966 | 276.241 | 239.030 | 769.612
1/3| 592.735 | 416.511 | 536.236 | 846.050 | 970.737 | 224.911
1/2 | 756.675 | 813.934 | 649.492 | 856.887 | 508.406 | 305.835
2/3 | 955.090 | 959.679 | 1040.847 | 2301.318 | 1769.913 | 426.967
5/6 | 1447.122 | 1089.188 | 694.365 | 976.435 | 504.247 | 831.356
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Table 13: 70, 73,, ARLgyo, and ARLy; for the best 10%, 30%, 50%, 70%, 90% of
these 100000 i.i.d. experiments in a decreasing order by the d(FL/\‘f’Fl,?\l) with T' =
300 and my = ... = nr = 35 when F = p" - Fiy + (1 — p*) -
Fyyy for p* € {1/6,1/3,1/2,2/3,5/6} with A} = (5.771,1.707,0.884) and \; =
(—1.450, —2.450, 1.273, —0.109, 0.565)7 .

10% | 30% | 50% | 70% | 90%
N I e P eV e i S I Y
1/6 [ 0.009 | 0.012¢4.0:008 | 0.008 | 0.011 | 0.01
1/3]0.008 | 0:014 | 0.009 [10:008 | 0.006 | 0.005
1/2 ] 0.006.4:0.011 | 6,008 [0.008 | 0.006 | 0.006
2/3 1 0.005] 0:005 | 0:010-| 0.007 | 0.004 | 0.004
5/6 | 0.004 0.006 | 0:005 | 0.004 | 0.004 | 0.003

10% 1> 0% 150% |  70%]  90%
" | ARLy 0 | ARLy 5 JARL 3 |ARL,; | ARL,; |ARL,;
1/6 | 111.595 | 86.314 | 131,813 | 117.975 | 92.973 | 86.373
1/3] 129.723 | 69.209 | 106.714 | 127.448 | 155.697 | 182.420
1/2 | 154.833 | 87.955 | 133.345 | 128.392 | 168.520 | 162.005
2/3 | 192.150 | 208.536 | 102.868 | 138.550 | 232.638 | 244.044
5/6 | 253.034 | 164.246 | 188.869 | 259.491 | 274.559 | 313.108
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Table 14: Py and P, for the best 10%,30%,50%,70%,90%

o out /\g,p
these 100000 i.i.d. experiments in a decreasing order by the d(F BUI S ) with p*

{1/6,1/3,1/2,2/3,5/6}, T = 300, and ny = ... = np = 35 “when F

peFis, +(1—p) Fys, for p € {1/6,1/3,1/2,2/3, 5/6} with A = (5,3,2)7 and Ay =

(—0.583, —1.083,1.787, —0.456, 1.271)7.

10% 30% 50% 70% 90%
P’ Pout,/\g,ﬁ=1/6 Pout,ﬁ\g,ﬁzl 6 Pout,ﬁ\g,pﬁzl 6 Pout,ﬁ\g,pﬁzl 6 Pout,ﬁ\g,ﬁzl 6 Pout,ﬁ\g,ﬁzl 6
1/6 0.017 0.013 0.016 0.029 0.020 0.014
1/3 0.016 0.018 0.015 0.013 0.013 0.033
1/2 0.013 0.014 0.010 0.006 0.007 0.027
2/3 0.014 0.014 0.017 0.008 0.023 0.022
5/6 0.010 0.013 0.019 0.014 0.025 0.018
10% 30% 50% 70% 90%
v Pout,/\S,ﬁ=1/3 Pout,ﬁ\g,ﬁ:1 3 Pout,j\gﬁzl 3 Pout,ﬁ\g,ﬁ:1 3 Pout,5\2,ﬁ:1 3 Pout,ﬁ\g,ﬁzl 3
1/6 0.017 0.013 0.016 0.029 0.019 0.014
1/3 0.016 0.018 0.015 0.013 0.013 0.033
1/2 0.013 0.014 0.010 0.006 0.007 0.027
2/3 0.014 0.013 0:017 0.008 0.022 0.022
5/6 0.010 0.013 0.019 0.014 0.025 0.018
10% 30% 50% 70% 90%
P Pout«\%ﬁ:l/Q Pout,j\g,ﬁzlﬁ Pout,j\z,ﬁzl/Z POut,j\Q,ﬁZl 2 Pout,j\g,;ﬁ:l 2 Pout,j\g,;ﬁ:l 2
1/6 0.016 0.013 0.016 0.028 0.019 0.013
1/3 0.016 0.018 0:015 0:013 0.013 0.033
1/2 0.013 0.014 0.010 0.006 0.007 0.027
1/3 0.014 0.013 0.016 0.008 0.022 0.021
5/6 0.010 0.013 0.019 0.014 0.025 0.018
10% 30% 50% 70% 90%
P’ Pout,AS,ﬁ=2/3 Pout,ﬁ\g,p':2 3 Pout,ﬁ\g,p':2 3 Pout,ﬁ\g,ﬁ=2 3 Pout,ﬁ\g,ﬁ=2 3 Pout,ﬁ\g,ﬁ=2 3
1/6 0.016 0.013 0.016 0.028 0.019 0.013
1/3 0.015 0.017 0.015 0.013 0.013 0.032
1/2 0.013 0.014 0.010 0.006 0.007 0.027
2/3 0.014 0.013 0.016 0.008 0.022 0.021
5/6 0.009 0.013 0.019 0.014 0.025 0.018
10% 30% 50% 70% 90%
i Pout,/\‘%,ﬁ:5/6 Pout,S\g,ﬁ:5 6 Pout,ﬁ\g,ﬁ:5 6 Pout,?\g,ﬁ:5 6 Pout,ﬁ\g,ﬁ:5 6 Pout,i\g,ﬁ:5 6
1/6 0.016 0.013 0.016 0.028 0.018 0.013
1/3 0.015 0.017 0.015 0.013 0.013 0.032
1/2 0.013 0.014 0.010 0.006 0.007 0.026
2/3 0.014 0.013 0.016 0.008 0.022 0.021
5/6 0.009 0.012 0.019 0.014 0.024 0.018
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Table 15:  ARL;,0; and ARL, 5 - for the best 10%,30%,50%,70%,90% of
these 100000 i.i.d. experiments in a decreasmg order by the d(F, LIS ) with p* €
{1/6,1/3,1/2,2/3,5/6}, T = 300, and ny = ... = np = 35 When F = p-
Fi5, + (1 =p)- Fy5, for p € {1/6,1/3,1/2,2/3, 5/6} with A\; = (5,3,2)7 and Ay =
(—0.583, —1.083, 1.787, —0.456,1.271) 7"
10% 30% 50% 70% 90%
P|ARLy xg 5-1/6 ARLl,S\Q,ﬁzl/ﬁ ARL, 5, 5-1/6 ARLLJ\Z,ﬁ:UG ARL, 5, 5=1/6 ARL1 5, 5-1/6
1/6 59.411 76.442 60.680 34.507 50.469 73.589
1/3 62.966 54.730 65.855 75.563 76.964 29.862
1/2 75.744 72.086 98.724 63.165 140.586 36.486
2/3 69.842 74.069 59.545 126.069 44.370 45.000
5/6 102.325 78.660 52.349 71.022 39.992 55.137
10% 30% 50% 70% 90%
P’ ARLI,/\S,ﬁ=1/3 ARLLXQ,p':l 3 ARL1,Z\2@:1 3 ARLLXQ,;.S:l 3 ARLl,S\g,ﬁzl 3 ARL1,}\2,;5:1 3
1/6 60.055 77.196 61.391 34.947 51.613 73.996
1/3 63.508 55.608 66.462 75.772 77.100 30.261
1/2 76.058 72.273 100.223 163.352 140.832 36.807
2/3 70.247 74.443 60:108 127.651 44.570 45.864
5/6 103.520 79.045 52.758 71.581 40.242 55.116
10% 309 50% 70% 90%
v ARLl,/\S,ﬁzlﬂ ARLLiQ,ﬁ:lm ARLl,S\g,ﬁzl/z ARLl,J\Q,ﬁzl 2 ARLLXg,ﬁzl 2 ARLl,J\Q,ﬁ:1 2
1/6 60.714 77.964 62.118 35.397 52.812 74.408
1/3 64.059 56.515 67.079 75.983 77.236 30.670
1/2 76.375 72.460 101.768 163.539 141.079 37.134
2/3 70.657 74.821 60.681 129.273 44.772 46.762
5/6 104.744 79.433 53.173 72.149 40.496 55.096
10% 30% 50% 70% 90%
P*|ARL) xg 5—2/3 ARLLXQ,;S:Q 3 ARLLS\Q,ﬁ:Q s ARL, 5, 5-o/s/ARLy 5, 503/ ARL) 5, 50/3
1/6 61.387 78.748 62.863 35.859 54.067 74.824
1/3 64.620 57.452 67.708 76.194 77.373 31.091
1/2 76.694 72.648 103.361 163.726 141.326 37.467
2/3 71.072 75.202 61.265 130.937 44.976 47.696
5/6 105.996 79.826 53.595 72.726 40.753 55.076
10% 30% 50% 70% 90%
PYIARLy xg 55 /6| ARLy 5, 5576 ARLy 5, s /6 AL 5, s /6 ALy 5, 55 /6| ARLY 5, =56
1/6 62.075 79.548 63.626 36.334 55.383 75.245
1/3 65.191 58.420 68.349 76.407 77.511 31.524
1/2 77.016 72.838 105.006 163.913 141.575 37.805
2/3 71.492 75.588 61.861 132.645 45.182 48.668
5/6 107.279 80.222 54.023 73.312 41.014 55.056
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