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摘    要 

此論文中，我們介紹了一個新的全距，叫做「眾數型態分位數全

距」。考慮到測量穩健性估計量時，breakdown point 是一個重要的準

則，且早期在建構的穩健性估計量中，breakdown points 都在 0.5 以下

(參見 Hampel (1986))，我們將會說明這個新的分位數全距 breakdown 

point 可以提高到接近 1。我們也利用模擬資料來比較此眾數型態及傳

統分位數全距的 MSE。更進一步地，我們會把此分位數全距延伸到

建構製程能力指標上。 
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Abstract

We introduce a new type of range, called the mode type interpercentile distance.

With the fact that the breakdown point is one important criterion for measuring the

robust type estimators and the fact that the proposed robust estimators are all with

breakdown points less than or equal to 0.5)( see this point in Hampel et al. (1986)),

we will show that this new interpercentile distance may have breakdown point as

large as close to 1. Simulation for comparing this interpercentile distance and the

traditional one will also be conducted through the mean square error (MSE). Moreover,

an extension of this interpercentile distance to construct a process capability index will

also be introduced.
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1. Introduction

Measuring the center and variability of a random variable (r.v.) with a distribution

function (d.f.) F , unknown or partially unknown, are two most important topics in

statistical inference. Basically the variability tries to tell us about the variable X how

close together or spread out. In statistics, it is as important to study the variability as

the center of a r.v. For example, when products that fit together (such as pipes) are

manufactured, it is important to keep the variations of the diameters of the products

as small as possible; otherwise, they will not fit together properly.

Although there are varieties of measures for variability in the literature, however,

very few of them are designed with clear explanation for their role in measuring spread-

ness and closeness. One exceptional case is that the variance is explained as a measure

of maximum dispersion from the mean. There may not be able to set a line of measure

for variability such that spreadness and closeness stay on its two ends. For example for

interpretation, suppose that we have a class of students taken an examination of some

course and obtain two interval estimates (10, 85) and (65, 93) estimating population

intervals covering the student’s score with the same probability 0.9. Furthermore, as-

sume that the two population intervals are the longest and the shortest ones under the

same confidence coefficient. Then two ranges, 75 and 28, are both estimates of vari-

ability, one measuring the interval spreading most widely and the other one measuring

the closest interval, both with the same coverage probability. Classifying a measure of

variability in its role for spreadness or closeness does make sense for user. Our interest

will be interval concerning towards the side of closeness.

Among many choices of variability formulation, the interpercentile distance τ(α, β) =

F−1(β)− F−1(α), 0 < α < β < 1, provides variety of versions that are widely applied

in practice. The reason is that the symmetric range F−1(1 − α) − F−1(α), one in

the class, has been shown very useful in application and computationally easy. For

examples of application, an alternative formulation of the normal standard deviation

is dτmed(1− 2α) with constant d satisfying dτmed(1− 2α) = σ. The other one applica-

tion is the 0.5 median range τmed(0.5), also being called the interquantile range. Both

formulations are aiming for providing robust versions of variability measure (see these

in Staudte and Sheather (1990)). Very important application of the 0.9973 median

range τmed(0.9973) is done on quality improvement in industry. The process capability

index is for judging if a manufacturing process in industry is in control. There are
1
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many types of process capability indices constructed by 99.73% median range, the

distribution F been considered symmetric or asymmetric (see Vannaman (1995) and

Pearn, Chen (1997) and Kotz and Lovelace (1998)) whereas the simplest version is

Cp =
USL− LSL

τmed(0.9973)
(1.1)

with LSL and USL the lower and upper specification limits determined by engineers.

We consider two criterions for the selection of a interpercentile distance. First, we

consider the robustness of breakdown point for an estimator as the largest fraction of

the data that can be moved arbitrary without perturbing the estimator to the boundary

of the parameter space. Thus the higher the breakdown point, the more robust the

estimator against extreme outliers. Among the widths of the quantile interval class

{(F−1(α), F−1(γ + α)) : 0 < α < 1 − γ}, we define the minimum one as a new

measure of variability. Obviously it measures the width of the closest interval in a

given coverage probability. As a scale parameter, we will show that it meets several

desirable properties of a scale point. This measure of variability is strongly dependent

on the shape of a distribution so that it may not blindly be the range of a central

interval. Application of this width to build an interpercentile distance, like quantity,

alternative representation of standard deviation for any distribution. We will consider

all nonparametric estimations for this new interpercentile distance and we will compare

it with the traditional symmetric type interpercentile distance through simulations in

terms of mean squares error (MSE) and breakdown point. We will also introduce a

new process capability index. Illustration of these new procedures are given based on

several distributions including the normal, gamma and exponential distributions.

2. Breakdown Point for Some Robust Location Estimators

First we given one example for iid random variable case. Let y1, ..., yn be iid random

variables.

Sample Mean and Sample Median

The sample mean ȳ has breakdown point is 1
n which converges to zero and the

sample median has breakdown point approximated 0.5.

Hodges-Lehmann Estimator

Consider the location model. The Hodges-Lehmann (HL) estimator (see Hodges
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and Lehmann (1963)) is defined as

θ̂ = med1≤i<j≤n
yi + yj

2
.

Then the breakdown point of the Hodges-Lehmann estimator is 1 − ( 1
2 )1/2 which is

approximately 0.293.

Suppose that we have a linear regression model

yi = x′iβ + εi, i = 1, ..., n

where xi is a p-vector of independent variables.

Least Squares Estimator

The least squares (LS) estimator is defined as

β̂LS = arg minb

n∑

i=1

(yi − x′ib)
2

which has breakdown point 1
n that converges to zero as n goes to infinity.

Least Median of Squares Estimator

The least median of squares (LMS) estimator, proposed by Rousseeuw (1984), β̂LMS

solving

arg minbmedi(yi − x′ib)
2.

The breakdown point of the LMS estimator is (n+1)/2
n which converges to 0.5 as n →∞.

Least Trimmed Squares Estimator

The least trimmed squares (LTS) estimator proposed by Rousseeuw (1983). Let b

be any p vector in Rp. By letting ri = yi − x′ib, i = 1, ..., n and (r2)i:n, i = 1, ..., n be

the order statistics of r2
i , i = 1, ..., n, the LTS estimators is defined as

β̂LTS = minb

h∑

i=1

(r2)i:n

where h = [n
2 ] + 1. Then the breakdown point of the LTS estimator is [(n+1)/2]

n which

converges to 0.5 as n →∞.

Least Winsorized Squares Estimator
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For the location estimation problem, the least Winsorized squares (LWS) estimator

(see Rousseeuw (1987)) is defined as

β̂LWS = minb

h∑

i=1

(r2)i:n + (n− h)(r2)h:n

where h = [n/2] + 1. Then the breakdown point of the LWS estimator is [(n+1)/2]
n

which converges to 0.5 as n →∞.

Least Absolute Values Regression Estimator

The least absolute values regression estimator is defined as

β̂L = arg minb

n∑

i=1

|yi − x′ib|

which has breakdown point 1
n → 0 as n →∞.

Huber’s M-Estimator

The Huber’s M-estimator (M) is defined as

argb

n∑

i=1

xiψ(yi − x′ib) = 0

where

ψ(z) =
{

z, if |z| < k
k sgn (z), if |z| > k

where k is positive constant, usually taking 1.5. The breakdown point of the Huber’s

M-estimator is ≤ 1
p .

3. Interpercentile Distance

We say that τ0, a nonnegative function of r.v. X and percentage γ, 0 < γ < 1, is a

measure of dispersion if it satisfies

(a). τ0(X + b, γ) = τ0(X, γ) for b ∈ R.

(b). τ0(aX, γ) = |a|τ0(X, γ) for a ∈ R.

Intuitively, the members in the following family of quantile differences

{F−1(γ + α)− F−1(α) : 0 < α < 1− γ}

may serves a γ-range for the distribution. However, not every one in the family satisfies

the requirements for a measure of dispersion. It is well known that the median range
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τmed(1− 2α) = F−1(1− α)− F−1(α), 0 < α < 0.5, is a measure of dispersion (see the

proof in Staudte and Sheather (1990)). We are interested in a measure of dispersion

that is a quantile combination of the following form

τ0(X, γ) = inf0<α<1−γ{cF−1(α) + dF−1(γ + α)} (3.1)

with d > 0, c ∈ R.

The following theorem provides the condition that the minimization quantile com-

bination in (3.1) is a measure of dispersion.

Theorem 3.1. For given c, d ∈ R, τ0 of (2.1) is a measure of dispersion if c = −d.

Proof. We know that the population quantile F−1 satisfies F−1(X+b, α) = F−1(X, α)+

b for b ∈ R and F−1(aX,α) = aF−1(X,α) if a > 0 and aF−1(X, 1−α) if a ≤ 0. Now,

τ0(X + b, γ) = inf0<α<1−γ{cF−1(X + b, α) + dF−1(X + b, γ + α)}
= inf0<α<1−γ{cF−1(X, α) + dF−1(X, γ + α) + (c + d)b}
= τ0(X, γ) + (c + d)b

which is equal, for satisfying condition (a), to τ0(X, γ) only if c+d = 0. Then d = −c.

It is obvious that (b) holds for a > 0. To prove (b) for a ≤ 0, we let d = 1.

τ0(aX, γ) = inf0<α<1−γ{F−1(aX, γ + α)− F−1(aX, α)}
= inf0<α<1−γ{aF−1(X, 1− (γ + α))− aF−1(X, 1− α)}
= infγ<β<1{aF−1(X, β − γ)− aF−1(X, β)}
= −a infγ<β<1{F−1(X, β)− F−1(X,β − γ)}
= |a|τ(X, γ)

whch finishes (b). ¤

Theorem 3.2. Suppose that F has a symmetric continuous density f that is unimodal

(meaning that f(x) is trictly decreasing about its center of symmetry). Then τmod =

F−1( 1+γ
2 )− F−1( 1−γ

2 ).
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Proof.

∂

∂α
(F−1(γ + α)− F−1(α)) = 0

1
f(F−1(γ + α))

− 1
f(F−1(α))

= 0

F−1(γ + α) = F−1(α)

γ + α = 1− α

α∗ =
1− γ

2

4. Nonparametric Estimation of Interpercentile Distance

We consider a nonparametric estimation technique for estimating the unknown in-

terpercentile distance. Parametric methods of data analysis rely on distributional

assumptions on the underlying data. Nonparametric methods however, are fully data-

driven and hence are particularly suited for the less understood random experiments

of highly complexity.

Let X(1), ..., X(n) be the order statistics of a random sample of sample size n drawn

from a distribution F . By letting h = [nγ] + 1, we define the estimator of γ interper-

centile distance as the shortest width of h consecutive sample as

τ̂mod = argh,h+1,...,nmin{X(h) −X(1), X(h+1) −X(2), ..., X(n) −X(n−h+1)}.

Having introduced the mode type interpercentile distance as an alternative for the

traditional interpercentile distance defined through the ordinary quantile function, we

now examine two finite sample numerical aspects. First, it is the fact that the aim for

using an interpercentile distance is essentially for robustness consideration. It is the

interesting to see if the mode type interpercentile distance is more efficient than the

traditional interpercentile distance when the sample is drawn from distributions with

outliers. Second, most traditional statistical methods are efficient when the underlying

distribution is symmetric. It is then also interesting to see the results of these two

interpercentile distances for sample with asymmetric distributions.

The first two questions are answered through a Monte Carlo study using the least

squares estimator as the predetermined estimator. How these estimators perform in
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the presence of outliers is of particular concern. We consider the following power

function model

Xi = µ + εi, i = 1, ..., n.

With sample size n = 50, the distribution of error variable ε is the contaminated

normal distribution

(1− δ)N(0, 1) + δN(0, σ2),

with δ = 0.1, 0.2, 0.3 and σ = 5, 10, 25. The replication number is 1000. For number

ith replication, we compute two interpercentile distance τ̂ i
med and τ̂ i

mod. Then we

define the mean squares errors,

MSEmed =
1

1000

1000∑

i=1

(τ̂ i
med − τmed)2 and MSEmod =

1
1000

1000∑

i=1

(τ̂ i
mod − τmod)2.

In Table 1, we display the MSE’s under the contaminated normal distributions. The

purpose of the Monte Carlo study is to evaluate the small-sample behavior of these

two interpercentile distances.

Table 1. MSE’s for the median and mode type interpercentile distance under con-

taminated normal distributions
γ MSEmod MSEmed MSEmod MSEmed MSEmod MSEmed

δ = 0.1 δ = 0.2 δ = 0.3
σ = 5

γ = 0.5 0.0999 0.0757 0.1194 0.1097 0.1396 0.1623
γ = 0.6 0.1188 0.1153 0.1477 0.2052 0.1925 0.3475
γ = 0.7 0.2006 0.1271 0.2678 0.2634 0.4361 0.5531
γ = 0.8 0.2291 0.4217 0.4869 1.4770 1.3679 2.4403
γ = 0.9 0.9840 1.9936 5.8309 3.6026 15.397 5.8729

σ = 10
γ = 0.5 0.1044 0.0801 0.1299 0.1245 0.1694 0.2635
γ = 0.6 0.1256 0.1276 0.1706 0.3230 0.3075 1.3354
γ = 0.7 0.2157 0.1689 0.3557 0.9816 1.0804 4.2862
γ = 0.8 0.2937 1.8739 2.1154 13.041 11.279 13.946
γ = 0.9 2.6851 17.422 46.149 21.014 78.732 27.399

σ = 25
γ = 0.5 0.1081 0.0818 0.1364 0.1378 0.1975 0.8805
γ = 0.6 0.1312 0.1394 0.1902 1.0873 0.8545 11.930
γ = 0.7 0.2295 0.3719 0.5886 8.5978 7.3271 51.315
γ = 0.8 0.5810 16.429 20.889 142.35 117.37 98.386
γ = 0.9 18.903 184.29 391.14 157.09 540.10 179.46
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We have several conclusions drawn from the results displayed in Table 1:

(a) When the coverage probability γ increases both the MSE’s of the two interpercentile

distances also increase. This shows that both techniques of interpercentile distances

are less efficient when the coverage probability is large.

(b) When the coverage probability γ is a smaller value (< 0.7) the median type in-

terpercentile distance seems to be more efficient in estimation. However, when it is

relatively larger (> 0.7) the mode type interpercentile distance seems to be mostly

more efficient than the other one.

(c) In practical applications of the use of interpercentile distance it is quite often that

large coverage probability is adopted (for interpercentile distance γ = 0.75 is adopted).

Then the mode type interpercentile distance is a good choice in defining this type scale.

In the next we conduct a simulation with a design of sample sizes n = 50 and

100 to compare the MSE’s of the two interpercentile distances where the underlying

distribution is the exponential one with pdf

f(x) = e−x, x > 0.

This is a study for a situation that there is no contaminated outliers. The results of

MSE’s are displayed in Table 2.

Table 2. MSE’s of the median and mode type interpercentile distances under the

exponential distribution

γ MSEmod MSEmed MSEmod MSEmed

n = 50 n = 100
0.5 0.0208 0.0548 0.0096 0.0272
0.6 0.0321 0.0839 0.0149 0.0373
0.7 0.0469 0.1031 0.0234 0.0508
0.8 0.1010 0.1579 0.0433 0.0838
0.9 0.1503 0.2522 0.0819 0.1547
0.95 0.3507 0.5979 0.1503 0.3085

It is nice that the mode type interpercentile distance has MSE’s all are less than

the corresponding value of the median type interpercentile distance.

Let’s conduct several more study by computing the efficiency defining by

Effmed =
Min{MSEmed,MSEmod}

MSEmed
and Effmod =

Min{MSEmed,MSEmod}
MSEmod

.
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The first is conducted for the Chi-square distribution χ2(k) where the sample size is

n = 50 and replication is m = 10000. The simulation results are displayed in Table 3.

Table 3. Efficiencies of two interpercentile distance for chi-square distribution

γ Effmod Effmed Effmod Effmed

k = 3 k = 10
0.6 1 0.2702 1 0.4445
0.7 1 0.3387 1 0.5881
0.8 1 0.3821 1 0.6318
0.9 1 0.4910 1 0.7181
0.95 1 0.5449 1 0.6661

The above table provides the clear results of the efficiencies of these two interper-

centile distances where the median type one could have efficiency as small as 0.27 and

are all less than 0.72. This support to use the mode type interpercentile distance when

the distribution follows the Chi-square one.

In the next we consider a contaminated exponential distribution as follows

X = (1− δ)Exp(1) + δUni(−20, 20).

where Exp(1) is the exponential distribution we defined before and Uni(−20, 20) rep-

resents the variable with probability 0.5 for either value 20 or −20. The sample size

and replication number are again n = 50 and m = 10000. The simulation results are

displayed in the following table.

Table 4. Efficiencies of two interpercentile distances for contaminated exponential

distribution

γ Effmod Effmed Effmod Effmed Effmod Effmed

δ = 0.1 δ = 0.2 δ = 0.3
0.5 1.0000 0.0192 1.0000 0.0003 1.0000 0.0001
0.6 1.0000 0.0043 1.0000 0.0056 1.0000 0.1280
0.7 1.0000 0.0013 1.0000 0.0655 1.0000 0.5413
0.8 1.0000 0.0886 1.0000 0.7248 0.9696 1.0000
0.9 1.0000 0.6623 0.9537 1.0000 0.9412 1.0000
0.95 0.9300 1.0000 0.9298 1.0000 0.9298 1.0000

The efficiencies of the mode type interpercentile range for this distribution are

almost with few exceptions better than the median type interpercentile range.
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5. Breakdown Point Analysis for Interpercentile Distance

The classical statistical techniques are designed to be the best possible when strin-

gent assumptions apply. However, experience and further research have forced us to

recognize that classical techniques can behave badly when the practical situation de-

parts from the ideal described by such assumptions. The more recently developed

robust and exploratory methods are broadening the effectiveness of statistical analy-

sis. One aspect to evaluate the effectiveness is to compare the breakdown point for

the estimators.

The breakdown point for an estimator, loosely speaking, is the largest proportion of

gross errors that never can carry the estimator over all bounds. The sample size is 1000

with replication m = 100 and this sample are drawn from the following distribution

model,

Xi =
{

Zi if outlier does not occurs
Zi + vi if outlier does occurs

where zi are iid drawn from an ideal distribution and vi = 1000+10∗ i. If Xi = Zi +vi

then this x represents an extreme point.

For replication number j, we generate a sample z1, ..., zn. Then we define the

breakdown number bdj
med and bdj

mod as

bdj
med(z1, ..., zn) =

1
n

max{k : maxi1,...,ik
|τ̂med(x1, ..., xn)− τmed| ≥ a}

bdj
mod(z1, ..., zn) =

1
n

max{k : maxi1,...,ik
|τ̂mod(x1, ..., xn)− τmod| ≥ a}

where the sample x1, ..., xn is obtained by replacing the k data points zi1 , ..., zik
by

the contaminated values zi1 + v1, ..., zik
+ vk. The average breakdown points are then

defined as

BDmed =
1
m

m∑

j=1

bdj
med(z1, ..., zn) and BDmod =

1
m

m∑

j=1

bdj
mod(z1, ..., zn).

In the following table, we present the average breakdown points of mode type and

median type interpercentile distances under the case that the ideal distribution is

standard normal distribution.

Table 5. Breakdown points under normal distribution
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γ BDmod BDmed γ BDmod BDmed

0.95 0.051 0.027 0.5 0.5 0.251
0.9 0.101 0.052 0.4 0.6 0.301
0.8 0.2 0.101 0.3 0.7 0.351
0.7 0.301 0.152 0.2 0.8 0.401
0.6 0.4 0.201 0.1 0.9 0.451

In the next simulation, we consider the Gamma distribution with α = 2.5 and β = 2

as the ideal distribution.

Table 6. Breakdown points under Gamma distribution (Gamma(2.5, 2))

γ BDmod BDmed γ BDmod BDmed

0.95 0.0502 0.0267 0.5 0.4968 0.2484
0.9 0.0992 0.0514 0.4 0.597 0.2984
0.8 0.1957 0.0996 0.3 0.6973 0.3485
0.7 0.2938 0.1502 0.2 0.7976 0.3987
0.6 0.3891 0.1986 0.1 0.8986 0.4497

From Tables 5 and 6, we have several conclusions:

(a) The breakdown points for the mode type interpercentile distance are about twice

the values of the median type interpercentile distance. It for mode type interpercentile

distance is about 1− γ and it for median type interpercentile distance is about a half

of 1− γ.

(b) The breakdown point for each type interpercentile distance is increasing when γ

decreases.

(c) Hampel et al. (1986) claimed that the breakdown point for estimator may not

be larger than 0.5. However, the breakdown point of the mode type interpercentile

distance is available not only more than 0.5 but also close to 1. This interesting result

has not been observed in the literature.

Now, we consider the exponential distribution as the ideal distribution and we

display the simulation results of breakdown points of the two interpercentile distances

in the following table.

Table 7. Breakdown points under Exponential distributions (Exp(5))
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γ BDmod BDmed γ BDmod BDmed

0.95 0.0446 0.0236 0.5 0.4627 0.2267
0.9 0.0881 0.0451 0.4 0.5648 0.2762
0.8 0.1779 0.0891 0.3 0.6682 0.3271
0.7 0.2710 0.1344 0.2 0.7765 0.3816
0.6 0.3653 0.1802 0.1 0.8864 0.4385

The results displayed in Table 7 for this exponential distribution are similar to the

results in Tables 5 and 6. However, they are less than the results in Tables 5 and 6.

The above results of breakdown points are all performed with a = 10. We may

want to see if the breakdown points can be improved if increase the value a. In the

following Table, we display a result for that a is set to be 25.

Table 8. Breakdown points under Exponential distributions (Exp(5))

γ BDmod BDmed γ BDmod BDmed

0.95 0.0507 0.0268 0.5 0.4983 0.2500
0.9 0.1003 0.0517 0.4 0.5984 0.2999
0.8 0.1987 0.1003 0.3 0.6986 0.3500
0.7 0.2996 0.1512 0.2 0.7989 0.4001
0.6 0.3984 0.1999 0.1 0.8994 0.4505

In this situation, the breakdown points for the two types of interpercentile distance

are improved and their results are very close to the results in Tables 5 and 6.

6. Process Capability Index

In understanding what the process is actually doing and seeing if the process meets

the quality requirements or the consumer’s expectations, the manufacturer often needs

to provides an index for process improvement and the certificate for customers. In

a perfect world, all process data would be normally distributed. If only that were

true! The usual process capability analysis has provided some very powerful tools

to describe the capability of processes. However, the indices for the usual process

capability analysis are designed to be used with normally distributed data.

Process data do not always follow a normal distribution. A one-sided specification

limit is an immediate clue that the data might be non-normal. For example, a chem-

ical may have an upper specification limit (USL) for a contaminant. The impurity

concentration cannot be less than zero, and the normal distribution is unlikely to be a

good model. In most of the earlier work for dealing with non-normal data, the authors
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have tried to fit an appropriate probability distribution of the process from available

data and then define indices based on the estimated distribution. Such an approach

would require large amounts of data to have a clear understanding of the shape of

the distribution and the analysis can also be very sensitive to departure from that

distribution.

The most commonly used techniques to handle non-normal data are transformation

and quantile estimation. Many practitioners are not comfortable with transformed

data and may have difficulty in translating the results back to the original scale.

Many a time, it will be also difficult to identify the correct transformation. Clements

(1989) has proposed a pioneering approach to the modification of process capability

indices for non-normality considering estimates of median type interpercentile distance

τmed(0.9973). Gilchrist (1993), Chang and Lu (1994) and Sundaraiyer (1996) have

extended Clements method to incorporate various related situations.

The capability index generally defined as

Specification limit
Process spreading limit

.

is the most popular one for the purposes. Numerous process capability indices, in-

cluding the one in (1.1), dealing with normal and asymmetric distributions have been

provided. From their formulation, we see that these indices are all constructed by me-

dian range τmed(0.9973) no matter what the distribution is dealing for (see Clements

(1989), Kotz and Lovelace (1998), Pearn and Chen (1997) and Yeh and Bhattacharya

(1998)). We here will introduce an analogue of the simplest one in (1.1) through the

mode range as an alternative process capability index where other indices involving

median range may also be analogously developed.

Definition 6.1. The mode process capability index is defined as

Cmod
p =

USL− LSL

τ(γ)
.

We also call it the mode Cp.

To investigate the efficiencies of the mode process capability, we will proceed a sim-

ulation to compare the mean square errors (MSE) of this mode process capability and

the median type process capability. To do this, we randomly drawn a sample of size
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n = 100 from a distribution and compute their corresponding sample process capabili-

ties. With replication 1000 and we compute the average process capabilities. Without

loss of generality, we set the true value of USL− LSL = 1. Furthermore we consider

process capabilities various in coverage probability γ with γ = 0.7, 0.8, 0.9, 0.95.

Exponential Distribution

Let X1, ..., Xn be a random sample drawn from the exponential distribution Exp(λ)

with pdf

f(x, λ) =
1
λ

e−x/λ, x > 0.

In this simulation, we let sample size n = 1000 and replications m = 100. The ob-

servations are randomly drawn from the exponential distribution Exp(λ) with λ = 5.

We consider process capability indices of γ = 0.7, 0.8, 0.9, 0.95 The extreme point set-

ting is as what we have done and our purpose is to compute the average of breakdown

points of these two process capability indices. Moreover, we define an estimator to be

broken if the following occurs

Cp < a

where the value of a are 0.02 and 0.01.

Table 9. Breakdown points under Exponential distributions (Exp(5))

γ BDmod BDmed BDmod BDmed

a = 0.02 a = 0.01
0.95 0.051 0.027 0.101 0.111
0.9 0.101 0.052 0.117 0.100
0.8 0.200 0.101 0.220 0.111
0.7 0.301 0.152 0.301 0.152

The mode type Cp has breakdown points better than those of the median type Cp.

In case that a = 0.02, the breakdown point of the mode type Cp is about 1− γ and it

of the median type Cp is about a half of 1 − γ. However, case for a = 0.01 is not so

desirable.

The next we consider the normal distribution N(0, 1) and conduct the same simu-

lation. We display the simulation results of breakdown points in the following table.

Table 10. Breakdown points under Normal distribution
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γ BDmod BDmed BDmod BDmod

a = 0.02 a = 0.01
0.95 0.051 0.027 0.051 0.027
0.9 0.101 0.052 0.101 0.052
0.8 0.200 0.101 0.200 0.101
0.7 0.301 0.152 0.301 0.152

For this case of normal distribution, the breakdown points for these two interper-

centile distances are with results desirable. The above simulation results support us

to use the mode type interpercentile distance.

The efficiency of the process capability index is

Eff =
min{MSEmod, MSEmed}

MSE

where MSE = MSEmod or MSEmed.

Table 11. Efficiencies of process capability indices

γ Effmod Effmed Effmod Effmed

λ = 5 λ = 10
0.7 1 0.5005 1 0.5194
0.8 1 0.4179 1 0.4232
0.9 1 0.5396 1 0.5407
0.95 1 0.6269 1 0.6272

In the next, we presents the simulation results for chi-square distribution χ2(k).

Table 12. Efficiencies of process capability indices

γ Effmod Effmed Effmod Effmed

k = 3 k = 10
0.7 1 0.5445 1 0.8796
0.8 1 0.5993 1 0.8842
0.9 1 0.6660 1 0.8961
0.95 1 0.7048 1 0.8978

From the results displayed in Tables 11 and 12, it is interesting that the mode

type interpercentile distance has simultaneously smaller MSE’s than the median type

interpercentile distance so that the mode type one has efficiencies all with values 1s.

7. Conclusions

In this paper, we proposed the mode type interpercentile distance. The most in-

teresting result showing by this distance is that its breakdown point may be greater
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than 0.5 which was claimed by Hampel et al. (1986) that the breakdown point for any

estimator may not be larger than 0.5. We also made a simulation showing that this

new interpercentile distance may be more efficient than the traditional interpercentile

distance. We also introduce the mode type process capability index where simulation

results of breakdown point and MSE for comparing it and the traditional one are also

displayed.
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