
1. Introduction

The most popular technique in estimating a location parameter is the least squares

estimator. Its popularity mainly reflects its advantages in the theoretical property

from the parametric point of view that it is uniformly minimum variance unbiased

estimator when the variable follows a normal distribution. However, the least squares

estimator is sensitive to departures from normality and to the presence of outliers.

Hence, we need to consider robust estimators.

An important class (see Hogg (1974) and Huber (1981)) that provides many choices

of robust estimators for location parameter is the L-estimators, defined in terms of

ordinary quantile. The benefits of using an estimator that is based on quantile include

its easiness in computation and asymptotic efficiency shown in literature (see Hogg

(1974), Jureckova and Sen (1996) and Chen (1996)). Let F−1 be the population

quantile function. The class of ordinary L-estimators is considering the following

quantile means ∫ 1

0

δ(α)F−1(α)dα (1.1)

as estimand for some nonnegative function δ. This provides a rich class of quantities

very popular and interesting in application and theoretical study for measuring center

for the underlying distribution.

The trimmed mean, with δ an indicator function having value zero outside a quantile

interval and trimming for its sample version refers to the removal of the extreme values

of a sample, has a long history. Huber (1972) quoted an anonymous author from 1921,

who explained that in certain provinces of France the mean yield of land was estimated

by averaging the middle 18 yields from 20 consecutive years. The most popular version

considers symmetrically trimming as

µmed(2α) =
1

1− 2α

∫ F−1(1−α)

F−1(α)

xf(x)dx. (1.2)

We call it the median type trimmed mean. Basically the trimmed mean is a natural

compromise between the nonrobust sample mean and median which, although it is

insensitive to outlying observations, but is turned out that it went too far in discard-

ing obseravtions. That is, the trimmed mean discrad only a certain number of the

obseravtions and to use as estimator the mean of the remaining observations.
1
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There are many criterions available for us to compare the robust estimators. Among

them, breakdown point for an estimator is one interesting for statistician. The break-

down point represents the smallest percentage of contamination in the data that may

cause the estimator to take on arbitrary large values. For a mathematical definition,

see Hampel,et al.(1986). It is popularly recoganized that the breakdown point in sta-

tistical inferences is no more than 0.5 (see this point in Hampel et al. (1986)). Consider

several examples. In the case of the least squares estimator we find that the breakdown

point is zero. The first step in the robustification of the least squares estimator is the

Huber’s estimator (see this latter). Its breakdown point depends on the design (the

distribution of the x’s). Its breakdown point never greater than 25%. The most robust

limiting case of the Huber’s estimator, the `1-norm estimator (that minimizes the sum

of absolute deviations) has breakdown point 25% for uniform x’s, less than 24% for

normal x’s, and arbitrary close to zero for heavy tail and asymmetric designs.

It is known that the assumption of symmetric distribution is a serious concern

in robust estimation. With this consideration of possible asymmetric distribution,

symmetrically trimming is nolonger a right trimming choice. However, it is also known

that an asymmetric trimming such as the following

µ(α1, α2) =
1

α2 − α1

∫ F−1(α2)

F−1(α1)

xf(x)dx (1.3)

for some α1, α2 with 0 < α1 < α2 < 1 does not fulfill desired equivariant conditions

in general unless the symmetric case that α = α1 = 1− α2. What else choice we may

consider for trimmed mean?

Our interest in this paper is to proposed a population type trimmed mean that the

retained region with a fixed coverage probability for computing mean is the shortest

one which will be called the mode type trimmed mean. To investigate this new pop-

ulation type trimmed mean, we will introduced a sample type version and study it.

To study this sample type trimmed mean, we will investigate its breakdown point and

show that it may exceed the popularly accepted value 0.5. Furthermore we will also

investigate this sample type trimmed mean by comparing the mean squares errors with

one traditional used trimmed mean.
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2. Breakdown Point for Some Robust Location Estimators

First we give one example for iid random variable case. Let y1, ..., yn be iid random

variables.

Sample Mean and Sample Median

The sample mean ȳ has breakdown point is 1
n which converges to zero and the

sample median has breakdown point approximated 0.5.

Hodges-Lehmann Estimator

Consider the location model. The Hodges-Lehmann (HL) estimator (see Hodges

and Lehmann (1963)) is defined as

θ̂ = med1≤i<j≤n
yi + yj

2
.

Then the breakdown point of the Hodges-Lehmann estimator is 1 − ( 1
2 )1/2 which is

approximately 0.293.

Suppose that we have a linear regression model

yi = x′iβ + εi, i = 1, ..., n

where xi is a p-vector of independent variables with value 1 on the first element.

Least Squares Estimator

The least squares (LS) estimator is defined as

β̂LS = arg minb

n∑

i=1

(yi − x′ib)
2

which has breakdown point 1
n that converges to zero as n goes to infinity.

Least Median of Squares Estimator

The least median of squares (LMS) estimator, proposed by Rousseeuw (1984), β̂LMS

is defined as

β̂LMS = arg minbmedi(yi − x′ib)
2.

The breakdown point of the LMS estimator is (n+1)/2
n which converges to 0.5 as n →∞.
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Least Trimmed Squares Estimator

The least trimmed squares (LTS) estimator proposed by Rousseeuw (1983). Let b

be any p vector in Rp. By letting ri = yi − x′ib, i = 1, ..., n and (r2)i:n, i = 1, ..., n be

the order statistics of r2
i , i = 1, ..., n, the LTS estimators is defined as

β̂LTS = minb

h∑

i=1

(r2)i:n

where h = [n
2 ] + 1. Then the breakdown point of the LTS estimator is [(n+1)/2]

n which

converges to 0.5 as n →∞.

Least Winsorized Squares Estimator

For the location estimation problem, the least Winsorized squares (LWS) estimator

(see Rousseeuw (1987)) is defined as

β̂LWS = mina

h∑

i=1

(r2)i:n + (n− h)(r2)h:n

where h = [n/2] + 1. Then the breakdown point of the LWS estimator is [(n+1)/2]
n

which converges to 0.5 as n →∞.

Least Absolute Values Regression Estimator

The least absolute values regression estimator is defined as

β̂L = arg minb

n∑

i=1

|yi − x′ib|

which has breakdown point 1
n → 0 as n →∞.

Huber’s M-Estimator

The Huber’s M-estimator (M) is defined as

β̂M = argb[
n∑

i=1

xiψ(yi − x′ib) = 0]

where

ψ(z) =
{

z, if |z| < k
k sgn (z), if |z| ≥ k

where k is positive constant, usually taking 1.5. The breakdown point of the Huber’s

M-estimator is ≤ 1
p .
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3. Mode Type Trimmed Mean

Before defining a more general trimmed mean, we consider a set of desired equivari-

ant conditions for location parameter. The following conditions expected for location

parameter to fulfill may be seen in Staudte and Sheather (1990).

Definition 3.1. We say that µ, a real function of r.v. X , is a measure of location if

it satisfies

(a). µ(X + b) = µ(X) + b for b ∈ R.

(b). µ(ax) = aµ(x) for a > 0.

(c). µ(−X) = −µ(X).

(d). If X ≥ 0, then µ(X) ≥ 0.

We know that not every trimmed mean of (1.3) satisfies the above conditions of

a measure of location. It is known that the symmetric 2α trimmed mean defined as

µmed(2α) = µ(α, 1− α) does satisfies the desired conditions.

Definition 3.2. The shortest width 2α trimmed mean is defined as

µmod(2α) =
1

1− 2α

∫ F−1(1−2α+α∗)

F−1(α∗)
xf(x)dx (3.1)

where α∗ = arginf0<α1<2α(F−1(1− 2α + α1)− F−1(α1)).

Theorem 3.3. The shortest width 2α trimmed mean is a measure of location.

Proof. Let’s redenote µmod(2α) = µmod(X, 2α), F−1(X,α) = F−1(α), f(x) = fX(x)

and α∗ = α∗(X). We know that the quantile function F−1 satisfies F−1(X + b, α) =

F−1(X, α) + b for b ∈ R and F−1(aX,α) = aF−1(X, α) if a > 0 and aF−1(X, 1− α)

if a ≤ 0.

(a). Let b ∈ R. It is easy to see that α∗(X + b) = α∗(X). Then, by letting Y = X + b,

µmod(X + b, 2α) =
1

1− 2α

∫ F−1(X+b,1−2α+α∗)

F−1(X+b,α∗)
yfX+b(y)dy

=
1

1− 2α

∫ F−1(X,1−2α+α∗)+b

F−1(X,α∗)+b

yfX(y − b)dy

=
1

1− 2α

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
(x + b)fX(x)dx

=
1

1− 2α

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx + b

1
1− 2α

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
fX(x)dx

= µmod(X, 2α) + b.
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(b). Let a > 0. We also see that α∗(aX) = argαinf0≤α<1−γ{a(F−1(X, γ + α) −
F−1(X, α))} = α∗(X). We have

µmod(aX, 2α) =
1

1− 2α

∫ F−1(aX,1−2α+α∗)

F−1(aX,α∗)
yfaX(y)dy

=
1

1− 2α

∫ aF−1(X,1−2α+α∗)

aF−1(X,α∗)
y
1
a
fX(

y

a
)dy

=
1

1− 2α

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
ax

1
a
fX(x)adx

= a
1

1− 2α

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx

= aµmod(X, 2α).

(c). Consider the transformation of multiplying X by negative value −1. We see

that

α∗(−X) = arginf0≤α1<2α{F−1(−X, 1− 2α + α1)− F−1(−X, α1)}
= arginf0≤α1<2α{−F−1(X, 1− (1− 2α + α1)) + F−1(X, 1− α1)}
= arginf0≤α1<2α{F−1(X, 1− α1)− F−1(X, 2α− α1)}
= arginf0≤2α−α1<2α{F−1(X, 1− 2α + (2α− α1))− F−1(X, 2α− α1)}
= arginf0≤β<2α{F−1(X, 1− 2α + β)− F−1(X,β)}.

This implies that 1 − (1 − 2α + α∗(−X)) = α∗(X) and the we derive α∗(−X) =

2α− α∗(X).

µmod(−X, 2α) =
1

1− 2α

∫ F−1(−X,1−2α+α∗(−X))

F−1(−X,α∗(−X))

yf−X(y)dy

=
1

1− 2α

∫ −F−1(X,2α−α∗(−X))

−F−1(X,1−α∗(−X))

yfX(−y)dy

=
1

1− 2α

∫ −F−1(X,α∗(X))

−F−1(X,1−2α+α∗(X))

yfX(−y)dy

= − 1
1− 2α

∫ F−1(X,1−2α+α∗(X))

F−1(X,α∗(X))

(−x)fX(x)(−dx)

= −µmod(X, 2α).
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(d). If X ≥ 0, then F−1(X, α∗) ≥ 0 and F−1(X, 1− 2α + α∗) ≥ 0 which implies that

µmod(X, 2α) = 1
1−2α

∫ F−1(X,1−2α+α∗)
F−1(X,α∗) xfX(x)dx ≥ 0. ¤

Consider the example of exponential distribution with pdf f(x) = 1
θ e−x/θI(0 < x <

∞). Since F−1(α) = −θln(1 − α) for 0 < α < 1, we may derive the 2α median type

trimmed mean as

µmed =
θ

1− 2α
[(1− α)(1− ln(1− α)) + α(lnα− 1)]

and the 2α mode type trimmed mean as

µmod =
θ

1− 2α
[2αln(2α) + 1− 2α].

Unless that the underlying distribution is symmetric, the population mean, median

type and mode type trimmed means are generally varies. Consider the exponential

distribution with pdf f(x) = 1
θ e−x/θI(x > 0) and we display the median type and

mode type trimmed means for several values of γ.

Table 1. Mode type trimmed mean and median type trimmed mean of exponential

distribution for some values of γ = 1− 2α (θ = 1)

γ µmod

θ
µmed

θ γ µmod

θ
µmed

θ

0.1 0.0517 0.6948 0.6 0.3891 0.7610
0.2 0.1074 0.6998 0.7 0.4840 0.7908
0.3 0.1677 0.7085 0.8 0.5976 0.8307
0.4 0.2337 0.7212 0.9 0.7441 0.8877
0.5 0.3068 0.7383 0.95 0.8423 0.9289

Note that the population mean (untrimmed) is θ. The results revealed in Table 1

is that the population mode type and median type trimmed means are varied and the

mode type is also smaller than the median type. The reason that this happened is

that the mode type trimmed mean for the exponential distribution is the average of

the region on the left hand side of the sample space that are set of relatively smaller

values. We also see that these two trimmed means vary from the population mean.

The next we consider the chi-square distribution χ2(5) as an example to compute

the population type mode and median trimmed means.
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Table 2. Mode type trimmed mean and median type trimmed mean of χ2(5) for some

values of γ = 1− 2α

γ µmod µmed γ µmod µmed

0.1 3.0117 4.356 0.6 3.4703 4.4925
0.2 3.0471 4.3658 0.7 3.6730 4.5546
0.3 3.1077 4.3836 0.8 3.9408 4.6383
0.4 3.1960 4.4096 0.9 4.3140 4.7587
0.5 3.3147 4.4453 0.95 4.5759 4.8464

Note that the population mean of the χ2(5) distribution is 5. The two types of

trimmed mean are also varied in this asymmetric distribution. Again, the mode type

trimmed mean is smaller than the median type trimmed mean and they both vary

from the population mean.

An interesting problem is that when the mode type trimmed mean will be identical

with the median type trimmed mean.

Theorem 3.4. Suppose that F has a symmetric continuous density f that is unimodal

(meaning that f(x) is strictly decreasing about its center of symmetry). Then the mode

type 2α trimmed mean is exactly equal to the median type 2α trimmed mean of (1.2).

Proof.

∂

∂α
(F−1(γ + α)− F−1(α)) = 0

1
f(F−1(γ + α))

− 1
f(F−1(α))

= 0

F−1(γ + α) = F−1(α)

γ + α = 1− α

α∗ =
1− γ

2

This leads the result of identity of 2α mode type trimmed mean and the median type

trimmed mean of (1.2) by the fact that α∗ = α and 1− α∗ = 1− α. ¤

4. Nonparametric Estimation of Trimmed Mean

We consider a nonparametric estimation technique for estimating the unknown

trimmed mean. Parametric methods of data analysis rely on distributional assump-

tions on the underlying data. Nonparametric methods, however, are fully data-driven

and hence are particularly suited for the less understood random experiments of highly

complexity. The estimator that we will introduce is a new trimmed mean.
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Let X(1), ..., X(n) be the order statistics of a random sample of sample size n drawn

from a distribution F . The median type 2α trimmed mean is

µ̂med(2α) =
1

n(1− 2α)

n∑

i=1

XiI(F−1
n (α) ≤ Xi ≤ F−1

n (1− α))

which has asymptotic breakdown point α. By letting k = [n(1−2α)], where [n(1−2α)]

denotes the largest integer less than or equal to n(1−2α), we define `∗ = argmini{hi =

X(k+i−1) −X(i), i = 1, ..., n− k + 1}. This means that h`∗ = X(k+`∗−1) −X(`∗) is the

shortest width of k order statistics interval [X(i), X(k+i−1)]. The nonparametric 2α

trimming interval is (X(k1), X(k2)) and its corresponding mode type 2α trimmed mean

is

µ̂mod(2α) =
1

n(1− 2α)

n∑

i=1

XiI(X(k1) ≤ Xi ≤ X(k2)).

We concern the property of Hampel’s breakdown (Hampel (1971)). Roughly the

breakdown point is the largest fraction of the data - no matter how they are chosen

- that can be so drastically changed without greatly changing the estimate. And the

asymptotic breakdown point is that fraction when the sample size goes to infinity.

Theorem 4.1. Consider that α < 0.5. The asymptotic breakdown point of a mode

type 2α trimmed mean is 2α which is twice as it of the median type 2α trimmed mean.

This means that when 2α is close to 0.5 the mode type trimmed mean has asymptotic

breakdown point approaching to 0.5 where it for the traditional trimmed mean is only

approaching to 0.25. However, we know that when 2α approaches to 1.0 the median

type trimmed mean has asymptotic breakdown point approaching to 0.5. Then can

the mode type trimmed mean be the one with desirable property of approaching to

1.0 in some mild situations? We design a situation for simulation of the asymptotic

breakdown points for these two trimmed means.

Theorem 4.2. Suppose that we consider the data to be replaced by arbitrary values

are also spread widely. Then the mode type trimmed mean has asymptotic breakdown

point has value 1 as the upper bound.

The sample size is 100 with replication m = 10000 and this sample are drawn from

the following distribution model,

Xi =
{

Zi if outlier does not occurs
Zi + vi if outlier does occurs
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where zi are iid drawn from an ideal distribution and vi = 1000+10∗ i. If Xi = Zi +vi

then this x represents an extreme point. We compute the breakdown point for each

replication and then averages this m replications. In the following table, we present

the average breakdown points of mode type and median type trimmed means under

the case that the ideal distribution is standard normal distribution.

Table 3. Breakdown points of the two trimmed means under standard normal distri-

bution with extremes

γ µ̂mod µ̂med γ µ̂mod µ̂med

0.1 0.910069 0.459972 0.6 0.409962 0.209985
0.2 0.810051 0.409962 0.7 0.310039 0.160005
0.3 0.709968 0.360039 0.8 0.209985 0.109989
0.4 0.609987 0.310039 0.9 0.109989 0.059998
0.5 0.509961 0.260009 0.95 0.049995 0.029999

It is interesting to see that the breakdown points for the mode type trimmed means

are approximated twice as the values 1−γ, however, those for the median type trimmed

mean are only a half of 1 − γ. This indicates that the mode type trimmed mean has

breakdown point twice as the value for the traditional trimmed mean. One more

interesting fact is that it for this new trimmed mean may be larger than 0.5, the value

that Hampel et al. (1986) have claimed that breakdown point may not be more than

0.5.

Now we consider that the ideal distribution is the exponential distribution Exp(1).

The following table displays the breakdown points of the two trimmed means.

Table 4. Breakdown points of the two trimmed means under exponential distribution

with extremes

γ µ̂mod µ̂med γ µ̂mod µ̂med

0.1 0.910068 0.459956 0.6 0.409941 0.209959
0.2 0.810048 0.409947 0.7 0.310014 0.159978
0.3 0.709962 0.360025 0.8 0.209954 0.109957
0.4 0.609974 0.310013 0.9 0.109964 0.059972
0.5 0.509944 0.259982 0.95 0.049965 0.029968

The results displayed in the above table have the same conclusions as we stated for

Table 3.

One important class of robust estimators is the M-estimator, so called because they

behave like, or actually are, maximum likelihood estimators for a distribution with
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longer tails than the normal distribution. Among the class of M-estimators, the most

interesting one is the one proposed by Huber (see Huber (1981)). Huber’s M-estimate

is defined as any value of ` solving

n∑

i=1

φ(
xi − `

d
) = 0

where φ(z) =
{

z if |z| < k
k sgn(z) if |z| ≥ k

. Hampel (1974) proposed taking

d = median
{ |xi − median {xi}|

0.6745

}
.

The divisor 0.6745 is suggested because d is then approximated equal to the standard

deviation if n is large and the distribution is normal. It is also suggested that k be

taken equal to about 1.5. The sample median may be taken as the initial estimate of

`. However, for convenience of computation, we take sample mean as initial estimate

of `.

The Huber’s M-estimate µ̂huber has the property that it is the mean of the set of

numbers that results when observations located more than a distance kd away from

µ̂huber are replaced by µ̂huber + kdsgn(x − µ̂huber). This suggests a simple iterative

procedure for finding µ̂huber.

Table 5. Breakdown points of M-estimator

Estimator N(0, 1) Exp(1) χ2(3) χ2(5)
M-est 0.4566 0.3854 0.2745 0.2366

The above results shows that the breakdown points for the Huber’s M-estimator

may not be more than 0.5 where sometimes its breakdown points may be quite small.

With this new trimmed mean, we may also do a simulation to compare it with the

traditional symmetric type trimmed mean for their efficiency by computing the mean

square errors (MSE). Consider a random sample of sample size 1000 from the following

contaminated normal distribution

(1− δ)N(0, 1) + δ|N(0, σ2)|

and we compute these estimator’s average MSE’s from a replication of 10000. The

following table display the simulation results of MSE’s for these two trimmed means.
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Table 6. MSE’s for trimmed means under the contaminated normal distribution
2α = 0.3

µmod
µmed

2α = 0.2
µmod

µmed
2α = 0.1

µmod
µmed

δ = 0.1
σ = 3 0.0060 0.0136 0.0043 0.0148 0.0166 0.0181
σ = 10 0.0048 0.0247 0.0032 0.0312 0.0021 0.0724
σ = 100 0.0050 0.0317 0.0029 0.0440 0.0012 3.7036
δ = 0.2
σ = 3 0.0089 0.0570 0.0537 0.0677 0.0250 0.0848
σ = 10 0.0045 0.1503 0.0102 0.3081 0.1472 0.7913
σ = 100 0.0036 2.0361 0.0015 18.021 13.280 74.892
δ = 0.3
σ = 3 0.0276 0.1609 0.1337 0.1697 0.1707 0.2185
σ = 10 0.0379 0.7853 0.1013 1.4365 1.0014 2.5983
σ = 100 0.0019 51.785 7.2581 127.75 99.379 269.04

We know that in general the estimators with larger breakdown points are with lower

efficiency. However, it is not the case in this simulation. The mode type trimmed mean

has larger breakdown points but with higher efficiency where everything is compared

with the median type trimmed mean.

5. Nonparametric Estimation of Winsorized Mean

Winsorize is a term introduced by Dixon (1960), who attributes the idea to Charles

P. Winsor. Dixon was concerned particularly with the possibility that extreme values

are poorly determined or unknown to the statistician. Winsorization refers to the

modification of the extreme values of a sample. The sample is symmetrically Win-

sorized by setting the k smallest equal to the (k+1)th order statistic and setting the k

largest order statistics equal to the (n− k)th order statistic for some specific k < n/2.

The population median type 2α Winsorized mean is

µ∗med(2α) =
∫ F−1(1−α)

F−1(α)

xf(x)dx + α[F−1(α) + F−1(1− α)]. (5.1)

Definition 5.1. The shortest width 2α Winsorized mean, called the mode type Win-

sorized mean, is defined as

µ∗mod(2α) =
∫ F−1(1−2α+α∗)

F−1(α∗)
xf(x)dx+α∗F−1(α∗)+(2α−α∗)F−1(1−2α+α∗) (5.2)

where α∗ = arginf0<α1<2α(F−1(1− 2α + α1)− F−1(α1)).
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Theorem 5.2. The mode type 2α Winsorized mean is a measure of location.

Proof. Let’s redenote µ∗mod(2α) = µ∗mod(X, 2α), F−1(X,α) = F−1(α), f(x) = fX(x)

and α∗ = α∗(X). We know that the quantile function F−1 satisfies F−1(X + b, α) =

F−1(X, α) + b for b ∈ R and F−1(aX,α) = aF−1(X, α) if a > 0 and aF−1(X, 1− α)

if a ≤ 0.

(a). Let b ∈ R. It is easy to see that α∗(X + b) = α∗(X). Then, by letting Y = X + b,

µ∗mod(X + b, 2α) =
∫ F−1(X+b,1−2α+α∗)

F−1(X+b,α∗)
yfX+b(y)dy + α∗F−1(X + b, α∗)

+ (2α− α∗)F−1(X + b, 1− 2α + α∗)

=
∫ F−1(X,1−2α+α∗)+b

F−1(X,α∗)+b

yfX(y − b)dy + α∗(F−1(X, α∗) + b

+ (2α− α∗)F−1(X, 1− 2α + α∗) + b

=
∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
(x + b)fX(x)dx + α∗F−1(X, α∗) + α∗b

+ (2α− α∗)F−1(X, 1− 2α + α∗) + (2α− α∗)b

=
∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx + b

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
fX(x)dx + α∗F−1(X,α∗) + α∗b

+ (2α− α∗)F−1(X, 1− 2α + α∗) + 2αb− α∗b

=
∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx + b(1− 2α) + α∗F−1(X, α∗)

+ α∗b + (2α− α∗)F−1(X, 1− 2α + α∗) + 2αb− α∗b

=
∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx + α∗F−1(X,α∗) + (2α− α∗)F−1(X, 1− 2α + α∗) + b

= µ∗mod(X, 2α) + b.
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(b). Let a > 0. We also see that α∗(aX) = argαinf0≤α<1−γ{a(F−1(X, γ + α) −
F−1(X, α))} = α∗(X). We have

µ∗mod(aX, 2α) =
∫ F−1(aX,1−2α+α∗)

F−1(aX,α∗)
yfaX(y)dy + α∗F−1(aX,α∗)

+ (2α− α∗)F−1(aX, 1− 2α + α∗)

=
∫ aF−1(X,1−2α+α∗)

aF−1(X,α∗)
y
1
a
fX(

y

a
)dy + α∗aF−1(X, α∗)

+ (2α− α∗)aF−1(X, 1− 2α + α∗)

=
∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
ax

1
a
fX(x)adx + a(α∗F−1(X,α∗)

+ (2α− α∗)F−1(X, 1− 2α + α∗))

= a

∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx + a(α∗F−1(X,α∗)

+ (2α− α∗)F−1(X, 1− 2α + α∗))

= a(
∫ F−1(X,1−2α+α∗)

F−1(X,α∗)
xfX(x)dx + α∗F−1(X, α∗)

+ (2α− α∗)F−1(X, 1− 2α + α∗))

= aµ∗mod(X, 2α).

(c). Consider the transformation of multiplying X by negative value −1. We see

that α∗(−X) = 2α− α∗(X).

µ∗mod(−X, 2α) =
∫ F−1(−X,1−2α+α∗(−X))

F−1(−X,α∗(−X))

yf−X(y)dy + α∗(−X)F−1(−X, α∗(−X))

+ (2α− α∗(−X))F−1(−X, 1− 2α + α∗(−X))

=
∫ −F−1(X,2α−α∗(−X))

−F−1(X,1−α∗(−X))

yfX(−y)dy − α∗(−X)F−1(X, 1− α∗(−X))

− (2α− α∗(−X))F−1(X, 2α− α∗(−X))

=
∫ −F−1(X,α∗(X))

−F−1(X,1−2α+α∗(X))

yfX(−y)dy − (2α− α∗(X))F−1(X, 1− 2α + α∗(X))

− α∗(X)F−1(X, α∗(X))
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=
∫ F−1(X,α∗(X))

F−1(X,1−2α+α∗(X)))

(−x)fX(x)(−dx)− (2α− α∗(X))F−1(X, 1− 2α + α∗(X))

− α∗(X)F−1(X, α∗(X))

= −
∫ F−1(X,1−2α+α∗(X)))

F−1(X,α∗(X))

xfX(x)dx− α∗(X)F−1(X, α∗(X))

− (2α− α∗(X))F−1(X, 1− 2α + α∗(X))

= −(
∫ F−1(X,1−2α+α∗(X)))

F−1(X,α∗(X))

xfX(x)dx + α∗(X)F−1(X,α∗(X))

+ (2α− α∗(X))F−1(X, 1− 2α + α∗(X)))

= −µ∗mod(X, 2α).

(d). If X ≥ 0, then F−1(X, α∗) ≥ 0 and F−1(X, 1− 2α + α∗) ≥ 0 which implies that

µ∗mod(X, 2α) =
∫ F−1(X,1−2α+α∗)

F−1(X,α∗) xfX(x)dx+α∗F−1(X,α∗)+(2α−α∗)F−1(X, 1−2α+

α∗)) ≥ 0. ¤

Now we consider a Monte Carlo simulation of the case normal with extremes where

the design for drawing the observations is the one stated in Section 4.

Table 7. Breakdown points for two Winsorized means under normal distribution with

extremes

γ µ̂∗mod µ̂∗med γ µ̂∗mod µ̂∗med

0.1 0.910069 0.459972 0.6 0.409962 0.209985
0.2 0.810051 0.409962 0.7 0.310039 0.160005
0.3 0.709968 0.360039 0.8 0.209985 0.109989
0.4 0.609987 0.310039 0.9 0.109989 0.059998
0.5 0.509961 0.260009 0.95 0.049995 0.029999

It is verified that the mode type Winsorized mean has breakdown point approxi-

mated equal to the mode type trimmed mean. From the point of breakdown point, the

mode type trimmed mean and the mode type Winsorized mean are equally interesting

and important.

In the next we consider the simulation for exponential distribution plus extreme

values. The results are stated in the next table.
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Table 8. Breakdown points for two Winsorized means under exponential distribution

with extreme values

γ µ̂∗mod µ̂∗med γ µ̂∗mod µ̂∗med

0.1 0.909909 0.459954 0.6 0.409947 0.209961
0.2 0.809893 0.409942 0.7 0.310021 0.159980
0.3 0.709867 0.360023 0.8 0.209964 0.109963
0.4 0.609942 0.310021 0.9 0.109971 0.059979
0.5 0.509941 0.259985 0.95 0.049961 0.029965

This simulation provides the same indications as it shows in the exponential distri-

bution case.

With this new Winsorized mean, we may also do a simulation to compare it with the

median type Winsorized mean for their efficiency by computing the mean square errors

(MSE). Consider a random sample of sample size 1000 from the following contaminated

normal distribution

(1− δ)N(0, 1) + δ|N(0, σ2)|

and we compute these estimator’s average MSE’s from a replication of 10000. The

following table display the simulation results of MSE’s for these two Winsorized means.

Table 9. MSE’s for Winsorized means under the contaminated normal distribution

2α = 0.3
µ∗mod

µ∗med

2α = 0.2
µ∗mod

µmed
2α = 0.1

µ∗mod

µ∗med

δ = 0.1
σ = 3 0.0088 0.0147 0.0100 0.0184 0.0197 0.0212
σ = 10 0.0134 0.0338 0.0184 0.0483 0.0379 0.2258
σ = 100 0.0163 0.0467 0.0253 0.1028 0.0823 25.007
δ = 0.2
σ = 3 0.0291 0.0714 0.0645 0.0860 0.0667 0.1124
σ = 10 0.0629 0.3302 0.1330 0.9095 0.8314 1.6227
σ = 100 0.0893 31.186 0.2834 99.184 98.456 179.82
δ = 0.3
σ = 3 0.0753 0.2050 0.1710 0.2277 0.2295 0.2868
σ = 10 0.2975 2.0790 0.9144 3.1213 2.9797 4.1722
σ = 100 0.5636 223.51 112.47 342.84 341.96 464.18

In this study, the MSE’s based on mode type Winsorized means are smaller than

the corresponding median type Winsorized mean. This indicates that the mode type

Winsorized mean not only have larger breakdown points but also more efficient in this

case.
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6. Conclusion

In this paper, we proposed the mode type trimmed mean. The most interesting

result showing by this mean is that its breakdown point may be greater than 0.5 which

was claimed by Hampel et al. (1986) that the breakdown point for any estimator may

not be larger than 0.5. We also made a simulation showing that this new trimmed

mean may be more efficient than the traditional trimmed mean. The results showing

for mode type trimmed mean are re-studied for case of Winsorized means that also

support to use the mode type robust estimators.
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